Nothing Special   »   [go: up one dir, main page]

WO2002004931A1 - Luminous reaction measuring device - Google Patents

Luminous reaction measuring device Download PDF

Info

Publication number
WO2002004931A1
WO2002004931A1 PCT/JP2001/005881 JP0105881W WO0204931A1 WO 2002004931 A1 WO2002004931 A1 WO 2002004931A1 JP 0105881 W JP0105881 W JP 0105881W WO 0204931 A1 WO0204931 A1 WO 0204931A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction chamber
reaction
sample gas
chemiluminescence
Prior art date
Application number
PCT/JP2001/005881
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihito Suzuki
Akifumi Kamiya
Seiji Suzuki
Teruhiko Yamaguchi
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AU2001269465A priority Critical patent/AU2001269465A1/en
Publication of WO2002004931A1 publication Critical patent/WO2002004931A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Definitions

  • nitric oxide and (NO) and ozone (0 3) by chemical reaction an increasing demand for the concentration measuring apparatus for measuring the concentration of nitrogen monoxide based on the intensity of the chemiluminescence generated during reaction I have.
  • the therapeutic effect can be monitored by measuring the concentration of nitric oxide in the breath of an asthmatic patient, or the concentration of nitric oxide in the exhaust gas of automobiles can be measured to address environmental issues.
  • References disclosing such a device include, for example, Japanese Patent Application Laid-Open Nos. Hei 9-115,055, Hei 9-145,621, and Hei 6-114 No. 45 is known.
  • the present invention has been made to solve the above-described problem, and has as its object to provide a luminescence reaction measuring device with high measurement accuracy of chemiluminescence.
  • the present invention relates to a luminescence reaction measuring apparatus in which a sample gas and an oxidizing gas are chemically reacted in a reaction chamber and the intensity of chemiluminescence generated during the reaction is detected by a photodetector.
  • a light transmitting window for causing the sample gas to be introduced into the reaction chamber from a direction perpendicular to the light transmitting window, and a sample gas introduced from the sample gas introducing portion.
  • An oxidizing gas introduction unit that introduces an oxidizing gas into the reaction chamber from a direction substantially perpendicular to the sample gas introduction direction, and a gas reaction chamber generated by a chemical reaction between the sample gas and the oxidizing gas to discharge the system outside.
  • a gas exhaust portion wherein the sample gas introduction portion is eccentric from the center of the reaction chamber in a direction away from the gas exhaust portion.
  • the sample gas such as nitric oxide is perpendicularly incident on the light transmission window by the sample gas introduction unit, so that the sample gas easily stays near the light transmission window. Become. For this reason, most of the sample gas introduced into the reaction chamber reacts with an oxidizing gas such as ozone introduced from the oxidizing gas introduction section in the vicinity of the light transmission window to generate chemiluminescence. A large amount of light is detected.
  • the sample gas inlet is eccentric from the center of the reaction chamber in a direction away from the gas exhaust unit, the sample gas can stay in the reaction chamber for a long time, and as a result, more light can be detected by the photodetector. Can be incident.
  • the oxidizing gas introduction unit introduces the oxidizing gas into the reaction chamber from a direction substantially perpendicular to the sample gas introduction direction, the probability of contact between the oxidizing gas and the sample gas increases, and more light is emitted. It is possible to produce them.
  • FIG. 1 is a perspective view showing a first embodiment of the luminescence reaction measuring device according to the present invention.
  • FIG. 2 is a cross-sectional view of the luminescence reaction measuring device shown in FIG.
  • FIG. 3 is a front view of the luminescence reaction measuring device shown in FIG.
  • FIG. 4 is a graph showing the relationship between pressure and output current for the luminescence reaction measurement device and the comparison device of the first embodiment. '
  • FIG. 5 is a perspective view showing a second embodiment of the luminescence reaction measuring device according to the present invention.
  • FIG. 1 is a schematic perspective view showing a luminescence reaction measuring device 10 of the present embodiment.
  • the reaction chamber 2 is surrounded by a light transmitting window 3 made of glass and a reflecting mirror 5 arranged opposite thereto, and both the light transmitting window 3 and the reflecting mirror 5 are circular flat plates.
  • the light transmission window 3 allows the light due to the chemiluminescence generated in the reaction chamber 2 to be incident on the light measurement module 30 and also functions as a long-wavelength transmission file adapted to the spectrum of the chemiluminescence.
  • the reflecting mirror 5 is for reflecting the light emitted in the opposite direction to the light measurement module 30 out of the light by the light emission to the light measurement module 30 side.
  • a circular lid 7 is bolted to the reaction chamber 4 so as to cover the reaction chamber 2.
  • FIG. 3 shows a state where the lid 7 is removed.
  • the gas exhaust pipe 12 has an outlet 12 a at the tip thereof at the side of the cylindrical reaction chamber 2 and The reaction chamber 4 is mounted below the center axis L.
  • the gas exhaust pipe 12 is arranged such that its outlet 12 a is point-symmetric with the inlet 8 a of the ozone inlet pipe 8 with respect to the central axis L.
  • the gas exhaust pipe 12 is provided with a valve 13 for adjusting the exhaust speed of NO and ozone.
  • the nitric oxide introduction pipe 6 is eccentric from the center axis L of the reaction chamber 2 in a direction away from the position where the gas exhaust pipe 12 is provided. More specifically, the nitrogen monoxide introducing pipe 6 moves away from the installation location of the outlet 12 a of the gas exhaust pipe 12, and is eccentric from the center axis L in a direction approaching the inlet 8 a of the ozone introducing pipe 8. I have. That is, the distance between the inlet 6a of the nitric oxide inlet pipe 6 and the outlet 12a of the gas exhaust pipe 12 is determined by the distance between the central axis L and the outlet 12a of the gas exhaust pipe 12. It is longer than the distance between them.
  • the inlet 8a of the ozone inlet tube 8 is located above the inlet 6a of the nitric oxide inlet tube 6, but the ozone introduced into the reaction chamber 2 is It is positioned high enough to collide with the introduced NO.
  • the light measurement module 30 is equipped with a side-on type PMT (photomultiplier tube) 32 for measuring the intensity of light due to chemiluminescence generated in the reaction chamber 2. ing.
  • a lens 34 for condensing light transmitted through the light transmission window 3 toward the PMT 32 is provided closer to the reaction chamber 4 than the PMT 32.
  • the PMT 32 multiplies the light passing through the lens 34, converts the amount of light into an electric signal at the photocathode 32a, and detects the intensity of chemiluminescence.
  • the luminescence reaction measuring apparatus 10 of the present embodiment has a calculation for obtaining the concentration of nitric oxide contributing to the luminescence based on the intensity of the chemiluminescence in the reaction chamber 2.
  • the device is connected. As shown in FIGS. 1 and 3, a Peltier cooler 36 and an air cooling fan 38 for cooling the PMT 32 are provided above the PMT 32.
  • the above is the configuration of the luminescence reaction measuring device 10 of the present embodiment.
  • the operation of the luminescence reaction measuring device 10 will be described.
  • the operation when the luminescence reaction measuring device 10 is applied to a device for measuring the concentration of nitric oxide in the breath of an asthmatic patient will be described.
  • ozone gas is introduced into the reaction chamber 2 through the ozone introduction pipe 8, while exhalation of a patient is introduced into the reaction chamber 2 through the nitrogen monoxide introduction pipe 6.
  • the exhalation of this patient contains NO.
  • the ozone and NO cause a chemical reaction represented by the following formula in the reaction chamber 2 to generate chemiluminescence.
  • N0 2 * refers to N0 2 in an excited state.
  • the light by the chemiluminescence passes through the light transmission window 3 and the lens 34 and enters the PMT 32.
  • the light reflected by the reflecting mirror 5 also enters the PMT 32.
  • the intensity (light quantity) of the chemiluminescence is detected in the PMT 32, and the concentration of NO is measured based on the intensity of the chemiluminescence by the above-mentioned arithmetic unit (not shown).
  • the light intensity due to the chemiluminescence is proportional to the NO concentration when the amount of ozone in the reaction chamber 2 is sufficient, and the NO concentration can be obtained by measuring the amount of light.
  • the gas generated by the chemical reaction is exhausted from the gas exhaust pipe 12 by operating a pump (not shown). At this time, by operating the valve 13 to adjust the pumping speed, N0 2 * from being aspirated from the reaction chamber 2 before emitting.
  • the longitudinal direction of the nitric oxide introduction tube 6 is along the normal direction of the light transmission window 3, and the introduction port 6a faces the light transmission window 3. Therefore, the exhaled air (NO) that has passed through the nitric oxide introducing pipe 6 flows perpendicularly to the light transmitting window 3.
  • ozone is introduced into the reaction chamber 2 from the direction orthogonal to the NO introduction direction by the ozone introduction pipe 8, so that the contact efficiency between NO and ozone is increased, and the light emission amount is increased.
  • the angle between the ozone introduction pipe 8 and the nitric oxide introduction pipe 6 does not necessarily need to be 90 degrees, and such an effect can be obtained if it is in the range of 80 to 100 degrees.
  • FIG. 4 is a graph showing the relationship between the pressure in the reaction chamber 2 and the output current of the PMT 32. The same amounts of nitric oxide and ozone were introduced into each device. Further, the reaction chamber pressure of 2 1. 26 x 10 4, 2. 13 X 10 ⁇ 3. 46 x 10 4, 4. For the case where the 798 X 10 4 P a, the intensity of the output or chemiluminescence of PMT 32 was measured.
  • the output result of the comparative example is indicated by a triangle
  • the output result of the luminescence reaction measuring apparatus 10 of the present embodiment is indicated by a circle.
  • the output current from the PMT 32 of the device according to the present embodiment in which NO is perpendicularly incident on the light transmission window 3 is about 30% higher than the output current of the comparative example. ing. This indicates that the use of the luminescence reaction measurement device 10 of the present embodiment has higher luminescence detection accuracy and allows accurate measurement of the concentration of nitric oxide.
  • the nitric oxide introduction pipe 6 is eccentric vertically above the center axis L of the reaction chamber 2. Further, similarly to the first embodiment, N 2 O passing through the nitric oxide introducing pipe 6 flows into the reaction chamber 2 from a direction perpendicular to the light transmission window 3. Further, the ozone introduction pipe 8 is disposed above the reaction chamber 2, and the ozone passing through the ozone introduction pipe 8 flows vertically downward and flows into the reaction chamber 2 from a direction orthogonal to the NO introduction direction. . Further, in the present embodiment, gas exhaust pipes 12 are provided on both side surfaces of the reaction chamber 4, and the height position of each gas exhaust pipe 12 is lower than the central axis L of the reaction chamber 2. .
  • the nitric oxide introduction pipe 6 is decentered vertically upward from the central axis L of the reaction chamber 2 so that the nitrogen oxide introduction pipe 6
  • the distance between the inlet 6a of the gas exhaust pipe 12 and the outlet 12a of the gas exhaust pipe 12 is longer than the distance between the central axis L and the outlet 12a of the gas exhaust pipe 12. It can be kept in the reaction chamber 2 for a long time, and the luminescence measurement accuracy can be improved. Further, even if the ozone introduction pipe 8 is set to be vertical in the vicinity of the reaction chamber 2, the ozone flows into the reaction chamber 2 so as to be orthogonal to the NO inflow direction. And the amount of light emission increases.
  • the photodetector for detecting the intensity of chemiluminescence is not limited to a photomultiplier, but may be a silicon photodiode or the like.
  • the luminescence reaction measured by the luminescence reaction measuring device is not limited to the reaction between nitric oxide and ozone.
  • a sample gas instead of nitric oxide, ethylene, isoprene, ammonia, formaldehyde (formalin), etc., which emit light by reacting with ozone, can be used.
  • oxidizing gas in addition to ozone, Elemental and chlorine can be used.
  • the sample gas such as nitric oxide is perpendicularly incident on the light transmission window by the sample gas introduction unit, so that the sample is placed near the light transmission window. Gas tends to stay. For this reason, most of the sample gas introduced into the reaction chamber reacts with an oxidizing gas such as ozone introduced from the oxidizing gas in the vicinity of the light transmitting window to generate chemiluminescence. Is detected.
  • the sample gas inlet is eccentric from the center of the reaction chamber in a direction away from the gas exhaust unit, the sample gas can stay in the reaction chamber for a long time. Can be incident.
  • the oxidizing gas introduction unit introduces the oxidizing gas into the reaction chamber from a direction substantially perpendicular to the sample gas introduction direction, so that the contact probability between the sample gas and the oxidizing gas is increased. As a result, the amount of luminescence is increased, and the detection sensitivity of chemiluminescence can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A luminous reaction measuring device (10) wherein a sample gas (NO) and an oxidizing gas (O3) are subjected to chemical reaction within a reaction chamber (2) and the intensity of the chemiluminescence produced during the chemical reaction is detected by a photodetector (32), characterized by comprising an optically transparent window (3) for admitting the light produced by chemiluminescence into the photodetector (32), a sample gas introducing portion (6) for introducing the sample gas into the reaction chamber in a direction perpendicular to the optically transparent window (3), an oxidizing gas introducing portion (8) for introducing the oxidizing gas into the reaction chamber in a direction substantially orthogonal to the direction of introduction of the sample gas so that the oxidizing gas may collide with the sample gas introduced from the sample gas introducing portion (6), and a gas discharging portion (12) for discharging the gas, produced by chemical reaction between the sample gas and the oxidizing gas, out of the reaction chamber into the outside of the system, the sample gas introducing portion (6) being offset from the center (L) of the reaction chamber in a direction away from the installed position of the gas discharge portion (12).

Description

明細書  Specification
発光反応測定装置 技術分野 Luminescence reaction measuring device
本発明は、 喘息患者の呼気や自動車の排ガス等に含まれる一酸化窒素 (N O) 等の試料ガスと、 オゾンガス (03) 等の酸化性ガスとを反応させた際に生じる 化学発光の強度を測定する発光反応測定装置に関し、 特に、 N O等の試料ガスの 濃度を測定するのに好適な発光反応測定装置に関する。 背景技術 The present invention includes a sample gas nitric oxide (NO) or the like contained in the exhaust gas or the like of asthmatics breath and automobiles, ozone (0 3) the intensity of chemiluminescence generated when the oxidizing gas is reacted such More particularly, the present invention relates to a luminescence reaction measuring device suitable for measuring the concentration of a sample gas such as NO. Background art
近年、 一酸化窒素 (N O ) とオゾン (03 ) とを化学反応させて、 この反応時 に生じた化学発光の強度に基づいて一酸化窒素の濃度を測定する濃度測定装置の 需要が高まっている。 この装置によれば、 喘息患者の呼気中の一酸化窒素の濃度 を測定して治療効果をモニターしたり、 自動車の排ガス中の一酸化窒素の濃度を 測定して環境問題に取り組むことができる。 このような装置を開示した文献とし て、 例えば、 特開平 9一 1 5 2 4 0 5号公報、 特開平 9— 1 4 5 6 2 1号公報、 及び特開昭 6 0 - 1 1 9 4 4 5号公報等が知られている。 Recently, nitric oxide and (NO) and ozone (0 3) by chemical reaction, an increasing demand for the concentration measuring apparatus for measuring the concentration of nitrogen monoxide based on the intensity of the chemiluminescence generated during reaction I have. According to this device, the therapeutic effect can be monitored by measuring the concentration of nitric oxide in the breath of an asthmatic patient, or the concentration of nitric oxide in the exhaust gas of automobiles can be measured to address environmental issues. References disclosing such a device include, for example, Japanese Patent Application Laid-Open Nos. Hei 9-115,055, Hei 9-145,621, and Hei 6-114 No. 45 is known.
上記各公報記載の化学発光式窒素酸化物計 (発光反応測定装置) によれば、 反 応室内に N 0と 0 3とを導入して両者を反応させることで化学発光させ、 この化 学発光による光量を半導体光電変換素子によって電気信号に変化することで N 0 の濃度を測定することができる。 発明の開示 According to a chemiluminescent nitrogen oxide meter above publication (luminescent reaction measurement device), then chemiluminescence by reacting both by introducing a N 0 0 3 in the anti応室, the chemiluminescent Is converted into an electric signal by the semiconductor photoelectric conversion element, whereby the concentration of N 0 can be measured. Disclosure of the invention
しかしながら、 上記各公報記載の発光反応測定装置には、 次のような問題があ つた。 すなわち、 上記各公報記載の装置では、 N Oを反応室内に導入するための キヤビラリが半導体光電変換素子の上方に配された光透過用窓に対して斜めにさ れているため、 N Oは光透過用窓に向かって斜めに入射することになる。 このよ うに N Oが光透過用窓に対して斜めに入射すると、 N Oがガラス窓上に滞留しに くくなる。 このため、 N Oと 0 3との反応による化学発光による光を上記受光面 に入射させにくくなり、 N O濃度の測定精度が高いとはいえなかった。 However, the luminescence reaction measuring devices described in the above publications have the following problems. That is, in the apparatuses described in the above publications, the capillaries for introducing NO into the reaction chamber are inclined with respect to the light transmission window disposed above the semiconductor photoelectric conversion element. Therefore, NO enters obliquely toward the light transmission window. When NO is obliquely incident on the light transmission window in this way, it is difficult for NO to stay on the glass window. Therefore, hardly made incident light by chemiluminescence by the reaction of NO and 0 3 to the light receiving surface, the measurement accuracy of the NO concentration can not be said to be high.
本発明は、 上記問題を解決するためになされたものであり、 化学発光の測定精 度の高い発光反応測定装置を提供することを目的とする。  The present invention has been made to solve the above-described problem, and has as its object to provide a luminescence reaction measuring device with high measurement accuracy of chemiluminescence.
本発明は、 試料ガスと酸化性ガスとを反応室内で化学反応させ、 当該反応時に 生じる化学発光の強度を光検出器によって検出する発光反応測定装置において、 化学発光による光を光検出器に入射させるための光透過窓と、 この光透過窓に対 して垂直な方向から試料ガスを反応室内に導入する試料ガス導入部と、 試料ガス 導入部から導入された試料ガスに衝突するように、 試料ガスの導入方向と略直交 する方向から酸化性ガスを反応室内に導入する酸化性ガス導入部と、 試料ガスと 酸化性ガスとの化学反応により生じたガス反応室から系外に排出させるためのガ ス排気部と、 を備え、 試料ガス導入部は、 ガス排気部の配設位置から遠ざかる方 向に反応室の中心から偏心していることを特徴とする。  The present invention relates to a luminescence reaction measuring apparatus in which a sample gas and an oxidizing gas are chemically reacted in a reaction chamber and the intensity of chemiluminescence generated during the reaction is detected by a photodetector. A light transmitting window for causing the sample gas to be introduced into the reaction chamber from a direction perpendicular to the light transmitting window, and a sample gas introduced from the sample gas introducing portion. An oxidizing gas introduction unit that introduces an oxidizing gas into the reaction chamber from a direction substantially perpendicular to the sample gas introduction direction, and a gas reaction chamber generated by a chemical reaction between the sample gas and the oxidizing gas to discharge the system outside. And a gas exhaust portion, wherein the sample gas introduction portion is eccentric from the center of the reaction chamber in a direction away from the gas exhaust portion.
本発明に係る発光反応測定装置によれば、 試料ガス導入部によって一酸化窒素 等の試料ガスが光透過窓に対して垂直に入射するため、 光透過窓の近傍に試料ガ スが滞留しやすくなる。 このため、 反応室内に導入された試料ガスのうちの多く が酸化性ガス導入部から導入されたオゾン等の酸化性ガスと光透過窓の近傍で反 応して化学発光が生じ、 光検出器によって多量の光が検出される。 また、 試料ガ ス導入部がガス排気部から遠ざかる方向に反応室の中心から偏心しているため、 試料ガスを反応室内に長い間滞留させることができ、 これにより、 より多くの光 を光検出器に入射させることができる。 さらに、 酸化性ガス導入部によって、 試 料ガスの導入方向と略直交する方向から酸化性ガスが反応室内に導入されるため、 酸化性ガスと試料ガスとの接触確率が高まりより多くの光を生ぜしめることが可 能となる。 図面の簡単な説明 According to the luminescence reaction measurement device of the present invention, the sample gas such as nitric oxide is perpendicularly incident on the light transmission window by the sample gas introduction unit, so that the sample gas easily stays near the light transmission window. Become. For this reason, most of the sample gas introduced into the reaction chamber reacts with an oxidizing gas such as ozone introduced from the oxidizing gas introduction section in the vicinity of the light transmission window to generate chemiluminescence. A large amount of light is detected. In addition, since the sample gas inlet is eccentric from the center of the reaction chamber in a direction away from the gas exhaust unit, the sample gas can stay in the reaction chamber for a long time, and as a result, more light can be detected by the photodetector. Can be incident. Furthermore, since the oxidizing gas introduction unit introduces the oxidizing gas into the reaction chamber from a direction substantially perpendicular to the sample gas introduction direction, the probability of contact between the oxidizing gas and the sample gas increases, and more light is emitted. It is possible to produce them. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る発光反応測定装置の第 1実施形態を示す斜視図である。 図 2は、 図 1に示す発光反応測定装置の横断面図である。  FIG. 1 is a perspective view showing a first embodiment of the luminescence reaction measuring device according to the present invention. FIG. 2 is a cross-sectional view of the luminescence reaction measuring device shown in FIG.
図 3は、 図 1に示す発光反応測定装置の正面図である。  FIG. 3 is a front view of the luminescence reaction measuring device shown in FIG.
図 4は、 第 1実施形態の発光反応測定装置と比較用装置について、 圧力と出力 電流との関係を示すグラフである。 '  FIG. 4 is a graph showing the relationship between pressure and output current for the luminescence reaction measurement device and the comparison device of the first embodiment. '
図 5は、 本発明に係る発光反応測定装置の第 2実施形態を示す斜視図である。 発明を実施するための最良の形態  FIG. 5 is a perspective view showing a second embodiment of the luminescence reaction measuring device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る発光反応測定装置の好適な実施形態 について詳細に説明する。 尚、 同一要素には同一符号を用いるものとし、 重複す る説明は省略する。  Hereinafter, preferred embodiments of a luminescence reaction measuring device according to the present invention will be described in detail with reference to the accompanying drawings. The same elements will be denoted by the same reference symbols, without redundant description.
[第 1実施形態]  [First Embodiment]
図 1は、 本実施形態の発光反応測定装置 1 0を示す概略斜視図であり、 図 2は FIG. 1 is a schematic perspective view showing a luminescence reaction measuring device 10 of the present embodiment, and FIG.
、 図 1に示す発光反応測定装置 1 0の横断面図であり、 図 3は、 発光反応測定装 置 1 0を示す正面図である。 本実施形態の発光反応測定装置 1 0は、 試料ガスと しての一酸化窒素 (N O ) の濃度を測定するために、 この N Oと酸化性ガスとし てのオゾン (0 3) とを反応させて化学発光を生じさせ、 当該発光の強度を測定 するものである。 FIG. 3 is a cross-sectional view of the luminescence reaction measurement device 10 shown in FIG. 1, and FIG. 3 is a front view showing the luminescence reaction measurement device 10. Luminescent reaction measuring apparatus 1 0 of the present embodiment, in order to measure the concentration of nitric oxide (NO) of the sample gas is reacted with ozone (0 3) and this NO and oxidizing gas This causes chemiluminescence to occur, and the intensity of the luminescence is measured.
発光反応測定装置 1 0は、 主として、 N Oとオゾンとを反応させて化学発光を 生じさせる反応モジュール 2 0と、 この反応モジュール 2 0で生じた発光の強度 を測定するための光測定モジュール 3 0と、 を備えている。  The luminescence reaction measuring device 10 mainly includes a reaction module 20 for reacting NO with ozone to generate chemiluminescence, and a light measurement module 30 for measuring the intensity of luminescence generated in the reaction module 20. And
反応モジュール 2 0には、 上記化学発光を生じさせるための円柱形状の反応室 2が形成された反応チャンバ 4 (図 2 , 図 3参照) と、 反応室 2内に N Oを導入 するための一酸化窒素導入管 (試料ガス導入部) 6と、 反応室 2内にオゾンを導 入するためのオゾン導入管 (酸化性ガス導入部) 8と、 反応室 2内の反応後のガ スを系外に排出するためのガス排気管 (ガス排気部) 1 2と、 反応室 2内の圧力 を検知するための圧力センサ 1 6と、 が設けられている。 反応モジュール 2 0は 、 光測定モジュール 3 0のケース側面に取り付けられたプレート 1 1にボルト止 めすることで、 光測定モジュール 3 0に対して固定されている。 また、 光測定モ ジュール 3 0は、 支持台 1 4によって支持されている。 The reaction module 20 includes a reaction chamber 4 (see FIGS. 2 and 3) in which a cylindrical reaction chamber 2 for generating the chemiluminescence is formed, and a reaction chamber 4 for introducing NO into the reaction chamber 2. Nitrogen oxide inlet tube (sample gas inlet) 6 and ozone introduced into reaction chamber 2 Ozone introduction pipe (oxidizing gas introduction section) 8 for injecting gas, gas exhaust pipe (gas exhaust section) for exhausting the reacted gas in the reaction chamber 2 out of the system, and reaction chamber 2 And a pressure sensor 16 for detecting the internal pressure. The reaction module 20 is fixed to the light measurement module 30 by being bolted to a plate 11 attached to the side of the case of the light measurement module 30. The optical measurement module 30 is supported by a support 14.
図 2に示すように、 反応室 2は、 ガラス製の光透過窓 3とこれに対向配置され た反射鏡 5とによって囲まれており、 光透過窓 3及び反射鏡 5は共に円形の平板 とされている。 光透過窓 3は、 反応室 2内で生じた化学発光による光を光測定モ ジュール 3 0に入射させると共に化学発光のスぺクトルに適合した長波長透過フ ィル夕一として機能するものであり、 反射鏡 5は、 当該発光による光のうち光測 定モジュール 3 0とは反対の方向に放射された光を光測定モジュール 3 0側へ反 射させるためのものである。 また、 反応チャンバ 4には、 反応室 2を塞ぐように 円形の蓋 7がボルト止めされている。 尚、 図 3は、 この蓋 7を取り外した状態を 示している。  As shown in FIG. 2, the reaction chamber 2 is surrounded by a light transmitting window 3 made of glass and a reflecting mirror 5 arranged opposite thereto, and both the light transmitting window 3 and the reflecting mirror 5 are circular flat plates. Have been. The light transmission window 3 allows the light due to the chemiluminescence generated in the reaction chamber 2 to be incident on the light measurement module 30 and also functions as a long-wavelength transmission file adapted to the spectrum of the chemiluminescence. In addition, the reflecting mirror 5 is for reflecting the light emitted in the opposite direction to the light measurement module 30 out of the light by the light emission to the light measurement module 30 side. Further, a circular lid 7 is bolted to the reaction chamber 4 so as to cover the reaction chamber 2. FIG. 3 shows a state where the lid 7 is removed.
一酸化窒素導入管 6は、 図 2に示すように、 その長手方向が光透過窓 3の法線 方向に沿うように蓋 7及び反射鏡 5に挿通されている。 また、 一酸化窒素導入管 6の先端の導入口 6 aは、 反応室 2内に位置すると共に、 光透過窓 3と対向して いる。 さらに、 図 3に示すように、 一酸化窒素導入管 6は、 円柱状の反応室 2の 中心軸 Lから偏心している。 ここで、 中心軸 Lとは、 反応室 2の光透過窓 3に対 して平行な断面を想定し、 この断面の重心を通過する軸線を意味する。  As shown in FIG. 2, the nitric oxide introducing pipe 6 is inserted through the lid 7 and the reflecting mirror 5 so that the longitudinal direction thereof is along the normal direction of the light transmitting window 3. The inlet 6 a at the tip of the nitric oxide inlet pipe 6 is located in the reaction chamber 2 and faces the light transmission window 3. Further, as shown in FIG. 3, the nitric oxide introduction pipe 6 is eccentric from the central axis L of the columnar reaction chamber 2. Here, the central axis L means a cross section parallel to the light transmission window 3 of the reaction chamber 2 and an axis passing through the center of gravity of this cross section.
オゾン導入管 8は、 一酸化窒素導入管 6と直交し且つ発光反応測定装置 1 0の 設置面に対して水平となるように反応チャンバ 4に装着されている。 尚、 オゾン 導入管 8の先端の導入口 8 aは、 円柱状の反応室 2の側面で且つ中心軸 よりも 上方に位置している。  The ozone introduction tube 8 is mounted on the reaction chamber 4 so as to be orthogonal to the nitric oxide introduction tube 6 and horizontal to the installation surface of the luminescence reaction measurement device 10. The inlet 8a at the end of the ozone inlet tube 8 is located on the side of the columnar reaction chamber 2 and above the central axis.
ガス排気管 1 2は、 その先端の導出口 1 2 aが円柱状の反応室 2の側面で且つ 中心軸 Lよりも下方に位置するように、 反応チャンバ 4に装着されている。 また 、 ガス排気管 1 2は、 その導出口 1 2 aが中心軸 Lに対してオゾン導入管 8の導 入口 8 aと点対称になるように配されている。 さらに、 ガス排気管 1 2には、 N 0及びオゾンの排気速度を調節するためのバルブ 1 3が備えられている。 The gas exhaust pipe 12 has an outlet 12 a at the tip thereof at the side of the cylindrical reaction chamber 2 and The reaction chamber 4 is mounted below the center axis L. In addition, the gas exhaust pipe 12 is arranged such that its outlet 12 a is point-symmetric with the inlet 8 a of the ozone inlet pipe 8 with respect to the central axis L. Further, the gas exhaust pipe 12 is provided with a valve 13 for adjusting the exhaust speed of NO and ozone.
また、 図 3に示すように、 一酸化窒素導入管 6は、 ガス排気管 1 2の配設位置 から遠ざかる方向に反応室 2の中心軸 Lから偏心している。 より詳しくは、 一酸 化窒素導入管 6は、 ガス排気管 1 2の導出口 1 2 aの設置箇所から遠ざかり、 ォ ゾン導入管 8の導入口 8 aに近づく方向に中心軸 Lから偏心している。 すなわち 、 一酸化窒素導入管 6の導入口 6 aとガス排気管 1 2の導出口 1 2 aとの間の距 離は、 中心軸 Lとガス排気管 1 2の導出口 1 2 aとの間の距離よりも長くなつて いる。 また、 オゾン導入管 8の導入口 8 aは、 一酸化窒素導入管 6の導入口 6 a よりも上方に位置しているが、 反応室 2に導入されたォゾンがー酸化窒素導入管 6から導入された N Oと衝突し得る程度の高さ位置にされている。  Further, as shown in FIG. 3, the nitric oxide introduction pipe 6 is eccentric from the center axis L of the reaction chamber 2 in a direction away from the position where the gas exhaust pipe 12 is provided. More specifically, the nitrogen monoxide introducing pipe 6 moves away from the installation location of the outlet 12 a of the gas exhaust pipe 12, and is eccentric from the center axis L in a direction approaching the inlet 8 a of the ozone introducing pipe 8. I have. That is, the distance between the inlet 6a of the nitric oxide inlet pipe 6 and the outlet 12a of the gas exhaust pipe 12 is determined by the distance between the central axis L and the outlet 12a of the gas exhaust pipe 12. It is longer than the distance between them. The inlet 8a of the ozone inlet tube 8 is located above the inlet 6a of the nitric oxide inlet tube 6, but the ozone introduced into the reaction chamber 2 is It is positioned high enough to collide with the introduced NO.
光測定モジュール 3 0には、 図 2に示すように、 反応室 2で生じた化学発光に よる光の強度を測定するためのサイドオン型の P M T (光電子増倍管) 3 2が備 えられている。 P M T 3 2よりも反応チャンバ 4側には、 光透過窓 3を透過した 光を PM T 3 2に向けて集光するレンズ 3 4が設けられている。 P M T 3 2は、 レンズ 3 4を通過した光を増倍し、 光電面 3 2 aにおいてその光量を電気信号に 変換し、 化学発光の強度を検出する。 また、 図示は省略するが、 本実施形態の発 光反応測定装置 1 0には、 反応室 2における化学発光の強度に基づいて、 その発 光に寄与した一酸化窒素の濃度を求めるための演算装置が接続されている。 尚、 図 1及び図 3に示すように、 P M T 3 2の上方には、 P M T 3 2を冷却するため のペルチェ冷却器 3 6及び空冷ファン 3 8が備えられている。  As shown in Fig. 2, the light measurement module 30 is equipped with a side-on type PMT (photomultiplier tube) 32 for measuring the intensity of light due to chemiluminescence generated in the reaction chamber 2. ing. A lens 34 for condensing light transmitted through the light transmission window 3 toward the PMT 32 is provided closer to the reaction chamber 4 than the PMT 32. The PMT 32 multiplies the light passing through the lens 34, converts the amount of light into an electric signal at the photocathode 32a, and detects the intensity of chemiluminescence. Although not shown, the luminescence reaction measuring apparatus 10 of the present embodiment has a calculation for obtaining the concentration of nitric oxide contributing to the luminescence based on the intensity of the chemiluminescence in the reaction chamber 2. The device is connected. As shown in FIGS. 1 and 3, a Peltier cooler 36 and an air cooling fan 38 for cooling the PMT 32 are provided above the PMT 32.
以上が、 本実施形態の発光反応測定装置 1 0の構成である。 次に、 発光反応測 定装置 1 0の動作を説明する。 ここでは、 発光反応測定装置 1 0を喘息患者の呼 気中の一酸化窒素の濃度を測定する装置に適用した場合の作用について説明する まず、 オゾン導入管 8を通してオゾンガスを反応室 2に導入し、 一方で、 一酸 化窒素導入管 6を通して患者の呼気を反応室 2に導入する。 この患者の呼気には 、 NOが含まれている。 そして、 オゾンと NOとが反応室 2内で下の式で示され る化学反応を起こし、 化学発光が生じる。 尚、 N02*は、 励起状態にある N02 を意味する。 The above is the configuration of the luminescence reaction measuring device 10 of the present embodiment. Next, the operation of the luminescence reaction measuring device 10 will be described. Here, the operation when the luminescence reaction measuring device 10 is applied to a device for measuring the concentration of nitric oxide in the breath of an asthmatic patient will be described. First, ozone gas is introduced into the reaction chamber 2 through the ozone introduction pipe 8, while exhalation of a patient is introduced into the reaction chamber 2 through the nitrogen monoxide introduction pipe 6. The exhalation of this patient contains NO. Then, the ozone and NO cause a chemical reaction represented by the following formula in the reaction chamber 2 to generate chemiluminescence. Incidentally, N0 2 * refers to N0 2 in an excited state.
NO + 03→N02*+02 NO + 0 3 → N0 2 * + 0 2
N02*→N02 + hレ N0 2 * → N0 2 + h
この化学発光による光は、 光透過窓 3及びレンズ 34を通過して PMT 32に 入射する。 また、 反射鏡 5によって反射された光も、 PMT32に入射する。 そ して、 PMT 32において化学発光の強度 (光量) が検出され、 さらに、 上述の 演算装置 (図示省略) によって、 化学発光の強度に基づいて NOの濃度が測定さ れる。 尚、 化学発光による光の強度は、 反応室 2内のオゾン量が十分な場合は N 0濃度と比例関係にあり、 光量を測定することにより NO濃度を求めることがで ぎる。  The light by the chemiluminescence passes through the light transmission window 3 and the lens 34 and enters the PMT 32. The light reflected by the reflecting mirror 5 also enters the PMT 32. Then, the intensity (light quantity) of the chemiluminescence is detected in the PMT 32, and the concentration of NO is measured based on the intensity of the chemiluminescence by the above-mentioned arithmetic unit (not shown). The light intensity due to the chemiluminescence is proportional to the NO concentration when the amount of ozone in the reaction chamber 2 is sufficient, and the NO concentration can be obtained by measuring the amount of light.
上記化学反応により生じたガスは、 図示を省略するポンプを作動させることで ガス排気管 12より系外に排気される。 この際、 バルブ 13を操作して排気速度 を調節し、 N02*が発光する前に反応室 2から吸引除去されないようにする。 ここで、 本実施形態の発光反応測定装置 10によれば、 一酸化窒素導入管 6の 長手方向が光透過窓 3の法線方向に沿い、 導入口 6 aが光透過窓 3と対向してい るため、 一酸化窒素導入管 6を通過した呼気 (NO) は光透過窓 3に対して垂直 に流入することになる。 このため、 光透過窓 3の近傍に NOが滞留しやすくなり 、 反応室 2に導入された N 0のうちの多くがォゾンと光透過窓 3の近傍で反応し て化学発光が生じる。 これにより、 多量の光を PMT 32で検出することができ 、 化学発光の測定精度が向上すると共に、 NO濃度の測定精度が高められる。 また、 一酸化窒素導入管 6がガス排気管 12から遠ざかる方向に反応室 2の中 心軸 Lから偏心しているため、 N 0の導入位置と排気位置との距離が長くされて いることになり、 NOを反応室 2内に長い間滞留させることができる。 このため 、 多量の NOをオゾンと反応させることができ、 より多くの光を PMT32によ つて検出することができる。 さらに、 オゾン導入管 8によって、 NOの導入方向 と直交する方向からオゾンが反応室 2内に導入されるため、 NOとオゾンとの接 触効率が高まり、 発光量が増大する。 尚、 オゾン導入管 8と一酸化窒素導入管 6 との間の角度は、 必ずしも 90度である必要はなく、 80度〜 100度の範囲に あれば、 このような効果を得ることができる。 The gas generated by the chemical reaction is exhausted from the gas exhaust pipe 12 by operating a pump (not shown). At this time, by operating the valve 13 to adjust the pumping speed, N0 2 * from being aspirated from the reaction chamber 2 before emitting. Here, according to the luminescence reaction measuring device 10 of the present embodiment, the longitudinal direction of the nitric oxide introduction tube 6 is along the normal direction of the light transmission window 3, and the introduction port 6a faces the light transmission window 3. Therefore, the exhaled air (NO) that has passed through the nitric oxide introducing pipe 6 flows perpendicularly to the light transmitting window 3. For this reason, NO easily stays near the light transmission window 3, and most of N 0 introduced into the reaction chamber 2 reacts with ozone near the light transmission window 3 to generate chemiluminescence. Thereby, a large amount of light can be detected by the PMT 32, and the measurement accuracy of the chemiluminescence is improved, and the measurement accuracy of the NO concentration is also improved. In addition, the nitric oxide introducing pipe 6 Since it is eccentric from the center axis L, the distance between the introduction position of N 0 and the exhaust position is increased, so that NO can stay in the reaction chamber 2 for a long time. Therefore, a large amount of NO can react with ozone, and more light can be detected by the PMT32. Further, ozone is introduced into the reaction chamber 2 from the direction orthogonal to the NO introduction direction by the ozone introduction pipe 8, so that the contact efficiency between NO and ozone is increased, and the light emission amount is increased. Note that the angle between the ozone introduction pipe 8 and the nitric oxide introduction pipe 6 does not necessarily need to be 90 degrees, and such an effect can be obtained if it is in the range of 80 to 100 degrees.
さらに、 ガス排気管 12の導出口 12 aとオゾン導入管 8の導入口 8 aとは、 反応室 2の中心軸 Lに対して点対称になっているため、 反応室 2内にオゾンが滞 留する時間も長くなる。 このため、 反応室 2内に導入された NOと反応するのに 充分な量のォゾンを反応室 2内に滞留させることができる。  Furthermore, since the outlet 12a of the gas exhaust pipe 12 and the inlet 8a of the ozone inlet pipe 8 are point-symmetric with respect to the center axis L of the reaction chamber 2, ozone is accumulated in the reaction chamber 2. The time to stay is also longer. For this reason, a sufficient amount of ozone to react with NO introduced into the reaction chamber 2 can be retained in the reaction chamber 2.
次に、 図 4を参照して、 本実施形態の発光反応測定装置 10を用いた実験結果 を説明する。 比較のための装置として、 一酸化窒素導入管を光透過窓 3の法線方 向でなく鉛直方向 (発光反応測定装置の高さ方向) に沿うように装着した発光反 応測定装置を用いた。 図 4は、 反応室 2内の圧力と PMT 32の出力電流との関 係を示すグラフである。 各装置には、 同量の一酸化窒素及びオゾンを導入した。 また、 反応室 2の圧力を 1. 26 x 104、 2. 13 X 10\ 3. 46 x 104 、 4. 798 X 104P aにした場合について、 P M T 32の出力すなわち化学 発光の強度を測定した。 Next, with reference to FIG. 4, experimental results using the luminescence reaction measuring device 10 of the present embodiment will be described. As a device for comparison, a luminescence reaction measuring device was used in which the nitric oxide introduction tube was installed not along the normal of the light transmission window 3 but along the vertical direction (the height direction of the luminescence reaction measuring device). . FIG. 4 is a graph showing the relationship between the pressure in the reaction chamber 2 and the output current of the PMT 32. The same amounts of nitric oxide and ozone were introduced into each device. Further, the reaction chamber pressure of 2 1. 26 x 10 4, 2. 13 X 10 \ 3. 46 x 10 4, 4. For the case where the 798 X 10 4 P a, the intensity of the output or chemiluminescence of PMT 32 Was measured.
図 4のグラフにおいて、 比較例の出力結果を三角印で示し、 本実施形態の発光 反応測定装置 10の出力結果を丸印で示す。 同グラフから分かるように、 NOを 光透過窓 3に対して垂直に入射する本実施形態に係る装置の PMT32からの出 力電流は、 比較例の出力電流よりも約 30%程高い値を示している。 これにより 、 本実施形態の発光反応測定装置 10を用いた場合の方が、 発光の検出精度が高 く、 一酸化窒素の濃度を正確に測定できることが分かる。 [第 2実施形態] In the graph of FIG. 4, the output result of the comparative example is indicated by a triangle, and the output result of the luminescence reaction measuring apparatus 10 of the present embodiment is indicated by a circle. As can be seen from the graph, the output current from the PMT 32 of the device according to the present embodiment in which NO is perpendicularly incident on the light transmission window 3 is about 30% higher than the output current of the comparative example. ing. This indicates that the use of the luminescence reaction measurement device 10 of the present embodiment has higher luminescence detection accuracy and allows accurate measurement of the concentration of nitric oxide. [Second embodiment]
次に、 図 5を参照して、 本発明に係る発光反応測定装置 1 0の第 2実施形態を 説明する。 本実施形態では、 一酸化窒素導入管 6は、 反応室 2の中心軸 Lの鉛直 上方に偏心している。 また、 第 1実施形態と同様に、 一酸化窒素導入管 6を通過 した N Oは、 光透過窓 3に対して垂直な方向から反応室 2に流入する。 また、 ォ ゾン導入管 8は反応室 2の上方に配されており、 オゾン導入管 8を通過するォゾ ンは鉛直下方に流れ、 N Oの導入方向と直交する方向から反応室 2に流入する。 さらに、 本実施形態では、 反応チャンバ 4の両側面にガス排気管 1 2が設けられ ており、 各ガス排気管 1 2の高さ位置は、 反応室 2の中心軸 Lよりも低くされて いる。  Next, a second embodiment of the luminescence reaction measuring device 10 according to the present invention will be described with reference to FIG. In the present embodiment, the nitric oxide introduction pipe 6 is eccentric vertically above the center axis L of the reaction chamber 2. Further, similarly to the first embodiment, N 2 O passing through the nitric oxide introducing pipe 6 flows into the reaction chamber 2 from a direction perpendicular to the light transmission window 3. Further, the ozone introduction pipe 8 is disposed above the reaction chamber 2, and the ozone passing through the ozone introduction pipe 8 flows vertically downward and flows into the reaction chamber 2 from a direction orthogonal to the NO introduction direction. . Further, in the present embodiment, gas exhaust pipes 12 are provided on both side surfaces of the reaction chamber 4, and the height position of each gas exhaust pipe 12 is lower than the central axis L of the reaction chamber 2. .
以上のような構成を有する本実施形態の発光反応測定装置 1 0においても、 一 酸化窒素導入管 6を反応室 2の中心軸 Lから鉛直上方に偏心させることで、 一酸 化窒素導入管 6の導入口 6 aとガス排気管 1 2の導出口 1 2 aとの距離は、 中心 軸 Lとガス排気管 1 2の導出口 1 2 aとの距離よりも長くされているため、 N O を反応室 2内に長時間滞留させることができ、 発光の測定精度を高めることがで きる。 また、 オゾン導入管 8を反応室 2の近傍において鉛直にしても、 N Oの流 入方向に対して直交するようにオゾンが反応室 2内に流入するため、 N Oとォゾ ンとの接触確率が高まり、 発光量が増大する。  Also in the luminescence reaction measuring apparatus 10 of the present embodiment having the above-described configuration, the nitric oxide introduction pipe 6 is decentered vertically upward from the central axis L of the reaction chamber 2 so that the nitrogen oxide introduction pipe 6 The distance between the inlet 6a of the gas exhaust pipe 12 and the outlet 12a of the gas exhaust pipe 12 is longer than the distance between the central axis L and the outlet 12a of the gas exhaust pipe 12. It can be kept in the reaction chamber 2 for a long time, and the luminescence measurement accuracy can be improved. Further, even if the ozone introduction pipe 8 is set to be vertical in the vicinity of the reaction chamber 2, the ozone flows into the reaction chamber 2 so as to be orthogonal to the NO inflow direction. And the amount of light emission increases.
以上、 本発明者らによってなされた発明を実施形態に基づき具体的に説明した が、 本発明は上記各実施形態に限定されるものではない。 例えば、 化学発光の強 度を検出するための光検出器は、 光電子増倍管に限られず、 シリコンフォトダイ ォ一ド等でもよい。  As described above, the invention made by the present inventors has been specifically described based on the embodiments. However, the present invention is not limited to the above embodiments. For example, the photodetector for detecting the intensity of chemiluminescence is not limited to a photomultiplier, but may be a silicon photodiode or the like.
また、 発光反応測定装置で測定する発光反応は、 一酸化窒素とオゾンとの反応 に限られない。 例えば、 一酸化窒素に代わる試料ガスとして、 オゾンと反応して 発光を生じるエチレン、 イソプレン、 アンモニア、 ホルムアルデヒド (ホルマリ ン) 等を使用することができる。 また、 酸化性ガスとして、 オゾンの他に、 フッ 素、 塩素等を使用することができる。 産業上の利用可能性 The luminescence reaction measured by the luminescence reaction measuring device is not limited to the reaction between nitric oxide and ozone. For example, as a sample gas instead of nitric oxide, ethylene, isoprene, ammonia, formaldehyde (formalin), etc., which emit light by reacting with ozone, can be used. In addition, as oxidizing gas, in addition to ozone, Elemental and chlorine can be used. Industrial applicability
以上説明したように、 本発明に係る発光反応測定装置によれば、 試料ガス導入 部によって一酸化窒素等の試料ガスが光透過窓に対して垂直に入射するため、 光 透過窓の近傍に試料ガスが滞留しやすくなる。 このため、 反応室内に導入された 試料ガスのうちの多くが酸化性ガスから導入されたオゾン等の酸化性ガスと光透 過窓の近傍で反応して化学発光が生じ、光検出器によって多量の光が検出される。 また、 試料ガス導入部がガス排気部から遠ざかる方向に反応室の中心から偏心し ているため、 試料ガスを反応室内に長い間滞留させることができ、 これにより、 より多くの光を光検出器に入射させることができる。 さらに、 酸化性ガス導入部 によって、 試料ガスの導入方向と略直交する方向から酸化性ガスが反応室内に導 入されるため、 試料ガスと酸化性ガスとの接触確率が高まる。 これにより、 発光 量が増大し、 化学発光の検出感度の向上を図ることができる。  As described above, according to the luminescence reaction measuring apparatus according to the present invention, the sample gas such as nitric oxide is perpendicularly incident on the light transmission window by the sample gas introduction unit, so that the sample is placed near the light transmission window. Gas tends to stay. For this reason, most of the sample gas introduced into the reaction chamber reacts with an oxidizing gas such as ozone introduced from the oxidizing gas in the vicinity of the light transmitting window to generate chemiluminescence. Is detected. In addition, since the sample gas inlet is eccentric from the center of the reaction chamber in a direction away from the gas exhaust unit, the sample gas can stay in the reaction chamber for a long time. Can be incident. Furthermore, the oxidizing gas introduction unit introduces the oxidizing gas into the reaction chamber from a direction substantially perpendicular to the sample gas introduction direction, so that the contact probability between the sample gas and the oxidizing gas is increased. As a result, the amount of luminescence is increased, and the detection sensitivity of chemiluminescence can be improved.

Claims

請求の範囲 The scope of the claims
1 . 試料ガスと酸化性ガスとを反応室内で化学反応させ、 当該反応時に生じ る化学発光の強度を光検出器によって検出する発光反応測定装置において、 前記化学発光による光を前記光検出器に入射させるための光透過窓と、 前記光透過窓に対して垂直な方向から前記試料ガスを前記反応室内に導入する 試料ガス導入部と、 1. In a luminescence reaction measuring device in which a sample gas and an oxidizing gas are chemically reacted in a reaction chamber and the intensity of chemiluminescence generated during the reaction is detected by a photodetector, the light due to the chemiluminescence is transmitted to the photodetector. A light transmission window for incidence, a sample gas introduction unit for introducing the sample gas into the reaction chamber from a direction perpendicular to the light transmission window,
前記試料ガス導入部から導入された前記試料ガスに衝突するように、 前記試料 ガスの導入方向と略直交する方向から前記酸化性ガスを前記反応室内に導入する 酸化性ガス導入部と、  An oxidizing gas introduction unit that introduces the oxidizing gas into the reaction chamber from a direction substantially perpendicular to a direction in which the sample gas is introduced, so as to collide with the sample gas introduced from the sample gas introduction unit;
前記試料ガスと前記酸化性ガスとの化学反応により生じたガスを前記反応室か ら系外に排出させるためのガス排気部と、 を備え、  A gas exhaust unit for discharging a gas generated by a chemical reaction between the sample gas and the oxidizing gas from the reaction chamber to the outside of the system,
前記試料ガス導入部は、 前記ガス排気部の配設位置から遠ざかる方向に前記反 応室の中心から偏心していることを特徴とする発光反応測定装置。  The luminescence reaction measuring apparatus, wherein the sample gas introduction unit is eccentric from a center of the reaction chamber in a direction away from a position where the gas exhaust unit is provided.
PCT/JP2001/005881 2000-07-07 2001-07-06 Luminous reaction measuring device WO2002004931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001269465A AU2001269465A1 (en) 2000-07-07 2001-07-06 Luminous reaction measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-207210 2000-07-07
JP2000207210A JP2002022662A (en) 2000-07-07 2000-07-07 Luminous-reaction measuring apparatus

Publications (1)

Publication Number Publication Date
WO2002004931A1 true WO2002004931A1 (en) 2002-01-17

Family

ID=18704010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005881 WO2002004931A1 (en) 2000-07-07 2001-07-06 Luminous reaction measuring device

Country Status (3)

Country Link
JP (1) JP2002022662A (en)
AU (1) AU2001269465A1 (en)
WO (1) WO2002004931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008594B2 (en) 2001-04-12 2006-03-07 Hamamatsu Photonics, K.K. Luminescent reaction measurement device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403147B1 (en) * 2001-06-07 2003-10-30 주식회사 케이티앤지 Method and device for measuring the level of Nitrogen Oxide's in the environmental air or exhausted gas by colorimetry
CN100454005C (en) * 2006-11-03 2009-01-21 山东省科学院海洋仪器仪表研究所 Method for examining deposit or organic matter content in soil by ozone oxidation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746513A (en) * 1971-05-26 1973-07-17 Ford Motor Co Chemiluminescent process
JPS6156944A (en) * 1984-07-25 1986-03-22 Nippon Thermo Erekutoron Kk Method and apparatus for chemiluminescence analysis
JPH0478546U (en) * 1990-11-21 1992-07-08

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746513A (en) * 1971-05-26 1973-07-17 Ford Motor Co Chemiluminescent process
JPS6156944A (en) * 1984-07-25 1986-03-22 Nippon Thermo Erekutoron Kk Method and apparatus for chemiluminescence analysis
JPH0478546U (en) * 1990-11-21 1992-07-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008594B2 (en) 2001-04-12 2006-03-07 Hamamatsu Photonics, K.K. Luminescent reaction measurement device

Also Published As

Publication number Publication date
JP2002022662A (en) 2002-01-23
AU2001269465A1 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
EP3514533B1 (en) Apparatus for monitoring mercury gas in a sample
EP0979401B1 (en) Micromachined opto-flow gas sensor
WO2008041603A1 (en) Formaldehyde detecting material, formaldehyde detector, formaldehyde detecting method and formaldehyde detecting reagent
CA2785467C (en) Stack gas measurement device and method therefor
CN1145115A (en) Improved NDIR gas sensor
WO2003040707A1 (en) Method for measuring concentration of nitrogen dioxide in air by single-wavelength laser induced fluorescence method, and apparatus for measuring concentration of nitrogen dioxide by the method
KR101993438B1 (en) System for detecting explosives
WO2002004931A1 (en) Luminous reaction measuring device
US20140291548A1 (en) Fluorescence gas and liquid sensor
US20100294951A1 (en) Sensitive gas-phase flourimeter at ambient pressure for nitrogen dioxide
JP4611562B2 (en) Luminescent reaction measuring device
KR102074696B1 (en) Potable NOX Measurement System
JP3548999B2 (en) Photochemical ozone generation concentration estimation method by pump-probe method and photochemical ozone generation concentration estimation device using the method
US5633170A (en) Method and apparatus for nitrogen oxide analysis
US20070148696A1 (en) Highly-selective tandem chemical sensor and detection method using same
CN108139322A (en) The optical detection of search gas in gas discharge cells with non-exposed electrode
JP7353314B2 (en) Chemiluminescent NOx concentration measuring device
JPH09145621A (en) Chemiluminescence-type nitrogen-oxide meter
KR20150050659A (en) Chamber for NOx Gas Analyzer
JP2002148192A (en) Chemiluminescence type nitrogen oxide concentration meter
JP2004101379A (en) Method and apparatus for measuring gas that is object to be measured, and diffusion scrubber
KR200230292Y1 (en) The Simultaneous Measuring Sensor of High and Low Concentration Ozone
JPH0989778A (en) Chemiluminescent nitrogen oxide analyzer
CN214374299U (en) NOx concentration detection device
JP3209581U (en) Detector for nitrogen oxide concentration meter and detector set for nitrogen oxide concentration meter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)