Nothing Special   »   [go: up one dir, main page]

WO2003063719A1 - Skin-cutting surgery support system - Google Patents

Skin-cutting surgery support system Download PDF

Info

Publication number
WO2003063719A1
WO2003063719A1 PCT/JP2003/000803 JP0300803W WO03063719A1 WO 2003063719 A1 WO2003063719 A1 WO 2003063719A1 JP 0300803 W JP0300803 W JP 0300803W WO 03063719 A1 WO03063719 A1 WO 03063719A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
living body
probe
image
color
Prior art date
Application number
PCT/JP2003/000803
Other languages
French (fr)
Japanese (ja)
Inventor
Sadao Omata
Hideyuki Usui
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2003563417A priority Critical patent/JPWO2003063719A1/en
Publication of WO2003063719A1 publication Critical patent/WO2003063719A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320052Guides for cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the present invention relates to a skin-opening surgery support system that supports a skin-opening surgery for opening a skin part of a living body and performing treatment on an affected area inside the body.
  • Japanese Patent Application Laid-Open No. Heisei 9-1455691 discloses a method for quantitatively measuring the degree of hardness of an affected part. A means for accurately measuring hardness information in a wide range from a hard object to a hard object is disclosed.
  • the difference in hardness between the affected part and other parts can be determined by the operator's tactile sensation, and the degree of hardness of the affected part can be known by numerical display of a hardness measuring instrument.
  • the operator's tactile method requires experience, and individual differences in the discrimination between the affected area and other parts appear.
  • the hardness meter displays only numerical values, the difference in hardness between the affected part and other parts cannot be visually recognized in a real time during the operation.
  • An object of the present invention is to solve such a problem of the prior art, and perform a skin surgery in which the difference in hardness between an affected part and another part is visually displayed in real time during the operation without using the operator's tactile sensation.
  • a surgical operation support system detects a difference in hardness between an affected part of a living body and another part during open skin surgery, and performs an operation for assisting the operation.
  • a support system comprising: an imaging / display unit that images a surgical target region of a living body and projects it on a screen; and a living body hardness detecting unit that has a probe that comes into contact with the living body and detects the hardness of the living body.
  • the imaging and display means corresponds to a probe trajectory superimposing unit that superimposes and displays a moving trajectory when the probe is moved on a living body in a surgical object of the living body.
  • a trajectory-corresponding hardness display unit for displaying the hardness of the living body.
  • the skin-opening surgery support system preferably further comprises a contact pressure detection sensor for detecting a contact pressure of the probe with respect to a living body.
  • the trajectory-corresponding hardness display unit displays the hardness of a living body under a constant contact pressure.
  • the living body hardness detecting means includes a vibrator and a vibration detection sensor provided at a tip, an input terminal connected to the vibrator, and a vibration detection sensor.
  • a probe unit having an output terminal connected to the probe, an amplifier having an input terminal connected to the output terminal of the probe, and a probe unit provided between the output terminal of the amplifier and the input terminal of the probe.
  • a phase shift circuit that changes the frequency and shifts the phase difference to zero when a phase difference occurs between the input waveform and the output waveform from the vibration detection sensor, and includes a resonance state of a closed loop including the probe and the living body. It is preferable to calculate the hardness of the living body from the frequency change caused by the change in the hardness of the living body while maintaining the above.
  • the skin-opening surgery support apparatus further comprises: a marker that is linked to the movement of the probe.
  • the marker is a hemispherical light reflector provided on the probe.
  • An open-cutting surgery support system includes: an imaging / display unit that images an operation target region of a living body and projects the image on a screen; and a probe that comes into contact with the living body, and detects the hardness of the living body. Means. Then, the probe is moved so as to scan on the living body, and when the hardness of the moving range is measured, the movement trajectory of the probe is displayed on the display of the imaging unit and the hardness corresponding to the movement trajectory is displayed. Is superimposed on the same display. Therefore, the difference in hardness between the affected part and the other part can be visually displayed in real time during the operation, without depending on the operator's tactile sensation.
  • the color of the screen in the moved area can be changed before and after the current position of the probe.
  • the movement path of the probe can be displayed in black and white it can. This clarifies the positional relationship between the current position of the prop on the living body and the trajectory.
  • the display of the change in hardness corresponding to the movement locus is displayed on a display area of the display that does not hinder the display of the movement locus of the probe, for example, a band at the bottom of the display screen, an index indicating the position of the movement locus on the horizontal axis, It can be shown by a graph with the ordinate representing hardness. Also, for example, a white circle on the graph can indicate the hardness of the current position of the probe.
  • the display of the change in hardness can be represented by, for example, changing the shading of the color or the roughness of the mesh within the region of the moving trajectory according to the difference in hardness.
  • the current position of the probe on the living body is clarified, and the difference in the hardness is clarified in which position from the current position of the probe, and the hardness is determined by the tactile sensation of the operator.
  • the difference in hardness between the affected part and other parts can be visually displayed in real time during the operation.
  • the skin-opening surgery support system further includes a contact pressure detection sensor that detects a contact pressure of the probe with respect to a living body. This By displaying the output of the contact pressure sensor on a display, etc., the hardness of the living body can be measured while monitoring the contact pressure, and surgery support can be performed in consideration of the effect of the contact pressure on the hardness of the living body.
  • a contact pressure sensor is used to display the hardness of a living body under a constant contact pressure. Therefore, it is possible to change the contact pressure to be set, for example, by setting a low contact pressure to the condition of the living body, for example, a soft tissue, and to perform surgery support in consideration of the influence of the contact pressure on the hardness.
  • the living body hardness detecting means includes: a probe having a vibrator and a vibration detection sensor at its tip; and a closed loop including a living body, an amplifier and a phase shift circuit. Is provided. Then, when a phase difference occurs between the input waveform to the vibrator and the output waveform from the vibration detection sensor, the phase shift circuit changes the frequency to shift the phase difference to zero. It is possible to calculate the hardness of the living body from the frequency change caused by the change in the hardness of the living body while maintaining the closed loop resonance state.
  • the skin-opening surgery support apparatus further includes a marker linked to the movement of the probe. It is preferable that the marker is a hemispherical light reflector provided on the probe. The current position of the probe can be recognized irrespective of the attitude of the probe by imaging the reflected light from the hemispherical light reflector.
  • the trajectory-corresponding hardness display unit selects a color within the contour of the movement trajectory according to the calculated hardness of the living body, and forms and displays an image representing the hardness of the living body.
  • the hardness is displayed in different colors. Therefore, the difference in hardness between the affected part and other parts can be visually displayed.
  • the formation of an image representing the hardness of the living body is distinguished from the color of the surgical target area of the living body. If the hardness is harder, select the shade of the hardness display color according to the hardness of the living body, and replace the color of the living body in the outline of the movement trajectory with the hardness display color. It is preferable that the color is selected so as to give a darker hardness display color and a softer hardness display color when the color is softer.
  • the display color of the hardness is selected to be blue, and the color in the outline of the movement locus is changed from reddish to blue. Then, add shades in the blue range, and make the harder parts dark blue and the softer parts lighter. Therefore, the affected part can be clearly distinguished from other parts, and the difference in hardness can be visually displayed.
  • the image representing the hardness of the living body is formed by using a hardness display color that can be distinguished from the image of the operation target region of the living body, and according to the hardness of the living body, the hardness display color and the color of the living body in the movement locus. It is preferable to select a color mixture ratio such that when the hardness is harder, the ratio of the hardness display color is increased, and when the hardness is softer, the ratio of the color of the living body is increased.
  • the display color of the hardness is selected to be blue, and the color in the outline of the movement locus is a mixed color of reddish and blue. Then, the degree of color mixing is selected according to the hardness, with the harder parts being bluer and the softer parts being redder. Therefore, the hardness is displayed in blue with red as the background color, and even when the hardness is displayed, the color of the surgical target area of the living body can be seen through on the background, and the hardness of the living body is displayed in that part. The color of the living body can be seen and visually displayed.
  • the color of the surgical operation target area image of the living body between the plurality of hardness images is selected based on the colors constituting each hardness image, and the interpolated hardness is selected. It is preferable to include an interpolation hardness image forming unit for forming an image.
  • the hardness display image not only is the hardness displayed in the movement trajectory, but when there are a plurality of movement trajectories, that is, the hardness display image, the area between the movement trajectories is displayed. Is also displayed by interpolation. Therefore, the hardness distribution over a wide area can be displayed by interpolation, and skin surgery can be efficiently supported.
  • FIG. 1 is a block diagram of a skin surgery support system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a relationship between a screen from a full-screen signal, a screen from a trajectory signal, and a screen from a hardness signal when superimposing a screen on a display according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a display method on another display according to the embodiment of the present invention.
  • FIG. 4 is a sectional view of the probe according to the embodiment of the present invention.
  • FIG. 5 is a block diagram showing a part related to hardness detection extracted from components of the prop according to the embodiment of the present invention.
  • FIG. 6 shows color data of each point along the center line of the moving trajectory of the highest power in the upper part of the image obtained by removing the probe image from the screen from all image signals in the embodiment of the present invention. Is a diagram shown in the lower part of FIG.
  • FIG. 7 shows, in the embodiment of the present invention, an image obtained by giving a color representing hardness in the outline of the moving trajectory of the marker in the image from the trajectory signal of the marker
  • FIG. 3 is a diagram showing color data of each point in the lower row.
  • FIG. 8 is a diagram showing an image obtained by synthesizing the image of FIG. 6 and the image of FIG. 7 by the replacement method in the upper part of the embodiment of the present invention, and the color data of each point is shown in the lower part.
  • FIG. 9 shows an image obtained by combining the image of FIG. 6 and the image of FIG. 7 by the watermarking method in the embodiment of the present invention in the upper part, and the color data of each point in the lower part.
  • FIG. 10 is a diagram showing two marker movement trajectories according to the embodiment of the present invention. It is a figure which shows the image which gave the color which shows hardness in the area
  • FIG. 11 shows an embodiment of the present invention in which an image obtained by interpolating the hardness of a region sandwiched between two movement trajectories is sandwiched between each point in the contour of the movement trajectory and the movement trajectory in an upper row.
  • the lower row shows the color data of each point in the shaded area.
  • FIG. 1 is a block diagram of a skin surgery support system 3 that supports open skin surgery of a living body 1.
  • the open-skin surgery support system 3 includes imaging and display means 5 for imaging an operation target area of the living body 1 and displaying the image on a screen, and a probe 7 for detecting the hardness of the living body by contacting the living body 1 with a probe 7. Further detects the contact pressure of the probe 7 on the living body.
  • the imaging / display means 5 is a television camera for imaging the probe 7 including the living body 1 and the marker 1 by the reflected light 11 from the surface of the living body and the reflected light 13 from the marker attached to the probe tip. 15 is provided.
  • the signal of the reflected light portion of the probe is extracted from the full screen signal captured by the TV camera 15, and a probe position signal 19 is generated separately from the full screen signal 17
  • a superimposition unit 23 for superimposing a full-screen signal 17 and a locus signal, a hardness signal, and a contact pressure signal, which will be described in detail later.
  • a display 25 for displaying a superimposed image based on the signal superimposed by the superimposing unit 23 is provided.
  • the open skin surgery support system 3 includes a position acquisition unit 41 for acquiring a probe position from the probe position signal 37, and the trajectory signal generation unit 43 scans the probe 7 on a living body. The position of each probe at the time of movement is stored, and a trajectory signal 45 representing the trajectory of the probe 7 is generated.
  • a hardness signal 51 for displaying the hardness on the screen is generated through a hardness signal generator 49.
  • the sensing signal from the probe 7 processes the sensing signal from the probe 7 and generates a contact pressure signal 57 for displaying the contact pressure on the screen via the contact pressure calculation unit 53 and the contact pressure signal generation unit 55.
  • the television camera 15 is set directly above the living body 1, and the operation target area is displayed on the display 25.
  • the operator performing the operation brings the probe 7 into contact with the surface of the living body 1.
  • the probe 7 is moved so as to scan the surface of the living body 1 while watching the display 25.
  • the image of the marker attached to the probe 7 picked up by the TV camera 15 is separated from the entire image by the probe position signal separation unit 21 and a signal relating to the position of the key is obtained.
  • the position acquisition unit 41 acquires the instantaneous position information of the marker
  • the trajectory signal generation unit 43 connects the position information of the moved range of the marker to create a movement trajectory.
  • the trajectory signal 45 is superimposed on the full-screen signal 17 in the superimposition section 23, so that the biological image and the image of the movement trajectory are superimposed and displayed on the display 25.
  • the sensing signal detected by the probe 7 passes through a hardness calculator 47 and a hardness signal generator 49 to generate a hardness signal 51.
  • the hardness signal 51 is superimposed on the full-screen signal 35 and the trajectory signal 45 by the superimposition unit 23, so that a living body image and the like and a hardness information image associated with the current position and the movement trajectory of the probe can be obtained. Are superimposed and displayed on the display 25. An image based on the contact pressure signal can be further superimposed.
  • Fig. 2 to explain the superimposition of the screen on the display, the elements are divided into a screen 61 from a full screen signal, a screen 63 from a locus signal, and a screen 65 from a hardness signal. It is a figure showing mutual relations. Screen from full screen signal As for 61, an image 73 of the surface of the living body and an image 73 of the probe in contact with the living body are displayed. Also, an image 75 of the marker provided at the tip of the probe is displayed. Displaying these images in full color allows the surgeon to easily compare the image on the display screen with the actual living body.
  • an image 77 of the current position of the marker and a trajectory image 79 showing the moving range of the marker in a predetermined period are displayed.
  • the predetermined period can be, for example, a period after the operator presses the start button.
  • the trajectory image is a trajectory image indicating the moving range of the marker 1 during the period from when the start button is pressed to the present.
  • the trajectory image 79 of the trajectory that has moved the most can be displayed in different colors. For example, when the screen 61 from the full screen signal is full color, the moving trajectory of the marker is displayed in black and white by displaying the biological image in the range where the marker has moved in a predetermined period. And can be easily distinguished.
  • the current position is displayed with the probe model mark.
  • the current position image 81, the moving trajectory range image 83 showing the range of the moving trajectory with a thin band-like pattern, and the horizontal axis The position coordinates of the movement trajectory, the hardness-one-position relationship graph frame image 85 with the vertical axis representing hardness, and the change curve image 87 according to the hardness position shown in the graph frame are displayed. .
  • the display area of these images is set to an area below the entire screen of the display that does not hinder observation of the whole image of the living body.
  • the display area of these images can be moved within the range of the entire screen of the display, and can be arbitrarily moved to an area that does not hinder observation of the whole image of the living body or the like.
  • the current position image 81, The surrounding image 83 can be included in the change curve image 87 and displayed.
  • the range on the horizontal axis of the change curve can be displayed as the range of the movement locus, and the current position can be indicated by a bright spot on the change curve.
  • FIG. 3 is a diagram showing another embodiment of superimposed display on a display.
  • the difference in hardness is directly displayed in the area of the trajectory image 89 by the difference in roughness of the mesh.
  • the screen is provided with a force sol 91 indicating the relationship between the roughness and the hardness of the mesh.
  • differences in hardness may be indicated by differences in colors, differences in shades of colors, etc.
  • the display 25 By superimposing the full-screen signal 17, the trajectory signal 45, and the hardness signal 51 in the superimposition unit 23, the display 25 displays the screen 61 from the full-screen signal and the trajectory signal A screen in which screen 63 and screen 65 from the hardness signal are superimposed is displayed. Furthermore, a screen based on the contact pressure signal 57 can be superimposed.
  • FIG. 4 is a cross-sectional view of the probe 7 and a diagram illustrating a connection relationship between the hardness calculator 47 and the contact pressure calculator 53.
  • One end of a leaf spring 103 is fixed to the housing 101 of the probe 7, and a substantially hemispherical biological contact ball 105 and a vibrating body 107 are vibrated at the tip of the leaf panel 103.
  • c laminate of the sensor 1 0 9 is mounted also on the opposite side of the plate panel 1 0 3, contact pad 1 1 1 is provided, the contact Pas Uz de 1 1 1 casing 1 0 facing the
  • the contact pressure detection sensor 1 13 is attached to the part 1.
  • the vibrating body 107 and the vibration detection sensor 109 are respectively connected to the hardness calculation unit 47 by signal lines 115 and 117, and the contact pressure detection sensor 113 is connected to the signal line 119 by signal lines. Connected to contact pressure calculator 53.
  • a substantially hemispherical light reflector 122 is attached to the outer wall of the housing 101 corresponding to the position of the living body contact ball 105.
  • the light reflector 122 can be obtained by applying gloss to metal or plastic, and the size is preferably 3 to 5 mm.
  • the contact pressure detection sensor is It can be configured with a gauge.
  • the method of attaching the substantially hemispherical living body contact ball 105, the vibrating body 107, and the vibration detecting sensor 109 to the tip of the plate panel 103 may be screwing or the like in addition to bonding. The configuration of the part for hardness detection will be described later in detail with reference to FIG.
  • the surgeon has a handle (not shown) of the housing 101 and contacts the living body contact ball 105 with the living body. Due to the contact, the distal end portion to which the living body contact ball 105 is attached moves through the panel panel 103 toward the upper part in FIG. 4, that is, toward the ceiling of the housing 101, and the panel panel.
  • the contact pad 111 provided on the opposite side of the end of 103 is pressed against the contact pressure detection sensor 113.
  • the contact pressure detection sensor 113 which is composed of a strain gauge, is capable of sensing the pressure applied, that is, the strain corresponding to the reaction force received by the living body contact ball 105 from the living body.
  • a signal can be input to the contact pressure calculator 53 via the signal line 119 to calculate the contact pressure.
  • the contact pressure calculating section 53 can also set a constant contact pressure in advance and issue a constant contact pressure signal when the contact pressure reaches the constant value.
  • the constant contact pressure signal is sent to the hardness calculating section 47 or the hardness signal generating section 49, and the hardness can be calculated or the hardness signal can be generated only when the constant contact pressure signal is sent. This makes it possible to display the hardness of a living body under a certain contact pressure.
  • a television camera is set above the probe 7 to detect the state of a living body and the movement of the probe 7 as an image.
  • the light reflector 122 is substantially hemispherical and provided corresponding to the position of the living body contact ball 105, the position of the image of the light reflector 122 captured by the TV camera is: Even if the posture of the probe 7 changes, it almost indicates the position where the living body contact ball 105 comes into contact with the living body. In other words, the light reflector 1 2 1 is used as a key to work with the probe movement. Can be.
  • Fig. 5 is a block diagram of the components of the probe that are related to hardness detection.
  • a vibrating body 107 and a vibration detection sensor 109 are laminated on the living body contact ball 105 by bonding.
  • the signal line 1 17 from the vibration detecting sensor 109 and the signal line 1 15 to the vibrating body 107 are connected to the hardness calculating section 47.
  • the hardness calculation section 47 has a signal line 117 from the vibration detection sensor 109 connected to the amplifier 131, and a signal line 115 between the amplifier 131 and the signal line 115 to the vibrating body 107. Is provided with a phase shift circuit 13 3.
  • Phase shift circuit 1 3 3 has frequency deviation detector 1
  • the phase shift circuit 133 is a circuit that changes the frequency and shifts the phase difference to zero. Regarding the internal configuration and its operation, see JP-A-9-111.
  • the biological contact ball 105 can be obtained by molding an insulator such as a plastic into a substantially hemispherical shape.
  • the vibrating body 107 and the vibration detecting sensor 109 can be obtained by a piezoelectric element or the like.
  • the vibrating body 107 and the vibration detecting sensor 109 may be laminated by bonding, or may be an integrated type using divided electrodes.
  • the vibration from the oscillator 107 is given to the living body 1 via the living body contact ball 105, and it corresponds to the hardness of the living body. Then, the vibration whose phase and frequency have changed is returned via the biological contact ball 105. After the returned vibration is detected by the vibration detection sensor 109 and amplified by the amplifier 131, the phase shift circuit 133 detects the input signal to the vibrator 107 and the vibration detection sensor 109. The frequency is changed so that the phase difference from the output signal from 9 becomes zero. Since the change in the frequency, that is, the frequency deviation is a value corresponding to the hardness of the living body, this is calculated by the frequency deviation detector 135. The hardness of the living body can be obtained by detecting and converting into hardness with a hardness converter 13 7.
  • 6 to 9 are diagrams for explaining another embodiment of the display of hardness in the synthesis of the screen on the display.
  • a color that can be distinguished from the color of the surgical target area of the living body is selected as the hardness display color, and the inside of the outline of the movement trajectory is colored based on the hardness display color, so that the hardness of the portion is determined.
  • the color of the surgical target area of the living body is mostly pink to red, so that the hardness display color can be selected from blue, green, and yellow.
  • the coloring method within the outline of the movement trajectory includes a replacement method that replaces the color of the living body in that part with the hardness display color, and a method that leaves the living body color of that part as the background color and allows the background color to be transparent. It is possible to use a watermark method of mixing the color of the living body and the hardness display color so as to be visible.
  • the image 1 6 1 disconnect the image of the probe from the screen from all the image signals in the upper part, each point along the centerline 1 8 1 of the movement locus of the marker one X 15 X 2 is a diagram showing a Irode Isseki of X 3 in the lower part.
  • the image 161 includes the image 1 ⁇ 1 of the liver portion and the image 173 of the living tissue other than the liver outside the liver portion.
  • the color data can be represented by 256 gradations of RGB.
  • the color of the X 2 points liver unit content in pure red
  • the color of a point X 13 X 3 of the living tissue portion other than the liver is expressed as an off light red clogging pink color.
  • FIG. 9 is a diagram showing the color data of points X 4 , X 5 , X 6 , and X 7 in the outline 179 of FIG.
  • the point X 4, X 6 in 5 0, and 2 5 at point X 5 select the blue hardness display color
  • hardness data values and blue select the blue hardness display color
  • the hardness data value 100 is set to the color data-evening value 256 by associating the color data with the overnight value.
  • the color value of the liver part at each point ⁇ as a living body is originally 255 for R, but the color value for hardness corresponding to the hardness, that is, 1 2 7, 2 of ⁇ 5 6, 1 2 7, 64 have been replaced. Therefore, the outline 1 19 of the movement locus can be clearly distinguished in the image 17 1 of the liver part, and the inside of the outline 1 ⁇ 9 of the movement locus is displayed in a shade of the hardness display color. The hardness can be visually recognized.
  • the color data of each point ⁇ 2 "to ⁇ 6 " in the liver part correspond to the original color data of the original organism, R 2 5 5 and hardness.
  • Color data values, that is, 1 2 7, 2 5 6, 1 2 7, and 6 4 are mixed color data values.
  • the mixed color data value X " is the original value of the liver part.
  • Let X be the color data value of, and ⁇ be the color value of the hardness display color of that part, and let the color mixing rate be, given by ⁇ " (1 ⁇ ) ⁇ + ⁇ .
  • the color mixing ratio be 50% when the color value corresponding to the hardness is the largest, and 0% when the color value is the smallest. That is, in the hardest part, the color of the liver in the background is mixed half-and-half with the color of the liver in the background, and as the hardness becomes softer, the color of the liver in the background becomes stronger.
  • An example of the color mixing ratio is shown in the lower part of FIG. This makes it possible to visually display the density of the hardness display color as if the liver color was used as a background color and was overlaid thereon.
  • FIGS. 10 and 11 are diagrams showing another embodiment of an image representing hardness.
  • FIG. 10 shows, for the sake of explanation, the contours 2 1 1, 2 13 of two marker-moving trajectories in an image from the marker-locating signal, and the contours 2 1 1, 2 1 3 of each moving trajectory
  • An image 201 in which a color indicating hardness is applied is shown. In this area, the hardness is interpolated for the area 2 1 5 between the two trajectories. It is an embodiment.
  • Figure 11 shows an image 203 obtained by interpolating the hardness of an area 205 sandwiched between two movement trajectories.
  • the lower row shows the color data of each point X 21 , X 225 X 23 in the contour 213 of the trajectory, and each point X 3 , X 32 , X 33 of the area 2 15 sandwiched by the moving trajectory.
  • the synthesis of the liver part with the image 171 is performed by the replacement method, and the color data of the liver part and the biological tissue other than the liver are omitted.
  • the color data value of each point of the region 2 15 sandwiched between the movement trajectories can be obtained by interpolation based on the color data values in the outlines of the plurality of movement trajectories surrounding the region.
  • Linear interpolation can be used as the interpolation method.
  • Weighted interpolation can also be performed using weighting factors.
  • the color value of the point X 3 i is based on the color value of the point X (B-127) and the color value of the point X 2 i (B—127). Interpolation yields (B-127).
  • Irode Isseki value of the point X 32 is Irode Isseki value of the point X 12 (B - 255) and the color data value of the point X 22 (B- 64) on based complement, by between a (B- 160) Desired.
  • Irode Isseki value of the point X 32 in addition to the interpolation of the point X 12 and the point X 22, between complementary with interpolation and point X i and the point x 23 between the point X 13 and the point X 2 i Can also be taken into account.
  • the interpolation point to be interpolated for example, by using as many interpolated color data values for each hardness image surrounding the point X 32, to display the distribution of the smooth hardness over a wide area Can be.
  • the watermark image may be used in place of the replacement method for synthesizing the hardness image and the image of the operation target region of the living body.
  • color mixing can be performed between the color data value of the interpolated hardness and the color value of the background operation target area image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A television camera (15) picks up an image of an organism (1) and a probe (7) brought into contact with the surface of the organism (1). An image of a marker attached to the probe (7) picked up is isolated from the full image by a probe position signal isolation unit (21). Marker position information is acquired by a position acquiring unit (41). A marker trace signal (45) is generated by a trace signal generation unit (43). The sensing signal detected by the probe (7) generates a hardness signal (51) via a hardness calculation unit (47) and a hardness signal generation unit (49). In an overlap unit (23), the marker trace signal (45) and the hardness signal (51) are overlapped with a full screen signal (35), so that the organism image is overlapped with the hardness information image correlated with the probe current position and movement trace and they are displayed on a display (25).

Description

明 細 書 開皮外科手術支援システム 技術分野  Description Skin open surgery surgery support system Technical field
本発明は、 生体の皮膚部分を開き、 内部の患部に処置を施す開皮外科手 術を支援する、 開皮外科手術支援システムに関する。 背景技術  The present invention relates to a skin-opening surgery support system that supports a skin-opening surgery for opening a skin part of a living body and performing treatment on an affected area inside the body. Background art
生体の皮膚部分を開き、 内部の患部に処置を施す開皮外科手術において は、 処置を施す部位、 すなわち生体の患部とそれ以外の部分を判別するこ とが重要である。 一般に、 患部は硬変等他の部分と異なる硬さを持つ。 そ こで、 術者が開皮した生体の表面を手で触診し、 患部と他の部分との硬さ の差を触覚で判別することが行われる。 また、 患部の硬さの程度を定量的 に測定するものとして、 特開平 9一 1 4 5 6 9 1号公報は、 周波数偏差検 出回路を利用した硬さ測定器において、 軟質の被測定物から硬質の被測定 物までの広い範囲において硬さ情報を正確に測定する手段を開示する。  In open skin surgery in which the skin of a living body is opened and the affected area inside is treated, it is important to distinguish the site to be treated, that is, the affected area of the living body and other parts. In general, the affected part has a different hardness from other parts such as cirrhosis. Therefore, the surgeon manually palpates the surface of the opened skin and determines the difference in hardness between the affected part and other parts by tactile sensation. Japanese Patent Application Laid-Open No. Heisei 9-1455691 discloses a method for quantitatively measuring the degree of hardness of an affected part. A means for accurately measuring hardness information in a wide range from a hard object to a hard object is disclosed.
このように、 従来技術において、 術者の触覚により、 患部と他の部分と の硬さの差を判別し、 患部の硬さの程度を硬さ測定器の数値表示で知るこ とができる。 しかし、 術者の触覚による方法は経験が必要で、 患部と他の 部分との判別に術者の個人差が現われる。 また、 硬さ測定器の表示は数値 のみであるので、 患部と他の部分との硬さの差を、 術中においてリアル夕 ィムで視覚的に知ることができない。  As described above, in the prior art, the difference in hardness between the affected part and other parts can be determined by the operator's tactile sensation, and the degree of hardness of the affected part can be known by numerical display of a hardness measuring instrument. However, the operator's tactile method requires experience, and individual differences in the discrimination between the affected area and other parts appear. In addition, since the hardness meter displays only numerical values, the difference in hardness between the affected part and other parts cannot be visually recognized in a real time during the operation.
本発明の目的は、かかる従来技術の課題を解決し、術者の触覚によらず、 術中においてリアルタイムに、 患部と他の部分との硬さの差を視覚的に表 示する開皮外科手術支援システムを提供することである。 発明の開示 An object of the present invention is to solve such a problem of the prior art, and perform a skin surgery in which the difference in hardness between an affected part and another part is visually displayed in real time during the operation without using the operator's tactile sensation. To provide a support system. Disclosure of the invention
上記目的を達成するため、 本発明に係る閧皮外科手術支援システムは、 開皮外科手術の際に、 生体の患部と他の部分との硬さの差異を検出し、 手 術を支援する手術支援システムであって、 生体の手術対象領域を撮像し、 画面に写し出す撮像 ·表示手段と、 生体に接触するプローブを有し、 生体 の硬さを検出する生体硬さ検出手段と、 を備え、 前記撮像 ·表示手段は、 前記プロ一ブを生体上で動かしたときの移動軌跡を、 前記生体の手術対象. 領域画像に重畳して表示するプローブ軌跡重畳部と、 プローブの移動軌跡 に対応した前記生体の硬さを表示する軌跡対応硬さ表示部と、 を含むこと を特徴とする。  In order to achieve the above object, a surgical operation support system according to the present invention detects a difference in hardness between an affected part of a living body and another part during open skin surgery, and performs an operation for assisting the operation. A support system, comprising: an imaging / display unit that images a surgical target region of a living body and projects it on a screen; and a living body hardness detecting unit that has a probe that comes into contact with the living body and detects the hardness of the living body. The imaging and display means corresponds to a probe trajectory superimposing unit that superimposes and displays a moving trajectory when the probe is moved on a living body in a surgical object of the living body. And a trajectory-corresponding hardness display unit for displaying the hardness of the living body.
また、 本発明に係る開皮外科手術支援システムにおいて、 さらに、 前記 プローブの生体に対する接触圧を検出する接触圧検出センサを備えること が好ましい。  Further, the skin-opening surgery support system according to the present invention preferably further comprises a contact pressure detection sensor for detecting a contact pressure of the probe with respect to a living body.
また、 本発明に係る開皮外科手術支援システムにおいて、 前記軌跡対応 硬さ表示部は、一定の接触圧の下の生体の硬さを表示することが好ましい。  In the skin-opening surgery support system according to the present invention, it is preferable that the trajectory-corresponding hardness display unit displays the hardness of a living body under a constant contact pressure.
また、 本発明に係る開皮外科手術支援システムにおいて、 前記生体硬さ 検出手段は、 先端に振動子と、 振動検出センサとが設けられ、 振動子に接 続される入力端子と、 振動検出センサに接続される出力端子を備えるプロ ーブ部と、 プローブの出力端子に入力端が接続される増幅器と、 増幅器の 出力端とプローブの入力端子との間に設けられ、 プローブの振動子への入 力波形と振動検出センサからの出力波形に位相差が生じるときは、 周波数 を変化させて前記位相差をゼロにシフ トする位相シフト回路と、 を備え、 プローブと生体を含む閉ループの共振状態を維持しつつ、 生体の硬さが変 化することで生ずる前記周波数変化から、 生体の硬さを算出することが好 ましい。  Further, in the skin-opening surgery support system according to the present invention, the living body hardness detecting means includes a vibrator and a vibration detection sensor provided at a tip, an input terminal connected to the vibrator, and a vibration detection sensor. A probe unit having an output terminal connected to the probe, an amplifier having an input terminal connected to the output terminal of the probe, and a probe unit provided between the output terminal of the amplifier and the input terminal of the probe. A phase shift circuit that changes the frequency and shifts the phase difference to zero when a phase difference occurs between the input waveform and the output waveform from the vibration detection sensor, and includes a resonance state of a closed loop including the probe and the living body. It is preferable to calculate the hardness of the living body from the frequency change caused by the change in the hardness of the living body while maintaining the above.
また、 本発明に係る開皮外科手術支援装置において、 さらに、 前記プロ —ブの動きと連動するマ一カーと、 を備えることが好ましい。 また、 本発明に係る閧皮外科手術支援装置において、 前記マーカーは、 前記プローブに設けられた半球状の光反射体であることが好ましい。 Further, it is preferable that the skin-opening surgery support apparatus according to the present invention further comprises: a marker that is linked to the movement of the probe. Further, in the surgical operation support apparatus according to the present invention, it is preferable that the marker is a hemispherical light reflector provided on the probe.
本発明に係る開皮外科手術支援システムは、 生体の手術対象領域を撮像 し、 画面に写し出す撮像 ·表示手段と、 生体に接触するプローブを有し、 生体の硬さを検出する生体硬さ検出手段とを備える。 そして、 プローブを 生体上で走査するように移動し、 その移動範囲の硬さを測定したとき、 プ ロープの移動軌跡を、撮像 '表示手段のディスプレイに表示するとともに、 移動軌跡に対応した硬さの変化を同じディスプレイに重ねて表示する。 し たがって、 術者の触覚によらず、 術中においてリアルタイムに、 患部と他 の部分との硬さの差を視覚的に表示することができる。  An open-cutting surgery support system according to the present invention includes: an imaging / display unit that images an operation target region of a living body and projects the image on a screen; and a probe that comes into contact with the living body, and detects the hardness of the living body. Means. Then, the probe is moved so as to scan on the living body, and when the hardness of the moving range is measured, the movement trajectory of the probe is displayed on the display of the imaging unit and the hardness corresponding to the movement trajectory is displayed. Is superimposed on the same display. Therefore, the difference in hardness between the affected part and the other part can be visually displayed in real time during the operation, without depending on the operator's tactile sensation.
プローブの移動軌跡の表示について、 プローブの現在位置の前後に、 移 動した範囲の画面の色を変え、 例えば生体の部分はカラ一表示のとき、 プ ローブの移動軌跡を白黒で表示することができる。 このことで、 プロ一プ の生体上の現在位置と、 移動軌跡との位置関係が明確化する。  Regarding the display of the movement path of the probe, the color of the screen in the moved area can be changed before and after the current position of the probe.For example, when the living body part is displayed in full color, the movement path of the probe can be displayed in black and white it can. This clarifies the positional relationship between the current position of the prop on the living body and the trajectory.
また、 移動軌跡に対応した硬さの変化の表示は、 プローブの移動軌跡表 示の妨げにならないディスプレイの表示領域、 例えばディスプレイ画面の 下部に帯状に、 横軸に移動軌跡の場所を示す指標、 縦軸に硬さをとつたグ ラフで示すことができる。 また、 例えばグラフ上の白丸で、 プローブの現 在位置の硬さを示すことができる。 この他、 硬さの変化の表示は、 移動軌 跡の領域内部について、 硬さの違いに応じて色の濃淡を異ならせ、 または メッシュの粗さを異ならせる等で表すこともできる。 このことで、 硬さ表 示において、 プローブの生体上の現在位置が明確になり、 硬さの差異が、 プローブの現在位置からみてどの位置にあるかが明確になり、 術者の触覚 によらず、 術中においてリアルタイムに、 患部と他の部分との硬さの差を 視覚的に表示することができる。  In addition, the display of the change in hardness corresponding to the movement locus is displayed on a display area of the display that does not hinder the display of the movement locus of the probe, for example, a band at the bottom of the display screen, an index indicating the position of the movement locus on the horizontal axis, It can be shown by a graph with the ordinate representing hardness. Also, for example, a white circle on the graph can indicate the hardness of the current position of the probe. In addition, the display of the change in hardness can be represented by, for example, changing the shading of the color or the roughness of the mesh within the region of the moving trajectory according to the difference in hardness. As a result, in the hardness display, the current position of the probe on the living body is clarified, and the difference in the hardness is clarified in which position from the current position of the probe, and the hardness is determined by the tactile sensation of the operator. Instead, the difference in hardness between the affected part and other parts can be visually displayed in real time during the operation.
また、 本発明に係る開皮外科手術支援システムにおいて、 さらに、 前記 プローブの生体に対する接触圧を検出する接触圧検出センサを備える。 こ の接触圧センサの出力をディスプレイに表示する等により、 接触圧をモニ 夕しつつ生体の硬さの測定ができ、 生体の硬さに与える接触圧の影響を考 慮した手術支援ができる。 The skin-opening surgery support system according to the present invention further includes a contact pressure detection sensor that detects a contact pressure of the probe with respect to a living body. This By displaying the output of the contact pressure sensor on a display, etc., the hardness of the living body can be measured while monitoring the contact pressure, and surgery support can be performed in consideration of the effect of the contact pressure on the hardness of the living body.
また、 本発明に係る開皮外科手術支援システムにおいて、 接触圧センサ を用い、 一定の接触圧の下の生体の硬さを表示する。 したがって、 生体の 状況、 例えばやわらかい組織には低い接触圧を設定する等、 設定する接触 圧を変え、 硬さに与える接触圧の影響を考慮した手術支援ができる。  Further, in the open-skin surgery support system according to the present invention, a contact pressure sensor is used to display the hardness of a living body under a constant contact pressure. Therefore, it is possible to change the contact pressure to be set, for example, by setting a low contact pressure to the condition of the living body, for example, a soft tissue, and to perform surgery support in consideration of the influence of the contact pressure on the hardness.
また、 本発明に係る開皮外科手術支援システムにおいて、 前記生体硬さ 検出手段は、 先端に振動子と振動検出センサとが設けられたプローブと、 生体を含む閉ループに、 増幅器と位相シフ ト回路を設ける。 そして位相シ フ ト回路は、 振動子への入力波形と振動検出センサからの出力波形に位相 差が生じるときは、 周波数を変化させて前記位相差をゼロにシフトするの で、 プローブと生体を含む閉ループの共振状態を維持しつつ、 生体の硬さ が変化することで生ずる前記周波数変化から、 生体の硬さを算出すること ができる。 したがって、 この硬さをグラフ、 色の違い等を用いてディスプ レイ上にあらわすことで、 術者の触覚によらず、 術中においてリアルタイ ムに、 患部と他の部分との硬さの差を視覚的に表示することができる。 また、 本発明に係る開皮外科手術支援装置において、 さらに、 前記プロ —ブの動きと連動するマーカ一を備える。 また、 前記マーカ一は、 前記プ ローブに設けられた半球状の光反射体であることが好ましい。 半球状の光 反射体からの反射光を撮像 ·表示手段が撮像することで、 プローブの姿勢 によらず、 プローブの現在位置を認識することができる。  Further, in the skin-opening surgery support system according to the present invention, the living body hardness detecting means includes: a probe having a vibrator and a vibration detection sensor at its tip; and a closed loop including a living body, an amplifier and a phase shift circuit. Is provided. Then, when a phase difference occurs between the input waveform to the vibrator and the output waveform from the vibration detection sensor, the phase shift circuit changes the frequency to shift the phase difference to zero. It is possible to calculate the hardness of the living body from the frequency change caused by the change in the hardness of the living body while maintaining the closed loop resonance state. Therefore, by expressing this hardness on the display using graphs, color differences, etc., the difference in hardness between the affected part and other parts can be realized in real time during surgery, regardless of the operator's tactile sensation. It can be displayed visually. Further, the skin-opening surgery support apparatus according to the present invention further includes a marker linked to the movement of the probe. It is preferable that the marker is a hemispherical light reflector provided on the probe. The current position of the probe can be recognized irrespective of the attitude of the probe by imaging the reflected light from the hemispherical light reflector.
また、 前記軌跡対応硬さ表示部は、 算出された生体の硬さに応じて移動 軌跡の輪郭内の色を選択し、 生体の硬さを表す画像を形成して表示するこ とが好ましい。上記構成により、硬さを色の違いで表示する。したがって、 患部と他の部分との硬さの差を視覚的に表示することができる。  Further, it is preferable that the trajectory-corresponding hardness display unit selects a color within the contour of the movement trajectory according to the calculated hardness of the living body, and forms and displays an image representing the hardness of the living body. With the above-described configuration, the hardness is displayed in different colors. Therefore, the difference in hardness between the affected part and other parts can be visually displayed.
また、 生体の硬さを表す画像の形成は、 生体の手術対象領域の色と識別 できる硬さ表示色を用い、生体の硬さに応じて硬さ表示色の濃淡を選択し、 移動軌跡輪郭内の生体の色を硬さ表示色に置き換えて、 硬さがより硬いと きはより濃い硬さ表示色に、 より軟らかいときはより淡い硬さ表示色にな るように選択することが好ましい。 In addition, the formation of an image representing the hardness of the living body is distinguished from the color of the surgical target area of the living body. If the hardness is harder, select the shade of the hardness display color according to the hardness of the living body, and replace the color of the living body in the outline of the movement trajectory with the hardness display color. It is preferable that the color is selected so as to give a darker hardness display color and a softer hardness display color when the color is softer.
上記構成により、 例えば、 手術対象領域が赤色系のときには硬さの表示 色を青に選び、 移動軌跡輪郭内の色を赤色系から青色に置き換える。 そし て、 青色の範囲の中で濃淡をつけ、 硬さがより硬い部分は濃紺に、 より軟 らかい部分はライ トブル一にする。 したがって、 患部と他の部分を明確に 区別でき、 また硬さの差を視覚的に表示することができる。  With the above configuration, for example, when the operation target area is reddish, the display color of the hardness is selected to be blue, and the color in the outline of the movement locus is changed from reddish to blue. Then, add shades in the blue range, and make the harder parts dark blue and the softer parts lighter. Therefore, the affected part can be clearly distinguished from other parts, and the difference in hardness can be visually displayed.
また、 生体の硬さを表す画像の形成は、 前記生体の手術対象領域画像と 識別できる硬さ表示色を用い、 生体の硬さに応じ、 硬さ表示色と前記移動 軌跡内の生体の色との混色比を選択し、 硬さがより硬いときは硬さ表示色 の割合を多く、 より軟らかいときは生体の色の割合を多くなるように選択 することが好ましい。  The image representing the hardness of the living body is formed by using a hardness display color that can be distinguished from the image of the operation target region of the living body, and according to the hardness of the living body, the hardness display color and the color of the living body in the movement locus. It is preferable to select a color mixture ratio such that when the hardness is harder, the ratio of the hardness display color is increased, and when the hardness is softer, the ratio of the color of the living body is increased.
上記構成により、 例えば、 手術対象領域が赤色系のときには硬さの表示 色を青に選び、 移動軌跡輪郭内の色を赤色系と青色との混色とする。 そし て、 混色度を硬さに応じて選択し、 硬さがより硬い部分はより青色に、 よ り軟らかい部分はより赤色にする。 したがって、 硬さについて赤色を背景 色として青色で表示することになり、 硬さ表示を行ってもその下地に生体 の手術対象領域の色が透けて見えるようにでき、 生体の硬さをその部分の 生体の色を見えるようにして視覚的に表示することができる。  With the above configuration, for example, when the operation target area is reddish, the display color of the hardness is selected to be blue, and the color in the outline of the movement locus is a mixed color of reddish and blue. Then, the degree of color mixing is selected according to the hardness, with the harder parts being bluer and the softer parts being redder. Therefore, the hardness is displayed in blue with red as the background color, and even when the hardness is displayed, the color of the surgical target area of the living body can be seen through on the background, and the hardness of the living body is displayed in that part. The color of the living body can be seen and visually displayed.
また、 本発明に係る開皮外科手術支援システムにおいて、 複数の硬さ画 像間における生体の手術対象領域画像の色を、 各硬さ画像を構成する色に 基づいて選択し、 補間された硬さ画像を形成する補間硬さ画像形成部を備 えることが好ましい。  Further, in the open-skin surgery support system according to the present invention, the color of the surgical operation target area image of the living body between the plurality of hardness images is selected based on the colors constituting each hardness image, and the interpolated hardness is selected. It is preferable to include an interpolation hardness image forming unit for forming an image.
上記構成により、 移動軌跡内において硬さを表示するのみならず、 複数 の移動軌跡すなわち硬さ表示画像があるときに、 その移動軌跡の間の領域 についても補間により硬さ表示をする。 したがって、 広い領域の硬さ分布 を補間により表示でき、 開皮外科手術支援を効率的に行うことができる。 図面の簡単な説明 According to the above configuration, not only is the hardness displayed in the movement trajectory, but when there are a plurality of movement trajectories, that is, the hardness display image, the area between the movement trajectories is displayed. Is also displayed by interpolation. Therefore, the hardness distribution over a wide area can be displayed by interpolation, and skin surgery can be efficiently supported. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態に係る開皮外科手術支援システムのプロッ ク図である。  FIG. 1 is a block diagram of a skin surgery support system according to an embodiment of the present invention.
図 2は、 本発明の実施の形態に係る、 ディスプレイ上の画面の重畳につ き、 全画面信号からの画面と、 軌跡信号からの画面と、 硬さ信号からの画 面との相互の関係を示した図である。  FIG. 2 is a diagram illustrating a relationship between a screen from a full-screen signal, a screen from a trajectory signal, and a screen from a hardness signal when superimposing a screen on a display according to an embodiment of the present invention. FIG.
図 3は、 本発明の実施の形態に係る、 他のディスプレイ上の表示法を示 す図である。  FIG. 3 is a diagram showing a display method on another display according to the embodiment of the present invention.
図 4は、 本発明の実施の形態に係るプローブの断面図である。  FIG. 4 is a sectional view of the probe according to the embodiment of the present invention.
図 5は、 本発明の実施の形態に係る、 プロ一プの構成要素のうち硬さ検 出にかかわる部分を抜き出したブロック図である。  FIG. 5 is a block diagram showing a part related to hardness detection extracted from components of the prop according to the embodiment of the present invention.
図 6は、 本発明の実施の形態において、 全画像信号からの画面からプロ ーブの画像を抜いた画像を上段に、 マ一力一の移動軌跡の中心線に沿った 各点の色データを下段に示した図である。  FIG. 6 shows color data of each point along the center line of the moving trajectory of the highest power in the upper part of the image obtained by removing the probe image from the screen from all image signals in the embodiment of the present invention. Is a diagram shown in the lower part of FIG.
図 7は、 本発明の実施の形態において、 マ一カーの軌跡信号からの画像 においてマ一力一の移動軌跡の輪郭内に硬さを表す色を施した画像を上段 に、 移動軌跡の輪郭内の各点の色データを下段に示した図である。  FIG. 7 shows, in the embodiment of the present invention, an image obtained by giving a color representing hardness in the outline of the moving trajectory of the marker in the image from the trajectory signal of the marker, FIG. 3 is a diagram showing color data of each point in the lower row.
図 8は、 本発明の実施の形態において、 置換法により図 6の画像と図 7 の画像とを合成した画像を上段に、 各点の色データを下段に示した図であ る  FIG. 8 is a diagram showing an image obtained by synthesizing the image of FIG. 6 and the image of FIG. 7 by the replacement method in the upper part of the embodiment of the present invention, and the color data of each point is shown in the lower part.
図 9は、 本発明の実施の形態において、 透かし法により図 6の画像と図 7の画像とを合成した画像を上段に、 各点の色デ一夕を下段に示した図で める。  FIG. 9 shows an image obtained by combining the image of FIG. 6 and the image of FIG. 7 by the watermarking method in the embodiment of the present invention in the upper part, and the color data of each point in the lower part.
図 1 0は、 本発明の実施の形態において、 2個のマーカー移動軌跡の輪 郭内に硬さを表す色を施した画像を示す図である。 FIG. 10 is a diagram showing two marker movement trajectories according to the embodiment of the present invention. It is a figure which shows the image which gave the color which shows hardness in the area | region.
図 1 1は、 本発明の実施の形態において、 2個の移動軌跡に挟まれた領 域について硬さを補間した画像を上段に、 移動軌跡の輪郭内の各点及び移 動軌跡に挟まれた領域の各点の色デ一夕を下段に示す。  FIG. 11 shows an embodiment of the present invention in which an image obtained by interpolating the hardness of a region sandwiched between two movement trajectories is sandwiched between each point in the contour of the movement trajectory and the movement trajectory in an upper row. The lower row shows the color data of each point in the shaded area.
本発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を用いて、 本発明の実施の形態について詳細に説明する。 図 1は、 生体 1の開皮外科手術を支援する閧皮外科手術支援システム 3のブ ロック図である。 開皮外科手術支援システム 3は、 生体 1の手術対象領域 を撮像し画面に写し出す撮像 ·表示手段 5と、 生体 1に接触して生体の硬 さを検出するプロ一ブ 7を備え、 プローブ 7は、 さらに、 プローブ 7の生 体に対する接触圧も検出する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a skin surgery support system 3 that supports open skin surgery of a living body 1. The open-skin surgery support system 3 includes imaging and display means 5 for imaging an operation target area of the living body 1 and displaying the image on a screen, and a probe 7 for detecting the hardness of the living body by contacting the living body 1 with a probe 7. Further detects the contact pressure of the probe 7 on the living body.
撮像 ·表示手段 5は、 生体表面からの反射光 1 1とプローブ先端に取付 けられたマ一カーからの反射光 1 3により、 生体 1とマーカ一を含むプロ —ブ 7を撮像するテレビカメラ 1 5を備える。また、中間信号処理として、 テレビカメラ 1 5が撮像した全画面の信号の中からプローブのマ一力一の 反射光部分の信号を抜き出し、 全画面信号 1 7と別にプローブ位置信号 1 9を生成するプローブ位置信号分離部 2 1を備え、 全画面信号 1 7と後に 詳述する軌跡信号、 硬さ信号、 接触圧信号とを重畳する重畳部 2 3を備え る。 さらに、 重畳部 2 3により重畳された信号による重畳画像を表示する ディスプレイ 2 5を備える。  The imaging / display means 5 is a television camera for imaging the probe 7 including the living body 1 and the marker 1 by the reflected light 11 from the surface of the living body and the reflected light 13 from the marker attached to the probe tip. 15 is provided. In addition, as an intermediate signal processing, the signal of the reflected light portion of the probe is extracted from the full screen signal captured by the TV camera 15, and a probe position signal 19 is generated separately from the full screen signal 17 And a superimposition unit 23 for superimposing a full-screen signal 17 and a locus signal, a hardness signal, and a contact pressure signal, which will be described in detail later. Furthermore, a display 25 for displaying a superimposed image based on the signal superimposed by the superimposing unit 23 is provided.
また、 開皮外科手術支援システム 3は、 プローブ位置信号 3 7からプロ ーブ位置を取得する位置取得部 4 1を備え、軌跡信号生成部 4 3において、 プロ一プ 7を生体上で走査するように移動したときの各プローブの位置を 記憶し、 プローブ 7の移動軌跡を表す軌跡信号 4 5を生成する。  Further, the open skin surgery support system 3 includes a position acquisition unit 41 for acquiring a probe position from the probe position signal 37, and the trajectory signal generation unit 43 scans the probe 7 on a living body. The position of each probe at the time of movement is stored, and a trajectory signal 45 representing the trajectory of the probe 7 is generated.
また、 プローブ 7からのセンシング信号を処理し、 硬さ算出部 4 7およ び硬さ信号生成部 4 9を経て、 硬さを画面上に表示するための硬さ信号 5 1を生成する。 In addition, it processes the sensing signal from the probe 7 and A hardness signal 51 for displaying the hardness on the screen is generated through a hardness signal generator 49.
また、 プローブ 7からのセンシング信号を処理し、 接触圧算出部 5 3お よび接触圧信号生成部 5 5を経て、 接触圧を画面上に表示するための接触 圧信号 5 7を生成する。  Further, it processes the sensing signal from the probe 7 and generates a contact pressure signal 57 for displaying the contact pressure on the screen via the contact pressure calculation unit 53 and the contact pressure signal generation unit 55.
かかる構成の作用を説明する。 生体 1を開皮手術する際、 生体 1の真上 にテレビカメラ 1 5をセッ トし、 ディスプレイ 2 5にその手術対象領域を 写し出す。 次に、 手術を施す術者は、 プローブ 7を生体 1の表面に接触さ せる。 そしてディスプレイ 2 5を見ながらプローブ 7を生体 1の表面を走 査するように移動する。  The operation of such a configuration will be described. When performing skin open surgery on the living body 1, the television camera 15 is set directly above the living body 1, and the operation target area is displayed on the display 25. Next, the operator performing the operation brings the probe 7 into contact with the surface of the living body 1. Then, the probe 7 is moved so as to scan the surface of the living body 1 while watching the display 25.
テレビカメラ 1 5で撮像されたプローブ 7に取付けられたマ一カーの画 像は、 プローブ位置信号分離部 2 1で全体画像から分離され、 マ一力一の 位置に関する信号が得られる。 この信号を用いて、 位置取得部 4 1でマ一 カーの時々刻々の位置情報を取得し、 軌跡信号生成部 4 3でマ一力一の移 動した範囲の位置情報を接続し移動軌跡として、軌跡信号 4 5を生成する。 この軌跡信号 4 5を全画面信号 1 7と重畳部 2 3において重畳することで、 生体画像等と移動軌跡の画像とが重畳して、 ディスプレイ 2 5上に表示さ れる。  The image of the marker attached to the probe 7 picked up by the TV camera 15 is separated from the entire image by the probe position signal separation unit 21 and a signal relating to the position of the key is obtained. Using this signal, the position acquisition unit 41 acquires the instantaneous position information of the marker, and the trajectory signal generation unit 43 connects the position information of the moved range of the marker to create a movement trajectory. , And generate a trajectory signal 45. The trajectory signal 45 is superimposed on the full-screen signal 17 in the superimposition section 23, so that the biological image and the image of the movement trajectory are superimposed and displayed on the display 25.
また、 プロ一ブ 7が検出したセンシング信号は、 硬さ算出部 4 7および 硬さ信号生成部 4 9を経て硬さ信号 5 1が生成される。 この硬さ信号 5 1 を全画面信号 3 5と軌跡信号 4 5と重畳部 2 3において重畳することで、 生体画像等と、 プローブの現在位置および移動軌跡と関係付けした硬さの 情報画像とが重畳して、 ディスプレイ 2 5上に表示される。 接触圧信号に よる画像をさらに重畳することもできる。  In addition, the sensing signal detected by the probe 7 passes through a hardness calculator 47 and a hardness signal generator 49 to generate a hardness signal 51. The hardness signal 51 is superimposed on the full-screen signal 35 and the trajectory signal 45 by the superimposition unit 23, so that a living body image and the like and a hardness information image associated with the current position and the movement trajectory of the probe can be obtained. Are superimposed and displayed on the display 25. An image based on the contact pressure signal can be further superimposed.
図 2は、 ディスプレイ上の画面の重畳を説明するため、 その要素を、 全 画面信号からの画面 6 1と、 軌跡信号からの画面 6 3と、 硬さ信号からの 画面 6 5とに分け、 相互の関係を示した図である。 全画面信号からの画面 6 1は、 生体の表面画像 7 1と、 生体の上に接触したプローブの画像 7 3 が表示される。 また、 プローブの先端に設けられたマ一カーの画像 7 5も 表示される。 これらの画像は、 フルカラーで表示することで、 外科手術を 施す術者が、 ディスプレイの画面の像と、 実際の生体とを容易に比較でき る。 In Fig. 2, to explain the superimposition of the screen on the display, the elements are divided into a screen 61 from a full screen signal, a screen 63 from a locus signal, and a screen 65 from a hardness signal. It is a figure showing mutual relations. Screen from full screen signal As for 61, an image 73 of the surface of the living body and an image 73 of the probe in contact with the living body are displayed. Also, an image 75 of the marker provided at the tip of the probe is displayed. Displaying these images in full color allows the surgeon to easily compare the image on the display screen with the actual living body.
軌跡信号からの画面 6 3は、 マーカ一の現在位置の画像 7 7と、 所定の 期間におけるマーカーの移動範囲を示す軌跡画像 7 9が表示される。 所定 の期間は、 例えば術者がスタートボタンを押してからの期間とすることが できる。 このとき、 軌跡画像は、 スタートボタンが押されてから現在まで の期間のマーカ一の移動範囲を示す軌跡画像となる。 マ一力一の移動した 軌跡の軌跡画像 7 9は、 色を変えて表示することができる。 例えば、 全画 面信号からの画面 6 1がフルカラ一であるとき、 所定の期間においてマ一 カーが移動した範囲の生体画像を白黒表示とすることで、 マ一カーの移動 軌跡を他の部分と容易に区別できる。 マ一カーの現在位置の画像 7 7と、 軌跡画像 7 9は区別して表示されるので、 図 2の軌跡信号からの画面 6 3 の例のように、 マーカ一がー度移動した軌跡を元に戻ったときでも、 前の 一度移動した軌跡はそのまま表示される。 このことで、 マーカーの現在位 置と、 移動軌跡との関係が明確になる。  On the screen 63 based on the trajectory signal, an image 77 of the current position of the marker and a trajectory image 79 showing the moving range of the marker in a predetermined period are displayed. The predetermined period can be, for example, a period after the operator presses the start button. At this time, the trajectory image is a trajectory image indicating the moving range of the marker 1 during the period from when the start button is pressed to the present. The trajectory image 79 of the trajectory that has moved the most can be displayed in different colors. For example, when the screen 61 from the full screen signal is full color, the moving trajectory of the marker is displayed in black and white by displaying the biological image in the range where the marker has moved in a predetermined period. And can be easily distinguished. Since the image 707 of the current position of the marker and the trajectory image 79 are displayed separately, the trajectory where the marker has moved by one degree is used as shown in the example of the screen 63 from the trajectory signal in Fig. 2. Even when returning to, the trajectory once moved before is displayed as it is. This clarifies the relationship between the marker's current position and the trajectory.
硬さ信号からの画面 6 5は、 プローブの模型マークで現在位置を表示す. る現在位置画像 8 1と、 細い帯状のパターンで移動軌跡の範囲を示す移動 軌跡範囲画像 8 3と、 横軸に移動軌跡の位置座標、 縦軸に硬さをとつた硬 さ一位置関係グラフ枠画像 8 5と、 グラフ枠内に示される硬さの位置によ る変化曲線画像 8 7とが表示される。 これらの画像の表示領域は、 デイス プレイの全体画面の下方の、 生体の全体画像等の観察の妨げにならない領 域にとられる。 また、 これらの画像の表示領域を、 ディスプレイの全体画 面の範囲内で移動可能とし、 生体の全体画像等の観察の妨げにならない領 域に任意に移動することもできる。 また、 現在位置画像 8 1、 移動軌跡範 囲画像 8 3は、変化曲線画像 8 7に含めて表示することもできる。例えば、 変化曲線の横軸の範囲を移動軌跡の範囲であるように表示し、 現在位置を 変化曲線上の輝点で示すことができる。 On the screen 65 from the hardness signal, the current position is displayed with the probe model mark.The current position image 81, the moving trajectory range image 83 showing the range of the moving trajectory with a thin band-like pattern, and the horizontal axis The position coordinates of the movement trajectory, the hardness-one-position relationship graph frame image 85 with the vertical axis representing hardness, and the change curve image 87 according to the hardness position shown in the graph frame are displayed. . The display area of these images is set to an area below the entire screen of the display that does not hinder observation of the whole image of the living body. In addition, the display area of these images can be moved within the range of the entire screen of the display, and can be arbitrarily moved to an area that does not hinder observation of the whole image of the living body or the like. Also, the current position image 81, The surrounding image 83 can be included in the change curve image 87 and displayed. For example, the range on the horizontal axis of the change curve can be displayed as the range of the movement locus, and the current position can be indicated by a bright spot on the change curve.
図 3は、 ディスプレイ上の重畳表示について別の実施の形態を示す図で ある。 ここでは、 マーカーの現在位置の画像 7 7、 マーカ一の移動した軌 跡画像 8 9とともに、 軌跡画像 8 9の領域内に、 硬さの違いをメッシュの 粗さの違いで直接表示する。 画面には、 メッシュの粗さと硬さの関係を示 す力一ソル 9 1が設けられる。 メッシュの粗さの違いのほか、 色の違い、 色の濃淡の違い等で硬さの違いを表示してもよい。  FIG. 3 is a diagram showing another embodiment of superimposed display on a display. Here, along with the image 77 of the current position of the marker and the trajectory image 89 of the moved marker, the difference in hardness is directly displayed in the area of the trajectory image 89 by the difference in roughness of the mesh. The screen is provided with a force sol 91 indicating the relationship between the roughness and the hardness of the mesh. In addition to differences in mesh roughness, differences in hardness may be indicated by differences in colors, differences in shades of colors, etc.
重畳部 2 3において、 全画面信号 1 7、 軌跡信号 4 5、 硬さ信号 5 1を 重畳することで、 ディスプレイ 2 5には、 上述の全画面信号からの画面 6 1と、 軌跡信号からの画面 6 3と、 硬さ信号からの画面 6 5とを重畳した 画面が表示される。 さらに接触圧信号 5 7による画面を重畳することもで 5る。  By superimposing the full-screen signal 17, the trajectory signal 45, and the hardness signal 51 in the superimposition unit 23, the display 25 displays the screen 61 from the full-screen signal and the trajectory signal A screen in which screen 63 and screen 65 from the hardness signal are superimposed is displayed. Furthermore, a screen based on the contact pressure signal 57 can be superimposed.
図 4は、 プローブ 7の断面図と、 硬さ算出部 4 7と接触圧算出部 5 3と の接続関係を示す図である。 プローブ 7は、 筐体 1 0 1に、 板バネ 1 0 3 の一端が固定され、 板パネ 1 0 3の先端には、 略半球状の生体接触ボール 1 0 5と振動体 1 0 7と振動検出センサ 1 0 9との積層体が取付けられる c また、 板パネ 1 0 3の反対側には、 接触パッ ド 1 1 1が設けられ、 接触パ ヅ ド 1 1 1に対向する筐体 1 0 1の部分に、 接触圧検出センサ 1 1 3が取 付けられる。 振動体 1 0 7と振動検出センサ 1 0 9は、 それそれ信号線 1 1 5 , 1 1 7により硬さ算出部 4 7と接続され、 接触圧検出センサ 1 1 3 は信号線 1 1 9により接触圧算出部 5 3と接続される。 生体接触ボール 1 0 5の位置に対応した筐体 1 0 1の外壁に、 略半球状の光反射体 1 2 1が 取付けられる。 FIG. 4 is a cross-sectional view of the probe 7 and a diagram illustrating a connection relationship between the hardness calculator 47 and the contact pressure calculator 53. One end of a leaf spring 103 is fixed to the housing 101 of the probe 7, and a substantially hemispherical biological contact ball 105 and a vibrating body 107 are vibrated at the tip of the leaf panel 103. c laminate of the sensor 1 0 9 is mounted also on the opposite side of the plate panel 1 0 3, contact pad 1 1 1 is provided, the contact Pas Uz de 1 1 1 casing 1 0 facing the The contact pressure detection sensor 1 13 is attached to the part 1. The vibrating body 107 and the vibration detection sensor 109 are respectively connected to the hardness calculation unit 47 by signal lines 115 and 117, and the contact pressure detection sensor 113 is connected to the signal line 119 by signal lines. Connected to contact pressure calculator 53. A substantially hemispherical light reflector 122 is attached to the outer wall of the housing 101 corresponding to the position of the living body contact ball 105.
光反射体 1 2 1は金属製、 プラスチックに光沢メツキを施して得ること ができ、 大きさは 3— 5 m mが好適である。 接触圧検出センサは、 ひずみ ゲージで構成することができる。 板パネ 1 0 3の先端に、 略半球状の生体 接触ボール 1 0 5、 振動体 1 0 7、 振動検出センサ 1 0 9を取付ける方法 は、 接着の他、 ネジ止め等でも良い。 硬さ検出についての部分の構成は、 後に図 5を用いて詳細に説明する。 The light reflector 122 can be obtained by applying gloss to metal or plastic, and the size is preferably 3 to 5 mm. The contact pressure detection sensor is It can be configured with a gauge. The method of attaching the substantially hemispherical living body contact ball 105, the vibrating body 107, and the vibration detecting sensor 109 to the tip of the plate panel 103 may be screwing or the like in addition to bonding. The configuration of the part for hardness detection will be described later in detail with reference to FIG.
図 4に示す構成のプローブ 7にっき、 硬さ検出の詳細を除く作用につい て説明する。 生体の硬さを検出するため、 術者は、 筐体 1 0 1の図示して いないハンドル部をもち、 生体接触ボール 1 0 5の部分を生体に接触させ る。 その接触により、 生体接触ボール 1 0 5が取付けられた先端部分は、 板パネ 1 0 3を介して、 図 4における上方、 すなわち筐体 1 0 1の天井部 分に向かって移動し、 板パネ 1 0 3の先端部分の反対側に設けられた接触 パヅ ド 1 1 1が、 接触圧検出センサ 1 1 3に押し付けられる。 ひずみゲー ジで構成される接触圧検出センサ 1 1 3は、 押し付けられた圧力、 すなわ ち、 生体接触ボ一ル 1 0 5が生体から受ける反力に応じたひずみをセンシ ングでき、 そのセンシング信号を信号線 1 1 9により接触圧算出部 5 3に 入力して、 接触圧を算出することができる。  The operation of the probe 7 having the configuration shown in FIG. 4 excluding the details of the hardness detection will be described. In order to detect the hardness of the living body, the surgeon has a handle (not shown) of the housing 101 and contacts the living body contact ball 105 with the living body. Due to the contact, the distal end portion to which the living body contact ball 105 is attached moves through the panel panel 103 toward the upper part in FIG. 4, that is, toward the ceiling of the housing 101, and the panel panel The contact pad 111 provided on the opposite side of the end of 103 is pressed against the contact pressure detection sensor 113. The contact pressure detection sensor 113, which is composed of a strain gauge, is capable of sensing the pressure applied, that is, the strain corresponding to the reaction force received by the living body contact ball 105 from the living body. A signal can be input to the contact pressure calculator 53 via the signal line 119 to calculate the contact pressure.
接触圧算出部 5 3は、 接触圧を算出する他、 予め一定の接触圧を設定し ておき、 その一定値に接触圧が達した時に一定接触圧信号を出すこともで きる。 この一定接触圧信号を硬さ算出部 4 7または硬さ信号生成部 4 9に 送り、 一定接触圧信号が送られたときのみ硬さを算出し、 または硬さ信号 を生成するようにできる。 このことで、 一定の接触圧の下の生体の硬さを 表示することが可能になる。  In addition to calculating the contact pressure, the contact pressure calculating section 53 can also set a constant contact pressure in advance and issue a constant contact pressure signal when the contact pressure reaches the constant value. The constant contact pressure signal is sent to the hardness calculating section 47 or the hardness signal generating section 49, and the hardness can be calculated or the hardness signal can be generated only when the constant contact pressure signal is sent. This makes it possible to display the hardness of a living body under a certain contact pressure.
また、 プロ一プ 7の上方にはテレビカメラがセッ トされ、 生体の状況、 プローブ 7の動きを画像として検出する。 ここで、 光反射体 1 2 1は、 略 半球状で、 生体接触ボール 1 0 5の位置に対応して設けられているので、 テレビカメラが捕らえる光反射体 1 2 1の像の位置は、 プローブ 7の姿勢 が変化しても、 ほぼ生体接触ボール 1 0 5が生体に接触する位置を示す。 すなわち、 光反射体 1 2 1はプローブの動きと連動するマ一力一として用 いることができる。 A television camera is set above the probe 7 to detect the state of a living body and the movement of the probe 7 as an image. Here, since the light reflector 122 is substantially hemispherical and provided corresponding to the position of the living body contact ball 105, the position of the image of the light reflector 122 captured by the TV camera is: Even if the posture of the probe 7 changes, it almost indicates the position where the living body contact ball 105 comes into contact with the living body. In other words, the light reflector 1 2 1 is used as a key to work with the probe movement. Can be.
次に、 硬さ検出に係る部分につき詳細に説明する。 図 5は、 プローブの 構成要素のうち、硬さ検出にかかわる部分を抜き出したプロック図である。 生体接触ボール 1 0 5の上部に振動体 1 0 7、 振動検出センサ 1 0 9が接 着により積層される。 振動検出センサ 1 0 9からの信号線 1 1 7と、 振動 体 1 0 7への信号線 1 1 5は、 硬さ算出部 4 7と接続される。 硬さ算出部 4 7は、 振動検出センサ 1 0 9からの信号線 1 1 7が増幅器 1 3 1に接続 され、 増幅器 1 3 1 と振動体 1 0 7への信号線 1 1 5との間に位相シフ ト 回路 1 3 3が設けられる。 位相シフト回路 1 3 3に、 周波数偏差検出器 1 Next, a portion related to hardness detection will be described in detail. Fig. 5 is a block diagram of the components of the probe that are related to hardness detection. A vibrating body 107 and a vibration detection sensor 109 are laminated on the living body contact ball 105 by bonding. The signal line 1 17 from the vibration detecting sensor 109 and the signal line 1 15 to the vibrating body 107 are connected to the hardness calculating section 47. The hardness calculation section 47 has a signal line 117 from the vibration detection sensor 109 connected to the amplifier 131, and a signal line 115 between the amplifier 131 and the signal line 115 to the vibrating body 107. Is provided with a phase shift circuit 13 3. Phase shift circuit 1 3 3 has frequency deviation detector 1
3 5が接続され、 さらに、 周波数偏差検出器 1 3 5に硬さ換算器 1 3 7が 接続される。 35 is connected, and a hardness converter 13 7 is connected to the frequency deviation detector 13 5.
位相シフ ト回路 1 3 3は、 振動子への入力波形と振動検出センサからの 出力波形に位相差が生じるときは、 周波数を変化させて位相差をゼロにシ フ トする回路であり、 その内部構成とその作用については、 特開平 9一 1 When a phase difference occurs between the input waveform to the vibrator and the output waveform from the vibration detection sensor, the phase shift circuit 133 is a circuit that changes the frequency and shifts the phase difference to zero. Regarding the internal configuration and its operation, see JP-A-9-111.
4 5 6 9 1号公報に詳しく述べられている。 生体接触ボール 1 0 5は、 プ ラスチック等の絶縁体を略半球状に成形して得ることができる。 振動体 1 0 7と振動検出センサ 1 0 9は、 圧電素子等で得ることができる。 振動体 1 0 7、 振動検出センサ 1 0 9は、 接着により積層されるほか、 分割電極 を用いて一体型としたものを用いることができる。 This is described in detail in Japanese Patent No. 456991. The biological contact ball 105 can be obtained by molding an insulator such as a plastic into a substantially hemispherical shape. The vibrating body 107 and the vibration detecting sensor 109 can be obtained by a piezoelectric element or the like. The vibrating body 107 and the vibration detecting sensor 109 may be laminated by bonding, or may be an integrated type using divided electrodes.
この構成のもとで、 生体接触ボール 1 0 5を生体 1に接触させると、 振 動体 1 0 7からの振動が生体接触ボール 1 0 5を介し生体 1に与えられ、 生体の硬さに対応し位相、 振動数が変化した振動が生体接触ボール 1 0 5 を介して返ってくる。 この返ってきた振動を振動検出センサ 1 0 9で検出 し、 増幅器 1 3 1で増幅したのち、 位相シフ ト回路 1 3 3が、 振動体 1 0 7への入力信号と、 振動検出センサ 1 0 9からの出力信号との位相差をゼ 口にするよう周波数を変化させる。 この周波数の変化、 すなわち周波数偏 差は生体の硬さに応じた値であるので、 これを周波数偏差検出器 1 3 5で 検出し、 硬さ換算器 1 3 7で硬さに換算して、 生体の硬さを得ることがで きる。 Under this configuration, when the living body contact ball 105 is brought into contact with the living body 1, the vibration from the oscillator 107 is given to the living body 1 via the living body contact ball 105, and it corresponds to the hardness of the living body. Then, the vibration whose phase and frequency have changed is returned via the biological contact ball 105. After the returned vibration is detected by the vibration detection sensor 109 and amplified by the amplifier 131, the phase shift circuit 133 detects the input signal to the vibrator 107 and the vibration detection sensor 109. The frequency is changed so that the phase difference from the output signal from 9 becomes zero. Since the change in the frequency, that is, the frequency deviation is a value corresponding to the hardness of the living body, this is calculated by the frequency deviation detector 135. The hardness of the living body can be obtained by detecting and converting into hardness with a hardness converter 13 7.
図 6から図 9は、 ディスプレイ上の画面の合成において、 硬さの表示に ついて他の実施の形態を説明する図である。 硬さの表示においては、 生体 の手術対象領域の色と識別できる色を硬さ表示色として選択し、 移動軌跡 の輪郭内を硬さ表示色に基づいて着色することでその部分の硬さを表すこ とができる。 一般的には生体の手術対象領域の色は、 ピンク系から赤色系 が多いので、 硬さ表示色としては青色、 緑色、 黄色系を選択することがで きる。 移動軌跡の輪郭内の着色の仕方には、 その部分の生体の色を硬さ表 示色で置き換えてしまう置換法と、 その部分の生体の色を背景色として残 し、 背景色が透けて見えるようにその部分の生体の色と硬さ表示色とを混 色させる透かし法とを用いることができる。  6 to 9 are diagrams for explaining another embodiment of the display of hardness in the synthesis of the screen on the display. In the display of hardness, a color that can be distinguished from the color of the surgical target area of the living body is selected as the hardness display color, and the inside of the outline of the movement trajectory is colored based on the hardness display color, so that the hardness of the portion is determined. Can be represented. Generally, the color of the surgical target area of the living body is mostly pink to red, so that the hardness display color can be selected from blue, green, and yellow. The coloring method within the outline of the movement trajectory includes a replacement method that replaces the color of the living body in that part with the hardness display color, and a method that leaves the living body color of that part as the background color and allows the background color to be transparent. It is possible to use a watermark method of mixing the color of the living body and the hardness display color so as to be visible.
図 6は、 説明のために、 全画像信号からの画面からプローブの画像を抜 いた画像 1 6 1を上段に、 マーカ一の移動軌跡の中心線 1 8 1に沿った各 点 X15 X2, X3の色デ一夕を下段に示した図である。 例えば、 生体を開 皮し、 肝臓を露出させた場合において、 画像 1 6 1は肝臓部分の画像 1 Ί 1と、 その外側における肝臓以外の生体組織の画像 1 7 3が含まれる。 色 デ一夕は RGBの各 2 5 6階調で示すことができる。 この例では、 肝臓部 分の点 X2の色は純赤色で、 肝臓以外の生体組織部分の点 X13 X3の色は 薄い赤色つまりピンクがかった色として表される。 6, for purposes of explanation, the image 1 6 1 disconnect the image of the probe from the screen from all the image signals in the upper part, each point along the centerline 1 8 1 of the movement locus of the marker one X 15 X 2 is a diagram showing a Irode Isseki of X 3 in the lower part. For example, when the living body is cut off and the liver is exposed, the image 161 includes the image 1Ί1 of the liver portion and the image 173 of the living tissue other than the liver outside the liver portion. The color data can be represented by 256 gradations of RGB. In this example, the color of the X 2 points liver unit content in pure red, the color of a point X 13 X 3 of the living tissue portion other than the liver is expressed as an off light red clogging pink color.
図 7は、 説明のために、 マ一カーの軌跡信号からの画像においてマ一力 —の移動軌跡の輪郭 1 Ί 9内に硬さを表す色を施した画像 1 63を上段に、 移動軌跡の輪郭 1 7 9内の各点 X4, X5, X6, X7の色デ一夕を下段に 示した図である。 この例では、 硬さを点 X5において 1 0 0、 点 X4, X6 において 5 0、 点 X5において 2 5とし、 硬さ表示色に青色を選択し、 硬 さデータ値と青色の色デ一夕値とを対応させ、 硬さデータ値 1 0 0を色デ —夕値 2 5 6としている。 図 8は、 置換法により図 6の画像 1 6 1と図 7の画像 1 6 3とを合成し た画像 1 6 5を上段に、 各点 X 〜 Χ7'の色デ一夕を下段に示した図であ る。 この例では、 肝臓部分の各点 〜 の生体としての色デ一夕値は 元々それぞれ Rの 2 5 5であるが、 硬さに対応する色デ一夕値、 すなわち Βの 1 2 7 , 2 5 6 , 1 2 7 , 64に置き換えられている。 したがって、 移動軌跡の輪郭 1 Ί 9が肝臓部分の画像 1 7 1の中で明確に区別でき、 移 動軌跡の輪郭 1 Ί 9内が硬さ表示色の濃淡に着色されて表示されるので、 硬さを視覚的に認識できる。 Figure 7 shows, for the sake of explanation, an image 1 63 with a color representing hardness within the outline 1 Ί 9 of the movement trajectory of the marker in the image from the marker trajectory signal. FIG. 9 is a diagram showing the color data of points X 4 , X 5 , X 6 , and X 7 in the outline 179 of FIG. In this example, 0 1 0 at point X 5 the hardness, the point X 4, X 6 in 5 0, and 2 5 at point X 5, select the blue hardness display color, hardness data values and blue The hardness data value 100 is set to the color data-evening value 256 by associating the color data with the overnight value. 8, the image 1 6 1 and the image 1 6 5 obtained by synthesizing the image 1 6 3 7 6 by substitution method in the upper, the lower the Irode Isseki of each point X ~ chi 7 ' FIG. In this example, the color value of the liver part at each point 〜 as a living body is originally 255 for R, but the color value for hardness corresponding to the hardness, that is, 1 2 7, 2 of Β 5 6, 1 2 7, 64 have been replaced. Therefore, the outline 1 19 of the movement locus can be clearly distinguished in the image 17 1 of the liver part, and the inside of the outline 1Ί9 of the movement locus is displayed in a shade of the hardness display color. The hardness can be visually recognized.
図 9は、 透かし法により図 6の画像 1 6 1と図 7の画像 1 6 3とを合成 した画像 1 67を上段に、 各点 X 〜 Χ7"の色データを下段に示した図で ある。 この例では、 肝臓部分の各点 Χ2"〜Χ6 "の色デ一夕値は、 元々の生 体としての色デ一夕値である Rの 2 5 5と、 硬さに対応する色データ値、 すなわち Βの 1 2 7 , 2 5 6 , 1 2 7 , 6 4とが混色率ひで混色された混 色データ値となっている。混色データ値 X"は、肝臓部分の元々の色データ 値を Xとし、 その部分の硬さ表示色の色デ一夕値を Υとし、 混色率をひと すると、 Χ"= ( 1— α) Χ + αΥ で与えられる。 9, the image 1 67 obtained by synthesizing the image 1 6 1 and the image 1 6 3 7 6 by watermarking method in the upper part, a drawing color data shown in the lower part of the points X ~ chi 7 " In this example, the color data of each point の2 "to Χ 6 " in the liver part correspond to the original color data of the original organism, R 2 5 5 and hardness. Color data values, that is, 1 2 7, 2 5 6, 1 2 7, and 6 4, are mixed color data values. The mixed color data value X "is the original value of the liver part. Let X be the color data value of, and Υ be the color value of the hardness display color of that part, and let the color mixing rate be, given by Χ "= (1−α) Χ + αΥ.
混色率ひは、 硬さに対応する色デ一夕値が最も大きいときに 5 0 %最も 小さいときに 0 %とするのが好ましい。 すなわち、 最も硬い部分では背景 の肝臓部分の色と半々で混色し、 硬さが軟らかくなるにつれ背景の肝臓部 分の色を強くする。 混色率ひの例を図 7の下段に示した。 このことで、 視 覚的には肝臓部分の色を背景色としてその上に透かしたように硬さ表示色 の濃淡を表示できる。  It is preferable that the color mixing ratio be 50% when the color value corresponding to the hardness is the largest, and 0% when the color value is the smallest. That is, in the hardest part, the color of the liver in the background is mixed half-and-half with the color of the liver in the background, and as the hardness becomes softer, the color of the liver in the background becomes stronger. An example of the color mixing ratio is shown in the lower part of FIG. This makes it possible to visually display the density of the hardness display color as if the liver color was used as a background color and was overlaid thereon.
図 1 0、 図 1 1は、 硬さを表す画像の他の実施の形態を示す図である。 図 1 0は、 説明のために、 マーカ一の軌跡信号からの画像において 2個の マーカ一移動軌跡の輪郭 2 1 1 , 2 1 3を示し、各移動軌跡の輪郭 2 1 1 , 2 1 3内に硬さを表す色を施した画像 2 0 1を示す。 2個の移動軌跡に挟 まれた領域 2 1 5について、 硬さを補間して表示しょうとするのがこの実 施の形態である。 FIGS. 10 and 11 are diagrams showing another embodiment of an image representing hardness. FIG. 10 shows, for the sake of explanation, the contours 2 1 1, 2 13 of two marker-moving trajectories in an image from the marker-locating signal, and the contours 2 1 1, 2 1 3 of each moving trajectory An image 201 in which a color indicating hardness is applied is shown. In this area, the hardness is interpolated for the area 2 1 5 between the two trajectories. It is an embodiment.
図 1 1に、 2個の移動軌跡に挟まれた領域 205について硬さを補間し た画像 203を上段に、 移動軌跡の輪郭 2 1 1内の各点 X113 X12, X, 3、 移動軌跡の輪郭 2 13内の各点 X21, X 225 X 23、 移動軌跡に挟まれ た領域 2 1 5の各点 X3い X32, X33の色データを下段に示す。 この例 では、 肝臓部分の画像 17 1との合成は置換法によるものとして、 肝臓部 分及び肝臓以外の生体組織の色デ一夕は省略した。 移動軌跡に挟まれた領 域 2 1 5の各点の色データ値は、 その領域を囲む複数の移動軌跡の輪郭内 における色データ値に基づく補間により求めることができる。 補間法には 線形補間法を用いることができる。 重み付け係数を用いて、 重み付け補間 を行うこともできる。 Figure 11 shows an image 203 obtained by interpolating the hardness of an area 205 sandwiched between two movement trajectories. Each point in the outline of the movement trajectory X 113 X 12 , X, 3 The lower row shows the color data of each point X 21 , X 225 X 23 in the contour 213 of the trajectory, and each point X 3 , X 32 , X 33 of the area 2 15 sandwiched by the moving trajectory. In this example, the synthesis of the liver part with the image 171 is performed by the replacement method, and the color data of the liver part and the biological tissue other than the liver are omitted. The color data value of each point of the region 2 15 sandwiched between the movement trajectories can be obtained by interpolation based on the color data values in the outlines of the plurality of movement trajectories surrounding the region. Linear interpolation can be used as the interpolation method. Weighted interpolation can also be performed using weighting factors.
図 1 1の例では、 点 X3 iの色デ一夕値は、 点 X の色デ一夕値 (B - 127) と点 X 2 iの色デ一夕値 (B— 127) に基づく補間により (B— 127) と求められる。 点 X32の色デ一夕値は、 点 X12の色デ一夕値 (B - 255 ) と点 X22の色データ値 (B— 64) に基づく補,間により (B— 160) と求められる。 また、 点 X32の色デ一夕値は、 点 X12と点 X22 との補間に加えて、 点 X 13と点 X2 iとの補間及び点 X i と点 x23との補 間をも考慮に入れることができる。 このように、 補間においては、 補間を したい点、例えば点 X 32を囲む各硬さ画像の色データ値をできるだけ多く 補間に用いることで、 広い領域に渡り滑らかな硬さの分布を表示すること ができる。 In the example of Fig. 11, the color value of the point X 3 i is based on the color value of the point X (B-127) and the color value of the point X 2 i (B—127). Interpolation yields (B-127). Irode Isseki value of the point X 32 is Irode Isseki value of the point X 12 (B - 255) and the color data value of the point X 22 (B- 64) on based complement, by between a (B- 160) Desired. Further, Irode Isseki value of the point X 32, in addition to the interpolation of the point X 12 and the point X 22, between complementary with interpolation and point X i and the point x 23 between the point X 13 and the point X 2 i Can also be taken into account. Thus, in the interpolation point to be interpolated, for example, by using as many interpolated color data values for each hardness image surrounding the point X 32, to display the distribution of the smooth hardness over a wide area Can be.
補間硬さ画像を得る際に、 硬さ画像と生体の手術対象領域画像との合成 は、 置換法の代わりに透かし法を用いてもよい。 この場合には、 硬さの補 間を行った後に、 その補間硬さの色データ値と、 背景の手術対象領域画像 の色デ一夕値との間で混色を行うことができる。 産業上の利用可能性 以上のように、 本発明に係る開皮外科手術支援システムは、 処置を施す 部位、 すなわち生体の患部とそれ以外の部分を判別して開皮外科手術を支 援するシステムに有用である。 When obtaining the interpolated hardness image, the watermark image may be used in place of the replacement method for synthesizing the hardness image and the image of the operation target region of the living body. In this case, after the hardness is interpolated, color mixing can be performed between the color data value of the interpolated hardness and the color value of the background operation target area image. Industrial applicability As described above, the skin-surgery surgery support system according to the present invention is useful for a system that supports a skin-surgery surgery by determining a site to be treated, that is, an affected part of a living body and other parts.

Claims

請求の範囲 The scope of the claims
1 . 開皮外科手術の際に、 生体の患部と他の部分との硬さの差異を検 出し、 手術を支援する手術支援システムであって、 1. An operation support system that detects the difference in hardness between the affected part of the living body and other parts during open skin surgery, and supports the operation.
生体の手術対象領域を撮像し、 画面に写し出す撮像 ·表示手段と、 生体に接触するプローブを有し、 生体の硬さを検出する生体硬さ検出手 段と、  Imaging / display means for imaging a surgical target region of a living body and projecting the image on a screen, a living body hardness detecting means having a probe in contact with the living body and detecting the hardness of the living body,
を備え、 With
前記撮像 ·表示手段は、  The imaging and display means,
前記プロ一ブを生体上で動かしたときの移動軌跡を、 前記生体の手術対 象領域画像に重畳して表示するプローブ軌跡重畳部と、  A probe trajectory superimposing unit that superimposes and displays a movement trajectory when the probe is moved on a living body on an image of a surgical operation area of the living body;
プローブの移動軌跡に対応した前記生体の硬さを表示する軌跡対応硬さ 表示部と、  A trajectory corresponding hardness display unit that displays the hardness of the living body corresponding to the movement trajectory of the probe,
を含むことを特徴とする開皮外科手術支援システム。 An open skin surgery operation support system comprising:
2 . 請求の範囲 1に記載の閧皮外科手術支援システムにおいて、 さらに、 前記プローブの生体に対する接触圧を検出する接触圧検出セン サを備えることを特徴とする開皮外科手術支援システム。 2. The open skin surgery support system according to claim 1, further comprising a contact pressure detection sensor that detects a contact pressure of the probe with respect to a living body.
3 . 請求の範囲 2に記載の開皮外科手術支援システムにおいて、 前記軌跡対応硬さ表示部は、 一定の接触圧の下の生体の硬さを表示する ことを特徴とする開皮外科手術支援システム。 3. The skin-opening surgery support system according to claim 2, wherein the trajectory-corresponding hardness display unit displays the hardness of a living body under a constant contact pressure. system.
4 . 請求の範囲 1ないし請求の範囲 3のいずれか一つに記載の開皮外 科手術支援システムにおいて、 4. In the open skin surgery support system according to any one of claims 1 to 3,
前記生体硬さ検出手段は、  The living body hardness detection means,
先端に振動子と、 振動検出センサとが設けられ、 振動子に接続される入' 力端子と、 振動検出センサに接続される出力端子を備えるプロ一ブ部と、 プローブの出力端子に入力端が接続される増幅器と、  A vibrator and a vibration detection sensor are provided at the tip, a probe section having an input terminal connected to the vibrator, an output terminal connected to the vibration detection sensor, and an input terminal connected to the output terminal of the probe. And an amplifier to which is connected
増幅器の出力端とプローブの入力端子との間に設けられ、 プローブの振 動子への入力波形と振動検出センサからの出力波形に位相差が生じるとき は、周波数を変化させて前記位相差をゼロにシフ トする位相シフ ト回路と、 を備え、 プローブと生体を含む閉ループの共振状態を維持しつつ、 生体の 硬さが変化することで生ずる前記周波数変化から、 生体の硬さを算出する ことを特徴とする開皮外科手術支援システム。  If a phase difference is provided between the output end of the amplifier and the input terminal of the probe and the input waveform to the transducer of the probe and the output waveform from the vibration detection sensor, the frequency is changed to change the phase difference. A phase shift circuit that shifts to zero, and calculates a hardness of the living body from the frequency change caused by a change in the hardness of the living body while maintaining a closed loop resonance state including the probe and the living body. An open skin surgery support system characterized by the following.
5 . 請求の範囲 1ないし請求の範囲 4に記載の開皮外科手術支援装置 において、 5. The open-cutting surgery support apparatus according to claims 1 to 4,
ざらに、 前記プローブの動きと連動するマーカ一と、 を備えることを特 徴とする開皮外科手術支援装置。  And a marker that is linked to the movement of the probe.
6 . 請求の範囲 5に記載の開皮外科手術支援装置において、 6. The open-skin surgery support apparatus according to claim 5,
前記マーカ一は、 前記プローブに設けられた半球状の光反射体であるこ とを特徴とする開皮外科手術支援装置。  The marker is a hemispherical light reflector provided on the probe.
7 . 請求の範囲 1に記載の開皮外科手術支援システムにおいて、 前記軌跡対応硬さ表示部は、 算出された生体の硬さに応じて移動軌跡の 輪郭内の色を選択し、 生体の硬さを表す画像を形成して表示することを特 徴とする開皮外科手術支援システム。 7. The skin-opening surgery support system according to claim 1, wherein the trajectory-corresponding hardness display unit selects a color within the contour of the movement trajectory according to the calculated hardness of the living body, and An open-skin surgery support system characterized by forming and displaying an image representing the height.
8 . 請求の範囲 Ίに記載の閧皮外科手術支援システムにおいて、 生体の硬さを表す画像の形成は、 生体の手術対象領域の色と識別できる 硬さ表示色を用い、 生体の硬さに^じて硬さ表示色の濃淡を選択し、 移動 軌跡輪郭内の生体の色を硬さ表示色に置き換えて、 硬さがより硬いときは より濃い硬さ表示色に、 より軟らかいときはより淡い硬さ表示色になるよ うに選択することを特徴とする開皮外科手術支援システム。 8. In the surgical surgery support system according to claim 1, the image representing the hardness of the living body is formed by using a hardness display color that can be distinguished from the color of the surgical operation target area of the living body. ^ Select the shade of the hardness display color and replace the color of the living body in the contour of the movement trajectory with the hardness display color, and when the hardness is harder, use the darker hardness display color and when it is softer, use the hardness display color An open skin surgery support system characterized by selecting a light hardness display color.
9 . 請求の範囲 7に記載の閧皮外科手術支援システムにおいて、 生体の硬さを表す画像の形成は、 前記生体の手術対象領域画像と識別で きる硬さ表示色を用い、 生体の硬さに応じ、 硬さ表示色と前記移動軌跡内 の生体の色との混色比を選択し、 硬さがより硬いときは硬さ表示色の割合 を多く、 より軟らかいときは生体の色の割合を多くなるように選択するこ とを特徴とする開皮外科手術支援システム。 9. The surgical operation support system according to claim 7, wherein the image representing the hardness of the living body is formed by using a hardness display color that can be distinguished from the image of the surgery target region of the living body. The color mixture ratio between the hardness display color and the color of the living body in the movement trajectory is selected, and when the hardness is harder, the ratio of the hardness display color is larger, and when the hardness is softer, the ratio of the color of the living body is higher. An open-cutting surgery support system characterized by selection to increase.
1 0 . 請求の範囲 7に記載の開皮外科手術支援システムにおいて、 複数の硬さ画像間における生体の手術対象領域画像の色を、 各硬さ画像 を構成する色に基づいて選択し、 補間された硬さ画像を形成する補間硬さ 画像形成部を備えることを特徴とする開皮外科手術支援システム。 10. The skin open surgery support system according to claim 7, wherein a color of a surgical operation target region image of the living body among the plurality of hardness images is selected based on a color constituting each hardness image, and interpolation is performed. An open skin surgery operation support system, comprising: an interpolation hardness image forming unit that forms a corrected hardness image.
PCT/JP2003/000803 2002-01-29 2003-01-28 Skin-cutting surgery support system WO2003063719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003563417A JPWO2003063719A1 (en) 2002-01-29 2003-01-28 Open skin surgery operation support system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002020142 2002-01-29
JP2002-020142 2002-01-29

Publications (1)

Publication Number Publication Date
WO2003063719A1 true WO2003063719A1 (en) 2003-08-07

Family

ID=27654332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000803 WO2003063719A1 (en) 2002-01-29 2003-01-28 Skin-cutting surgery support system

Country Status (2)

Country Link
JP (1) JPWO2003063719A1 (en)
WO (1) WO2003063719A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036104A (en) * 2006-08-07 2008-02-21 Hiroshima Univ Apparatus and method for observing wave front of elastic body
WO2008069250A1 (en) * 2006-12-08 2008-06-12 Nihon University Device for measuring physical property of cell
JP2016534824A (en) * 2013-08-15 2016-11-10 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for medical treatment confirmation
US9607403B2 (en) 2014-10-28 2017-03-28 Ppg Industries Ohio, Inc. Pigment identification of complex coating mixtures with sparkle color
US9818205B2 (en) 2016-02-19 2017-11-14 Ppg Industries Ohio, Inc. Simplified texture comparison engine
US10031071B2 (en) 2013-11-08 2018-07-24 Ppg Industries Ohio, Inc. Texture analysis of a coated surface using kepler's planetary motion laws
US10147043B2 (en) 2013-03-15 2018-12-04 Ppg Industries Ohio, Inc. Systems and methods for texture assessment of a coating formulation
US10481081B2 (en) 2013-11-08 2019-11-19 Ppg Industries Ohio, Inc. Texture analysis of a coated surface using pivot-normalization
US10545130B2 (en) 2013-11-08 2020-01-28 Ppg Industries Ohio, Inc. Texture analysis of a coated surface using electrostatics calculations
US10586162B2 (en) 2013-03-15 2020-03-10 Ppg Industries Ohio, Inc. Systems and methods for determining a coating formulation
US10613727B2 (en) 2016-02-19 2020-04-07 Ppg Industries Ohio, Inc. Color and texture match ratings for optimal match selection
US10716507B2 (en) 2014-02-14 2020-07-21 Fujitsu Limited Palpation assisting apparatus, palpation assisting system, and palpation assisting method
US10871888B2 (en) 2018-04-26 2020-12-22 Ppg Industries Ohio, Inc. Systems, methods, and interfaces for rapid coating generation
US10970879B2 (en) 2018-04-26 2021-04-06 Ppg Industries Ohio, Inc. Formulation systems and methods employing target coating data results
JP2021063840A (en) * 2021-01-21 2021-04-22 マクセル株式会社 Hardness meter and hardness measurement method
US11119035B2 (en) 2018-04-26 2021-09-14 Ppg Industries Ohio, Inc. Systems and methods for rapid coating composition determinations
US11874220B2 (en) 2018-04-26 2024-01-16 Ppg Industries Ohio, Inc. Formulation systems and methods employing target coating data results

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266486A (en) * 1995-03-31 1996-10-15 Olympus Optical Co Ltd Hardness measuring apparatus
US5911694A (en) * 1996-08-22 1999-06-15 Olympus Optical Co., Ltd. Endoceliac physical quantity measuring apparatus having excellent measuring resolution
US6070094A (en) * 1994-10-11 2000-05-30 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structures
JP2000152924A (en) * 1998-11-20 2000-06-06 Toshiba Corp X-ray diagnostic device
JP2001112743A (en) * 1999-10-18 2001-04-24 Rikogaku Shinkokai Three-dimensional jaw motion display device and method and storage medium storing three-dimensional jaw motion display program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070094A (en) * 1994-10-11 2000-05-30 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structures
JPH08266486A (en) * 1995-03-31 1996-10-15 Olympus Optical Co Ltd Hardness measuring apparatus
US5911694A (en) * 1996-08-22 1999-06-15 Olympus Optical Co., Ltd. Endoceliac physical quantity measuring apparatus having excellent measuring resolution
JP2000152924A (en) * 1998-11-20 2000-06-06 Toshiba Corp X-ray diagnostic device
JP2001112743A (en) * 1999-10-18 2001-04-24 Rikogaku Shinkokai Three-dimensional jaw motion display device and method and storage medium storing three-dimensional jaw motion display program

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036104A (en) * 2006-08-07 2008-02-21 Hiroshima Univ Apparatus and method for observing wave front of elastic body
WO2008069250A1 (en) * 2006-12-08 2008-06-12 Nihon University Device for measuring physical property of cell
JP5273660B2 (en) * 2006-12-08 2013-08-28 学校法人日本大学 Cell physical property measuring device
US10147043B2 (en) 2013-03-15 2018-12-04 Ppg Industries Ohio, Inc. Systems and methods for texture assessment of a coating formulation
US10586162B2 (en) 2013-03-15 2020-03-10 Ppg Industries Ohio, Inc. Systems and methods for determining a coating formulation
JP2016534824A (en) * 2013-08-15 2016-11-10 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for medical treatment confirmation
US10481081B2 (en) 2013-11-08 2019-11-19 Ppg Industries Ohio, Inc. Texture analysis of a coated surface using pivot-normalization
US10031071B2 (en) 2013-11-08 2018-07-24 Ppg Industries Ohio, Inc. Texture analysis of a coated surface using kepler's planetary motion laws
US10545130B2 (en) 2013-11-08 2020-01-28 Ppg Industries Ohio, Inc. Texture analysis of a coated surface using electrostatics calculations
US10716507B2 (en) 2014-02-14 2020-07-21 Fujitsu Limited Palpation assisting apparatus, palpation assisting system, and palpation assisting method
US9905027B2 (en) 2014-10-28 2018-02-27 Ppg Industries Ohio, Inc. Pigment identification of complex coating mixtures with sparkle color
US10565740B2 (en) 2014-10-28 2020-02-18 Ppg Industries Ohio, Inc. Pigment identification of complex coating mixtures with sparkle color
US9607403B2 (en) 2014-10-28 2017-03-28 Ppg Industries Ohio, Inc. Pigment identification of complex coating mixtures with sparkle color
US10950008B2 (en) 2014-10-28 2021-03-16 Ppg Industries Ohio, Inc. Pigment identification of complex coating mixtures with sparkle color
US9818205B2 (en) 2016-02-19 2017-11-14 Ppg Industries Ohio, Inc. Simplified texture comparison engine
US10613727B2 (en) 2016-02-19 2020-04-07 Ppg Industries Ohio, Inc. Color and texture match ratings for optimal match selection
US10969952B2 (en) 2016-02-19 2021-04-06 Ppg Industries Ohio, Inc. Color and texture match ratings for optimal match selection
US10871888B2 (en) 2018-04-26 2020-12-22 Ppg Industries Ohio, Inc. Systems, methods, and interfaces for rapid coating generation
US10970879B2 (en) 2018-04-26 2021-04-06 Ppg Industries Ohio, Inc. Formulation systems and methods employing target coating data results
US11119035B2 (en) 2018-04-26 2021-09-14 Ppg Industries Ohio, Inc. Systems and methods for rapid coating composition determinations
US11874220B2 (en) 2018-04-26 2024-01-16 Ppg Industries Ohio, Inc. Formulation systems and methods employing target coating data results
JP2021063840A (en) * 2021-01-21 2021-04-22 マクセル株式会社 Hardness meter and hardness measurement method
JP7049493B2 (en) 2021-01-21 2022-04-06 マクセル株式会社 Hardness meter and hardness measurement method

Also Published As

Publication number Publication date
JPWO2003063719A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
WO2003063719A1 (en) Skin-cutting surgery support system
JP4657106B2 (en) Ultrasonic diagnostic equipment
JP5479353B2 (en) Ultrasonic diagnostic equipment
JP5203605B2 (en) Ultrasonic diagnostic equipment
US8734351B2 (en) Method of displaying elastic image and diagnostic ultrasound system
JP3932482B2 (en) Ultrasonic diagnostic equipment
JP5199690B2 (en) Ultrasonic diagnostic equipment
CN106794008B (en) Medical diagnostic apparatus, method of operating the same, and ultrasonic observation system
US8118746B2 (en) Ultrasonic diagnostic apparatus
WO2006073088A1 (en) Ultrasonographic device, ultrasonographic program, and ultrasonographic method
WO2011013346A1 (en) Ultrasonic diagnostic device
WO2009098973A1 (en) Ultrasonic diagnostic device
CN107072640B (en) Ultrasonic observation system
JP5473527B2 (en) Ultrasonic diagnostic equipment
JP2007105400A (en) Ultrasonic diagnosis device, and image processing device
JP2008154626A (en) Ultrasonic diagnostic system
JP5623609B2 (en) Ultrasonic diagnostic equipment
JP3619201B2 (en) Ultrasonic diagnostic equipment
JP6212160B1 (en) Ultrasonic diagnostic equipment
CN108366785B (en) Ultrasonic observation device, method of operating ultrasonic observation device, processing device, and storage medium
JP4074705B2 (en) Ultrasonic diagnostic equipment
JPH08266486A (en) Hardness measuring apparatus
JP2005152405A (en) Ultrasonic diagnostic apparatus
JP2010082308A (en) Ultrasonic diagnostic apparatus
KR20100112668A (en) Ultrasound system and method of providing guide information

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003563417

Country of ref document: JP

122 Ep: pct application non-entry in european phase