Nothing Special   »   [go: up one dir, main page]

WO2002036731A2 - Lipase acide lysosomiale de l'homme - Google Patents

Lipase acide lysosomiale de l'homme Download PDF

Info

Publication number
WO2002036731A2
WO2002036731A2 PCT/EP2001/012518 EP0112518W WO0236731A2 WO 2002036731 A2 WO2002036731 A2 WO 2002036731A2 EP 0112518 W EP0112518 W EP 0112518W WO 0236731 A2 WO0236731 A2 WO 0236731A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
lysosomal acid
acid lipase
seq
polynucleotide
Prior art date
Application number
PCT/EP2001/012518
Other languages
English (en)
Other versions
WO2002036731A3 (fr
Inventor
Yonghong Xiao
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU2002226319A priority Critical patent/AU2002226319A1/en
Publication of WO2002036731A2 publication Critical patent/WO2002036731A2/fr
Publication of WO2002036731A3 publication Critical patent/WO2002036731A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to the area of lipase enzymes. More particularly, the invention relates to the identification of human lysosomal acid lipase and its regulation.
  • Adipose tissues are repositories of energy in the form of complex, insoluble lipoproteins.
  • the movement of this potential energy into energy-requiring cells involves the hydrolysis of the lipoprotein by Upases.
  • triglycerides are the substrate of Upases. The reaction produces lower molecular weight fatty acids and ⁇ - mono- and diglycerides. The resultant lipids are absorbed into digestive tract cells with the aid of emulsifying bile acids.
  • the triglycerides are re-synthesized in the endoplasmic reticulum as chylomicrons. See review by Pullinger and Kane, "Lipider"
  • Various tissues synthesize a lipase enzyme, lipoprotein lipase (PLP).
  • the enzyme is secreted by parenchymal cells and attaches to the endothelial surface as a homodimer.
  • PLP acts on the tryglyceride core of the chylomicrons.
  • the fatty acids released by LDL are taken up by neighboring tissue cells and used as energy or stored as triglycerides.
  • Epinephrine and protein kinase induce the lipase activity.
  • the pancreas is the source of another lipase, pancreatic lipase, which constitutes as much as 2.5% of the pancreatic juice. Faustinella et al, J. Biol. Chem. 266, 9481-85, 1991. Hepatic Upases are also known. Cai et al, Biochemistry 23, 8966-71, 1989.
  • Lipoprotein, hepatic, and pancreatic Upases are members of a family of enzymes and share extensive structural motifs generally believed important in their intracellular localization and function. These sites include a lipid-binding domain, a Ser-centered consensus active-site motif, Gly-Xaa-Ser-Xaa-Gly (at position 132 in human lipoprotein lipase), and a conserved Ser-His dipeptide found in the amino-terminal domain of most Upases.
  • pancreatic lipase Reduced levels of active pancreatic lipase characterize a number of lipid malabsorption illnesses. About 80% of cystic fibrosis patients develop pancreatic lipase deficiency shortly after birth. Alcoholics suffer from pancreatitis, a condition where the pancreas is impaired and fats are malabsorbed, resulting in malnutrition.
  • These enzymes are also of critical importance to both central and peripheral nervous system for example in primary and secondary disorders after brain injury, disorders of mood, anxiety disorders, disorders of thought and volition, disorders of sleep and wakefulness, diseases of the motor unit like neurogenic and myopathic disorders, neurodegenerative disorders like Alzheimer's and Parkinson's disease, processes of peripheral and chronic pain.
  • Upases Other uses for Upases are well established. For example, lipolytic enzymes have been used in detergents to remove lipid or fatty stains from clothes and other textiles.
  • One embodiment of the invention is a lysosomal acid lipase polypeptide comprising an amino acid sequence selected from the group consisting of: amino acid sequences which are at least about 64% identical to the amino acid sequence shown in SEQ ID NO: 2;
  • amino acid sequences which are at least about 64% identical to the amino acid sequence shown in SEQ ID NO: 5;
  • Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
  • a test compound is contacted with a lysosomal acid lipase polypeptide comprising an amino acid sequence selected from the group consisting of:
  • amino acid sequences which are at least about 64% identical to the amino acid sequence shown in SEQ ID NO: 2;
  • amino acid sequences which are at least about 64% identical to the amino acid sequence shown in SEQ ID NO: 5;
  • Binding between the test compound and the lysosomal acid lipase polypeptide is detected.
  • a test compound which binds to the lysosomal acid lipase polypeptide is thereby identified as a potential agent for decreasing extracellular matrix degradation.
  • the agent can work by decreasing the activity of the lysosomal acid lipase.
  • Another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
  • a test compound is contacted with a polynucleotide encoding a lysosomal acid lipase polypeptide, wherein the poly- nucleotide comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1;
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 4.
  • a test compound which binds to the polynucleotide is identified as a potential agent for decreasing extracellular matrix degradation.
  • the agent can work by decreasing the amount of the lysosomal acid lipase through interacting with the lysosomal acid lipase mRNA.
  • Another embodiment of the invention is a method of screening for agents which regulate extracellular matrix degradation.
  • a test compound is contacted with a lysosomal acid lipase polypeptide comprising an amino acid sequence selected from the group consisting of:
  • amino acid sequences which are at least about 64% identical to the amino acid sequence shown in SEQ ID NO: 2;
  • amino acid sequence shown in SEQ ID NO: 2 amino acid sequences which are at least about 64% identical to the amino acid sequence shown in SEQ ID NO: 5; and
  • a lysosomal acid lipase activity of the polypeptide is detected.
  • a test compound which increases lysosomal acid lipase activity of the polypeptide relative to lysosomal acid lipase activity in the absence of the test compound is thereby identified as a potential agent for increasing extracellular matrix degradation.
  • a test compound which decreases lysosomal acid lipase activity of the polypeptide relative to lysosomal acid lipase activity in the absence of the test compound is thereby identified as a potential agent for decreasing extracellular matrix degradation.
  • Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
  • a test compound is contacted with a lysosomal acid lipase product of a polynucleotide which comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1 ;
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 4.
  • test compound Binding of the test compound to the lysosomal acid lipase product is detected. A test compound which binds to the lysosomal acid lipase product is thereby identified as a potential agent for decreasing extracellular matrix degradation.
  • Still another embodiment of the invention is a method of reducing extracellular matrix degradation.
  • a cell is contacted with a reagent which specifically binds to a polynucleotide encoding a lysosomal acid lipase polypeptide or the product encoded by the polynucleotide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1;
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 4.
  • Lysosomal acid lipase activity in the cell is thereby decreased.
  • the invention thus provides a human lysosomal acid lipase that can be used to identify test compounds that may act, for example, as activators or inhibitors at the enzyme's active site.
  • Human lysosomal acid lipase and fragments thereof also are useful in raising specific antibodies that can block the enzyme and effectively reduce its activity.
  • Fig. 1 shows the DNA-sequence encoding a lysosomal acid lipase
  • Fig. 2 shows the amino acid sequence deduced from the DNA-sequence ofFig.l (SEQ ID NO:2).
  • Fig. 3 shows the amino acid sequence of the protein identified by SwissProt
  • Fig. 4 shows the DNA-sequence encoding a lysosomal acid lipase
  • FIG. 5 shows the amino acid sequence deduced from the DNA-sequence ofFig. 4 (SEQ ID NO:5).
  • Fig. 6 shows the BLASTP alignment of human lysosomal acid lipase (SEQ
  • FIG. 7 shows the HMMPFAM - alignment of 136_PROTEIN (SEQ ID NO:2) against pfam
  • Fig. 8 shows the Exon/intron structure shown as target/genomic alignment.
  • Fig. 9 shows the BLASTP-alignment of 136_PROTEIN against swiss
  • Fig.10 shows the HMMPFAM-alignment of 136_PROTEIN against pfam
  • Fig. 12 shows the relative expression of human lysosomal acid lipase in various tissues as determined by Taqman analysis performed with gene specific primers as known in the art (described e.g. in EXAMPLE 6).
  • the invention relates to an isolated polynucleotide encoding a lysosomal acid lipase polypeptide and being selected from the group consisting of: a) a polynucleotide encoding a lysosomal acid lipase polypeptide comprising an amino acid sequence selected from the group consisting of:
  • Human lysosomal acid lipase comprises the amino acid sequence shown in SEQ ID NO:2.
  • a coding sequence for human lysosomal acid lipase is shown in SEQ ID NO:l; this sequence is located on chromosome 10.
  • Human lysosomal acid lipase is 63% identical over 360 amino acids to the human protein identified with SwissProt Accession No. P38571 and annotated as "LYSOSOMAL ACID LIPASE/CHOLESTERYL ESTER HYDROLASE PRECURSOR (EC 3.1.1.13)" (Fig. 6).
  • the protein also is 100% identical over 374 amino acids to aageneseq
  • the protein contains a lipase serine and histidine active site.
  • a PFAM search shows an alpha/beta hydrolase fold, which also is conserved in lysosomal acid lipase.
  • Human lysosomal acid lipase of the invention is expected to be useful for the same purposes as previously identified lysosomal acid lipase enzymes. Human lysosomal acid lipase is believed to be useful in therapeutic methods to treat disorders such as cancer, obesity, COPD, diabetes, peripheral and central nervous system disorders, and cardiovascular disorders. Human lysosomal acid lipase also can be used to screen for human lysosomal acid lipase activators and inhibitors.
  • Human lysosomal acid lipase polypeptides according to the invention comprise at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, or 398 contiguous amino acids selected from the amino acid sequence shown in
  • a lysosomal acid lipase polypeptide of the invention therefore can be a portion of a lysosomal acid lipase protein, a full-length lysosomal acid lipase protein, or a fusion protein comprising all or a portion of a lysosomal acid lipase protein.
  • naturally or non-naturally occurring lysosomal acid lipase polypeptide variants have amino acid sequences which are at least about 64, 65, or 70, preferably about 75, 80, 85, 90, 96, 96, or 98% identical over 360 amino acids to the amino acid sequence shown in SEQ ID NO:2 or a fragment thereof. Percent identity between a putative lysosomal acid lipase polypeptide variant and an amino acid sequence of SEQ ID NO:2 is determined using the Blast2 alignment program (Blosum62, Expect 10, standard genetic codes).
  • Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions.
  • Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.
  • Amino acid insertions or deletions are changes to or within an amino acid sequence.
  • lysosomal acid lipase polypeptides typically fall in the range of about 1 to 5 amino acids.
  • Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity of a lysosomal acid lipase polypeptide can be found using computer programs well known in the art, such as DNASTAR software. Whether an amino acid change results in a biologically active lysosomal acid lipase polypeptide can readily be determined by assaying for lipase activity, as is known in the art and described for example, in Example 4, below.
  • Fusion proteins are useful for generating antibodies against lysosomal acid lipase polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins which interact with portions of a lysosomal acid lipase polypeptide. Protein affinity chromatography. or library- based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drug screens.
  • a lysosomal acid lipase polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond.
  • the first polypeptide segment comprises at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, or 398 contiguous amino acids of SEQ ID NO:2 or of a biologically active variant, such as those described above.
  • the first polypeptide segment also can comprise full-length lysosomal acid lipase protein.
  • the second polypeptide segment can be a full-length protein or a protein fragment.
  • Proteins commonly used in fusion protein construction include ⁇ -galactosidase, ⁇ - glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT).
  • epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV- G tags, and thioredoxin (Trx) tags.
  • Other fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions.
  • a fusion protein also can be engineered to contain a cleavage site located between the lysosomal acid lipase polypeptide-encoding sequence and the heterologous protein sequence, so that the lysosomal acid lipase polypeptide can be cleaved and purified away from the heterologous moiety.
  • a fusion protein can be synthesized chemically, as is known in the art.
  • a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology.
  • Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from the complement of SEQ ID NO:l in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art.
  • kits for constructing fusion proteins are available from companies such as Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA), Santa Cruz Biotechnology (Santa Cruz, CA), MBL International
  • Species homologs of human lysosomal acid lipase polypeptide can be obtained using lysosomal acid lipase polypeptide polynucleotides (described below) to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of lysosomal acid lipase polypeptide, and expressing the cDNAs as is known in the art.
  • a lysosomal acid lipase polynucleotide can be single- or double-stranded and comprises a coding sequence or the complement of a coding sequence for a lysosomal acid lipase polypeptide.
  • a coding sequence for human lysosomal acid lipase is shown in SEQ ID NO:l.
  • nucleotide sequences encoding human lysosomal acid lipase polypeptides as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, or 98% identical to the nucleotide sequence shown in SEQ ID NO:l or its complement also are lysosomal acid lipase polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2.
  • cDNA Complementary DNA
  • species homologs and variants of lysosomal acid lipase polynucleotides which encode biologically active lysosomal acid lipase polypeptides also are lysosomal acid lipase polynucleotides.
  • Variants and homologs of the lysosomal acid lipase polynucleotides described above also are lysosomal acid lipase polynucleotides.
  • homologous lysosomal acid lipase polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known lysosomal acid lipase polynucleotides under stringent conditions, as is known in the art.
  • homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.
  • Species homologs of the lysosomal acid lipase polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, or yeast.
  • Human variants of lysosomal acid lipase polynucleotides can be identified, for example, by screening human cDNA expression libraries. It is well known that the T m of a double-stranded DNA decreases by 1-1.5 °C with every 1% decrease in homology (Bonner etal, J. Mol Biol. 81, 123 (1973).
  • Variants of human lysosomal acid lipase polynucleotides or lysosomal acid lipase polynucleotides of other species can therefore be identified by hybridizing a putative homologous lysosomal acid lipase polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NO:l or the complement thereof to form a test hybrid.
  • the melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.
  • Nucleotide sequences which hybridize to lysosomal acid lipase polynucleotides or their complements following stringent hybridization and/or wash conditions also are lysosomal acid lipase polynucleotides.
  • Stringent wash conditions are well known and understood in the art and are disclosed, for example, in Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2d ed., 1989, at pages 9.50-9.51.
  • T m a combination of temperature and salt concentration should be chosen that is approximately 12-20 °C below the calculated T m of the hybrid under study.
  • the T m of a hybrid between a lysosomal acid lipase polynucleotide having a nucleotide sequence shown in SEQ ID NO:l or the complement thereof and a polynucleotide sequence which is at least about 50, preferably about 75, 90, 96, or 98% identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and McCarthy, Proc. Natl. Acad. Sci. U.S.A. 48, 1390 (1962):
  • Stringent wash conditions include, for example, 4X SSC at 65°C, or 50% formamide, 4X SSC at 42°C, or 0.5X SSC, 0.1% SDS at 65°C.
  • Highly stringent wash conditions include, for example, 0.2X SSC at 65°C.
  • a lysosomal acid lipase polynucleotide can be isolated free of other cellular components such as membrane components, proteins, and lipids.
  • Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated lysosomal acid lipase polynucleotides.
  • restriction enzymes and probes can be used to isolate polynucleotide fragments that comprises lysosomal acid lipase nucleotide sequences.
  • Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.
  • Human lysosomal acid lipase cDNA molecules can be made with standard molecular biology techniques, using lysosomal acid lipase mRNA as a template. Human lysosomal acid lipase cDNA molecules can thereafter be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989). An amplification technique, such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.
  • synthetic chemistry techniques can be used to synthesizes lysosomal acid lipase polynucleotides.
  • the degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized which will encode a lysosomal acid lipase polypeptide having, for example, an amino acid sequence shown in SEQ ID NO:l or a biologically active variant thereof.
  • the partial sequence disclosed herein can be used to identify the corresponding full length gene from which it was derived.
  • the partial sequences can be nick-translated or end-labeled with 32 P using polynucleotide kinase using labeling methods known to those with skill in the art (BASIC METHODS IN MOLECULAR BIOLOGY, Davis et al, eds., Elsevier Press, N.Y., 1986).
  • a lambda library prepared from human tissue can be directly screened with the labeled sequences of interest or the library can be converted en masse to pBluescript (Stratagene Cloning Systems, La Jolla, Calif.
  • filters with bacterial colonies containing the library in pBluescript or bacterial lawns containing lambda plaques are denatured, and the DNA is fixed to the filters.
  • the filters are hybridized with the labeled probe using hybridization conditions described by Davis et al, 1986.
  • the partial sequences, cloned into lambda or pBluescript can be used as positive controls to assess background binding and to adjust the hybridization and washing stringencies necessary for accurate clone identification.
  • the resulting auto- radiograms are compared to duplicate plates of colonies or plaques; each exposed spot corresponds to a positive colony or plaque.
  • the colonies or plaques are selected, expanded and the DNA is isolated from the colonies for further analysis and sequencing.
  • Positive cDNA clones are analyzed to determine the amount of additional sequence they contain using PCR with one primer from the partial sequence and the other primer from the vector.
  • Clones with a larger vector-insert PCR product than the original partial sequence are analyzed by restriction digestion and DNA sequencing to determine whether they contain an insert of the same size or similar as the mRNA size determined from Northern blot Analysis.
  • the complete sequence of the clones can be determined, for example after exonuclease III digestion (McCombie et al., Methods 3, 33-40, 1991).
  • a series of deletion clones are generated, each of which is sequenced.
  • the resulting overlapping sequences are assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a highly accurate final sequence.
  • PCR-based methods can be used to extend the nucleic acid sequences disclosed herein to detect upstream sequences such as promoters and regulatory elements.
  • restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, PCR Methods Applic. 2,
  • Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
  • Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et al, Nucleic Acids Res. 16, 8186, 1988). Primers can be designed using commercially available software, such as OLIGO 4.06 Primer
  • the method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.
  • capture PCR involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom et al, PCR Methods Applic. 1, 111-119, 1991).
  • multiple restriction enzyme digestions and ligations also can be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.
  • Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries can be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products.
  • capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled device camera.
  • Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTYPER and Sequence NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled.
  • Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample.
  • Human lysosomal acid lipase polypeptides can be obtained, for example, by purification from human cells, by expression of lysosomal acid lipase polynucleotides, or by direct chemical synthesis.
  • Human lysosomal acid lipase polypeptides can be purified from any cell that expresses the enzyme, including host cells that have been transfected with lysosomal acid lipase expression constructs.
  • a purified lysosomal acid lipase polypeptide is separated from other compounds that normally associate with the lysosomal acid lipase polypeptide in the cell, such as certain proteins, carbohydrates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis.
  • a preparation of purified lysosomal acid lipase polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis.
  • the polynucleotide can be inserted into an expression vector that contains the necessary elements for the transcription and translation of the inserted coding sequence.
  • Methods that are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding lysosomal acid lipase polypeptides and appropriate trans- criptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al.
  • a variety of expression vector/host systems can be utilized to contain and express sequences encoding a lysosomal acid lipase polypeptide.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV
  • control elements or regulatory sequences are those non-translated regions of the vector — enhancers, promoters, 5' and 3' untranslated regions ⁇ which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity.
  • any number of suitable transcription and translation elements including constitutive and inducible promoters, can be used.
  • inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORTl plasmid (Life Technologies) and the like can be used.
  • the baculovirus polyhedrin promoter can be used in insect cells.
  • Promoters or enhancers derived from the genomes of plant cells e.g., heat shock, RUBISCO, and storage protein genes
  • plant viruses e.g., viral promoters or leader sequences
  • promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding a lysosomal acid lipase polypeptide, vectors based on SV40 or EBV can be used with an appropriate selectable marker.
  • a number of expression vectors can be selected depending upon the use intended for the lysosomal acid lipase polypeptide. For example, when a large quantify of a lysosomal acid lipase polypeptide is needed for the induction of antibodies, vectors which direct high-level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene).
  • a sequence encoding the lysosomal acid lipase polypeptide can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of ⁇ -galactosidase so that a hybrid protein is produced.
  • pIN vectors Van Heeke & Schuster, J Biol. Chem. 264, 5503-5509, 1989
  • pGEX vectors Promega, Madison, Wis.
  • GST glutathione S-transferase
  • fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione.
  • Proteins made in such systems can be designed to include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
  • yeast Saccharomyces cerevisiae a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used.
  • constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH.
  • sequences encoding lysosomal acid lipase polypeptides can be driven by any of a number of promoters.
  • viral promoters such as the 35 S and 19S promoters of CaMV can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, EMBOJ. 6, 307-311, 1987).
  • plant promoters such as the small subunit of RUBISCO or heat shock promoters can be used (Coruzzi et al., EMBO J. 3, 1671-1680, 1984; Broglie et al, Science 224, 838-843, 1984; Winter et al, Results Probl. Cell Differ. 17, 85-105, 1991).
  • constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection.
  • pathogen-mediated transfection Such techniques are described in a number of generally available reviews (e.g. , Hobbs or Murray, in MCGRAW HILL YEARBOOK OF SCIENCE AND TECHNOLOGY, McGraw Hill, New York, N.Y, pp. 191-196, 1992).
  • An insect system also can be used to express a lysosomal acid lipase polypeptide.
  • Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae.
  • Sequences encoding lysosomal acid lipase polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of lysosomal acid lipase polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein.
  • the recombinant viruses can then be used to infect S. frugiperda cells or Trichoplusia larvae in which lysosomal acid lipase polypeptides can be expressed (Engelhard et al, Proc. Nat. Acad. Sci. 91, 3224-3227, 1994).
  • a number of viral-based expression systems can be used to express lysosomal acid lipase polypeptides in mammalian host cells.
  • sequences encoding lysosomal acid lipase polypeptides can be ligated into an adenovirus transcription/translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome can be used to obtain a viable virus which is capable of expressing a lysosomal acid lipase polypeptide in infected host cells (Logan & Shenk, Proc. Natl Acad. Sci. 81, 3655-3659, 1984).
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, can be used to increase expression in mammalian host cells.
  • RSV Rous sarcoma virus
  • HACs Human artificial chromosomes
  • 6M to 10M are constructed and delivered to cells via conventional delivery methods (e.g., liposomes, polycationic amino polymers, or vesicles).
  • Specific initiation signals also can be used to achieve more efficient translation of sequences encoding lysosomal acid lipase polypeptides.
  • Such signals include the
  • initiation codon should be provided.
  • the initiation codon should be in the correct reading frame to ensure translation of the entire insert.
  • Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used (see Scharf et al, Results Probl. Cell Differ. 20, 125-162, 1994).
  • a host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed lysosomal acid lipase polypeptide in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function.
  • Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, VA 20110-2209) and can be chosen to ensure the correct modification and processing of the foreign protein.
  • ATCC American Type Culture Collection
  • Stable expression is preferred for long-term, high-yield production of recombinant proteins.
  • cell lines which stably express lysosomal acid lipase polypeptides can be transformed using expression vectors which can contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium.
  • the purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced lysosomal acid lipase sequences.
  • Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for example, ANIMAL CELL CULTURE, R.I. Freshney, ed., 1986. Any number of selection systems can be used to recover transformed cell lines.
  • herpes simplex virus thymidine kinase (Wigler et al, Cell 11, 223-32, 1977) and adenine phosphoribosyltransferase (Lowy et al, Cell 22, 817-23, 1980) genes which can be employed in ti or aprt cells, respectively.
  • antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate (Wigler et al, Proc. Natl Acad. Sci.
  • npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al, J. Mol. Biol. 150, 1-14, 1981), and als and pat confer resistance to chlorsulfuron and phosphinotricin acefyltransferase, respectively (Murray, 1992, supra). Additional selectable genes have been described. For example, trpR allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. 85, 8047-51, 1988).
  • Visible markers such as anthocyanins, ⁇ -glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes et al, Methods Mol. Biol. 55, 121-131, 1995).
  • marker gene expression suggests that the lysosomal acid lipase polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding a lysosomal acid lipase polypeptide is inserted within a marker gene sequence, transformed cells containing sequences which encode a lysosomal acid lipase polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding a lysosomal acid lipase polypeptide under the control of a single promoter.
  • Expression of the marker gene in response to induction or selection usually indicates expression of the lysosomal acid lipase polynucleotide.
  • host cells which contain a lysosomal acid lipase polynucleotide and which express a lysosomal acid lipase polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein.
  • the presence of a polynucleotide sequence encoding a lysosomal acid lipase polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or ampli- fication using probes or fragments or fragments of polynucleotides encoding a lysosomal acid lipase polypeptide.
  • Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding a lysosomal acid lipase polypeptide to detect transformants that contain a lysosomal acid lipase polynucleotide.
  • a variety of protocols for detecting and measuring the expression of a lysosomal acid lipase polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS).
  • ELISA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • FACS fluorescence activated cell sorting
  • a two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on a lysosomal acid lipase polypeptide can be used, or a competitive binding assay can be employed.
  • RNA polymerase such as T7
  • reporter molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with nucleotide sequences encoding a lysosomal acid lipase polypeptide can be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode lysosomal acid lipase polypeptides can be designed to contain signal sequences which direct secretion of soluble lysosomal acid lipase polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the membrane insertion of membrane-bound lysosomal acid lipase polypeptide.
  • purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension affinity purification system (Immunex Corp., Seattle, Wash.).
  • cleavable linker sequences such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the lysosomal acid lipase polypeptide also can be used to facilitate purification.
  • One such expression vector provides for expression of a fusion protein containing a lysosomal acid lipase polypeptide and 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath et al, Prot. Exp.
  • enterokinase cleavage site provides a means for purifying the lysosomal acid lipase polypeptide from the fusion protein.
  • Vectors that contain fusion proteins are disclosed in Kroll et al, DNA
  • Sequences encoding a lysosomal acid lipase polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers et al, Nucl Acids Res. Symp. Ser. 215-223, 1980; Horn et al. Nucl Acids Res. Symp. Ser. 225-232, 1980).
  • a lysosomal acid lipase polypeptide itself can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, J Am. Chem. Soc.
  • Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431 A Peptide Synthesizer (Perkin Elmer).
  • fragments of lysosomal acid lipase polypeptides can be separately synthesized and combined using chemical methods to produce a full- length molecule.
  • the newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983).
  • the composition of a synthetic lysosomal acid lipase polypeptide can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, supra). Additionally, any portion of the amino acid sequence of the lysosomal acid lipase polypeptide can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.
  • codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.
  • nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter lysosomal acid lipase polypeptide-encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences.
  • site-directed mutagenesis can be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.
  • Antibodies Any type of antibody known in the art can be generated to bind specifically to an epitope of a lysosomal acid lipase polypeptide.
  • "Antibody” as used herein includes intact immunoglobulin molecules, as well as fragments thereof, such as Fab, F(ab') 2 , and Fv, which are capable of binding an epitope of a lysosomal acid lipase polypeptide.
  • Fab fragment antigen binding domain antigen binding
  • F(ab') 2 fragments thereof
  • Fv fragments thereof
  • epitopes which involve non-contiguous amino acids may require more, e.g., at least 15, 25, or 50 amino acids.
  • An antibody which specifically binds to an epitope of a lysosomal acid lipase polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
  • immunochemical assays such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
  • Various immunoassays can be used to identify antibodies having the desired specificity.
  • Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody which specifically binds to the immunogen.
  • an antibody which specifically binds to a lysosomal acid lipase polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay.
  • antibodies which specifically bind to lysosomal acid lipase polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate a lysosomal acid lipase polypeptide from solution.
  • Human lysosomal acid lipase polypeptides can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies.
  • a lysosomal acid lipase polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
  • a carrier protein such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
  • various adjuvants can be used to increase the immunological response.
  • adjuvants include, but are not limited to, Freund's adjuvant, mineral gels (e.g., aluminum hydroxide), and surface active substances (e.g.
  • BCG Bacilli Calmette-Gueri ⁇
  • Corynebacterium parvum are especially useful.
  • Monoclonal antibodies which specifically bind to a lysosomal acid lipase polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the
  • chimeric antibodies the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison et al, Proc. Natl. Acad. Sci. 81, 6851-6855, 1984; Neuberger et al, Nature 312, 604-608, 1984; Takeda et al, Nature 314, 452-454, 1985).
  • Monoclonal and other antibodies also can be "humanized” to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues.
  • humanized antibodies can be produced using recombinant methods, as described in GB2188638B.
  • Antibodies which specifically bind to a lysosomal acid lipase polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.
  • techniques described for the production of single chain antibodies can be adapted using methods known in the art to produce single chain antibodies which specifically bind to lysosomal acid lipase polypeptides.
  • Antibodies with related specificity, but of distinct idiotypic composition can be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton, Proc. Natl. Acad. Sci. 88, 11120-23, 1991).
  • Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template (Thirion et al, 1996, Eur. J.
  • Single-chain antibodies can be mono- or bispecific, and can be bivalent or tetravalent. Construction of tetravalent, bispecific single-chain antibodies is taught, for example, in Coloma & Morrison, 1997, Nat. Biotechnol 15, 159-63. Construction of bivalent, bispecific single-chain antibodies is taught in Mallender & Voss, 1994, J Biol. Chem. 269, 199-206.
  • a nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant D ⁇ A methods, and introduced into a cell to express the coding sequence, as described below.
  • single-chain antibodies can be produced directly using, for example, filamentous phage technology (Nerhaar et al, 1995, Int. J. Cancer 61, 497-501; ⁇ icholls et al, 1993, J Immunol. Meth. 165, 81- 91).
  • Antibodies which specifically bind to lysosomal acid lipase polypeptides also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi et al, Proc. Natl. Acad. Sci. 86, 3833-3837, 1989; Winter et al, Nature 349, 293-299, 1991).
  • Other types of antibodies can be constructed and used therapeutically in methods of the invention.
  • chimeric antibodies can be constructed as disclosed in WO 93/03151.
  • Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the "diabodies" described in WO 94/13804, also can be prepared.
  • Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which a lysosomal acid lipase polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.
  • Antisense oligonucleotides are nucleotide sequences which are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of lysosomal acid lipase gene products in the cell.
  • Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, Meth. Mol. Biol. 20, 1-8, 1994; Sonveaux, Meth. Mol. Biol. 26, 1-72, 1994; Uhlmann et al,
  • Modifications of lysosomal acid lipase gene expression can be obtained by designing antisense oligonucleotides which will form duplexes to the control, 5', or regulatory regions of the lysosomal acid lipase gene. Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons.
  • An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Antisense oligonucleotides which comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides which are precisely comple- mentary to a lysosomal acid lipase polynucleotide, each separated by a stretch of contiguous nucleotides which are not complementary to adjacent lysosomal acid lipase nucleotides, can provide sufficient targeting specificity for lysosomal acid lipase mRNA.
  • each stretch of complementary contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length.
  • Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length.
  • One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of mismatching which will be tolerated between a particular antisense oligonucleotide and a particular lysosomal acid lipase polynucleotide sequence.
  • Antisense oligonucleotides can be modified without affecting their ability to hybridize to a lysosomal acid lipase polynucleotide. These modifications can be internal or at one or both ends of the antisense molecule. For example, inter- nucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose.
  • Modified bases and/or sugars such as arabinose- instead of ribose, or a 3', 5 '-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, also can be employed in a modified antisense oligonucleotide.
  • modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal et al, Trends Biotechnol 10, 152-158, 1992; Uhlmann et al, Chem. Rev. 90, 543-584, 1990; Uhlmann et al, Tetrahedron. Lett. 215, 3539-3542, 1981.
  • Ribozymes are RNA molecules with catalytic activity. See, e.g., Cech, Science 236, 1532-1539; 1987; Cech, Ann. Rev. Biochem. 59, 543-568; 1990, Cech, Curr. Opin. Struct. Biol 2, 605-609; 1992, Couture & Stinchcomb, Trends Genet. 12, 510-515, 1996. Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (e.g., Haseloff et al, U.S. Patent 5,641,673).
  • ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
  • Examples include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of specific nucleotide sequences.
  • the coding sequence of a lysosomal acid lipase polynucleotide can be used to generate ribozymes which will specifically bind to mRNA transcribed from the lysosomal acid lipase polynucleotide.
  • Methods of designing and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific manner have been developed and described in the art (see Haseloff et al. Nature 334, 585-591, 1988).
  • the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete "hybridization" region into the ribozyme.
  • the hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach et ⁇ /., EP 321,201).
  • Specific ribozyme cleavage sites within a lysosomal acid lipase RNA target can be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target RNA containing the cleavage site can be evaluated for secondary structural features which may render the target inoperable. Suitability of candidate lysosomal acid lipase RNA targets also can be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • hybridizing and cleavage regions of the ribozyme can be integrally related such that upon hybridizing to the target RNA through the complementary regions, the catalytic region of the ribozyme can cleave the target.
  • Ribozymes can be introduced into cells as part of a DNA construct. Mechanical methods, such as microinjection, liposome-mediated transfection, electroporation, or calcium phosphate precipitation, can be used to introduce a ribozyme-containing DNA construct into cells in which it is desired to decrease lysosomal acid lipase expression. Alternatively, if it is desired that the cells stably retain the DNA construct, the construct can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the art.
  • a ribozyme-encoding DNA construct can include transcriptional regulatory elements, such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of ribozymes in the cells.
  • ribozymes can be engineered so that ribozyme expression will occur in response to factors which induce expression of a target gene. Ribozymes also can be engineered to provide an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.
  • genes whose products interact with human lysosomal acid lipase may represent genes that are differentially expressed in disorders including, but not limited to, cancer, obesity, COPD, diabetes, peripheral and central nervous system disorders, and cardiovascular disorders. Further, such genes may represent genes which are differentially regulated in response to manipulations relevant to the progression or treatment of such diseases. Additionally, such genes may have a temporally modulated expression, increased or decreased at different stages of tissue or organism development. A differentially expressed gene may also have its expression modulated under control versus experimental conditions. In addition, the human lysosomal acid lipase gene or gene product may itself be tested for differential expression.
  • the degree to which expression differs in a normal versus a diseased state need only be large enough to be visualized via standard characterization techniques such as differential display techniques.
  • standard characterization techniques such as differential display techniques.
  • Other such standard characterization techniques by which expression differences may be visualized include but are not limited to, quantitative RT (reverse transcriptase), PCR, and Northern analysis.
  • RNA samples are obtained from tissues of experimental subjects and from corresponding tissues of control subjects. Any RNA isolation technique that does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Ausubel et al, ed. dislike CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John -Wiley & Sons, Inc. New York, 1987-1993. Large numbers of tissue samples may readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski, U.S. Patent 4,843,155.
  • Transcripts within the collected RNA samples that represent RNA produced by differentially expressed genes are identified by methods well known to those of skill in the art. They include, for example, differential screening (Tedder et al, Proc. Natl Acad. Sci. U.S.A. 85, 208-12, 1988), subtractive hybridization (Hedrick et al, Nature 308, 149-53; Lee et al, Proc. Natl Acad. Sci. U.S.A. 88, 2825, 1984), and, preferably, differential display (Liang & Pardee, Science 257, 967-71, 1992; U.S. Patent 5,262,311).
  • the differential expression information may itself suggest relevant methods for the treatment of disorders involving the human lysosomal acid lipase.
  • treatment may include a modulation of expression of the differentially expressed genes and/or the gene encoding the human lysosomal acid lipase.
  • the differential expression information may indicate whether the expression or activity of the differentially expressed gene or gene product or the human lysosomal acid lipase gene or gene product are up-regulated or down-regulated.
  • the invention provides assays for screening test compounds that bind to or modulate the activity of a lysosomal acid lipase polypeptide or a lysosomal acid lipase polynucleotide.
  • a test compound preferably binds to a lysosomal acid lipase polypeptide or polynucleotide. More preferably, a test compound decreases or increases lipase activity by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the test compound.
  • Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity.
  • the compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound” library method, and synthetic library methods using affinity chromatography selection.
  • the biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds. See Lam, Anticancer Drug Des. 12, 145, 1997.
  • Test compounds can be screened for the ability to bind to lysosomal acid lipase polypeptides or polynucleotides or to affect lysosomal acid lipase activity or lysosomal acid lipase gene expression using high throughput screening.
  • high throughput screening many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened.
  • the most widely established techniques utilize 96-well microtiter plates. The wells of the microtiter plates typically require assay volumes that range from 50 to 500 ⁇ l.
  • many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.
  • free format assays or assays that have no physical barrier between samples, can be used.
  • an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by Jayawickreme et al, Proc. Natl. Acad. Sci. U.S.A. 19, 1614-18 (1994).
  • the cells are placed under agarose in petri dishes, then beads that carry combinatorial compounds are placed on the surface of the agarose.
  • the combinatorial compounds are partially released the compounds from the beads. Active compounds can be visualized as dark pigment areas because, as the compounds diffuse locally into the gel matrix, the active compounds cause the cells to change colors.
  • Chelsky "Strategies for Screening Combinatorial Libraries: Novel and Traditional Approaches," reported at the First Annual Conference of The Society for Biomolecular Screening in Philadelphia, Pa. (Nov. 7-10, 1995).
  • Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel.
  • beads carrying combinatorial compounds via a photolinker were placed inside the gel and the compounds were partially released by UV-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change.
  • test samples are placed in a porous matrix.
  • One or more assay components are then placed within, on top of, or at the bottom of a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support. When samples are introduced to the porous matrix they diffuse sufficiently slowly, such that the assays can be performed without the test samples running together.
  • the test compound is preferably a small molecule which binds to and occupies, for example, the active site of the lysosomal acid lipase polypeptide, such that normal biological activity is prevented.
  • small molecules include, but are not limited to, small peptides or peptide-like molecules.
  • either the test compound or the lysosomal acid lipase polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemi- luminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
  • a detectable label such as a fluorescent, radioisotopic, chemi- luminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
  • Detection of a test compound which is bound to the lysosomal acid lipase polypeptide can then be accomplished, for example, by direct counting of radioemmission, by scintillation counting, or by determining conversion of an appropriate substrate to a detectable product.
  • binding of a test compound to a lysosomal acid lipase polypeptide can be determined without labeling either of the interactants.
  • a micro- physiometer can be used to detect binding of a test compound with a lysosomal acid lipase polypeptide.
  • a microphysiometer e.g., CytosensorTM
  • LAPS light-addressable potentiometric sensor
  • Determining the ability of a test compound to bind to a lysosomal acid lipase polypeptide also can be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63, 2338-2345, 1991, and Szabo et al, Curr. Opin. Struct. Biol. 5, 699-705, 1995).
  • BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcoreTM). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
  • a lysosomal acid lipase polypeptide can be used as a "bait protein" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos et al, Cell 72, 223-232, 1993; Madura et al, J. Biol. Chem.
  • the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
  • the assay utilizes two different DNA constructs.
  • polynucleotide encoding a lysosomal acid lipase polypeptide can be fused to a polynucleotide encoding the DNA binding domain of a known transcription factor (e.g., GAL-4).
  • a DNA sequence that encodes an unidentified protein (“prey" or "sample” can be fused to a polynucleotide that codes for the activation domain of the known transcription factor.
  • the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ), which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected, and cell colonies containing the functional transcription factor can be isolated and used to obtain the DNA sequence encoding the protein which interacts with the lysosomal acid lipase polypeptide.
  • a reporter gene e.g., LacZ
  • either the lysosomal acid lipase polypeptide (or polynucleotide) or the test compound can be bound to a solid support.
  • Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads).
  • Any method known in the art can be used to attach the enzyme polypeptide (or polynucleotide) or test compound to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polypeptide (or polynucleotide) or test compound and the solid support.
  • Test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to a lysosomal acid lipase polypeptide (or polynucleotide) can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.
  • the lysosomal acid lipase polypeptide is a fusion protein comprising a domain that allows the lysosomal acid lipase polypeptide to be bound to a solid support.
  • glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed lysosomal acid lipase polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH).
  • Binding of the interactants can be determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.
  • lysosomal acid lipase polypeptide or polynucleotide
  • test compound can be immobilized utilizing conjugation of biotin and streptavidin.
  • Biotinylated lysosomal acid lipase polypeptides (or polynucleotides) or test compounds can be prepared from biotin-NHS(N-hydroxysuccinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, 111.) and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
  • antibodies which specifically bind to a lysosomal acid lipase polypeptide, polynucleotide, or a test compound, but which do not interfere with a desired binding site, such as the active site of the lysosomal acid lipase polypeptide, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.
  • Methods for detecting such complexes include immunodetection of complexes using antibodies which specifically bind to the lysosomal acid lipase polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the lysosomal acid lipase polypeptide, and SDS gel electrophoresis under non-reducing conditions.
  • Screening for test compounds which bind to a lysosomal acid lipase polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises a lysosomal acid lipase polypeptide or polynucleotide can be used in a cell-based assay system. A lysosomal acid lipase polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the test compound to a lysosomal acid lipase polypeptide or polynucleotide is determined as described above.
  • Test compounds can be tested for the ability to increase or decrease the lipase activity of a human lysosomal acid lipase polypeptide.
  • Lipase activity can be measured as is known in the art and described, for example, in Example 4, below.
  • Enzyme assays can be carried out after contacting either a purified lysosomal acid lipase polypeptide, a cell membrane preparation, or an intact cell with a test compound.
  • a test compound which decreases a lipase activity of a lysosomal acid lipase polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for decreasing lysosomal acid lipase activity.
  • a test compound which increases a lipase activity of a human lysosomal acid lipase polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing human lysosomal acid lipase activity.
  • test compounds which increase or decrease lysosomal acid lipase gene expression are identified.
  • a lysosomal acid lipase polynucleotide is contacted with a test compound, and the expression of an RNA or polypeptide product of the lysosomal acid lipase polynucleotide is determined.
  • the level of expression of appropriate mRNA or polypeptide in the presence of the test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound.
  • the test compound can then be identified as a modulator of expression based on this comparison.
  • test compound when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression.
  • test compound when expression of the mRNA or polypeptide is less in the presence of the test compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.
  • the level of lysosomal acid lipase mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide. Either qualitative or quantitative methods can be used.
  • the presence of polypeptide products of a lysosomal acid lipase polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry.
  • polypeptide synthesis can be determined in vivo, in a cell culture, or in an in vitro translation system by detecting incorporation of labeled amino acids into a lysosomal acid lipase polypeptide.
  • Such screening can be carried out either in a cell-free assay system or in an intact cell.
  • Any cell that expresses a lysosomal acid lipase polynucleotide can be used in a cell-based assay system.
  • the lysosomal acid lipase polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above.
  • Either a primary culture or an established cell line, such as CHO or human embryonic kidney 293 cells, can be used.
  • compositions of the invention can comprise, for example, a lysosomal acid lipase polypeptide, lysosomal acid lipase polynucleotide, ribozymes or antisense oligonucleotides, antibodies which specifically bind to a lysosomal acid lipase polypeptide, or mimetics, activators, or inhibitors of a lysosomal acid lipase polypeptide activity.
  • compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water.
  • agent such as stabilizing compound
  • the compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.
  • compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means.
  • Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
  • compositions for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
  • suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen.
  • disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
  • Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
  • compositions that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
  • Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers.
  • the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
  • compositions suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
  • Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • suspensions of the active compounds can be prepared as appropriate oily injection suspensions.
  • Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
  • Non-lipid polycationic amino polymers also can be used for delivery.
  • the suspension also can contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
  • the pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.
  • the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
  • compositions After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.
  • Human lysosomal acid lipase can be regulated to treat cancer, obesity, COPD, diabetes, peripheral and central nervous system disorders, and cardiovascular disorders.
  • Cancer is a disease fundamentally caused by oncogenic cellular transformation.
  • transformed cells There are several hallmarks of transformed cells that distinguish them from their normal counterparts and underlie the pathophysiology of cancer. These include uncontrolled cellular proliferation, unresponsiveness to normal death-inducing signals (immortalization), increased cellular motility and invasiveness, increased ability to recruit blood supply through induction of new blood vessel formation (angiogenesis), genetic instability, and dysregulated gene expression. Various combinations of these aberrant physiologies, along with the acquisition of drug-resistance frequently lead to an intractable disease state in which organ failure and patient death ultimately ensue.
  • Genes or gene fragments identified through genomics can readily be expressed in one or more heterologous expression systems to produce functional recombinant proteins. These proteins are characterized in vitro for their biochemical properties and then used as tools in high-throughput molecular screening programs to identify chemical modulators of their biochemical activities. Agonists and/or antagonists of target protein activity can be identified in this manner and subsequently tested in cellular and in vivo disease models for anti-cancer activity. Optimization of lead compounds with iterative testing in biological models and detailed pharmacokinetic and toxicological analyses form the basis for drug development and subsequent testing in humans.
  • Obesity and overweight are defined as an excess of body fat relative to lean body mass. An increase in caloric intake or a decrease in energy expenditure or both can bring about this imbalance leading to surplus energy being stored as fat. Obesity is associated with important medical morbidities and an increase in mortality. The causes of obesity are poorly understood and may be due to genetic factors, environmental factors or a combination of the two to cause a positive energy balance. In contrast, anorexia and cachexia are characterized by an imbalance in energy intake versus energy expenditure leading to a negative energy balance and weight loss. Agents that either increase energy expenditure and/or decrease energy intake, absorption or storage would be useful for treating obesity, overweight, and associated comorbidities. Agents that either increase energy intake and/or decrease energy expenditure or increase the amount of lean tissue would be useful for treating cachexia, anorexia and wasting disorders.
  • This gene, translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity, overweight, anorexia, cachexia, wasting disorders, appetite suppression, appetite enhancement, increases or decreases in satiety, modulation of body weight, and or other eating disorders such as bulimia.
  • this gene translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity/overweight-associated comorbidities including hypertension, type 2 diabetes, coronary artery disease, hyperlipidemia, stroke, gallbladder disease, gout, osteoarthritis, sleep apnea and respiratory problems, some types of cancer including endometrial, breast, prostate, and colon cancer, thrombolic disease, polycystic ovarian syndrome, reduced fertility, complications of pregnancy, menstrual irregularities, hirsutism, stress incontinence, and depression.
  • obesity/overweight-associated comorbidities including hypertension, type 2 diabetes, coronary artery disease, hyperlipidemia, stroke, gallbladder disease, gout, osteoarthritis, sleep apnea and respiratory problems, some types of cancer including endometrial, breast, prostate, and colon cancer, thrombolic disease, polycystic ovarian syndrome, reduced fertility, complications of pregnancy, menstrual irregularities, hirsu
  • COPD chronic obstructive pulmonary (or airways) disease
  • COPD chronic obstructive pulmonary (or airways) disease
  • COPD chronic obstructive pulmonary (or airways) disease
  • Emphysema is characterized by destruction of alveolar walls leading to abnormal enlargement of the air spaces of the lung.
  • Chronic bronchitis is defined clinically as the presence of chronic productive cough for three months in each of two successive years.
  • airflow obstruction is usually progressive and is only partially reversible. By far the most important risk factor for development of COPD is cigarette smoking, although the disease does occur in non-smokers.
  • the inflammatory cell population comprises increased numbers of macrophages, neutrophils, and CD8 + lymphocytes.
  • Inhaled irritants such as cigarette smoke, activate macrophages that are resident in the respiratory tract, as well as epithelial cells leading to release of chemokines (e.g., interleukin-8) and other chemotactic factors.
  • chemokines e.g., interleukin-8
  • chemotactic factors act to increase the neutro- phil/monocyte trafficking from the blood into the lung tissue and airways.
  • Neutrophils and monocytes recruited into the airways can release a variety of potentially damaging mediators such as proteolytic enzymes and reactive oxygen species.
  • Diabetes mellitus is a common metabolic disorder characterized by an abnormal elevation in blood glucose, alterations in lipids and abnormalities (complications) in the cardiovascular system, eye, kidney and nervous system. Diabetes is divided into two separate diseases: type 1 diabetes (juvenile onset), which results from a loss of cells which make and secrete insulin, and type 2 diabetes (adult onset), which is caused by a defect in insulin secretion and a defect in insulin action.
  • type 1 diabetes juvenile onset
  • type 2 diabetes adult onset
  • Type 1 diabetes is initiated by an autoimuune reaction that attacks the insulin secreting cells (beta cells) in the pancreatic islets.
  • Agents that prevent this reaction from occurring or that stop the reaction before destruction of the beta cells has been accomplished are potential therapies for this disease.
  • Other agents that induce beta cell proliferation and regeneration also are potential therapies.
  • Type II diabetes is the most common of the two diabetic conditions (6% of the population).
  • the defect in insulin secretion is an important cause of the diabetic condition and results from an inability of the beta cell to properly detect and respond to rises in blood glucose levels with insulin release.
  • Therapies that increase the response by the beta cell to glucose would offer an important new treatment for this disease.
  • the defect in insulin action in Type II diabetic subjects is another target for therapeutic intervention.
  • Agents that increase the activity of the insulin receptor in muscle, liver, and fat will cause a decrease in blood glucose and a normalization of plasma lipids.
  • the receptor activity can be increased by agents that directly stimulate the receptor or that increase the intracellular signals from the receptor.
  • Other therapies can directly activate the cellular end process, i.e. glucose transport or various enzyme systems, to generate an insulin-like effect and therefore a produce beneficial outcome. Because overweight subjects have a greater susceptibility to Type II diabetes, any agent that reduces body weight is a possible therapy.
  • Type I and Type diabetes can be treated with agents that mimic insulin action or that treat diabetic complications by reducing blood glucose levels.
  • agents that reduces new blood vessel growth can be used to treat the eye complications that develop in both diseases.
  • Cardiovascular diseases include the following disorders of the heart and the vascular system: congestive heart failure, myocardial infarction, ischemic diseases of the heart, all kinds of atrial and ventricular arrhythmias, hypertensive vascular diseases, and peripheral vascular diseases.
  • Heart failure is defined as a pathophysiologic state in which an abnormality of cardiac function is responsible for the failure of the heart to pump blood at a rate commensurate with the requirement of the metabolizing tissue. It includes all forms of pumping failure, such as high-output and low-output, acute and chronic, right-sided or left-sided, systolic or diastolic, independent of the underlying cause.
  • MI Myocardial infarction
  • Ischemic diseases are conditions in which the coronary flow is restricted resulting in a perfusion which is inadequate to meet the myocardial requirement for oxygen.
  • This group of diseases includes stable angina, unstable angina, and asymptomatic ischemia.
  • Arrhythmias include all forms of atrial and ventricular tachyarrhythmias (atrial tachycardia, atrial flutter, atrial fibrillation, atrio-ventricular reentrant tachycardia, preexcitation syndrome, ventricular tachycardia, ventricular flutter, and ventricular fibrillation), as well as bradycardic forms of arrhythmias.
  • Hypertensive vascular diseases include primary as well as all kinds of secondary arterial hypertension (renal, endocrine, neurogenic, others).
  • the disclosed gene and its product may be used as drug targets for the treatment of hypertension as well as for the prevention of all complications.
  • Peripheral vascular diseases are defined as vascular diseases in which arterial and/or venous flow is reduced resulting in an imbalance between blood supply and tissue oxygen demand. It includes chronic peripheral arterial occlusive disease (PAOD), acute arterial thrombosis and embolism, inflammatory vascular disorders, Raynaud's phenomenon, and venous disorders.
  • PAOD peripheral arterial occlusive disease
  • acute arterial thrombosis and embolism inflammatory vascular disorders
  • Raynaud's phenomenon Raynaud's phenomenon
  • venous disorders venous disorders.
  • Central and peripheral nervous system disorders also can be treated, such as primary and secondary disorders after brain injury, disorders of mood, anxiety disorders, disorders of thought and volition, disorders of sleep and wakefulness, diseases of the motor unit, such as neurogenic and myopathic disorders, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and processes of peripheral and chronic pain.
  • This invention further pertains to the use of novel agents identified by the screening assays described above. Accordingly, it is within the scope of this invention to use a test compound identified as described herein in an appropriate animal model.
  • an agent identified as described herein e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, ribozyme, or a lysosomal acid lipase polypeptide binding molecule
  • an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
  • an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
  • this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
  • a reagent which affects lysosomal acid lipase activity can be administered to a human cell, either in vitro or in vivo, to reduce lysosomal acid lipase activity.
  • the reagent preferably binds to an expression product of a human lysosomal acid lipase gene. If the expression product is a protein, the reagent is preferably an antibody.
  • an antibody can be added to a preparation of stem cells which have been removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.
  • the reagent is delivered using a liposome.
  • the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours.
  • a liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human.
  • the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.
  • a liposome useful in the present invention comprises a lipid -composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell.
  • the transfection efficiency of a liposome is about 0.5 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, more preferably about 1.0 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, and even more preferably about 2.0 ⁇ g of DNA per 16 nmol of liposome delivered to about 10 6 cells.
  • a liposome is between about 100 and 500 nm, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.
  • Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol.
  • a liposome comprises a compound capable of targeting the liposome to a particular cell type, such as a cell-specific.ligand exposed on the outer surface of the liposome.
  • a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods that are standard in the art (see, for example, U.S. Patent 5,705,151).
  • a reagent such as an antisense oligonucleotide or ribozyme
  • from about 0.1 ⁇ g to about 10 ⁇ g of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 ⁇ g to about 5 ⁇ g of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 ⁇ g of polynucleotides is combined with about 8 nmol liposomes.
  • antibodies can be delivered to specific tissues in vivo using receptor-mediated targeted delivery.
  • Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnol 11, 202-05 (1993); Chiou et al, GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24 (1988); Wu et al, J. Biol. Chem. 269, 542-46 (1994); Zenke et al, Proc. Natl. Acad. Sci. USA. 87, 3655-59 (1990); Wu et al., J. Biol. Chem. 266, 338-42 (1991).
  • a therapeutically effective dose refers to that amount of active ingredient which increases or decreases lysosomal acid lipase activity relative to the lysosomal acid lipase activity which occurs in the absence of the therapeutically effective dose.
  • the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs.
  • the animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • Therapeutic efficacy and toxicity e.g., ED 50 (the dose therapeutically effective in 50% of the population) and LD 50 (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD 50 /ED 50 .
  • compositions that exhibit large therapeutic indices are preferred.
  • the data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
  • the dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
  • the exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect. Factors which can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.
  • Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
  • polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well- established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome- mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun,” and DEAE- or calcium phosphate-mediated transfection.
  • Effective in vivo dosages of an antibody are in the range of about 5 ⁇ g to about 50 ⁇ g/kg, about 50 ⁇ g to about 5 mg/kg, about 100 ⁇ g to about 500 ⁇ g/kg of patient body weight, and about 200 to about 250 ⁇ g/kg of patient body weight.
  • effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 ⁇ g to about 2 mg, about 5 ⁇ g to about 500 ⁇ g, and about 20 ⁇ g to about 100 ⁇ g of DNA.
  • the reagent is preferably an antisense oligonucleotide or a ribozyme.
  • Polynucleotides that express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.
  • a reagent reduces expression of a lysosomal acid lipase gene or the activity of a lysosomal acid lipase polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent.
  • the effectiveness of the mechanism chosen to decrease the level of expression of a lysosomal acid lipase gene or the activity of a lysosomal acid lipase polypeptide can be assessed using methods well known in the art, such as hybridization of nucleotide probes to lysosomal acid lipase-specific mRNA, quantitative RT-PCR, immunologic detection of a lysosomal acid lipase polypeptide, or measurement of lysosomal acid lipase activity.
  • any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents.
  • Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents can act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans. Diagnostic Methods
  • Human lysosomal acid lipase also can be used in diagnostic assays for detecting diseases and abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences that encode the enzyme. For example, differences can be determined between the cDNA or genomic sequence encoding lysosomal acid lipase in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.
  • Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method.
  • cloned DNA segments can be employed as probes to detect specific DNA segments.
  • the sensitivity of this method is greatly enhanced when combined with PCR.
  • a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR.
  • the sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.
  • DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al, Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S 1 protection or the chemical cleavage method (e.g., Cotton et al, Proc. Natl.
  • the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA.
  • direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.
  • Altered levels of a lysosomal acid lipase also can be detected in various tissues.
  • Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.
  • the polynucleotide of SEQ ID NO: 1 is inserted into the expression vector pCEV4 and the expression vector pCEV4-lysosomal acid lipase polypeptide obtained is transfected into human embryonic kidney 293 cells. From these cells extracts are obtained and lysosomal acid lipase activity is determined in the following assay: a stock solution of 10 mg/ml -nitrophenyl butyrate (PNPB, Sigma) is prepared in acetonitrile. The final concentration used the assay is 2 ⁇ g/ml. If optimization of the system is required, a range of PNPB concentrations is tested, from 0.25 ⁇ g/ml to
  • the Pichia pastoris expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of recombinant human lysosomal acid lipase polypeptides in yeast.
  • the lysosomal acid lipase-encoding DNA sequence is derived from SEQ ID NO: 1
  • the DNA sequence Before insertion into vector pPICZB, the DNA sequence is modified by well known methods in such a way that it contains at its 5 '-end an initiation codon and at its 3 '-end an enterokinase cleavage site, a His6 reporter tag and a termination codon. Moreover, at both termini recognition sequences for restriction endonucleases are added and after digestion of the multiple cloning site of pPICZ B with the corresponding restriction enzymes the modified DNA sequence is ligated into pPICZB.
  • This expression vector is designed for inducible expression in Pichia pastoris, driven by a yeast promoter. The resulting pPICZ/md-His6 vector is used to transform the yeast.
  • the yeast is cultivated under usual conditions in 5 liter shake flasks and the recombinantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea.
  • the bound polypeptide is eluted with buffer, pH 3.5, and neutralized. Separation of the polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San
  • Purified lysosomal acid lipase polypeptides comprising a glutathione-S-transferase protein and absorbed onto glutathione-derivatized wells of 96-well microtiter plates are contacted with test compounds from a small molecule library at pH 7.0 in a physiological buffer solution.
  • Human lysosomal acid lipase polypeptides comprise the amino acid sequence shown in SEQ ID NO:2.
  • the test compounds comprise a fluorescent tag. The samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.
  • the buffer solution containing the test compounds is washed from the wells.
  • Binding of a test compound to a lysosomal acid lipase polypeptide is detected by fluorescence measurements of the contents of the wells.
  • a test compound which increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound is not incubated is identified as a compound which binds to a lysosomal acid lipase polypeptide.
  • test compound is administered to a culture of human cells transfected with a lysosomal acid lipase expression construct and incubated at 37°C for 10 to 45 minutes.
  • a culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.
  • RNA is isolated from the two cultures as described in Chirgwin et al, Biochem. 18, 5294-99, 1979).
  • Northern blots are prepared using 20 to 30 ⁇ g total RNA and hybridized with a 32 P-labeled lysosomal acid lipase-specific probe at 65°C in Express-hyb (CLONTECH).
  • the probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NO: 1.
  • a test compound that decreases the lysosomal acid lipase-specific signal relative to the signal obtained in the absence of the test compound is identified as an inhibitor of lysosomal acid lipase gene expression.
  • test compound is administered to a culture of human cells transfected with a lysosomal acid lipase expression construct and incubated at 37°C for 10 to 45 minutes.
  • a culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.
  • PNPB j ⁇ -nitrophenyl butyrate
  • the final concentration used the assay is 2 ⁇ g/ml. If optimization of the system is required, a range of PNPB concentrations is tested, from 0.25 ⁇ g/ml to 4 ⁇ g/ml.
  • Two to ten ⁇ g of a semicrude (partially purified) lipase fraction or 5 ⁇ g of purified material is incubated in 10 ⁇ g heparin (Sigma) and 0.1 M sodium phosphate, pH 7.2 (containing 0.9% NaCl); the reaction volume is 1 ml. Care is taken that the acetonitrile concentration is not above 1% v/v.
  • a test compound which decreases the lipase activity of the lysosomal acid lipase relative to the lipase activity in the absence of the test compound is identified as an inhibitor of lysosomal acid lipase activity.
  • lysosomal acid lipase The qualitative expression pattern of lysosomal acid lipase in various tissues is determined by Reverse Transcription-Polymerase Chain Reaction (RT-PCR).
  • RT-PCR Reverse Transcription-Polymerase Chain Reaction
  • expression is determined in the following tissues: adrenal gland, bone marrow, brain, cerebellum, colon, fetal brain, fetal liver, heart, kidney, liver, lung, mammary gland, pancreas, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid, trachea, uterus, and peripheral blood lymphocytes.
  • Expression in the following cancer cell lines also " is determined: DU-
  • NCI-H460 lung
  • HT-116 colon
  • DLD-1 colon
  • MDA-MD-231 breast
  • colon colon
  • ZF-75 (breast)
  • MDA-MN-435 (breast)
  • HT-1080 (breast)
  • MCF-7 (breast)
  • U87 Matched pairs of malignant and normal tissue from the same patient also are tested.
  • tissues subcutaneous adipose tissue, mesenteric adipose tissue, adrenal gland, bone marrow, brain (cerebellum, spinal cord, cerebral cortex, caudate, medulla, substantia nigra, and putamen), colon, fetal brain, heart, kidney, liver, lung, mammary gland, pancreas, placenta, prostate, salivary gland, skeletal muscle small intestine, spleen, stomach, testes, thymus, thyroid trachea, and uterus.
  • BE(2)M17, and MCIXC also are tested for lysosomal acid lipase expression.
  • the expression of lysosomal acid lipase in cells derived from normal individuals with the expression of cells derived from obese individuals is compared.
  • the initial expression panel consists of RNA samples from respiratory tissues and inflammatory cells relevant to COPD: lung (adult and fetal), trachea, freshly isolated alveolar type II cells, cultured human bronchial epithelial cells, cultured small airway epithelial cells, cultured bronchial sooth muscle cells, cultured H441 cells (Clara-like), freshly isolated neutrophils and monocytes, and cultured monocytes (macrophage-like).
  • Body map profiling also is carried out, using total RNA panels purchased from Clontech.
  • the tissues are adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, mammary gland, pancreas, prostate, salivary gland, skeletal muscle, small intestine, spleen, stomach, testis, thymus, trachea, thyroid, and uterus.
  • lysosomal acid lipase is involved in the disease process of diabetes
  • the following whole body panel is screened to show predominant or relatively high expression: subcutaneous and mesenteric adipose tissue, adrenal gland, bone marrow, brain, colon, fetal brain, heart, hypothalamus, kidney, liver, lung, mammary gland, pancreas, placenta, prostate, salivary gland, skeletal muscle, small intestine, spleen, stomach, testis, thymus, thyroid, trachea, and uterus.
  • Human islet cells and an islet cell library also are tested.
  • the expression of lysosomal acid lipase in cells derived from normal individuals with the expression of cells derived from diabetic individuals is compared.
  • Quantitative expression profiling is performed by the form of quantitative PCR analysis called "kinetic analysis” firstly described in Higuchi et al, BioTechnology 10, 413-17, 1992, and Higuchi et al, BioTechnology 11, 1026-30, 1993. The principle is that at any given cycle within the exponential phase of PCR, the amount of product is proportional to the initial number of template copies.
  • the probe is cleaved by the 5 '-3' endonuclease activity of Taq DNA polymerase and a fluorescent dye released in the medium (Holland et al, Proc. Natl. Acad. Sci.
  • the amplification of an endogenous control can be performed to standardize the amount of sample RNA added to a reaction.
  • the control of choice is the 18S ribosomal RNA. Because reporter dyes with differing emission spectra are available, the target and the endogenous control can be independently quantified in the same tube if probes labeled with different dyes are used.
  • RNA extraction and cDNA preparation Total RNA from the tissues listed above are used for expression quantification.
  • RNAs labeled “from autopsy” were extracted from autoptic tissues with the TRIzol reagent (Life Technologies, MD) according to the manufacturer's protocol.
  • RNA Fifty ⁇ g of each RNA were treated with DNase I for 1 hour at 37°C in the following reaction mix: 0.2 U/ ⁇ l RNase-free DNase I (Roche Diagnostics, Germany); 0.4 U/ ⁇ l RNase inhibitor (PE Applied Biosystems, CA); 10 mM Tris-HCl pH 7.9; lOmM MgCl 2 ; 50 mM NaCl; and 1 mM DTT.
  • RNA is extracted once with 1 volume of phenolxhloro- form:isoamyl alcohol (24:24:1) and once with chloroform, and precipitated with 1/10 volume of 3 M NaAcetate, pH5.2, and 2 volumes of ethanol.
  • RNA from the autoptic tissues Fifty ⁇ g of each RNA from the autoptic tissues are DNase treated with the DNA-free kit purchased from Ambion (Ambion, TX). After resuspension and spectrophoto- metric quantification, each sample is reverse transcribed with the TaqMan Reverse Transcription Reagents (PE Applied Biosystems, CA) according to the manu- facturer's protocol. The final concentration of RNA in the reaction mix is 200ng/ ⁇ L.
  • Reverse transcription is carried out with 2.5 ⁇ M of random hexamer primers.
  • TaqMan quantitative analysis Specific primers and probe are designed according to the recommendations of PE Applied Biosystems; the probe can be labeled at the 5' end FAM (6-carboxy-fluorescein) and at the 3' end with TAMRA (6-carboxy-tetra- methyl-rhodamine). Quantification experiments are performed on 10 ng of reverse transcribed RNA from each sample. Each determination is done in triplicate.
  • FAM 6-carboxy-fluorescein
  • TAMRA 6-carboxy-tetra- methyl-rhodamine
  • Total cDNA content is normalized with the simultaneous quantification (multiplex PCR) of the 18S ribosomal RNA using the Pre-Developed TaqMan Assay Reagents (PDAR) Control Kit (PE Applied Biosystems, CA).
  • PDAR Pre-Developed TaqMan Assay Reagents
  • the assay reaction mix is as follows: IX final TaqMan Universal PCR Master Mix (from 2X stock) (PE Applied Biosystems, CA); IX PDAR control - 18S RNA (from 20X stock); 300 nM forward primer; 900 nM reverse primer; 200 nM probe; 10 ng cDNA; and water to 25 ⁇ l.
  • the experiment is performed on an ABI Prism 7700 Sequence Detector (PE Applied Biosystems, CA).
  • fluorescence data acquired during PCR are processed as described in the ABI Prism 7700 user's manual in order to achieve better background subtraction as well as signal linearity with the starting target quantity.
  • the cell line used for testing is the human colon cancer cell line HCT116.
  • Cells are cultured in RPMI-1640 with 10-15% fetal calf serum at a concentration of 10,000 cells per milliliter in a volume of 0.5 ml and kept at 37°C in a 95% air/5%CO 2 atmosphere.
  • Phosphorothioate oligoribonucleotides are synthesized on an Applied Biosystems
  • oligonucleotides are ethanol-precipitated twice, dried, and suspended in phosphate buffered saline at the desired concentration. Purity of the oligonucleotides is tested by capillary gel electrophoresis and ion exchange HPLC. The purified oligo- nucleotides are added to the culture medium at a concentration of 10 ⁇ M once per day for seven days.
  • test oligonucleotide for seven days results in significantly reduced expression of human lysosomal acid lipase as determined by Western blotting. This effect is not observed with the control oligonucleotide.
  • the number of cells in the cultures is counted using an automatic cell counter. The number of cells in cultures treated with the test oligonucleotide (expressed as 100%) is compared with the number of cells in cultures treated with the control oligonucleotide. The number of cells in cultures treated with the test oligonucleotide is not more than 30% of control, indicating that the inhibition of human lysosomal acid lipase has an anti-proliferative effect on cancer cells.
  • This non-tumor assay measures the ability of a compound to reduce either the endogenous level of a circulating hormone or the level of hormone produced in response to a biologic stimulus.
  • Rodents are administered test compound (p.o., i.p., i.v., i.m., or s.c).
  • test compound p.o., i.p., i.v., i.m., or s.c
  • Plasma is assayed for levels of the hormone of interest. If the normal circulating levels of the hormone are too low and/or variable to provide consistent results, the level of the hormone may be elevated by a pre-treatment with a biologic stimulus (i.e., LHRH may be injected i.m.
  • a biologic stimulus i.e., LHRH may be injected i.m.
  • mice were fed at a dosage of 30 ng/mouse to induce a burst of testosterone synthesis).
  • the timing of plasma collection would be adjusted to coincide with the peak of the induced hormone response.
  • Compound effects are compared to a vehicle-treated control group.
  • An F- test is preformed to determine if the variance is equal or unequal followed by a
  • Hollow fibers are prepared with desired cell line(s) and implanted intraperitoneally and or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol, these may include assays for gene expression (bDNA, PCR, or Taqman), or a specific biochemical activity (i.e., cAMP levels. Results are analyzed by Student's t-test or
  • Rodents are administered test compound (p.o., i.p., i.v., i.m., or s.c.) according to a predetermined schedule and for a predetermined duration (i.e., 1 week).
  • animals are weighed, the target organ is excised, any fluid is expressed, and the weight of the organ is recorded.
  • Blood plasma may also be collected. Plasma may be assayed for levels of a hormone of interest or for levels of test agent.
  • Organ weights may be directly compared or they may be normalized for the body weight of the animal. Compound effects are compared to a vehicle-treated control group. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test. Significance is p value ⁇ 0.05 compared to the vehicle control group.
  • Hollow fibers are prepared with desired cell line(s) and implanted intraperitoneally and/or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol. Cell proliferation is determined by measuring a marker of cell number (i.e., MTT or
  • the cell number and change in cell number from the starting inoculum are analyzed by Student's t-test or Rank Sum test after the variance between groups is compared by an F-test, with significance at p ⁇ 0.05 as compared to the vehicle control group.
  • Hydron pellets with or without growth factors or cells are implanted into a micro- pocket surgically created in the rodent cornea.
  • Compound administration may be systemic or local (compound mixed with growth factors in the hydron pellet).
  • Corneas are harvested at 7 days post implantation immediately following intracardiac infusion of colloidal carbon and are fixed in 10% formalin. Readout is qualitative scoring and/or image analysis. Qualitative scores are compared by Rank Sum test. Image analysis data is evaluated by measuring the area of neovascularization (in pixels) and group averages are compared by Student's t-test (2 tail). Significance is p
  • ⁇ 0.05 as compared to the growth factor or cells only group.
  • Matrigel Angiogenesis Matrigel containing cells or growth factors, is injected subcutaneously. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Matrigel plugs are harvested at predetermined time point(s) and prepared for readout. Readout is an ELISA-based assay for hemoglobin concentration and/or histological examination (i.e. vessel count, special staining for endothelial surface markers: CD31, factor-8). Readouts are analyzed by Student's t-test, after the variance between groups is compared by an F-test, with significance determined at p ⁇ 0.05 as compared to the vehicle control group.
  • Tumor cells or fragments are implanted subcutaneously on Day 0.
  • Vehicle and/or compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting at a time, usually on Day 1, prior to the ability to measure the tumor burden.
  • Body weights and tumor measurements are recorded 2-3 times weekly. Mean net body and tumor weights are calculated for each data collection day.
  • Anti- tumor efficacy may be initially determined by comparing the size of treated (T) and control (C) tumors on a given day by a Student's t-test, after the variance between groups is compared by an F-test, with significance determined at p ⁇ 0.05.
  • Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan- Meier curves from the times for individual tumors to attain the evaluation size. Significance is p ⁇ 0.05. 3.1.2. Intraperitoneal/Intracranial Tumor Models
  • Tumor cells are injected intraperitoneally or intracranially on Day 0.
  • Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting on Day 1. Observations of morbidity and/or mortality are recorded twice daily. Body weights are measured and recorded twice weekly. Morbidity/mortality data is expressed in terms of the median time of survival and the number of long- term survivors is indicated separately. Survival times are used to generate Kaplan- Meier curves. Significance is p ⁇ 0.05 by a log-rank test compared to the control group in the experiment.
  • Tumor cells or fragments are implanted subcutaneously and grown to the desired size for treatment to begin. Once at the predetermined size range, mice are randomized into treatment groups. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly. Mean tumor weights of all groups over days post inoculation are graphed for comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group.
  • Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay.
  • Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is p value ⁇ 0.05 compared to the vehicle control group.
  • Tumor cells or fragments, of mammary adenocarcinoma origin are implanted directly into a surgically exposed and reflected mammary fat pad in rodents. The fat pad is placed back in its original position and the surgical site is closed. Hormones may also be administered to the rodents to support the growth of the tumors. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly. Mean tumor weights of all groups over days post inoculation are graphed for comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group.
  • Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay.
  • Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size.
  • Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is p value ⁇ 0.05 compared to the vehicle control group.
  • this model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ, or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
  • Tumor cells or fragments, of prostatic adenocarcinoma origin are implanted directly into a surgically exposed dorsal lobe of the prostate in rodents.
  • the prostate is externalized through an abdominal incision so that the tumor can be implanted specifically in the dorsal lobe while verifying that the implant does not enter the seminal vesicles.
  • the successfully inoculated prostate is replaced in the abdomen and the incisions through the abdomen and skin are closed.
  • Hormones may also be administered to the rodents to support the growth of the tumors.
  • Compounds are administered p.o., i.p., i.v., i.m., or s.c.
  • Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the lungs), or measuring the target organ weight (i.e., the regional lymph nodes). The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
  • Tumor cells of pulmonary origin may be implanted intrabronchially by making an incision through the skin and exposing the trachea.
  • the trachea is pierced with the beveled end of a 25 gauge needle and the tumor cells are inoculated into the main bronchus using a flat-ended 27 gauge needle with a 90° bend.
  • Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected.
  • the size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope.
  • An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group.
  • This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the contralateral lung), or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
  • Tumor cells of gastrointestinal origin may be implanted intracecally by making an abdominal incision through the skin and externalizing the intestine. Tumor cells are inoculated into the cecal wall without penetrating the lumen of the intestine using a 27 or 30 gauge needle. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope.
  • An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t- test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group.
  • This model provides an opportunity to increase the rate of spontaneous metastasis of -this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the liver), or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
  • Tumor cells are inoculated s.c. and the tumors allowed to grow to a predetermined range for spontaneous metastasis studies to the lung or liver. These primary tumors are then excised. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule which may include the period leading up to the excision of the primary tumor to evaluate therapies directed at inhibiting the early stages of tumor metastasis. Observations of morbidity and/or mortality are recorded daily. Body weights are measured and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined.
  • Survival data is used to generate Kaplan-Meier curves. Significance is p ⁇ 0.05 by a log-rank test compared to the control group in the experiment. The mean number of visible tumor foci, as determined under a dissecting microscope, and the mean target organ weights are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment for both of these endpoints.
  • Tumor cells are injected into the tail vein, portal vein, or the left ventricle of the heart in experimental (forced) lung, liver, and bone metastasis studies, respectively.
  • Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Observations of morbidity and/or mortality are recorded daily. Body weights are measured and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined. Survival data is used to generate Kaplan-Meier curves. Significance is p ⁇ 0.05 by a log-rank test compared to the control group in the experiment.
  • the mean number of visible tumor foci, as determined under a dissecting microscope, and the mean target organ weights are compared by Student's t-test after conducting an F-test, with significance at p ⁇ 0.05 compared to the vehicle control group in the experiment for both endpoints.
  • Blood glucose is measured from tail-tip blood and then compounds are administered via different routes (p.o., i.p., i.v., s.c).
  • Blood is collected at various times thereafter and glucose measured. Alternatively, compounds are administered for several days, then the animals are fasted overnight, blood is collected and plasma glucose measured. Compounds that inhibit glucose production will decrease plasma glucose levels compared to the vehicle-treated control group.
  • Both ob/ob and db/db mice as well as diabetic Zucker rats are hyperglycemic, hyperinsulinemic and insulin resistant.
  • the animals are pre-bled, their glucose levels measured, and then they are grouped so that the mean glucose level is the same for each group.
  • Compounds are administered daily either q.d. or b.i.d. by different routes (p.o., i.p., s.c.) for 7-28 days. Blood is collected at various times and plasma glucose and insulin levels determined. Compounds that improve insulin sensitivity in these models will decrease both plasma glucose and insulin levels when compared to the vehicle-treated control group.
  • Compounds that enhance insulin secretion from the pancreas will increase plasma insulin levels and improve the disappearance of plasma glucose following the administration of a glucose load.
  • compounds are administered by different routes (p.o., i.p., s.c. or i.v.) to overnight fasted normal rats or mice.
  • an intravenous glucose load (0.4 g/kg) is given, blood is collected one minute later.
  • Plasma insulin levels are determined.
  • Compounds that enhance insulin secretion will increase plasma insulin levels compared to animals given only glucose.
  • animals are bled at the appropriate time after compound administration, then given either an oral or intraperitoneal glucose load (lg/kg), bled again after 15, 30, 60 and 90 minutes and plasma glucose levels determined.
  • Compounds that increase insulin levels will decrease glucose levels and the area-under-the glucose curve when compared to the vehicle-treated group given only glucose.
  • test compounds which regulate lysosomal acid lipase are administered by different routes (p.o., i.p., s.c, or i.v.) to overnight fasted normal rats or mice.
  • an intravenous glucose load 0.4 g/kg
  • Plasma insulin levels are determined.
  • Test compounds that enhance insulin secretion will increase plasma insulin levels compared to animals given only glucose.
  • mice When measuring glucose disappearance, animals are bled at the appropriate time after compound administration, then given either an oral or intraperitoneal glucose load (1 g/kg), bled again after 15, 30, 60, and 90 minutes and plasma glucose levels determined. Test compounds that increase insulin levels will decrease glucose levels and the area-under-the glucose curve when compared to the vehicle-treated group given only glucose.
  • Blood glucose is measured from tail-tip blood and then compounds are administered via different routes (p.o., i.p., i.v., s.c). Blood is collected at various times thereafter and glucose measured. Alternatively, compounds are administered for several days, then the animals are fasted overnight, blood is collected and plasma glucose measured. Compounds that inhibit glucose production will decrease plasma glucose levels compared to the vehicle-treated control group.
  • Both ob/ob and db/db mice as well as diabetic Zucker rats- are hyperglycemic, hyperinsulinemic and insulin resistant.
  • the animals are pre-bled, their glucose levels measured, and then they are grouped so that the mean glucose level is the same for each group.
  • Compounds are administered daily either q.d. or b.i.d. by different routes (p.o., i.p., s.c.) for 7-28 days. Blood is collected at various times and plasma glucose and insulin levels determined. Compounds that improve insulin sensitivity in these models will decrease both plasma glucose and insulin levels when compared to the vehicle-treated control group.
  • Compounds that enhance insulin secretion from the pancreas will increase plasma insulin levels and improve the disappearance of plasma glucose following the administration of a glucose load.
  • compounds are administered by different routes (p.o., i.p., s.c. or i.v.) to overnight fasted normal rats or mice.
  • an intravenous glucose load (0.4g/kg) is given, blood is collected one minute later.
  • Plasma insulin levels are determined.
  • Compounds that enhance insulin secretion will increase plasma insulin levels compared to animals given only glucose.
  • animals are bled at the appropriate time after compound administration, then given either an oral or intraperitoneal glucose load (lg/kg), bled again after 15, 30, 60 and 90 minutes and plasma glucose levels determined.
  • Compounds that increase insulin levels will decrease glucose levels and the area-under-the glucose curve when compared to the vehicle-treated group given only glucose.
  • Guinea pigs are exposed on a single occasion to tobacco smoke for 50 minutes. Animals are sacrificed between 10 minutes and 24 hour following the end of the exposure and their lungs placed in RNAlaterTM. The lung tissue is homogenized, and total RNA was extracted using a Qiagens RNeasyTM Maxi kit. Molecular Probes RiboGreenTM RNA quantitation method is used to quantify the amount of RNA in each sample. Total RNA is reverse transcribed, and the resultant cDNA is used in a real-time polymerase chain reaction (PCR). The cDNA is added to a solution containing the sense and anti-sense primers and the 6-carboxy-tetramethyl-rhodamine labelled probe of the lysosomal acid lipase gene.
  • PCR real-time polymerase chain reaction
  • Cyclophilin is used as the housekeeping gene.
  • the expression of the lysosomal acid lipase gene is measured using the TaqMan realtime PCR system that generates an amplification curve for each sample. From this curve a threshold cycle value is calculated: the fractional cycle number at which the amount of amplified target reaches a fixed threshold. A sample containing many copies of the lysosomal acid lipase gene will reach this threshold earlier than a sample containing fewer copies.
  • the threshold is set at 0.2, and the threshold cycle
  • C is calculated from the amplification curve.
  • the C value for the lysosomal acid lipase gene is normalized using the Cf value for the housekeeping gene.
  • lysosomal acid lipase gene is increased by at least 3 -fold between ' 10 minutes and 3 hours post tobacco smoke exposure compared to air exposed control animals.
  • Test compounds are evaluated as follows. Animals are pre-treated with a test compound between 5 minutes and 1 hour prior to the tobacco smoke exposure and they are then sacrificed up to 3 hours after the tobacco smoke exposure has been completed. Control animals are pre-treated with the vehicle of the test compound via the route of administration chosen for the test compound. A test compound that reduces the tobacco smoke induced upregulation of lysosomal acid lipase gene relative to the expression seen in vehicle treated tobacco smoke exposed animals is identified as an inhibitor of lysosomal acid lipase gene expression.
  • Acute pain is measured on a hot plate mainly in rats.
  • Two variants of hot plate testing are used: In the classical variant animals are put on a hot surface (52 to 56 ⁇ C) and the latency time is measured until the animals show nocifensive behavior, such as stepping or foot licking.
  • the other variant is an increasing temperature hot plate where the experimental animals are put on a surface of neutral temperature. Subsequently this surface is slowly but constantly heated until the animals begin to lick a hind paw. The temperature which is reached when hind paw licking begins is a measure for pain threshold.
  • Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t, i.e. v., s.c, intradermal, transdermal) prior to pain testing.
  • application routes i.v., i.p., p.o., i.t, i.e. v., s.c, intradermal, transdermal
  • Persistent pain is measured with the formalin or capsaicin test, mainly in rats.
  • a solution of 1 to 5% formalin or 10 to 100 ⁇ g capsaicin is injected into one hind paw of the experimental animal.
  • the animals show nocifensive reactions like flinching, licking and biting of the affected paw.
  • the number of nocifensive reactions within a time frame of up to 90 minutes is a measure for intensity of pain.
  • Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t, i.c.v., s.c, intradermal, transdermal) prior to formalin or capsaicin administration.
  • application routes i.v., i.p., p.o., i.t, i.c.v., s.c, intradermal, transdermal
  • Neuropathic pain is induced by different variants of unilateral sciatic nerve injury mainly in rats.
  • the operation is performed under anesthesia.
  • the first variant of sciatic nerve injury is produced by placing loosely constrictive ligatures around the common sciatic nerve.
  • the second variant is the tight ligation of about the half of the diameter of the common sciatic nerve.
  • a group of models is used in which tight ligations or transections are made of either the L5 and L6 spinal nerves, or the L% spinal nerve only.
  • the fourth variant involves an axotomy of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact whereas the last variant comprises the axotomy of only the tibial branch leaving the sural and common nerves uninjured. Control animals are treated with a sham operation.
  • the nerve injured animals develop a chronic mechanical allodynia, cold allodynioa, as well as a thermal hyperalgesia.
  • Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc-Life Science Instruments, Woodland Hills, SA, USA; Electronic von Frey System, Somedic Sales AB, H ⁇ rby, Sweden).
  • Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy), or by means of a cold plate of 5 to 10°C where the nocifensive reactions of the affected hind paw are counted as a measure of pain intensity.
  • a further test for cold induced pain is the counting of nocifensive reactions, or duration of nocifensive responses after plantar administration of acetone to the affected hind limb.
  • Chronic pain in general is assessed by registering the circadanian rhythms in activity (Surjo and Arndt, Universitat zu K ⁇ ln, Cologne, Germany), and by scoring differences in gait (foot print patterns; FOOTPRINTS program, Klapdor et al., 1997.
  • Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t, i.c.v., s.c, intradermal, transdermal) prior to pain testing.
  • application routes i.v., i.p., p.o., i.t, i.c.v., s.c, intradermal, transdermal
  • Inflammatory pain is induced mainly in rats by injection of 0.75 mg carrageenan or complete Freund's adjuvant into one hind paw.
  • the animals develop an edema with mechanical allodynia as well as thermal hyperalgesia.
  • Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer,
  • Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy, Paw thermal stimulator, G. Ozaki, University of California, USA).
  • the first method the animals are sacrificed and the affected hindpaws sectioned and weighed.
  • the second method comprises differences in paw volume by measuring water displacement in a plethysmometer (Ugo Basile, Comerio, Italy). Compounds are tested against uninflamed as well as vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t, i.c.v., s.c, intradermal, transdermal) prior to pain testing.
  • Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc.-Life Science Instruments, Woodland Hills, SA,
  • Compounds are tested against diabetic and non-diabetic vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to pain testing.
  • application routes i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

L'invention concerne des réactifs qui assurent la régulation de la lipase acide lysosomiale de l'homme et des réactifs qui se lient aux produits géniques de la lipase acide lysosomiale de l'homme . Ces réactifs peuvent permettre de prévenir, d'améliorer, ou de corriger des troubles ou des maladies comprenant, mais sans s'y limiter, le cancer, l'obésité, la broncho-pneumopathie chronique obstructive, le diabète les troubles du système nerveux central et périphérique et les troubles cardio-vasculaires.
PCT/EP2001/012518 2000-10-31 2001-10-30 Lipase acide lysosomiale de l'homme WO2002036731A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002226319A AU2002226319A1 (en) 2000-10-31 2001-10-30 Human lysosomal acid lipase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24417000P 2000-10-31 2000-10-31
US60/244,170 2000-10-31
US29351601P 2001-05-29 2001-05-29
US60/293,516 2001-05-29

Publications (2)

Publication Number Publication Date
WO2002036731A2 true WO2002036731A2 (fr) 2002-05-10
WO2002036731A3 WO2002036731A3 (fr) 2003-03-13

Family

ID=26936360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012518 WO2002036731A2 (fr) 2000-10-31 2001-10-30 Lipase acide lysosomiale de l'homme

Country Status (2)

Country Link
AU (1) AU2002226319A1 (fr)
WO (1) WO2002036731A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046418A2 (fr) * 2000-12-08 2002-06-13 Incyte Genomics, Inc. Molecules associees a des lipides
EP1377599A1 (fr) * 2001-03-20 2004-01-07 PE Corporation (NY) Proteines de lipase humaine isolees, molecules d'acide nucleique codant lesdites proteines et utilisations associees
WO2014000058A1 (fr) * 2012-06-29 2014-01-03 Garvan Institute Of Medical Research Méthode de traitement de troubles du métabolisme des sucres
EP2820032A4 (fr) * 2012-03-02 2015-11-25 Synageva Biopharma Corp Lipase acide lysosomale tronquée

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077239A2 (fr) * 1999-06-14 2000-12-21 Millennium Pharmaceuticals, Inc. Nouveaux genes codant pour des proteines a des fins de diagnostic, de prevention, de therapie et autres
WO2001079446A2 (fr) * 2000-04-14 2001-10-25 Hyseq, Inc. Matieres et procedes relatifs au metabolisme lipidique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077239A2 (fr) * 1999-06-14 2000-12-21 Millennium Pharmaceuticals, Inc. Nouveaux genes codant pour des proteines a des fins de diagnostic, de prevention, de therapie et autres
WO2001079446A2 (fr) * 2000-04-14 2001-10-25 Hyseq, Inc. Matieres et procedes relatifs au metabolisme lipidique

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDERSON R ET AL: "Cloning and expression of cDNA encoding human lysosomal acid lipase/cholestreryl ester hydrolase" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 266, no. 33, 25 November 1991 (1991-11-25), pages 22479-22484, XP002192752 ISSN: 0021-9258 *
DATABASE EMBL [Online] standard; RNA; EST; 954 BP, 26 October 2000 (2000-10-26) NIH-MGC: "601780142F1 NCI_CGAP Mus musculus cDNA clone IMAGE:4008131 5', mRNA sequence" Database accession no. BF135102 XP002213529 *
ROUSSEL A ET AL: "Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 274, no. 24, 11 June 1999 (1999-06-11), pages 16995-17002, XP002192751 ISSN: 0021-9258 *
SHERIFF S ET AL: "CHARACTERIZATION OF LYSOSOMAL ACID LIPASE BY SITE-DIRECTED MUTAGENESIS AND HETEROLOGOUS EXPRESSION" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 270, no. 46, 17 November 1995 (1995-11-17), pages 27766-27772, XP000986290 ISSN: 0021-9258 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046418A2 (fr) * 2000-12-08 2002-06-13 Incyte Genomics, Inc. Molecules associees a des lipides
WO2002046418A3 (fr) * 2000-12-08 2004-02-26 Incyte Genomics Inc Molecules associees a des lipides
EP1377599A1 (fr) * 2001-03-20 2004-01-07 PE Corporation (NY) Proteines de lipase humaine isolees, molecules d'acide nucleique codant lesdites proteines et utilisations associees
EP1377599A4 (fr) * 2001-03-20 2005-08-17 Applera Corp Proteines de lipase humaine isolees, molecules d'acide nucleique codant lesdites proteines et utilisations associees
EP2820032A4 (fr) * 2012-03-02 2015-11-25 Synageva Biopharma Corp Lipase acide lysosomale tronquée
WO2014000058A1 (fr) * 2012-06-29 2014-01-03 Garvan Institute Of Medical Research Méthode de traitement de troubles du métabolisme des sucres

Also Published As

Publication number Publication date
AU2002226319A1 (en) 2002-05-15
WO2002036731A3 (fr) 2003-03-13

Similar Documents

Publication Publication Date Title
US20040038365A1 (en) Regulation of human lysosomal acid lipase
WO2002036731A2 (fr) Lipase acide lysosomiale de l'homme
WO2002055712A2 (fr) Regulation de l'alanine aminotransferase humaine
US20040152092A1 (en) Regulation of human phosphatidic acid phosphatase type 2c-like protein
WO2002055710A2 (fr) Regulation de l'acide phosphatase pourpre humain
WO2002064761A2 (fr) Accelerateurs promoteurs d'adhesion de cable d'acier
EP1404843A2 (fr) Regulation de serine/threonine proteine kinase humaine de type nek
WO2002000854A2 (fr) Regulation de l'enzyme humaine de type phosphodiesterase
WO2002062975A2 (fr) Regulation de la proteine humaine du type elongase hselo1
WO2002053756A2 (fr) Regulation de glucosamine-6-phosphate desaminase humaine
WO2002036753A2 (fr) Régulation de la lipase triacylglycérol humaine
US20040171539A1 (en) Regulation of human protein kinase-like protein
US20040157282A1 (en) Regulation of human dual specificity protein phosphatase 7-like protein
WO2002020747A2 (fr) Regulation de l'enzyme humaine du type tyrosine phosphatase
WO2002090543A2 (fr) Régulation de la protéine semblable à celle de type 2c de la phosphatase de l'acide phosphatidique humain
WO2003000873A2 (fr) Régulation de la sérine/thréonine protéine kinase humaine nek1
WO2003000874A2 (fr) Regulation de la proteine kinase serine/threonine humaine nek3
WO2002038776A1 (fr) Régulation de la ligase coa d'acides gras humains
WO2003025162A2 (fr) Regulation du precurseur de la sous-unite alpha de prolyl 4-hydroxylase humaine
WO2003025174A2 (fr) Regulation de la proteine humaine de type mrp1
WO2002052020A2 (fr) Regulation de carboxypeptidase a humaine
WO2002083887A2 (fr) Regulation de la proteine de type methionine aminopeptidase humaine
WO2002095018A1 (fr) Regulation d'une proteine humaine de type carboxypeptidase b a zinc
WO2002051989A2 (fr) Regulation de la 4-nitrophenylphosphatase humaine
EP1360281A2 (fr) Regulation de la serine/threonine proteine kinase humaine de type wee1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP