Nothing Special   »   [go: up one dir, main page]

WO2003095686A1 - Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration - Google Patents

Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration Download PDF

Info

Publication number
WO2003095686A1
WO2003095686A1 PCT/FR2003/001399 FR0301399W WO03095686A1 WO 2003095686 A1 WO2003095686 A1 WO 2003095686A1 FR 0301399 W FR0301399 W FR 0301399W WO 03095686 A1 WO03095686 A1 WO 03095686A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
compartment
liquid metal
treatment device
filtration
Prior art date
Application number
PCT/FR2003/001399
Other languages
English (en)
Inventor
Jacques Charpentier
Jean-Marie Chateau
Original Assignee
Pechiney Rhenalu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Rhenalu filed Critical Pechiney Rhenalu
Priority to EP03749924A priority Critical patent/EP1504130B1/fr
Priority to DE60308173T priority patent/DE60308173T2/de
Priority to SI200330545T priority patent/SI1504130T1/sl
Priority to PL372598A priority patent/PL198450B1/pl
Priority to US10/514,165 priority patent/US7648674B2/en
Priority to AU2003255561A priority patent/AU2003255561A1/en
Priority to BR0310028-6A priority patent/BR0310028A/pt
Publication of WO2003095686A1 publication Critical patent/WO2003095686A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/064Obtaining aluminium refining using inert or reactive gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • C22B9/055Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ while the metal is circulating, e.g. combined with filtration

Definitions

  • the invention relates to a device for treating a flow of liquid metal, in particular aluminum, an aluminum alloy, magnesium or a magnesium alloy.
  • liquid metal It is known to treat a stream or a batch of liquid metal before pouring it in the form of a metallurgical product, such as a shaped part, a billet or a plate.
  • the treatment of liquid metal generally aims to rid it of dissolved gases (especially hydrogen), dissolved impurities (especially alkali metals) and solid or liquid inclusions which could adversely affect the quality of the cast products.
  • This treatment typically comprises an operation of treatment by blowing a gas into the liquid metal, which operation is carried out in a first bag.
  • the process gas may be inert and insoluble in the liquid metal (such as argon) or reactive (such as chlorine), or a mixture of these.
  • the inert and insoluble gas absorbs the dissolved gas by dilution effect and carries it with it.
  • the reactive gas reacts with certain dissolved impurities and thus generates liquid or solid inclusions which, like those already present in the liquid metal, can be eliminated by a filtration operation in a second bag fitted with a filter, such as a bag. deep bed filtration, called “deep bed filter” in English.
  • the Applicant has sought a compact liquid metal treatment device which provides an industrial and economical solution to the drawbacks of the devices of the prior art.
  • the invention relates to a device for treating a flow of liquid metal comprising a treatment bag comprising fixed injection means and located in the upstream part of the treatment bag and at least one filtration means in its part. downstream.
  • the Applicant has had the idea of combining the means for injecting the treatment gases and the filtration means inside a compact treatment compartment. This consolidation considerably reduces the complexity of the liquid metal treatment system and facilitates their maintenance.
  • the Applicant has, moreover, had the idea that the grouping of these processing means in the same compartment could lead to an improvement in the processing by the fact that, on the one hand, the mixing of the liquid metal caused by insufflation of gas in it prevents the accumulation of solid matter near the filtration means (and in particular on the surface of the filtration slab (s) when these filtration means are used) and that, on the other hand, the filtration means promotes the formation of re-circulation flows of the liquid metal inside the compartment which tend to increase the residence time and the efficiency of the treatment.
  • the invention also relates to the use of said device for the treatment of a flow of liquid metal.
  • Said liquid metal is typically chosen from the group consisting of aluminum, aluminum alloys, magnesium or a magnesium alloy.
  • FIGS. 1 to 8 give a schematic representation of it and illustrate advantageous embodiments, and the detailed description which follows.
  • FIG. 1 illustrates, in longitudinal section and seen from the side, an embodiment of the invention in which the device comprises a single filtration slab.
  • FIG. 2 illustrates, in longitudinal section and seen from the side, an embodiment of the invention in which the device comprises a baffle and two filtration slabs.
  • FIG. 3 illustrates, in longitudinal section and seen from the side, an embodiment of the invention in which the device comprises a single filtration slab.
  • FIG. 4 illustrates, in longitudinal section and seen from the side, an embodiment of the invention in which the device comprises a single filtration slab.
  • FIG. 5 illustrates, seen from above, an embodiment of the invention in which the means are arranged in line.
  • FIG. 6 illustrates, in cross section, an embodiment of the invention in which the injection means are arranged at the bottom of the treatment compartment.
  • FIG. 7 illustrates, seen from above, an embodiment of the invention in which the injection means are arranged in line and alternately on either side of the treatment compartment.
  • FIG. 8 represents parameters for dimensioning the device of the invention.
  • He and Hs correspond respectively to the normal heights of the metal liquid in the feed (15) and discharge (16) spouts.
  • Ne and Ns correspond respectively to the height of the bottom (37, 38) of the feed (15) and discharge (16) spouts relative to the bottom (28) of the treatment compartment (20).
  • H corresponds to the normal average height of the liquid metal in the treatment compartment (20).
  • Ho corresponds to the average interior height of the treatment compartment (20).
  • the device (1) for treating a flow of liquid metal comprises a treatment bag (2) comprising a treatment compartment (20), inlet means (7, 9) and outlet (8, 10) of the liquid metal, connection means (11, 12, 13, 14) to at least one supply chute (15) in liquid metal and to at least one discharge chute (16 ) liquid metal, and means for injecting (22, 22a, 22b) of a treatment gas into the liquid metal arranged in at least one side wall (32, 33) of the pocket (2), said means d liquid metal inlet and outlet each comprising at least one orifice (9, 10) which is positioned so as to be entirely below the level (26) of the liquid metal during processing, in order to prevent the introduction of ambient air in the compartment being treated, and is characterized in that said treatment compartment (20) comprises an upstream part (23) and a downstream part (24), in that said injection means (22, 22a, 22b) are located in said upstream part (23) and in that said compartment (20) further comprises at least one first filtration means (40) located
  • the main longitudinal axis (6) of the device of the invention is substantially horizontal during processing.
  • the average flow of liquid metal in the device of the invention during treatment is also essentially horizontal.
  • the device according to the invention can thus be inserted into a liquid metal flow system going from a holding pocket to the casting device via open chutes.
  • the absence of a significant difference in level between the inlet and the outlet of the device makes it possible to simplify the liquid metal flow system and to avoid the risks of liquid metal overflowing.
  • the theoretical free surface of the liquid metal being treated is indicated by a hatched line 26. It goes without saying that the free surface of the liquid metal is generally not flat inside the treatment compartment, in the sense that the gas bubbles cause deformation of this surface during treatment.
  • the level (26) of the liquid metal is defined as being the average level of the free surface of the liquid metal which would be observed without the injection of the treatment gas.
  • the level (26) of the liquid metal is typically substantially constant in the treatment compartment.
  • the level (26 ') of the liquid metal in the upstream part (23) of said compartment is preferably typically substantially the same as the level (26 ") of the liquid metal in the downstream part (24) of said compartment .
  • Said means of inlet (7, 9) and outlet (8, 10) of the liquid metal are arranged so that, during treatment, the level (26e) of the liquid metal at the inlet of the device is substantially the same as the level (26s) of the liquid metal at the outlet of the device.
  • substantially the same level means that the difference in level is less than about 1 cm.
  • the levels Ne and Ns of the bottoms (37, 38) of the feed (15) and discharge (16) spouts of the device of the invention are typically substantially at the same level.
  • the levels Ne and Ns are typically between 20 and 50% of the average height H of the liquid metal contained in the treatment compartment during treatment.
  • the orifices (9, 10) are preferably located near the bottom (28) of said compartment in order to promote more efficient treatment of the liquid metal and to simplify the emptying of the treatment compartment. More specifically, the bottom of the inlet (9) or outlet (10) orifice is preferably located at a distance of less than about 10 cm, and more preferably less than about 5 cm, from the bottom (28) of the upstream part (23) of the treatment compartment (20). In a preferred embodiment of the invention, the orifices (9, 10) typically correspond to one end of openings or conduits (7, 8) arranged in the opposite end walls (29, 30) of the pocket (2). These orifices can possibly be formed by more complex arrangements comprising, for example, a baffle.
  • the pocket (2) typically comprises a metal box (3) and an inner lining (4) made of refractory material.
  • the coating (4) can be preformed.
  • the pocket advantageously comprises at least one drain (21), which is preferably located near the bottom (28) of the pocket (2).
  • the drain can be located upstream or downstream of the filtration slab (s) (40, 41). It may be advantageous to provide a drain in the upstream part (23) of the treatment compartment and a drain in the downstream part (24) of the treatment compartment in order to ensure complete emptying of the bag after the treatment operation.
  • the bottom (28) may possibly be inclined relative to the main axis (6) of the device.
  • the pocket (2) is typically closed, in its upper part, using a removable cover (5).
  • the cover typically includes a metal casing (34) and a refractory lining (35).
  • the cover is advantageously provided with a gripping means (27) in order to be able to put it in place and remove it easily, generally using mechanized means.
  • the device (1) advantageously comprises sealing means to avoid gas exchange between the inside and the outside of said compartment (20), such as a tight seal (36) between the cover (5) and the box ( 3).
  • the treatment bag (2) and / or the cover (5) may be provided with a means for discharging (19) the treatment gas, such as a pipe made of refractory material.
  • a means for discharging (19) the treatment gas such as a pipe made of refractory material.
  • the “raw” liquid metal (17) enters the treatment compartment (20) via the inlet orifice (9) while the “treated” metal (18) leaves said compartment (20 ) through the outlet (10).
  • the raw metal enters at the left end (E) of the device and the treated metal leaves at the right end (S) of the device.
  • the inlet (9) and outlet (10) orifices of liquid metal are located on two opposite faces (29, 30) of the device.
  • This configuration corresponds to a rectilinear arrangement. It is also possible, according to the invention, to arrange the inlet and / or the outlet on other faces of the device, so that they can be, for example, perpendicular or parallel to one another.
  • the injection means (22, 22a, 22b) are preferably located in at least one side wall (32, 33) of the pocket (2).
  • the injection means are advantageously placed on at least one of the lateral sides of the treatment compartment (20) of the pocket (2), and more precisely in at least one of the lateral walls (32, 33) of said compartment, which walls are essentially perpendicular to the flow of liquid metal. This choice makes it possible to have several injection means along the metal flow and thus to ensure greater treatment efficiency.
  • the injection means (22, 22a, 22b) are typically placed in the two side walls (32, 33) of the treatment compartment (20).
  • the injection means (22, 22a, 22b) are typically arranged in line and preferably located near the bottom (28) of the treatment compartment (20) in order to allow gas to be blown into most of the volume of metal. liquid included in the upstream part (23) of said compartment.
  • the height of the injection means relative to the bottom of the treatment compartment is typically between 2 and 6 cm.
  • injection means (22, 22a, 22b) only in the upstream part (23) of the treatment compartment (20). It is particularly advantageous to locate the injection means (22, 22a, 22b) in the flow of liquid metal emerging from the inlet orifice (9), so as to increase the volume of liquid metal actually treated.
  • the injection means (22, 22a, 22b) are typically nozzles, which can be fixed or orientable.
  • the injection means (22, 22a, 22b) are alternately in the two side walls (32, 33) of the treatment compartment (20), that is to say on either side of the treatment compartment. Said means are then not opposite, which allows the gas jets not to strike each other directly.
  • the injection means (22a) which are placed on one side of said compartment (20) are offset longitudinally (that is to say in the long direction of the device) relative to the injection means (22b) which are placed on the other side of said compartment (20). This arrangement increases the effectiveness of the treatment.
  • the injection means are typically in line on each side of the treatment compartment.
  • the number of injection means is typically between 3 and 10 on each side of said compartment. They are typically spaced 10 to 20 cm apart.
  • the injection means (22, 22a, 22b) are preferably such that they do not form protuberances inside the treatment compartment, so as to allow easy maintenance thereof.
  • the injection means (22, 22a, 22b) take the form of nozzles, or similar systems, they may be recessed in the wall of said compartment.
  • the tip of the nozzles is preferably made of a refractory material, such as sialon (aluminum and silicon oxynitride).
  • the injection means (22, 22a, 22b) are normally fixed during the treatment, in the sense that they do not undergo movement of movement and / or rotation. Their orientation can however be variable in order to allow a finer adjustment of the efficiency of the injection of gas into the liquid metal.
  • the injection means (22, 22a, 22b) can optionally make it possible to inject the treatment gas with a particular orientation relative to the bottom (28) of said compartment.
  • the treatment gas is typically injected with an angle ⁇ of between 0 ° and 25 ° relative to the bottom (28).
  • the injection means are preferably such that their total flow rate of treatment gas from the injection means is greater than approximately 5 Nm 3 / hour (typically between 8 and 10 m 3 / hour).
  • This result can be obtained using a plurality of injection means located, preferably, near the bottom of said compartment (typically at a distance from the bottom of between 2 and 6 cm).
  • Each filtration means (40, 41) is placed in the downstream part and inside the treatment compartment (20). It serves to prevent inclusions from passing into the flow of liquid metal (18) leaving the device.
  • Each filtration means (40, 41) is preferably a filtration slab in order to allow an easy change thereof.
  • the slab typically comprises a rigid ceramic foam, such as a CFF ("ceramic foam filter”), and is typically made of alumina.
  • the porosity of the slab is preferably greater than 10 ppi ("pores per inch”)
  • each slab is typically between 2 and 5 cm and its length L is typically between 30 and 50 cm.
  • the device comprises a single filtration slab (40) whose width W is typically at least equal to the width Wo of said compartment and whose length L is typically at least equal to the height H of liquid metal in said compartment.
  • the length L thereof is advantageously such that it extends almost to the cover (and therefore approximately equal to the height Ho of the internal cavity of the compartment (20)).
  • the filtration slabs can be held in place by grooves in the wall of the treatment compartment.
  • the device comprises at least a second filtration slab (41) disposed downstream of the first slab (40) (that is to say that the slabs ( 40, 41) are then arranged in series). These slabs are typically substantially parallel to each other. This variant of the invention can make it possible to change a tile without interrupting the treatment.
  • the filtration slab (40) arranged so as to be entirely in the liquid metal during the treatment, which makes it possible to use the entire surface of the slab for filtration.
  • Each filtration slab (40) can be tilted at an angle ⁇ relative to the vertical (that is to say relative to a line perpendicular to the main axis (6) of the compartment device), in order to d '' increase the filtration surface and the metal flow.
  • the angle ⁇ is typically between 20 ° and 90 °.
  • the slab can optionally be arranged horizontally (the angle ⁇ is then equal to 90 °).
  • the device according to the invention may further comprise a baffle (42) between the upstream part (23) of said compartment (20) and the first filtration means (40), so as to limit turbulence near the surface of said first filtration means (40), as illustrated in FIG. 1.
  • the filtration means are easy to change.
  • the dividing line (25) between the liquid metal treatment zone by gas injection (23), upstream, and the filtration metal treatment zone (24), downstream, is approximate. It goes without saying that gas injection treatment can be extended slightly beyond this line.
  • the length Lg of the upstream part (23) of the treatment compartment (20) typically corresponds to 30% to 90%, and preferably 50 to 80%, of the internal length Lo of said compartment.
  • the length Lf of the downstream part (24) of the treatment compartment (20) then typically corresponds to 20 to 50% of the length Lo of said compartment.
  • the invention Compared to installations which include a filter bag at the outlet of the degassing treatment tank, the invention has the advantage of reducing the length of the troughs and of reducing the exposure of the metal to the ambient air, which can including lead to hydrogen uptake.
  • the preheating of the treatment device is done in a single operation, that is to say it is no longer necessary to preheat separately a gas treatment bag and a filtration bag, which allows reduce costs (in particular, a single burner can be used for this operation). Operating costs can also be reduced by the fact that coating changes need only be carried out on one treatment device.
  • the device of the invention can be opened during treatment, without interrupting it, in order to remove the dross accumulated on the surface of the liquid metal and / or to change a filtration slab.
  • width Wo of said compartment in the upper part between 0.2 and 0.4 m width Wo of said compartment in the upper part between 0.2 and 0.4 m (width Wo 'in the lower part of said compartment is typically 10 to 20 cm smaller);
  • the interior volume of the Vo treatment compartment can be very small in comparison with known degassing treatment devices comprising a pocket (the Vo volume of the device according to the invention is typically between 0.1 m and 0.2 m while the known devices have an internal volume typically between 0.5 and 1 m).
  • the device of the invention makes it possible to treat with high efficiency (typically higher at 40%) a volume V of liquid metal as low as 0.1 m 3 to 0.2 m 3 with a flow rate greater than or equal to 30 tonnes / hour.
  • the compactness of the treatment compartment (20) and the high flow rate of the device of the invention make it possible to avoid cooling of the liquid metal during treatment.
  • Process gas discharge means 0
  • Upstream part of the treatment compartment 4 Downstream part of the treatment compartment 5
  • Theoretical free surface of the liquid metal 6 'Level of the liquid metal in the upstream part of the treatment compartment 6 "Level of the liquid metal in the downstream part of the treatment compartment 6th Level of the liquid metal at the inlet of the device 6s Level of the liquid metal at the outlet of the device 7
  • Lid gripping means 8 Bottom of the treatment compartment 9, 30 End walls of the treatment pocket 1 Wall of the bottom of the treatment pocket 2, 33 Side walls of the treatment pocket 4 Envelope metal of the cover 5 Refractory lining of the cover 6 Joint between the cover and the box 7 Bottom of the feed chute 8 Bottom of the evacuation groove 9 Volume of t gas treatment 0

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Filtration Of Liquid (AREA)
  • Filtering Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

L'invention concerne un dispositif (1) de traitement d'un flux de métal liquide comprenant une poche de traitement (2) qui comporte des moyens de raccordement (11, 12, 13, 14) à au moins une goulotte d'alimentation (15) en métal liquide et à au moins une goulotte d'évacuation (16) du métal liquide, des moyens d'injection (22, 22a, 22b) d'un gaz de traitement dans le métal liquide disposés dans au moins une paroi latérale (32, 33) de la poche (2) et situés dans la partie amont (23) du compartiment de traitement (20) de la poche (2), et au moins un premier moyen de filtration (40) dans sa partie aval (24). Les moyens d'entrée et de sortie du métal liquide comprennent chacun au moins un orifice (9, 10) qui est positionné de manière à se trouver entièrement sous le niveau (26) du métal liquide lors du traitement, afin d'empêcher l'introduction d'air ambiant dans le compartiment en cours de traitement. Ce dispositif est compact et permet de traiter par voie gazeuse et par filtration un flux de métal liquide circulant dans des goulottes.

Description

Figure imgf000003_0001
TRAITEMENT EN L1GNE DE METAL "QDIDB PAR VOIE GAZEUSE ET PAR
Domaine de l'invention
L'invention concerne un dispositif de traitement d'un flux de métal liquide, notamment de l'aluminium, un alliage d'aluminium, du magnésium ou un alliage de magnésium.
Etat de la technique
Il est connu de traiter un flux ou un lot métal liquide avant de le couler sous forme de produit métallurgique, tel qu'une pièce de forme, une billette ou une plaque. Le traitement du métal liquide vise généralement à le débarrasser des gaz dissous (notamment l'hydrogène), des impuretés dissoutes (notamment les métaux alcalins) et des inclusions solides ou liquides qui pourraient nuire à la qualité des produits coulés. Ce traitement comprend typiquement une opération de traitement par insufflation d'un gaz dans le métal liquide, laquelle opération est effectuée dans une première poche. Le gaz de traitement peut être inerte et insoluble dans le métal liquide (tel que de l'argon) ou réactif (tel que du chlore), ou un mélange de ceux-ci. Le gaz inerte et insoluble absorbe le gaz dissous par effet de dilution et l'emporte avec lui. Le gaz réactif réagit avec certaines impuretés dissoutes et génère ainsi des inclusions liquides ou solides qui, comme celles déjà présentes dans le métal liquide, peuvent être éliminées par une opération de filtration dans une deuxième poche munie d'un filtre, telle qu'une poche de filtration à lit profond, appelée « deep bed filter » en anglais.
Les systèmes de traitement de métaux liquides connus présentent toutefois plusieurs inconvénients. En particulier, les systèmes connus constituent des installations volumineuses dont l'entretien est généralement compliqué. De tels systèmes représentent un investissement initial coûteux et génèrent des frais de fonctionnement importants. Le brevet américain US 5 846 479 décrit un système de traitement en ligne comprenant un compartiment de traitement fermé et une série de buses d'injection de gaz de traitement disposées en ligne le long des côtés latéraux du compartiment. Ce système ne permet pas d'éliminer les inclusions solides.
La demanderesse a recherché un dispositif de traitement des métaux liquides compact qui apporte une solution industrielle et économique aux inconvénients des dispositifs de l'art antérieur.
Description de l'invention
L'invention a pour objet un dispositif de traitement d'un flux de métal liquide comprenant une poche de traitement comportant des moyens d'injection fixes et situés dans la partie amont de la poche de traitement et au moins un moyen de filtration dans sa partie aval.
La demanderesse a eu l'idée de regrouper les moyens d'injection des gaz de traitement et les moyens de filtration à l'intérieur d'un compartiment de traitement compact. Ce regroupement permet de réduire considérablement la complexité du système de traitement des métaux liquides et de faciliter leur entretien. La demanderesse a, en outre, eu l'idée que le regroupement de ces moyens de traitement dans un même compartiment pourrait conduire à une amélioration du traitement par le fait que, d'une part, le brassage du métal liquide provoqué par l'insufflation de gaz dans celui-ci évite l'accumulation de matière solide à proximité du moyen de filtration (et notamment en surface de la (ou des) dalle(s) de filtration lorsqu'on utilise ces moyens de filtration) et que, d'autre part, le moyen de filtration favorise la formation de flux de re-circulation du métal liquide à l'intérieur du compartiment qui tendent à augmenter le temps de résidence et l'efficacité du traitement.
L'invention a également pour objet l'utilisation dudit dispositif pour le traitement d'un flux de métal liquide. Ledit métal liquide est typiquement choisi dans le groupe constitué de l' aluminium, les alliages d'aluminium, du magnésium ou un alliage de magnésium.
L'invention sera mieux comprise à l'aide des figures 1 à 8, qui en donnent une représentation schématique et illustrent des modes de réalisation avantageux, et de la description détaillée qui suit.
La figure 1 illustre, en section longitudinale et vu de côté, un mode de réalisation de l'invention dans lequel le dispositif comporte une seule dalle de filtration.
La figure 2 illustre, en section longitudinale et vu de côté, un mode de réalisation de l'invention dans lequel le dispositif comporte une chicane et deux dalles de filtration.
La figure 3 illustre, en section longitudinale et vu de côté, un mode de réalisation de l'invention dans lequel le dispositif comporte une seule dalle de filtration.
La figure 4 illustre, en section longitudinale et vu de côté, un mode de réalisation de l'invention dans lequel le dispositif comporte une seule dalle de filtration.
La figure 5 illustre, vu du dessus, un mode de réalisation de l'invention dans lequel les moyens sont disposés en ligne.
La figure 6 illustre, en section transversale, un mode de réalisation de l'invention dans lequel les moyens d'injection sont disposés dans le bas du compartiment de traitement.
La figure 7 illustre, vu du dessus, un mode de réalisation de l'invention dans lequel les moyens d'injection sont disposés en ligne et en alternance de part et d'autre du compartiment de traitement.
La figure 8 représente des paramètres de dimensionnement du dispositif de l'invention. He et Hs correspondent respectivement aux hauteurs normales du métal liquide dans les goulottes d'alimentation (15) et d'évacuation (16). Ne et Ns correspondent respectivement à la hauteur du fond (37, 38) des goulottes d'alimentation (15) et d'évacuation (16) par rapport au fond (28) du compartiment de traitement (20). H correspond à la hauteur moyenne normale du métal liquide dans le compartiment de traitement (20). Ho correspond à la hauteur intérieure moyenne du compartiment de traitement (20).
En référence aux figures, le dispositif (1) de traitement d'un flux de métal liquide selon l'invention comprend une poche de traitement (2) comportant un compartiment de traitement (20), des moyens d'entrée (7, 9) et de sortie (8, 10) du métal liquide, des moyens de raccordement (11, 12, 13, 14) à au moins une goulotte d'alimentation (15) en métal liquide et à au moins une goulotte d'évacuation (16) du métal liquide, et des moyens d'injection (22, 22a, 22b) d'un gaz de traitement dans le métal liquide disposés dans au moins une paroi latérale (32, 33) de la poche (2), lesdits moyens d'entrée et de sortie du métal liquide comprenant chacun au moins un orifice (9, 10) qui est positionné de manière à se trouver entièrement sous le niveau (26) du métal liquide lors du traitement, afin d'empêcher l'introduction d'air ambiant dans le compartiment en cours de traitement, et est caractérisé en ce que ledit compartiment de traitement (20) comprend une partie amont (23) et une partie aval (24), en ce que lesdits moyens d'injection (22, 22a, 22b) sont situés dans ladite partie amont (23) et en ce que ledit compartiment (20) comporte en outre au moins un premier moyen de filtration (40) situé dans ladite partie aval (24).
L'axe longitudinal principal (6) du dispositif de l'invention est sensiblement horizontal en cours de traitement. Le flux moyen du métal liquide dans le dispositif de l'invention en cours de traitement est également essentiellement horizontal. Le dispositif selon l'invention peut ainsi être inséré dans un système d'écoulement du métal liquide allant d'une poche de maintien vers le dispositif de coulée par l'intermédiaire de goulottes ouvertes. L'absence de différence de niveau importante entre l'entrée et la sortie du dispositif permet de simplifier le système d'écoulement du métal liquide et d'éviter les risques de débordement du métal liquide. La surface libre théorique du métal liquide en cours de traitement est matérialisée par une ligne hachurée 26. Il va de soi que la surface libre du métal liquide n'est généralement pas plane à l'intérieur du compartiment de traitement, en ce sens que les bulles de gaz provoquent une déformation de cette surface en cours de traitement. Le niveau (26) du métal liquide est défini comme étant le niveau moyen de la surface libre du métal liquide qui serait observé sans l'injection du gaz de traitement. Le niveau (26) du métal liquide est typiquement sensiblement constant dans le compartiment de traitement. En d'autres termes, le niveau (26') du métal liquide dans la partie amont (23) dudit compartiment est de préférence typiquement sensiblement le même que le niveau (26") du métal liquide dans la partie aval (24) dudit compartiment.
Lesdits moyens d'entrée (7, 9) et de sortie (8, 10) du métal liquide sont disposés de manière à ce que, en cours de traitement, le niveau (26e) du métal liquide à l'entrée du dispositif est sensiblement le même que le niveau (26s) du métal liquide à la sortie du dispositif. L'expression « sensiblement le même niveau » signifie que la différence de niveau est inférieure à 1 cm environ.
Les niveaux Ne et Ns des fonds (37, 38) des goulottes d'alimentation (15) et d'évacuation (16) du dispositif de l'invention sont typiquement sensiblement au même niveau. Les niveaux Ne et Ns sont typiquement compris entre 20 et 50 % de la hauteur moyenne H du métal liquide contenu dans le compartiment de traitement en cours de traitement.
Les orifices (9, 10) sont de préférence situés près du fond (28) dudit compartiment afin de favoriser un traitement plus efficace du métal liquide et de simplifier la vidange du compartiment de traitement. Plus précisément, le bas de l'orifice d'entrée (9) ou de sortie (10) se situe de préférence à une distance inférieure à environ 10 cm, et de préférence encore inférieure à environ 5 cm, du fond (28) de la partie amont (23) du compartiment de traitement (20). Dans un mode de réalisation préféré de l'invention, les orifices (9, 10) correspondent typiquement à une extrémité d'ouvertures ou de conduits (7, 8) aménagées dans les parois d'extrémité opposées (29, 30) de la poche (2). Ces orifices peuvent éventuellement être formés par des aménagements plus complexes comprenant, par exemple, une chicane.
La poche (2) comporte typiquement un caisson métallique (3) et un revêtement intérieur (4) en matériau réfractaire. Le revêtement (4) peut être préformé.
Afin de permettre une évacuation aisée du métal résiduel entre les opérations de traitement, la poche comprend avantageusement au moins un drain (21), qui est de préférence localisé près du fond (28) de la poche (2). Le drain peut se situer en amont ou en aval de la (ou des) dalle(s) de filtration (40, 41). Il peut être avantageux de prévoir un drain dans la partie amont (23) du compartiment de traitement et un drain dans la partie aval (24) du compartiment de traitement afin d'assurer une vidange complète de la poche après l'opération de traitement.
Le fond (28) peut éventuellement être incliné par rapport à l'axe principal (6) du dispositif.
La poche (2) est typiquement fermée, dans sa partie supérieure, à l'aide d'un couvercle (5) amovible. Le couvercle comporte typiquement une enveloppe métallique (34) et un revêtement réfractaire (35). Le couvercle est avantageusement muni d'un moyen de préhension (27) pour pouvoir le mettre en place et le retirer aisément, généralement à l'aide de moyens mécanisés. Le dispositif (1) comprend avantageusement des moyens d'étanchéité pour éviter les échanges gazeux entre l'intérieur et l'extérieur dudit compartiment (20), tels qu'un joint étanche (36) entre le couvercle (5) et le caisson (3).
La poche de traitement (2) et/ou le couvercle (5) peuvent être munis d'un moyen d'évacuation (19) du gaz de traitement, tel qu'un tuyau en matériau réfractaire. En utilisation, le métal liquide « brut » (17) entre dans le compartiment de traitement (20) par l'intermédiaire de l'orifice d'entrée (9) alors que le métal « traité » (18) sort dudit compartiment (20) par l'intermédiaire de l'orifice de sortie (10). Dans les figures, le métal brut entre à l'extrémité gauche (E) du dispositif et le métal traité sort à l'extrémité droite (S) du dispositif.
Tel qu'illustré aux figures 1 à 8, les orifices d'entrée (9) et de sortie (10) de métal liquide se situent sur deux faces opposées (29, 30) du dispositif. Cette configuration correspond à un arrangement rectiligne. Il est également possible, selon l'invention, de disposer l'entrée et/ou la sortie sur d'autres faces du dispositif, de sorte qu'elles peuvent être, par exemple, perpendiculaire ou parallèle l'une à l'autre.
Les moyens d'injection (22, 22a, 22b) sont de préférence situés dans au moins une paroi latérale (32, 33) de la poche (2). En d'autres termes, les moyens d'injection sont avantageusement placés sur au moins un des côtés latéraux du compartiment de traitement (20) de la poche (2), et plus précisément dans au moins une des parois latérales (32, 33) dudit compartiment, lesquelles parois sont essentiellement perpendiculaires au flux de métal liquide. Ce choix permet de disposer plusieurs moyens d'injection le long du flux de métal et d'assurer ainsi une plus grande efficacité de traitement. Les moyens d'injection (22, 22a, 22b) sont typiquement placés dans les deux parois latérales (32, 33) du compartiment de traitement (20).
Les moyens d'injection (22, 22a, 22b) sont typiquement disposés en ligne et de préférence localisés près du fond (28) du compartiment de traitement (20) afin de permettre une insufflation de gaz dans la plus grande partie du volume de métal liquide compris dans la partie amont (23) dudit compartiment. La hauteur des moyens d'injection par rapport au fond du compartiment de traitement se situe typiquement entre 2 et 6 cm. La figure 6, qui correspond à la section A-A' de la figure 5, illustre ce mode de réalisation préféré de l'invention.
Il est préférable selon l'invention de ne prévoir des moyens d'injection (22, 22a, 22b) que dans la partie amont (23) du compartiment de traitement (20). Il est particulièrement avantageux de localiser les moyens d'injection (22, 22a, 22b) dans le flux de métal liquide émergeant de l'orifice d'entrée (9), de façon à augmenter le volume de métal liquide effectivement traité.
Les moyens d'injection (22, 22a, 22b) sont typiquement des buses, qui peuvent être fixes ou orientables.
Il est avantageux de placer les moyens d'injection (22, 22a, 22b) en alternance dans les deux parois latérales (32, 33) du compartiment de traitement (20), c'est-à-dire de part et d'autre du compartiment de traitement. Lesdits moyens ne sont alors pas en vis-à-vis, ce qui permet que les jets de gaz ne se percutent pas directement. Dans cette variante, dont un mode de réalisation est illustré schématiquement à la figure 7, les moyens d'injection (22a) qui sont placés d'un côté dudit compartiment (20) sont décalés longitudinalement (c'est-à-dire dans le sens long du dispositif) par rapport aux moyens d'injection (22b) qui sont placés de l'autre côté dudit compartiment (20). Cette disposition permet d'augmenter l'efficacité du traitement. Dans cette configuration, les moyens d'injection sont typiquement en ligne sur chaque côté du compartiment de traitement.
Le nombre de moyens d'injection est typiquement compris entre 3 et 10 sur chaque côté dudit compartiment. Ils sont typiquement espacés de 10 à 20 cm.
Les moyens d'injection (22, 22a, 22b) sont de préférence tels qu'ils ne forment pas de protubérances à l'intérieur du compartiment de traitement, de manière à permettre un entretien aisé de celle-ci. Lorsque les moyens d'injection (22, 22a, 22b) prennent la forme de buses, ou de systèmes similaires, ils peuvent être disposés en retrait dans la paroi dudit compartiment. L'extrémité des buses est de préférence en matériau réfractaire, tel que du sialon (oxynitrure d'aluminium et de silicium).
Les moyens d'injection (22, 22a, 22b) sont normalement fixes durant le traitement, en ce sens qu'ils ne subissent pas de mouvement de déplacement et/ou de rotation. Leur orientation peut toutefois être variable afin de permettre un ajustement plus fin de l'efficacité de l'injection de gaz dans le métal liquide.
Les moyens d'injection (22, 22a, 22b) peuvent éventuellement permettre d'injecter le gaz de traitement avec une orientation particulière par rapport au fond (28) dudit compartiment. Le gaz de traitement est typiquement injecté avec un angle β compris entre 0° et 25° par rapport au fond (28).
Afin d'obtenir un dispositif de traitement compact et efficace, les moyens d'injection sont de préférence tels que leur débit total de gaz de traitement des moyens d'injection est supérieur à environ 5 Nm3/heure (typiquement entre 8 et 10 m3/heure).
Ce résultat peut être obtenu à l'aide d'une pluralité de moyens d'injection localisés, de préférence, près du fond dudit compartiment (typiquement à une distance du fond comprise entre 2 et 6 cm).
Le (ou chaque) moyen de filtration (40, 41) est placé dans la partie aval et à l'intérieur du compartiment de traitement (20). Il sert à empêcher les inclusions de passer dans le flux de métal liquide (18) sortant du dispositif. Chaque moyen de filtration (40, 41) est de préférence une dalle de filtration afin de permettre un changement aisé de celui-ci. La dalle comprend typiquement une mousse céramique i rigide, tel qu'un CFF (« ceramic foam filter »), et est typiquement en alumine. La porosité de la dalle est de préférence supérieure à 10 ppi (« pores per inch »)
(correspondant à 4 pores par cm), et typiquement comprise entre 30 et 40 ppi
(correspondant à 12 à 16 pores par cm), afin de permettre un amorçage aisé de la filtration. L'épaisseur de chaque dalle est typiquement comprise entre 2 et 5 cm et sa longueur L est typiquement comprise entre 30 et 50 cm.
Dans le mode de réalisation de l'invention illustré à la figure 1, le dispositif comprend une seule dalle de filtration (40) dont la largeur W est typiquement au moins égale à la largeur Wo dudit compartiment et dont la longueur L est typiquement au moins égale à la hauteur H de métal liquide dans ledit compartiment. Afin de limiter les débordements de métal liquide non filtré par-dessus la dalle de filtration (40), la longueur L de celle-ci est avantageusement telle qu'elle s'étend presque jusqu'au couvercle (et donc approximativement égale à la hauteur Ho de la cavité interne du compartiment (20)). Les dalles de filtration peuvent être maintenues en place par des rainures aménagées dans la paroi du compartiment de traitement.
Dans le mode de réalisation de l'invention illustré à la figure 2, le dispositif comprend au moins une deuxième dalle de filtration (41) disposée en aval de la première dalle (40) (c'est-à-dire que les dalles (40, 41) sont alors disposées en série). Ces dalles sont typiquement sensiblement parallèles l'une à l'autre. Cette variante de l'invention peut permettre de changer une dalle sans interrompre le traitement.
Dans le mode de réalisation de l'invention illustré à la figure 3, la dalle de filtration (40) disposée de manière à se trouver entièrement dans le métal liquide lors du traitement, ce qui permet d'utiliser toute la surface de la dalle pour la filtration.
Chaque dalle de filtration (40) peut être inclinée d'un angle α par rapport à la verticale (c'est-à-dire par rapport à une ligne perpendiculaire à l'axe principal (6) du dispositif du compartiment), afin d'augmenter la surface de filtration et le débit de métal. L'angle α est typiquement compris entre 20° et 90°. Tel qu'illustré à la figure 4, la dalle peut éventuellement être disposée à l'horizontale (l'angle α est alors égale à 90°).
Le dispositif selon l'invention peut comprendre, en outre, une chicane (42) entre la partie amont (23) dudit compartiment (20) et le premier moyen de filtration (40), de manière à limiter les turbulences près de la surface dudit premier moyen de filtration (40), tel qu'illustré à la figure 1.
Dans ces différentes variantes, les moyens de filtration sont faciles à changer.
La ligne de partage (25) entre la zone de traitement du métal liquide par injection de gaz (23), en amont, et la zone de traitement du métal par filtration (24), en aval, est approximative. Il va de soi que le traitement par injection de gaz peut s'étendre légèrement au-delà de cette ligne. La longueur Lg de la partie amont (23) du compartiment de traitement (20) correspond typiquement à 30 % à 90 %, et de préférence 50 à 80 %, de la longueur interne Lo dudit compartiment. La longueur Lf de la partie aval (24) du compartiment de traitement (20) correspond alors typiquement à 20 à 50 % de la longueur Lo dudit compartiment.
Par comparaison aux installations qui comprennent une poche de filtration à la sortie de la cuve de traitement de dégazage, l'invention présente l'avantage de réduire la longueur des goulottes et de diminuer l'exposition du métal à l'air ambiant, qui peut notamment entraîner une reprise d'hydrogène. En outre, le préchauffage du dispositif de traitement se fait en une seule opération, c'est-à-dire qu'il n'est plus nécessaire de préchauffer séparément une poche de traitement par gaz et une poche de filtration, ce qui permet de réduire les coûts (en particulier, un unique brûleur peut être utilisé pour cette opération). Les coûts d'exploitation peuvent également être réduits par le fait que les changements de revêtements n'ont plus à être effectués que sur un seul dispositif de traitement.
Le dispositif de l'invention peut être ouvert en cours de traitement, sans l'interrompre, afin de retirer les crasses accumulées en surface du métal liquide et/ou de changer une dalle de filtration.
En référence aux figures, les dimensions typiques du dispositif de l'invention sont les suivantes :
- hauteur Ho du compartiment de traitement entre 0,3 et 0,6 m ; - longueur Lo dudit compartiment dans sa partie haute entre 0,8 à 1,0 m (longueur Lo' dans la partie basse du compartiment est typiquement 10 à 20 cm plus petite) ;
- largeur Wo dudit compartiment dans la partie haute entre 0,2 et 0,4 m (largeur Wo' dans la partie basse dudit compartiment est typiquement 10 à 20 cm plus petite);
- hauteur moyenne H du métal liquide à l'intérieure dudit compartiment entre 0,2 et 0, 5 m ; - niveau Ns du fond (37) de la goulotte d'alimentation et niveau Ne du fond (38) de la goulotte d'évacuation, par rapport au fond (28) du compartiment de traitement, entre 10 et 30 cm ;
- largeur We de la goulotte d'entrée et largeur Ws de la goulotte de sortie entre 0,2 et 0,4 m.
Le volume intérieur du compartiment de traitement Vo peut être très faible en comparaison des dispositifs de traitement de dégazage connus comprenant une poche (le volume Vo du dispositif selon l'invention est typiquement compris entre 0,1 m et 0,2 m alors que les dispositifs connus ont un volume interne typiquement compris entre 0,5 et 1 m ). La demanderesse estime que, grâce à l'utilisation, dans le même compartiment, de moyens d'injection à fort débit et d'au moins une dalle de filtration, le dispositif de l'invention permet de traiter avec une efficacité élevée (typiquement supérieure à 40 %) un volume V de métal liquide aussi faible que 0,1 m3 à 0,2 m3 avec un débit supérieur ou égale à 30 tonnes/heure.
La compacité du compartiment de traitement (20) et le fort débit du dispositif de l'invention permettent d'éviter le refroidissement du métal liquide en cours de traitement.
Listes des repères numériques
1 Dispositif de traitement
2 Poche de traitement 3 Caisson
4 Revêtement réfractaire du caisson
5 Couvercle
6 Axe principal du dispositif
7 Moyen d'entrée du métal liquide 8 Moyen de sortie du métal liquide
9 Orifice d'entrée
10 Orifice de sortie 11. 13 Moyens de raccordement à une goulotte d'alimentation
12. 14 Moyens de raccordement à une goulotte d'évacuation
15 Goulotte d'alimentation
16 Goulotte d'évacuation 17 Métal liquide brut
18 Métal liquide traité
19 Moyen d'évacuation du gaz de traitement 0 Compartiment de traitement 1 Drain 2, 22a, 22b Moyens d'injection 3 Partie amont du compartiment de traitement 4 Partie aval du compartiment de traitement 5 Ligne approximative de partage entre les parties amont et aval 6 Surface libre théorique du métal liquide 6' Niveau du métal liquide dans la partie amont du compartiment de traitement 6" Niveau du métal liquide dans la partie aval du compartiment de traitement 6e Niveau du métal liquide à l'entrée du dispositif 6s Niveau du métal liquide à la sortie du dispositif 7 Moyen de préhension du couvercle 8 Fond du compartiment de traitement 9, 30 Parois d'extrémité de la poche de traitement 1 Paroi du fond de la poche de traitement 2, 33 Parois latérales de la poche de traitement 4 Enveloppe métallique du couvercle 5 Revêtement réfractaire du couvercle 6 Joint entre le couvercle et le caisson 7 Fond de la goulotte d'alimentation 8 Fond de la goulette d'évacuation 9 Volume de traitement par gaz 0 Premier moyen de filtration Deuxième moyen de filtration
Chicane
Moyen de support

Claims

REVENDICATIONS
1. Dispositif de traitement (1) d'un flux de métal liquide comprenant une poche de traitement (2) comportant un compartiment de traitement (20), des moyens d'entrée (7, 9) et de sortie (8, 10) du métal liquide, des moyens de raccordement
(11, 12, 13, 14) à au moins une goulotte d'alimentation (15) en métal liquide et au moins une goulotte d'évacuation (16) du métal liquide et des moyens d'injection (22, 22a, 22b) d'un gaz de traitement dans le métal liquide disposés dans au moins une paroi latérale (32, 33) de la poche (2), lesdits moyens d'entrée et de sortie du métal liquide comprenant chacun au moins un orifice (9,
10) qui est positionné de manière à se trouver entièrement sous le niveau (26) du métal liquide lors du traitement, afin d'empêcher l'introduction d'air ambiant dans ledit compartiment en cours de traitement, et caractérisé en ce que ledit compartiment de traitement (20) comprend une partie amont (23) et une partie aval (24), en ce que lesdits moyens d'injection (22, 22a, 22b) sont situés dans ladite partie amont (23) et en ce que ledit compartiment (20) comporte en outre au moins un premier moyen de filtration (40) situé dans ladite partie aval (24).
2. Dispositif de traitement (1) selon la revendication 1, caractérisé en ce que lesdits orifices (9, 10) sont situés près du fond (28) dudit compartiment.
3. Dispositif de traitement (1) selon la revendication 1 ou 2, caractérisé en ce que les orifices d'entrée (9) et de sortie (10) de métal liquide se situent dans les parois d'extrémité opposées (29, 30) de la poche (2).
4. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les moyens d'injection (22, 22a, 22b) sont localisés près du fond (28) du compartiment de traitement (20).
5. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens d'injection (22, 22a, 22b) sont disposés en ligne.
6. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les moyens d'injection (22, 22a, 22b) sont placés dans les deux parois latérales (32, 33) du compartiment de traitement (20).
7. Dispositif de traitement (1) selon la revendication 6, caractérisé en ce que les moyens d'injection (22, 22a, 22b) sont disposés en alternance dans les deux parois latérales (32, 33) du compartiment de traitement (20).
8. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens d'injection (22, 22a, 22b) sont des buses.
9. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les moyens d'injection (22, 22a, 22b) sont orientables.
10. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le premier moyen de filtration (40) est une dalle.
11. Dispositif de traitement (1) selon la revendication 10, caractérisé en ce que la dalle comprend une mousse céramique rigide.
12. Dispositif de traitement (1) selon la revendication 11, caractérisé en ce que la porosité de la mousse céramique rigide est supérieure à 4 pores par cm.
13. Dispositif de traitement (1) selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il comprend au moins une deuxième dalle de filtration (41) disposée en aval de la première dalle (40).
14. Dispositif de traitement (1) selon l'une quelconque des revendications 10 à 13, caractérisé en ce que chaque dalle forme un angle α par rapport à une ligne perpendiculaire à l'axe principal (6) dudit compartiment et en ce que cet angle est compris entre 20° et 90°.
15. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comporte une chicane (42) entre la partie amont (23) dudit compartiment (20) et le premier moyen de filtration (40), de manière à limiter les turbulences près de la surface de ce moyen de filtration.
16. Dispositif de traitement (1) selon l'une quelconque des revendications 1 à 15, caractérisé en ce que la longueur Lg de la partie amont (23) du compartiment de traitement (20) correspond à 30 à 90 % de la longueur interne Lo dudit compartiment.
17. Dispositif de traitement (1) l'une quelconque des revendications 1 à 15, caractérisé en ce que la longueur Lg de la partie amont (23) du compartiment de traitement (20) correspond à 50 à 80 % de la longueur interne Lo dudit compartiment.
18. Utilisation du dispositif de traitement (1) selon l'une quelconque des revendications 1 à 17 pour le traitement d'un -flux de métal liquide.
19. Utilisation selon la revendication 18, caractérisée en ce que ledit métal est choisi dans le groupe constitué de raluminium, les alliages d'aluminium, du magnésium ou un alliage de magnésium.
PCT/FR2003/001399 2002-05-13 2003-05-06 Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration WO2003095686A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP03749924A EP1504130B1 (fr) 2002-05-13 2003-05-06 Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration
DE60308173T DE60308173T2 (de) 2002-05-13 2003-05-06 Vorrichtung zur durchlaufbehandlung von flüssigmetall mittels gas und filtration
SI200330545T SI1504130T1 (sl) 2002-05-13 2003-05-06 Naprava za kontinuirno obdelavo tekoce kovine s plinom in filtriranjem
PL372598A PL198450B1 (pl) 2002-05-13 2003-05-06 Urządzenie do obróbki ciekłego metalu i zastosowanie urządzenia
US10/514,165 US7648674B2 (en) 2002-05-13 2003-05-06 Device for the in-line treatment of liquid metal by means of gas and filtration
AU2003255561A AU2003255561A1 (en) 2002-05-13 2003-05-06 Device for the in-line treatment of liquid metal by means of gas and filtration
BR0310028-6A BR0310028A (pt) 2002-05-13 2003-05-06 Dispositivo de tratamento em linha de metal lìquido por via gasosa e por filtração

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/05867 2002-05-13
FR0205867A FR2839518B1 (fr) 2002-05-13 2002-05-13 Dispositif de traitement en ligne de metal liquide

Publications (1)

Publication Number Publication Date
WO2003095686A1 true WO2003095686A1 (fr) 2003-11-20

Family

ID=29286442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001399 WO2003095686A1 (fr) 2002-05-13 2003-05-06 Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration

Country Status (12)

Country Link
US (1) US7648674B2 (fr)
EP (1) EP1504130B1 (fr)
AT (1) ATE338832T1 (fr)
AU (1) AU2003255561A1 (fr)
BR (1) BR0310028A (fr)
DE (1) DE60308173T2 (fr)
ES (1) ES2271627T3 (fr)
FR (1) FR2839518B1 (fr)
PL (1) PL198450B1 (fr)
PT (1) PT1504130E (fr)
RU (1) RU2301274C2 (fr)
WO (1) WO2003095686A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7377304B2 (en) * 2005-07-12 2008-05-27 Alcoa Inc. Method of unidirectional solidification of castings and associated apparatus
US8448690B1 (en) 2008-05-21 2013-05-28 Alcoa Inc. Method for producing ingot with variable composition using planar solidification

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2039232A7 (en) * 1969-04-17 1971-01-15 Gen Cable Corp Continuous slag removal from aluminium
DE1941270B1 (de) * 1969-03-04 1971-03-18 Koichi Ogiso Filter zur Reinigung von schmelzfluessigem Aluminium oder seinen Legierungen
FR2200364A1 (fr) * 1972-09-18 1974-04-19 Aluminum Co Of America
GB1410898A (en) * 1973-02-16 1975-10-22 Union Carbide Corp Apparatus and process for refining molten aluminium
US3917242A (en) * 1973-05-18 1975-11-04 Southwire Co Apparatus for fluxing and filtering of molten metal
FR2305407A1 (fr) * 1975-03-28 1976-10-22 Alusuisse Filtre en mousse ceramique, notamment pour la filtration du metal fondu
US4257810A (en) * 1978-08-12 1981-03-24 Bridgestone Tire Company Limited Cordierite, silica, alumina porous ceramic body
FR2506785A1 (fr) * 1981-05-27 1982-12-03 Sumitomo Light Metal Ind Appareil pour le traitement de metal fondu
US4390364A (en) * 1981-08-03 1983-06-28 Aluminum Company Of America Removal of fine particles from molten metal
US4515630A (en) * 1983-08-15 1985-05-07 Olin Corporation Process of continuously treating an alloy melt
EP0291580A1 (fr) * 1987-05-19 1988-11-23 ALUMINIA S.p.A. Appareil pour le dégazage et la filtration en succession de l'aluminium et de ses alliages
FR2669041A1 (fr) * 1990-11-09 1992-05-15 Sfrm Procede pour le traitement d'un metal en fusion et son transfert dans un espace recepteur et systeme pour la mise en óoeuvre de ce procede.
US5846479A (en) * 1996-05-15 1998-12-08 Cast House Technology Ltd. Apparatus for de-gassing molten metal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1941270B1 (de) * 1969-03-04 1971-03-18 Koichi Ogiso Filter zur Reinigung von schmelzfluessigem Aluminium oder seinen Legierungen
FR2039232A7 (en) * 1969-04-17 1971-01-15 Gen Cable Corp Continuous slag removal from aluminium
FR2200364A1 (fr) * 1972-09-18 1974-04-19 Aluminum Co Of America
GB1410898A (en) * 1973-02-16 1975-10-22 Union Carbide Corp Apparatus and process for refining molten aluminium
US3917242A (en) * 1973-05-18 1975-11-04 Southwire Co Apparatus for fluxing and filtering of molten metal
FR2305407A1 (fr) * 1975-03-28 1976-10-22 Alusuisse Filtre en mousse ceramique, notamment pour la filtration du metal fondu
US4257810A (en) * 1978-08-12 1981-03-24 Bridgestone Tire Company Limited Cordierite, silica, alumina porous ceramic body
FR2506785A1 (fr) * 1981-05-27 1982-12-03 Sumitomo Light Metal Ind Appareil pour le traitement de metal fondu
US4390364A (en) * 1981-08-03 1983-06-28 Aluminum Company Of America Removal of fine particles from molten metal
US4515630A (en) * 1983-08-15 1985-05-07 Olin Corporation Process of continuously treating an alloy melt
EP0291580A1 (fr) * 1987-05-19 1988-11-23 ALUMINIA S.p.A. Appareil pour le dégazage et la filtration en succession de l'aluminium et de ses alliages
FR2669041A1 (fr) * 1990-11-09 1992-05-15 Sfrm Procede pour le traitement d'un metal en fusion et son transfert dans un espace recepteur et systeme pour la mise en óoeuvre de ce procede.
US5846479A (en) * 1996-05-15 1998-12-08 Cast House Technology Ltd. Apparatus for de-gassing molten metal

Also Published As

Publication number Publication date
FR2839518B1 (fr) 2004-06-25
RU2004136293A (ru) 2005-05-27
PL198450B1 (pl) 2008-06-30
BR0310028A (pt) 2005-02-15
PL372598A1 (en) 2005-07-25
FR2839518A1 (fr) 2003-11-14
EP1504130B1 (fr) 2006-09-06
ES2271627T3 (es) 2007-04-16
PT1504130E (pt) 2006-11-30
DE60308173D1 (de) 2006-10-19
US7648674B2 (en) 2010-01-19
AU2003255561A1 (en) 2003-11-11
US20050236746A1 (en) 2005-10-27
EP1504130A1 (fr) 2005-02-09
DE60308173T2 (de) 2007-08-02
ATE338832T1 (de) 2006-09-15
RU2301274C2 (ru) 2007-06-20

Similar Documents

Publication Publication Date Title
EP0262058B1 (fr) Dispositif rotatif à pales de mise en solution d'éléments d'alliage et de dispersion de gaz dans un bain d'aluminium
EP2108005B1 (fr) Procede et installation de traitement d'eau par floculation lestee et decantation
EP0073729B1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de métal liquide
CA2148039C (fr) Procede et installation de traitement d'un ecoulement brut par decantation simple apres lestage au sable fin
EP1800725B1 (fr) Enceinte de traitement d'hydrocarbures comprenant un organe de déversement
EP1504130B1 (fr) Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration
EP0775543A1 (fr) Busette pour l'introduction d'un métal liquide dans une lingotière de coulée continue de produits métalliques, et installation de coulée continue de produits métalliques équipée d'une telle busette
FR2815642A1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide
FR2941225A1 (fr) Dispositif d'enrobage avec un materiau polymere floculant a l'etat liquide de grains de ballast utilises pour le traitement de l'eau par floculation lestee, et installation correspondante.
EP0916066A1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide
EP1100974B1 (fr) Procede de filtration en ligne d'un metal liquide et dispositif pour la mise en oeuvre de ce procede
FR2642679A3 (fr) Dispositif d'elimination des inclusions non metalliques dans un repartiteur de coulee continue de l'acier
FR2555080A1 (fr) Procede et appareil pour eviter la formation d'un tourbillon dans un recipient metallurgique de coulee a sortie par le fond
FR2772653A1 (fr) Reacteur metallurgique, de traitement sous pression reduite d'un metal liquide
WO1996016193A1 (fr) Dispositif de degazage et de separation des inclusions dans un bain de metal liquide
FR2618216A1 (fr) Dispositif pour fondre des metaux dans une chambre a vide par bombardement electronique, notamment en vue de leur purification.
WO2000065109A1 (fr) Procede et dispositif ameliores de degazage et de separation des inclusions d'un bain de metal liquide par injection de bulles de gaz
FR2836983A1 (fr) Procede et dispositif d'evacuation de gaz d'une enceinte immergee
EP0223722A1 (fr) Dispositif et procédé d'injection continue sous faible pression d'un additif pulvérulent dans un courant de métal fondu
CH381434A (fr) Procédé et appareil de fabrication d'acier contenant du plomb
FR2784305A1 (fr) Dispositif de separation et de recuperation des particules liquides contenues dans un effluent gazeux
BE889489A (fr) Procede et dispositif d'epuration de liquide.
FR2878169A1 (fr) Installation monobloc pour le traitement d'eau associant une unite de decantation et un systeme de filtration
CH549644A (fr) Procede pour enlever, en continu, les impuretes non metalliques d'un metal en fusion, appareil pour sa mise en oeuvre et metal ou alliage obtenu.
FR2638102A1 (fr) Appareil pour traiter des composes dans un liquide et comprenant notamment une roue a godets tournant dans une cuve et des conduits d'acheminement et d'evacuation des composes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003749924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 372598

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 10514165

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004136293

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003749924

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2003749924

Country of ref document: EP