WO2003095642A2 - Polyepitopes and mini-genes for cancer treatment - Google Patents
Polyepitopes and mini-genes for cancer treatment Download PDFInfo
- Publication number
- WO2003095642A2 WO2003095642A2 PCT/CA2003/000672 CA0300672W WO03095642A2 WO 2003095642 A2 WO2003095642 A2 WO 2003095642A2 CA 0300672 W CA0300672 W CA 0300672W WO 03095642 A2 WO03095642 A2 WO 03095642A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gploo
- alvac
- group
- viral vector
- nucleic acid
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 54
- 201000011510 cancer Diseases 0.000 title claims abstract description 35
- 238000011282 treatment Methods 0.000 title abstract description 9
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 67
- 239000013598 vector Substances 0.000 claims abstract description 26
- 229940023860 canarypox virus HIV vaccine Drugs 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 40
- 239000013603 viral vector Substances 0.000 claims description 30
- 239000013604 expression vector Substances 0.000 claims description 24
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 16
- 239000013612 plasmid Substances 0.000 claims description 14
- 206010046865 Vaccinia virus infection Diseases 0.000 claims description 13
- 208000007089 vaccinia Diseases 0.000 claims description 13
- 241000700605 Viruses Species 0.000 claims description 12
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 claims description 10
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 claims description 9
- 208000000666 Fowlpox Diseases 0.000 claims description 8
- 241001430294 unidentified retrovirus Species 0.000 claims description 8
- MJNIWUJSIGSWKK-UHFFFAOYSA-N Riboflavine 2',3',4',5'-tetrabutanoate Chemical compound CCCC(=O)OCC(OC(=O)CCC)C(OC(=O)CCC)C(OC(=O)CCC)CN1C2=CC(C)=C(C)C=C2N=C2C1=NC(=O)NC2=O MJNIWUJSIGSWKK-UHFFFAOYSA-N 0.000 claims description 7
- 241001529453 unidentified herpesvirus Species 0.000 claims description 7
- 241000702421 Dependoparvovirus Species 0.000 claims description 2
- 238000003259 recombinant expression Methods 0.000 claims 2
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 102
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 89
- 229920001184 polypeptide Polymers 0.000 abstract description 83
- 102000039446 nucleic acids Human genes 0.000 abstract description 47
- 108020004707 nucleic acids Proteins 0.000 abstract description 47
- 108090000623 proteins and genes Proteins 0.000 abstract description 38
- 239000000427 antigen Substances 0.000 abstract description 36
- 108091007433 antigens Proteins 0.000 abstract description 35
- 102000036639 antigens Human genes 0.000 abstract description 35
- 230000014509 gene expression Effects 0.000 abstract description 23
- 239000012634 fragment Substances 0.000 abstract description 15
- 238000003780 insertion Methods 0.000 abstract description 4
- 230000037431 insertion Effects 0.000 abstract description 4
- 230000001024 immunotherapeutic effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 85
- 230000002163 immunogen Effects 0.000 description 43
- 235000001014 amino acid Nutrition 0.000 description 29
- 150000001413 amino acids Chemical class 0.000 description 27
- 230000028993 immune response Effects 0.000 description 18
- 239000002246 antineoplastic agent Substances 0.000 description 16
- 241000699670 Mus sp. Species 0.000 description 15
- 241000282414 Homo sapiens Species 0.000 description 14
- -1 for example Proteins 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 210000001744 T-lymphocyte Anatomy 0.000 description 12
- 229960005486 vaccine Drugs 0.000 description 12
- 239000003623 enhancer Substances 0.000 description 11
- 230000003053 immunization Effects 0.000 description 11
- 238000002649 immunization Methods 0.000 description 11
- 125000000539 amino acid group Chemical group 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 10
- 230000005847 immunogenicity Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- 239000008194 pharmaceutical composition Substances 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 230000009089 cytolysis Effects 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 108020004511 Recombinant DNA Proteins 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 102000019034 Chemokines Human genes 0.000 description 5
- 108010012236 Chemokines Proteins 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 108091054437 MHC class I family Proteins 0.000 description 5
- 102000004473 OX40 Ligand Human genes 0.000 description 5
- 108010042215 OX40 Ligand Proteins 0.000 description 5
- 102000035195 Peptidases Human genes 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 230000001177 retroviral effect Effects 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 4
- 102000002627 4-1BB Ligand Human genes 0.000 description 4
- 108010082808 4-1BB Ligand Proteins 0.000 description 4
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 4
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 4
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 102000001301 EGF receptor Human genes 0.000 description 4
- 108060006698 EGF receptor Proteins 0.000 description 4
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 4
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 4
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 4
- 108010065805 Interleukin-12 Proteins 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 230000005867 T cell response Effects 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 230000000973 chemotherapeutic effect Effects 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 229960004397 cyclophosphamide Drugs 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 229960002949 fluorouracil Drugs 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 102000006495 integrins Human genes 0.000 description 4
- 108010044426 integrins Proteins 0.000 description 4
- 230000002101 lytic effect Effects 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 230000037452 priming Effects 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 108091029865 Exogenous DNA Proteins 0.000 description 3
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 3
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- 102000043129 MHC class I family Human genes 0.000 description 3
- 230000004988 N-glycosylation Effects 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 3
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 102000003425 Tyrosinase Human genes 0.000 description 3
- 108060008724 Tyrosinase Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000000118 anti-neoplastic effect Effects 0.000 description 3
- 230000005975 antitumor immune response Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229950003608 prinomastat Drugs 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 210000002845 virion Anatomy 0.000 description 3
- GTXSRFUZSLTDFX-HRCADAONSA-N (2s)-n-[(2s)-3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl]-4-methyl-2-[[(2s)-2-sulfanyl-4-(3,4,4-trimethyl-2,5-dioxoimidazolidin-1-yl)butanoyl]amino]pentanamide Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](S)CCN1C(=O)N(C)C(C)(C)C1=O GTXSRFUZSLTDFX-HRCADAONSA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- HPZMWTNATZPBIH-UHFFFAOYSA-N 1-methyladenine Chemical compound CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- DLZKEQQWXODGGZ-KCJUWKMLSA-N 2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]acetic acid Chemical compound OC(=O)CNC(=O)[C@@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DLZKEQQWXODGGZ-KCJUWKMLSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- XKJMBINCVNINCA-UHFFFAOYSA-N Alfalone Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XKJMBINCVNINCA-UHFFFAOYSA-N 0.000 description 2
- 101150039990 B13R gene Proteins 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 101710155834 C-C motif chemokine 7 Proteins 0.000 description 2
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 2
- 108010029697 CD40 Ligand Proteins 0.000 description 2
- 102100032937 CD40 ligand Human genes 0.000 description 2
- 108010084313 CD58 Antigens Proteins 0.000 description 2
- 102100025221 CD70 antigen Human genes 0.000 description 2
- 108091007914 CDKs Proteins 0.000 description 2
- 229940045513 CTLA4 antagonist Drugs 0.000 description 2
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 2
- 108010055166 Chemokine CCL5 Proteins 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 2
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 2
- 102000050554 Eph Family Receptors Human genes 0.000 description 2
- 108091008815 Eph receptors Proteins 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- 208000009889 Herpes Simplex Diseases 0.000 description 2
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 2
- 101000797758 Homo sapiens C-C motif chemokine 7 Proteins 0.000 description 2
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102100025390 Integrin beta-2 Human genes 0.000 description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 2
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 108700019961 Neoplasm Genes Proteins 0.000 description 2
- 102000048850 Neoplasm Genes Human genes 0.000 description 2
- 102100034640 PWWP domain-containing DNA repair factor 3A Human genes 0.000 description 2
- 108050007154 PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 108010067372 Pancreatic elastase Proteins 0.000 description 2
- 102100035846 Pigment epithelium-derived factor Human genes 0.000 description 2
- 102000004211 Platelet factor 4 Human genes 0.000 description 2
- 108090000778 Platelet factor 4 Proteins 0.000 description 2
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 2
- 102100038358 Prostate-specific antigen Human genes 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 101150071286 SPI-2 gene Proteins 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 102100031372 Thymidine phosphorylase Human genes 0.000 description 2
- 108700023160 Thymidine phosphorylases Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 230000001772 anti-angiogenic effect Effects 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 201000001531 bladder carcinoma Diseases 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 238000009566 cancer vaccine Methods 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- ZXFCRFYULUUSDW-OWXODZSWSA-N chembl2104970 Chemical compound C([C@H]1C2)C3=CC=CC(O)=C3C(=O)C1=C(O)[C@@]1(O)[C@@H]2CC(O)=C(C(=O)N)C1=O ZXFCRFYULUUSDW-OWXODZSWSA-N 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 230000007402 cytotoxic response Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940000406 drug candidate Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000009261 endocrine therapy Methods 0.000 description 2
- 229940034984 endocrine therapy antineoplastic and immunomodulating agent Drugs 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 210000003000 inclusion body Anatomy 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- UPBAOYRENQEPJO-UHFFFAOYSA-N n-[5-[[5-[(3-amino-3-iminopropyl)carbamoyl]-1-methylpyrrol-3-yl]carbamoyl]-1-methylpyrrol-3-yl]-4-formamido-1-methylpyrrole-2-carboxamide Chemical compound CN1C=C(NC=O)C=C1C(=O)NC1=CN(C)C(C(=O)NC2=CN(C)C(C(=O)NCCC(N)=N)=C2)=C1 UPBAOYRENQEPJO-UHFFFAOYSA-N 0.000 description 2
- BSIZUMJRKYHEBR-QGZVFWFLSA-N n-hydroxy-2(r)-[[(4-methoxyphenyl)sulfonyl](3-picolyl)amino]-3-methylbutanamide hydrochloride Chemical compound C1=CC(OC)=CC=C1S(=O)(=O)N([C@H](C(C)C)C(=O)NO)CC1=CC=CN=C1 BSIZUMJRKYHEBR-QGZVFWFLSA-N 0.000 description 2
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 2
- 229940086322 navelbine Drugs 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 108090000102 pigment epithelium-derived factor Proteins 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 102000027257 transmembrane receptors Human genes 0.000 description 2
- 108091008578 transmembrane receptors Proteins 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- SATCOUWSAZBIJO-UHFFFAOYSA-N 1-methyladenine Natural products N=C1N(C)C=NC2=C1NC=N2 SATCOUWSAZBIJO-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- TZZNWMJZDWYJAZ-UHFFFAOYSA-N 2-(4-oxo-2-phenylchromen-8-yl)acetic acid Chemical compound OC(=O)CC1=CC=CC(C(C=2)=O)=C1OC=2C1=CC=CC=C1 TZZNWMJZDWYJAZ-UHFFFAOYSA-N 0.000 description 1
- SVBOROZXXYRWJL-UHFFFAOYSA-N 2-[(4-oxo-2-sulfanylidene-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=S)NC1=O SVBOROZXXYRWJL-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- CQOQDQWUFQDJMK-SSTWWWIQSA-N 2-methoxy-17beta-estradiol Chemical compound C([C@@H]12)C[C@]3(C)[C@@H](O)CC[C@H]3[C@@H]1CCC1=C2C=C(OC)C(O)=C1 CQOQDQWUFQDJMK-SSTWWWIQSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- UACOJOVKHNAJPX-UHFFFAOYSA-N 5-(methoxyamino)-6-methyl-2-sulfanylidene-1H-pyrimidin-4-one Chemical compound CONC=1C(NC(NC=1C)=S)=O UACOJOVKHNAJPX-UHFFFAOYSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- HSPHKCOAUOJLIO-UHFFFAOYSA-N 6-(aziridin-1-ylamino)-1h-pyrimidin-2-one Chemical compound N1C(=O)N=CC=C1NN1CC1 HSPHKCOAUOJLIO-UHFFFAOYSA-N 0.000 description 1
- GTSVFOOLVUMMCX-UHFFFAOYSA-N 6-(methylaminomethyl)-2,4-dioxo-1H-pyrimidine-5-carboxylic acid Chemical compound C(=O)(O)C=1C(NC(NC=1CNC)=O)=O GTSVFOOLVUMMCX-UHFFFAOYSA-N 0.000 description 1
- CKOMXBHMKXXTNW-UHFFFAOYSA-N 6-methyladenine Chemical compound CNC1=NC=NC2=C1N=CN2 CKOMXBHMKXXTNW-UHFFFAOYSA-N 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 1
- 101710151806 72 kDa type IV collagenase Proteins 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- SWJYOKZMYFJUOY-KQYNXXCUSA-N 9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-(methylamino)-7h-purin-8-one Chemical compound OC1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SWJYOKZMYFJUOY-KQYNXXCUSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102100032533 ADP/ATP translocase 1 Human genes 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 108010011170 Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102100037982 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 102100034608 Angiopoietin-2 Human genes 0.000 description 1
- 108010048036 Angiopoietin-2 Proteins 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 108090000644 Angiozyme Proteins 0.000 description 1
- 102100023003 Ankyrin repeat domain-containing protein 30A Human genes 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 102000039506 BAGE family Human genes 0.000 description 1
- 108091067183 BAGE family Proteins 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 101100208237 Bos taurus THBS2 gene Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100027305 Box C/D snoRNA protein 1 Human genes 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 1
- 108010046080 CD27 Ligand Proteins 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 101100005789 Caenorhabditis elegans cdk-4 gene Proteins 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 241000186581 Clostridium novyi Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000009268 Collagen Receptors Human genes 0.000 description 1
- 108010048623 Collagen Receptors Proteins 0.000 description 1
- 102100031162 Collagen alpha-1(XVIII) chain Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010052358 Colorectal cancer metastatic Diseases 0.000 description 1
- HVXBOLULGPECHP-WAYWQWQTSA-N Combretastatin A4 Chemical compound C1=C(O)C(OC)=CC=C1\C=C/C1=CC(OC)=C(OC)C(OC)=C1 HVXBOLULGPECHP-WAYWQWQTSA-N 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- 241001146209 Curio rowleyanus Species 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 230000007023 DNA restriction-modification system Effects 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 102100028570 Drebrin-like protein Human genes 0.000 description 1
- 108700006830 Drosophila Antp Proteins 0.000 description 1
- 108010031111 EBV-encoded nuclear antigen 1 Proteins 0.000 description 1
- 101150076616 EPHA2 gene Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102100037241 Endoglin Human genes 0.000 description 1
- 108010036395 Endoglin Proteins 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 108010020195 FLAG peptide Proteins 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 102000040452 GAGE family Human genes 0.000 description 1
- 108091072337 GAGE family Proteins 0.000 description 1
- 101000609762 Gallus gallus Ovalbumin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 101710113864 Heat shock protein 90 Proteins 0.000 description 1
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108010022901 Heparin Lyase Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 102100023920 Histone H1t Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000796932 Homo sapiens ADP/ATP translocase 1 Proteins 0.000 description 1
- 101000757191 Homo sapiens Ankyrin repeat domain-containing protein 30A Proteins 0.000 description 1
- 101000937756 Homo sapiens Box C/D snoRNA protein 1 Proteins 0.000 description 1
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 1
- 101000915399 Homo sapiens Drebrin-like protein Proteins 0.000 description 1
- 101000905044 Homo sapiens Histone H1t Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101001008951 Homo sapiens Kinesin-like protein KIF15 Proteins 0.000 description 1
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 description 1
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 description 1
- 101000831887 Homo sapiens STE20-related kinase adapter protein alpha Proteins 0.000 description 1
- 101000632529 Homo sapiens Shugoshin 1 Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 102000039966 ICAM family Human genes 0.000 description 1
- 108091069108 ICAM family Proteins 0.000 description 1
- 235000003325 Ilex Nutrition 0.000 description 1
- 241000209035 Ilex Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108010043496 Immunoglobulin Idiotypes Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108010064600 Intercellular Adhesion Molecule-3 Proteins 0.000 description 1
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 1
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 1
- 102100037871 Intercellular adhesion molecule 3 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 102100027630 Kinesin-like protein KIF15 Human genes 0.000 description 1
- 102100023426 Kinesin-like protein KIF2A Human genes 0.000 description 1
- 101710134365 Kinesin-like protein KIF2A Proteins 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010064548 Lymphocyte Function-Associated Antigen-1 Proteins 0.000 description 1
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 description 1
- 102100031520 MAPK/MAK/MRK overlapping kinase Human genes 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 229940124761 MMP inhibitor Drugs 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 208000006758 Marek Disease Diseases 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 108010015302 Matrix metalloproteinase-9 Proteins 0.000 description 1
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 102100039364 Metalloproteinase inhibitor 1 Human genes 0.000 description 1
- 102100026262 Metalloproteinase inhibitor 2 Human genes 0.000 description 1
- 102100026261 Metalloproteinase inhibitor 3 Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 1
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- MSHZHSPISPJWHW-UHFFFAOYSA-N O-(chloroacetylcarbamoyl)fumagillol Chemical compound O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)NC(=O)CCl)CCC21CO2 MSHZHSPISPJWHW-UHFFFAOYSA-N 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 1
- 102000010752 Plasminogen Inactivators Human genes 0.000 description 1
- 108010077971 Plasminogen Inactivators Proteins 0.000 description 1
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 101000884281 Rattus norvegicus Signal transducer CD24 Proteins 0.000 description 1
- 102000000505 Ribonucleotide Reductases Human genes 0.000 description 1
- 108010041388 Ribonucleotide Reductases Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 108010005173 SERPIN-B5 Proteins 0.000 description 1
- 102100024171 STE20-related kinase adapter protein alpha Human genes 0.000 description 1
- 102100030333 Serpin B5 Human genes 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- 102100028402 Shugoshin 1 Human genes 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- UIRKNQLZZXALBI-MSVGPLKSSA-N Squalamine Chemical compound C([C@@H]1C[C@H]2O)[C@@H](NCCCNCCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CC[C@H](C(C)C)OS(O)(=O)=O)[C@@]2(C)CC1 UIRKNQLZZXALBI-MSVGPLKSSA-N 0.000 description 1
- UIRKNQLZZXALBI-UHFFFAOYSA-N Squalamine Natural products OC1CC2CC(NCCCNCCCCN)CCC2(C)C2C1C1CCC(C(C)CCC(C(C)C)OS(O)(=O)=O)C1(C)CC2 UIRKNQLZZXALBI-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 102000004399 TNF receptor-associated factor 3 Human genes 0.000 description 1
- 108090000922 TNF receptor-associated factor 3 Proteins 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 101710192266 Tegument protein VP22 Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108010031374 Tissue Inhibitor of Metalloproteinase-1 Proteins 0.000 description 1
- 108010031372 Tissue Inhibitor of Metalloproteinase-2 Proteins 0.000 description 1
- 108010031429 Tissue Inhibitor of Metalloproteinase-3 Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100040418 Tumor protein D52 Human genes 0.000 description 1
- 101710190247 Tumor protein D52 Proteins 0.000 description 1
- 102400000731 Tumstatin Human genes 0.000 description 1
- 108010042606 Tyrosine transaminase Proteins 0.000 description 1
- 102100031358 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- 101100534084 Vaccinia virus (strain Copenhagen) B14R gene Proteins 0.000 description 1
- 101100004092 Vaccinia virus (strain Western Reserve) VACWR196 gene Proteins 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 1
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 108010034034 alpha-1,6-mannosylglycoprotein beta 1,6-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- XSDQTOBWRPYKKA-UHFFFAOYSA-N amiloride Chemical compound NC(=N)NC(=O)C1=NC(Cl)=C(N)N=C1N XSDQTOBWRPYKKA-UHFFFAOYSA-N 0.000 description 1
- 229960002576 amiloride Drugs 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000003886 aromatase inhibitor Substances 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229940088954 camptosar Drugs 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- WNRZHQBJSXRYJK-UHFFFAOYSA-N carboxyamidotriazole Chemical compound NC1=C(C(=O)N)N=NN1CC(C=C1Cl)=CC(Cl)=C1C(=O)C1=CC=C(Cl)C=C1 WNRZHQBJSXRYJK-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- 150000001784 cerebrosides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229950009003 cilengitide Drugs 0.000 description 1
- AMLYAMJWYAIXIA-VWNVYAMZSA-N cilengitide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](C(C)C)N(C)C(=O)[C@H]1CC1=CC=CC=C1 AMLYAMJWYAIXIA-VWNVYAMZSA-N 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229960005537 combretastatin A-4 Drugs 0.000 description 1
- HVXBOLULGPECHP-UHFFFAOYSA-N combretastatin A4 Natural products C1=C(O)C(OC)=CC=C1C=CC1=CC(OC)=C(OC)C(OC)=C1 HVXBOLULGPECHP-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 108010045325 cyclic arginine-glycine-aspartic acid peptide Proteins 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 229940045109 genistein Drugs 0.000 description 1
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 1
- 235000006539 genistein Nutrition 0.000 description 1
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical class OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000001456 gonadotroph Effects 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000000568 immunological adjuvant Substances 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- VDBNYAPERZTOOF-UHFFFAOYSA-N isoquinolin-1(2H)-one Chemical class C1=CC=C2C(=O)NC=CC2=C1 VDBNYAPERZTOOF-UHFFFAOYSA-N 0.000 description 1
- UHEBDUAFKQHUBV-UHFFFAOYSA-N jspy-st000261 Chemical compound C1=CC=C2C3=C(C(=O)NC4)C4=C(C=4C(=CC=C(C=4)COC(C)C)N4CCCOC(=O)CN(C)C)C4=C3CC2=C1 UHEBDUAFKQHUBV-UHFFFAOYSA-N 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229950008959 marimastat Drugs 0.000 description 1
- OCSMOTCMPXTDND-OUAUKWLOSA-N marimastat Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)[C@H](O)C(=O)NO OCSMOTCMPXTDND-OUAUKWLOSA-N 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 229940115256 melanoma vaccine Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- VYGYNVZNSSTDLJ-HKCOAVLJSA-N monorden Natural products CC1CC2OC2C=C/C=C/C(=O)CC3C(C(=CC(=C3Cl)O)O)C(=O)O1 VYGYNVZNSSTDLJ-HKCOAVLJSA-N 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 108010065781 myosin light chain 2 Proteins 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- AEMBWNDIEFEPTH-UHFFFAOYSA-N n-tert-butyl-n-ethylnitrous amide Chemical compound CCN(N=O)C(C)(C)C AEMBWNDIEFEPTH-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 230000002276 neurotropic effect Effects 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 239000002797 plasminogen activator inhibitor Substances 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 210000004896 polypeptide structure Anatomy 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000026938 proteasomal ubiquitin-dependent protein catabolic process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- AECPBJMOGBFQDN-YMYQVXQQSA-N radicicol Chemical compound C1CCCC(=O)C[C@H]2[C@H](Cl)C(=O)CC(=O)[C@H]2C(=O)O[C@H](C)C[C@H]2O[C@@H]21 AECPBJMOGBFQDN-YMYQVXQQSA-N 0.000 description 1
- 229930192524 radicicol Natural products 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000003087 receptor blocking agent Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009094 second-line therapy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229950001248 squalamine Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 108010042747 stallimycin Proteins 0.000 description 1
- 229950009902 stallimycin Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical class C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000031998 transcytosis Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 108010012374 type IV collagen alpha3 chain Proteins 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 102000009816 urokinase plasminogen activator receptor activity proteins Human genes 0.000 description 1
- 108040001269 urokinase plasminogen activator receptor activity proteins Proteins 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 229950000578 vatalanib Drugs 0.000 description 1
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4748—Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24041—Use of virus, viral particle or viral elements as a vector
- C12N2710/24043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- the present invention relates to a nucleic acid encoding at least one i munogen and the use of the nucleic acid or polypeptide in preventing and / or treating cancer.
- the invention relates to improved vectors for the insertion and expression of foreign genes encoding tumor antigens, fragments thereof, or combinations thereof for use in immunotherapeutic treatment of cancer.
- TAAs tumor-associated antigens
- the present invention provides such reagents and methodologies which overcome many of the difficulties encountered by others in attempting to treat cancers such as cancer.
- an epitope-based strategy has been utilized to elicit optimized and well-balanced T cell responses against a range of HLA-A2.1.1 restricted epitopes from the g lOO and Melan A/MART- 1 molecules. These tumor- associated molecules could be used as targets for a melanoma vaccine, for example.
- the epitopes may be delivered using a recombinant DNA vector such as a plasmid or virus.
- the present invention provides an immunogenic target for administration to a patient to prevent and / or treat cancer.
- the immunogenic target is a tumor antigen ("TA") expressed from a recombinant DNA molecule comprising multiple epitopes or one or more mini-genes derived from a TA-encoding nucleic acid sequence.
- the recombinant DNA is a plasmid or other delivery vector, such as a recombinant virus.
- the TA and / or AA may also be administered in combination with an immune stimulator, such as a co-stimulatory component or adjuvant.
- FIGS 1A-C Lysis by TIL lines of J82 target cells infected with ALVAC-polyepitope recombinants.
- Panel A MART-l 27"35 -specif ⁇ c lysis by TIL 620;
- Panel B gplOO 154"162 - specific lysis by TIL 1200;
- Panel C gpl00 09_217 -specific lysis by TIL 620.
- the present invention provides reagents and methodologies useful for treating and / or preventing cancer. All references cited within this application are incorporated by reference.
- the present invention relates to the induction or enhancement of an immune response against one or more tumor antigens ("TA") to prevent and / or treat cancer.
- TA tumor antigens
- one or more TAs may be combined.
- the immune response results from expression of a TA in a host cell following administration of a nucleic acid vector encoding the tumor antigen or the tumor antigen itself in the form of a peptide or polypeptide, for example.
- the TA is administered as part of a "polyepitope" in which multiple Tas or immunogenic portions thereof are encoded on a single recombinant DNA molecule.
- the TA is administered as a "mini-gene” in which a minimal immunogenic portion of the TA is encoded by the recombinant DNA molecule.
- an "antigen” is a molecule (such as a polypeptide) or a portion thereof that produces an immune response in a host to whom the antigen has been administered.
- the immune response may include the production of antibodies that bind to at least one epitope of the antigen and / or the generation of a cellular immune response against cells expressing an epitope of the antigen.
- the response may be an enhancement of a current immune response by, for example, causing increased antibody production, production of antibodies with increased affinity for the antigen, or an increased cellular response (i.e., increased T cells).
- An antigen that produces an immune response may alternatively be referred to as being immunogenic or as an immunogen.
- a TA may be referred to as an "immunogenic target".
- TA includes both tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), where a cancerous cell is the source of the antigen.
- TAA tumor-associated antigens
- TSAs tumor-specific antigens
- a TAA is an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on nonnal cells or an antigen that is expressed on normal cells during fetal development.
- a TSA is an antigen that is unique to tumor cells and is not expressed on normal cells.
- TA further includes TAAs or TSAs, immunogenic fragments thereof, and modified TAs that retain the desired immunogenicity.
- TAs are typically classified into five categories according to their expression pattern, function, or genetic origin: cancer-testis (CT) antigens (i.e., MAGE, NY-ESO-1); melanocyte differentiation antigens (i.e., Melan A/MART-1, tyrosinase, gplOO); mutational antigens (i.e., MUM-1, p53, CDK-4); overexpressed 'self antigens (i.e., HER-2/neu, p53); and, viral antigens (i.e., HPV, EBV).
- CT cancer-testis
- MAGE MAGE
- NY-ESO-1 melanocyte differentiation antigens
- mutational antigens i.e., MUM-1, p53, CDK-4
- overexpressed 'self antigens i.e., HER-2/neu, p53
- viral antigens i.e., HPV, EBV
- a suitable TA is any TA that induces or enhances an anti-tumor immune response in a host to whom the TA has been administered.
- Suitable TAs include, for example, gplOO (Cox et al., Science, 264:716-719 (1994)), MART-1/Melan A (Kawakami et al., J. Exp. Med., 180:347-352 (1994)), gp75 (TRP-1) (Wang et al, J. Exp. Med., 186:1131-1140 (1996)), tyrosinase (Wolfel et al., Eur. J.
- BCR-abl Bocchia et al., Blood, 85:2680-2684 (1995)
- p53 Theobald et al, Proc. Natl. Acad. Sci. USA, 92:11993-11997 (1995)
- pl85 HER2/neu erb-Bl; Fisk et al., J. Exp. Med., 181:2109-2117 (1995)
- EGFR epidermal growth factor receptor
- CEA carcinoembryonic antigens
- an AA is an immunogenic molecule (i.e., peptide, polypeptide) associated with cells involved in the induction and / or continued development of blood vessels.
- an AA may be expressed on an endothelial cell ("EC"), which is a primary structural component of blood vessels.
- EC endothelial cell
- Immunization of a patient against an AA preferably results in an anti-AA immune response whereby angiogenic processes that occur near or within tumors are prevented and / or inhibited.
- Exemplary AAs include, for example, vascular endothelial growth factor (i.e., VEGF; Behapni, et al. J. UroL, 2001, 166(4): 1275-9; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23; Dias, et al. Blood, 2002, 99: 2179-2184), the VEGF receptor (i.e., VEGF-R, flk-1/KDR; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, .122(3): 518-23), EPH receptors (i.e., EPHA2; Gerety, et al.
- VEGF vascular endothelial growth factor
- Behapni et al. J. UroL, 2001, 166(4): 1275-9
- Starnes et al. J. Thorac. Cardiovasc. Surg.,
- epidermal growth factor receptor i.e., EGFR; Ciardeillo, et al. Clin. Cancer Res., 2001, 7(10): 2958-70
- basic fibroblast growth factor i.e., bFGF; Davidson, et al. Clin. Exp. Metastasis 2000,18(6): 501-7; Poon, et al. Am J. Surg., 2001, 182(3):298-304
- platelet-derived cell growth factor i.e., PDGF-B
- platelet-derived endothelial cell growth factor PD-ECGF; Hong, et al. J. Mol.
- transforming growth factors i.e., TGF- ; Hong, et al. J. Mol. Med., 2001, 8(2):141-8
- endoglin Balza, et al. Int. J. Cancer, 2001, 94: 579-585
- Id proteins Benezra, R. Trends Cardiovasc. Med., 2001, 11(6):237-41
- proteases such as uPA, uPAR, and matrix metalloproteinases (MMP-2, MMP-9; Djonov, et al. J. Pathol., 2001, 195(2): 147- 55
- nitric oxide synthase Am. J.
- synthases i.e., ATP synthase, thymidilate synthase
- collagen receptors integrins (i.e., ⁇ 3, ⁇ 5, ⁇ l ⁇ l, ⁇ 2 ⁇ l, ⁇ 5 ⁇ l)
- integrins i.e., ⁇ 3, ⁇ 5, ⁇ l ⁇ l, ⁇ 2 ⁇ l, ⁇ 5 ⁇ l
- the surface proteolglycan NG2, AAC2-1, or AAC2-2 among others, including "wild-type” (i.e., normally encoded by the genome, naturally-occurring), modified, mutated versions as well as other fragments and derivatives thereof.
- wild-type i.e., normally encoded by the genome, naturally-occurring
- modified, mutated versions as well as other fragments and derivatives thereof.
- Any of these targets may be suitable in practicing the present invention, either alone or in combination with one another or with other agents and may be also be referred to as "immunogenic targets”.
- Polyepitopic preparations may also be utilized to generate an immune response.
- particular immunogenic regions of a TA or AA may be combined and co- administered to a patient.
- the immunogenic regions may be combined either as peptides, polypeptides or nucleic acid sequences.
- the nucleic acid sequences may be combined into a single or multiple recombinant plasmids or viral vectors and administered, for instance.
- nucleic acid sequences encoding immunogenic regions of Melan-A/MART- 1 or gplOO are incorporated into a recombinant DNA molecule.
- immunogenic regions of TAs include, for example, MART-1 27"35 , gplOO 154"162 , gplOO 209"217 , gplOO 280"288 , gpl00-209-2M, and gplOO-280-9V.
- Spacers such as nucleic acid sequences encoding the amino acid sequence AAA or NKRK may be optionally included to separate the immunogenic regions from one another.
- the immunogenic regions may also be utilized separately as "mini-genes".
- the nucleic acid molecule encoding the immunogenic target may comprise or consist of a nucleotide sequence encoding one or more immunogenic targets, or fragments or derivatives thereof, such as that contained in a DNA insert in an ATCC Deposit.
- the term "nucleic acid sequence” or “nucleic acid molecule” refers to a DNA or RNA sequence.
- the term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetylcytosine, 8-hydroxy-N6-methyladenosine, aziridinyl- cytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl) uracil, 5-fluorouracil, 5- bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxy- methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2- methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 1- methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil
- An isolated nucleic acid molecule is one that: (1) is separated from at least about 50 percent of proteins, lipids, carbohydrates, or other materials with which it is naturally found when total nucleic acid is isolated from the source cells; (2) is not be linked to all or a portion of a polynucleotide to which the nucleic acid molecule is linked in nature; (3) is operably linked to a polynucleotide which it is not linked to in nature; and / or, (4) does not occur in nature as part of a larger polynucleotide sequence.
- the isolated nucleic acid molecule of the present invention is substantially free from any other contaminating nucleic acid molecule(s) or other contaminants that are found in its natural environment that would interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research use.
- naturally occurring or “native” or “naturally found” when used in connection with biological materials refers to materials which are found in nature and are not manipulated by man.
- non-naturally occurring or “non-native” as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.
- identity means the degree of sequence relatedness between nucleic acid molecules or polypeptides as determined by the match between the units making up the molecules (i.e., nucleotides or amino acid residues). Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., an algorithm). Identity between nucleic acid sequences may also be determined by the ability of the related sequence to hybridize to the nucleic acid sequence or isolated nucleic acid molecule.
- highly stringent conditions and “moderately stringent conditions” refer to procedures that permit hybridization of nucleic acid strands whose sequences are complementary, and to exclude hybridization of significantly mismatched nucleic acids.
- “highly stringent conditions” for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42°C. (see, for example, Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al., Nucleic Acid Hybridisation: A Practical Approach Ch.
- moderately stringent conditions refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under “highly stringent conditions” is able to form.
- exemplary moderately stringent conditions are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50°C.
- moderately stringent conditions of 50°C in 0.015 M sodium ion will allow about a 21% mismatch.
- other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization.
- Examples are 0.1 % bovine serum albumin, 0.1% polyvinyl- pyrrolidone, 0.1% sodium pyrophosphate, 0.1 % sodium dodecylsulfate, NaDodSO , (SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), and dextran sulfate, although other suitable agents can also be used.
- concentration and types of these additives can be changed without substantially affecting the stringency of the hybridization conditions.
- Hybridization experiments are usually carried out at pH 6.8-7.4; however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH.
- vectors are used to transfer a nucleic acid sequence encoding a polypeptide to a cell.
- a vector is any molecule used to transfer a nucleic acid sequence to a host cell.
- an expression vector is utilized.
- An expression vector is a nucleic acid molecule that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and / or control the expression of the transferred nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and splicing, if introns are present.
- Expression vectors typically comprise one or more flanking sequences operably linked to a heterologous nucleic acid sequence encoding a polypeptide.
- Flanking sequences may be homologous (i.e., from the same species and / or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), or synthetic, for example.
- a flanking sequence is preferably capable of effecting the replication, transcription and / or translation of the coding sequence and is operably linked to a coding sequence.
- operably linked refers to a linkage of polynucleotide elements in a functional relationship.
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence.
- a flanking sequence need not necessarily be contiguous with the coding sequence, so long as it functions correctly.
- intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence may still be considered operably linked to the coding sequence.
- an enhancer sequence may be located upstream or downstream from the coding sequence and affect transcription of the sequence.
- the flanking sequence is a trascriptional regulatory region that drives high-level gene expression in the target cell.
- the transcriptional regulatory region may comprise, for example, a promoter, enhancer, silencer, repressor element, or combinations thereof.
- the transcriptional regulatory region may be either constitutive, tissue-specific, cell-type specific (i.e., the region is drives higher levels of transcription in a one type of tissue or cell as compared to another), or regulatable (i.e., responsive to interaction with a compound such as tetracycline).
- the source of a transcriptional regulatory region may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence functions in a cell by causing transcription of a nucleic acid within that cell.
- a wide variety of transcriptional regulatory regions may be utilized in practicing the present invention.
- Suitable transcriptional regulatory regions include the CMV promoter (i.e., the CMV- . immediate early promoter); promoters from eukaryotic genes (i.e., the estrogen-inducible chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene); and the major early and late adeno virus gene promoters; the SV40 early promoter region (Bemoist and Chambon, 1981, Nature 290:304-10); the promoter contained in the 3' long terminal repeat (LTR) of Rous sarcoma vims (RSV) (Yamamoto, et al, 1980, Cell 22:787-97); the herpes simplex vims thymidine kinase (HSV-TK) promoter (Wagner et al, 1981, Proc.
- CMV promoter i.e., the CMV-
- Tissue- and / or cell-type specific transcriptional control regions include, for example, the elastase I gene control region which is active in pancreatic acinar cells (Swift et al, 1984, Cell 38:639-46; Ornitz et al, 1986, Cold Spring Harbor Symp. Quant.
- the beta-globin gene control region in myeloid cells (Mogram et al, 1985, Nature 315:338-40; Kollias et al, 1986, Cell 46:89-94); the myelin basic protein gene control region in oligodendrocyte cells in the brain (Readhead et al, 1987, Cell 48:703-12); the myosin light chain-2 gene control region in skeletal muscle (Sani, 1985, Nature 314:283-86); the gonadotropic releasing hormone gene control region in the hypothalamus (Mason et al, 1986, Science 234:1372-78), and the tyrosinase promoter in melanoma cells (Hart, I.
- Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are typically orientation- and position-independent, having been identified both 5' and 3' to controlled coding sequences.
- enhancer sequences available from mammalian genes are known (i.e., globin, elastase, albumin, alpha- feto-protein and insulin).
- the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are useful with eukaryotic promoter sequences. While an enhancer may be spliced into the vector at a position 5' or 3' to nucleic acid coding sequence, it is typically located at a site 5' from the promoter. Other suitable enhancers are known in the art, and would be applicable to the present invention. While preparing reagents of the present invention, cells may need to be transfected or transformed. Transfection refers to the uptake of foreign or exogenous DNA by a cell, and a cell has been transfected when the exogenous DNA has been introduced inside the cell membrane.
- transfection of a cell results in transformation of that cell.
- a cell is transformed when there is a change in a characteristic of the cell, being transformed when it has been modified to contain a new nucleic acid.
- the transfected nucleic acid may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an episomal element without being replicated, or may replicate independently as a plasmid.
- a cell is stably transformed when the nucleic acid is replicated with the division of the cell.
- the present invention further provides isolated immunogenic targets in polypeptide form.
- a polypeptide is considered isolated where it: (1) has been separated from at least about 50 percent of polymicleotides, lipids, carbohydrates, or other materials with which it is naturally found when isolated from the source cell; (2) is not linked (by covalent or noncovalent interaction) to all or a portion of a polypeptide to which the "isolated polypeptide" is linked in nature; (3) is operably linked (by covalent or noncovalent interaction) to a polypeptide with which it is not linked in nature; or, (4) does not occur in nature.
- the isolated polypeptide is substantially free from any other contaminating polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic or research use.
- Immunogenic target polypeptides may be mature polypeptides, as defined herein, and may or may not have an amino terminal methionine residue, depending on the method by which they are prepared. Further contemplated are related polypeptides such as, for example, fragments, variants (i.e., allelic, splice), orthologs, homologues, and derivatives, for example, that possess at least one characteristic or activity (i.e., activity, antigenicity) of the immunogenic target. Also related are peptides, which refers to a series of contiguous amino acid residues having a sequence corresponding to at least a portion of the polypeptide from which its sequence is derived.
- the peptide comprises about 5-10 amino acids, 10-15 amino acids, 15-20 amino acids, 20-30 amino acids, or 30-50 amino acids. In a more preferred embodiment, a peptide comprises 9-12 amino acids, suitable for presentation upon Class I MHC molecules, for example.
- a fragment of a nucleic acid or polypeptide comprises a truncation of the sequence (i.e., nucleic acid or polypeptide) at the amino terminus (with or without a leader sequence) and / or the carboxy terminus. Fragments may also include variants (i.e., allelic, splice), orthologs, homologues, and other variants having one or more amino acid additions or substitutions or internal deletions as compared to the parental sequence. In preferred embodiments, truncations and or deletions comprise about 10 amino acids, 20 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, or more.
- polypeptide fragments so produced will comprise about 10 amino acids, 25 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, 60 amino acids, 70 amino acids, or more.
- Such polypeptide fragments may optionally comprise an amino terminal methionine residue. It will be appreciated that such fragments can be used, for example, to generate antibodies or cellular immune responses to immunogenic target polypeptides.
- a variant is a sequence having one or more sequence substitutions, deletions, and/or additions as compared to the subject sequence. Variants may be naturally occurring or artificially constructed. Such variants may be prepared from the corresponding nucleic acid molecules.
- the variants have from 1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 30, or from 1 to 40, or from 1 to 50, or more than 50 amino acid substitutions, insertions, additions and/or deletions.
- An allelic variant is one of several possible naturally-occurring alternate forms of a gene occupying a given locus on a chromosome of an organism or a population of organisms.
- a splice variant is a polypeptide generated from one of several RNA transcript resulting from splicing of a primary transcript.
- An ortholog is a similar nucleic acid or polypeptide sequence from another species.
- the mouse and human versions of an immunogenic target polypeptide may be considered orthologs of each other.
- a derivative of a sequence is one that is derived from a parental sequence those sequences having substitations, additions, deletions, or chemically modified variants.
- Variants may also include fusion proteins, which refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).
- Similarity is a concept related to identity, except that similarity refers to a measure of relatedness which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are five more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% (15/20). Therefore, in cases where there are conservative substitutions, the percent similarity between two polypeptides will be higher than the percent identity between those two polypeptides.
- Substitations may be conservative, or non-conservative, or any combination thereof.
- Conservative amino acid modifications to the sequence of a polypeptide may produce polypeptides having functional and chemical characteristics similar to those of a parental polypeptide.
- a "conservative amino acid substitution” may involve a substitution of a native amino acid residue with a non-native residue such that there is little or no effect on the size, polarity, charge, hydrophobicity, or hydrophilicity of the amino acid residue at that position and, in particlar, does not result in decreased immunogenicity.
- Suitable conservative amino acid substitations are shown in Table I. Table I
- MHC binding i.e., MHC binding, immunogenicity
- one skilled in the art may target areas not believed to be important for that activity.
- Increased binding to MHC class I may be accomplished by, for example, reducing the off-rate by modifying anchor residues, or introducing a tyrosine residue in position PI (Parkhurst, et al. J. Immunol 1996. 157:2539-2548; Tourdot, et al. Eur. J. Immunol. 2000; 30: 3411-3421; Valmori, et al. J. Immunol. 1998.
- T cell epitope enhancement strategies focus on amino-acid residues which are recognized by the T cell receptor complex (Zaremba, et al. Cancer Res. 1997;57:4570-4577).
- T cell receptor complex Zaremba, et al. Cancer Res. 1997;57:4570-4577.
- it becomes critical to confirm that the point mutation introduced does not preclude processing and presentation of the T cell epitope Ossendorp, et al. Immunity 1996; 5: 115- 124.
- similar polypeptides with similar activities from the. same species or from other species are known, one skilled in the art may compare the amino acid sequence of a polypeptide to such similar polypeptides. By performing such analyses, one can identify residues and portions of the molecules that are conserved among similar polypeptides.
- polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites have been altered compared to the subject amino acid sequence.
- polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the subject amino acid sequence.
- An N-linked glycosylation site is characterized by the sequence Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline.
- the substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitations that eliminate this sequence will remove an existing N-linked carbohydrate chain.
- N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N- linked sites are created.
- N-linked glycosylation sites typically those that are naturally occurring
- new N- linked sites are created.
- cysteine variants wherein one or more cysteine residues are deleted or substituted with another amino acid (e.g., serine) as compared to the subject amino acid sequence set.
- Cysteine variants are useful when polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.
- the isolated polypeptides of the current invention include fusion polypeptide segments that assist in purification of the polypeptides. Fusions can be made either at the amino terminus or at the carboxy terminus of the subject polypeptide variant thereof. Fusions may be direct with no linker or adapter molecule or may be through a linker or adapter molecule. A linker or adapter molecule may be one or more amino acid residues, typically from about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties.
- fusion polypeptides can be derivatized according to the methods described herein.
- Suitable fusion segments include, among others, metal binding domains (e.g., a poly-histidine segment), immunoglobulin binding domains (i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domains), sugar binding domains (e.g., a maltose binding domain), and/or a "tag" domain (i.e., at least a portion of ⁇ -galactosidase, a strep tag peptide, a T7 tag peptide, a FLAG peptide, or other domains that can be purified using compounds that bind to the domain, such as monoclonal antibodies).
- metal binding domains e.g., a poly-histidine segment
- immunoglobulin binding domains i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domain
- This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification of the sequence of interest polypeptide from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix.
- the tag can subsequently be removed from the purified sequence of interest polypeptide by various means such as using certain peptidases for cleavage. As described below, fusions may also be made between a TA and a co-stimulatory components such as the chemokines CXC10 (IP- 10), CCL7 (MCP-3), or CCL5 (RANTES), for example.
- a fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum, may also be included.
- These sequences referred to as tranduction or transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), Drosophila antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPERl; in particular, SRRHHCRSKAKRSRHH).
- the polypeptide or variant thereof may be fused to a homologous polypeptide to form a homodimer or to a heterologous polypeptide to form a heterodimer.
- Heterologous peptides and polypeptides include, but are not limited to: an epitope to allow for the detection and/or isolation of a fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; and a polypeptide which has a therapeutic activity different from the polypeptide or variant thereof.
- a nucleic acid sequence encoding an immunogenic target, polypeptide, or derivative thereof with one or more co- stimulatory component(s) such as cell surface proteins, cytokines or chemokines in a composition of the present invention may be included in the composition as a polypeptide or as a nucleic acid encoding the polypeptide, for example.
- suitable co-stimulatory molecules include, for instance, polypeptides that bind members of the CD28 family (i.e., CD28, ICOS; Hutloff, et al. Nature 1999, 397: 263-265; Peach, et al.
- CD28 binding polypeptides B7.1 CD80; Schwartz, 1992; Chen et al, 1992; Ellis, et al. J. Immunol, 156(8): 2700-9) and B7.2 (CD86; Ellis, et al. J. Immunol, 156(8): 2700-9); polypeptides which bind members of the integrin family (i.e., LFA-1 (GDI la / CD18); Sedwick, et al. J Immunol 1999, 162: 1367-1375; W ⁇ lfmg, et al. Science 1998, 282: 2266-2269; Lub, et al.
- LFA-1 GDI la / CD18
- CD58 LFA-3; CD2 ligand; Davis, et al. Immunol Today 1996, 17: 177-187) or SLAM ligands (Sayos, et al. Nature 1998, 395: 462- 469); polypeptides which bind heat stable antigen (HSA or CD24; Zhou, et al. Eur J Immunol 1997, 27: 2524-2528); polypeptides which bind to members of the TNF receptor (TNFR) family (i.e., 4-1BB (CD137; Vinay, et al. Semin Immunol 1998, 10: 481-489), OX40 (CD134; Weinberg, et al.
- TNFR TNF receptor
- TRAF-2 (4-1BB and OX40 ligand; Saoulli, et al. J Exp Med 1998, 187: 1849-1862; Oshima, et al. Int Immunol 1998, 10: 517-526, Kawamata, et al. J Biol Chem 1998, 273: 5808-5814), TRAF-3 (4-1BB and OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558-565; Jang, et al. Biochem Biophys Res Commun 1998, 242: 613-620; Kawamata S, et al.
- OX40L OX40 ligand; Gramaglia, et al. J Immunol 1998, 161: 6510-6517
- TRAF-5 OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558-565; Kawamata, et al. J Biol Chem 1998, 273: 5808-5814
- CD70 CD27 ligand; Couderc, et al. Cancer Gene Ther., 5(3): 163-75.
- CD 154 CD40 ligand or "CD40L”; Gurunathan, et al.
- cytokines may also be suitable co-stimulatory components or
- cytokines include, for example, interleukin-2 (IL-2) (Rosenberg, et al. Nature Med. 4: 321-327 (1998)), IL-4, IL-7, IL-12 (reviewed by Pardoll, 1992; Harries, et al. J. Gene Med. 2000 Jul-Aug;2(4):243-9; Rao, et al. J Immunol.
- IL-15 Xin, et al. Vaccine, 17:858-866, 1999
- IL-16 Cruikshank, et al. J. Leuk Biol. 67(6): 757-66, 2000
- IL-18 J. Cancer Res. Clin. Oncol. 2001. 127(12): 718-726
- GM-CSF CSF (Disis, et al. Blood, 88: 202-210 (1996)
- TNF- ⁇ tumor necrosis factor-alpha
- interferons i.e., IFN- ⁇ , INF- ⁇
- Other cytokines may also be suitable for practicing the present invention, as is known in the art.
- Chemokines may also be utilized.
- fusion proteins comprising CXCL10 (IP-10) and CCL7 (MCP-3) fused to a tamor self-antigen have been shown to induce anti- tumor immunity (Biragyn, et al. Nature Biotech. 1999, 17: 253-258).
- the chemokines CCL3 (MlP-l ⁇ ) and CCL5 (RANTES) (Boyer, et al. Vaccine, 1999, 17 (Supp. 2): S53-S64) may also be of use in practicing the present invention.
- Other suitable chemokines are known in the art.
- Additional strategies for improving the efficiency of nucleic acid-based immunization may also be used including, for example, the use of self-replicating viral replicons (Caley, et al. 1999. Vaccine, 17: 3124-2135; Dubensky, et al. 2000. Mol. Med. 6: 723-732; Leitner, et al. 2000. Cancer Res. 60: 51-55), codon optimization (Liu, et al. 2000. Mol. Ther., I: 491- 500; Dubensky, supra; Huang, et al. 2001. J. Virol. 75: 4947-4951), in vivo electroporation (Widera, et al. 2000. J.
- Chemotherapeutic agents radiation, anti-angiogenic compounds, or other agents may also be utilized in treating and / or preventing cancer using immunogenic targets (Sebti, et al. Oncogene 2000 Dec 27;19(56):6566-73).
- useful chemotherapeutic agents include cyclophosphamide, doxombicin, paclitaxel, docetaxel, navelbine, capecitabine, and mitomycin C, among others.
- Combination chemotherapeutic regimens have also proven effective including cyclophosphamide + methotrexate + 5-fluorouracil; cyclophosphamide + doxombicin + 5-fluorouracil; or, cyclophosphamide + doxombicin, for example.
- Other compounds such as prednisone, a taxane, navelbine, mitomycin C, or vinblastine have been utlized for various reasons.
- a majority of breast cancer patients have estrogen-receptor positive (ER+) tumors and in these patients, endocrine therapy (i.e., tamoxifen) is preferred over chemotherapy.
- tamoxifen or, as a second line therapy progestins (medroxyprogesterone acetate or megestrol acetate) are preferred.
- Aromatase inhibitors i.e., aminoglutethimide and analogs thereof such as letrozole
- Other cancers may require different chemotherapeutic regimens.
- metastatic colorectal cancer is typically treated with Camptosar (irinotecan or CPT-11), 5- fluorouracil or leucovorin, alone or in combination with one another.
- Proteinase and integrin inhibitors such as as the MMP inhibitors marimastate (British Biotech), COL-3 (Collagenex), Neovastat (Aeterna), AG3340 (Agouron), BMS-275291 (Bristol Myers Squibb), CGS 27023A (Novartis) or the integrin inhibitors Vitaxin (Medimmune), or MED1522 (Merck KgaA) may also be suitable for use.
- immunological targeting of immunogenic targets associated with colorectal cancer could be performed in combination with a treatment using those chemotherapeutic agents.
- chemotherapeutic agents used to treat other types of cancers are well-known in the art and may be combined with the immunogenic targets described herein.
- agents include, for example, physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF), transforming growth factor beta (TGF- ⁇ )), cytokines (i.e., interferons such as IFN- ⁇ , - ⁇ , - ⁇ , platelet factor 4 (PF-4), PR-39), proteases (i.e., cleaved AT-IH, collagen XVi ⁇ fragment (Endostatin)), HmwKallikrein-d5 plasmin fragment (Angiostatin), prothrombin-Fl-2, TSP-1), protease inhibitors (i.e., tissue inhibitor of metalloproteases such as TIMP-1, -2, or -3; maspin; plasminogen activ
- physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF), transforming growth factor beta (TGF- ⁇ )), cytokines (i.e., interferons such as IFN
- “Chemical” or modified physiological agents known or believed to have anti-angiogenic potential include, for example, vinblastine, taxol, ketoconazole, thalidomide, dolestatin, combrestatin A, rapamycin (Guba, et al.
- the present invention may also be utilized in combination with "non-traditional" methods of treating cancer.
- administration of certain anaerobic bacteria may assist in slowing tamor growth.
- Clostridium novyi was modified to eliminate a toxin gene carried on a phage episome and administered to mice with colorectal tumors (Dang, et al. P.N.A.S. USA, 98(26): 15155- 15160, 2001).
- the treatment was shown to cause tamor necrosis in the animals.
- the reagents and methodologies described in this application may be combined with such treatment methodologies.
- Nucleic acids encoding immunogenic targets may be administered to patients by any of several available techniques.
- Various viral vectors that have been successfully utilized for introducing a nucleic acid to a host include retrovirus, adenovirus, adeno-associated virus (AAV), herpes virus, and poxvims, among others. It is understood in the art that many such viral vectors are available in the art.
- the vectors of the present invention may be constructed using standard recombinant techniques widely available to one skilled in the art. Such techniques may be found in common molecular biology references such as Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D.
- retroviral vectors are derivatives of lentivirus as well as derivatives of murine or avian retrovirases.
- suitable retroviral vectors include, for example, Moloney murine leukemia vims (MoMuLV), Harvey murine sarcoma vims (HaMuSV), murine mammary tumor vims (MuMTV), SIV, BIN, HIV and Rous Sarcoma Virus (RSV).
- a number of retroviral vectors can incorporate multiple exogenous nucleic acid sequences.
- retroviral vectors may be administered by traditional methods (i.e., injection) or by implantation of a "producer cell line" in proximity to the target cell population (Culver, K., et al., 1994, Hum.
- the producer cell line is engineered to produce a viral vector and releases viral particles in the vicinity of the target cell. A portion of the released viral particles contact the target cells and infect those cells, thus delivering a nucleic acid of the present invention to the target cell. Following infection of the target cell, expression of the nucleic acid of the vector occurs.
- Adenoviral vectors have proven especially useful for gene transfer into eukaryotic cells (Rosenfeld, M., et al, 1991, Science, 252 (5004): 431-4; Crystal, R., et al, 1994, Not. Genet., 8 (1): 42-51), the study eukaryotic gene expression (Levrero, M., et al, 1991, Gene, 101 (2): 195-202), vaccine development (Graham, F. and Prevec, L., 1992, Biotechnology, 20: 363-90), and in animal models (Stratford-Perricaudet, L., et al, 1992, Bone Marrow Transplant., 9 (Suppl.
- Adeno-associated vims demonstrates high-level infectivity, broad host range and specificity in integrating into the host cell genome (Hermonat, P., et al., 1984, Proc. Natl Acad. Sci. U.S.A., 81 (20): 6466-70).
- Herpes Simplex Vims type-1 HSV-1
- Herpes Simplex Vims type-1 is yet another attractive vector system, especially for use in the nervous system because of its neurotropic property (Geller, A., et al, 1991, Trends Neurosci, 14 (10): 428-32; Glorioso, et al, 1995, Mol. Biotechnol, 4 (1): 87-99; Glorioso, et al, 1995, Annu. Rev. Microbiol, 49: 675-710).
- Herpes Simplex Vims type-1 HSV-1
- Poxvirus is another useful expression vector (Smith, et al. 1983, Gene, 25 (1): 21-8;
- Poxviruses shown to be useful include vaccinia, NYVAC, avipox, fowlpox, canarypox, ALVAC, and ALVAC(2), among others.
- NYVAC (vP866) was derived from the Copenhagen vaccine strain of vaccinia vims by deleting six nonessential regions of the genome encoding known or potential vimlence factors (see, for example, U.S. Pat. Nos.
- the deletion loci were also engineered as recipient loci for the insertion of foreign genes.
- the deleted regions are: thymidine kinase gene (TK; J2R); hemorrhagic region (u; B13R+B14R); A type inclusion body region (ATI; A26L); hemagglutinin gene (HA; A56R); host range gene region (C7L- K1L); and, large subunit, ribonucleotide reductase (I4L).
- NYVAC is a genetically engineered vaccinia vims strain that was generated by the specific deletion of eighteen open reading frames encoding gene products associated with vimlence and host range.
- NYVAC has been show to be useful for expressing TAs (see, for example, U.S. Pat. No. 6,265,189).
- NYVAC (vP866), vP994, vCP205, vCP1433, placZH6H4Lreverse, pMPC6H6K3E3 and pC3H6FHVB were also deposited with the ATCC under the terms of the Budapest Treaty, accession numbers VR-2559, VR-2558, VR-2557, VR-2556, ATCC-97913, ATCC-97912, and ATCC-97914, respectively.
- ALVAC-based recombinant viruses i.e., ALVAC-1 and ALVAC-2 are also suitable for use in practicing the present invention (see, for example, U.S. Pat. No. 5,756,103; Perkus, et al. J. Tissue Cult. Meth. 1993;15:72-81; Perkus, et al. . J. Leukocyte Biol. 1995;58:1-13; Bonnet, et al. Immunol Let. 2000;74:11-25; Tartaglia, et al. Vaccine 2001; 19: 2571-2575).
- ALVAC(2) is identical to ALVAC(l) except that ALVAC(2) genome comprises the vaccinia E3L and K3L genes under the control of vaccinia promoters (U.S. Pat. No. 6,130,066; Beattie et al., 1995a, 1995b, 1991; Chang et al., 1992; Davies et al, 1993). Both ALVAC(l) and ALVAC(2) have been demonstrated to be useful in expressing foreign DNA sequences, such as TAs (Tartaglia et al., 1993 a,b; U.S. Pat. No. 5,833,975).
- ALVAC was deposited under the terms of the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA, ATCC accession number VR-2547.
- TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-1 vaccine strain of fowlpoxvims which is licensed for vaccination of 1 day old chicks. TROVAC was likewise deposited under the terms of the Budapest Treaty with the ATCC, accession number 2553.
- Non-viral plasmid vectors may also be suitable in practicing the present invention.
- Preferred plasmid vectors are compatible with bacterial, insect, and / or mammalian host cells.
- Such vectors include, for example, PCR-II, pCR3, and pcDNA3.1 (Invitrogen, San Diego, CA), pBSII (Stratagene, La Jolla, CA), ⁇ ET15 (Novagen, Madison, WI), pGEX
- Bacterial vectors may also be used with the current invention. These vectors include, for example, Shigella, Salmonella, Vibrio cholerae, Lactobacillus, Bacille calmette guerin (BCG), and Streptococcus (see for example,
- Suitable nucleic acid delivery techniques include DNA-ligand complexes, adenovirus- ligand-DNA complexes, direct injection of DNA, CaPO 4 precipitation, gene gun techniques, electroporation, and colloidal dispersion systems, among others.
- Colloidal dispersion systems include, for example, macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes.
- the preferred colloidal system of this invention is a liposome, which are artificial membrane vesicles useful as delivery vehicles in vitro and in vivo.
- RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, R., et al, 1981, Trends Biochem. Sci., 6: 11).
- the composition of the liposome is usually a combination of phospholipids, particularly high- phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol.
- the physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.
- lipids or phospholipids may also be used.
- lipids useful in liposome production include phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides.
- Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated.
- Illustrative phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine.
- An immunogenic target may also be administered in combination with one or more adjuvants to boost the immune response.
- adjuvants are shown in Table II below:
- the immunogenic targets of the present invention may also be used to generate antibodies for use in screening assays or for immunotherapy. Other uses would be apparent to one of skill in the art.
- the term "antibody” includes antibody fragments, as are known in the art, including Fab, Fab 2 , single chain antibodies (Fv for example), humanized antibodies, chimeric antibodies, human antibodies, produced by several methods as are known in the art. Methods of preparing and utilizing various types of antibodies are well-known to those of skill in the art and would be suitable in practicing the present invention (see, for example, Harlow, et al. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; Harlow, et al. Using Antibodies: A Laboratoi ⁇ Manual, Portable Protocol No.
- the antibodies or derivatives therefrom may also be conjugated to therapeutic moieties such as cytotoxic drugs or toxins, or active fragments thereof such as diptheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, among others. Cytotoxic agents may also include radiochemicals. Antibodies and their derivatives may be incorporated into compositions of the invention for use in vitro or in vivo.
- Nucleic acids, proteins, or derivatives thereof representing an immunogenic target may be used in assays to determine the presence of a disease state in a patient, to predict prognosis, or to determine the effectiveness of a chemotherapeutic or other treatment regimen.
- Expression profiles may be used to determine the relative level of expression of the immunogenic target. The level of expression may then be correlated with base levels to determine whether a particular disease is present within the patient, the patient's prognosis, or whether a particular treatment regimen is effective.
- nucleic acid probes corresponding to a nucleic acid encoding an immunogenic target may be attached to a biochip, as is known in the art, for the detection and quantification of expression in the host.
- nucleic acids, proteins, derivatives therefrom, or antibodies thereto may be used as reagents in drug screening assays.
- the reagents may be used to ascertain the effect of a drug candidate on the expression of the immunogenic target in a cell line, or a cell or tissue of a patient.
- the expression profiling technique may be combined with high throughput screening techniques to allow rapid identification of useful compounds and monitor the effectiveness of treatment with a drug candidate (see, for example, Zlokarnik, et al., Science 279, 84-8 (1998)).
- Drag candidates may be chemical compounds, nucleic acids, proteins, antibodies, or derivatives therefrom, whether naturally occurring or synthetically derived.
- Drag candidates thus identified may be utilized, among other uses, as pharmaceutical compositions for administration to patients or for use in further screening assays.
- Administration of a composition of the present invention to a host may be accomplished using any of a variety of techniques known to those of skill in the art.
- the compositi ⁇ n(s) may be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals (i.e., a "pharmaceutical composition").
- the pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of DNA, viral vector particles, polypeptide or peptide, for example.
- a suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
- compositions of the present invention may be administered orally, parentally, by inhalation spray, rectally, intranodally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
- pharmaceutically acceptable carrier or “physiologically acceptable carrier” as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of a nucleic acid, polypeptide, or peptide as a pharmaceutical composition.
- a “pharmaceutical composition” is a composition comprising a therapeutically effective amount of a nucleic acid or polypeptide.
- effective amount and “therapeutically effective amount” each refer to the amount of a nucleic acid or polypeptide used to induce or enhance an effective immune response. It is preferred that compositions of the present invention provide for the induction or enhancement of an anti-tumor immune response in a host which protects the host from the development of a tumor and / or allows the host to eliminate an existing tumor from the body.
- the pharmaceutical composition may be of any of several forms including, for example, a capsule, a tablet, a suspension, or liquid, among others.
- Liquids may be administered by injection as a composition with suitable carriers including saline, dextrose, or water.
- suitable carriers including saline, dextrose, or water.
- parenteral as used herein includes subcutaneous, intravenous, intramuscular, intrasternal, infusion, or intraperitoneal administration.
- Suppositories for rectal administration of the drug can be prepared by mixing the drag with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature.
- the dosage regimen for immunizing a host or otherwise treating a disorder or a disease with a composition of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed.
- a poxviral vector may be administered as a composition comprising 1 x 10 6 infectious particles per dose.
- the dosage regimen may vary widely, but can be determined routinely using standard methods.
- a prime-boost regimen may also be utilized (WO 01/30382 Al) in which the targeted immunogen is initially administered in a priming step in one form followed by a boosting step in which the targeted immunogen is administered in another form.
- the form of the targeted immunogen in the priming and boosting steps are different.
- the boost may be administered as a peptide.
- the boost step may utilize another type of viras (i.e., NYNAC). This prime-boost method of administration has been shown to induce strong immunological responses.
- compositions of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compositions or agents (i.e., other immunogenic targets, co-stimulatory molecules, adjuvants).
- the individual components can be formulated as separate compositions administered at the same time or different times, or the components can be combined as a single composition.
- injectable preparations such as sterile mjectable aqueous or oleaginous suspensions, may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents.
- the injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent.
- Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution, among others.
- a viral vector such as a poxvirus may be prepared in 0.4% NaCl.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed, including synthetic mono- or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- a suitable topical dose of a composition may be administered one to four, and preferably two or three times daily. The dose may also be administered with intervening days during which no does is applied.
- Suitable compositions may comprise from 0.001% to 10% w/w, for example, from 1% to 2% by weight of the fomiulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
- Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
- the pharmaceutical compositions may also be prepared in a solid form (including granules, powders or suppositories).
- the phannaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
- Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch.
- Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
- additional substances other than inert diluents e.g., lubricating agents such as magnesium stearate.
- the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
- Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water.
- Such compositions may also comprise adjuvants, such as wetting sweetening, flavoring, and perfuming agents.
- compositions comprising a nucleic acid or polypeptide of the present invention may take any of several forms and may be administered by any of several routes.
- the compositions are administered via a parenteral route (intradermal, intramuscular or subcutaneous) to induce an immune response in the host.
- the composition may be administered directly into a lymph node (intranodal) or tamor mass (i.e., intratamoral administration).
- the dose could be administered subcutaneously at days 0, 7, and 14.
- Suitable methods for immunization using compositions comprising TAs are known in the art, as shown for p53 (Hollstein et al., 1991), p21-ras (Almoguera et al., 1988), HER-2 (Fendly et al., 1990), the melanoma-associated antigens (MAGE-1; MAGE-2) (van der Braggen et al., 1991), ⁇ 97 (Hu et al., 1988), and carcinoembryonic antigen (CEA) (Kantor et al., 1993; Fishbein et al., 1992; Kaufman et al., 1991), among others.
- Preferred embodiments of administratable compositions include, for example, nucleic acids or polypeptides in liquid preparations such as suspensions, syrups, or elixirs.
- Preferred injectable preparations include, for example, nucleic acids or polypeptides suitable for parental, subcutaneous, intradermal, intramuscular or intravenous administration such as sterile suspensions or emulsions.
- a recombinant poxvims may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like.
- the composition may also be provided in lyophilized form for reconstituting, for instance, in isotonic aqueous, saline buffer.
- compositions can be co- administered or sequentially administered with other antineoplastic, anti-tumor or anti-cancer agents and/or with agents which reduce or alleviate ill effects of antineoplastic, anti-tumor or anti-cancer agents.
- kits comprising a composition of the present invention.
- the kit can include a separate container containing a suitable carrier, diluent or excipient.
- the kit can also include an additional anti-cancer, anti-tumor or antineoplastic agent and/or an agent that reduces or alleviates ill effects of antineoplastic, anti-tumor or anti-cancer agents for co- or sequential-administration.
- the kit can include instructions for mixing or combining ingredients and/or administration.
- ALVAC recombinants expressing various single epitope, polyepitope, or full length gene constructs were generated by in vitro recombination using standard methods as previously described (Perkus, et al. Methodology of Using Vaccinia Viras to Express Foreign Genes in Tissue Culture. J. Tissue Cult. Meth. 1993;15:72-81; Perkus, et al. Poxvirus-based vaccine candidates for cancer, AIDS, and infectious diseases. J. Leukocyte Biol. 1995;58:1- 13).
- Expression cassettes consisting of single or polyepitope gene constructs were generated by overlap-extension PCR with synthetic oligonucleotides, and placed under the control of the vaccinia H6 promoter by use of standard gene cloning techniques. A summary of the recombinants and constructs evaluated in this study are listed in Table III. These constructs are based on HLA-A2.1 -restricted epitopes identified in Melan A/MART-1 (MART-1 27"35 ) and gplOO (gplOO 154"162 , gplOO 209"217 , gplOO 280"288 ). The MARTI 27'35 epitope is an immunodominant epitope.
- gplOO 154"162 represents also an HLA -A2 restricted epitope with high affinity for MHC class I and high immunogenicity (Salgaller, et al. Can. Res. 1996; 56:4749-4757).
- a basic polyepitope construct was derived, called PE01, consisting of the MART-1 27-35 , gplOO 154-162 , gplOO 209"217 , and gplOO 280"288 epitopes with no spacer amino acids flanking the epitopes.
- the EBV-transformed human B-LCL line BN was derived from an HLA-A2.1- positive donor.
- the HLA-A2.1 -positive human bladder carcinoma line J82 was obtained from ATCC.
- TIL lines 620 (specific for the HLA-A2.1 -restricted epitopes MART-1 27"35 and gplOO 209"217 ), 1200 (specific for HLA-A2.1 -restricted epitope gplOO 154"162 ), were provided by Dr. U. Kawakami (NCI, USA) and were maintained in AIM V medium supplemented with 10% human AB serum and 6000 U/ml IL-2 [25].
- Cytotoxicity assays with TIL lines The processing and presentation of epitopes expressed by gene constructs in ALVAC was assessed by evaluating the ability of TIL lines to lyse J82 target cells infected with appropriate ALVAC recombinants. J82 cells were infected with ALVAC recombinants for 18 hours using a multiplicity of infection of 5. These targets were subsequently incubated with TIL lines at various effector to target (E:T) ratios in a standard four hour 51 Cr release assay for cytotoxicity.
- E:T effector to target
- Controls included in each experiment were unmodified J82 cells, J82 cells pulsed with the appropriate Melan A/MART-1 or gplOO epitope peptides at 100 ⁇ g peptide/ 10 6 cells, and J82 cells infected with parental ALVAC viras.
- lytic assays were performed in the presence of unlabelled J82 cells infected with an ALVAC recombinant expressing the MART-1 27"35 epitope. These cold targets were included in the assays at a ratio of 30:1 cokhradio-labelled target. Results obtained in parallel assays which lacked the cold targets allowed the discrimination of lysis directed against each of the epitope specificities.
- mice express a transgene consisting of the ⁇ l and ⁇ 2 domains of the human HLA-A2.1 class I molecule linked to the ⁇ 3, transmembrane, and cytoplasmic domains of the mouse class I molecule H- 2D .
- This hybrid molecule is linked via the ⁇ l domain to human ⁇ 2 -microglobulin, and its hybrid nature facilitates further interaction with mouse CD8 on T cells.
- This strain was generated on the H-2D b double knockout genetic background, and thus the only class I molecule expressed by HHD mice is the HLA-A2.1/H-2D b hybrid transgene.
- This strain provides a good model to evaluate the capacity of various immunogens to elicit CTL responses restricted by the HLA-A2.1 molecule. Immunization experiments and read-outs of CTL activity were performed as described elsewhere. Briefly, groups of six mice were immunized with 10 s pfu of appropriate ALVAC recombinants through the intraperitoneal route. Three weeks after immunization, splenocytes were harvested and restimulated in vitro with peptide-pulsed LPS blasts. After six days in culture, the lytic activity was assessed in a standard 51 Cr-release assay, using RMAS-HHD cells pulsed with appropriate epitope peptides as targets.
- ALVAC was assessed by evaluating the ability of ALVAC-infected HLA-A2.1+ bladder carcinoma cells (J82) to stimulate the lytic activity of epitope-specific TIL lines.
- ALVAC recombinants expressing the various polyepitope configurations were compared in this manner to recombinants expressing both full length Melan A/MART-1 and gplOO, or alternatively single epitope minigenes.
- Peptide-pulsed J82 cells and non-pulsed J82 cells were used as positive and negative controls, respectively.
- MART-1 27"35 is processed and presented from each of the three tested polypepitopes ( Figure 1). The levels of lysis were similar with targets expressing each of the constructs.
- HHD mice Immunogenicity studies were subsequently performed in vivo, using HLA-A2.1 transgenic mice as a model.
- ALVAC-polyepitopes and ALVAC minigenes were compared with respect to their capacity to elicit CTLs in HHD mice. Based on the observation that the MART-1 27"35 epitope was not immunogenic in such mice, we focused on T cell responses against gplOO epitopes (Table IV).
- HHD mice were immunized with ALVAC constructs expressing either the tall length gplOO gene, polyepitopes, or single minigenes.
- a second series of constructs was generated to create immunogens in which immunostimulatory properties of weak immunogens could be 'enhanced'.
- Two ALVAC recombinants were made, which are listed in Table II. These include a construct expressing tall length gplOO that has been modified to contain the 209-2M and 280-9 V amino acid modifications (gplOOM), and a polyepitope constmct expressing single epitopes
- the modified polyepitopic constmct (154/2M/9V) was also found to elicit strong CTL responses, and potentially at a level higher than the full length immunogen: with the full length gplOOM, one or two mice did not respond for each epitope, whereas all mice (6 out of 6) receiving the modified polyepitope mounted CTLs against each single epitope (Table V).
- the protocol used to detect CTL responses in HHD mice detects only CTLs which cross-react with natural unmodified gplOO epitopes. This confirms that enhanced immunogens with improved affinity for MHC Class I molecules have a better immunogenicity, and can elicit CTLs recognizing native gplOO T cell epitopes (i.e., as they are expressed by tumor cells).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Zoology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Biotechnology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates to a nucleic acid encoding at least one irnmunogen and the use of the nucleic acid or polypeptide in preventing and/or treating cancer. In particular, the invention relates to improved vectors for the insertion and expression of foreign genes encoding tumor antigens, fragments thereof, or combinations thereof for use in immunotherapeutic treatment of cancer.
Description
POLYEPITOPES AND MINI-GENES FOR CANCER TREATMENT
RELATED APPLICATIONS
This application claims priority to U.S. 60/378,416 filed May 7, 2002.
FIELD OF THE INVENTION
The present invention relates to a nucleic acid encoding at least one i munogen and the use of the nucleic acid or polypeptide in preventing and / or treating cancer. In particular, the invention relates to improved vectors for the insertion and expression of foreign genes encoding tumor antigens, fragments thereof, or combinations thereof for use in immunotherapeutic treatment of cancer.
BACKGROUND OF THE INVENTION
One goal of most current vaccination strategies is to optimize the elicitation of T cell responses against defined class I-restricted epitopes (Raychaudhuri, et al. Nature Biotech, 1998, 16: 1025-1031; Moingeon, J. Biotech., 2002, in press). Importantly, strategies are needed to elicit balanced immune responses against multiple T cell epitopes, both immunodominant and cryptic, presented at the same time to the immune system. In this regard, epitope-based strategies might offer a means to boost responses against weak or cryptic epitopes, some of which may be important to protective or immunotherapeutic responses (Thomson, et al. Proc. Natl. Acad. Sci. (USA) 1995; 92:5845-5849; Thomson, et al. J. Immunol. 1996;157:822-826). The approaches which have been evaluated as of today include the expression of nonamer peptide sequences as single epitope minigenes (Anton, et al. J. Immunol. 1997; 158: 2535-2542), as well as the expression of linked epitopes in a string of beads configuration, such that a single polypeptide is produced containing multiple epitopes (Thomson, supra; Anton, supra; An, et al. J. Virol 1997;71:2292-2302; Mateo, et al. J. Immunol. 1999;163:4058-4063; Ishioka, et al. J. Immunol. 1999;162:3915-3925; Elliott, et al. Vaccine 1999;17:2009-2019). An advantage of the minigene approach is that further proteasomal processing is not required for association with MHC class I molecules. However, in order to immunize against a variety of epitopes, many constructs would be required. Thus, the advantage of the polyepitope approach is that a single constmct could potentially immunize against many epitopes. However, a successfull immunization with polyepitope-based vaccines requires that each component epitope is successfully processed
by the proteasome and that cryptic epitopes are recognized by the immune system even in the presence of immunodominant epitopes.
Inducing such a balanced immune response against multiple T cell epitopes is desirable in the development of cancer vaccines to fully exploit the diversity of the human T cell repertoire, in its capacity to recognize tumor-associated antigens (TAAs). One approach to optimize the immunogenicity of cryptic epitopes is to modify anchor residues in order to enhance the association with MHC class I. By altering the class I anchor residues in epitopes from the melanoma TAA gplOO from non-optimal to optimal amino acids, both higher affinity association with class I and an enhanced ability to stimulate T cells were observed. Further, immunization of cancer patients with such modified epitopes resulted in readily detectable clinical responses in at least some patients, indicating that some of these T cells could recognize native gp 100 expressed by tumor cells.
There is a need in the art for reagents and methodologies useful in stimulating an immune response to prevent or treat cancers. The present invention provides such reagents and methodologies which overcome many of the difficulties encountered by others in attempting to treat cancers such as cancer. To this end, an epitope-based strategy has been utilized to elicit optimized and well-balanced T cell responses against a range of HLA-A2.1.1 restricted epitopes from the g lOO and Melan A/MART- 1 molecules. These tumor- associated molecules could be used as targets for a melanoma vaccine, for example. To facilitate the induction of T cell responses, the epitopes may be delivered using a recombinant DNA vector such as a plasmid or virus.
SUMMARY OF THE INVENTION
The present invention provides an immunogenic target for administration to a patient to prevent and / or treat cancer. In one embodiment, the immunogenic target is a tumor antigen ("TA") expressed from a recombinant DNA molecule comprising multiple epitopes or one or more mini-genes derived from a TA-encoding nucleic acid sequence. In certain embodiments, the recombinant DNA is a plasmid or other delivery vector, such as a recombinant virus. The TA and / or AA may also be administered in combination with an immune stimulator, such as a co-stimulatory component or adjuvant.
BRIEF DESCRIPTION OF THE DRAWINGS
Figures 1A-C. Lysis by TIL lines of J82 target cells infected with ALVAC-polyepitope recombinants. Panel A, MART-l27"35-specifιc lysis by TIL 620; Panel B, gplOO154"162- specific lysis by TIL 1200; Panel C, gpl00 09_217-specific lysis by TIL 620. The X axis of each panel indicates J82 cells modified by pulsing with epitope peptides (MART27 pep =
MART-127"35, gpl00-154 pep = gplOO154"162, gpl00-209 pep = gplOO209"217, gpl00-280 pep = gplOO280"288) or infected with ALVAC recombinants expressing full length TAAs (AL-
MART-1, AL-gplOO), polyepitope constructs (AL-PE01, AL-PE02, AL-PE03), or single epitope constructs (AL-MART-27, AL-gpl00-154, AL-gpl00-209, AL-gp 100-280). Data shown was obtained at an E:T ratio of 50, and lytic activity was determined in triplicates
(with standard deviation < 5%) after 4 hours of incubation. As a negative control, lysis of impulsed or uninfected J82 cells by TIL lines was always < 5%. Discrimination of MART27" and gplOO " killing by TIL 620 was performed by parallel assays in the presence and absence of cold target J82 cells infected with ALVAC-MART-27.
DETAILED DESCRIPTION The present invention provides reagents and methodologies useful for treating and / or preventing cancer. All references cited within this application are incorporated by reference. In one embodiment, the present invention relates to the induction or enhancement of an immune response against one or more tumor antigens ("TA") to prevent and / or treat cancer. In certain embodiments, one or more TAs may be combined. In preferred embodiments, the immune response results from expression of a TA in a host cell following administration of a nucleic acid vector encoding the tumor antigen or the tumor antigen itself in the form of a peptide or polypeptide, for example. In other preferred embodiments, the TA is administered as part of a "polyepitope" in which multiple Tas or immunogenic portions thereof are encoded on a single recombinant DNA molecule. In still other preferred embodiments, the TA is administered as a "mini-gene" in which a minimal immunogenic portion of the TA is encoded by the recombinant DNA molecule.
As used herein, an "antigen" is a molecule (such as a polypeptide) or a portion thereof that produces an immune response in a host to whom the antigen has been administered. The immune response may include the production of antibodies that bind to at least one epitope of the antigen and / or the generation of a cellular immune response against cells expressing an epitope of the antigen. The response may be an enhancement of a current immune response
by, for example, causing increased antibody production, production of antibodies with increased affinity for the antigen, or an increased cellular response (i.e., increased T cells). An antigen that produces an immune response may alternatively be referred to as being immunogenic or as an immunogen. In describing the present invention, a TA may be referred to as an "immunogenic target".
TA includes both tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), where a cancerous cell is the source of the antigen. A TAA is an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on nonnal cells or an antigen that is expressed on normal cells during fetal development. A TSA is an antigen that is unique to tumor cells and is not expressed on normal cells. TA further includes TAAs or TSAs, immunogenic fragments thereof, and modified TAs that retain the desired immunogenicity.
TAs are typically classified into five categories according to their expression pattern, function, or genetic origin: cancer-testis (CT) antigens (i.e., MAGE, NY-ESO-1); melanocyte differentiation antigens (i.e., Melan A/MART-1, tyrosinase, gplOO); mutational antigens (i.e., MUM-1, p53, CDK-4); overexpressed 'self antigens (i.e., HER-2/neu, p53); and, viral antigens (i.e., HPV, EBV). For the purposes of practicing the present invention, a suitable TA is any TA that induces or enhances an anti-tumor immune response in a host to whom the TA has been administered. Suitable TAs include, for example, gplOO (Cox et al., Science, 264:716-719 (1994)), MART-1/Melan A (Kawakami et al., J. Exp. Med., 180:347-352 (1994)), gp75 (TRP-1) (Wang et al, J. Exp. Med., 186:1131-1140 (1996)), tyrosinase (Wolfel et al., Eur. J. Immunol, 24:759-764 (1994); WO 200175117; WO 200175016; WO 200175007), NY-ESO-1 (WO 98/14464; WO 99/18206), melanoma proteoglycan (Hellstrom et al., J. Immunol, 130:1467-1472 (1983)), MAGE family antigens (i.e., MAGE-1, 2,3,4,6,12, 51; Van der Bruggen et al., Science, 254:1643-1647 (1991); U.S. Pat. Nos. 6,235,525; CN 1319611), BAGE family antigens (Boel et al., Immunity, 2:167-175 (1995)), GAGE family antigens (i.e., GAGE-1,2; Van den Eynde et al., J. Exp. Med., 182:689-698 (1995); U.S. Pat. No. 6,013,765), RAGE family antigens (i.e., RAGE-1; Gaugler et at., Immunogenetics, 44:323-330 (1996); U.S. Pat. No. 5,939,526), N- acetylglucosaminyltransferase-V (Guilloux et at., J. Exp. Med., 183:1173-1183 (1996)), pl5 (Robbins et al., J. Immunol. 154:5944-5950 (1995)), β-catenin (Robbins et al., J. Exp. Med., 183:1185-1192 (1996)), MUM-1 (Coulie et al., Proc. Natl. Acad. Sci. USA, 92:7976-7980 (1995)), cyclin dependent kinase-4 (CDK4) (Wolfel et al., Science, 269:1281-1284 (1995)),
p21-ras (Fossum et at., Int. J. Cancer, 56:40-45 (1994)), BCR-abl (Bocchia et al., Blood, 85:2680-2684 (1995)), p53 (Theobald et al, Proc. Natl. Acad. Sci. USA, 92:11993-11997 (1995)), pl85 HER2/neu (erb-Bl; Fisk et al., J. Exp. Med., 181:2109-2117 (1995)), epidermal growth factor receptor (EGFR) (Harris et al., Breast Cancer Res. Treat, 29:1-2 (1994)), carcinoembryonic antigens (CEA) (Kwong et al., J. Natl. Cancer Inst., 85:982-990 (1995) U.S. Pat. Nos. 5,756,103; 5,274,087; 5,571,710; 6,071,716; 5,698,530; 6,045,802; EP 263933; EP 346710; and, EP 784483; CAP(6D), CAP(6D)-1,2); carcinoma-associated mutated mucins (i.e., MUC-1 gene products; Jerome et al., J. Immunol, 151:1654-1662 (1993)); EBNA gene products of EBV (i.e., EBNA-1; Rickinson et al., Cancer Surveys, 13:53-80 (1992)); E7, E6 proteins of human papillomavirus (Ressing et al., J. Immunol, 154:5934-5943 (1995)); prostate specific antigen (PSA; Xue et al., The Prostate, 30:73-78 (1997)); prostate specific membrane antigen (PSMA; Israeli, et al., Cancer Res., 54:1807- 1811 (1994)); idiotypic epitopes or antigens, for example, immunoglobulin idiotypes or T cell receptor idiotypes (Chen et al., J. Immunol, 153:4775-4787 (1994)); KSA (U.S. Patent No. 5,348,887), kinesin 2 (Dietz, et al. Biochem Biophys Res Commun 2000 Sep 7;275(3):731- 8), HIP-55, TGFβ-1 anti-apoptotic factor (Toomey, et al. Br J Biomed Sci 2001;58(3):177- 83), tumor protein D52 (Bryne J.A., et al., Genomics, 35:523-532 (1996)), H1FT, NY-BR-1 (WO 01/47959), NY-BR-62, NY-BR-75, NY-BR-85, NY-BR-87, NY-BR-96 (Scanlan, M. Serologic and Bioinformatic Approaches to the Identification of Human Tumor Antigens, in Cancer Vaccines 2000, Cancer Research Institute, New York, NY), AAC2-1, or AAC2-2, including "wild-type" (i.e., normally encoded by the genome, naturally-occurring), modified, and mutated versions as well as other fragments and derivatives thereof. Any of these TAs may be utilized alone or in combination with one another in a co-immunization protocol.
In certain cases, it may be beneficial to co-immunize patients with both TA and other antigens, such as angiogenesis-associated antigens ("AA"). An AA is an immunogenic molecule (i.e., peptide, polypeptide) associated with cells involved in the induction and / or continued development of blood vessels. For example, an AA may be expressed on an endothelial cell ("EC"), which is a primary structural component of blood vessels. Where the cancer is cancer, it is preferred that that the AA be found within or near blood vessels that supply a tamor. Immunization of a patient against an AA preferably results in an anti-AA immune response whereby angiogenic processes that occur near or within tumors are prevented and / or inhibited.
Exemplary AAs include, for example, vascular endothelial growth factor (i.e., VEGF; Bemardini, et al. J. UroL, 2001, 166(4): 1275-9; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23; Dias, et al. Blood, 2002, 99: 2179-2184), the VEGF receptor (i.e., VEGF-R, flk-1/KDR; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, .122(3): 518-23), EPH receptors (i.e., EPHA2; Gerety, et al. 1999, Cell, 4: 403-414), epidermal growth factor receptor (i.e., EGFR; Ciardeillo, et al. Clin. Cancer Res., 2001, 7(10): 2958-70), basic fibroblast growth factor (i.e., bFGF; Davidson, et al. Clin. Exp. Metastasis 2000,18(6): 501-7; Poon, et al. Am J. Surg., 2001, 182(3):298-304), platelet-derived cell growth factor (i.e., PDGF-B), platelet-derived endothelial cell growth factor (PD-ECGF; Hong, et al. J. Mol. Med., 2001, 8(2):141-8), transforming growth factors (i.e., TGF- ; Hong, et al. J. Mol. Med., 2001, 8(2):141-8), endoglin (Balza, et al. Int. J. Cancer, 2001, 94: 579-585), Id proteins (Benezra, R. Trends Cardiovasc. Med., 2001, 11(6):237-41), proteases such as uPA, uPAR, and matrix metalloproteinases (MMP-2, MMP-9; Djonov, et al. J. Pathol., 2001, 195(2): 147- 55), nitric oxide synthase (Am. J. Ophthalmol., 2001, 132(4):551-6), aminopeptidase (Rouslhati, E. Nature Cancer, 2: 84-90, 2002), thrombospondins (i.e., TSP-1, TSP-2; Alvarez, et al. Gynecol. Oncol., 2001, 82(2):273-8; Seki, et al. Int. J. Oncol., 2001, 19(2):305-10), k- ras (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), Wnt (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), cyclin-dependent kinases (CDKs; Drug Resist. Updat. 2000, 3(2):83-88), microtubules (Timar, et al. 2001. Path. Oncol. Res., 7(2): 85-94), heat shock proteins (i.e., HSP90 (Timar, supra)), heparin-binding factors (i.e., heparinase; Gohji, et al. Int. J. Cancer, 2001, 95(5):295-301), synthases (i.e., ATP synthase, thymidilate synthase), collagen receptors, integrins (i.e., αυβ3, αυβ5, αlβl, α2βl, α5βl), the surface proteolglycan NG2, AAC2-1, or AAC2-2, among others, including "wild-type" (i.e., normally encoded by the genome, naturally-occurring), modified, mutated versions as well as other fragments and derivatives thereof. Any of these targets may be suitable in practicing the present invention, either alone or in combination with one another or with other agents and may be also be referred to as "immunogenic targets".
Polyepitopic preparations may also be utilized to generate an immune response. For example, particular immunogenic regions of a TA or AA may be combined and co- administered to a patient. The immunogenic regions may be combined either as peptides, polypeptides or nucleic acid sequences. The nucleic acid sequences may be combined into a single or multiple recombinant plasmids or viral vectors and administered, for instance. In one embodiment, nucleic acid sequences encoding immunogenic regions of Melan-A/MART-
1 or gplOO are incorporated into a recombinant DNA molecule. Exemplary immunogenic regions of TAs include, for example, MART-127"35, gplOO154"162, gplOO209"217, gplOO280"288, gpl00-209-2M, and gplOO-280-9V. Spacers such as nucleic acid sequences encoding the amino acid sequence AAA or NKRK may be optionally included to separate the immunogenic regions from one another. The immunogenic regions may also be utilized separately as "mini-genes".
The nucleic acid molecule encoding the immunogenic target may comprise or consist of a nucleotide sequence encoding one or more immunogenic targets, or fragments or derivatives thereof, such as that contained in a DNA insert in an ATCC Deposit. The term "nucleic acid sequence" or "nucleic acid molecule" refers to a DNA or RNA sequence. The term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetylcytosine, 8-hydroxy-N6-methyladenosine, aziridinyl- cytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl) uracil, 5-fluorouracil, 5- bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxy- methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2- methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 1- methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D- mannosylqueosine, 5' -methoxycarbonyl-methyluracil, 5-methoxyuracil, 2-methylthio-N6- isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4- thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine, among others.
An isolated nucleic acid molecule is one that: (1) is separated from at least about 50 percent of proteins, lipids, carbohydrates, or other materials with which it is naturally found when total nucleic acid is isolated from the source cells; (2) is not be linked to all or a portion of a polynucleotide to which the nucleic acid molecule is linked in nature; (3) is operably linked to a polynucleotide which it is not linked to in nature; and / or, (4) does not occur in nature as part of a larger polynucleotide sequence. Preferably, the isolated nucleic acid molecule of the present invention is substantially free from any other contaminating nucleic acid molecule(s) or other contaminants that are found in its natural environment that would interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research use. As used herein, the term "naturally occurring" or "native" or "naturally found"
when used in connection with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to materials which are found in nature and are not manipulated by man. Similarly, "non-naturally occurring" or "non-native" as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.
The identity of two or more nucleic acid or polypeptide molecules is determined by comparing the sequences. As known in the art, "identity" means the degree of sequence relatedness between nucleic acid molecules or polypeptides as determined by the match between the units making up the molecules (i.e., nucleotides or amino acid residues). Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., an algorithm). Identity between nucleic acid sequences may also be determined by the ability of the related sequence to hybridize to the nucleic acid sequence or isolated nucleic acid molecule. In defining such sequences, the term "highly stringent conditions" and "moderately stringent conditions" refer to procedures that permit hybridization of nucleic acid strands whose sequences are complementary, and to exclude hybridization of significantly mismatched nucleic acids. Examples of "highly stringent conditions" for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42°C. (see, for example, Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al., Nucleic Acid Hybridisation: A Practical Approach Ch. 4 (IRL Press Limited)). The term "moderately stringent conditions" refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under "highly stringent conditions" is able to form. Exemplary moderately stringent conditions are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50°C. By way of example, moderately stringent conditions of 50°C in 0.015 M sodium ion will allow about a 21% mismatch. During hybridization, other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1 % bovine serum albumin, 0.1% polyvinyl- pyrrolidone, 0.1% sodium pyrophosphate, 0.1 % sodium dodecylsulfate, NaDodSO , (SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), and dextran sulfate, although other suitable agents can also be used. The
concentration and types of these additives can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4; however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH. In preferred embodiments of the present invention, vectors are used to transfer a nucleic acid sequence encoding a polypeptide to a cell. A vector is any molecule used to transfer a nucleic acid sequence to a host cell. In certain cases, an expression vector is utilized. An expression vector is a nucleic acid molecule that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and / or control the expression of the transferred nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and splicing, if introns are present. Expression vectors typically comprise one or more flanking sequences operably linked to a heterologous nucleic acid sequence encoding a polypeptide. Flanking sequences may be homologous (i.e., from the same species and / or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), or synthetic, for example.
A flanking sequence is preferably capable of effecting the replication, transcription and / or translation of the coding sequence and is operably linked to a coding sequence. As used herein, the term operably linked refers to a linkage of polynucleotide elements in a functional relationship. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence. However, a flanking sequence need not necessarily be contiguous with the coding sequence, so long as it functions correctly. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence may still be considered operably linked to the coding sequence. Similarly, an enhancer sequence may be located upstream or downstream from the coding sequence and affect transcription of the sequence.
In certain embodiments, it is preferred that the flanking sequence is a trascriptional regulatory region that drives high-level gene expression in the target cell. The transcriptional regulatory region may comprise, for example, a promoter, enhancer, silencer, repressor element, or combinations thereof. The transcriptional regulatory region may be either constitutive, tissue-specific, cell-type specific (i.e., the region is drives higher levels of transcription in a one type of tissue or cell as compared to another), or regulatable (i.e.,
responsive to interaction with a compound such as tetracycline). The source of a transcriptional regulatory region may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence functions in a cell by causing transcription of a nucleic acid within that cell. A wide variety of transcriptional regulatory regions may be utilized in practicing the present invention.
Suitable transcriptional regulatory regions include the CMV promoter (i.e., the CMV- . immediate early promoter); promoters from eukaryotic genes (i.e., the estrogen-inducible chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene); and the major early and late adeno virus gene promoters; the SV40 early promoter region (Bemoist and Chambon, 1981, Nature 290:304-10); the promoter contained in the 3' long terminal repeat (LTR) of Rous sarcoma vims (RSV) (Yamamoto, et al, 1980, Cell 22:787-97); the herpes simplex vims thymidine kinase (HSV-TK) promoter (Wagner et al, 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1444-45); the regulatory sequences of the metallothionine gene (Brinster et al, 1982, Nature 296:39-42); prokaryotic expression vectors such as the beta-lactamase promoter (Villa-Kamaroff et al, 1978, Proc. Natl. Acad. Sci. U.S.A., 75:3727-31); or the tac promoter (DeBoer et al, 1983, Proc. Natl. Acad. Sci. U.S.A., 80:21-25). Tissue- and / or cell-type specific transcriptional control regions include, for example, the elastase I gene control region which is active in pancreatic acinar cells (Swift et al, 1984, Cell 38:639-46; Ornitz et al, 1986, Cold Spring Harbor Symp. Quant. Biol 50:399-409 (1986); MacDonald, 1987, Hepatology 7:425-515); the insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-22); the immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al, 1984, Cell 38:647-58; Ada es et al, 1985, Nature 318:533-38; Alexander et al, 1987, Mol. Cell. Biol, 7:1436-44); the mouse mammary tamor virus control region in testicular, breast, lymphoid and mast cells (Leder et al, 1986, Cell 45:485-95); the albumin gene control region in liver (Pinkert et al, 1987, Genes and Devel. 1 :268-76); the alpha-feto-protein gene control region in liver (Krumlauf et al, 1985, Mol. Cell. Biol, 5:1639-48; Hammer et al, 1987, Science 235:53-58); the alpha 1- antitrypsin gene control region in liver (Kelsey et al, 1987, Genes and Devel. 1:161-71); the beta-globin gene control region in myeloid cells (Mogram et al, 1985, Nature 315:338-40; Kollias et al, 1986, Cell 46:89-94); the myelin basic protein gene control region in oligodendrocyte cells in the brain (Readhead et al, 1987, Cell 48:703-12); the myosin light chain-2 gene control region in skeletal muscle (Sani, 1985, Nature 314:283-86); the
gonadotropic releasing hormone gene control region in the hypothalamus (Mason et al, 1986, Science 234:1372-78), and the tyrosinase promoter in melanoma cells (Hart, I. Semin Oncol 1996 Feb;23(l): 154-8; Siders, et al. Cancer Gene Ther 1998 Sep-Oct;5(5):281-91), among others. Other suitable promoters are known in the art. As described above, enhancers may also be suitable flanking sequences. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are typically orientation- and position-independent, having been identified both 5' and 3' to controlled coding sequences. Several enhancer sequences available from mammalian genes are known (i.e., globin, elastase, albumin, alpha- feto-protein and insulin). Similarly, the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are useful with eukaryotic promoter sequences. While an enhancer may be spliced into the vector at a position 5' or 3' to nucleic acid coding sequence, it is typically located at a site 5' from the promoter. Other suitable enhancers are known in the art, and would be applicable to the present invention. While preparing reagents of the present invention, cells may need to be transfected or transformed. Transfection refers to the uptake of foreign or exogenous DNA by a cell, and a cell has been transfected when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art (i.e., Graham et al, 1973, Virology 52:456; Sambrook et al, Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratories, 1989); Davis et al, Basic Methods in Molecular Biology (Elsevier, 1986); and Chu et al, 1981, Gene 13: 197). Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.
In certain embodiments, it is preferred that transfection of a cell results in transformation of that cell. A cell is transformed when there is a change in a characteristic of the cell, being transformed when it has been modified to contain a new nucleic acid. Following transfection, the transfected nucleic acid may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an episomal element without being replicated, or may replicate independently as a plasmid. A cell is stably transformed when the nucleic acid is replicated with the division of the cell. The present invention further provides isolated immunogenic targets in polypeptide form. A polypeptide is considered isolated where it: (1) has been separated from at least about 50 percent of polymicleotides, lipids, carbohydrates, or other materials with which it is naturally found when isolated from the source cell; (2) is not linked (by covalent or
noncovalent interaction) to all or a portion of a polypeptide to which the "isolated polypeptide" is linked in nature; (3) is operably linked (by covalent or noncovalent interaction) to a polypeptide with which it is not linked in nature; or, (4) does not occur in nature. Preferably, the isolated polypeptide is substantially free from any other contaminating polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic or research use.
Immunogenic target polypeptides may be mature polypeptides, as defined herein, and may or may not have an amino terminal methionine residue, depending on the method by which they are prepared. Further contemplated are related polypeptides such as, for example, fragments, variants (i.e., allelic, splice), orthologs, homologues, and derivatives, for example, that possess at least one characteristic or activity (i.e., activity, antigenicity) of the immunogenic target. Also related are peptides, which refers to a series of contiguous amino acid residues having a sequence corresponding to at least a portion of the polypeptide from which its sequence is derived. In preferred embodiments, the peptide comprises about 5-10 amino acids, 10-15 amino acids, 15-20 amino acids, 20-30 amino acids, or 30-50 amino acids. In a more preferred embodiment, a peptide comprises 9-12 amino acids, suitable for presentation upon Class I MHC molecules, for example.
A fragment of a nucleic acid or polypeptide comprises a truncation of the sequence (i.e., nucleic acid or polypeptide) at the amino terminus (with or without a leader sequence) and / or the carboxy terminus. Fragments may also include variants (i.e., allelic, splice), orthologs, homologues, and other variants having one or more amino acid additions or substitutions or internal deletions as compared to the parental sequence. In preferred embodiments, truncations and or deletions comprise about 10 amino acids, 20 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, or more. The polypeptide fragments so produced will comprise about 10 amino acids, 25 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, 60 amino acids, 70 amino acids, or more. Such polypeptide fragments may optionally comprise an amino terminal methionine residue. It will be appreciated that such fragments can be used, for example, to generate antibodies or cellular immune responses to immunogenic target polypeptides. A variant is a sequence having one or more sequence substitutions, deletions, and/or additions as compared to the subject sequence. Variants may be naturally occurring or artificially constructed. Such variants may be prepared from the corresponding nucleic acid molecules. In preferred embodiments, the variants have from 1 to 3, or from 1 to 5, or from 1
to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 30, or from 1 to 40, or from 1 to 50, or more than 50 amino acid substitutions, insertions, additions and/or deletions. An allelic variant is one of several possible naturally-occurring alternate forms of a gene occupying a given locus on a chromosome of an organism or a population of organisms. A splice variant is a polypeptide generated from one of several RNA transcript resulting from splicing of a primary transcript. An ortholog is a similar nucleic acid or polypeptide sequence from another species. For example, the mouse and human versions of an immunogenic target polypeptide may be considered orthologs of each other. A derivative of a sequence is one that is derived from a parental sequence those sequences having substitations, additions, deletions, or chemically modified variants. Variants may also include fusion proteins, which refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).
"Similarity" is a concept related to identity, except that similarity refers to a measure of relatedness which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are five more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% (15/20). Therefore, in cases where there are conservative substitutions, the percent similarity between two polypeptides will be higher than the percent identity between those two polypeptides.
Substitations may be conservative, or non-conservative, or any combination thereof. Conservative amino acid modifications to the sequence of a polypeptide (and the corresponding modifications to the encoding nucleotides) may produce polypeptides having functional and chemical characteristics similar to those of a parental polypeptide. For example, a "conservative amino acid substitution" may involve a substitution of a native amino acid residue with a non-native residue such that there is little or no effect on the size, polarity, charge, hydrophobicity, or hydrophilicity of the amino acid residue at that position and, in particlar, does not result in decreased immunogenicity. Suitable conservative amino acid substitations are shown in Table I.
Table I
A skilled artisan will be able to determine suitable variants of polypeptide using well- known techniques. For identifying suitable areas of the molecule that may be changed without destroying biological activity (i.e., MHC binding, immunogenicity), one skilled in the art may target areas not believed to be important for that activity. Increased binding to MHC class I may be accomplished by, for example, reducing the off-rate by modifying anchor residues, or introducing a tyrosine residue in position PI (Parkhurst, et al. J. Immunol 1996. 157:2539-2548; Tourdot, et al. Eur. J. Immunol. 2000; 30: 3411-3421; Valmori, et al. J. Immunol. 1998. 160:1750-1758). Other possible T cell epitope enhancement strategies focus on amino-acid residues which are recognized by the T cell receptor complex (Zaremba, et al. Cancer Res. 1997;57:4570-4577). When performing such epitope modifications, in any case it becomes critical to confirm that the point mutation introduced does not preclude processing and presentation of the T cell epitope (Ossendorp, et al. Immunity 1996; 5: 115- 124). Further, when similar polypeptides with similar activities from the. same species or from other species are known, one skilled in the art may compare the amino acid sequence of a polypeptide to such similar polypeptides. By performing such analyses, one can identify residues and portions of the molecules that are conserved among similar polypeptides. It will
be appreciated that changes in areas of the molecule that are not conserved relative to such similar polypeptides would be less likely to adversely affect the biological activity and/or structure of a polypeptide. One skilled in the art would also know that, even in relatively conserved regions, one may substitute chemically similar amino acids for the naturally occurring residues while retaining activity. Therefore, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitations without destroying the biological activity or without adversely affecting the polypeptide structure.
Other preferred polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites have been altered compared to the subject amino acid sequence. In one embodiment, polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the subject amino acid sequence. An N-linked glycosylation site is characterized by the sequence Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitations that eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N- linked sites are created. To affect O-linked glycosylation of a polypeptide, one would modify serine and / or threonine residues.
Additional preferred variants include cysteine variants, wherein one or more cysteine residues are deleted or substituted with another amino acid (e.g., serine) as compared to the subject amino acid sequence set. Cysteine variants are useful when polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.
In other embodiments, the isolated polypeptides of the current invention include fusion polypeptide segments that assist in purification of the polypeptides. Fusions can be made either at the amino terminus or at the carboxy terminus of the subject polypeptide variant thereof. Fusions may be direct with no linker or adapter molecule or may be through a linker or adapter molecule. A linker or adapter molecule may be one or more amino acid
residues, typically from about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties. It will be appreciated that once constructed, the fusion polypeptides can be derivatized according to the methods described herein. Suitable fusion segments include, among others, metal binding domains (e.g., a poly-histidine segment), immunoglobulin binding domains (i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domains), sugar binding domains (e.g., a maltose binding domain), and/or a "tag" domain (i.e., at least a portion of α-galactosidase, a strep tag peptide, a T7 tag peptide, a FLAG peptide, or other domains that can be purified using compounds that bind to the domain, such as monoclonal antibodies). This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification of the sequence of interest polypeptide from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified sequence of interest polypeptide by various means such as using certain peptidases for cleavage. As described below, fusions may also be made between a TA and a co-stimulatory components such as the chemokines CXC10 (IP- 10), CCL7 (MCP-3), or CCL5 (RANTES), for example.
A fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum, may also be included. These sequences, referred to as tranduction or transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), Drosophila antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPERl; in particular, SRRHHCRSKAKRSRHH). In addition, the polypeptide or variant thereof may be fused to a homologous polypeptide to form a homodimer or to a heterologous polypeptide to form a heterodimer. Heterologous peptides and polypeptides include, but are not limited to: an epitope to allow for the detection and/or isolation of a fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which
increases stability, such as an immunoglobulin constant region; and a polypeptide which has a therapeutic activity different from the polypeptide or variant thereof.
In certain embodiments, it may be advantageous to combine a nucleic acid sequence encoding an immunogenic target, polypeptide, or derivative thereof with one or more co- stimulatory component(s) such as cell surface proteins, cytokines or chemokines in a composition of the present invention. The co-stimulatory component may be included in the composition as a polypeptide or as a nucleic acid encoding the polypeptide, for example. Suitable co-stimulatory molecules include, for instance, polypeptides that bind members of the CD28 family (i.e., CD28, ICOS; Hutloff, et al. Nature 1999, 397: 263-265; Peach, et al. J Exp Med 1994, 180: 2049-2058) such as the CD28 binding polypeptides B7.1 (CD80; Schwartz, 1992; Chen et al, 1992; Ellis, et al. J. Immunol, 156(8): 2700-9) and B7.2 (CD86; Ellis, et al. J. Immunol, 156(8): 2700-9); polypeptides which bind members of the integrin family (i.e., LFA-1 (GDI la / CD18); Sedwick, et al. J Immunol 1999, 162: 1367-1375; Wύlfmg, et al. Science 1998, 282: 2266-2269; Lub, et al. Immunol Today 1995, 16: 479- 483) including members of the ICAM family (i.e., ICAM-1, -2 or -3); polypeptides which bind CD2 family members (i.e., CD2, signalling lymphocyte activation molecule (CDwl50 or "SLAM"; Aversa, et al.
J Immunol 1997, 158: 4036-4044)) such as CD58 (LFA-3; CD2 ligand; Davis, et al. Immunol Today 1996, 17: 177-187) or SLAM ligands (Sayos, et al. Nature 1998, 395: 462- 469); polypeptides which bind heat stable antigen (HSA or CD24; Zhou, et al. Eur J Immunol 1997, 27: 2524-2528); polypeptides which bind to members of the TNF receptor (TNFR) family (i.e., 4-1BB (CD137; Vinay, et al. Semin Immunol 1998, 10: 481-489), OX40 (CD134; Weinberg, et al. Semin Immunol 1998, 10: 471-480; Higgins, et al. J Immunol 1999, 162: 486-493), and CD27 (Lens, et al. Semin Immunol 1998, 10: 491-499)) such as 4-1BBL (4-1BB ligand; Vinay, et al. Semin Immunol 1998, 10: 481-48; DeBenedette, et al. J Immunol 1997, 158: 551-559), TNFR associated factor-1 (TRAF-1; 4- 1BB ligand; Saoulli, et al. J Exp Med 1998, 187: 1849-1862, Arch, et al. Mol Cell Biol 1998, 18: 558-565), TRAF-2 (4-1BB and OX40 ligand; Saoulli, et al. J Exp Med 1998, 187: 1849-1862; Oshima, et al. Int Immunol 1998, 10: 517-526, Kawamata, et al. J Biol Chem 1998, 273: 5808-5814), TRAF-3 (4-1BB and OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558-565; Jang, et al. Biochem Biophys Res Commun 1998, 242: 613-620; Kawamata S, et al. J Biol Chem 1998, 273: 5808-5814), OX40L (OX40 ligand; Gramaglia, et al. J Immunol 1998, 161: 6510-6517), TRAF-5 (OX40 ligand; Arch, et al. Mol Cell Biol 1998,
18: 558-565; Kawamata, et al. J Biol Chem 1998, 273: 5808-5814), and CD70 (CD27 ligand; Couderc, et al. Cancer Gene Ther., 5(3): 163-75). CD 154 (CD40 ligand or "CD40L"; Gurunathan, et al. J Immunol, 1998, 161: 4563-4571; Sine, et al. Hum. Gene Ther. , 2001 , 12 : 1091 - 1102) may also be suitable. One or more cytokines may also be suitable co-stimulatory components or
"adjuvants", either as polypeptides or being encoded by nucleic acids contained within the compositions of the present invention (Parmiani, et al. Immunol Lett 2000 Sep 15; 74(1): 41- 4; Berzofsky, et al. Nature Immunol. 1: 209-219). Suitable cytokines include, for example, interleukin-2 (IL-2) (Rosenberg, et al. Nature Med. 4: 321-327 (1998)), IL-4, IL-7, IL-12 (reviewed by Pardoll, 1992; Harries, et al. J. Gene Med. 2000 Jul-Aug;2(4):243-9; Rao, et al. J Immunol. 156: 3357-3365 (1996)), IL-15 (Xin, et al. Vaccine, 17:858-866, 1999), IL-16 (Cruikshank, et al. J. Leuk Biol. 67(6): 757-66, 2000), IL-18 (J. Cancer Res. Clin. Oncol. 2001. 127(12): 718-726), GM-CSF (CSF (Disis, et al. Blood, 88: 202-210 (1996)), tumor necrosis factor-alpha (TNF-α), or interferons (i.e., IFN-α, INF-γ). Other cytokines may also be suitable for practicing the present invention, as is known in the art.
Chemokines may also be utilized. For example, fusion proteins comprising CXCL10 (IP-10) and CCL7 (MCP-3) fused to a tamor self-antigen have been shown to induce anti- tumor immunity (Biragyn, et al. Nature Biotech. 1999, 17: 253-258). The chemokines CCL3 (MlP-lα) and CCL5 (RANTES) (Boyer, et al. Vaccine, 1999, 17 (Supp. 2): S53-S64) may also be of use in practicing the present invention. Other suitable chemokines are known in the art.
It is also known in the art that suppressive or negative regulatory immune mechanisms may be blocked, resulting in enhanced immune responses. For instance, treatment with anti-CTLA-4 (Shrikant, et al. Immunity, 1996, 14: 145-155; Sutmuller, et al. J. Exp. Med., 2001, 194: 823-832), anti-CD25 (Sutmuller, supra), anti-CD4 (Matsui, et al. J. Immunol, 1999, 163: 184-193), the fusion protein IL13Ra2-Fc (Terabe, et al. Nature Immunol, 2000, 1: 515-520), and combinations thereof (i.e., anti-CTLA-4 and anti-CD25, Sutmuller, supra) have been shown to upregulate anti-tumor immune responses and would be suitable in practicing the present invention. Any of these components may be used alone or in combination with other agents. For instance, it has been shown that a combination of CD80, ICAM-1 and LFA-3'("TRICOM") may potentiate anti-cancer immune responses (Hodge, et al. Cancer Res. 59: 5800-5807 (1999). Other effective combinations include, for example, IL-12 + GM-CSF (Ahlers, et al.
J. Immunol, 158: 3947-3958 (1997); Iwasaki, et al. J. Immunol. 158: 4591-4601 (1997)), IL- 12 + GM-CSF + TNF-α (Ahlers, et al. Int. Immunol 13: 897-908 (2001)), CD80 + IL-12 (Fruend, et al. Int. J. Cancer, 85: 508-517 (2000); Rao, et al. supra), and CD86 + GM-CSF + IL-12 (Iwasaki, supra). One of skill in the art would be aware of additional combinations useful in carrying out the present invention .In addition, the skilled artisan would be aware of additional reagents or methods that may be used to modulate such mechanisms. These reagents and methods, as well as others known by those of skill in the art, may be utilized in practicing the present invention.
Additional strategies for improving the efficiency of nucleic acid-based immunization may also be used including, for example, the use of self-replicating viral replicons (Caley, et al. 1999. Vaccine, 17: 3124-2135; Dubensky, et al. 2000. Mol. Med. 6: 723-732; Leitner, et al. 2000. Cancer Res. 60: 51-55), codon optimization (Liu, et al. 2000. Mol. Ther., I: 491- 500; Dubensky, supra; Huang, et al. 2001. J. Virol. 75: 4947-4951), in vivo electroporation (Widera, et al. 2000. J. Immunol 164: 4635-3640), incorporation of CpG stimulatory motifs (Gurunathan, et al. Ann. Rev. Immunol, 2000, 18: 927-974; Leitner, supra), sequences for targeting of the endocytic or ubiquitin-processing pathways (Thomson, et al. 1998. J. Virol. 72: 2246-2252; Velders, et al. 2001. J. Immunol 166: 5366-5373), Marek's disease vims type 1 VP22 sequences (J. Virol. 76(6):2676-82, 2002), prime-boost regimens (Gurunathan, supra; Sullivan, et al. 2000. Nature, 408: 605-609; Hanke, et al. 1998. Vaccine, 16: 439- 445; Amara, et al. 2001. Science, 292: 69-74), and the use of mucosal delivery vectors such as Salmonella (Darji, et al. 1997. Cell, 91: 765-775; Woo, et al. 2001. Vaccine, 19: 2945- 2954). Other methods are known in the art, some of which are described below.
Chemotherapeutic agents, radiation, anti-angiogenic compounds, or other agents may also be utilized in treating and / or preventing cancer using immunogenic targets (Sebti, et al. Oncogene 2000 Dec 27;19(56):6566-73). For example, in treating metastatic breast cancer, useful chemotherapeutic agents include cyclophosphamide, doxombicin, paclitaxel, docetaxel, navelbine, capecitabine, and mitomycin C, among others. Combination chemotherapeutic regimens have also proven effective including cyclophosphamide + methotrexate + 5-fluorouracil; cyclophosphamide + doxombicin + 5-fluorouracil; or, cyclophosphamide + doxombicin, for example. Other compounds such as prednisone, a taxane, navelbine, mitomycin C, or vinblastine have been utlized for various reasons. A majority of breast cancer patients have estrogen-receptor positive (ER+) tumors and in these patients, endocrine therapy (i.e., tamoxifen) is preferred over chemotherapy. For such
patients, tamoxifen or, as a second line therapy, progestins (medroxyprogesterone acetate or megestrol acetate) are preferred. Aromatase inhibitors (i.e., aminoglutethimide and analogs thereof such as letrozole) decrease the availability of estrogen needed to maintain tamor growth and may be used as second or third line endocrine therapy in certain patients. Other cancers may require different chemotherapeutic regimens. For example, metastatic colorectal cancer is typically treated with Camptosar (irinotecan or CPT-11), 5- fluorouracil or leucovorin, alone or in combination with one another. Proteinase and integrin inhibitors such as as the MMP inhibitors marimastate (British Biotech), COL-3 (Collagenex), Neovastat (Aeterna), AG3340 (Agouron), BMS-275291 (Bristol Myers Squibb), CGS 27023A (Novartis) or the integrin inhibitors Vitaxin (Medimmune), or MED1522 (Merck KgaA) may also be suitable for use. As such, immunological targeting of immunogenic targets associated with colorectal cancer could be performed in combination with a treatment using those chemotherapeutic agents. Similarly, chemotherapeutic agents used to treat other types of cancers are well-known in the art and may be combined with the immunogenic targets described herein.
Many anti-angiogenic agents are known in the art and would be suitable for co- administration with the immunogenic target vaccines (see, for example, Timar, et al. 2001. Pathology Oncol. Res., 7(2): 85-94). Such agents include, for example, physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF), transforming growth factor beta (TGF- β)), cytokines (i.e., interferons such as IFN-α, -β, -γ, platelet factor 4 (PF-4), PR-39), proteases (i.e., cleaved AT-IH, collagen XViπ fragment (Endostatin)), HmwKallikrein-d5 plasmin fragment (Angiostatin), prothrombin-Fl-2, TSP-1), protease inhibitors (i.e., tissue inhibitor of metalloproteases such as TIMP-1, -2, or -3; maspin; plasminogen activator- inhibitors such as PAI-1; pigment epithelium derived factor (PEDF)), Tumstatin (available through ILEX, Inc.), antibody products (i.e., the collagen-binding antibodies HUIV26, HUI77, XL313; anti-VEGF; anti-integrin (i.e., Vitaxin, (Lxsys))), and glycosidases (i.e., heρarinase-I, -III). "Chemical" or modified physiological agents known or believed to have anti-angiogenic potential include, for example, vinblastine, taxol, ketoconazole, thalidomide, dolestatin, combrestatin A, rapamycin (Guba, et al. 2002, Nature Med., 8: 128-135), CEP- 7055 (available from Cephalon, Inc.), flavone acetic acid, Bay 12-9566 (Bayer Corp.), AG3340 (Agouron, Inc.), CGS 27023A (Novartis), tetracylcine derivatives (i.e., COL-3 (Collagenix, Inc.)), Neovastat (Aeterna), BMS-275291 (Bristol-Myers Squibb), low dose 5- FU, low dose methotrexate (MTX), irsofladine, radicicol, cyclosporine, captopril, celecoxib,
D45152-sulphated polysaccharide, cationic protein (Protamine), cationic peptide-VEGF, Suramin (polysulphonated napthyl urea), compounds that interfere with the function or production of VEGF (i.e., SU5416 or SU6668 (Sugen), PTK787/ZK22584 (Novartis)), Distamycin A, Angiozyme (ribozyme), isoflavinoids, staurosporine derivatives, genistein, EMD121974 (Merck KcgaA), tyrphostins, isoquinolones, retinoic acid, carboxyamidotriazole, TNP-470, octreotide, 2-methoxyestradiol, aminosterols (i.e., squalamine), glutathione analogues (i.e., N-acteyl-L-cysteine), combretastatin A-4 (Oxigene), Eph receptor blocking agents (Nature, 414:933-938, 2001), Rh-Angiostatin, Rh-Endostatin (WO 01/93897), cyclic-RGD peptide, accutin-disintegrin, benzodiazepenes, humanized anti- avb3 Ab, Rh-PAI-2, amiloride, p-amidobenzamidine, anti-uPA ab, anti-uPAR Ab, L- phanylalanin-N-methylamides (i.e., Batimistat, Marimastat), AG3340, and minocycline. Many other suitable agents are known in the art and would suffice in practicing the present invention.
The present invention may also be utilized in combination with "non-traditional" methods of treating cancer. For example, it has recently been demonstrated that administration of certain anaerobic bacteria may assist in slowing tamor growth. In one study, Clostridium novyi was modified to eliminate a toxin gene carried on a phage episome and administered to mice with colorectal tumors (Dang, et al. P.N.A.S. USA, 98(26): 15155- 15160, 2001). In combination with chemotherapy, the treatment was shown to cause tamor necrosis in the animals. The reagents and methodologies described in this application may be combined with such treatment methodologies.
Nucleic acids encoding immunogenic targets may be administered to patients by any of several available techniques. Various viral vectors that have been successfully utilized for introducing a nucleic acid to a host include retrovirus, adenovirus, adeno-associated virus (AAV), herpes virus, and poxvims, among others. It is understood in the art that many such viral vectors are available in the art. The vectors of the present invention may be constructed using standard recombinant techniques widely available to one skilled in the art. Such techniques may be found in common molecular biology references such as Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, CA), and PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, CA).
Preferred retroviral vectors are derivatives of lentivirus as well as derivatives of murine or avian retrovirases. Examples of suitable retroviral vectors include, for example, Moloney murine leukemia vims (MoMuLV), Harvey murine sarcoma vims (HaMuSV), murine mammary tumor vims (MuMTV), SIV, BIN, HIV and Rous Sarcoma Virus (RSV). A number of retroviral vectors can incorporate multiple exogenous nucleic acid sequences. As recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided by, for example, helper cell lines encoding retrovirus structural genes. Suitable helper cell lines include Ψ2, PA317 and PA12, among others. The vector virions produced using such cell lines may then be used to infect a tissue cell line, such as ΝIH 3T3 cells, to produce large quantities of chimeric retroviral virions. Retroviral vectors may be administered by traditional methods (i.e., injection) or by implantation of a "producer cell line" in proximity to the target cell population (Culver, K., et al., 1994, Hum. Gene Ther., 5 (3): 343-79; Culver, K., et al, Cold Spring Harb. Symp. Quant. Biol, 59: 685-90); Oldfield, E., 1993, Hum. Gene Ther., 4 (1): 39-69). The producer cell line is engineered to produce a viral vector and releases viral particles in the vicinity of the target cell. A portion of the released viral particles contact the target cells and infect those cells, thus delivering a nucleic acid of the present invention to the target cell. Following infection of the target cell, expression of the nucleic acid of the vector occurs.
Adenoviral vectors have proven especially useful for gene transfer into eukaryotic cells (Rosenfeld, M., et al, 1991, Science, 252 (5004): 431-4; Crystal, R., et al, 1994, Not. Genet., 8 (1): 42-51), the study eukaryotic gene expression (Levrero, M., et al, 1991, Gene, 101 (2): 195-202), vaccine development (Graham, F. and Prevec, L., 1992, Biotechnology, 20: 363-90), and in animal models (Stratford-Perricaudet, L., et al, 1992, Bone Marrow Transplant., 9 (Suppl. 1): 151-2 ; Rich, D., et al, 1993, Hum. Gene Ther., 4 (4): 461-76). Experimental routes for administrating recombinant Ad to different tissues in vivo have included intratracheal instillation (Rosenfeld, M., et al, 1992, Cell, 68 (1): 143-55) injection into muscle (Quantin, B., et al, 1992, Proc. Natl Acad. Sci. U.S.A., 89 (7): 2581-4), peripheral intravenous injection (Herz, J., and Gerard, R., 1993, Proc. Natl. Acad. Sci. U.S.A., 90 (7): 2812-6) and stereotactic inoculation to brain (Le Gal La Salle, G., et al, 1993, Science, 259 (5097): 988-90), among others.
Adeno-associated vims (AAV) demonstrates high-level infectivity, broad host range and specificity in integrating into the host cell genome (Hermonat, P., et al., 1984, Proc. Natl Acad. Sci. U.S.A., 81 (20): 6466-70). And Herpes Simplex Vims type-1 (HSV-1) is yet
another attractive vector system, especially for use in the nervous system because of its neurotropic property (Geller, A., et al, 1991, Trends Neurosci, 14 (10): 428-32; Glorioso, et al, 1995, Mol. Biotechnol, 4 (1): 87-99; Glorioso, et al, 1995, Annu. Rev. Microbiol, 49: 675-710). Poxvirus is another useful expression vector (Smith, et al. 1983, Gene, 25 (1): 21-8;
Moss, et al, 1992, Biotechnology, 20: 345-62; Moss, et al, 1992, Curr. Top. Microbiol. Immunol, 158: 25-38; Moss, et al. 1991. Science, 252: 1662-1667). Poxviruses shown to be useful include vaccinia, NYVAC, avipox, fowlpox, canarypox, ALVAC, and ALVAC(2), among others. NYVAC (vP866) was derived from the Copenhagen vaccine strain of vaccinia vims by deleting six nonessential regions of the genome encoding known or potential vimlence factors (see, for example, U.S. Pat. Nos. 5,364,773 and 5,494,807). The deletion loci were also engineered as recipient loci for the insertion of foreign genes. The deleted regions are: thymidine kinase gene (TK; J2R); hemorrhagic region (u; B13R+B14R); A type inclusion body region (ATI; A26L); hemagglutinin gene (HA; A56R); host range gene region (C7L- K1L); and, large subunit, ribonucleotide reductase (I4L). NYVAC is a genetically engineered vaccinia vims strain that was generated by the specific deletion of eighteen open reading frames encoding gene products associated with vimlence and host range. NYVAC has been show to be useful for expressing TAs (see, for example, U.S. Pat. No. 6,265,189). NYVAC (vP866), vP994, vCP205, vCP1433, placZH6H4Lreverse, pMPC6H6K3E3 and pC3H6FHVB were also deposited with the ATCC under the terms of the Budapest Treaty, accession numbers VR-2559, VR-2558, VR-2557, VR-2556, ATCC-97913, ATCC-97912, and ATCC-97914, respectively.
ALVAC-based recombinant viruses (i.e., ALVAC-1 and ALVAC-2) are also suitable for use in practicing the present invention (see, for example, U.S. Pat. No. 5,756,103; Perkus, et al. J. Tissue Cult. Meth. 1993;15:72-81; Perkus, et al. . J. Leukocyte Biol. 1995;58:1-13; Bonnet, et al. Immunol Let. 2000;74:11-25; Tartaglia, et al. Vaccine 2001; 19: 2571-2575). ALVAC(2) is identical to ALVAC(l) except that ALVAC(2) genome comprises the vaccinia E3L and K3L genes under the control of vaccinia promoters (U.S. Pat. No. 6,130,066; Beattie et al., 1995a, 1995b, 1991; Chang et al., 1992; Davies et al, 1993). Both ALVAC(l) and ALVAC(2) have been demonstrated to be useful in expressing foreign DNA sequences, such as TAs (Tartaglia et al., 1993 a,b; U.S. Pat. No. 5,833,975). ALVAC was deposited under the
terms of the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA, ATCC accession number VR-2547.
Another useful poxvims vector is TROVAC. TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-1 vaccine strain of fowlpoxvims which is licensed for vaccination of 1 day old chicks. TROVAC was likewise deposited under the terms of the Budapest Treaty with the ATCC, accession number 2553.
"Non-viral" plasmid vectors may also be suitable in practicing the present invention.
Preferred plasmid vectors are compatible with bacterial, insect, and / or mammalian host cells. Such vectors include, for example, PCR-II, pCR3, and pcDNA3.1 (Invitrogen, San Diego, CA), pBSII (Stratagene, La Jolla, CA), ρET15 (Novagen, Madison, WI), pGEX
(Pharmacia Biotech, Piscataway, NJ), pEGFP-N2 (Clontech, Palo Alto, CA), pETL
(BlueBacII, Invitrogen), pDSR-alpha (PCT pub. No. WO 90/14363) and pFastBacDual
© (Gibco-BRL, Grand Island, NY) as well as Bluescript plasmid derivatives (a high copy number COLE 1 -based phagemid, Stratagene Cloning Systems, La Jolla, CA), PCR cloning plasmids designed for cloning Taq-amplified PCR products (e.g., TOPO™ TA cloning kit,
® PCR2.1 plasmid derivatives, Invitrogen, Carlsbad, CA). Bacterial vectors may also be used with the current invention. These vectors include, for example, Shigella, Salmonella, Vibrio cholerae, Lactobacillus, Bacille calmette guerin (BCG), and Streptococcus (see for example,
WO 88/6626; WO 90/0594; WO 91/13157; WO 92/1796; and WO 92/21376). Many other non-viral plasmid expression vectors and systems are known in the art and could be used with the current invention.
Suitable nucleic acid delivery techniques include DNA-ligand complexes, adenovirus- ligand-DNA complexes, direct injection of DNA, CaPO4 precipitation, gene gun techniques, electroporation, and colloidal dispersion systems, among others. Colloidal dispersion systems include, for example, macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome, which are artificial membrane vesicles useful as delivery vehicles in vitro and in vivo. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, R., et al, 1981, Trends Biochem. Sci., 6: 11). The composition of the liposome is usually a combination of phospholipids, particularly high- phase-transition-temperature phospholipids, usually in combination with steroids, especially
cholesterol. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.
Other lipids or phospholipids may also be used. Examples of lipids useful in liposome production include phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated. Illustrative phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine.
An immunogenic target may also be administered in combination with one or more adjuvants to boost the immune response. Exemplary adjuvants are shown in Table II below:
Table II Types of Immunologic Adjuvants
The immunogenic targets of the present invention may also be used to generate antibodies for use in screening assays or for immunotherapy. Other uses would be apparent
to one of skill in the art. The term "antibody" includes antibody fragments, as are known in the art, including Fab, Fab2, single chain antibodies (Fv for example), humanized antibodies, chimeric antibodies, human antibodies, produced by several methods as are known in the art. Methods of preparing and utilizing various types of antibodies are well-known to those of skill in the art and would be suitable in practicing the present invention (see, for example, Harlow, et al. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; Harlow, et al. Using Antibodies: A Laboratoiγ Manual, Portable Protocol No. 1, 1998; Kohler and Milstein, Nature, 256:495 (1975)); Jones et al. Nature, 321:522-525 (1986); Riechmann et al. Nature, 332:323-329 (1988); Presta (Curr. Op. Struct. Biol., 2:593-596 (1992); Verhoeyen et al. (Science, 239:1534-1536 (1988); Hoogenboom et al., J. Mol. Biol, 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991); Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boemer et al., J. Immunol., 147(l):86-95 (1991); Marks et al., Bio/Technology 10, 779-783 (1992); Lonberg et al., Nature 368 856-859 (1994); Morrison, Nature 368 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 65-93 (1995); as well as U.S. Pat. Nos. 4,816,567; 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and, 5,661,016). The antibodies or derivatives therefrom may also be conjugated to therapeutic moieties such as cytotoxic drugs or toxins, or active fragments thereof such as diptheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, among others. Cytotoxic agents may also include radiochemicals. Antibodies and their derivatives may be incorporated into compositions of the invention for use in vitro or in vivo.
Nucleic acids, proteins, or derivatives thereof representing an immunogenic target may be used in assays to determine the presence of a disease state in a patient, to predict prognosis, or to determine the effectiveness of a chemotherapeutic or other treatment regimen. Expression profiles, performed as is known in the art, may be used to determine the relative level of expression of the immunogenic target. The level of expression may then be correlated with base levels to determine whether a particular disease is present within the patient, the patient's prognosis, or whether a particular treatment regimen is effective. For example, if the patient is being treated with a particular chemotherapeutic regimen, an decreased level of expression of an immunogenic target in the patient's tissues (i.e., in peripheral blood) may indicate the regimen is decreasing the cancer load in that host. Similarly, if the level of expresssion is increasing, another therapeutic modality may need to
be utilized. In one embodiment, nucleic acid probes corresponding to a nucleic acid encoding an immunogenic target may be attached to a biochip, as is known in the art, for the detection and quantification of expression in the host.
It is also possible to use nucleic acids, proteins, derivatives therefrom, or antibodies thereto as reagents in drug screening assays. The reagents may be used to ascertain the effect of a drug candidate on the expression of the immunogenic target in a cell line, or a cell or tissue of a patient. The expression profiling technique may be combined with high throughput screening techniques to allow rapid identification of useful compounds and monitor the effectiveness of treatment with a drug candidate (see, for example, Zlokarnik, et al., Science 279, 84-8 (1998)). Drag candidates may be chemical compounds, nucleic acids, proteins, antibodies, or derivatives therefrom, whether naturally occurring or synthetically derived. Drag candidates thus identified may be utilized, among other uses, as pharmaceutical compositions for administration to patients or for use in further screening assays. Administration of a composition of the present invention to a host may be accomplished using any of a variety of techniques known to those of skill in the art. The compositiθn(s) may be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals (i.e., a "pharmaceutical composition"). The pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of DNA, viral vector particles, polypeptide or peptide, for example. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
The pharmaceutical composition may be administered orally, parentally, by inhalation spray, rectally, intranodally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term "pharmaceutically acceptable carrier" or "physiologically acceptable carrier" as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of a nucleic acid, polypeptide, or peptide as a pharmaceutical composition. A "pharmaceutical composition" is a composition comprising a therapeutically effective amount of a nucleic acid or polypeptide. The terms "effective amount" and "therapeutically effective amount" each refer to the amount of a nucleic acid or polypeptide used to induce or enhance an effective immune response. It is preferred that compositions of the present invention provide
for the induction or enhancement of an anti-tumor immune response in a host which protects the host from the development of a tumor and / or allows the host to eliminate an existing tumor from the body.
For oral administration, the pharmaceutical composition may be of any of several forms including, for example, a capsule, a tablet, a suspension, or liquid, among others. Liquids may be administered by injection as a composition with suitable carriers including saline, dextrose, or water. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, intrasternal, infusion, or intraperitoneal administration. Suppositories for rectal administration of the drug can be prepared by mixing the drag with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature.
The dosage regimen for immunizing a host or otherwise treating a disorder or a disease with a composition of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. For example, a poxviral vector may be administered as a composition comprising 1 x 106 infectious particles per dose. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods.
A prime-boost regimen may also be utilized (WO 01/30382 Al) in which the targeted immunogen is initially administered in a priming step in one form followed by a boosting step in which the targeted immunogen is administered in another form. The form of the targeted immunogen in the priming and boosting steps are different. For instance, if the priming step utilized a nucleic acid, the boost may be administered as a peptide. Similarly, where a priming step utilized one type of recombinant virus (i.e., ALVAC), the boost step may utilize another type of viras (i.e., NYNAC). This prime-boost method of administration has been shown to induce strong immunological responses.
While the compositions of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compositions or agents (i.e., other immunogenic targets, co-stimulatory molecules, adjuvants). When administered as a combination, the individual components can be formulated as separate compositions administered at the same time or different times, or the components can be combined as a single composition.
Injectable preparations, such as sterile mjectable aqueous or oleaginous suspensions, may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent. Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution, among others. For instance, a viral vector such as a poxvirus may be prepared in 0.4% NaCl. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
For topical administration, a suitable topical dose of a composition may be administered one to four, and preferably two or three times daily. The dose may also be administered with intervening days during which no does is applied. Suitable compositions may comprise from 0.001% to 10% w/w, for example, from 1% to 2% by weight of the fomiulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation. Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose. The pharmaceutical compositions may also be prepared in a solid form (including granules, powders or suppositories). The phannaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting sweetening, flavoring, and perfuming agents.
Pharmaceutical compositions comprising a nucleic acid or polypeptide of the present invention may take any of several forms and may be administered by any of several routes. In preferred embodiments, the compositions are administered via a parenteral route (intradermal, intramuscular or subcutaneous) to induce an immune response in the host. Alternatively, the composition may be administered directly into a lymph node (intranodal) or tamor mass (i.e., intratamoral administration). For example, the dose could be administered subcutaneously at days 0, 7, and 14. Suitable methods for immunization using compositions comprising TAs are known in the art, as shown for p53 (Hollstein et al., 1991), p21-ras (Almoguera et al., 1988), HER-2 (Fendly et al., 1990), the melanoma-associated antigens (MAGE-1; MAGE-2) (van der Braggen et al., 1991), ρ97 (Hu et al., 1988), and carcinoembryonic antigen (CEA) (Kantor et al., 1993; Fishbein et al., 1992; Kaufman et al., 1991), among others.
Preferred embodiments of administratable compositions include, for example, nucleic acids or polypeptides in liquid preparations such as suspensions, syrups, or elixirs. Preferred injectable preparations include, for example, nucleic acids or polypeptides suitable for parental, subcutaneous, intradermal, intramuscular or intravenous administration such as sterile suspensions or emulsions. For example, a recombinant poxvims may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like. The composition may also be provided in lyophilized form for reconstituting, for instance, in isotonic aqueous, saline buffer. In addition, the compositions can be co- administered or sequentially administered with other antineoplastic, anti-tumor or anti-cancer agents and/or with agents which reduce or alleviate ill effects of antineoplastic, anti-tumor or anti-cancer agents.
A kit comprising a composition of the present invention is also provided. The kit can include a separate container containing a suitable carrier, diluent or excipient. The kit can also include an additional anti-cancer, anti-tumor or antineoplastic agent and/or an agent that reduces or alleviates ill effects of antineoplastic, anti-tumor or anti-cancer agents for co- or sequential-administration. Additionally, the kit can include instructions for mixing or combining ingredients and/or administration.
A better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration.
EXAMPLES
Generation of ALVAC recombinants
ALVAC recombinants expressing various single epitope, polyepitope, or full length gene constructs were generated by in vitro recombination using standard methods as previously described (Perkus, et al. Methodology of Using Vaccinia Viras to Express Foreign Genes in Tissue Culture. J. Tissue Cult. Meth. 1993;15:72-81; Perkus, et al. Poxvirus-based vaccine candidates for cancer, AIDS, and infectious diseases. J. Leukocyte Biol. 1995;58:1- 13). Expression cassettes consisting of single or polyepitope gene constructs were generated by overlap-extension PCR with synthetic oligonucleotides, and placed under the control of the vaccinia H6 promoter by use of standard gene cloning techniques. A summary of the recombinants and constructs evaluated in this study are listed in Table III. These constructs are based on HLA-A2.1 -restricted epitopes identified in Melan A/MART-1 (MART-127"35) and gplOO (gplOO154"162, gplOO209"217, gplOO280"288). The MARTI 27'35 epitope is an immunodominant epitope. gplOO154"162 represents also an HLA -A2 restricted epitope with high affinity for MHC class I and high immunogenicity (Salgaller, et al. Can. Res. 1996; 56:4749-4757). A basic polyepitope construct was derived, called PE01, consisting of the MART-127-35, gplOO154-162, gplOO209"217, and gplOO280"288 epitopes with no spacer amino acids flanking the epitopes.
Table πi
Cell lines
The EBV-transformed human B-LCL line BN was derived from an HLA-A2.1- positive donor. The HLA-A2.1 -positive human bladder carcinoma line J82 was obtained from ATCC. TIL lines 620 (specific for the HLA-A2.1 -restricted epitopes MART-127"35 and gplOO209"217), 1200 (specific for HLA-A2.1 -restricted epitope gplOO154"162), were provided by
Dr. U. Kawakami (NCI, USA) and were maintained in AIM V medium supplemented with 10% human AB serum and 6000 U/ml IL-2 [25].
Cytotoxicity assays with TIL lines The processing and presentation of epitopes expressed by gene constructs in ALVAC was assessed by evaluating the ability of TIL lines to lyse J82 target cells infected with appropriate ALVAC recombinants. J82 cells were infected with ALVAC recombinants for 18 hours using a multiplicity of infection of 5. These targets were subsequently incubated with TIL lines at various effector to target (E:T) ratios in a standard four hour 51Cr release assay for cytotoxicity. Controls included in each experiment were unmodified J82 cells, J82 cells pulsed with the appropriate Melan A/MART-1 or gplOO epitope peptides at 100 μg peptide/ 106 cells, and J82 cells infected with parental ALVAC viras. For the TIL line 620, which exhibits multiple epitope specificities, lytic assays were performed in the presence of unlabelled J82 cells infected with an ALVAC recombinant expressing the MART-127"35 epitope. These cold targets were included in the assays at a ratio of 30:1 cokhradio-labelled target. Results obtained in parallel assays which lacked the cold targets allowed the discrimination of lysis directed against each of the epitope specificities.
Immunization and CTL evaluation of HHD mice Transgenic HLA-A2.1 HHD mice have been previously described (Pascolo, et al. J.
Exp. Med. 1997; 12: 2043-2051; Firat, et al. Eur. J. Immunol. 1999; 29:3112-3121).- These mice express a transgene consisting of the αl and α2 domains of the human HLA-A2.1 class I molecule linked to the α3, transmembrane, and cytoplasmic domains of the mouse class I molecule H- 2D . This hybrid molecule is linked via the αl domain to human β2-microglobulin, and its hybrid nature facilitates further interaction with mouse CD8 on T cells. This strain was generated on the H-2Db double knockout genetic background, and thus the only class I molecule expressed by HHD mice is the HLA-A2.1/H-2Db hybrid transgene. This strain provides a good model to evaluate the capacity of various immunogens to elicit CTL responses restricted by the HLA-A2.1 molecule. Immunization experiments and read-outs of CTL activity were performed as described elsewhere. Briefly, groups of six mice were immunized with 10s pfu of appropriate ALVAC recombinants through the intraperitoneal route. Three weeks after immunization, splenocytes were harvested and restimulated in vitro with peptide-pulsed LPS blasts. After six days in culture, the lytic activity was assessed in a
standard 51Cr-release assay, using RMAS-HHD cells pulsed with appropriate epitope peptides as targets.
Processing and presentation of polyepitope constructs or minigenes The processing and presentation of polyepitope constructs or minigenes expressed by
ALVAC was assessed by evaluating the ability of ALVAC-infected HLA-A2.1+ bladder carcinoma cells (J82) to stimulate the lytic activity of epitope-specific TIL lines. ALVAC recombinants expressing the various polyepitope configurations were compared in this manner to recombinants expressing both full length Melan A/MART-1 and gplOO, or alternatively single epitope minigenes. Peptide-pulsed J82 cells and non-pulsed J82 cells were used as positive and negative controls, respectively. As confirmed from the specific lysis by TIL 620, MART-127"35 is processed and presented from each of the three tested polypepitopes (Figure 1). The levels of lysis were similar with targets expressing each of the constructs. Good responses are also stimulated by cells expressing the Melan A/MART-127"35 minigene (Figure 1A). As shown in Figure IB, cells expressing the ALVAC gplOO154"162 single epitope minigene stimulated strong cytotoxic responses from the specific TIL lines. Associated results obtained with TIL 620 in the presence of cold target cells expressing the
97 oc 9f)0 917
Melan A/MART-1 " epitope indicate that the gp 100 " epitope is very poorly processed and presented from either ALVAC expressing full length gplOO or from the three polypepitope constracts, as evidenced following infection of J82 cells (Figure IC).
90Q 17
Interestingly, cells expressing the gplOO " single epitope minigene did stimulate cytotoxic responses, suggesting that for this epitope, expression and processing as a minigene were better than when relying upon the full length construct. Other constracts containing potential spacer amino acid sequences flanking the component epitopes, either AAA (PE03) or NKRK (PE02) were also produced (Table III), in order to test the hypothesis that flanking residues can facilitate processing and presentation of the T cell epitope [28-30]. In contrast with some of the studies, but in agreement with others [3,4], we did not see any impact of the spacer in
9RO 9RR these experiments. In the absence of specific Tils against the gp 100 " epitope, we were not able to evaluate the processing and presentation of this epitope from these constructs. Altogether, reliable processing and presentation were observed for all assessable epitopes, albeit at different levels. Although good Melan A/MART-127"35 stimulation was seen in general, for the gplOO209"217 and gplOO154"162 epitopes, minigenes were found to be
significantly better for expressing the corresponding epitope and stimulating the TIL lines than full length antigens. These results are in agreement with previous studies.
Immunization of HHD mice Immunogenicity studies were subsequently performed in vivo, using HLA-A2.1 transgenic mice as a model. In a first set of experiments, we compared ALVAC-polyepitopes and ALVAC minigenes with respect to their capacity to elicit CTLs in HHD mice. Based on the observation that the MART-127"35 epitope was not immunogenic in such mice, we focused on T cell responses against gplOO epitopes (Table IV). In a first series of experiments, HHD mice were immunized with ALVAC constructs expressing either the tall length gplOO gene, polyepitopes, or single minigenes.
A first observation was that the polyepitope constracts do not elicit broad CTL responses against most of the component epitopes (Table IV). One exception was PEO2, which elicits some weak responses against gplOO154"1 5, in 2 out of 6 mice. Noteworthy, these results are in agreement with our first set of experiments, showing weak, albeit detectable, expression of some of the epitopes when relying upon polyepitopes. These results were also confirmed by a lack of stimulation of gplOO specific CTLs in vitro from human peripheral blood mononuclear cells derived from HLA-A2.1 donors (not shown). Altogether, these results confirm the difficulty to elicit broad and balanced immune responses against multiple epitopes when relying on polyepitopes. Interestingly, in contrast, immunization with ALVAC-based single epitope constructs was found to be effective, excepted for the gplOO280" 980 9KR epitope. As stated above, we cannot rule out that the gplOO " was not expressed optimally by the ALVAC recombinant. Here again, these immunogenicity data correlates with our expression data shown in Figure 1. For comparison, the full length gplOO recombinant is effective in inducing CTLs against gplOO 5 "' , but not against any of the other cryptic HLA-A2.1 restricted epitopes (Table IV).
Table IV
Polyepitope enhancement approaches
A second series of constructs was generated to create immunogens in which immunostimulatory properties of weak immunogens could be 'enhanced'. To this aim, we evaluated epitopes that had been modified to increase their affinity for class I HLA molecules. Given the relatively good immunogenicity of the gplOO154"162 epitope, we elected to focus on improving the immunogenicity of the gplOO209"217 and gplOO280"288 epitopes. Two ALVAC recombinants were made, which are listed in Table II. These include a construct expressing tall length gplOO that has been modified to contain the 209-2M and 280-9 V amino acid modifications (gplOOM), and a polyepitope constmct expressing single epitopes
(ie gplOO 154-162 gp lOO ,2"0™9-2M and gplOO 280-9V under separate promoters (Table III).
These constructs were used to immunize HHD mice, as shown in Table V, no CTLs specific for gplOO were induced by ALVAC alone, used as a control. When using ALVAC expressing full-length gplOOM (with modified epitopes) CTLs against all three epitopes were detected. The modified polyepitopic constmct (154/2M/9V) was also found to elicit strong CTL responses, and potentially at a level higher than the full length immunogen: with the full length gplOOM, one or two mice did not respond for each epitope, whereas all mice (6 out of 6) receiving the modified polyepitope mounted CTLs against each single epitope (Table V). Importantly, the protocol used to detect CTL responses in HHD mice detects only CTLs which cross-react with natural unmodified gplOO epitopes. This confirms that enhanced immunogens with improved affinity for MHC Class I molecules have a better immunogenicity, and can elicit CTLs recognizing native gplOO T cell epitopes (i.e., as they are expressed by tumor cells).
Table V
While the present invention has been described in terms of the preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations that come within the scope of the invention as claimed.
Claims
1. A recombinant expression vector comprising a nucleic acid sequence encoding at least one polyepitope selected from the group consisting of MART-1 - gplOO " - gplOO209"217 - gplOO280"288; MART-127"35 -NKRK-gpl00154",o -NKRK-gpl00209"217-
NKRK- gplOO280"288; and, MART-127"35 -AAA- gplOO154"162 -AAA- gplOO209"217 - AAA- gplOO280"288.
2. The expression vector of claim 1 wherein the vector is a plasmid or a viral vector.
3. The expression vector of claim 2 wherein the viral vector is selected from the group consisting of poxvims, adenoviras, retrovirus, herpesvirus, and adeno-associated viras.
4. The expression vector of claim 3 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
5. The expression vector of claim 4 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
6. A recombinant expression vector comprising a nucleic acid sequence encoding at least one minigene selected from the group consisting of MART-127"35; gplOO154"162; gplOO209" 217; gplOO280"288; gpl00-209-2M; and, gpl00-280-9V.
7. The expression vector of claim 1 wherein the vector is a plasmid or a viral vector.
8. The expression vector of claim 2 wherein the viral vector is selected from the group consisting of poxvirus, adenoviras, retrovirus, herpesvirus, and adeno-associated viras.
9. The expression vector of claim 3 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
10. The expression vector of claim 4 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
11. A composition comprising an expression vector comprising a nucleic acid sequence encoding at least one polyepitope selected from the group consisting of MART-127"35 - gplOO154"162 - gplOO209"217 - gplOO280"288; MART-127"35 -NKRK-gpl00154"162-NKRK- gpl00209"217-NKRK- gplOO280"288; and, MART-127"35 -AAA- gplOO154"162 -AAA- gpl00209"2I7 -AAA- gpl00280-288.
12. The composition of claim 11 wherein the expression vector is a plasmid or a viral vector.
13. The composition of claim 12 wherein the viral vector is selected from the group consisting of poxvims, adenoviras, retrovirus, herpesvirus, and adeno-associated viras.
14. The composition of claim 13 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
15. The composition of claim 14 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
1 . A method for preventing or treating cancer comprising administering to a host an expression vector comprising a nucleic acid sequence encoding at least one polyepitope selected from the group consisting of MART-127"35 - gplOO154"162 - gplOO209"217 - gplOO280"288; MART-127"35 -NKRK-g l00154"162-NKRK-gpl00209"217-NKRK- gplOO280" 288; and, MART-127"35 -AAA- gplOO154"162 -AAA- gplOO209"217 -AAA- gplOO280"288.
17. The method of claim 16 wherein the expression vector is a plasmid or a viral vector.
18. The method of claim 17 wherein wherein the viral vector is selected from the group consisting of poxvirus, adenoviras, retrovirus, herpesvirus, and adeno-associated virus.
19. The method of claim 18 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
20. The method of claim 19 wherein wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
21. A composition comprising an expression vector comprising a nucleic acid sequence encoding at least one minigene selected from the group consisting of MART-1 97 " ^S ; gplOO154"162; gplOO209"217; gplOO280"288; gpl00-209-2M; and, gpl00-280-9V.
22. The composition of claim 21 wherein the expression vector is a plasmid or a viral vector.
23. The composition of claim 22 wherein the viral vector is selected from the group consisting of poxvims, adenoviras, retro vims, herpesvirus, and adeno-associated vims.
24. The composition of claim 23 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
25. The composition of claim 24 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
26. A method for preventing or treating cancer comprising administering to a host an expression vector comprising a nucleic acid sequence encoding at least one minigene
selected from the group consisting of MART-127"35; gplOO154"162; gplOO209"217; gplOO280" 288; gpl00-209-2M; and, gpl00-280-9V.
27. The method of claim 26 wherein the expression vector is a plasmid or a viral vector.
28. The method of claim 27 wherein the viral vector is selected from the group consisting of poxvirus, adenoviras, retrovirus, herpesvirus, and adeno-associated viras.
29. The method of claim 28 wherein wherein the viral vector is a poxviras selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
30. The method of claim 29 wherein wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003229429A AU2003229429A1 (en) | 2002-05-07 | 2003-05-07 | Polyepitopes and mini-genes for cancer treatment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37841602P | 2002-05-07 | 2002-05-07 | |
US60/378,416 | 2002-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003095642A2 true WO2003095642A2 (en) | 2003-11-20 |
WO2003095642A3 WO2003095642A3 (en) | 2004-04-01 |
Family
ID=29420399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2003/000672 WO2003095642A2 (en) | 2002-05-07 | 2003-05-07 | Polyepitopes and mini-genes for cancer treatment |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2003229429A1 (en) |
WO (1) | WO2003095642A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005026370A2 (en) * | 2003-09-05 | 2005-03-24 | Sanofi Pasteur Limted. | Multi-antigen vectors for melanoma |
EP3842065A1 (en) * | 2019-12-23 | 2021-06-30 | Transgene | Process for designing a recombinant poxvirus for a therapeutic vaccine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001019408A1 (en) * | 1999-09-16 | 2001-03-22 | Zycos Inc. | Nucleic acids encoding polyepitope polypeptides |
-
2003
- 2003-05-07 WO PCT/CA2003/000672 patent/WO2003095642A2/en active Application Filing
- 2003-05-07 AU AU2003229429A patent/AU2003229429A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001019408A1 (en) * | 1999-09-16 | 2001-03-22 | Zycos Inc. | Nucleic acids encoding polyepitope polypeptides |
Non-Patent Citations (4)
Title |
---|
FIRAT H]SEYIN ET AL: "Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy." THE JOURNAL OF GENE MEDICINE. ENGLAND 2002 JAN-FEB, vol. 4, no. 1, January 2002 (2002-01), pages 38-45, XP009016323 ISSN: 1099-498X * |
MATEO L ET AL: "An HLA-A2 polyepitope vaccine for melanoma immunotherapy" JOURNAL OF IMMUNOLOGY, THE WILLIAMS AND WILKINS CO. BALTIMORE, US, vol. 163, no. 7, 1 October 1999 (1999-10-01), pages 4058-4063, XP002244411 ISSN: 0022-1767 * |
SCH]TZ A ET AL: "Immunogenicity of nonreplicating recombinant vaccinia expressing HLA-A201 targeted or complete MART-1/Melan-A antigen." CANCER GENE THERAPY. ENGLAND SEP 2001, vol. 8, no. 9, September 2001 (2001-09), pages 655-661, XP002252791 ISSN: 0929-1903 * |
SUHRBIER A: "MULTI-EPITOPE DNA VACCINES" IMMUNOLOGY AND CELL BIOLOGY, CARLTON, AU, vol. 75, no. 4, August 1997 (1997-08), pages 402-408, XP001068789 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005026370A2 (en) * | 2003-09-05 | 2005-03-24 | Sanofi Pasteur Limted. | Multi-antigen vectors for melanoma |
WO2005026370A3 (en) * | 2003-09-05 | 2005-06-16 | Aventis Pasteur Limted | Multi-antigen vectors for melanoma |
EP3842065A1 (en) * | 2019-12-23 | 2021-06-30 | Transgene | Process for designing a recombinant poxvirus for a therapeutic vaccine |
WO2021130210A1 (en) * | 2019-12-23 | 2021-07-01 | Transgene | Process for designing a recombinant poxvirus for a therapeutic vaccine |
Also Published As
Publication number | Publication date |
---|---|
AU2003229429A1 (en) | 2003-11-11 |
WO2003095642A3 (en) | 2004-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110311543A1 (en) | Tumor Antigens BFA5 for Prevention and/or Treatment of Cancer | |
JP2011067207A5 (en) | ||
AU2011200127A1 (en) | Multi-antigen vectors for melanoma | |
US8530442B2 (en) | Modified CEA nucleic acid and expression vectors | |
US7786278B2 (en) | Modified CEA nucleic acid and expression vectors | |
US20030113919A1 (en) | Immunogenic targets for melanoma | |
US20030148973A1 (en) | MAGE-A1 peptides for treating or preventing cancer | |
WO2003080800A2 (en) | Prevention and treatment of disease using angiogenesis-and/or tumor antigens | |
AU2004280608B2 (en) | Modified CEA/B7 vector | |
WO2003095642A2 (en) | Polyepitopes and mini-genes for cancer treatment | |
CA2481719C (en) | Modified cea nucleic acid and expression vectors | |
EP1576113A2 (en) | Tumor antigens bfa4 and bcy1 for prevention and/or treatment of cancer | |
US20090156519A1 (en) | Modified KSA and Uses Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |