Nothing Special   »   [go: up one dir, main page]

WO2003094886A2 - Desmopressin in an orodispersible dosage form - Google Patents

Desmopressin in an orodispersible dosage form Download PDF

Info

Publication number
WO2003094886A2
WO2003094886A2 PCT/IB2003/002368 IB0302368W WO03094886A2 WO 2003094886 A2 WO2003094886 A2 WO 2003094886A2 IB 0302368 W IB0302368 W IB 0302368W WO 03094886 A2 WO03094886 A2 WO 03094886A2
Authority
WO
WIPO (PCT)
Prior art keywords
dosage form
desmopressin
pharmaceutical dosage
water
orodispersible
Prior art date
Application number
PCT/IB2003/002368
Other languages
French (fr)
Other versions
WO2003094886A3 (en
Inventor
Lars Anders Ragnar Nilsson
Hans Lindner
Jørgen WITTENDORFF JENSEN
Original Assignee
Ferring Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0210397.6A external-priority patent/GB0210397D0/en
Priority to DK03727870.2T priority Critical patent/DK1501534T5/en
Priority to CA002484724A priority patent/CA2484724C/en
Priority to KR1020047017821A priority patent/KR100632455B1/en
Priority to MXPA04010926A priority patent/MXPA04010926A/en
Priority to JP2004502972A priority patent/JP2006502972A/en
Priority to EP03727870A priority patent/EP1501534B1/en
Priority to DE60307082A priority patent/DE60307082D1/en
Priority to NZ535861A priority patent/NZ535861A/en
Priority to US10/513,437 priority patent/US7560429B2/en
Priority to BR0309819-2A priority patent/BR0309819A/en
Priority to ES03727870.2T priority patent/ES2266820T4/en
Priority to DE2003607082 priority patent/DE60307082T4/en
Priority to SI200330434T priority patent/SI1501534T1/en
Priority to AU2003233118A priority patent/AU2003233118B8/en
Application filed by Ferring Bv filed Critical Ferring Bv
Publication of WO2003094886A2 publication Critical patent/WO2003094886A2/en
Publication of WO2003094886A3 publication Critical patent/WO2003094886A3/en
Priority to IL164519A priority patent/IL164519A/en
Priority to HR20041152A priority patent/HRP20041152B1/en
Priority to NO20045345A priority patent/NO335167B1/en
Priority to HK05106142A priority patent/HK1074393A1/en
Priority to US12/487,116 priority patent/US7947654B2/en
Priority to US13/110,619 priority patent/US8802624B2/en
Priority to US14/326,939 priority patent/US9220747B2/en
Priority to US14/947,261 priority patent/US9504647B2/en
Priority to US15/333,503 priority patent/US9919025B2/en
Priority to US15/881,123 priority patent/US10307459B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2063Proteins, e.g. gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing

Definitions

  • 'T ⁇ IS INVENTION relates to pharmaceutical formulations, to methods of making them and to their use in the treatment and prophylaxis of diseases in mammals, particularly humans.
  • desmopressin can be administered as a solid orodispersible dosage form which provides improved bioavailability compared to conventional oral tablets of desmopressin.
  • an orodispersible pharmaceutical dosage form of desmopressin is provided.
  • the formulation will typically be solid. It may disperse rapidly in the mouth, for example within 10, 5, 2 seconds, or even within 1 second, in increasing order of preference. Such formulations are termed 'orodispersible'.
  • the formulation will typically comprise a suitable carrier for this purpose, which will be pharmaceutically acceptable (or veterinarily acceptable in the case of administration to non-human animals).
  • the daily dosage of desmopressin, measured as the free base will generally be from 0.5 or 1 ⁇ g to 1 mg per dosage form. In one preferred dosage range, the dosage will typically range from 2 ⁇ g to 800 ⁇ g per dosage form and preferably from 10 ⁇ g to 600 ⁇ g.
  • Relative low doses are also specifically contemplated, for example from 0.5 ⁇ g to 75 ⁇ g, preferably 0.5 or 1 ⁇ g to 50 ⁇ g.
  • this will typically be the dose per dosage form.
  • the daily dose is administered in two or more dosages, as will typically be the case for central diabetes insipidus, the amount of active compound per dosage form will be reduced accordingly.
  • Pharmaceutical dosage forms of the present invention are adapted to supply the active ingredient to the oral cavity.
  • the active may be absorbed across the sublingual mucosa, and/or otherwise from the oral cavity (e.g. across the buccal and/or gingival mucosa) and/or from the gastrointestinal tract for systemic distribution.
  • the sugar may be used in the formulation in an amount of at least 50 w/w%, preferably 80 w/w% or more, more preferably 90 w/w% or more, based on the total solid components, although it may vary depending on the quality and quantity of the active ingredient to be used.
  • agar examples include agar powders PS-7 and PS-8 (manufactured by Ina Shokuhin).
  • Agar may be used in an amount of from 0.12 to 1.2 w/w%, preferably from 0.2 to 0.4 w/w%, based on the solid components.
  • compositions known for delivering active ingredients for absorption from the oral cavity are the dosage forms disclosed in US-A-6024981 and US-A-6221392. They are hard, compressed, rapidly dissolvable dosage forms adapted for direct oral dosing comprising: an active ingredient and a matrix including a non-direct compression filter and a lubricant, said dosage form being adapted to rapidly dissolve in the mouth of a patient and thereby liberate said active ingredient, and having a friability of about 2% or less when tested according to the U.S.P., said dosage form optionally having a hardness of at least about 15 Newtons (N), preferably from 15-50 N.
  • N Newtons
  • dosage forms in accordance with this embodiment of the invention dissolve in about 90 seconds or less (preferably 60 seconds or less and most preferably 45 seconds or less) in the patient's mouth. It is also often desirable that the dosage form include at least one particle.
  • the particle would be the active ingredient and a protective material. These particles can include rapid release particles and or sustained release particles.
  • a hard, compressed, rapidly dissolving tablet adapted for direct oral dosing.
  • the tablet includes particles made of an active ingredient and a protective material. These particles are provided in an amount of between about 0.01 and about 75% by weight based on the weight of the tablet.
  • the tablet also includes a matrix made from a non-direct compression filler, a wicking agent, and a hydrophobic lubricant.
  • the tablet matrix comprises at least about 60% rapidly water soluble ingredients based on the total weight of the matrix material.
  • the tablet has a hardness of between about 15 and about 50 Newtons, a friability of less than 2% when measured by U.S.P. and is adapted to dissolve spontaneously in the mouth of a patient in less than about 60 seconds and thereby liberate said particles and be capable of being stored in bulk.
  • a very fine grained or powdered sugar known as a non-direct compression sugar may be used as a filler in the matrix of this embodiment the present invention.
  • This material in part because of its chemical composition and in part because of its fine particle size, will dissolve readily in the mouth in a mater of seconds once it is wetted by saliva. Not only does this mean that it can contribute to the speed at which the dosage form will dissolve, it also means that while the patient is holding the dissolving dosage form in his or her mouth, the filler will not contribute a "gritty" or "sandy” texture thus adversely affecting the organoleptic sensation of taking the dosage form.
  • direct compression versions of the same sugar are usually granulated and treated to make them larger and better for compaction.
  • Dissolution time in the mouth can be measured by observing the dissolution time of the tablet in water at about 37°C.
  • the tablet is immersed in the water without forcible agitation or with minimal agitation.
  • the dissolution time is the time from immersion to substantially complete dissolution of the rapidly water soluble ingredients of the tablet as determined by visual observation.
  • sugars and sugar alcohols which meet the specifications discussed above.
  • sugars and sugar alcohols include, without limitation, dextrose, mannitol, sorbitol, lactose and sucrose.
  • dextrose for example, can exist as either a direct compression sugar, i.e., a sugar which has been modified to increase its compressibility, or a non-direct compression sugar.
  • the balance of the formulation can be matrix.
  • the percentage of filler can approach 100%.
  • the amount of non-direct compression filler useful in accordance with the present invention ranges from about 25 to about 95%, preferably between about 50 and about 95% and more preferably from about 60 to about 95%.
  • Protective materials useful in accordance with this embodiment of the present invention may include any of the polymers conventionally utilized in the formation of microparticles, matrix-type microparticles and microcapsules. Among these are cellulosic materials such as naturally occurring cellulose and synthetic cellulose derivatives; acrylic polymers and vinyl polymers. Other simple polymers include proteinaceous materials such as gelatin, polypeptides and natural and synthetic shellacs and waxes. Protective polymers may also include ethylcellulose, methylcellulose, carboxymethyl cellulose and acrylic resin material sold under the registered trade mark EUDRAGIT by Rhone Pharma GmbH ofmannstadt, Germany.
  • the matrix may also include wicking agents, non-effervescent disintegrants and effervescent disintegrants.
  • Wicking agents are compositions which are capable of drawing water up into the dosage form. They help transport moisture into the interior of the dosage form. In that way the dosage form can dissolve from the inside, as well as from the outside.
  • wicking agents include a number of traditional non- effervescent disintegration agents. These include, for example, microcrystalline cellulose (AVICEL PH 200, AVICEL PH 101), Ac-Di-Sol (Croscarmelose Sodium) and PVP-XL (a crosslinked polyvinylpyrrolidone); starches and modified starches, polymers, and gum such as arabic and xanthan. Hydroxyalkyl cellulose such as hydroxymethylcellulose. hydroxypropylcellulose and hydroxyopropylmethylcellulose, as well as compounds such as carbopol may be used as well.
  • the conventional range of non-effervescent disintegrant agents used in conventional tablets can be as high as 20%. However, generally, the amount of disintegration agent used ranges from between about 2 and about 5%, according to the Handbook of Pharmaceutical Excipients.
  • the amount of wicking agents used may range from between 2 to about 12% and preferably from between 2 to about 5%. It is also possible, of course, to include non-effervescent disintegrants which may not act to wick moisture, if desirable. In either event, it is preferable to use either rapidly water soluble, non-effervescent disintegrants or wicking agents and/or to minimize the use of generally non-water soluble wicking agents or non-effervescent disintegrants. Non- rapidly dissolvable, non-rapidly water soluble elements if used in sufficient quantity, can adversely affect the organoleptic properties of the tablets as they dissolve within the mouth and therefore should be minimized.
  • wicking agents or non- effervescent disintegrants which are rapidly water soluble as discussed herein can be used in greater quantity and they will not add to the grittiness of the formulation during dissolution.
  • Preferred wicking agents in accordance with the present invention include crosslinked PVP, although, the amounts of these must be controlled as they are not rapidly water soluble.
  • the effervescent couple in combination with the other recited ingredients to improve the disintegration profile, the organoleptic properties of the material and the like.
  • the effervescent couple is provided in an amount of between about 0.5 and about 50%, and more preferably, between about 3 and about 15% by weight, based on the weight of the finished tablet. It is particularly preferred that sufficient effervescent material be provided such that the evolved gas is less than about 30 cm, upon exposure to an aqueous environment.
  • the term "effervescent couple" includes compounds which evolve gas.
  • the preferred effervescent couple evolve gas by means of a chemical reaction which takes place upon exposure of the effervescent disintegration couple to water and/or to saliva in the mouth. This reaction is most often the result of the reaction of a soluble acid source and an alkali monohydrogencarbonate or other carbonate source.
  • the reaction of these two general compounds produces carbon dioxide gas upon contact with water or saliva.
  • Such water-activated materials must be kept in a generally anhydrous state and with little or no absorbed moisture or in a stable hydrated form, since exposure to water will prematurely disintegrate the tablet.
  • the acid sources may be any which are safe for human consumption and may generally include food acids, acid and hydrite antacids such as, for example: citric, tartaric, malic, fumaric, adipic, and succinics.
  • Carbonate sources include dry solid carbonate and bicarbonate salt such as, preferably, sodium bicarbonate, sodium carbonate, potassium bicarbonate and potassium carbonate, magnesium carbonate and the like. Reactants which evolve oxygen or other gasses and which are safe for human consumption are also included.
  • a non-direct compression filler eliminates the need for many conventional processing steps such as granulation and/or the need to purchase more expensive pre- granulated, compressible fillers.
  • the resulting dosage form is a balance of performance and stability. It is robust enough to be conventionally produced using direct compression. It is robust enough to be stored or packaged in bulk. Yet, it rapidly dissolves in the mouth while minimizing the unpleasant feel of conventional disintegrating tablets to the extent possible.
  • Formulations in accordance with this embodiment of the invention may be made by a method including the steps of:
  • formulations known for delivering active ingredients for absorption from the oral cavity are the dosage forms disclosed in US-A-6200604, which comprise an orally administrable medicament in combination with an effervescent agent used as penetration enhancer to influence the permeability of the medicament across the buccal, sublingual, and gingival mucosa.
  • the medicament is desmopressin, which is administered in some embodiments across the sublingual mucosa.
  • effervescent agents can be used alone or in combination with other penetration enhancers, which leads to an increase in the rate and extent of oral absorption of an active drug.
  • effervescent agent includes compounds which evolve gas.
  • the preferred effervescent agents evolve gas by means of a chemical reaction which takes place upon exposure of the effervescent agent (an effervescent couple) to water and/or to saliva in the mouth. This reaction is most often the result of the reaction of a soluble acid source and a source of carbon dioxide such as an alkaline carbonate or bicarbonate. The reaction of these two general compounds produces carbon dioxide gas upon contact with water or saliva.
  • Such water-activated materials must be kept in a generally anhydrous state and with little or no absorbed moisture or in a stable hydrated form, since exposure to water will prematurely disintegrate the tablet.
  • the effervescent agent(s) useful in this embodiment of the present invention is not always based upon a reaction which forms carbon dioxide. Reactants which evolve oxygen or other gasses which are safe for human consumption are also considered within the scope. Where the effervescent agent includes two mutually reactive components, such as an acid source and a carbonate source, it is preferred that both components react completely. Therefore, an equivalent ratio of components which provides for equal equivalents is preferred. For example, if the acid used is diprotic, then either twice the amount of a mono-reactive carbonate base, or an equal amount of a di- reactive base should be used for complete neutralization to be realised. However, in other embodiments of the present invention, the amount of either acid or carbonate source may exceed the amount of the other component. This may be useful to enhance taste and/or performance of a tablet containing an overage of either component. In this case, it is acceptable that the additional amount of either component may remain unreacted.
  • the aqueous solubility of the drug should preferably not be compromised by the effervescent and pH adjusting substance, such that the dosage forms permit a sufficient concentration of the drug to be present in the unionised form.
  • the percentage of the pH adjusting substance and/or effervescent should therefore be adjusted depending on the drug.
  • Suitable pH adjusting substance for use in the present invention include any weak acid or weak base in amounts additional to that required for the effervescence or, preferably, any buffer system that is not harmful to the oral mucosa.
  • Suitable pH adjusting substance for use in the present invention include, but are not limited to, any of the acids or bases previously mentioned as effervescent compounds, disodium hydrogen phosphate, sodium dihydrogen phosphate and the equivalent potassium salt.
  • a dosage form according to this embodiment of the present invention may also include suitable non-effervescent disintegration agents.
  • suitable non-effervescent disintegration agents include: microcrystalline, cellulose, croscarmelose sodium, crospovidone, starches, corn starch, potato starch and modified starches thereof, sweeteners, clays, such as bentonite, alginates, gums such as agar, guar, locust bean, karaya, pectin and tragacanth.
  • Disintegrants may comprise up to about 20 weight percent and preferably between about 2 and about 10% of the total weight of the composition.
  • the dosage forms may also include glidants, lubricants, binders, sweeteners, flavouring and colouring components. Any conventional sweetener or flavouring component may be used. Combinations of sweeteners, flavouring components, or sweeteners and flavouring components may likewise be used.
  • binders which can be used include acacia, tragacanth, gelatin, starch, cellulose materials such as methyl cellulose and sodium carboxy methyl cellulose, alginic acids and salts thereof, magnesium aluminium silicate, polyethylene glycol, guar gum, polysaccharide acids, bentonites, sugars, invert sugars and the like. Binders may be used in an amount of up to 60 weight percent and preferably about 10 to about 40 weight percent of the total composition.
  • Colouring agents may include titanium dioxide, and dyes suitable for food such as those known as F.D.& C. dyes and natural coloring agents such as grape skin extract, beet red powder, beta-carotene, annato, carmine, turmeric, paprika, etc.
  • the amount of colouring used may range from about 0.1 to about 3.5 weight percent of the total composition.
  • Flavours incorporated in the composition may be chosen from synthetic flavours oils and flavouring aromatics and/or natural oils, extracts from plants, leaves, flowers, fruits and so forth and combinations thereof. These may include cinnamon oil, oil of wintergreen, peppermint oils, clove oil, bay oil, anise oil, eucalyptus, thyme oil, cedar leave oil, oil of nutmeg, oil of sage, oil of bitter almonds and cassia oil. Also useful as flavours are vanilla, citrus oil, including lemon, orange, grape, lime and grapefruit, and fruit essences, including apple, pear, peach, strawberry, raspberry, cherry, plum, pineapple, apricot and so forth.
  • the most preferred orodispersible solid pharmaceutical dosage forms according to the invention comprise desmopressin and an open matrix network carrying the desmopressin, the open matrix network being comprised of a water-soluble or water- dispersible carrier material that is inert towards desmopressin.
  • Pharmaceutical dosage forms comprising open matrix networks are known from GB-A- 1548022, to which reference is made for further details.
  • Pharmaceutical dosage forms of the invention can be rapidly disintegrated by water.
  • rapidly disintegrated is meant that the shaped articles are disintegrated in water within 10 seconds.
  • the shaped article disintegrates (dissolves or disperses) within 5 seconds or even two seconds or one second or less.
  • the disintegration time is measured by a procedure analogous to the Disintegration Test for Tablets, B.P. 1973. The procedure is described in GB-A-1548022 and outlined below. Apparatus
  • open matrix network there is meant a network of water-soluble or water- dispersible carrier material having interstices dispersed throughout.
  • the open matrix network of carrier material is of generally low density.
  • the density may be within the range 10 to 200 mg cc e.g. 10 to 100 mg/cc, preferably 30 to 60 mg/cc.
  • the density of the shaped article may be affected by the amount of active ingredient, or any other ingredients, incorporated into the article and may be outside the above mentioned preferred limits for the density of the matrix network.
  • the open matrix network which is similar in structure to a solid foam enables a liquid to enter the product through the interstices and permeate through the interior.
  • Permeation by aqueous media exposes the carrier material of both the interior and exterior of the product to the action of the aqueous media whereby the network of carrier material is rapidly disintegrated.
  • the open matrix structure is of a porous nature and enhances disintegration of the product as compared with ordinary solid shaped pharmaceutical dosage forms such as tablets, pills, capsules, suppositories and pessaries. Rapid disintegration results in rapid release of the active ingredient carried by the matrix.
  • the carrier material used in the product of the invention may be any water-soluble or water-dispersible material that is pharmacologically acceptable or inert to the chemical and which is capable of forming a rapidly disintegratable open matrix network. It is preferred to use water-soluble material as the carrier since this results in the most rapid disintegration of the matrix when the product is placed in an aqueous medium.
  • a particularly advantageous carrier may be formed from polypeptides such as gelatin, particularly gelatin which is particularly hydrolysed, e.g. by heating in water.
  • the gelatin may be partially hydrolysed by heating a solution of the gelatin in water, e.g. in an autoclave at about 120°C. for up to 2 hours, e.g.
  • the hydrolysed gelatin is preferably used at concentrations of about 1 to 6% or 8% weight/vol., most preferably at 2 to 4% e.g. about 3%, or at 4 to 6% e.g. about 5%. As is apparent from the Examples herein, these concentrations refer to the total formulation prior to removal of the water for example by freeze drying.
  • mammalian derived gelatin may be used, it has an unpleasant taste and thus necessitates the use of sweeteners and flavours to mask the taste of the gelatin in addition to any sweeteners and flavours which may be required to mask the taste of the active ingredient.
  • the heating step necessary with the use of mammalian gelatin increases processing times and incurs heating costs thereby increasing the overall costs of the process. Therefore, the use of fish gelatin, especially non-gelling fish gelatin, is preferred, especially for desmopressin.
  • carrier materials may be used in place of partially hydrolysed gelatin or fish gelatin, for example polysaccharides such as hydrolysed dextran, dextrin and alginates (e.g. sodium alginate) or mixtures of above mentioned carriers with each other or with other carrier materials such as polyvinyl alcohol, polyvinylpyrrolidine or acacia.
  • Modified starch may also be used in place of gelatin, as described in WO-A-0044351, to which reference is made for further details.
  • carrier materials which may be present in addition to, or in some cases in place of, the above carriers include: gums such as tragacanth, xanthan, carageenan, and guar; mucilages including linseed mucilage and agar; polysaccharides and other carbohydrates such as pectin and starch and its derivatives, particularly soluble starch and dextrates; water soluble cellulose derivatives, such as hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose and hydroxypropyl cellulose; and carbomer.
  • gums such as tragacanth, xanthan, carageenan, and guar
  • mucilages including linseed mucilage and agar
  • polysaccharides and other carbohydrates such as pectin and starch and its derivatives, particularly soluble starch and dextrates
  • water soluble cellulose derivatives such as hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose and
  • a filler may also be present.
  • the filler desirably will also assist in the rapid dissolution or dispersion of the dosage form in the mouth.
  • suitable fillers include sugars such as mannitol, dextrose, lactose, sucrose and sorbitol.
  • the filler is preferably used at concentrations of about 0 to 6% or 8% weight/vol., most preferably at 2 to 4% e.g. about 3%, or at 4 to 6% e.g. about 5%. Again, these concentrations refer to the total formulation prior to removal of the water for example by freeze drying.
  • compositions of the invention may be in the form of shaped articles. They may incorporate ingredients in addition to the active ingredient(s).
  • the pharmaceutical dosage form of the present invention may incorporate pharmaceutically acceptable adjuvants.
  • adjuvants include, for example, colouring agents, flavouring agents, preservatives (e.g. bacteriostatic agents), and the like.
  • US-A-5188825 teaches that water soluble active agents should be bonded to an ion exchange resin to form a substantially water insoluble active agent/resin complex; although that teaching may be practised here (for which reference to US-A-5188825 is made for further details), it has been found in the development of the present invention that water soluble peptides such as desmopressin may be formulated in solid dosage forms of the invention without the need for bonding to an ion exchange resin. Such dosage forms may therefore be free of an ion exchange resin.
  • a surfactant may be present, as taught in US-A-5827541, to which reference is made for further details.
  • a lipid such as a lecithin may be present to improve patient acceptability, as taught in US-A-6156339, to which reference is made for further details.
  • Other strategies for taste masking include conversion of a soluble salt to a less soluble salt or to the free base, as taught by US-A-5738875 and US-A-5837287, and the use of a process disclosed in US-A-5976577 wherein, prior to freeze drying, a suspension of uncoated or coated coarse particles of the pharmaceutically active substance(s) in a carrier material is cooled to reduce the viscosity and minimize release of the active substance during processing, as well as beyond the point of disintegration of the form in the mouth, to minimise bad taste from the peptide; reference is made to the cited patents for further details.
  • xanthan gum may be present, particularly when the carrier is formed from gelatin, as the xanthan gum may act as a gelatin flocculating agent, as disclosed in US-A-5631023, to which reference is made for further details.
  • one or more amino acids having from about 2 to 12 carbon atoms may be present, when the matrix is selected from the group consisting of gelatin, pectin, soy fibre protein and mixtures thereof.
  • the preferred amino acid is glycine, while the preferred matrix forming agent is gelatin and/or pectin; in a particularly preferred embodiment, the dosage form additionally comprises mannitol. All excipients will be chosen to be pharmaceutically acceptable.
  • Pharmaceutical dosage forms of the present invention may be prepared by a process as described in GB-A- 1548022, which comprises subliming solvent from a composition comprising the pharmaceutical substance and a solution of the carrier material in a solvent, the composition being in the solid state in a mould.
  • the sublimation is preferably carried out by freeze drying a composition comprising the active ingredient and a solution of the carrier material in a solvent.
  • the composition may include additional ingredients, such as those mentioned above.
  • the solvent is preferably water but it may contain a co-solvent (such as an alcohol e.g. tert-butyl alcohol) to improve the solubility of the chemical.
  • the composition may also contain a surfactant e.g. Tween 80 (polyoxyethylene (20) sorbitan mono-oleate). The surfactant may help to prevent the freeze dried product sticking to the surface of the mould. It may also aid in the dispersion of the active ingredient.
  • the composition may contain a pH adjusting agent to adjust the pH of a solution from which the dosage form is prepared within the range of from 3 to 6, preferably from 3.5 to 5.5, and most preferably from 4 to 5, for example 4.5 or 4.8.
  • Citric acid is a preferred pH adjusting agent, but others including hydrochloric acid, malic acid can be used. Such non-volatile pH adjusting agents will not be removed by the freeze drying or other sublimation process and so may be present in the final product.
  • the mould may comprise a series of cylindrical or other shape depressions in it, each of a size corresponding to the desired size of the shaped article.
  • the size of the depression in the mould may be larger than the desired size of the article and after the contents have been freeze dried the product can be cut into the desired size (for example thin wafers).
  • the mould is preferably a depression in a sheet of filmic material.
  • the filmic material may contain more than one depression.
  • the filmic material may be similar to that employed in conventional blister packs which are used for packaging oral contraceptive tablets and like medicament forms.
  • the filmic material may be made of thermoplastic material with the depressions formed by thermoforming.
  • the preferred filmic material is a polyvinyl chloride film. Laminates of filmic material may also be used.
  • the mould comprises a metal plate (e.g. an aluminium plate) containing one or more depressions.
  • a cooling medium e.g. liquid nitrogen or solid carbon dioxide.
  • the mould When the mould is cooled a predetermined amount of water containing the carrier material, the active ingredient and any other desired ingredient is fed into the depression(s). When the contents of the depression(s) are frozen the mould is subjected to reduced pressure and, if desired, controlled application of heat to aid the sublimation.
  • pharmaceutical dosage forms of the present invention may be prepared by a process as described in GB-A-2114440 which comprises freezing a composition comprising a solution in a first solvent of a water-soluble or water- dispersible carrier material that is inert towards the active ingredient, subliming the first solvent from the frozen composition so as to produce a product having a network of carrier material, adding to said product a solution or suspension of a second non-aqueous solvent containing a predetermined amount of the active ingredient and allowing or causing the second solvent to evaporate.
  • GB-A-2114440 for further details.
  • pharmaceutical dosage forms of the present invention may be prepared by a process as described in GB-A-2111184, which comprises introducing the liquid medium in the form of droplets beneath the surface of a cooling liquid which is maintained at a temperature lower than the freezing point of the liquid medium, the cooling liquid being immiscible with, and inert with respect to, the liquid medium and having a density greater than that of both the liquid medium and the resulting frozen particles such that as the liquid droplets float upwards in the cooling liquid towards the surface thereof, they are frozen to form spherical particles.
  • the frozen spherical particles can be collected at or near the upper surface of the cooling liquid.
  • Dosage forms in accordance with the invention have improved bioavailability. They are intended to be taken orally, and are highly suitable for that purpose. They disperse rapidly in the mouth, and may for example be placed under the tongue (sub-lingually), or they may be placed on the tongue or against the cheek or gingiva.
  • a dosage form as described above for use in medicine particularly, for voiding postponement, incontinence, primary nocturnal enuresis (PNE), nocturia and central diabetes insipidus.
  • the invention provides a method of postponing voiding, treating or preventing incontinence, primary nocturnal enuresis (PNE), nocturia and/or central diabetes insipidus, the method comprising administering an effective and generally non-toxic amount of desmopressin to a subject in an orodispersible pharmaceutical dosage form, for example in a dosage form as described above. Any other disease or condition treatable or preventable by desmopressin may similarly be addressed by means of the invention.
  • the invention therefore extends to the use of desmopressin in the manufacture of an orodispersible pharmaceutical formulation.
  • the invention also extends to a pack comprising an orodispersible pharmaceutical dosage form of desmopressin together with instructions to place the dosage form in a patient's mouth.
  • Encompassed within the invention is also a method for preparing a packaged dosage form of desmopressin, the method comprising bringing into association an orodispersible pharmaceutical dosage form of desmopressin and instructions to place the dosage form in a patient's mouth.
  • the instructions may for example be printed on packaging encompassing the dosage form when sold or dispensed, or may be on a product information leaflet or insert within the packaging.
  • peptides apart from desmopressin are formulatable in the formulations described above.
  • the invention therefore extends to a orodispersible pharmaceutical dosage form of a pharmaceutically active peptide.
  • a solid pharmaceutical dosage form for example for oral administration, the dosage form comprising a pharmaceutically active peptide and an open matrix network carrying the peptide, the open matrix network being comprised of a water-soluble or water-dispersible carrier material that is inert towards the peptide.
  • oral vaccines made from fast dissolving dosage forms are known from WO-A- 9921579, there is no disclosure of pharmaceutically active peptides retaining their activity after administration.
  • the experimental work in WO-A-9921579 merely shows the presence in saliva of IgA antibodies to tetanus toxoid following the administration of tetanus toxoid by means of an adjuvanted fast dissolving dosage vaccine formulation.
  • Formulations of the present invention are not vaccines and do not include adjuvants.
  • Pharmaceutical dosage forms of this aspect of the invention contain a pharmaceutically active peptide.
  • Such peptides may be directly active per se or they may have one or more active metabolites, i.e. they may be prodrugs for the primary or true active principle.
  • the peptides may have for example from 2 to 20, preferably from 5 to 15, amino acid residues (at least some of which may be D-isomers, although L-isomers will generally be predominant).
  • the peptides may be linear, branched or cyclic, and may include natural residues or substituents or residues or substituents not found in natural peptides or proteins either commonly or at all.
  • Pharmaceutically acceptable salts, simple adducts and tautomers are included where appropriate.
  • peptides usefully formulated by means of the invention include somatostatin and its analogues including Cyclo(MeAla-Tyr-D-Trp-Lys-Val-Phe) and Cyclo(Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-GABA), enkephalins including Met 5 - enkephalin and Leu 5 -enkephalin, oxytocin analogues such as atosiban (l-deamino-2-D- Tyr-(OEt)-4-Thr-8-Orn-oxytocin), GnRH analogues such as triptorelin (6-D-Trp-GnRH), leuprolide ([D-Leu 6 , Pro 8 -NHEt]-GnRH), degarelix (Ac-D-2Nal-D-4Cpa-D-3Pal-Ser- 4Aph(L-Hydroorot
  • Dosage will be as determined by the physician or clinician, depending on the nature of the peptide, the nature of the disease or condition being treated or prevented, and other factors.
  • the invention also provides a method of treating or preventing a disease or condition which is treatable or preventable by a peptide, the method comprising administering an effective and generally non-toxic amount of the peptide to a subject in a dosage form as described above.
  • Spray-dried fish gelatin (4g) and mannitol (3g) are added to a glass beaker.
  • Purified water (93 g) is then added and solution effected by stirring using a magnetic follower.
  • the pH is checked and adjusted to 4.8 with citric acid as necessary.
  • a Gilson pipette can then be used to deliver 500 mg of this solution into each one of a series of pre-formed blister pockets having a pocket diameter of about 16 mm.
  • the blister laminate may comprise PVC coated with PVdC.
  • the dosed units are then frozen at a temperature of -110°C in a freeze tunnel with a residence time of 3.2 minutes and the frozen units are then held in an upright freezer for a time greater than 1.5 hours at a temperature of -25°C ( ⁇ 5°C).
  • the units are then freeze-dried overnight with an initial shelf temperature of 10°C rising to +20°C at a pressure of 0.5 mbar.
  • the units can be checked for moisture prior to unloading by the drying trace and by the pressurised moisture check.
  • Desmopressin PolyPeptide Laboratories, Sweden 200 ⁇ g
  • Example 1 The procedure of Example 1 herein is followed, except that the amount of desmopressin per unit dosage form was 400 ⁇ g.
  • EXAMPLE 3 800 ⁇ g Desmopressin Orodispersible Dosage Form
  • Example 1 The procedure of Example 1 herein is followed, except that the amount of desmopressin per unit dosage form was 800 ⁇ g.
  • a desmopressin dosage form orodispersible dosage form was prepared using the following ingredients per unit dosage form:
  • Desmopressin PolyPeptide Laboratories, Sweden 200 ⁇ g
  • Example 4 The procedure of Example 4 herein was followed, except that the amount of desmopressin per unit dosage form was 400 ⁇ g.
  • Example 4 The procedure of Example 4 herein was followed, except that the amount of desmopressin per unit dosage form was 800 ⁇ g.
  • Comparative Example 2 The procedure of Comparative Example 2 was followed, except that the amount of desmopressin was 100 ⁇ g per tablet.
  • the concentration of desmopressin in plasma was determined by a validated RIA method.
  • the pharmacokinetics of desmopressin is linear, when administered as the orodispersible dosage form of Example 4, 5 or 6.
  • the mean elimination half-life was determined to be 2.24 hours.
  • oral administration of desmopressin maximum plasma concentrations were observed at 1.06 hours (2 x 100 ⁇ g) or 1.05 hours (1 x 200 ⁇ g) after dosing.
  • the maximum plasma concentration was 13.2 and 15.0 pg/ml after an oral dose of 2 x 100 ⁇ g and 1 x 200 ⁇ g, respectively.
  • the bioavailability was determined to be 0.13% (2 x 100 ⁇ g) or 0.16% (1 x 200 ⁇ g).

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Good bioavailability of desmopressin can be obtained by means of an orodispersible pharmaceutical dosage form which provides for a rapid dispersion of the active substance in the oral cavity. Thereby, desmopressin may be absorbed across the sublingual, buccal and/or gingival mucosa, and/or from the gastrointestinal tract for systemic distribution. Preferred dosage forms comprise desmopressin and an open matrix network which is an inert water-soluble or water-dispersible carrier material. Desmopressin formulated in this way is useful for voiding postponement, or the treatment or prevention of incontinence, primary nocturnal enuresis (PNE), nocturia or central diabetes insipidus. A process for the production of the dosage form by subliming solvent from a composition comprising desmopressin and a solution of carrier material is also provided.

Description

PHARMACEUTICAL FORMULATIONS
'TΗIS INVENTION relates to pharmaceutical formulations, to methods of making them and to their use in the treatment and prophylaxis of diseases in mammals, particularly humans.
Desmopressin (l-desamino-8-D-arginine vasopressin, DDAVP) is an analogue of vasopressin having high antidiuretic activity. It is commercially available as the acetate salt both in tablet form and as a nasal spray, and is commonly prescribed for voiding postponement, incontinence, primary nocturnal enuresis (PNE) and nocturia, among other indications, including central diabetes insipidus.
While existing formulations of desmopressin have met the needs of patients, there is still a need for improvement. Tablets are often preferred by patients because of their ease of use, discretion and the lack of uncertainty of correct administration. However, tablets generally need to be taken with a glass of water or other drink, which is a problem as fluid intake need to be restricted in connection with desmopressin treatment, and the message to the patient is much clearer when there is no water intake at all. Furthermore the bioavailability of desmopressin when taken by tablet is about 0.1% when compared to intravenous injection, a figure which clearly leaves room for improvement.
Intranasal administration leads to higher bioavailability, but is less preferred by patients. Further, intranasal administration may adversely affect the cilia, such that viruses and bacteria may more readily pass into the mucosa.
Sublingual formulations of desmopressin have previously been proposed. Grossman et al., Br. Med. J. 1215 (17 May 1980) reported administration of desmopressin in a sublingual lozenge of unspecified composition. In the same year, Laczi et al., Int. J. Clin. Pharm. Ther. Tox. 18 (12) 63-68 (1980) reported administration of 30μg desmopressin in 200mg sublingual tablets containing sucrose, potato starch, stearin, ethanol (as rectified spirit), white gelatin, distilled water and powdered cocoa. However, in WO-A-8502119 it is stated:
The so-called sublingual tablet is also objectionable since it requires a relatively long dissolving time and is dependent on a patient's saliva secretion. [WO-A-8502119, page 2, lines 4-6]
Fjellestad-Paulsen et al., Clin. Endocrinol. 38 177-82 (1993) administered a liquid nasal spray formulation of desmopressin sublingually, which avoided the problems noted above for the sublingual tablet. However, the authors reported that, following sublingual administration of the liquid, no detectable desmopressin was found in the blood.
It has now been discovered that desmopressin can be administered as a solid orodispersible dosage form which provides improved bioavailability compared to conventional oral tablets of desmopressin.
According to a first aspect of the invention, there is provided an orodispersible pharmaceutical dosage form of desmopressin.
The desmopressin may be in the form of the free base or a pharmaceutically or, where appropriate veterinarily, acceptable salt, or in any other pharmaceutically or veterinarily acceptable form. The acetate salt is particularly preferred.
The formulation will typically be solid. It may disperse rapidly in the mouth, for example within 10, 5, 2 seconds, or even within 1 second, in increasing order of preference. Such formulations are termed 'orodispersible'. The formulation will typically comprise a suitable carrier for this purpose, which will be pharmaceutically acceptable (or veterinarily acceptable in the case of administration to non-human animals). The daily dosage of desmopressin, measured as the free base, will generally be from 0.5 or 1 μg to 1 mg per dosage form. In one preferred dosage range, the dosage will typically range from 2 μg to 800 μg per dosage form and preferably from 10 μg to 600 μg. Relative low doses are also specifically contemplated, for example from 0.5 μg to 75 μg, preferably 0.5 or 1 μg to 50 μg. When one dosage form per day is administered, as is usual for PNE and nocturia, this will typically be the dose per dosage form. When the daily dose is administered in two or more dosages, as will typically be the case for central diabetes insipidus, the amount of active compound per dosage form will be reduced accordingly.
Other active ingredients, whether or not peptides, may also be present.
Pharmaceutical dosage forms of the present invention are adapted to supply the active ingredient to the oral cavity. The active may be absorbed across the sublingual mucosa, and/or otherwise from the oral cavity (e.g. across the buccal and/or gingival mucosa) and/or from the gastrointestinal tract for systemic distribution.
A variety of formulations are known which are suitable for delivering other active ingredients for absorption from the oral cavity. Such formulations may be useful in the present invention. Among them are intrabuccally disintegrating solid formulations or preparations which comprise the active ingredient, a sugar comprising lactose and/or mannitol and 0.12 to 1.2 w/w%, based on the solid components, of agar and which has a density of 400 mg/ml to 1 ,000 mg/ml and have a sufficient strength for handling, which in practice may mean sufficient strength to withstand removal from a blister packaging without disintegrating. Such formulations, and how to make them, are disclosed in US- A-5466464, to which reference is made for further details.
In this embodiment of the invention, the sugar may be used in the formulation in an amount of at least 50 w/w%, preferably 80 w/w% or more, more preferably 90 w/w% or more, based on the total solid components, although it may vary depending on the quality and quantity of the active ingredient to be used.
Though types of agar are not particularly limited, those listed in the Japanese Pharmacopoeia may be used preferably. Examples of the listed agar include agar powders PS-7 and PS-8 (manufactured by Ina Shokuhin).
Agar may be used in an amount of from 0.12 to 1.2 w/w%, preferably from 0.2 to 0.4 w/w%, based on the solid components.
In order to produce a formulation in accordance with this embodiment of the present invention, a sugar comprising lactose and/or mannitol is suspended in an aqueous agar solution, filled in a mould, solidified into a jelly-like form and then dried. The aqueous agar solution may have a concentration of from 0.3 to 2.0%, preferably from 0.3 to 0.8%. The aqueous agar solution may be used in such an amount that the blending ratio of agar based on the solid components becomes 0.12 to 1.2 w/w%, but preferably 40 to 60 w/w% of agar solution based on the solid components.
Other formulations known for delivering active ingredients for absorption from the oral cavity are the dosage forms disclosed in US-A-6024981 and US-A-6221392. They are hard, compressed, rapidly dissolvable dosage forms adapted for direct oral dosing comprising: an active ingredient and a matrix including a non-direct compression filter and a lubricant, said dosage form being adapted to rapidly dissolve in the mouth of a patient and thereby liberate said active ingredient, and having a friability of about 2% or less when tested according to the U.S.P., said dosage form optionally having a hardness of at least about 15 Newtons (N), preferably from 15-50 N. US-A-6024981 and US-A- 6221392 disclose further details and characteristics of these dosage forms and how to make them. Preferably, dosage forms in accordance with this embodiment of the invention dissolve in about 90 seconds or less (preferably 60 seconds or less and most preferably 45 seconds or less) in the patient's mouth. It is also often desirable that the dosage form include at least one particle. The particle would be the active ingredient and a protective material. These particles can include rapid release particles and or sustained release particles.
In a particularly preferred formulation in accordance with this embodiment of the present invention there is provided a hard, compressed, rapidly dissolving tablet adapted for direct oral dosing. The tablet includes particles made of an active ingredient and a protective material. These particles are provided in an amount of between about 0.01 and about 75% by weight based on the weight of the tablet. The tablet also includes a matrix made from a non-direct compression filler, a wicking agent, and a hydrophobic lubricant. The tablet matrix comprises at least about 60% rapidly water soluble ingredients based on the total weight of the matrix material. The tablet has a hardness of between about 15 and about 50 Newtons, a friability of less than 2% when measured by U.S.P. and is adapted to dissolve spontaneously in the mouth of a patient in less than about 60 seconds and thereby liberate said particles and be capable of being stored in bulk.
A very fine grained or powdered sugar known as a non-direct compression sugar may be used as a filler in the matrix of this embodiment the present invention. This material, in part because of its chemical composition and in part because of its fine particle size, will dissolve readily in the mouth in a mater of seconds once it is wetted by saliva. Not only does this mean that it can contribute to the speed at which the dosage form will dissolve, it also means that while the patient is holding the dissolving dosage form in his or her mouth, the filler will not contribute a "gritty" or "sandy" texture thus adversely affecting the organoleptic sensation of taking the dosage form. In contrast, direct compression versions of the same sugar are usually granulated and treated to make them larger and better for compaction. While these sugars are water soluble, they may not be solubilised quickly enough. As a result, they can contribute to the gritty or sandy texture of the dosage form as it dissolves. Dissolution time in the mouth can be measured by observing the dissolution time of the tablet in water at about 37°C. The tablet is immersed in the water without forcible agitation or with minimal agitation. The dissolution time is the time from immersion to substantially complete dissolution of the rapidly water soluble ingredients of the tablet as determined by visual observation.
Particularly preferred fillers, in accordance with the present invention are non-direct compression sugars and sugar alcohols which meet the specifications discussed above. Such sugars and sugar alcohols include, without limitation, dextrose, mannitol, sorbitol, lactose and sucrose. Of course, dextrose, for example, can exist as either a direct compression sugar, i.e., a sugar which has been modified to increase its compressibility, or a non-direct compression sugar.
Generally, the balance of the formulation can be matrix. Thus the percentage of filler can approach 100%. However, generally, the amount of non-direct compression filler useful in accordance with the present invention ranges from about 25 to about 95%, preferably between about 50 and about 95% and more preferably from about 60 to about 95%.
The amount of lubricant used can generally range from between about 1 to about 2.5% by weight, and more preferably between about 1.5 to about 2% by weight. Hydrophobic lubricants useful in accordance with the present invention include alkaline stearates, stearic acid, mineral and vegetable oils, glyceryl behenate and sodium stearyl fumarate. Hydrophilic lubricants can also be used.
Protective materials useful in accordance with this embodiment of the present invention may include any of the polymers conventionally utilized in the formation of microparticles, matrix-type microparticles and microcapsules. Among these are cellulosic materials such as naturally occurring cellulose and synthetic cellulose derivatives; acrylic polymers and vinyl polymers. Other simple polymers include proteinaceous materials such as gelatin, polypeptides and natural and synthetic shellacs and waxes. Protective polymers may also include ethylcellulose, methylcellulose, carboxymethyl cellulose and acrylic resin material sold under the registered trade mark EUDRAGIT by Rhone Pharma GmbH of Weiterstadt, Germany.
In addition to the ingredients previously discussed, the matrix may also include wicking agents, non-effervescent disintegrants and effervescent disintegrants. Wicking agents are compositions which are capable of drawing water up into the dosage form. They help transport moisture into the interior of the dosage form. In that way the dosage form can dissolve from the inside, as well as from the outside.
Any chemical which can function to transport moisture as discussed above can be considered a wicking agent. Wicking agents include a number of traditional non- effervescent disintegration agents. These include, for example, microcrystalline cellulose (AVICEL PH 200, AVICEL PH 101), Ac-Di-Sol (Croscarmelose Sodium) and PVP-XL (a crosslinked polyvinylpyrrolidone); starches and modified starches, polymers, and gum such as arabic and xanthan. Hydroxyalkyl cellulose such as hydroxymethylcellulose. hydroxypropylcellulose and hydroxyopropylmethylcellulose, as well as compounds such as carbopol may be used as well.
The conventional range of non-effervescent disintegrant agents used in conventional tablets can be as high as 20%. However, generally, the amount of disintegration agent used ranges from between about 2 and about 5%, according to the Handbook of Pharmaceutical Excipients.
In accordance with this embodiment of the present invention, the amount of wicking agents used may range from between 2 to about 12% and preferably from between 2 to about 5%. It is also possible, of course, to include non-effervescent disintegrants which may not act to wick moisture, if desirable. In either event, it is preferable to use either rapidly water soluble, non-effervescent disintegrants or wicking agents and/or to minimize the use of generally non-water soluble wicking agents or non-effervescent disintegrants. Non- rapidly dissolvable, non-rapidly water soluble elements if used in sufficient quantity, can adversely affect the organoleptic properties of the tablets as they dissolve within the mouth and therefore should be minimized. Of course, wicking agents or non- effervescent disintegrants which are rapidly water soluble as discussed herein can be used in greater quantity and they will not add to the grittiness of the formulation during dissolution. Preferred wicking agents in accordance with the present invention include crosslinked PVP, although, the amounts of these must be controlled as they are not rapidly water soluble.
In addition, it may be desirable to use an effervescent couple, in combination with the other recited ingredients to improve the disintegration profile, the organoleptic properties of the material and the like. Preferably, the effervescent couple is provided in an amount of between about 0.5 and about 50%, and more preferably, between about 3 and about 15% by weight, based on the weight of the finished tablet. It is particularly preferred that sufficient effervescent material be provided such that the evolved gas is less than about 30 cm, upon exposure to an aqueous environment.
The term "effervescent couple" includes compounds which evolve gas. The preferred effervescent couple evolve gas by means of a chemical reaction which takes place upon exposure of the effervescent disintegration couple to water and/or to saliva in the mouth. This reaction is most often the result of the reaction of a soluble acid source and an alkali monohydrogencarbonate or other carbonate source. The reaction of these two general compounds produces carbon dioxide gas upon contact with water or saliva. Such water-activated materials must be kept in a generally anhydrous state and with little or no absorbed moisture or in a stable hydrated form, since exposure to water will prematurely disintegrate the tablet. The acid sources may be any which are safe for human consumption and may generally include food acids, acid and hydrite antacids such as, for example: citric, tartaric, malic, fumaric, adipic, and succinics. Carbonate sources include dry solid carbonate and bicarbonate salt such as, preferably, sodium bicarbonate, sodium carbonate, potassium bicarbonate and potassium carbonate, magnesium carbonate and the like. Reactants which evolve oxygen or other gasses and which are safe for human consumption are also included.
In the case of the orally dissolvable tablets in accordance with the present invention, it is preferred that both the amount and the type of disintegration agent, either effervescent or non-effervescent, or the combination thereof be provided sufficient in a controlled amount such that the tablet provides a pleasant organoleptic sensation in the mouth of the patient. In some instances, the patient should be able to perceive a distinct sensation of fizzing or bubbling as the tablet disintegrates in the mouth. In general, the total amount of wicking agents, non-effervescent disintegrants and effervescent disintegrants should range from 0-50%. However, it should be emphasized that the formulations of the present invention will dissolve rapidly and therefore, the need for disintegrating agents is minimal. As illustrated in the examples, appropriate hardness, friability and dissolution times can be obtained even without effervescent disintegrants or high quantities of wicking agents.
The use of a non-direct compression filler eliminates the need for many conventional processing steps such as granulation and/or the need to purchase more expensive pre- granulated, compressible fillers. At the same time, the resulting dosage form is a balance of performance and stability. It is robust enough to be conventionally produced using direct compression. It is robust enough to be stored or packaged in bulk. Yet, it rapidly dissolves in the mouth while minimizing the unpleasant feel of conventional disintegrating tablets to the extent possible. Formulations in accordance with this embodiment of the invention may be made by a method including the steps of:
(a) forming a mixture including an active ingredient and a matrix including a non-direct compression filler and a lubricant;
(b) compressing the mixture to form a plurality of hard, compressed, rapidly disintegrable dosage forms including the active ingredient distributed in the orally dissolvable matrix; and optionally
(c) storing the dosage forms in bulk prior to packaging. In a preferred embodiment, the dosage forms are then packaged in a lumen of a package such that there is at least one per package. In a preferred particularly preferred embodiment, the dosage forms are then packaged in a lumen of a package such that there more than one per package. Direct compression is the preferred method of forming the dosage forms.
Other formulations known for delivering active ingredients for absorption from the oral cavity are the dosage forms disclosed in US-A-6200604, which comprise an orally administrable medicament in combination with an effervescent agent used as penetration enhancer to influence the permeability of the medicament across the buccal, sublingual, and gingival mucosa. In the context of the present invention, the medicament is desmopressin, which is administered in some embodiments across the sublingual mucosa. In the formulations of this embodiment of the invention, effervescent agents can be used alone or in combination with other penetration enhancers, which leads to an increase in the rate and extent of oral absorption of an active drug.
Formulations or dosage forms in accordance with this embodiment of the invention should include an amount of an effervescent agent effective to aid in penetration of the drug across the oral mucosa. Preferably, the effervescent is provided in an amount of between about 5% and about 95% by weight, based on the weight of the finished tablet, and more preferably in an amount of between about 30% and about 80% by weight. It is particularly preferred that sufficient effervescent material be provided such that the evolved gas is more than about 5 cm3 but less than about 30 cm3, upon exposure of the tablet to an aqueous environment.
The term "effervescent agent" includes compounds which evolve gas. The preferred effervescent agents evolve gas by means of a chemical reaction which takes place upon exposure of the effervescent agent (an effervescent couple) to water and/or to saliva in the mouth. This reaction is most often the result of the reaction of a soluble acid source and a source of carbon dioxide such as an alkaline carbonate or bicarbonate. The reaction of these two general compounds produces carbon dioxide gas upon contact with water or saliva. Such water-activated materials must be kept in a generally anhydrous state and with little or no absorbed moisture or in a stable hydrated form, since exposure to water will prematurely disintegrate the tablet. The acid sources may be any which are safe for human consumption and may generally include food acids, acid and hydrite antacids such as, for example: citric, tartaric, amalic, fumeric, adipic, and succinics. Carbonate sources include dry solid carbonate and bicarbonate salt such as, preferably, sodium bicarbonate, sodium carbonate, potassium bicarbonate and potassium carbonate, magnesium carbonate and the like. Reactants which evolve oxygen or other gasses and which are safe for human consumption are also included.
The effervescent agent(s) useful in this embodiment of the present invention is not always based upon a reaction which forms carbon dioxide. Reactants which evolve oxygen or other gasses which are safe for human consumption are also considered within the scope. Where the effervescent agent includes two mutually reactive components, such as an acid source and a carbonate source, it is preferred that both components react completely. Therefore, an equivalent ratio of components which provides for equal equivalents is preferred. For example, if the acid used is diprotic, then either twice the amount of a mono-reactive carbonate base, or an equal amount of a di- reactive base should be used for complete neutralization to be realised. However, in other embodiments of the present invention, the amount of either acid or carbonate source may exceed the amount of the other component. This may be useful to enhance taste and/or performance of a tablet containing an overage of either component. In this case, it is acceptable that the additional amount of either component may remain unreacted.
Such dosage forms may also include in amounts additional to that required for effervescence a pH adjusting substance. For drugs that are weakly acidic or weakly basic, the pH of the aqueous environment can influence the relative concentrations of the ionised and unionised forms of the drug present in solution according to the Henderson- Hasselbach equation. The pH solutions in which an effervescent couple has dissolved is slightly acidic due to the evolution of carbon dioxide. The pH of the local environment, e.g. saliva in immediate contact with the tablet and any drug that may have dissolved from it, may be adjusted by incorporating in the tablet a pH adjusting substances which permit the relative portions of the ionised and unionised forms of the drug to be controlled. In this way, the present dosage forms can be optimised for each specific drug. If the unionised drug is known or suspected to be absorbed through the cell membrane (transcellular absorption) it would be preferable to alter the pH of the local environment (within the limits tolerable to the subject) to a level that favours the unionised form of the drug. Conversely, if the ionised form is more readily dissolved the local environment should favour ionisation.
The aqueous solubility of the drug should preferably not be compromised by the effervescent and pH adjusting substance, such that the dosage forms permit a sufficient concentration of the drug to be present in the unionised form. The percentage of the pH adjusting substance and/or effervescent should therefore be adjusted depending on the drug.
Suitable pH adjusting substance for use in the present invention include any weak acid or weak base in amounts additional to that required for the effervescence or, preferably, any buffer system that is not harmful to the oral mucosa. Suitable pH adjusting substance for use in the present invention include, but are not limited to, any of the acids or bases previously mentioned as effervescent compounds, disodium hydrogen phosphate, sodium dihydrogen phosphate and the equivalent potassium salt.
The dosage form of this embodiment of the invention preferably includes one or more other ingredients to enhance the absorption of the pharmaceutical ingredient across the oral mucosa and to improve the disintegration profile and the organoleptic properties of the dosage form. For example, the area of contact between the dosage form and the oral mucosa, and the residence time of the dosage form in the oral cavity can be improved by including a bioadhesive polymer in this drug delivery system. See, for example, Mechanistic Studies on Effervescent-Induced Permeability Enhancement by Jonathan Eichman (1997), which is incorporated by reference herein. Effervescence, due to its mucus stripping properties, would also enhance the residence time of the bioadhesive, thereby increasing the residence time for the drug absorption. Non-limiting examples of bioadhesives used in the present invention include, for example, Carbopol 934 P, Na CMC, Methocel, Polycarbophil (Noveon AA-1), HPMC, Na alginate, Na Hyaluronate and other natural or synthetic bioadhesives.
In addition to the effervescence-producing agents, a dosage form according to this embodiment of the present invention may also include suitable non-effervescent disintegration agents. Non-limiting examples of non-effervescent disintegration agents include: microcrystalline, cellulose, croscarmelose sodium, crospovidone, starches, corn starch, potato starch and modified starches thereof, sweeteners, clays, such as bentonite, alginates, gums such as agar, guar, locust bean, karaya, pectin and tragacanth. Disintegrants may comprise up to about 20 weight percent and preferably between about 2 and about 10% of the total weight of the composition.
In addition to the particles in accordance with this embodiment of the present invention, the dosage forms may also include glidants, lubricants, binders, sweeteners, flavouring and colouring components. Any conventional sweetener or flavouring component may be used. Combinations of sweeteners, flavouring components, or sweeteners and flavouring components may likewise be used.
Examples of binders which can be used include acacia, tragacanth, gelatin, starch, cellulose materials such as methyl cellulose and sodium carboxy methyl cellulose, alginic acids and salts thereof, magnesium aluminium silicate, polyethylene glycol, guar gum, polysaccharide acids, bentonites, sugars, invert sugars and the like. Binders may be used in an amount of up to 60 weight percent and preferably about 10 to about 40 weight percent of the total composition.
Colouring agents may include titanium dioxide, and dyes suitable for food such as those known as F.D.& C. dyes and natural coloring agents such as grape skin extract, beet red powder, beta-carotene, annato, carmine, turmeric, paprika, etc. The amount of colouring used may range from about 0.1 to about 3.5 weight percent of the total composition.
Flavours incorporated in the composition may be chosen from synthetic flavours oils and flavouring aromatics and/or natural oils, extracts from plants, leaves, flowers, fruits and so forth and combinations thereof. These may include cinnamon oil, oil of wintergreen, peppermint oils, clove oil, bay oil, anise oil, eucalyptus, thyme oil, cedar leave oil, oil of nutmeg, oil of sage, oil of bitter almonds and cassia oil. Also useful as flavours are vanilla, citrus oil, including lemon, orange, grape, lime and grapefruit, and fruit essences, including apple, pear, peach, strawberry, raspberry, cherry, plum, pineapple, apricot and so forth. Flavours which have been found to be particularly useful include commercially available orange, grape, cherry and bubble gum flavours and mixtures thereof. The amount of flavouring may depend on a number of factors, including the organoleptic effect desired. Flavours may be present in an amount ranging from about 0.05 to about 3 percent by weight based upon the weight of the composition. Particularly preferred flavours are the grape and cherry flavours and citrus flavours such as orange. One aspect of the invention provides a solid, oral tablet dosage form suitable for sublingual administration. Excipient fillers can be used to facilitate tableting. The filler desirably will also assist in the rapid dissolution of the dosage form in the mouth. Non- limiting examples of suitable fillers include: mannitol, dextrose, lactose, sucrose, and calcium carbonate.
As described in US-A-6200604, tablets can either be manufactured by direct compression, wet granulation or any other tablet manufacturing technique. The dosage form may be administered to a human or other mammalian subject by placing the dosage form in the subject's mouth and holding it in the mouth, beneath the tongue (for sublingual administration). The dosage form spontaneously begins to disintegrate due to the moisture in the mouth. The disintegration, and particularly the effervescence, stimulates additional salivation which further enhances disintegration.
Although the above described formulations are within the scope of the present invention, the most preferred orodispersible solid pharmaceutical dosage forms according to the invention comprise desmopressin and an open matrix network carrying the desmopressin, the open matrix network being comprised of a water-soluble or water- dispersible carrier material that is inert towards desmopressin.
Pharmaceutical dosage forms comprising open matrix networks are known from GB-A- 1548022, to which reference is made for further details. Pharmaceutical dosage forms of the invention can be rapidly disintegrated by water. By "rapidly disintegrated" is meant that the shaped articles are disintegrated in water within 10 seconds. Preferably the shaped article disintegrates (dissolves or disperses) within 5 seconds or even two seconds or one second or less. The disintegration time is measured by a procedure analogous to the Disintegration Test for Tablets, B.P. 1973. The procedure is described in GB-A-1548022 and outlined below. Apparatus
A glass or suitable plastic tube 80 to 100 mm long, with an internal diameter of about 28 mm and an external diameter of 30 to 31 mm, and fitted at the lower end, so as to form a basket, with a disc of rustproof wire gauze complying with the requirements for a No. 1.70 sieve.
A glass cylinder with a flat base and an internal diameter of about 45 mm containing water not less than 15 cm deep at a temperature between 36° and 38°C.
The basket is suspended centrally in the cylinder in such a way that it can be raised and lowered repeatedly in a uniform manner so that at the highest position the gauze just breaks the surface of the water and at the lowest position the upper rim of the basket just remains clear of the water.
Method
Place one shaped article in the basket and raise and lower it in such a manner that the complete up and down movement is repeated at a rate equivalent to thirty times a minute. The shaped articles are disintegrated when no particle remains above the gauze which would not readily pass through it. No such particle should remain after 10 seconds.
By the term "open matrix network" there is meant a network of water-soluble or water- dispersible carrier material having interstices dispersed throughout. The open matrix network of carrier material is of generally low density. For example the density may be within the range 10 to 200 mg cc e.g. 10 to 100 mg/cc, preferably 30 to 60 mg/cc. The density of the shaped article may be affected by the amount of active ingredient, or any other ingredients, incorporated into the article and may be outside the above mentioned preferred limits for the density of the matrix network. The open matrix network which is similar in structure to a solid foam enables a liquid to enter the product through the interstices and permeate through the interior. Permeation by aqueous media exposes the carrier material of both the interior and exterior of the product to the action of the aqueous media whereby the network of carrier material is rapidly disintegrated. The open matrix structure is of a porous nature and enhances disintegration of the product as compared with ordinary solid shaped pharmaceutical dosage forms such as tablets, pills, capsules, suppositories and pessaries. Rapid disintegration results in rapid release of the active ingredient carried by the matrix.
The carrier material used in the product of the invention may be any water-soluble or water-dispersible material that is pharmacologically acceptable or inert to the chemical and which is capable of forming a rapidly disintegratable open matrix network. It is preferred to use water-soluble material as the carrier since this results in the most rapid disintegration of the matrix when the product is placed in an aqueous medium. A particularly advantageous carrier may be formed from polypeptides such as gelatin, particularly gelatin which is particularly hydrolysed, e.g. by heating in water. For example, the gelatin may be partially hydrolysed by heating a solution of the gelatin in water, e.g. in an autoclave at about 120°C. for up to 2 hours, e.g. from about 5 minutes to about 1 hour, preferably from about 30 minutes to about 1 hour. The hydrolysed gelatin is preferably used at concentrations of about 1 to 6% or 8% weight/vol., most preferably at 2 to 4% e.g. about 3%, or at 4 to 6% e.g. about 5%. As is apparent from the Examples herein, these concentrations refer to the total formulation prior to removal of the water for example by freeze drying.
Although mammalian derived gelatin may be used, it has an unpleasant taste and thus necessitates the use of sweeteners and flavours to mask the taste of the gelatin in addition to any sweeteners and flavours which may be required to mask the taste of the active ingredient. Moreover, the heating step necessary with the use of mammalian gelatin increases processing times and incurs heating costs thereby increasing the overall costs of the process. Therefore, the use of fish gelatin, especially non-gelling fish gelatin, is preferred, especially for desmopressin. Reference is made to WO-A-0061117 for further details.
Other carrier materials may be used in place of partially hydrolysed gelatin or fish gelatin, for example polysaccharides such as hydrolysed dextran, dextrin and alginates (e.g. sodium alginate) or mixtures of above mentioned carriers with each other or with other carrier materials such as polyvinyl alcohol, polyvinylpyrrolidine or acacia. Modified starch may also be used in place of gelatin, as described in WO-A-0044351, to which reference is made for further details.
Other carrier materials which may be present in addition to, or in some cases in place of, the above carriers include: gums such as tragacanth, xanthan, carageenan, and guar; mucilages including linseed mucilage and agar; polysaccharides and other carbohydrates such as pectin and starch and its derivatives, particularly soluble starch and dextrates; water soluble cellulose derivatives, such as hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose and hydroxypropyl cellulose; and carbomer.
A filler may also be present. The filler desirably will also assist in the rapid dissolution or dispersion of the dosage form in the mouth. Non-limiting examples of suitable fillers include sugars such as mannitol, dextrose, lactose, sucrose and sorbitol. The filler is preferably used at concentrations of about 0 to 6% or 8% weight/vol., most preferably at 2 to 4% e.g. about 3%, or at 4 to 6% e.g. about 5%. Again, these concentrations refer to the total formulation prior to removal of the water for example by freeze drying.
Pharmaceutical dosage forms of the invention may be in the form of shaped articles. They may incorporate ingredients in addition to the active ingredient(s). For example the pharmaceutical dosage form of the present invention may incorporate pharmaceutically acceptable adjuvants. Such adjuvants include, for example, colouring agents, flavouring agents, preservatives (e.g. bacteriostatic agents), and the like. US-A-5188825 teaches that water soluble active agents should be bonded to an ion exchange resin to form a substantially water insoluble active agent/resin complex; although that teaching may be practised here (for which reference to US-A-5188825 is made for further details), it has been found in the development of the present invention that water soluble peptides such as desmopressin may be formulated in solid dosage forms of the invention without the need for bonding to an ion exchange resin. Such dosage forms may therefore be free of an ion exchange resin. For hydrophobic peptides, which desmopressin is not, a surfactant may be present, as taught in US-A-5827541, to which reference is made for further details. For peptides with an unpleasant taste (which desmopressin does not have), a lipid such as a lecithin may be present to improve patient acceptability, as taught in US-A-6156339, to which reference is made for further details. Other strategies for taste masking include conversion of a soluble salt to a less soluble salt or to the free base, as taught by US-A-5738875 and US-A-5837287, and the use of a process disclosed in US-A-5976577 wherein, prior to freeze drying, a suspension of uncoated or coated coarse particles of the pharmaceutically active substance(s) in a carrier material is cooled to reduce the viscosity and minimize release of the active substance during processing, as well as beyond the point of disintegration of the form in the mouth, to minimise bad taste from the peptide; reference is made to the cited patents for further details.
For insoluble or poorly soluble peptides having a large particle size, xanthan gum may be present, particularly when the carrier is formed from gelatin, as the xanthan gum may act as a gelatin flocculating agent, as disclosed in US-A-5631023, to which reference is made for further details.
As taught by WO-A-9323017 one or more amino acids having from about 2 to 12 carbon atoms may be present, when the matrix is selected from the group consisting of gelatin, pectin, soy fibre protein and mixtures thereof. In this formulation the preferred amino acid is glycine, while the preferred matrix forming agent is gelatin and/or pectin; in a particularly preferred embodiment, the dosage form additionally comprises mannitol. All excipients will be chosen to be pharmaceutically acceptable.
Pharmaceutical dosage forms of the present invention may be prepared by a process as described in GB-A- 1548022, which comprises subliming solvent from a composition comprising the pharmaceutical substance and a solution of the carrier material in a solvent, the composition being in the solid state in a mould.
The sublimation is preferably carried out by freeze drying a composition comprising the active ingredient and a solution of the carrier material in a solvent. The composition may include additional ingredients, such as those mentioned above. The solvent is preferably water but it may contain a co-solvent (such as an alcohol e.g. tert-butyl alcohol) to improve the solubility of the chemical. The composition may also contain a surfactant e.g. Tween 80 (polyoxyethylene (20) sorbitan mono-oleate). The surfactant may help to prevent the freeze dried product sticking to the surface of the mould. It may also aid in the dispersion of the active ingredient.
The composition may contain a pH adjusting agent to adjust the pH of a solution from which the dosage form is prepared within the range of from 3 to 6, preferably from 3.5 to 5.5, and most preferably from 4 to 5, for example 4.5 or 4.8. Citric acid is a preferred pH adjusting agent, but others including hydrochloric acid, malic acid can be used. Such non-volatile pH adjusting agents will not be removed by the freeze drying or other sublimation process and so may be present in the final product.
The mould may comprise a series of cylindrical or other shape depressions in it, each of a size corresponding to the desired size of the shaped article. Alternatively, the size of the depression in the mould may be larger than the desired size of the article and after the contents have been freeze dried the product can be cut into the desired size (for example thin wafers). However, as described in GB-A-2111423, the mould is preferably a depression in a sheet of filmic material. The filmic material may contain more than one depression. The filmic material may be similar to that employed in conventional blister packs which are used for packaging oral contraceptive tablets and like medicament forms. For example the filmic material may be made of thermoplastic material with the depressions formed by thermoforming. The preferred filmic material is a polyvinyl chloride film. Laminates of filmic material may also be used.
In one embodiment the mould comprises a metal plate (e.g. an aluminium plate) containing one or more depressions. In a preferred process using such a mould, the mould is cooled with a cooling medium (e.g. liquid nitrogen or solid carbon dioxide).
When the mould is cooled a predetermined amount of water containing the carrier material, the active ingredient and any other desired ingredient is fed into the depression(s). When the contents of the depression(s) are frozen the mould is subjected to reduced pressure and, if desired, controlled application of heat to aid the sublimation.
The pressure can be below about 4 mm. Hg; GB-A- 1548022 teaches that employment of pressures of below 0.3 mm Hg, for example 0.1 to 0.2 mm is preferred. The freeze dried products may then be removed from the depressions in the mould and stored for future use, e.g. in airtight jars or other suitable storage containers. Alternatively, the freeze dried product may be enclosed by filmic material as described in GB-A-2111423
A later developed process useful for making pharmaceutical dosage forms in accordance with the invention is described in GB-A-2111423, to which reference is made for further details. The process comprises filling a composition comprising a predetermined amount of active ingredient and a solution of partially hydrolysed gelatin into a mould, freezing the composition in the mould by passing gaseous cooling medium over the mould and then subliming solvent from the frozen composition so as to produce a network of partially hydrolysed gelatin carrying the active ingredient. In order to help ensure an even thickness of product, the side wall or walls of the mould may diverging outwards from the base and making an angle with the vertical of at least 5° at the surface of the composition, as described in GB-A-2119246 to which reference is made for further details.
Alternatively or in addition, pharmaceutical dosage forms of the present invention may be prepared by a process as described in GB-A-2114440 which comprises freezing a composition comprising a solution in a first solvent of a water-soluble or water- dispersible carrier material that is inert towards the active ingredient, subliming the first solvent from the frozen composition so as to produce a product having a network of carrier material, adding to said product a solution or suspension of a second non-aqueous solvent containing a predetermined amount of the active ingredient and allowing or causing the second solvent to evaporate. Reference is made to GB-A-2114440 for further details.
Alternatively or in addition, pharmaceutical dosage forms of the present invention may be prepared by a process as described in GB-A-2111184, which comprises introducing the liquid medium in the form of droplets beneath the surface of a cooling liquid which is maintained at a temperature lower than the freezing point of the liquid medium, the cooling liquid being immiscible with, and inert with respect to, the liquid medium and having a density greater than that of both the liquid medium and the resulting frozen particles such that as the liquid droplets float upwards in the cooling liquid towards the surface thereof, they are frozen to form spherical particles. The frozen spherical particles can be collected at or near the upper surface of the cooling liquid. Reference is made to GB- A-2111184 for further details.
Dosage forms in accordance with the invention have improved bioavailability. They are intended to be taken orally, and are highly suitable for that purpose. They disperse rapidly in the mouth, and may for example be placed under the tongue (sub-lingually), or they may be placed on the tongue or against the cheek or gingiva. According to a second aspect of the invention, there is provided a dosage form as described above for use in medicine, particularly, for voiding postponement, incontinence, primary nocturnal enuresis (PNE), nocturia and central diabetes insipidus.
The invention provides a method of postponing voiding, treating or preventing incontinence, primary nocturnal enuresis (PNE), nocturia and/or central diabetes insipidus, the method comprising administering an effective and generally non-toxic amount of desmopressin to a subject in an orodispersible pharmaceutical dosage form, for example in a dosage form as described above. Any other disease or condition treatable or preventable by desmopressin may similarly be addressed by means of the invention. The invention therefore extends to the use of desmopressin in the manufacture of an orodispersible pharmaceutical formulation. The invention also extends to a pack comprising an orodispersible pharmaceutical dosage form of desmopressin together with instructions to place the dosage form in a patient's mouth. Encompassed within the invention is also a method for preparing a packaged dosage form of desmopressin, the method comprising bringing into association an orodispersible pharmaceutical dosage form of desmopressin and instructions to place the dosage form in a patient's mouth. The instructions may for example be printed on packaging encompassing the dosage form when sold or dispensed, or may be on a product information leaflet or insert within the packaging.
Other peptides apart from desmopressin are formulatable in the formulations described above. The invention therefore extends to a orodispersible pharmaceutical dosage form of a pharmaceutically active peptide.
According to a further aspect of the invention, there is provided a solid pharmaceutical dosage form, for example for oral administration, the dosage form comprising a pharmaceutically active peptide and an open matrix network carrying the peptide, the open matrix network being comprised of a water-soluble or water-dispersible carrier material that is inert towards the peptide.
Although oral vaccines made from fast dissolving dosage forms are known from WO-A- 9921579, there is no disclosure of pharmaceutically active peptides retaining their activity after administration. The experimental work in WO-A-9921579 merely shows the presence in saliva of IgA antibodies to tetanus toxoid following the administration of tetanus toxoid by means of an adjuvanted fast dissolving dosage vaccine formulation. Formulations of the present invention are not vaccines and do not include adjuvants.
Pharmaceutical dosage forms of this aspect of the invention contain a pharmaceutically active peptide. Such peptides may be directly active per se or they may have one or more active metabolites, i.e. they may be prodrugs for the primary or true active principle. The peptides may have for example from 2 to 20, preferably from 5 to 15, amino acid residues (at least some of which may be D-isomers, although L-isomers will generally be predominant). The peptides may be linear, branched or cyclic, and may include natural residues or substituents or residues or substituents not found in natural peptides or proteins either commonly or at all. Pharmaceutically acceptable salts, simple adducts and tautomers are included where appropriate.
Examples of peptides usefully formulated by means of the invention include somatostatin and its analogues including Cyclo(MeAla-Tyr-D-Trp-Lys-Val-Phe) and Cyclo(Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-GABA), enkephalins including Met5- enkephalin and Leu5-enkephalin, oxytocin analogues such as atosiban (l-deamino-2-D- Tyr-(OEt)-4-Thr-8-Orn-oxytocin), GnRH analogues such as triptorelin (6-D-Trp-GnRH), leuprolide ([D-Leu6, Pro8-NHEt]-GnRH), degarelix (Ac-D-2Nal-D-4Cpa-D-3Pal-Ser- 4Aph(L-Hydroorotyl)-D-4Aph(Cbm)-Leu-Ilys-Pro-D-Ala-NH2, where 2Nal is 2- naphthylalanine, 4Cpa is 4-chlorophenylalanine, 3Pal is 3-pyridylalanine, ILys is N(ε)- isopropyllysine, 4Aph is 4-aminophenylalanine and Cbm is the carbamoyl group) and other GnRH antagonists disclosed in US-A-5925730 and US-A-4072668, and vasopressin analogues such as desmopressin. It is particularly preferred to formulate by means of the invention agonists of naturally active peptides, such as those described above, since agonists may be active at lower doses than antagonists.
Dosage will be as determined by the physician or clinician, depending on the nature of the peptide, the nature of the disease or condition being treated or prevented, and other factors.
The invention extends to the use of a peptide in the manufacture of a dosage form as described above for treating or preventing a disease or condition which is treatable or preventable by a peptide.
The invention also provides a method of treating or preventing a disease or condition which is treatable or preventable by a peptide, the method comprising administering an effective and generally non-toxic amount of the peptide to a subject in a dosage form as described above.
The contents of each of the documents referred to in this specification are incorporated herein by reference to the fullest extent allowed by law.
Preferred features of each aspect of the invention, and where feasible and appropriate each embodiment of each aspect of the invention, are as for each other aspect or embodiment, mutatis mutandis. In particular, it is contemplated that aspects, features and embodiments of the invention described above specifically in relation to desmopressin are applicable also to other peptides.
The invention will now be illustrated by the following examples. EXAMPLE 1 200μg Desmopressin Orodispersible Dosage Form
Spray-dried fish gelatin (4g) and mannitol (3g) are added to a glass beaker. Purified water (93 g) is then added and solution effected by stirring using a magnetic follower. The pH is checked and adjusted to 4.8 with citric acid as necessary.
A Gilson pipette can then be used to deliver 500 mg of this solution into each one of a series of pre-formed blister pockets having a pocket diameter of about 16 mm. The blister laminate may comprise PVC coated with PVdC. The dosed units are then frozen at a temperature of -110°C in a freeze tunnel with a residence time of 3.2 minutes and the frozen units are then held in an upright freezer for a time greater than 1.5 hours at a temperature of -25°C (±5°C). The units are then freeze-dried overnight with an initial shelf temperature of 10°C rising to +20°C at a pressure of 0.5 mbar. The units can be checked for moisture prior to unloading by the drying trace and by the pressurised moisture check.
In this way, following the general procedure given in Example 1 of WO-A-0061117, a desmopressin orodispersible dosage form is prepared using the following ingredients per unit dosage form:
Desmopressin (PolyPeptide Laboratories, Sweden) 200 μg
Mannitol EP/USP (Roquette, Mannitol 35) 15 mg
Fish gelatin USNF/EP 20 mg
Citric acid (if necessary) [pH adjusting agent] q.s. to pH 4.8
Purified water [Removed during processing]
EXAMPLE 2 400μg Desmopressin Orodispersible Dosage Form
The procedure of Example 1 herein is followed, except that the amount of desmopressin per unit dosage form was 400 μg. EXAMPLE 3 800μg Desmopressin Orodispersible Dosage Form
The procedure of Example 1 herein is followed, except that the amount of desmopressin per unit dosage form was 800 μg.
EXAMPLE 4 200μg Desmopressin Orodispersible Dosage Form
Following the general procedure given in Example 1 of WO-A-0061117, a desmopressin dosage form orodispersible dosage form was prepared using the following ingredients per unit dosage form:
Desmopressin (PolyPeptide Laboratories, Sweden) 200 μg
Mannitol EP/USP (Roquette, Mannitol 35) 6 mg
Fish gelatin USNF/EP 10 mg
Citric acid (if necessary) [pH adjusting agent] q.s. to pH 4.8
Purified water [Removed during processing]
EXAMPLE 5 400μg Desmopressin Orodispersible Dosage Form
The procedure of Example 4 herein was followed, except that the amount of desmopressin per unit dosage form was 400 μg.
EXAMPLE 6 800μg Desmopressin Orodispersible Dosage Form
The procedure of Example 4 herein was followed, except that the amount of desmopressin per unit dosage form was 800 μg.
COMPARATIVE EXAMPLE 1 Desmopressin .v. Solution An injectable preparation of desmopressin was conventionally prepared using the following ingredients:
Desmopressin (PolyPeptide Laboratories, Sweden) 4 mg
Sodium chloride 9mg
(National Corporation of Swedish Pharmacies, Sweden) Hydrochloric acid (IN) (Merck, Germany) q.s. to pH 4
Water for injection q.s. to 1 ml
COMPARATIVE EXAMPLE 2 200μg Desmopressin Conventional Tablet
Using a conventional wet granulation process, tablets containing the following ingredients were prepared:
Desmopressin (PolyPeptide Laboratories, Sweden) 200 μg
Lactose (Pharmatose 150M, DMV, The Netherlands) 120 mg
Potato starch (Lyckeby AB, Sweden) 77mg
PVP (Kollidon 25, BASF, Germany) 1.8mg
Magnesium stearate (Peter Greven, Germany) 1 mg
Granulation Liquid (water, ethanol) [Removed during processing]
COMPARATIVE EXAMPLE 3 lOOμg Desmopressin Conventional Tablet
The procedure of Comparative Example 2 was followed, except that the amount of desmopressin was 100 μg per tablet.
EXAMPLE 7 Bioavailability of Desmopressin Administered in Accordance with
Examples 4 to 6 Study Design
Twenty-four healthy non-smoking male volunteers were enrolled in the present study. The study was designed as a one-centre, open- labelled, randomised, balanced, 4-way cross-over phase I study. Each subject was, in a randomised order, administered sublingually desmopressin as a 200 μg, 400 μg and 800 μg orodispersible dosage form (Examples 4, 5 and 6, respectively) and 2 μg as an i.v. bolus dose (Comparative Example 1). Between the doses there was a washout period of 72 hours. In order to standardise the buccal mucosa before administration of the orodispersible tablet, the subjects were asked to avoid foods, chewing gum etc. Subjects were allowed to brush their teeth in the morning before dosing, but without toothpaste. Blood Samples
Blood samples for plasma concentration of desmopressin were collected according to the following schedule: pre-dose and 15, 30 and 45 min and at 1, 1.5, 2, 3, 4, 6 , 8, 10, 12 and 24 hours post-dosing. After intravenous administration additional blood samples were collected 5 and 10 minutes post-dosing.
Assay
The concentration of desmopressin in plasma was determined by a validated RIA method.
Pharmacokinetic Analysis
The concentration of desmopressin in plasma was analysed for the individual volunteer in each administration group, by use of non-compartmental methods using the commercially available software WinNonlin™ Pro, ver. 3.2 (Pharsight Corporation, US). A plasma concentration value below limit of quantitation (LOQ) followed by values above LOQ was set at 'LOQ/2' for the NCA analysis and for the descriptive statistics on concentrations. Values below LOQ not followed by values above the LOQ are excluded from the NCA analysis, and set to zero in the descriptive statistics on concentrations.
Results of Pharmacokinetic Analysis
After i.v. administration the mean volume of distribution at steady state (Vss) was 29.7 dm3. The mean clearance was calculated to be 8.5 dm3/hr and the mean elimination half- life was determined to be 2.8 hours. After oral administration of desmopressin maximum plasma concentrations were observed at 0.5-2.0 hours after dosing. The maximum plasma concentration was 14.25, 30.21 and 65.25 pg/ml after an oral dose of 200, 400 and 800 μg, respectively. After reaching the maximum value desmopressin was eliminated with a mean elimination half-life in the range of 2.8-3.0 hours. The bioavailability was determined to be 0.30% with at 95% confidence interval of 0.23- 0.38%.
The pharmacokinetics of desmopressin is linear, when administered as the orodispersible dosage form of Example 4, 5 or 6.
COMPARATIVE EXAMPLE 4 Bioavailability of Desmopressin Administered in
Accordance with Comparative Examples 2 and 3
Thirty six healthy male volunteers (Caucasian, Black and Hispanic) were enrolled in this study, which was designed as an open label, single dose, 3 -way crossover study. Each subject was, in a randomised order, administered 200 μg desmopressin as a single 200 μg tablet (Comparative Example 2), 200 μg desmopressin as two 100 μg tablets (Comparative Example 3) and 2 μg as an ..v. bolus dose (Comparative Example 1).
After .v. administration the mean elimination half-life was determined to be 2.24 hours. After oral administration of desmopressin maximum plasma concentrations were observed at 1.06 hours (2 x 100 μg) or 1.05 hours (1 x 200 μg) after dosing. The maximum plasma concentration was 13.2 and 15.0 pg/ml after an oral dose of 2 x 100 μg and 1 x 200 μg, respectively. The bioavailability was determined to be 0.13% (2 x 100 μg) or 0.16% (1 x 200 μg).

Claims

1. An orodispersible pharmaceutical dosage form of desmopressin.
2. A dosage form as claimed in claim 1, which is an orodispersible solid pharmaceutical dosage form.
3. A solid pharmaceutical dosage form comprising desmopressin and an open matrix network carrying the desmopressin, the open matrix network being comprised of a water-soluble or water-dispersible carrier material that is inert towards desmopressin.
4. A dosage form as claimed in claim 3, wherein the open matrix network comprises gelatin.
5. A dosage form as claimed in claim 4, wherein the gelatin is fish gelatin.
6. A dosage form as claimed in claim 5, wherein the fish gelatin is non-gelling.
7. A process for preparing a solid pharmaceutical dosage form comprising subliming solvent from a composition comprising desmopressin and a solution of carrier material in a solvent, the composition being in the solid state in a mould.
8. A process as claimed in claim 7, wherein the sublimation is carried out by freeze drying a composition comprising desmopressin and a solution of the carrier material in a solvent.
9. A process as claimed in claim 7 or 8, wherein the solvent is water.
10. A process as claimed in claim 7, 8 or 9, wherein the pH of the solution is within the range of from 3 to 6, preferably from 3.5 to 5.5, and most preferably from 4 to 5.
11. A dosage form as claimed in any one of claims 1 to 10 for use in medicine.
12. A dosage form as claimed in any one of claims 1 to 10 for use in voiding postponement, or the treatment or prevention of incontinence, primary nocturnal enuresis (PNE), nocturia or central diabetes insipidus.
13. The use of desmopressin in the manufacture of an orodispersible pharmaceutical dosage form.
14. A method of treating or preventing a disease or condition which is treatable or preventable by desmopressin, the method comprising administering in an orodispersible pharmaceutical dosage form an effective and generally non-toxic amount of desmopressin to a subject.
15. A method as claimed in claim 14, which is a method of postponing voiding, or treating or preventing incontinence, primary nocturnal enuresis (PNE), nocturia and/or central diabetes insipidus.
16. A pack comprising an orodispersible pharmaceutical dosage form of desmopressin together with instructions to place the dosage form in a patient's mouth.
17. A method for preparing a packaged dosage form of desmopressin, the method comprising bringing into association an orodispersible pharmaceutical dosage form of desmopressin and instructions to place the dosage form in a patient's mouth.
18. An orodispersible pharmaceutical dosage form of a pharmaceutically active peptide .
19. A dosage form as claimed in claim 18, which is an orodispersible solid pharmaceutical dosage form.
20. A solid pharmaceutical dosage form comprising a pharmaceutically active peptide and an open matrix network carrying the peptide, the open matrix network being comprised of a water-soluble or water-dispersible carrier material that is inert towards the peptide.
21. A dosage form as claimed in any one of claims 18 to 20, wherein the peptide is somatostatin or an analogue thereof, an enkephalin, an oxytocin analogue, an LH-RH analogue, a GnRH analogues or a vasopressin analogue.
22. A dosage form as claimed in claim 20, wherein the open matrix network comprises gelatin.
23. A dosage form as claimed in claim 22, wherein the gelatin is fish gelatin.
24. A dosage form as claimed in claim 23, wherein the fish gelatin is non-gelling.
25. A process for preparing a solid pharmaceutical dosage form comprising a pharmaceutically active peptide, the process comprising subliming solvent from a composition comprising the peptide and a solution of carrier material in a solvent, the composition being in the solid state in a mould.
26. A process as claimed in claim 2526, wherein the sublimation is carried out by freeze drying a composition comprising the peptide and a solution of the carrier material in a solvent.
27. A dosage form as claimed in any one of claims 18 to 24 for use in medicine.
PCT/IB2003/002368 2002-05-07 2003-05-07 Desmopressin in an orodispersible dosage form WO2003094886A2 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
CA002484724A CA2484724C (en) 2002-05-07 2003-05-07 Pharmaceutical formulations
AU2003233118A AU2003233118B8 (en) 2002-05-07 2003-05-07 Desmopressin in an orodispersible dosage form
SI200330434T SI1501534T1 (en) 2002-05-07 2003-05-07 Desmopressin in an orodispersible dosage form
MXPA04010926A MXPA04010926A (en) 2002-05-07 2003-05-07 Pharmaceutical formulations.
JP2004502972A JP2006502972A (en) 2002-05-07 2003-05-07 Orally dispersible pharmaceutical formulation of desmopressin
EP03727870A EP1501534B1 (en) 2002-05-07 2003-05-07 Desmopressin in an orodispersible dosage form
DE60307082A DE60307082D1 (en) 2002-05-07 2003-05-07 PHARMACEUTICAL COMPOSITION WITH DESMOPRESSIN DISPERSIBLE IN THE MOUTH VALVE
NZ535861A NZ535861A (en) 2002-05-07 2003-05-07 Desmopressin acetate in an orodispersible dosage form that disintegrates in the mouth within 10 seconds
US10/513,437 US7560429B2 (en) 2002-05-07 2003-05-07 Orodispersible dosage forms of desmopressin acetate
BR0309819-2A BR0309819A (en) 2002-05-07 2003-05-07 Pharmaceutical Formulations
ES03727870.2T ES2266820T4 (en) 2002-05-07 2003-05-07 Desmopressin in an orodispersible dosage form
DE2003607082 DE60307082T4 (en) 2002-05-07 2003-05-07 PHARMACEUTICAL COMPOSITION WITH DESMOPRESSIN DISPERSIBLE IN THE MOUTH VALVE
KR1020047017821A KR100632455B1 (en) 2002-05-07 2003-05-07 Pharmaceutical formulations
DK03727870.2T DK1501534T5 (en) 2002-05-07 2003-05-07 Desmopressin in orodispersible dosage form
IL164519A IL164519A (en) 2002-05-07 2004-10-12 Orodispersible pharmaceutical dosage form of desmopressin, a process for its preparation and its use
HR20041152A HRP20041152B1 (en) 2002-05-07 2004-12-03 Pharmaceutical formulations
NO20045345A NO335167B1 (en) 2002-05-07 2004-12-06 Pharmaceutical dosage form
HK05106142A HK1074393A1 (en) 2002-05-07 2005-07-20 Desmopressin in an orodispersible dosage form
US12/487,116 US7947654B2 (en) 2002-05-07 2009-06-18 Pharmaceutical formulations
US13/110,619 US8802624B2 (en) 2002-05-07 2011-05-18 Methods of treatment using orodispersible desmopressin pharmaceutical formulations
US14/326,939 US9220747B2 (en) 2002-05-07 2014-07-09 Methods using desmopressin acetate in orodispersible form
US14/947,261 US9504647B2 (en) 2002-05-07 2015-11-20 Pharmaceutical formulations of desmopressin
US15/333,503 US9919025B2 (en) 2002-05-07 2016-10-25 Pharmaceutical formulations of desmopressin
US15/881,123 US10307459B2 (en) 2002-05-07 2018-01-26 Pharmaceutical formulations of desmopressin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0210397.6 2002-05-07
GBGB0210397.6A GB0210397D0 (en) 2002-05-07 2002-05-07 Pharmaceutical formulations
PCT/IB2002/004036 WO2003094885A1 (en) 2002-05-07 2002-09-20 Sublingual pharmaceutical formulation of desmopressin
IBPCT/IB02/04036 2002-09-20

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10513437 A-371-Of-International 2003-05-07
US10/513,437 A-371-Of-International US7560429B2 (en) 2002-05-07 2003-05-07 Orodispersible dosage forms of desmopressin acetate
US12/487,116 Continuation US7947654B2 (en) 2002-05-07 2009-06-18 Pharmaceutical formulations

Publications (2)

Publication Number Publication Date
WO2003094886A2 true WO2003094886A2 (en) 2003-11-20
WO2003094886A3 WO2003094886A3 (en) 2004-07-22

Family

ID=29422105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2003/002368 WO2003094886A2 (en) 2002-05-07 2003-05-07 Desmopressin in an orodispersible dosage form

Country Status (10)

Country Link
JP (1) JP2006502972A (en)
AU (1) AU2003233118B8 (en)
BR (1) BR0309819A (en)
CA (1) CA2484724C (en)
DE (2) DE60307082D1 (en)
HR (1) HRP20041152B1 (en)
NO (1) NO335167B1 (en)
NZ (1) NZ535861A (en)
PT (1) PT1501534E (en)
WO (1) WO2003094886A2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530967A1 (en) * 2003-11-13 2005-05-18 Ferring B.V. Blister pack and solid dosage form comprising desmopressin
EP1550439A1 (en) * 2003-12-29 2005-07-06 Ferring B.V. Method for preparing a solid dosage form of desmopressin
WO2005063202A2 (en) * 2003-12-29 2005-07-14 Ferring B.V. Method for preparing solid dosage form of desmopressin
WO2005089724A1 (en) * 2004-03-18 2005-09-29 Ardana Bioscience Limited Effervescent formulations comprising desmopressin
US7018653B2 (en) 2003-12-29 2006-03-28 Ferring B.V. Method for preparing solid dosage form of desmopressin
US7022340B2 (en) 2003-07-25 2006-04-04 Ferring B.V. Pharmaceutical composition as solid dosage form and method for manufacturing thereof
US7094545B2 (en) 2003-04-30 2006-08-22 Ferring Bv Pharmaceutical composition as solid dosage form and method for manufacturing thereof
NL1031397C2 (en) * 2006-03-02 2006-09-18 Ferring Int Ct Sa Solid pharmaceutical composition comprises desmopressin and silica and oxidizing agents
WO2007098945A2 (en) * 2006-03-02 2007-09-07 Ferring International Center S.A. Stable solid dosage form comprising desmopressin
JP2008501709A (en) * 2004-06-03 2008-01-24 アール.ピー. シェーラー テクノロジーズ インコーポレイテッド Method for formulating a rapid dispersion dosage form comprising at least one fish gelatin selected on the basis of molecular weight
EP1689419A4 (en) * 2003-11-10 2009-01-14 Reprise Biopharmaceutics Llc Pharmaceutical compositions including low dosages of desmopressin
WO2009015037A2 (en) 2007-07-21 2009-01-29 Albany Molecular Research, Inc. 5-pyridinone substituted indazoles
EP2088154A1 (en) 2004-03-09 2009-08-12 Ironwood Pharmaceuticals, Inc. Methods and compositions for the treatment of gastrointestinal disorders
WO2010059836A1 (en) 2008-11-20 2010-05-27 Decode Genetics Ehf Substituted aza-bridged bicyclics for cardiovascular and cns disease
WO2010084499A2 (en) 2009-01-26 2010-07-29 Israel Institute For Biological Research Bicyclic heterocyclic spiro compounds
US7799761B2 (en) 2002-05-07 2010-09-21 Allergan, Inc. Pharmaceutical compositions including low dosages of desmopressin
WO2011008572A2 (en) 2009-07-14 2011-01-20 Albany Molecular Research, Inc. 5-ht3 receptor modulators, methods of making, and use thereof
US20120087944A1 (en) * 2010-10-08 2012-04-12 R.P. Scherer Technologies, Llc Oral vaccine fast-dissolving dosage form using starch
EP2476680A1 (en) 2008-01-11 2012-07-18 Albany Molecular Research, Inc. (1-Azinone)-Substituted Pyridoindoles
US20130123180A1 (en) * 2010-03-29 2013-05-16 Ferring B.V. Fast dissolving pharmaceutical composition
EP2628727A2 (en) 2007-11-21 2013-08-21 Decode Genetics EHF Biaryl PDE4 inhibitors for treating pulmonary and cardiovascular disorders
US8946153B2 (en) 2010-03-29 2015-02-03 Ferring B.V. Fast dissolving pharmaceutical composition
US9095516B2 (en) 2009-04-29 2015-08-04 Intervet, Inc. Process to form an orally disintegrating tablet for human use
WO2015193246A1 (en) * 2014-06-16 2015-12-23 Ferring B.V. Stabilized desmopressin
US9539302B2 (en) 2009-06-18 2017-01-10 Allergan, Inc. Safe desmopressin administration
US9731018B2 (en) 2011-09-16 2017-08-15 Ferring B.V. Fast dissolving pharmaceutical composition
US9974826B2 (en) 2008-05-21 2018-05-22 Ferring B.V. Methods comprising desmopressin
US10137167B2 (en) 2008-05-21 2018-11-27 Ferring B.V. Methods comprising desmopressin
WO2019183245A1 (en) 2018-03-20 2019-09-26 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use
WO2020142485A1 (en) 2018-12-31 2020-07-09 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use
US10952959B2 (en) 2017-01-11 2021-03-23 Ferring B.V. Fast disintegrating pharmaceutical composition
US11963995B2 (en) 2008-05-21 2024-04-23 Ferring B.V. Methods comprising desmopressin

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523265B2 (en) * 2002-11-13 2010-08-11 旭化成ファーマ株式会社 Orally disintegrating preparations for the treatment of urination disorders
US8399410B2 (en) * 2007-08-06 2013-03-19 Allergan, Inc. Methods and devices for desmopressin drug delivery
TWI468157B (en) * 2009-04-29 2015-01-11 Intervet Int Bv Process to form a tablet, system for performing this process and package comprising the tablet
US10548839B2 (en) 2010-03-16 2020-02-04 Wei Tian Process of manufacturing a lyophilized fast dissolving, multi-phasic dosage form
JP2011116764A (en) * 2011-02-08 2011-06-16 Fine Seymour H Medical composition containing low dose desmopressin
JP5928159B2 (en) * 2012-05-28 2016-06-01 ニプロ株式会社 Pharmaceutical composition
TW201422254A (en) * 2012-11-21 2014-06-16 Ferring Bv Composition for immediate and extended release
CN103993061B (en) * 2014-05-20 2018-03-23 海南美合泰生物科技有限公司 A kind of production method of Isin glue collagen
JP6341777B2 (en) * 2014-06-30 2018-06-13 リプリーズ バイオファーマシューティクス,エルエルシー Pharmaceutical composition containing low dose desmopressin
DE102017104472A1 (en) * 2017-03-03 2018-09-06 Nordmark Arzneimittel Gmbh & Co. Kg Orodispersible tablet containing burlulipase and pharmaceutical composition prepared therefrom
WO2024143501A1 (en) * 2022-12-28 2024-07-04 中外製薬株式会社 Solid dispersion containing substance to be dispersed, pharmaceutical composition containing same, and production methods therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764378A (en) * 1986-02-10 1988-08-16 Zetachron, Inc. Buccal drug dosage form
EP0517211A1 (en) * 1991-06-07 1992-12-09 Teikoku Seiyaku Kabushiki Kaisha Physiologically active polypeptide containing pharmaceutical composition
US5298256A (en) * 1992-04-28 1994-03-29 Corint, Ltd. Desmopressin buccal patch composition
US5849322A (en) * 1995-10-23 1998-12-15 Theratech, Inc. Compositions and methods for buccal delivery of pharmaceutical agents
WO2000044351A1 (en) * 1999-01-27 2000-08-03 R.P. Scherer Corporation Fast dispersing dosage forms free of gelatin
WO2000059423A1 (en) * 1999-04-01 2000-10-12 Watson Pharmaceuticals, Inc. Oral transmucosal delivery of drugs or any other ingredients via the inner buccal cavity
WO2000061117A1 (en) * 1999-04-08 2000-10-19 R.P. Scherer Corporation Fast-dispersing dosage forms containing fish gelatin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253127B2 (en) * 1991-06-07 2002-02-04 帝國製薬株式会社 Preparation containing bioactive polypeptide
WO2000044251A1 (en) * 1999-01-27 2000-08-03 Spenco Medical Corporation Therapeutic magnetic insoles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764378A (en) * 1986-02-10 1988-08-16 Zetachron, Inc. Buccal drug dosage form
EP0517211A1 (en) * 1991-06-07 1992-12-09 Teikoku Seiyaku Kabushiki Kaisha Physiologically active polypeptide containing pharmaceutical composition
US5298256A (en) * 1992-04-28 1994-03-29 Corint, Ltd. Desmopressin buccal patch composition
US5849322A (en) * 1995-10-23 1998-12-15 Theratech, Inc. Compositions and methods for buccal delivery of pharmaceutical agents
WO2000044351A1 (en) * 1999-01-27 2000-08-03 R.P. Scherer Corporation Fast dispersing dosage forms free of gelatin
WO2000059423A1 (en) * 1999-04-01 2000-10-12 Watson Pharmaceuticals, Inc. Oral transmucosal delivery of drugs or any other ingredients via the inner buccal cavity
WO2000061117A1 (en) * 1999-04-08 2000-10-19 R.P. Scherer Corporation Fast-dispersing dosage forms containing fish gelatin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASHLEY GROSSMAN ET AL: "Two new nodes of desmopressin (DDAVP) administration" BRITISH MEDICAL JOURNAL, 17 May 1980 (1980-05-17), page 1215 XP002260408 *
F. LACZI ET AL: "Effects of vasopressin analogues (DDAVP, DVDAVP) in fhe form of sublingual tablets in central diabetes insipidus" INTERNATIONAL JOURNAL OF CLINICAL PHARMACOLOGY: THERAPY AND TOXICOLOGY, vol. 18, no. 12, 1980, pages 63-68, XP002260419 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150150938A1 (en) * 2002-05-07 2015-06-04 Ferring Bv Pharmaceutical formulations
US7799761B2 (en) 2002-05-07 2010-09-21 Allergan, Inc. Pharmaceutical compositions including low dosages of desmopressin
US9220747B2 (en) * 2002-05-07 2015-12-29 Ferring B.V. Methods using desmopressin acetate in orodispersible form
US7094545B2 (en) 2003-04-30 2006-08-22 Ferring Bv Pharmaceutical composition as solid dosage form and method for manufacturing thereof
US7022340B2 (en) 2003-07-25 2006-04-04 Ferring B.V. Pharmaceutical composition as solid dosage form and method for manufacturing thereof
EP1689419A4 (en) * 2003-11-10 2009-01-14 Reprise Biopharmaceutics Llc Pharmaceutical compositions including low dosages of desmopressin
WO2005046646A3 (en) * 2003-11-13 2007-02-22 Ferring Bv Blister pack and solid dosage form comprising desmopressin
WO2005046646A2 (en) * 2003-11-13 2005-05-26 Ferring B.V. Blister pack and solid dosage form comprising desmopressin
EP1530967A1 (en) * 2003-11-13 2005-05-18 Ferring B.V. Blister pack and solid dosage form comprising desmopressin
US8119161B2 (en) 2003-11-13 2012-02-21 Ferring Bv Blister pack and solid dosage form therefor
US7018653B2 (en) 2003-12-29 2006-03-28 Ferring B.V. Method for preparing solid dosage form of desmopressin
JP2007517000A (en) * 2003-12-29 2007-06-28 フェリング ベスローテン フェンノートシャップ Method for producing desmopressin solid preparation
WO2005063202A3 (en) * 2003-12-29 2006-05-18 Ferring Bv Method for preparing solid dosage form of desmopressin
JP4763617B2 (en) * 2003-12-29 2011-08-31 フェリング ベスローテン フェンノートシャップ Method for producing desmopressin solid preparation
KR100870679B1 (en) * 2003-12-29 2008-11-26 훼링 비.브이. Method for preparing solid dosage form of desmopressin
WO2005063202A2 (en) * 2003-12-29 2005-07-14 Ferring B.V. Method for preparing solid dosage form of desmopressin
EP1550439A1 (en) * 2003-12-29 2005-07-06 Ferring B.V. Method for preparing a solid dosage form of desmopressin
EP2088154A1 (en) 2004-03-09 2009-08-12 Ironwood Pharmaceuticals, Inc. Methods and compositions for the treatment of gastrointestinal disorders
WO2005089724A1 (en) * 2004-03-18 2005-09-29 Ardana Bioscience Limited Effervescent formulations comprising desmopressin
JP2008501709A (en) * 2004-06-03 2008-01-24 アール.ピー. シェーラー テクノロジーズ インコーポレイテッド Method for formulating a rapid dispersion dosage form comprising at least one fish gelatin selected on the basis of molecular weight
EP1829532A1 (en) * 2006-03-02 2007-09-05 Ferring International Center S.A. Stable solid dosage form comprising desmopressin
WO2007098945A3 (en) * 2006-03-02 2007-11-01 Ferring Int Ct Sa Stable solid dosage form comprising desmopressin
WO2007098945A2 (en) * 2006-03-02 2007-09-07 Ferring International Center S.A. Stable solid dosage form comprising desmopressin
NL1031397C2 (en) * 2006-03-02 2006-09-18 Ferring Int Ct Sa Solid pharmaceutical composition comprises desmopressin and silica and oxidizing agents
WO2009015037A2 (en) 2007-07-21 2009-01-29 Albany Molecular Research, Inc. 5-pyridinone substituted indazoles
EP2674417A2 (en) 2007-11-21 2013-12-18 Decode Genetics EHF Biaryl PDE4 inhibitors for treating inflammation
EP2628727A2 (en) 2007-11-21 2013-08-21 Decode Genetics EHF Biaryl PDE4 inhibitors for treating pulmonary and cardiovascular disorders
EP2476680A1 (en) 2008-01-11 2012-07-18 Albany Molecular Research, Inc. (1-Azinone)-Substituted Pyridoindoles
US11963995B2 (en) 2008-05-21 2024-04-23 Ferring B.V. Methods comprising desmopressin
US11020448B2 (en) 2008-05-21 2021-06-01 Ferring B.V. Methods comprising desmopressin
US10137167B2 (en) 2008-05-21 2018-11-27 Ferring B.V. Methods comprising desmopressin
US9974826B2 (en) 2008-05-21 2018-05-22 Ferring B.V. Methods comprising desmopressin
WO2010059836A1 (en) 2008-11-20 2010-05-27 Decode Genetics Ehf Substituted aza-bridged bicyclics for cardiovascular and cns disease
WO2010084499A2 (en) 2009-01-26 2010-07-29 Israel Institute For Biological Research Bicyclic heterocyclic spiro compounds
US9119794B2 (en) 2009-04-29 2015-09-01 Intervet International B.V. Process to form a tablet and apparatus suitable for applying this process
US9095516B2 (en) 2009-04-29 2015-08-04 Intervet, Inc. Process to form an orally disintegrating tablet for human use
US12090190B2 (en) 2009-06-18 2024-09-17 Acerus Pharmaceuticals USA, LLC Safe desmopressin administration
US11419914B2 (en) 2009-06-18 2022-08-23 Serenity Pharmaceuticals Llc Safe desmopressin administration
US9539302B2 (en) 2009-06-18 2017-01-10 Allergan, Inc. Safe desmopressin administration
WO2011008572A2 (en) 2009-07-14 2011-01-20 Albany Molecular Research, Inc. 5-ht3 receptor modulators, methods of making, and use thereof
US8946153B2 (en) 2010-03-29 2015-02-03 Ferring B.V. Fast dissolving pharmaceutical composition
US10512695B2 (en) 2010-03-29 2019-12-24 Ferring B.V. Fast dissolving pharmaceutical composition
KR101790188B1 (en) * 2010-03-29 2017-10-25 훼링 비.브이. A fast dissolving pharmaceutical composition
US10023335B2 (en) 2010-03-29 2018-07-17 Ferring B.V. Fast dissolving pharmaceutical composition
US10086078B2 (en) 2010-03-29 2018-10-02 Ferring B.V. Fast dissolving pharmaceutical composition
US20130123180A1 (en) * 2010-03-29 2013-05-16 Ferring B.V. Fast dissolving pharmaceutical composition
US9096335B2 (en) * 2010-03-29 2015-08-04 Ferring B.V. Fast dissolving pharmaceutical composition
US20120087944A1 (en) * 2010-10-08 2012-04-12 R.P. Scherer Technologies, Llc Oral vaccine fast-dissolving dosage form using starch
US9956169B2 (en) * 2010-10-08 2018-05-01 R.P. Scherer Technologies, Llc Oral vaccine fast-dissolving dosage form using starch
US9731018B2 (en) 2011-09-16 2017-08-15 Ferring B.V. Fast dissolving pharmaceutical composition
TWI670070B (en) * 2014-06-16 2019-09-01 荷蘭商菲林公司 Stabilized desmopressin
AU2015276247B2 (en) * 2014-06-16 2019-09-12 Ferring B.V. Stabilized desmopressin
WO2015193246A1 (en) * 2014-06-16 2015-12-23 Ferring B.V. Stabilized desmopressin
EA032834B1 (en) * 2014-06-16 2019-07-31 Ферринг Б.В. Stabilized desmopressin
AU2015276247C1 (en) * 2014-06-16 2020-02-06 Ferring B.V. Stabilized desmopressin
US10952959B2 (en) 2017-01-11 2021-03-23 Ferring B.V. Fast disintegrating pharmaceutical composition
WO2019183245A1 (en) 2018-03-20 2019-09-26 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use
WO2020142485A1 (en) 2018-12-31 2020-07-09 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use

Also Published As

Publication number Publication date
NO20045345L (en) 2005-02-07
JP2006502972A (en) 2006-01-26
PT1501534E (en) 2006-09-29
AU2003233118B8 (en) 2009-07-30
AU2003233118B2 (en) 2006-10-26
DE60307082T4 (en) 2015-04-30
DE60307082T2 (en) 2007-01-18
BR0309819A (en) 2005-03-01
DE60307082D1 (en) 2006-09-07
NO335167B1 (en) 2014-10-06
AU2003233118A1 (en) 2003-11-11
NZ535861A (en) 2006-11-30
HRP20041152B1 (en) 2008-01-31
CA2484724C (en) 2007-01-16
HRP20041152A2 (en) 2005-04-30
WO2003094886A3 (en) 2004-07-22
CA2484724A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
US10307459B2 (en) Pharmaceutical formulations of desmopressin
CA2484724C (en) Pharmaceutical formulations
CA2545194C (en) Pharmaceutical compositions including low dosages of desmopressin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1-2004-501772

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 535861

Country of ref document: NZ

Ref document number: 3101/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 375497

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 2003233118

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004/08596

Country of ref document: ZA

Ref document number: 200408596

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 20038098881

Country of ref document: CN

Ref document number: 2003727870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2484724

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/010926

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020047017821

Country of ref document: KR

Ref document number: 2004502972

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: P20041152A

Country of ref document: HR

ENP Entry into the national phase in:

Ref document number: 2004130435

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020047017821

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003727870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10513437

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003727870

Country of ref document: EP