Nothing Special   »   [go: up one dir, main page]

WO2002002814A1 - Highly sensitive method of detecting nucleic acid - Google Patents

Highly sensitive method of detecting nucleic acid Download PDF

Info

Publication number
WO2002002814A1
WO2002002814A1 PCT/JP2001/005783 JP0105783W WO0202814A1 WO 2002002814 A1 WO2002002814 A1 WO 2002002814A1 JP 0105783 W JP0105783 W JP 0105783W WO 0202814 A1 WO0202814 A1 WO 0202814A1
Authority
WO
WIPO (PCT)
Prior art keywords
labeled
nucleotide
polynucleotide probe
nucleic acid
labeled polynucleotide
Prior art date
Application number
PCT/JP2001/005783
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Mineno
Edy Meiyanto
Norihiro Ishida
Tatsuo Takeya
Kiyozo Asada
Ikunoshin Kato
Original Assignee
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000204177A external-priority patent/JP2004147501A/en
Priority claimed from JP2001129603A external-priority patent/JP2004147503A/en
Application filed by Takara Bio Inc. filed Critical Takara Bio Inc.
Priority to AU2001271017A priority Critical patent/AU2001271017A1/en
Publication of WO2002002814A1 publication Critical patent/WO2002002814A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method for preparing a labeled probe useful in the field of genetic engineering, and a highly sensitive detection method using the probe.
  • the hybridization method is a commonly used method for identifying the type of mRNA expressed in cells or tissues or for quantifying the molecular weight of each mRNA. Therefore, hybridization technology for identification and quantification of mRNA is of great importance in the fields of biology and medicine.
  • detection is performed by immobilizing total RNA or purified RNA on a porous carrier such as a nylon membrane and labeling with a fluorescent substance or a radioisotope (RI).
  • a porous carrier such as a nylon membrane
  • RI radioisotope
  • RNA gene to be detected
  • RNA purified from the mixture is labeled with a fluorescent substance or a radioisotope and immobilized on a membrane.
  • a method of hybridizing with a probe As a technique belonging to this category, there is an inverted dot plot method.
  • nucleic acids immobilized on a membrane have usually been used. Recently, however, the above-mentioned hybridization technology has been applied to a non-porous hard carrier such as glass.
  • a hybridization technology has been developed which mainly uses a known DNA fragment immobilized. In this technique, many types of DNA fragments can be immobilized at a very high density in a predetermined region on the surface of a carrier. Such a carrier on which DNA fragments are immobilized at high density is It is commonly called a DNA microarray (DNA chip). By using the DNA microarray, it became possible to identify and quantify many types of mRNA in a small amount of sample at once.
  • the above-mentioned DNA microarray it is common to detect a nucleic acid in a sample by labeling it with, for example, a fluorescent substance, and hybridizing it with a DNA fragment immobilized on a carrier. That is, when mRNA in a sample is detected by a DNA microarray, for example, the sample can be labeled by the following method.
  • the labeled DNA or RNA prepared by the above method has a base sequence derived from the mRNA in the sample or a base sequence complementary thereto, and is placed on a microarray on which an appropriate DNA fragment is immobilized. Can be detected.
  • the number of labeled compounds incorporated into the labeled nucleic acid is proportional to the length of the nucleic acid.
  • a long labeled nucleic acid has a disadvantage that the number of labeled nucleotides incorporated per molecule is smaller than that of a long labeled nucleic acid. Therefore, when a labeled nucleic acid having the same number of molecules is hybridized with a carrier, for example, a DNA fragment immobilized on a microarray, the intensity of the labeled signal derived from the labeled compound obtained for each array is the nucleic acid strand to be hybridized. It will be greatly influenced by the length. This is a very important issue in experiments that require quantification.
  • nucleic acid labeling method that is not affected by the chain length of the nucleic acid to be labeled
  • terminal labeling method described in US Pat. No. 6,004,755.
  • this method is a method of synthesizing cDNA using an end-labeled oligo dT primer, and the number of labeled compounds added to the primer is limited. So try to detect If the amount of mRNA derived from the gene is small, the signal intensity may be too low to detect.
  • An object of the present invention is to prepare a labeled nucleic acid that is not affected by the length of a nucleic acid to be detected, and to provide a highly sensitive detection method using the labeled nucleic acid.
  • the present inventors have conducted intensive studies on the detection and quantification of nucleic acids by the hybridization method, and have identified mRNA that hybridizes with the immobilized probe, at the 3 'end of the mRNA.
  • a sequence for detection we have found a method capable of detecting mRNA with excellent quantitative properties and detection sensitivity.
  • the present inventors have found a method capable of detecting a target DNA in the same manner as described above even for DNA to which a polynucleotide has been artificially added, thereby completing the present invention.
  • the first invention of the present invention relates to a labeled polynucleotide probe which hybridizes to a polyadenine nucleotide portion in a target nucleic acid.
  • the polyadenine nucleotide portion to which the labeled polynucleotide probe hybridizes may be a polyriboadenine nucleotide tail of mRNA.
  • the labeled polynucleotide probe a probe having a chain length of 50 nucleotides or more can be suitably used.
  • the probe is preferably a polynucleotide consisting of deoxyperacyl nucleotide and Z or deoxythymine nucleotide, and contains a labeled deoxyperacyl nucleotide and Z or deoxythymine nucleotide.
  • a labeled nucleotide those labeled with a substance selected from the group consisting of radioisotopes, chemical fluorescent substances, fluorescent substances, ligands and receptors can be suitably used.
  • a labeled polynucleotide probe that is labeled can be suitably used, and particularly preferably, dUTP or dTTP having the above label is exemplified.
  • the second invention of the present invention comprises a step of performing a nucleotide extension reaction using a polyriboadenine nucleotide or a polydoxyadenine nucleotide as a ⁇ -form and oligo dT as a primer, wherein the first invention comprises a step of: And a method for preparing a labeled polynucleotide probe.
  • the nucleotide extension reaction may be a reverse transcription reaction using a polyriboadenine nucleotide as a type III.
  • the chain length of the polylipoadenine nucleotide or polydeoxyadenine nucleotide having a type III is preferably 50 nucleotides or more.
  • the nucleotide extension reaction may be a deoxynucleotide polymerization reaction.
  • the chain length of the labeled polynucleotide probe is preferably 50 nucleotides or more, and the nucleotide extension reaction or the deoxynucleotide polymerization reaction is preferably performed using the labeled deoxydilacil nucleotide triphosphate. And / or a reaction carried out using labeled deoxythymine nucleotide triphosphate.
  • the molar ratio of labeled deoxyduracil nucleotide triphosphate and Z or labeled deoxythymine nucleotide triphosphate to unlabeled deoxydilacil nucleotide triphosphate and / or unlabeled deoxythymine nucleotide triphosphate is It is preferably carried out in a probe preparation reaction solution of 1: 1 to 1: 3, and the labeling substance used is a group consisting of a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand and a receptor. More selected substances can be suitably used.
  • fluorescein fluorescein, Cascade Bull—, Oregon Green, BOD IPY, Rhodamine Green, A1eXa Fluor, Texas Red, Cy3 and Cy5.
  • fluorescein Cascade Bull—, Oregon Green, BOD IPY, Rhodamine Green, A1eXa Fluor, Texas Red, Cy3 and Cy5.
  • they are labeled with a substance of choice.
  • the third invention of the present invention includes a step of hybridizing a labeled polynucleotide probe that hybridizes to a polyadenylate nucleotide portion with a carrier on which the target nucleic acid is immobilized together with a sample that may contain the target nucleic acid.
  • the present invention relates to a method for detecting a target nucleic acid, characterized by the following.
  • the polyadenine nucleotide portion may be a polyriboadenine nucleotide tail of mRNA, and any one obtained by artificially adding a polyadenine nucleotide portion afterwards is preferably used. it can.
  • a labeled polynucleotide probe of the first invention of the present invention efficiently and specifically hybridizes.
  • a labeled polynucleotide probe containing a labeled deoxydilacil nucleotide and / or a labeled deoxythymine nucleotide can be suitably used.
  • the labeled nucleotide is preferably labeled with a substance selected from the group consisting of a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand, and a receptor, and is not particularly limited, but includes, for example, fluorescein, cascade pull, Oregon Green, BODIPY, Rhodamine Green, A
  • the fourth invention of the present invention comprises: a) a step of annealing a first sample which may contain a target nucleic acid with a polynucleotide probe labeled with a first label which hybridizes to a polyadenine nucleotide portion; b ) A polynucleotide labeled with a second label different from the first label, which hybridizes a second sample different from the first sample, which may contain the target nucleic acid, to the polyadene nucleotide portion.
  • a fifth invention of the present invention provides a labeled polynucleotide probe characterized in that it hybridizes to a polyadenylate nucleotide portion and a labeled polynucleotide probe characterized in that it hybridizes to a portion other than the polyadenylate nucleotide of an expressed gene. And a step of hybridizing with a sample that may contain an expressed gene by combining the expression gene.
  • examples include, but are not limited to, foresin, cascade blue, Oregon green, BODIPY, rhodamine green, Alea F 1 uor, Texas red, Cy3 and Cy5
  • a labeled polynucleotide probe labeled with a substance selected from the group can be suitably used.
  • FIG. 1 is a diagram showing the specificity in hybridization of the labeled polynucleotide probe of the present invention.
  • FIG. 2 is a diagram showing the detection sensitivity of the labeled polynucleotide probe of the present invention.
  • FIG. 3 is a diagram showing detection of an expressed gene using the labeled polynucleotide probe of the present invention.
  • FIG. 4 is a diagram showing the specificity in the hybridization of the labeled polynucleotide probe of the present invention.
  • FIG. 5 is a diagram showing detection on a DNA chip using the labeled polynucleotide probe of the present invention.
  • FIG. 6 is a diagram showing gene expression analysis on a DNA chip using two types of labeled polynucleotide probes having different labels of the present invention. Detailed description of the invention
  • nucleotide means deoxyribonucleotide or ribonucleotide.
  • nucleotides refers to nucleotides.
  • deoxyliponucleotides refers to nucleotides in which the saccharide moiety is composed of D-2-dexoxylipose.
  • D-2-dexoxylipose For example, has adenine, cytosine, guanine, thymine, and peracil in the base moiety. Things.
  • liponucleotides it refers to a nucleotide in which the sugar moiety is composed of D-ribose, and includes those having adenine, cytosine, guanine, and peracyl in the base moiety.
  • the nucleotide includes a modified deoxyliponucleotide or a modified ribonucleotide, such as a modified ribonucleotide [(Hi-S) ribonucleotide, in which the oxygen atom of the phosphate group at the position is replaced with a sulfur atom, ⁇ -S) ⁇ ] and other derivatives.
  • a polyadenine nucleotide refers to a polymer of lipoadenine nucleotide or deoxyadenine nucleotide.
  • the polymer includes both artificially prepared and naturally occurring polymers.
  • a polytail (polyriboadenine nucleotide tail) of eukaryotic mRNA is exemplified.
  • labeled nucleotide refers to a nucleotide labeled with an identifying substance.
  • the labeling substance includes any of those linked directly to the above-mentioned deoxynucleotide or ribonucleotide or via a linker or the like.
  • labeled polynucleotide refers to a labeled nucleotide polymer, and the polymer is preferably a polymer composed of labeled nucleotides and / or unlabeled nucleotides.
  • the nucleotide extension reaction is not particularly limited as long as it is a reaction for extending the above nucleotide, and a reverse transcription reaction using a polyriboadenine nucleotide as a ⁇ type, a DNA polymerase reaction, or a terminal deoxynucleotide transfer reaction. Any of the deoxynucleotide polymerization reactions described above can be suitably used.
  • a target nucleic acid refers to a nucleic acid sequence to be detected, for example, a nucleic acid sequence of any gene.
  • the nucleic acid sequence may be either DNA or RNA.
  • the labeled polynucleotide probe of the present invention has a polyadenylate nucleotide portion. Any polynucleotide probe can be used as long as it can hybridize, and is not particularly limited. A polymer of deoxyperidine nucleotide (dUTP), a polymer of deoxythymine nucleotide (dTTP), or a mixture of dUTP and dTTP Any of the polymers can be suitably used.
  • the term “polyadenine nucleotide portion” refers to a portion in a target nucleic acid to which the labeled polynucleotide probe of the present invention hybridizes and which comprises a polyadenine nucleotide.
  • the chain length of the labeled polynucleotide probe of the present invention is not particularly limited, but preferably 50 nucleotides or more, more preferably 100 nucleotides or more can be suitably used.
  • the labeled nucleotide probe of the present invention is not particularly limited as long as it contains a substantially constant amount of a labeled compound per probe molecule, and includes, for example, a nucleotide to which a labeled compound is added (labeled nucleotide). There can be.
  • the labeled nucleotide is not particularly limited, but is preferably, for example, labeled deoxyperacyl nucleotide or labeled deoxythymine nutretide, and these may be used as a mixture.
  • any of a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand or a nucleotide labeled with a receptor can be suitably used.
  • radioisotopes such as 32 P and 33 P
  • chemical luminescent substances such as AM PPD, fluorescein, cascade blue, Oregon green, BOD I PY, rhodamine green, and Alexa Fluo
  • a fluorescent substance such as Cy5
  • a ligand such as biotin, avidin, digoxigenin or a nucleotide labeled with a receptor
  • a fluorescent substance particularly preferably dUTP labeled with A1eXaF1uor, Cy3 or Cy5 can be suitably used.
  • a label is prepared by preparing a polymer of the modified nucleotide using a modified nucleotide having a functional group such as an amino group or a thiol group, and then adding the labeling substance using the functional group.
  • Polynucleotides are also included in the labeled polynucleotide probes of the present invention.
  • the labeled polynucleotide probe of the present invention hybridizes to a polyadenine nucleotide portion under stringent conditions.
  • stringent conditions for example, those described in Molecular Cloning, A laboratory manual, 2nd edition (1989), Molecular Cloning, A laboratory manual can be suitably used.
  • the signal intensity obtained in the detection of mRNA using the labeled polynucleotide probe of the present invention depends solely on the number of copies of each mRNA, regardless of the size of mRNA. Also, there is no need to prepare a probe for each mRNA to be detected, and the probe can be used in common for different samples.
  • the probe of the present invention is labeled at a plurality of positions in its nucleotide, and gives a stronger signal than an end-labeled polynucleotide or a cDNA probe. Therefore, provided that the continuous binding of labeled dUTP does not affect the nucleotide extension reaction or does not cause steric hindrance to the extension product, the labeled polynucleotide probe of the present invention may be, for example, labeled dUTP. By adding four, a signal about four times stronger than an end-labeled cDNA probe of the same length obtained by one type of nucleotide labeling can be obtained.
  • the labeled polynucleotide probe of the present invention may be prepared by a nucleotide extension reaction using a polylipoadenine nucleotide or a polydeoxyadenine nucleotide as a ⁇ -type and oligo dT as a primer. Can be.
  • the enzyme to be used is not particularly limited as long as the labeled polynucleotide probe of the present invention can be efficiently prepared, and may be any of room temperature, thermophilic, and hyperthermostable enzymes. Good.
  • a reverse transcription reaction using a polyriboadenine nucleotide as a ⁇ -type can be suitably used.
  • reverse transcriptase derived from avian myeloblastosis virus (AMV RTase), reverse transcriptase derived from Moro-mouse leukemia virus (M-MLV RTase), Rouss-related virus 2 Reverse transcriptase (RAV-2), DNA polymerase derived from Bacillus canoledotenax (Bca: Bacilluscardotenax), DNA polymerase derived from Thermothothermophilus (Tth), and the like.
  • AMV RTase avian myeloblastosis virus
  • M-MLV RTase Moro-mouse leukemia virus
  • RAV-2 Rouss-related virus 2 Reverse transcriptase
  • Bca Bacilluscardotenax
  • the nucleotide extension reaction is carried out by a DNA polymerase. May be a complementary strand synthesis reaction.
  • a DNA polymerase May be a complementary strand synthesis reaction.
  • Bca DNA polymerase DNA polymerase derived from Bacillus stearothermophilus (B st: Bacillusstearothermo philus), Thermus aquaticus (Taq: Ther mu saquaticus) DNA polymerases derived from Pyrococcus furiosus (P fur Pyrococcus furiosus), DNA polymerases derived from Thermococcus kodakaraensis (KOD), and the like.
  • the chain length of the above-mentioned type II polylipoadenine nucleotide is preferably 50 nucleotides And more preferably 100 nucleotides or more.
  • the range of the labeled polynucleotide to be prepared is 50 nucleotides or more, and another embodiment of the nucleotide extension reaction may be a deoxynucleotide polymerization reaction.
  • a commercially available modifying enzyme such as Deoxynucleotidylyl transferase (TdT) can be suitably used, in which case the reaction conditions are set such that the chain length of the probe is 50 nucleotides or more. Is preferred.
  • TdT Deoxynucleotidylyl transferase
  • a labeled polynucleotide is easily prepared by performing the reaction in the presence of labeled deoxydilacil nucleotide triphosphate and / or labeled deoxythymine nucleotide triphosphate. can do.
  • labeled deoxydilacil nucleotide triphosphate and / or labeled deoxythymine nucleotide triphosphate and unlabeled deoxydilacil nucleotide triphosphate and Z or unlabeled deoxythymine nucleotide in the reaction solution The molar ratio of triphosphoric acid is preferably in the range of 1: 1 to 1: 3, particularly preferably 1: 2.
  • the labeled nucleotide triphosphate used in the preparation method of the present invention can be selected from a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand or a nucleotide triphosphate labeled with a receptor.
  • Labeled nucleotide triphosphate that does not inhibit the extension reaction or the labeled nucleoside It may be an analog of tide triphosphate.
  • a method for preparing the labeled polynucleotide probe of the present invention a method of incorporating a labeled nucleotide to which the above-mentioned labeled compound is added at the time of a nucleotide extension reaction is exemplified, but in another embodiment, an unlabeled nucleotide is used.
  • the method may be a method in which the labeled compound is used in a nucleotide extension reaction, and after completion of the reaction, a labeled compound is further introduced enzymatically or indirectly, and finally, the labeled polynucleotide probe of the present invention is prepared. Any of the labeling methods that can be used can be suitably used.
  • Preparation of fluorescently labeled polydeoxydilacil nucleotides by reverse transcription in the presence of polyriboadenine nucleotides and oligodeoxythymine nucleotides indicated as type I and primers Can be done.
  • the labeled polynucleotide probe of the present invention containing labeled deoxydilacil nucleotides and unlabeled deoxythymine nucleotides prepared by the method of the present invention was spotted on a membrane or glass surface (DNA chip). It can be used to detect mRNA that hybridizes with a DNA sequence.
  • the detection can be performed by hybridizing a labeled polynucleotide probe to the polyadenine nucleotide portion of the target nucleic acid.
  • the polyadenine nucleotide portion of the target nucleic acid may be one obtained by artificially adding a polylipadenine nucleotide or polydeoxyadenine nucleotide afterwards, or may be a natural mRNA polylipoadenine nucleotide tail. . That is, there is no particular limitation as long as the labeled polynucleotide probe of the present invention efficiently and specifically hybridizes.
  • the labeled nucleotide is labeled with a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand or a receptor.
  • the label is selected from any of the following nucleotides.
  • the label is fluorescein, cascade blue, Oregon green, BOD IPY, mouth-damine green, Alexa Fluor, Texas red, Cy3 or Cy5.
  • target nuclei in a sample hybridized to nucleic acids immobilized on a carrier Acids can be detected using methods optimal for labeling polynucleotide probes.
  • Another embodiment of the detection method of the present invention includes a method of analyzing an expressed gene.
  • the expression of various types of genes in two different types of samples can be compared by using at least two types of labeled polynucleotide probes having different types of labels.
  • a sample that may contain the target nucleic acid is annealed with a labeled polynucleotide probe that hybridizes to the polyadenine nucleotide portion, and another sample that may contain the target nucleic acid is a polyadenine nucleotide portion.
  • the expression of the target gene can be analyzed by detecting each of the labels hybridized on the carrier after hybridization with the carrier and comparing the presence or absence or the degree of each of the detected labels.
  • the labeled polynucleotide probe is not particularly limited, but for example, a polynucleotide probe labeled with Cy3 and Cy5, respectively, can be suitably used.
  • a labeled polynucleotide probe that hybridizes to a polyadenylate nucleotide portion and a labeled polynucleotide probe that hybridizes to a portion other than the polyadenylate nucleotide of an expressed gene c DNA-labeled polynucleotide probe.
  • a probe that hybridizes to a portion other than the polyadenine nucleotide of the above expressed gene can be prepared by a known method, for example, a cDNA synthesis reaction using mRNA in a sample as a mirror type.
  • the method of the present invention is not particularly limited, for example, it can be used in the expression of a specific gene that is controlled by polyadenylation or deadenylation at the 3 ′ end, and the aforementioned control can be detected. .
  • the labeled polynucleotide probe can be used in common, there is no need to prepare a cDNA probe in accordance with a conventional target nucleic acid, and detection can be performed at low cost and in a short time. It can be carried out.
  • Labeled polynucleotide probes were prepared using the reverse transcription Z labeling reaction.
  • the reaction was performed with the following reaction solution composition. That is, the synthesis template of lO Opmol-Poly (rA)-p (dT) 12 _ 18 (Amersham 'Falmacia' Biotech) of primers was type III, and 0.5 mM dATP, dCTP, dGT P, 40 / M d TTP and 20 ⁇ A 1 exa—dUTP (Molecular Probe), 1 OmM DTT, 25U liponucleotide inhibitor (Gibco BRL), 1.5 U superscript reversal Transcriptase (manufactured by Gibco BRL) was added to adjust the reaction solution volume to 50 IX.
  • the reaction mixture was kept at 30 ° C. for 60 minutes, then heated at 94 ° C. for 3 minutes to inactivate the enzyme, and cooled on an ice bath.
  • the reaction solution was purified using a Microspin S-300HR column (manufactured by Amersham Pharmacia Biotech). Next, the purified product is treated with 0.3N NaOH at 37 ° C for 20 minutes to decompose type I poly (rA), and then treated with hydrochloric acid and 1 M Tris-monohydrochloride buffer (pH 7.0). Neutralized. This solution was used as a fluorescence-labeled poly dU probe solution.
  • RNA Fluorescence Labeling Core Kit Takara Shuzo
  • Human GAP DH (glycera ⁇ dehyde 3-phosphate dehydrogenase), PCNA (proliferating cell nuclear antigen) p53, Rb (retinoblastoma) ⁇ R as oncogene, pl 30, pl 4, pl 6, pl 8, pl 9
  • the primers described in SEQ ID NOs: 1 to 40 in the sequence listing and TaKaRaRNA PCR Kit (AMV) Ver. 2.1 (manufactured by Takara Shuzo Co.) was used to perform RT-PCR.
  • the genes for p53, RB, pi30, pi6, pl9, p27, pl8, and pi4 were subjected to nested PCR after the reverse transcription reaction.
  • type I the RNA obtained in Example 1 (2) was used.
  • the obtained amplified fragment was purified and then subcloned into a pT7B1ueT cloning vector (Novagen), and DNA sequence analysis was confirmed. After confirming the insertion base sequence, the above-mentioned insertion fragment was immobilized on Hybond N + (Amersham Pharmacia Biotechne; fc ⁇ ) using Bio-Dot (manufactured by Bio-Rad).
  • the DNA microarray used was a commercially available Te starray (Takara Shuzo).
  • Membrane filters one for holding the target gene hybrida I See Chillon buffer membrane 1 cm 2 per lm l (5XSSC, 0. 5% BS A, 0. lmg / m 1 salmon sperm DNA, 0. 1% (SDS) using 3 Prehybridization was performed at 7 ° C for 1 hour.
  • the membrane filters are gently shaken in Washing Buffer I (1 XSSC, 0.1% SDS) for 15 minutes at room temperature, and then washed for 10 minutes in Washing Buffer II (0.1 XSSC, 0% (1% SDS) and shaken. After washing, the membrane filter was detected with a fluorescence image analyzer FMB IOII (Takara Shuzo).
  • FMB IOII fluorescence image analyzer
  • hybridization of the DNA microarray was performed as instructed in the attached instruction manual. That is, prehybridization was performed using 14 ⁇ l of prehybridization solution (6 XSSC, 0.1% SDS, 5 X Denhardt's solution, 0.1 ⁇ g / ⁇ 1 salmon sperm DNA). One hour at 65 ° C.
  • poly-dU probe For hybridization with the poly-dU probe, 1 ⁇ 1 of poly-dU was added to 600 ng of the mRNA obtained in Example 1 (2) above, and the volume was adjusted to 14 ⁇ l. The solution was heated at 70 ° C for 10 minutes. In addition, a cDNA probe was prepared using the same amount of mRNA. The above reaction solution was added to the microarray, and the array was then incubated at 65 ° C for 18 to 20 hours, and further incubated at 30 ° C for 3 hours.
  • the microarray was washed with a 2XSSC solution at 60 ° C for 15 minutes, and further with a washing solution (2XSSC, 0.1% SDS) at 60 ° C for 15 minutes, and finally washed at room temperature for 2 minutes. Wash twice with 2XSSC.
  • the signal on the microarray was detected using an array scanner-418 (manufactured by Affimetrix).
  • FIG. 1A As an example of the labeled polynucleotide probe of the present invention in a membrane filter, the hybrid-specific production of a labeled polynucleotide probe labeled with Alexa-dUTP is shown in FIG. 1A.
  • Figure 1-B shows the spotted position of each polynucleotide.
  • FIG. 1-A it was confirmed that the labeled polynucleotide probe specifically hybridized to polylipoadenine nucleotide (po1yA) and did not hybridize to other nucleotides.
  • the detection sensitivity was examined using a membrane in which polyriboadenine nucleotides were spotted in a concentration range of 1 ng (3 fmol) to lg (3 pmo1).
  • Figure 2 shows the results. As shown in FIG. 2, it was confirmed that a clear fluorescent signal was obtained even when 1 ng (3 fmo 1) was fixed at 12 mm 2 .
  • 10 to 40 ⁇ g of total RNA derived from HeLa cells was used as described in Example 1 (1).
  • the labeled poly-dU probe solution 10 ⁇ 1 prepared in the above was annealed and hybridized.
  • Figure 3 shows the results. As shown in FIG. 3, a signal was detected only on the spot of GAPDH DNA, not on pUC18 DNA.
  • FIG. 4 shows the results.
  • FIG. 4-11 shows the results obtained using HeLa cell-derived samples
  • FIG. 4-2 shows the results obtained using WI138-derived samples.
  • Fig. 43 shows the location of each spotted gene. From FIGS. 411 and 412, it was confirmed that a signal was detected depending on the gene to be expressed. Furthermore, comparison with the results of the conventional Northern plot confirmed that the same expression pattern was detected.
  • FIG. 5 shows the results.
  • the DNA microarray used was one in which two sets of 96 DNAs were spotted (duplicated and spotted) in order to reproduce the data. Arrows indicate the top and bottom of each la.
  • FIG. 5A it was shown that mRNA labeled with WI38 cells annealed with the labeled polynucleotide probe of the present invention hybridized to a specific target derived from mammalian cells.
  • none of the Cyanobacteria gene was detected.
  • cyanobacteria are prokaryotes and have completely different DNA sequences from eukaryotic mammals, so no hybridization occurs and this is the result. From this, it was confirmed that the labeled polynucleotide probe of the present invention can be used in a DNA microarray.
  • Fig. 5B shows the results obtained by examining the samples using cDNA probes prepared by the conventional method from the same mRNA preparation. From the comparison between A and B in FIG. 5, it was confirmed that the detection method 1S of the present invention showed basically the same results as the conventional method.
  • Example 1 (1) 1 6 3 — (11; Ding ?. 3— (11; Ding, Cy 5 -dUTP (Amersham 'Pharmacia Biotech Co., Ltd.)) Nucleotide probes were prepared and used as a Cy3-labeled poly-dU probe and a Cy5-labeled poly-dU probe, respectively.
  • Mouse RAW247 cells were obtained from Human Science Research Resource Punk (HumanScienceReseSearcnResoeurcesBank: HSRRB). Cell culture and mRNA extraction were performed in the same manner as in Example 11- (2). RAW247 cells were divided into osteoclasts by the method of Hsu H. et al. (Proc. Natl. Acd. Sci. USA. 96: p3540—354,
  • MRNA extracted from undifferentiated RAW247 cells was annealed with Cy3-labeled poly-dU probe. That is, 600 ng of mRNA and 101 of Cy3-labeled poly-dU probe were mixed and treated at 70 ° C for 10 minutes.
  • mRNA extracted from RAW247 cells induced into osteoclasts and Cy5-labeled poly-dU probe were annealed in the same manner as described above.
  • Hybridization was carried out using IntelliGene Mouse CH IPS et I ver. 1.0 (manufactured by Takara Shuzo) as instructed in the attached instruction manual. That is, prehybridization was performed using a 14 ⁇ 1 prehybridization solution (6 XSSC, 0.1% SDS, 5 X Denhardt's solution, 0.1 ⁇ g / ⁇ 1 salmon sperm DNA). Performed at 65 ° C for 1 hour. Cy3 and Cy5 labeled poly-dU probe and mRNA as probe The annealed solution was mixed to 141 and added to the microarray, then the array was incubated at 65 ° C for 18-20 hours, then further incubated at 30 ° (:, 3 hours.
  • the microarray was washed with a 2XSSC solution at 60 ° C for 15 minutes, and further washed with a pre-cleaning solution (2XSSC, 0.1% SDS) at 60 ° C for 15 minutes. Finally, the plate was washed twice at room temperature with 0.2 XSSC, and the signals on the microarray were detected using a 418 array scanner (manufactured by Abimetrix) The results are shown in FIG.
  • a labeled nucleic acid probe useful in hybridization a method for preparing the probe, and a method for highly sensitive detection of a target nucleic acid using the probe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A labeled polynucleotide probe characterized by being partly hybridizable with a polyadenine nucleotide moiety; a process for producing the same; and a method of detecting a nucleic acid by using the same.

Description

明 細 書 核酸の高感度検出方法 技術分野  Description Highly sensitive nucleic acid detection method Technical field
本発明は、 遺伝子工学分野において有用な標識化プローブの調製方法並びに該 プローブを用いた高感度検出方法に関する。 背景技術  The present invention relates to a method for preparing a labeled probe useful in the field of genetic engineering, and a highly sensitive detection method using the probe. Background art
ハイブリダィゼーシヨン法は、 細胞や組織において発現する mRN Aの種類を 同定するために、 あるいは各 mR NA分子量を定量するために通常よく利用され る方法である。 それゆえ、 mRN Aの同定、 定量のためのハイブリダィゼーショ ン技術は、 生物学ならびに医学の分野において非常に重要である。  The hybridization method is a commonly used method for identifying the type of mRNA expressed in cells or tissues or for quantifying the molecular weight of each mRNA. Therefore, hybridization technology for identification and quantification of mRNA is of great importance in the fields of biology and medicine.
上記ハイプリダイゼーション法として例えば、 全 R NAまたは精製された RN Aをナイ口ン膜のような多孔性の担体上に固定化し、 蛍光物質あるいは放射性同 位元素 (R I ) 等で標識した、 検出しょうとする遺伝子 (RNA) に相補的なプ ローブと混合してハイブリダィズさせる方法がある。 このカテゴリーに属する技 術としてノーザン ·ハイプリダイゼーション法が挙げられる。  As the above hybridization method, for example, detection is performed by immobilizing total RNA or purified RNA on a porous carrier such as a nylon membrane and labeling with a fluorescent substance or a radioisotope (RI). There is a method that mixes with a probe complementary to the gene (RNA) to be hybridized. Technologies belonging to this category include the Northern Hybridization method.
また、 別法としては、 検出しょうとする遺伝子 (R NA) を含む混合物、 若し くは該混合物から精製した R NAを蛍光物質あるいは放射性同位元素等で標識し、 これを膜上に固定されたプローブとハイブリダイズさせる方法がある。 このカテ ゴリーに属する技術としては、 逆ドットプロット法が挙げられる。 これら 2法は、 遺伝子工学分野の研究の様々な実験で使用されている。  Alternatively, a mixture containing the gene to be detected (RNA), or RNA purified from the mixture, is labeled with a fluorescent substance or a radioisotope and immobilized on a membrane. There is a method of hybridizing with a probe. As a technique belonging to this category, there is an inverted dot plot method. These two methods have been used in various experiments in research in the field of genetic engineering.
従来のハイプリダイゼーシヨン法では通常、 膜上に固定化された核酸が使用さ れてきたが、 最近、 上記のハイブリダィゼーシヨン技術について、 ガラスのよう な非多孔性の硬質の担体上に、 主として既知の D NA断片を固定化して使用する ハイブリダィゼーシヨン技術が開発されている。 この技術においては、 担体表面 上のあらかじめ定められた領域に数多くの種類の DN A断片を極めて高密度に固 定することができる。 このような高密度に DN A断片が固定ィヒされた担体は、 一 般に D NAマイクロアレイ (D NAチップ) と呼ばれている。 当該 D NAマイク ロアレイを使用することにより、 少量の試料中の多種類の mRN Aの同定、 定量 を一度に実施することが可能になった。 In the conventional hybridization method, nucleic acids immobilized on a membrane have usually been used. Recently, however, the above-mentioned hybridization technology has been applied to a non-porous hard carrier such as glass. In addition, a hybridization technology has been developed which mainly uses a known DNA fragment immobilized. In this technique, many types of DNA fragments can be immobilized at a very high density in a predetermined region on the surface of a carrier. Such a carrier on which DNA fragments are immobilized at high density is It is commonly called a DNA microarray (DNA chip). By using the DNA microarray, it became possible to identify and quantify many types of mRNA in a small amount of sample at once.
上記 D N Aマイクロアレイを使用する場合には、 試料中の核酸を、 例えば蛍光 物質を用いて標識し、 担体上に固定化された DNA断片とハイブリダィズさせて 検出するのが一般的である。 すなわち、 試料中の mRNAを DNAマイクロアレ ィで検出する場合には、 例えば、 以下のような方法で試料を標識することができ る。  When the above-mentioned DNA microarray is used, it is common to detect a nucleic acid in a sample by labeling it with, for example, a fluorescent substance, and hybridizing it with a DNA fragment immobilized on a carrier. That is, when mRNA in a sample is detected by a DNA microarray, for example, the sample can be labeled by the following method.
1 . 試料中の mRN Aを鎵型とした c D N A合成の際に蛍光標識ヌクレオチド を添カ卩して蛍光標識 c 'D N Aを作成する方法、 あるいは  1. A method of preparing a fluorescently labeled c'DNA by adding a fluorescently labeled nucleotide during cDNA synthesis using mRNA in the sample as a type II, or
2 . 試料中の mRNAから c D NAを合成した後、 蛍光標識ヌクレオチド存在 下に該 c DNAを鏡型として RNAポリメラーゼで転写反応を行い、 蛍光標識 R N Aプローブを作成する方法。  2. A method of synthesizing cDNA from mRNA in a sample, and then performing a transcription reaction with RNA polymerase using the cDNA as a mirror in the presence of a fluorescently labeled nucleotide to prepare a fluorescently labeled RNA probe.
上記方法によつて作製された標識 D NAあるいは RNAは、 試料中の m R N A 由来の塩基配列、 若しくはこれに相補的な塩基配列を有しており、 適切な D NA 断片が固定されたマイクロアレイ上で検出することができる。  The labeled DNA or RNA prepared by the above method has a base sequence derived from the mRNA in the sample or a base sequence complementary thereto, and is placed on a microarray on which an appropriate DNA fragment is immobilized. Can be detected.
しかしながら、 上記のような方法で試料中の mRNA由来の塩基配列を有する 標識核酸を作製する場合には、 該標識核酸に取り込まれる標識化合物の数が当該 核酸の鎖長に比例するため、 短い鎖長の標識核酸は長鎖長のものに比較して 1分 子当りに取り込まれる標識ヌクレオチドの数が少なくなるという欠点がある。 従 つて、 同一分子数の標識核酸が担体、 例えばマイクロアレイ上に固定ィ匕された D N A断片とハイブリダィズしている場合、 各アレイについて得られる標識化合物 由来の標識シグナルの強度はハイブリダイズする核酸の鎖長に大きく影響される ことになる。 このことは、 定量性を求められる実験においては、 非常に重要な問 題となる。  However, when a labeled nucleic acid having a base sequence derived from mRNA in a sample is prepared by the method described above, the number of labeled compounds incorporated into the labeled nucleic acid is proportional to the length of the nucleic acid. A long labeled nucleic acid has a disadvantage that the number of labeled nucleotides incorporated per molecule is smaller than that of a long labeled nucleic acid. Therefore, when a labeled nucleic acid having the same number of molecules is hybridized with a carrier, for example, a DNA fragment immobilized on a microarray, the intensity of the labeled signal derived from the labeled compound obtained for each array is the nucleic acid strand to be hybridized. It will be greatly influenced by the length. This is a very important issue in experiments that require quantification.
一方、 標識する核酸の鎖長に影響されない核酸標識方法として、 米国特許第 6 0 0 4 7 5 5号公報記載の末端標識方法が挙げられる。 しカゝしながら、 該方法は、 末端標識したオリゴ d Tプライマーを使用して c DNAを合成する方法であり、 プライマーに付加される標識化合物の数は限られている。 従って、 検出しようと する遺伝子由来の mRNAが微量であった場合、 シグナル強度が弱く検出できな い可能性がある。 On the other hand, as a nucleic acid labeling method that is not affected by the chain length of the nucleic acid to be labeled, there is a terminal labeling method described in US Pat. No. 6,004,755. However, this method is a method of synthesizing cDNA using an end-labeled oligo dT primer, and the number of labeled compounds added to the primer is limited. So try to detect If the amount of mRNA derived from the gene is small, the signal intensity may be too low to detect.
細胞内では非常に多くの種類の遺伝子が発現されており、 各遺伝子にコードさ れているポリペプチドはその構造、 機能がそれぞれ異なるため、 これらのポリべ プチドに対応する mR NAの鎖長も広い範囲に分布している。 従って、 これらの mRNAをできるだけ正確に、 また高い再現性で検出、 定量するための定量性に 優れたシグナルを与えるような mRNA、 若しくは mRN A由来の塩基配列を有 する核酸の検出方法が求められていた。 発明の目的  Numerous types of genes are expressed in cells, and the polypeptides encoded by each gene have different structures and functions, so the mRNAs corresponding to these polypeptides also have longer chain lengths. It is widely distributed. Therefore, there is a need for a method for detecting mRNA or a nucleic acid having a nucleotide sequence derived from mRNA, which provides a signal with excellent quantification for detecting and quantifying such mRNA as accurately and with high reproducibility. I was Purpose of the invention
本発明の目的は、 検出しようとする核酸の鎖長に影響されない標識核酸を調製 し、 該標識核酸を用いた高感度検出方法を提供することにある。 発明の概要  An object of the present invention is to prepare a labeled nucleic acid that is not affected by the length of a nucleic acid to be detected, and to provide a highly sensitive detection method using the labeled nucleic acid. Summary of the Invention
本宪明者らはハイブリダィゼーシヨン法による核酸の検出、 定量法について鋭 意研究を行い、 固定されたプローブとハイブリダィズする mR NAを、 該 mR N Aの 3, 末端に存在しているポリ A配列を利用して検出することによって定量性 及び検出感度に優れた mRNAの検出が可能な方法を見出した。 また、 人工的に ポリヌクレオチドを付加した D NAにおいても上記と同様の方法で標的 DNAの 検出が可能な方法も見出し、 本発明を完成させた。  The present inventors have conducted intensive studies on the detection and quantification of nucleic acids by the hybridization method, and have identified mRNA that hybridizes with the immobilized probe, at the 3 'end of the mRNA. By using the A sequence for detection, we have found a method capable of detecting mRNA with excellent quantitative properties and detection sensitivity. In addition, the present inventors have found a method capable of detecting a target DNA in the same manner as described above even for DNA to which a polynucleotide has been artificially added, thereby completing the present invention.
本発明を概説すれば、 本発明の第 1の発明は、 標的核酸中のポリアデニンヌク レオチド部分にハイブリダイズすることを特徴とする標識ポリヌクレオチドプロ ーブに関する。 本発明の第 1の発明において、 標識ポリヌクレオチドプローブが ハイプリダイズするポリアデニンヌクレオチド部分は mRN Aのポリリボアデニ ンヌクレオチドテールであってもよい。 また、 本発明において標識ポリヌクレオ チドプローブは、 該プローブの鎖長は 5 0ヌクレオチド以上であるものが好適に 使用できる。 また、 該プローブはデォキシゥラシルヌクレオチド及ぴ Z又はデォ キシチミンヌクレオチドからなるポリヌクレオチドが好適であり、 標識デォキシ ゥラシルヌクレオチド及ぴ Z又は標識デォキシチミンヌクレオチドを含有してい ることが好ましい。 さらに、 該標識ヌクレオチドは、 放射性同位元素、 化学努光 物質、 蛍光物質、 リガンドおよびレセプターからなる群より選択される物質で標 識されているものが好適に使用できる。 特に限定はされないが、 例えば、 フルォ レセイン、 カスケードブ /レー、 オレゴングリーン、 B O D I P Y、 ローダミング リーン, A l e x a F 1 u o r、 テキサスレッド、 C y 3および C y 5からな る群より選択される物質で標識されている標識ポリヌクレオチドプローブが好適 に使用でき、 特に好ましくは、 上記標識を有する d UT Pあるいは d T T Pが例 示される。 In summary, the first invention of the present invention relates to a labeled polynucleotide probe which hybridizes to a polyadenine nucleotide portion in a target nucleic acid. In the first invention of the present invention, the polyadenine nucleotide portion to which the labeled polynucleotide probe hybridizes may be a polyriboadenine nucleotide tail of mRNA. In the present invention, as the labeled polynucleotide probe, a probe having a chain length of 50 nucleotides or more can be suitably used. The probe is preferably a polynucleotide consisting of deoxyperacyl nucleotide and Z or deoxythymine nucleotide, and contains a labeled deoxyperacyl nucleotide and Z or deoxythymine nucleotide. Preferably. Furthermore, as the labeled nucleotide, those labeled with a substance selected from the group consisting of radioisotopes, chemical fluorescent substances, fluorescent substances, ligands and receptors can be suitably used. Although not particularly limited, for example, a substance selected from the group consisting of fluorescein, cascade buoy / ray, Oregon green, BODIPY, rhodming lean, Alexa F1 uor, Texas red, Cy3 and Cy5. A labeled polynucleotide probe that is labeled can be suitably used, and particularly preferably, dUTP or dTTP having the above label is exemplified.
本発明の第 2の発明は、 ポリリボアデニンヌクレオチドあるいはポリデォキシ アデニンヌクレオチドを鎳型とし、 オリゴ d Tをプライマーとしたヌクレオチド 伸長反応を行う工程を包含することを特徴とする本発明の第 1の発明の標識ポリ ヌクレオチドプローブの調製方法に関する。 本発明の第 2の発明において、 ヌク レオチド伸長反応はポリリボアデニンヌクレオチドを铸型とした逆転写反応であ つてもよい。 また、 本発明において铸型となるポリリポアデニンヌクレオチドあ るいはポリデォキシアデニンヌクレオチドの鎖長は、 5 0ヌクレオチド以上であ るものが好適に使用できる。 また、 本発明においてヌクレオチド伸長反応は、 デ ォキシヌクレオチド重合反応であってもよい。 さらに、 本発明においては、 標識 ポリヌクレオチドプローブの鎖長は、 5 0ヌクレオチド以上であることが好まし く、 上記ヌクレオチド伸長反応あるいはデォキシヌクレオチド重合反応が標識デ ォキシゥラシルヌクレオチド 3リン酸及び/又は標識デォキシチミンヌクレオチ ド 3リン酸を用いて行われる反応であってもよい。 この場合、 標識デォキシゥラ シルヌクレオチド 3リン酸及び Z又は標識デォキシチミンヌクレオチド 3リン酸 と非標識デォキシゥラシルヌクレオチド 3リン酸及び/又は非標識デォキシチミ ンヌクレオチド 3リン酸の含有モル比が 1: 1〜1 : 3であるプローブ調製用反 応液中で実施されることが好ましく、 また使用される標識物質は、 放射性同位元 素、 化学発光物質、 蛍光物質、 リガンドおよびレセプターからなる群より選択さ れる物質が好適に使用できる。 特に限定はされないが、 例えばフルォレセイン、 カスケードブル—、 オレゴングリーン、 B OD I P Y、 ローダミングリーン, A 1 e X a F l u o r , テキサスレツド、 C y 3および C y 5からなる群より選 択される物質で標識されていることが好ましレ、。 The second invention of the present invention comprises a step of performing a nucleotide extension reaction using a polyriboadenine nucleotide or a polydoxyadenine nucleotide as a 鎳 -form and oligo dT as a primer, wherein the first invention comprises a step of: And a method for preparing a labeled polynucleotide probe. In the second invention of the present invention, the nucleotide extension reaction may be a reverse transcription reaction using a polyriboadenine nucleotide as a type III. Further, in the present invention, the chain length of the polylipoadenine nucleotide or polydeoxyadenine nucleotide having a type III is preferably 50 nucleotides or more. In the present invention, the nucleotide extension reaction may be a deoxynucleotide polymerization reaction. Further, in the present invention, the chain length of the labeled polynucleotide probe is preferably 50 nucleotides or more, and the nucleotide extension reaction or the deoxynucleotide polymerization reaction is preferably performed using the labeled deoxydilacil nucleotide triphosphate. And / or a reaction carried out using labeled deoxythymine nucleotide triphosphate. In this case, the molar ratio of labeled deoxyduracil nucleotide triphosphate and Z or labeled deoxythymine nucleotide triphosphate to unlabeled deoxydilacil nucleotide triphosphate and / or unlabeled deoxythymine nucleotide triphosphate is It is preferably carried out in a probe preparation reaction solution of 1: 1 to 1: 3, and the labeling substance used is a group consisting of a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand and a receptor. More selected substances can be suitably used. Although not particularly limited, for example, selected from the group consisting of fluorescein, Cascade Bull—, Oregon Green, BOD IPY, Rhodamine Green, A1eXa Fluor, Texas Red, Cy3 and Cy5. Preferably, they are labeled with a substance of choice.
本発明の第 3の発明は、 ポリアデ-ンヌクレオチド部分にハイプリダイズする 標識ポリヌクレオチドプローブを標的核酸を含む可能性のある試料とともに標的 核酸が固定化された担体とハイプリダイズさせる工程を包含することを特徴とす る標的核酸の検出方法に関する。 本発明の第 3の発明において、 ポリアデニンヌ クレオチド部分は、 mR NAのポリリボアデニンヌクレオチドテールであっても よく、 人工的に後からポリアデニンヌクレオチド部分を付カ卩させたもののいずれ もが好適に使用できる。 すなわち、 本発明の第 1の発明の標識ポリヌクレオチド プローブが効率良く、 特異的にハイブリダィズするものであれば、 特に限定はさ れない。 本発明の第 3の発明において、 標識ポリヌクレオチドプローブは、 標識 デォキシゥラシルヌクレオチド及ぴ /又は標識デォキシチミンヌクレオチドを含 むものが好適に使用できる。 該標識ヌクレオチドは、 放射性同位元素、 化学発光 物質、 蛍光物質、 リガンドおよびレセプターからなる群より選択される物質で標 識されているものが好ましく、 特に限定はされないが例えば、 フルォレセイン、 カスケードプル一、 オレゴングリーン、 B O D I P Y、 ローダミングリーン, A The third invention of the present invention includes a step of hybridizing a labeled polynucleotide probe that hybridizes to a polyadenylate nucleotide portion with a carrier on which the target nucleic acid is immobilized together with a sample that may contain the target nucleic acid. The present invention relates to a method for detecting a target nucleic acid, characterized by the following. In the third invention of the present invention, the polyadenine nucleotide portion may be a polyriboadenine nucleotide tail of mRNA, and any one obtained by artificially adding a polyadenine nucleotide portion afterwards is preferably used. it can. That is, there is no particular limitation as long as the labeled polynucleotide probe of the first invention of the present invention efficiently and specifically hybridizes. In the third invention of the present invention, a labeled polynucleotide probe containing a labeled deoxydilacil nucleotide and / or a labeled deoxythymine nucleotide can be suitably used. The labeled nucleotide is preferably labeled with a substance selected from the group consisting of a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand, and a receptor, and is not particularly limited, but includes, for example, fluorescein, cascade pull, Oregon Green, BODIPY, Rhodamine Green, A
1 e X a F l u o r , テキサスレツド、 C y 3および C y 5からなる群より選 択される物質で標識されている標識ポリヌクレオチドプローブが挙げられる。 本発明の第 4の発明は、 a ) 標的核酸を含む可能性のある第 1の試料を、 ポリ アデニンヌクレオチド部分にハイブリダイズする第 1の標識で標識されたポリヌ クレオチドプローブとァニールさせる工程; b ) 標的核酸を含む可能性のある、 第 1の試料とは異なる第 2の試料を、 ポリアデ-ンヌクレオチド部分にハイプリ ダイズする、 第 1の標識とは異なる第 2の標識で標識されたポリヌクレオチドプ ローブとァニールさせる工程; c ) 工程 aおよび bで得られた標識ポリヌクレオ チドプローブがァニールした標的核酸を含む可能性のある試料を標的核酸を固定 化した担体とハイブリダィズさせる工程; d ) 担体上にハイブリダィズした第 1 および第 2の標識を検出する工程;および e ) 検出される第 1および第 2の標識 の有無または程度を比較する工程、 を包含することを特徴とする、 標的遺伝子発 現の解析方法に関する。 本発明の第 4の発明において、 特に限定はされないが例 えば、 フルォレセイン、 カスケードプル一、 オレゴングリーン、 B O D I P Y、 ローダミングリーン, A l e x a F 1 u o r、 テキサスレッド、 C y 3および C y 5からなる群より選択される物質で標識されている標識ポリヌクレオチドプ ローブが好適に使用できる。 And a labeled polynucleotide probe labeled with a substance selected from the group consisting of 1 eXaFluor, Texas Red, Cy3 and Cy5. The fourth invention of the present invention comprises: a) a step of annealing a first sample which may contain a target nucleic acid with a polynucleotide probe labeled with a first label which hybridizes to a polyadenine nucleotide portion; b ) A polynucleotide labeled with a second label different from the first label, which hybridizes a second sample different from the first sample, which may contain the target nucleic acid, to the polyadene nucleotide portion. C) a step of hybridizing a sample, which may contain the target nucleic acid annealed by the labeled polynucleotide probe obtained in steps a and b, with a carrier having the target nucleic acid immobilized thereon; d) on the carrier Detecting the hybridized first and second labels; and e) comparing the presence or absence or degree of the first and second labels detected. And a method for analyzing target gene expression. In the fourth invention of the present invention, for example, but not limited to, fluorescein, cascade pull, Oregon green, BODIPY, A labeled polynucleotide probe labeled with a substance selected from the group consisting of Rhodamine Green, Alexa F1 uor, Texas Red, Cy3 and Cy5 can be suitably used.
本発明の第 5の発明は、 ポリアデ-ンヌクレオチド部分にハイブリダイズする ことを特徴とする標識ポリヌクレオチドプローブと発現遺伝子のポリアデ二ンヌ クレオチド以外の部分にハイプリダイズすることを特徴とする標識ポリヌクレオ チドプローブを組み合わせて発現遺伝子を含む可能性のある試料とハイプリダイ ズさせる工程を包含することを特徴とする発現遺伝子の解析方法に関する。 本発 明の第 5の発明において、 特に限定はされないが例えば、 フ ォレセイン、 カス ケードブルー、 オレゴングリーン、 B O D I P Y、 ローダミングリーン, A l e a F 1 u o r、 テキサスレッド、 C y 3および C y 5からなる群より選択さ れる物質で標識されている標識ポリヌクレオチドプローブが好適に使用できる。 図面の簡単な説明  A fifth invention of the present invention provides a labeled polynucleotide probe characterized in that it hybridizes to a polyadenylate nucleotide portion and a labeled polynucleotide probe characterized in that it hybridizes to a portion other than the polyadenylate nucleotide of an expressed gene. And a step of hybridizing with a sample that may contain an expressed gene by combining the expression gene. In the fifth invention of the present invention, examples include, but are not limited to, foresin, cascade blue, Oregon green, BODIPY, rhodamine green, Alea F 1 uor, Texas red, Cy3 and Cy5 A labeled polynucleotide probe labeled with a substance selected from the group can be suitably used. BRIEF DESCRIPTION OF THE FIGURES
図 1 :本発明の標識ポリヌクレオチドプローブのハイブリダイゼーションにお ける特異性を示す図である。  FIG. 1 is a diagram showing the specificity in hybridization of the labeled polynucleotide probe of the present invention.
図 2 :本発明の標識ポリヌクレオチドプローブの検出感度を示す図である。 図 3 :本発明の標識ポリヌクレオチドプローブを用いた発現遺伝子の検出を示 す図である。  FIG. 2 is a diagram showing the detection sensitivity of the labeled polynucleotide probe of the present invention. FIG. 3 is a diagram showing detection of an expressed gene using the labeled polynucleotide probe of the present invention.
図 4 :本発明の標識ポリヌクレオチドプローブのハイプリダイゼーションにお ける特異性を示す図である。  FIG. 4 is a diagram showing the specificity in the hybridization of the labeled polynucleotide probe of the present invention.
図 5 : D NAチップにおける本発明の標識ポリヌクレオチドプローブを用いた 検出を示す図である。  FIG. 5 is a diagram showing detection on a DNA chip using the labeled polynucleotide probe of the present invention.
図 6 : D N Aチップにおける本発明の異なる標識を有する 2種類の標識ポリヌ クレオチドプローブを用いた遺伝子の発現解析を示す図である。 発明の詳細な説明  FIG. 6 is a diagram showing gene expression analysis on a DNA chip using two types of labeled polynucleotide probes having different labels of the present invention. Detailed description of the invention
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本明細書においてヌクレオチドとは、 デォキシリボヌクレオチドあるいはリボ ヌクレオチドのことをいい、 例えばデォキシリポヌクレオチドの場合、 糖部分が D— 2—デォキシリポースで構成されたヌクレオチドのことをいい、 例えば、 塩 基部分にアデニン、 シトシン、 グァニン、 チミン, ゥラシルを有するものが挙げ られる。 また、 リポヌクレオチドの場合、 糖部分が D—リボースで構成されたヌ クレオチドのことをいい、 塩基部分にアデニン、 シトシン、 グァニン、 ゥラシル を有するものが挙げられる。 さらに、 当該ヌクレオチドには修飾デォキシリポヌ クレオチドあるいは修飾リボヌクレオチドのレ、ずれもが包含され、 例えば 位の リン酸基の酸素原子を硫黄原子に置き換えた修飾リボヌクレオチド [ (ひ一 S) リボヌクレオチド、 (α— S ) Νとも記載する] やこの他の誘導体等も含まれる。 本明細書において、 ポリアデニンヌクレオチドとは、 リポアデニンヌクレオチ ドあるいはデォキシアデニンヌクレオチドの重合体のことをいう。 該ポリマーは、 人工的に調製したものあるいは天然に存在するもののいずれもが含まれる。 特に 限定はされないが、 例えば真核生物由来の mRNAのポリ Αテール (ポリリボア デニンヌクレオチドテール) が挙げられる。 In the present specification, nucleotide means deoxyribonucleotide or ribonucleotide. Refers to nucleotides. For example, in the case of deoxyliponucleotides, refers to nucleotides in which the saccharide moiety is composed of D-2-dexoxylipose. For example, has adenine, cytosine, guanine, thymine, and peracil in the base moiety. Things. In the case of liponucleotides, it refers to a nucleotide in which the sugar moiety is composed of D-ribose, and includes those having adenine, cytosine, guanine, and peracyl in the base moiety. In addition, the nucleotide includes a modified deoxyliponucleotide or a modified ribonucleotide, such as a modified ribonucleotide [(Hi-S) ribonucleotide, in which the oxygen atom of the phosphate group at the position is replaced with a sulfur atom, α-S)}] and other derivatives. In the present specification, a polyadenine nucleotide refers to a polymer of lipoadenine nucleotide or deoxyadenine nucleotide. The polymer includes both artificially prepared and naturally occurring polymers. Although not particularly limited, for example, a polytail (polyriboadenine nucleotide tail) of eukaryotic mRNA is exemplified.
本明細書において標識ヌクレオチドとは、 檫識物質で標識されたヌクレオチド のことをいう。 該標識物質は、 上記デォキシヌクレオチドあるいはリボヌクレオ チドに直接、 又はリンカ一等を介して結合しているもののいずれもが含まれる。 本明細書において標識ポリヌクレオチドとは、 標識された、 ヌクレオチドのポ リマーのことをいい、 該ポリマーは、 標識ヌクレオチド及び/又は非標識ヌクレ ォチドで構成される重合体が好ましい。  As used herein, the term “labeled nucleotide” refers to a nucleotide labeled with an identifying substance. The labeling substance includes any of those linked directly to the above-mentioned deoxynucleotide or ribonucleotide or via a linker or the like. As used herein, the term “labeled polynucleotide” refers to a labeled nucleotide polymer, and the polymer is preferably a polymer composed of labeled nucleotides and / or unlabeled nucleotides.
本明細書においてヌクレオチド伸長反応とは、 上記ヌクレオチドを伸長させる 反応であれば特に限定はなく、 ポリリボアデニンヌクレオチドを鎳型とした逆転 写反応、 D NAポリメラーゼ反応あるいは、 末端デォキシヌクレオチド転移反応 によるデォキシヌクレオチド重合反応のいずれもが好適に使用できる。  In the present specification, the nucleotide extension reaction is not particularly limited as long as it is a reaction for extending the above nucleotide, and a reverse transcription reaction using a polyriboadenine nucleotide as a 鎳 type, a DNA polymerase reaction, or a terminal deoxynucleotide transfer reaction. Any of the deoxynucleotide polymerization reactions described above can be suitably used.
本明細書において標的核酸とは、 検出しょうとする核酸配列、 例えば任意の遺 伝子の核酸配列のことをいう。 該核酸配列は、 D NAあるいは RNAのいずれで あってもよレヽ。  As used herein, a target nucleic acid refers to a nucleic acid sequence to be detected, for example, a nucleic acid sequence of any gene. The nucleic acid sequence may be either DNA or RNA.
( 1 ) 本発明の標識ポリヌクレオチドプローブ  (1) The labeled polynucleotide probe of the present invention
本発明の標識ポリヌクレオチドプローブは、 ポリアデ二ンヌクレオチド部分に ハイブリダイズすることができるポリヌクレオチドプローブであればよく、 特に 限定はされないが、 デォキシゥリジンヌクレオチド (dUTP) のポリマー、 デ ォキシチミンヌクレオチド (dTTP) のポリマー、 あるいは dUTPと dTT Pの混合ポリマーのいずれもが好適に使用できる。 本明細書において、 ポリアデ ニンヌクレオチド部分とは、 本発明の標識ポリヌクレオチドプローブがハイプリ ダイズする標的核酸中の部分であってポリアデニンヌクレオチドからなる部分を いう。 本発明の標識ポリヌクレオチドプローブの鎖長は、 特に限定はされないが、 好ましくは 50ヌクレオチド以上、 さらに好ましくは 100ヌクレオチド以上で あるものが好適に使用できる。 本発明の標識ヌクレオチドプローブは、 プローブ 1分子当りにほぼ一定量の標識化合物を含むものであれば、 特に限定はされない が例えば、 標識化合物が付加されたヌクレオチド (標識ヌクレオチド) を含有す るものであることができる。 該標識ヌクレオチドは、 特に限定されるものではな いが例えば、 標識デォキシゥラシルヌクレオチド又は標識デォキシチミンヌタレ ォチドが好適であり、 これらを混合して使用してもよい。 さらに、 該標識ヌクレ ォチドは、 放射性同位元素、 化学 光物質、 蛍光物質、 リガンドあるいはレセプ ターで標識されたヌクレオチドのいずれもが好適に使用できる。 特に限定はされ ないが、 例えば32 P、 33 Pのような放射性同位元素、 AM P P Dのような化学発 光物質、 フルォレセイン、 カスケードブルー、 オレゴングリーン、 BOD I PY、 ローダミングリーン, Al e x a F l uo r、 テキサスレツド、 Cy 3あるレヽ は C y 5のような蛍光物質、 ビォチン、 ァビジン、 ディゴキシゲニン等のリガン ドあるいはレセプターで標識されたヌクレオチドのレヽずれもが好適に使用できる。 本発明においては、 好ましくは蛍光物質、 特に好ましくは A 1 e X a F 1 u o r、 Cy 3あるいは Cy 5で標識された dUTPが好適に使用できる。 The labeled polynucleotide probe of the present invention has a polyadenylate nucleotide portion. Any polynucleotide probe can be used as long as it can hybridize, and is not particularly limited. A polymer of deoxyperidine nucleotide (dUTP), a polymer of deoxythymine nucleotide (dTTP), or a mixture of dUTP and dTTP Any of the polymers can be suitably used. As used herein, the term “polyadenine nucleotide portion” refers to a portion in a target nucleic acid to which the labeled polynucleotide probe of the present invention hybridizes and which comprises a polyadenine nucleotide. The chain length of the labeled polynucleotide probe of the present invention is not particularly limited, but preferably 50 nucleotides or more, more preferably 100 nucleotides or more can be suitably used. The labeled nucleotide probe of the present invention is not particularly limited as long as it contains a substantially constant amount of a labeled compound per probe molecule, and includes, for example, a nucleotide to which a labeled compound is added (labeled nucleotide). There can be. The labeled nucleotide is not particularly limited, but is preferably, for example, labeled deoxyperacyl nucleotide or labeled deoxythymine nutretide, and these may be used as a mixture. Further, as the labeled nucleotide, any of a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand or a nucleotide labeled with a receptor can be suitably used. Although not particularly limited, for example, radioisotopes such as 32 P and 33 P, chemical luminescent substances such as AM PPD, fluorescein, cascade blue, Oregon green, BOD I PY, rhodamine green, and Alexa Fluo For r, Texas red and Cy 3, a fluorescent substance such as Cy5, a ligand such as biotin, avidin, digoxigenin or a nucleotide labeled with a receptor can be suitably used. In the present invention, a fluorescent substance, particularly preferably dUTP labeled with A1eXaF1uor, Cy3 or Cy5 can be suitably used.
また、 別の態様として、 アミノ基ゃチオール基等の官能基を有する修飾ヌクレ ォチドを用いて該修飾ヌクレオチドのポリマーを調製した後に、 当該官能基を利 用して上記標識物質を付加させた標識ポリヌクレオチドも本発明の標識ポリヌク レオチドプローブに含まれる。  In another embodiment, a label is prepared by preparing a polymer of the modified nucleotide using a modified nucleotide having a functional group such as an amino group or a thiol group, and then adding the labeling substance using the functional group. Polynucleotides are also included in the labeled polynucleotide probes of the present invention.
本発明の標識ポリヌクレオチドプローブは、 特に限定はされないがストリンジ ェントな条件においてポリアデニンヌクレオチド部分にハイブリダイズするもの が好ましい。 該ストリンジェントな条件としては、 例えば、 モレキュラー ク口 一ユング、 ァ ラボラトリー マニュアル (Molecular cloning, A laboratory manual)、 第 2版 (1989) 記載の条件が好適に使用できる。 Although not particularly limited, the labeled polynucleotide probe of the present invention hybridizes to a polyadenine nucleotide portion under stringent conditions. Is preferred. As the stringent conditions, for example, those described in Molecular Cloning, A laboratory manual, 2nd edition (1989), Molecular Cloning, A laboratory manual can be suitably used.
本発明の標識ポリヌクレオチドプローブを使用する mRNAの検出において得 られるシグナル強度は、 mRN Aの大きさに関係なく、 唯一各々の mRNAのコ ピー数に依存する。 また、 検出しょうとする mRNAごとにプローブを作製する 必要がなく、 プローブは異なる試料にも共通して使うことができる。  The signal intensity obtained in the detection of mRNA using the labeled polynucleotide probe of the present invention depends solely on the number of copies of each mRNA, regardless of the size of mRNA. Also, there is no need to prepare a probe for each mRNA to be detected, and the probe can be used in common for different samples.
さらに、 本発明のプローブは、 そのヌクレオチド中に複数箇所ラベルされてお り、 エンドラベ されたポリヌクレオチドや cDN Aプローブよりも強いシグナ ルを与える。 従って、 標識された dUTPの連続した結合がヌクレオチド伸長反 応に影響しない、 あるいは伸長産物におレ、て立体障害を生じないとするならば、 本発明の標識ポリヌクレオチドプローブは、 例えば、 標識 dUTPを 4個入れる ことにより 1種類のヌクレオチド標識により得られた同じ長さのエンドラベルさ れた c DNAプローブよりも約 4倍強いシグナルを得ることができる。  Further, the probe of the present invention is labeled at a plurality of positions in its nucleotide, and gives a stronger signal than an end-labeled polynucleotide or a cDNA probe. Therefore, provided that the continuous binding of labeled dUTP does not affect the nucleotide extension reaction or does not cause steric hindrance to the extension product, the labeled polynucleotide probe of the present invention may be, for example, labeled dUTP. By adding four, a signal about four times stronger than an end-labeled cDNA probe of the same length obtained by one type of nucleotide labeling can be obtained.
(2) 本発明の標識ポリヌクレオチドプローブの調製方法  (2) Method for preparing labeled polynucleotide probe of the present invention
本発明の標識ポリヌクレオチドプローブの調製方法は、 特に限定はされないが 例えば、 ポリリポアデニンヌクレオチドあるいはポリデォキシアデニンヌクレオ チドを铸型とし、 オリゴ dTをプライマーとしたヌクレオチド伸長反応により調 製することができる。 該ヌクレオチド伸長反応において、 使用する酵素は、 本発 明の標識ポリヌクレオチドプローブを効率良く調製できるものであれば特に限定 はなく、 常温性、 好熱性、 超耐熱性の酵素のいずれであってもよい。 また、 該ヌ クレオチド伸長反応は、 ポリリボアデニンヌクレオチドを铸型とした逆転写反応 が好適に使用できる。 この場合、 特に限定はないが例えば、 トリ骨髄芽球症ウイ ルス由来逆転写酵素 (AMV RT a s e) 、 モロ-一ネズミ白血病ウィルス由 来逆転写酵素 (M— MLV RTa s e) 、 ラウス関連ウィルス 2由来逆転写酵 素 (RAV— 2) 、 バチルス カノレドテナックス (B c a : B a c i l l u s c a r d o t e n a x) 由来 DNAポリメラーゼ、 サーマス サーモフィラス (T t h: Th e r mu s t h e rmo p h i l u s) 由来 DNAポリメラー ゼ等が挙げられる。 さらに、 該ヌクレオチド伸長反応は、 DNAポリメラーゼに よる相補鎖合成反応であってもよい。 この場合、 特に限定はされないが、 例えば タレノウ断片、 B c a DN Aポリメラーゼ、 バチルス ステアロサーモフイラ ス (B s t : B a c i l l u s s t e a r o t h e rmo p h i l u s) 由来 DNAポリメラーゼ、 サーマス アクアティカス (T a q : Th e r mu s a q u a t i c u s) 由来 DNAポリメラーゼ、 パイロコッカス フリオサス (P f u r Py r o c o c c u s f u r i o s u s) 由来 DNAポリメラ^ "ゼ、 サ ーモコッカス コダカラエンシス (KOD: T h e r mo c o c c u s k o d a k a r a e n s i s) 由来 DNAポリメラーゼ等が挙げられる。 さらに、 DN A合成機を用いて化学合成したものも好適に使用できる。 また、 短鎖ヌクレオチ ドをライゲーション反応によりポリヌクレオチドにしたものも好適に使用できる。 上記铸型となるポリリポアデニンヌクレオチドの鎖長は、 好ましくは 50ヌク レオチド以上、 さらに好ましくは 100ヌクレオチド以上である。 該鍚型を使用 した場合、 調製される標識ポリヌクレオチドの範囲は、 50ヌクレオチド以上で ある。 さらに、 上記ヌクレオチド伸長反応のべつの態様としては、 デォキシヌク レオチド重合反応であってもよい。 この場合、 末端デォキシヌクレオチド転移酵 素 (T d T: Terminal deoxynucleotidyl transferase) 等の市販の修飾酵素が 好適に使用できる。 この場合において、 該プローブの鎖長が 50ヌクレオチド以 上になるように反応条件を設定することが好ましい。 The method for preparing the labeled polynucleotide probe of the present invention is not particularly limited.For example, the labeled polynucleotide probe may be prepared by a nucleotide extension reaction using a polylipoadenine nucleotide or a polydeoxyadenine nucleotide as a 铸 -type and oligo dT as a primer. Can be. In the nucleotide extension reaction, the enzyme to be used is not particularly limited as long as the labeled polynucleotide probe of the present invention can be efficiently prepared, and may be any of room temperature, thermophilic, and hyperthermostable enzymes. Good. For the nucleotide extension reaction, a reverse transcription reaction using a polyriboadenine nucleotide as a 铸 -type can be suitably used. In this case, there is no particular limitation. For example, reverse transcriptase derived from avian myeloblastosis virus (AMV RTase), reverse transcriptase derived from Moro-mouse leukemia virus (M-MLV RTase), Rouss-related virus 2 Reverse transcriptase (RAV-2), DNA polymerase derived from Bacillus canoledotenax (Bca: Bacilluscardotenax), DNA polymerase derived from Thermothothermophilus (Tth), and the like. Further, the nucleotide extension reaction is carried out by a DNA polymerase. May be a complementary strand synthesis reaction. In this case, although not particularly limited, for example, tarenow fragment, Bca DNA polymerase, DNA polymerase derived from Bacillus stearothermophilus (B st: Bacillusstearothermo philus), Thermus aquaticus (Taq: Ther mu saquaticus) DNA polymerases derived from Pyrococcus furiosus (P fur Pyrococcus furiosus), DNA polymerases derived from Thermococcus kodakaraensis (KOD), and the like. Also preferably used are those obtained by chemically synthesizing a short-chain nucleotide into a polynucleotide by a ligation reaction.The chain length of the above-mentioned type II polylipoadenine nucleotide is preferably 50 nucleotides And more preferably 100 nucleotides or more. When type I is used, the range of the labeled polynucleotide to be prepared is 50 nucleotides or more, and another embodiment of the nucleotide extension reaction may be a deoxynucleotide polymerization reaction. A commercially available modifying enzyme such as Deoxynucleotidylyl transferase (TdT) can be suitably used, in which case the reaction conditions are set such that the chain length of the probe is 50 nucleotides or more. Is preferred.
上記ヌクレオチド伸長反応のいずれの場合において、 標識デォキシゥラシルヌ クレオチド 3リン酸及び/又は標識デォキシチミンヌクレオチド 3リン酸の存在 下に反応を実施することにより容易に標識ポリヌクレオチドを調製することがで きる。 上記のヌクレオチド伸長反応において、 反応液中での標識デォキシゥラシ ルヌクレオチド 3リン酸及び/又は標識デォキシチミンヌクレオチド 3リン酸と 非標識デォキシゥラシルヌクレオチド 3リン酸及び Z又は非標識デォキシチミン ヌクレオチド 3リン酸の含有モル比は、 好ましくは 1: 1〜 1 : 3の範囲、 特に 好ましくは 1 : 2である。 また、 本発明の調製方法で使用する標識ヌクレオチド 3リン酸は、 放射性同位元素、 化学発光物質、 蛍光物質、 リガンドあるいはレセ プターで標識されたヌクレオチド 3リン酸から選択することができ、 上記ヌクレ ォチド伸長反応を阻害しない標識ヌクレオチド 3リン酸あるいは該標識ヌクレオ チド 3リン酸のアナログであってもよい。 In any of the above nucleotide extension reactions, a labeled polynucleotide is easily prepared by performing the reaction in the presence of labeled deoxydilacil nucleotide triphosphate and / or labeled deoxythymine nucleotide triphosphate. can do. In the above-mentioned nucleotide extension reaction, labeled deoxydilacil nucleotide triphosphate and / or labeled deoxythymine nucleotide triphosphate and unlabeled deoxydilacil nucleotide triphosphate and Z or unlabeled deoxythymine nucleotide in the reaction solution The molar ratio of triphosphoric acid is preferably in the range of 1: 1 to 1: 3, particularly preferably 1: 2. In addition, the labeled nucleotide triphosphate used in the preparation method of the present invention can be selected from a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand or a nucleotide triphosphate labeled with a receptor. Labeled nucleotide triphosphate that does not inhibit the extension reaction or the labeled nucleoside It may be an analog of tide triphosphate.
さらに、 本発明の標識ポリヌクレオチドプローブの調製方法としては、 上記標 識化合物が付加された標識ヌクレオチドをヌクレオチド伸長反応の際に取り込ま せる方法が例示されるが、 別の態様として非標識のヌクレオチドをヌクレオチド 伸長反応に使用し、 反応終了後にさらに、 酵素ィ匕学的あるいはィ匕学的に標識化合 物を導入する方法であってもよく、 最終的に本発明の標識化されたポリヌクレオ チドプローブを調製することができる標識導入方法のいずれもが好適に使用でき る。  Further, as a method for preparing the labeled polynucleotide probe of the present invention, a method of incorporating a labeled nucleotide to which the above-mentioned labeled compound is added at the time of a nucleotide extension reaction is exemplified, but in another embodiment, an unlabeled nucleotide is used. The method may be a method in which the labeled compound is used in a nucleotide extension reaction, and after completion of the reaction, a labeled compound is further introduced enzymatically or indirectly, and finally, the labeled polynucleotide probe of the present invention is prepared. Any of the labeling methods that can be used can be suitably used.
本突明において、 铸型そしてプライマーとして示されたポリリボアデニンヌク レオチド及ぴオリゴデォキシチミンヌクレオチドの存在下において逆転写反応に よって蛍光標識されたポリデォキシゥラシルヌクレオチドを調製することができ る。 本発明の方法によって調製された、 標識デォキシゥラシルヌクレオチド及び 非標識デォキシチミンヌクレオチドを含有する本発明の標識ポリヌクレオチドプ ローブは、 膜またはガラス表面 (DNAチップ) 上にスポットされた DNA配列 とハイプリする mRNAを検出するために使用することができる。  Preparation of fluorescently labeled polydeoxydilacil nucleotides by reverse transcription in the presence of polyriboadenine nucleotides and oligodeoxythymine nucleotides indicated as type I and primers Can be done. The labeled polynucleotide probe of the present invention containing labeled deoxydilacil nucleotides and unlabeled deoxythymine nucleotides prepared by the method of the present invention was spotted on a membrane or glass surface (DNA chip). It can be used to detect mRNA that hybridizes with a DNA sequence.
( 3 ) 本発明の標的核酸の検出方法及び発現遺伝子の解析方法  (3) The method for detecting a target nucleic acid and the method for analyzing an expressed gene of the present invention
本努明の標的核酸の検出方法において標的核酸のポリアデニンヌクレオチド部 分に標識ポリヌクレオチドプローブをハイブリダイズさせることにより検出する ことができる。 標的核酸のポリアデニンヌクレオチド部分は、 人工的に後からポ リリポアデニンヌクレオチドあるいはポリデォキシアデニンヌクレオチドを付カロ させたものでもよく、 天然の mR NAのポリリポアデニンヌクレオチドテールで あってもよい。 すなわち、 本発明の標識ポリヌクレオチドプローブが効率良く、 特異的にハイブリダイズするものであれば特に限定はなく、 該標識ヌクレオチド は、 放射性同位元素、 化学発光物質、 蛍光物質、 リガンドあるいはレセプターで 標識されたヌクレオチドのいずれかから選択されるものが好ましく、 例えば、 標 識がフルォレセイン、 カスケードブルー、 オレゴングリーン、 B OD I P Y、 口 ーダミングリーン, A l e x a F l u o r、 テキサスレツド、 C y 3あるいは C y 5のいずれかから選択される標識ヌクレオチドが挙げられる。 この方法にお V、て、 例えば、 担体上に固定化された核酸にハイブリダイズした試料中の標的核 酸を、 ポリヌクレオチドプローブの標識に最適な方法を用いて検出することがで さる。 In the target nucleic acid detection method of the present invention, the detection can be performed by hybridizing a labeled polynucleotide probe to the polyadenine nucleotide portion of the target nucleic acid. The polyadenine nucleotide portion of the target nucleic acid may be one obtained by artificially adding a polylipadenine nucleotide or polydeoxyadenine nucleotide afterwards, or may be a natural mRNA polylipoadenine nucleotide tail. . That is, there is no particular limitation as long as the labeled polynucleotide probe of the present invention efficiently and specifically hybridizes. The labeled nucleotide is labeled with a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand or a receptor. Preferably, the label is selected from any of the following nucleotides. For example, the label is fluorescein, cascade blue, Oregon green, BOD IPY, mouth-damine green, Alexa Fluor, Texas red, Cy3 or Cy5. And a labeled nucleotide selected from the group consisting of: In this method, for example, target nuclei in a sample hybridized to nucleic acids immobilized on a carrier Acids can be detected using methods optimal for labeling polynucleotide probes.
本発明の検出方法の別の態様としては、 発現遺伝子の解析方法が挙げられる。 該方法においては、 異なる標識を有する少なくとも 2種類の標識ポリヌクレオチ ドプローブを用いることにより、 異なる 2種類の試料中の多種類の遺伝子の発現 を比較することができる。 詳細には、 標的核酸を含む可能性のある試料を、 ポリ アデニンヌクレオチド部分にハイプリダイズする標識されたポリヌクレオチドプ ローブとァニールさせ、 標的核酸を含む可能性のある別の試料を、 ポリアデニン ヌクレオチド部分にハイブリダイズする別の標識で標識されたポリヌクレオチド プローブとァニールさせ、 得られた標識されたポリヌクレオチドプローブがァニ ールした標的核酸を含む可能性のある試料を、 例えば、 標的核酸を固定化した担 体とハイプリダイズさせ、 担体上にハイブリダィズしたそれぞれの標識を検出し、 検出されるそれぞれの標識の有無または程度を比較することによって標的遺伝子 の発現を解析することができる。 標識ポリヌクレオチドプローブは特に限定はさ れないが、 例えば、 それぞれ C y 3及び C y 5で標識されたポリヌクレオチドプ ローブが好適に使用できる。  Another embodiment of the detection method of the present invention includes a method of analyzing an expressed gene. In this method, the expression of various types of genes in two different types of samples can be compared by using at least two types of labeled polynucleotide probes having different types of labels. Specifically, a sample that may contain the target nucleic acid is annealed with a labeled polynucleotide probe that hybridizes to the polyadenine nucleotide portion, and another sample that may contain the target nucleic acid is a polyadenine nucleotide portion. Annealed with a polynucleotide probe labeled with another label that hybridizes to the sample, and the resulting labeled polynucleotide probe is used to immobilize a sample that may contain the annealed target nucleic acid, for example, immobilize the target nucleic acid The expression of the target gene can be analyzed by detecting each of the labels hybridized on the carrier after hybridization with the carrier and comparing the presence or absence or the degree of each of the detected labels. The labeled polynucleotide probe is not particularly limited, but for example, a polynucleotide probe labeled with Cy3 and Cy5, respectively, can be suitably used.
さらに発現遺伝子の解析方法の別の態様としては、 ポリアデ二ンヌクレオチド 部分にハイプリダイズする標識ポリヌクレオチドプロープと発現遺伝子のポリ了 デユンヌクレオチド以外の部分にハイブリダイズする標識ポリヌクレオチドプロ ーブ (c DNA標識ポリヌクレオチドプローブ) を組み合わせることができる。 この場合において、 標識は異なるものを用いることができる。 上記発現遺伝子の ポリアデニンヌクレオチド以外の部分にハイブリダイズするプロープは、 公知の 方法、 例えば試料中の mR NAを鏡型とした c D NA合成反応により調製するこ とができる。 本発明の方法は、 特に限定はされないが、 例えば、 3'末端のポリ アデニル化又は脱アデニル化によって制御されている特定遺伝子の発現において 使用することができ、 前述の制御を検出することができる。  Further, as another embodiment of the method of analyzing an expressed gene, a labeled polynucleotide probe that hybridizes to a polyadenylate nucleotide portion and a labeled polynucleotide probe that hybridizes to a portion other than the polyadenylate nucleotide of an expressed gene (c DNA-labeled polynucleotide probe). In this case, different labels can be used. A probe that hybridizes to a portion other than the polyadenine nucleotide of the above expressed gene can be prepared by a known method, for example, a cDNA synthesis reaction using mRNA in a sample as a mirror type. Although the method of the present invention is not particularly limited, for example, it can be used in the expression of a specific gene that is controlled by polyadenylation or deadenylation at the 3 ′ end, and the aforementioned control can be detected. .
また、 本発明の検出方法において標識ポリヌクレオチドプローブは、 共通で使 用することができるので、 従来の標的核酸に合わせて c D N Aプローブを調製す る必要がなく、 低コストで短時間で検出を行うことができる。 実施例 In addition, in the detection method of the present invention, since the labeled polynucleotide probe can be used in common, there is no need to prepare a cDNA probe in accordance with a conventional target nucleic acid, and detection can be performed at low cost and in a short time. It can be carried out. Example
本発明を実施例によりさらに具体的に説明するが、 本発明はこれらの実施例に よって限定されるものではない。  The present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
実施例 1  Example 1
(1) 標識ポリヌクレオチドプローブの調製  (1) Preparation of labeled polynucleotide probe
逆転写 Z標識反応を用いて標識ポリヌクレオチドプローブを調製した。 該反応 は、 以下の反応液組成で行った。 すなわち、 l O Opmo lの合成テンプレート -プライマーの P o l y (r A) - p (dT) 12_18 (アマシャム 'フアルマシ ァ 'バイオテク社製) を錶型とし、 各 0. 5mMの dATP、 dCTP、 dGT P、 40 / Mの d TTP及び 20 μΜの A 1 e x a— dUTP (モレキュラープ ローブ社製) 、 1 OmM DTT、 25U リポヌクレオチドインヒビター (ギ ブコ BRL社製) 、 1. 5 Uのスーパースクリプト逆転写酵素 (ギブコ BRL社 製) を加え、 反応液容量を 50 IX 1にした。 該反応混合溶液を 30°Cで 60分間 保持し、 次に 94°Cで 3分間加熱して酵素を失活させ、 氷浴上で冷却した。 該反 応溶液をマイクロスピン S— 300HRカラム (アマシャム ·フアルマシア ·バ ィォテク社製) を用いて精製した。 次に精製物を 37°C、 20分間、 0. 3Nの N a O Hで処理し、 鍀型ポリ ( r A) を分解後、 塩酸及ぴ 1 M トリス一塩酸緩 衝液 (pH7. 0) で中和した。 この溶液を蛍光標識ポリ dUプロ ^"ブ溶液とし て使用した。 Labeled polynucleotide probes were prepared using the reverse transcription Z labeling reaction. The reaction was performed with the following reaction solution composition. That is, the synthesis template of lO Opmol-Poly (rA)-p (dT) 12 _ 18 (Amersham 'Falmacia' Biotech) of primers was type III, and 0.5 mM dATP, dCTP, dGT P, 40 / M d TTP and 20 μΜ A 1 exa—dUTP (Molecular Probe), 1 OmM DTT, 25U liponucleotide inhibitor (Gibco BRL), 1.5 U superscript reversal Transcriptase (manufactured by Gibco BRL) was added to adjust the reaction solution volume to 50 IX. The reaction mixture was kept at 30 ° C. for 60 minutes, then heated at 94 ° C. for 3 minutes to inactivate the enzyme, and cooled on an ice bath. The reaction solution was purified using a Microspin S-300HR column (manufactured by Amersham Pharmacia Biotech). Next, the purified product is treated with 0.3N NaOH at 37 ° C for 20 minutes to decompose type I poly (rA), and then treated with hydrochloric acid and 1 M Tris-monohydrochloride buffer (pH 7.0). Neutralized. This solution was used as a fluorescence-labeled poly dU probe solution.
(2) 細胞培養、 RNA抽出、 cDNAプローブの調製  (2) Cell culture, RNA extraction, cDNA probe preparation
ヒト H e L a細胞と W I 38細胞は、 ヒユーマンサイエンス研究資源バンク (Hum a n S c i e nc e Re s e a r c h Re s ou r c e s B a n k : HSRRB) から入手し、 10% f e t a l c a l f 血清を含む D u l b e c c o's mo d i f i e d Ea g l e m e d i u mで培養した。 全 RNAは、 上記培養細胞からグァ -ジゥムーフェノール ·クロロホルム法で抽 出した。 混入した可能性のあるゲノム DNAは、 RNa s eフリー DNa s e (RQ 1 DNa s e, プロメガネ: h$¾ を用いて取り除いた。 mRNAは、 必要 に応じて、 mRNA Pu r i f i c a t i on Ki t (アマシャム ·ファ ルマシア バイオテクネ ±M) を用いて精製した。 cDNAプローブは、 上記の 6 00 n gの精製した RNAを錶型とし、 プライマーとして 100 pmo 1の O 1 i g o (d T) 12 18を用いて、 Cy 3— dUTP (アマシャ Λ ·フアルマシア バイオテクネ: hB)及び RNA F l u o r e s c en c e La b e l i n g Co r e K i t (宝酒造) を用いた逆転写反応によって調製した。 反応条件は、Human HeLa cells and WI38 cells were obtained from the Human Science Research Resource Bank (HSRRB), and Dulbecco's modified Ea containing 10% fetalcalf serum was obtained. Cultured in glemedium. Total RNA was extracted from the above cultured cells by the guar-dimuphenol / chloroform method. Genomic DNA that may have been contaminated was removed using RNase-free DNase (RQ 1 DNase, pro-glasses: h $ mRNA). MRNA was removed, if necessary, using mRNA Purification on Kit (Amersham Fa Purified using Lumasia Biotechne ± M). cDNA probe, the above-described 6 00 ng purified RNA of a錶型, with O 1 igo (d T) 12 18 of 100 pmo 1 as primers, Cy 3- dUTP (Amasha lambda · Pharmacia Bio Techne: hB ) And RNA Fluorescence Labeling Core Kit (Takara Shuzo). The reaction conditions are
37°C、 60分間ィンキュベートした後、 10 / 1の 1 Nの水酸化ナトリゥム溶 液を加えて 10分間、 37 °Cでインキュベートし、 鏡型 RNAを分解した。 反応 物に 25μ 1の 1M トリスー塩酸緩衝液 (ρΗ8. 0) を加えて中和した後、 ェタノールで沈殿させた。 沈殿物は、 10 1のハイプリバッファ一で再度溶解 した。 After incubating at 37 ° C for 60 minutes, 10/1 1N sodium hydroxide solution was added and incubated at 37 ° C for 10 minutes to degrade the mirror RNA. The reaction product was neutralized by adding 25 μl of 1 M Tris-HCl buffer (ρΗ8.0), and then precipitated with ethanol. The precipitate was redissolved in 101 high-buffer buffer.
(3) DNA固定化メンブレン及び DN Αマイクロアレイの調製  (3) Preparation of DNA-immobilized membrane and DN II microarray
ヒ 卜 G A P DH (glycera丄 dehyde 3- phosphate dehydrogenase)、 P CN A (proliferating cell nuclear antigen) p 53、 R b (retinoblastoma) Λ R a sオンコジーン、 p l 30、 p l 4、 p l 6、 p l 8、 p l 9、 p 21、 p 27 の遺伝子をターゲットとして、 配列表の配列番号 1〜 40記載のプライマー及ぴ T a K a R a RNA PCR Ki t (AMV) V e r . 2. 1 (宝酒造社 製) を用いて RT— PCRを行った。 なお、 p 53、 RB、 p i 30、 p i 6、 p l 9、 p 27、 p l 8、 p i 4の遺伝子については、 逆転写反応後、 Ne s t e d PCRを行った。 錶型は、 上記実施例 1 (2) で得られた RNAを使用し た。 得られた増幅断片は、 精製後、 pT7B 1 u e-T クローニングベクター (ノバジェン社製) にサブクローユングし、 DNA配列解析を確認した。 挿入塩 基配列を確認後、 前述の挿入断片を B i o— Do t (バイオラッド社製) を用い てハイボンド N+ (アマシャム ·フアルマシア バイオテクネ; fc^) 上に固定した。 また、 DNAマイクロアレイは、 市販の Te s t a r r a y (宝酒造社製) を 使用した。 Human GAP DH (glycera 丄 dehyde 3-phosphate dehydrogenase), PCNA (proliferating cell nuclear antigen) p53, Rb (retinoblastoma) Λ R as oncogene, pl 30, pl 4, pl 6, pl 8, pl 9 The primers described in SEQ ID NOs: 1 to 40 in the sequence listing and TaKaRaRNA PCR Kit (AMV) Ver. 2.1 (manufactured by Takara Shuzo Co.) Was used to perform RT-PCR. The genes for p53, RB, pi30, pi6, pl9, p27, pl8, and pi4 were subjected to nested PCR after the reverse transcription reaction. For type I, the RNA obtained in Example 1 (2) was used. The obtained amplified fragment was purified and then subcloned into a pT7B1ueT cloning vector (Novagen), and DNA sequence analysis was confirmed. After confirming the insertion base sequence, the above-mentioned insertion fragment was immobilized on Hybond N + (Amersham Pharmacia Biotechne; fc ^) using Bio-Dot (manufactured by Bio-Rad). The DNA microarray used was a commercially available Te starray (Takara Shuzo).
(4) ハイブリダィゼーシヨン及び検出  (4) Hybridization and detection
上記ターゲット遺伝子を保持するメンブレンフィルタ一は、 メンブレン 1 cm 2あたり lm lのハイブリダィゼーシヨン緩衝液 (5XSSC、 0. 5% BS A、 0. lmg/m 1 サケ精子 DNA、 0. 1% SDS) を使用して、 3 7°C, 1時間、 プレハイプリダイゼーシヨンを行った。 初めに上記実施例 1 (2) で得られた全 RNAもしくは精製 RNAのいずれか 10 μ 1に上記実施例 1 (1) で調製した標識ポリ dUプローブ溶液 10^ 1を添加し、 最終容量が 200 μ 1になるようにハイブリダイゼーション緩衝液を加え、 70 °C、 10分 間加熱後、 上記メンブレンフィルターと 6〜 10時間、 30 °Cでハイブリダイズ した。 メンプレンフィルターは、 室温で 15分間、 洗浄緩衝液 I ( 1 X S S C、 0. 1%SDS) に入れて穏やかに振とうし、 次に 10分間、 洗浄緩衝液 I I (0. 1 XS SC、 0. 1%SDS) に入れて振とうし、 洗浄した。 洗浄後、 メンプレンフィルタ一は、 蛍光イメージアナライザー FMB I O I I (宝酒造 社製) で検出した。 一方、 DN Aマイクロアレイのハイブリダィゼーシヨンは添 付の取り扱い説明書の指示通りにおこなった。 すなわち、 プレハイプリダイゼー シヨンは、 14μ 1のプレハイブリダィゼーシヨン液 (6 XSSC、 0. 1% SDS、 5 XD e n h a r d t's溶液、 0. 1 μ g/μ 1 サケ精子 DNA) を用いて 1時間、 65 °Cで行つた。 ポリ d Uプローブとのハイブリダイゼーショ ンについては、 上記実施例 1 (2) で得られた 600 n gの; mRNAに 1〃 1の ポリ dUを加え、 容量を 14 μ 1 とした。 該溶液を 70°C、 10分間加熱した。 また、 同量の mRNAを用いて、 c DNAプローブの調製を行った。 前述の反応 液をマイクロアレイに添加し、 次いでアレイを 65°C、 18〜20時間インキュ ペートし、 さらに 30°C、 3時間インキュベートした。 ハイブリダィゼーシヨン 後、 該マイクロアレイを 60°C、 15分間、 2XS SC溶液で、 さらに 60°C、 15分間、 洗浄液 (2 XSSC、 0. 1%SDS) で洗浄し、 最後に室温で 2 回、 2XSSCで洗浄した。 マイクロアレイ上のシグナルは、 アレイスキャナ 一 418 (ァフィメ トリックス社製) を用いて検出した。 Membrane filters one for holding the target gene, hybrida I See Chillon buffer membrane 1 cm 2 per lm l (5XSSC, 0. 5% BS A, 0. lmg / m 1 salmon sperm DNA, 0. 1% (SDS) using 3 Prehybridization was performed at 7 ° C for 1 hour. First, add 10 ^ 1 of the labeled poly dU probe solution prepared in Example 1 (1) to 10 μl of either total RNA or purified RNA obtained in Example 1 (2) above, A hybridization buffer was added to 200 µl, heated at 70 ° C for 10 minutes, and then hybridized with the above membrane filter at 30 ° C for 6 to 10 hours. The membrane filters are gently shaken in Washing Buffer I (1 XSSC, 0.1% SDS) for 15 minutes at room temperature, and then washed for 10 minutes in Washing Buffer II (0.1 XSSC, 0% (1% SDS) and shaken. After washing, the membrane filter was detected with a fluorescence image analyzer FMB IOII (Takara Shuzo). On the other hand, hybridization of the DNA microarray was performed as instructed in the attached instruction manual. That is, prehybridization was performed using 14 μl of prehybridization solution (6 XSSC, 0.1% SDS, 5 X Denhardt's solution, 0.1 μg / μ1 salmon sperm DNA). One hour at 65 ° C. For hybridization with the poly-dU probe, 1〃1 of poly-dU was added to 600 ng of the mRNA obtained in Example 1 (2) above, and the volume was adjusted to 14 μl. The solution was heated at 70 ° C for 10 minutes. In addition, a cDNA probe was prepared using the same amount of mRNA. The above reaction solution was added to the microarray, and the array was then incubated at 65 ° C for 18 to 20 hours, and further incubated at 30 ° C for 3 hours. After hybridization, the microarray was washed with a 2XSSC solution at 60 ° C for 15 minutes, and further with a washing solution (2XSSC, 0.1% SDS) at 60 ° C for 15 minutes, and finally washed at room temperature for 2 minutes. Wash twice with 2XSSC. The signal on the microarray was detected using an array scanner-418 (manufactured by Affimetrix).
メンプレンフィルターにおける本発明の標識ポリヌクレオチドプローブの一例 として、 A l e X a-dUTPで標識された標識ポリヌクレオチドプローブのハ イブリ特異†生について図 1_ Aに示す。 図 1— Bは、 各ポリヌクレオチドのスポ ットした位置を示す。 図 1— Aに示したように該標識ポリヌクレオチドプローブ は、 ポリリポアデニンヌクレオチド (p o 1 yA) に特異的にハイブリダィズし、 他のヌクレオチドにはハイブリダイズしないことが確認できた。 さらに、 ポリリボアデニンヌクレオチドを 1 n g (3 f mo l) 〜l g (3 pmo 1 ) の濃度範囲でスポットしたメンブレンを用いて検出感度を検討した。 その結果を図 2に示す。 図 2に示したように 1 n g (3 f mo 1 ) を 1 2mm2 に固定ィ匕した場合においても明瞭な蛍光シグナルが得られることが確認できた。 また、 l ju gの GAPDH DNA断片及ぴ pUC 1 8 プラスミド DNAを 同一メンプレン上にスポットしたフィルターを用いて、 He L a細胞由来の 10 〜40 μ gの全 RNAに上記実施例 1 (1) で調製された標識ポリ dUプローブ 溶液 1 0 ^ 1をァニーリングさせたものをハイプリダイズさせた。 その結果を 図 3に示す。 図 3に示したように pUC 1 8DNAではなく、 GAPDH DN Aをスポットしたもののみシグナルが検出された。 As an example of the labeled polynucleotide probe of the present invention in a membrane filter, the hybrid-specific production of a labeled polynucleotide probe labeled with Alexa-dUTP is shown in FIG. 1A. Figure 1-B shows the spotted position of each polynucleotide. As shown in FIG. 1-A, it was confirmed that the labeled polynucleotide probe specifically hybridized to polylipoadenine nucleotide (po1yA) and did not hybridize to other nucleotides. Furthermore, the detection sensitivity was examined using a membrane in which polyriboadenine nucleotides were spotted in a concentration range of 1 ng (3 fmol) to lg (3 pmo1). Figure 2 shows the results. As shown in FIG. 2, it was confirmed that a clear fluorescent signal was obtained even when 1 ng (3 fmo 1) was fixed at 12 mm 2 . In addition, using a filter in which ljug of the GAPDH DNA fragment and pUC18 plasmid DNA were spotted on the same membrane, 10 to 40 μg of total RNA derived from HeLa cells was used as described in Example 1 (1). The labeled poly-dU probe solution 10 ^ 1 prepared in the above was annealed and hybridized. Figure 3 shows the results. As shown in FIG. 3, a signal was detected only on the spot of GAPDH DNA, not on pUC18 DNA.
次に、 上記 (4) で調製した DNA断片をスポットしたメンブレンを使用し、 He L a細胞と WI 1 38細胞由来の 20 μ gの全 RNAと上記実施例 1 (1) で調製したポリ dUプローブ溶液 1 0 1をアニーリングしたものをハイプリ ダイズした。 その結果を図 4に示す。 図 4一 1は、 He L a細胞由来、 図 4— 2 は WI 1 38由来の試料を用いた結果を示す。 図 4一 3は、 スポットした各遺伝 子の位置を示す。 図 4一 1及び図 4一 2より、 発現する遺伝子に応じてシグナル が検出されることが確認できた。 さらに、 従来法のノーザンプロットの結果と比 較したところ同じ発現パターンで検出されることが確認できた。  Next, using the membrane on which the DNA fragment prepared in (4) above was spotted, 20 μg of total RNA derived from HeLa cells and WI138 cells and the poly dU prepared in Example 1 (1) above were used. Annealed probe solution 101 was hybridized. Fig. 4 shows the results. FIG. 4-11 shows the results obtained using HeLa cell-derived samples, and FIG. 4-2 shows the results obtained using WI138-derived samples. Fig. 43 shows the location of each spotted gene. From FIGS. 411 and 412, it was confirmed that a signal was detected depending on the gene to be expressed. Furthermore, comparison with the results of the conventional Northern plot confirmed that the same expression pattern was detected.
DNAマイクロアレイ及び WI 38細胞由来の mRNAを用いて検討した。 そ の結果を図 5に示す。 図 5中、 使用した DNAマイクロアレイは、 データの再現 1生を見るために 96個の DNAを 2組スポットした (複製 (duplicate) してス ポットした) ものである。 矢印は、 それぞれの laの上端と下端を示す。 図 5 Aに 示したように WI 38細胞由来の mRN Aに本発明の標識ポリヌクレオチドプロ ーブがアニーリングしたものは、 哺乳類細胞由来の特異的なターゲットにハイブ リダィズすることが示された。 一方、 シァノパクテリア遺伝子のものは全く検出 しなかった。 すなわち、 シァノバクテリアは原核生物であり、 真核生物である哺 乳類とは全く DNA配列が異なるため、 ハイプリダイゼーションが起こらないた めにこのような結果になる。 この事から、 本発明の標識ポリヌクレオチドプロ一 ブは、 DNAマイクロアレイにおいても使用できることを確認した。 また同じチ ップを、 同じ mRNA調製品から従来の方法で調製された c DNAプローブによ つて検討した結果を図 5 Bに示す。 図 5の A及び Bの比較から本発明の検出方法 1S 従来法と基本的に同様の結果を示すことが確認できた。 The examination was performed using a DNA microarray and mRNA derived from WI38 cells. Figure 5 shows the results. In Fig. 5, the DNA microarray used was one in which two sets of 96 DNAs were spotted (duplicated and spotted) in order to reproduce the data. Arrows indicate the top and bottom of each la. As shown in FIG. 5A, it was shown that mRNA labeled with WI38 cells annealed with the labeled polynucleotide probe of the present invention hybridized to a specific target derived from mammalian cells. On the other hand, none of the Cyanobacteria gene was detected. This is because cyanobacteria are prokaryotes and have completely different DNA sequences from eukaryotic mammals, so no hybridization occurs and this is the result. From this, it was confirmed that the labeled polynucleotide probe of the present invention can be used in a DNA microarray. Again the same Fig. 5B shows the results obtained by examining the samples using cDNA probes prepared by the conventional method from the same mRNA preparation. From the comparison between A and B in FIG. 5, it was confirmed that the detection method 1S of the present invention showed basically the same results as the conventional method.
実施例 2  Example 2
(1) 標識ポリヌクレオチドプローブの調製  (1) Preparation of labeled polynucleotide probe
実施例 1 (1) の 1 6 3 —(11;丁?を。 3—(11;丁 、 Cy 5 -dUT P (アマシャム 'フアルマシア バイオテク社製) にかえて、 実施例 1の方法で 標識ポリヌクレオチドプローブを調製し、 それぞれ C y 3標識ポリ d Uプローブ、 C y 5標識ポリ d Uプローブとした。  Example 1 (1) 1 6 3 — (11; Ding ?. 3— (11; Ding, Cy 5 -dUTP (Amersham 'Pharmacia Biotech Co., Ltd.)) Nucleotide probes were prepared and used as a Cy3-labeled poly-dU probe and a Cy5-labeled poly-dU probe, respectively.
(2) 細胞培養、 RNA抽出  (2) Cell culture, RNA extraction
マウス RAW247細胞はヒューマンサイエンス研究資源パンク (Hum a n S c i e n c e R e s e a r c n R e s o u r c e s B a n k : HS RR B) から入手した。 実施例 1一 (2) と同様の方法で細胞の培養、 mRNAの抽 出を行なった。 RAW24 7細胞の破骨細胞への分ィ匕は、 H s u H. らの方法 (P r o c . Na t l . Ac d. S c i . USA. 9 6 : p 3 540— 3 54 5, Mouse RAW247 cells were obtained from Human Science Research Resource Punk (HumanScienceReseSearcnResoeurcesBank: HSRRB). Cell culture and mRNA extraction were performed in the same manner as in Example 11- (2). RAW247 cells were divided into osteoclasts by the method of Hsu H. et al. (Proc. Natl. Acd. Sci. USA. 96: p3540—354,
1 9 9 9年) ίこ従レヽ、 O s t e o c l a s t D i f f e r e n t i a t i o n F a c t o r (ODF) を用いた。 (1992 years) We used Osteoc, Osteoc, Last, Differen, Tia, tion, Factoor (ODF).
(3) ノ、イブリダィゼーシヨン及び検出  (3) NO, IB, and detection
未分化の RAW24 7細胞から抽出した mRNAと C y 3標識ポリ dUプロ一 ブをアニーリングさせた。 すなわち、 6 00 n gの mRNAと 1 0 1の C y 3 標識ポリ dUプローブを混合し、 7 0°Cで 1 0分処理した。 また、破骨細胞に誘 導した RAW24 7細胞から抽出した mRNAと C y 5標識ポリ dUプローブを 上記と同様にァニーリングさせた。  MRNA extracted from undifferentiated RAW247 cells was annealed with Cy3-labeled poly-dU probe. That is, 600 ng of mRNA and 101 of Cy3-labeled poly-dU probe were mixed and treated at 70 ° C for 10 minutes. In addition, mRNA extracted from RAW247 cells induced into osteoclasts and Cy5-labeled poly-dU probe were annealed in the same manner as described above.
I n t e l l i G e n e Mo u s e CH I P S e t I v e r . 1. 0 (宝酒造社製) を用い、 添付の取り扱い説明書の指示通りにハイプリダイゼー ションを行なった。 すなわち、 プレハイプリダイゼーションは、 14 ^ 1のプレ ハイブリダィゼーシヨン液 (6 X S S C、 0. 1%SDS、 5 XD e n h a r d t's溶液、 0. 1 μ g/μ 1 サケ精子 DNA) を用いて 1時間、 6 5°Cで 行った。 プロープとして上記 Cy 3、 C y 5標識ポリ dUプローブと mRNAを アニーリングさせた溶液を混合して 1 4 1とし、 マイクロアレイに添加して、 次いでアレイを 6 5 °C、 1 8〜2 0時間インキュベートし、 さらに 3 0 ° (:、 3時 間インキュベートした。 ハイブリダィゼーシヨン後、 該マイクロアレイを 6 0 °C、 1 5分間、 2 X S S C溶液で、 さらに 6 0 °C、 1 5分間、 ?先浄液 ( 2 X S S C、 0 . 1 % S D S ) で洗浄し、 最後に室温で 2回、 0 . 2 X S S Cで洗浄した。 マイクロアレイ上のシグナルは、 4 1 8アレイスキャナー (アブイメ トリックス 社製) を用いて検出した。 その結果を図 6に示す。 Hybridization was carried out using IntelliGene Mouse CH IPS et I ver. 1.0 (manufactured by Takara Shuzo) as instructed in the attached instruction manual. That is, prehybridization was performed using a 14 ^ 1 prehybridization solution (6 XSSC, 0.1% SDS, 5 X Denhardt's solution, 0.1 μg / μ1 salmon sperm DNA). Performed at 65 ° C for 1 hour. Cy3 and Cy5 labeled poly-dU probe and mRNA as probe The annealed solution was mixed to 141 and added to the microarray, then the array was incubated at 65 ° C for 18-20 hours, then further incubated at 30 ° (:, 3 hours. After the dilution, the microarray was washed with a 2XSSC solution at 60 ° C for 15 minutes, and further washed with a pre-cleaning solution (2XSSC, 0.1% SDS) at 60 ° C for 15 minutes. Finally, the plate was washed twice at room temperature with 0.2 XSSC, and the signals on the microarray were detected using a 418 array scanner (manufactured by Abimetrix) The results are shown in FIG.
図 6に示したように、 異なる蛍光物質で標識された 2種類の標識ポリヌクレオ チドプロープを組み合わせた場合においても、 従来の C y 3又は C y 5で標識さ れた c D NAプローブを用いる 2色法と同様に遺伝子の発現解析を行なうことが できることを確認した。 産業上の利用の可能性  As shown in Fig. 6, even when two types of labeled polynucleotide probes labeled with different fluorescent substances are combined, two colors using a conventional cDNA probe labeled with Cy3 or Cy5 are used. It was confirmed that gene expression analysis could be performed in the same manner as the method. Industrial applicability
本発明により、 ハイブリダィゼーシヨンにおいて有用な標識核酸プローブ、 該 プローブの調製方法及ぴ該プローブを用いた標的核酸の高感度検出方法が提供さ れる。 配列表フリーテキスト  According to the present invention, there are provided a labeled nucleic acid probe useful in hybridization, a method for preparing the probe, and a method for highly sensitive detection of a target nucleic acid using the probe. Sequence listing free text
SEQ ID N0: 1 SEQ ID N0: 1
Designed oligonucleotide primer to amplify a portion of human p53 gene Designed oligonucleotide primer to amplify a portion of human p53 gene
SEQ ID NO: 2 SEQ ID NO: 2
Designed oligonucleotide primer to amplify a portion of human p53 gene SEQ ID NO: 3  Designed oligonucleotide primer to amplify a portion of human p53 gene SEQ ID NO: 3
Designed oligonucleotide primer to amplify a portion of human p53 gene SEQ ID NO: 4  Designed oligonucleotide primer to amplify a portion of human p53 gene SEQ ID NO: 4
Designed oligonucleotide primer to amplify a portion of human p53 gene SEQ ID NO : 5  Designed oligonucleotide primer to amplify a portion of human p53 gene SEQ ID NO: 5
Designed oligonucleotide primer to amplify a portion of human pRB gene SEQ ID NO : 6 Designed oligonucleotide primer to amplify a portion of human pRB gene SEQ ID NO: 7 Designed oligonucleotide primer to amplify a portion of human pRB gene SEQ ID NO: 6 Designed oligonucleotide primer to amplify a portion of human pRB gene SEQ ID NO: 7
Designed oligonucleotide primer to amplify a portion of human pRB gene SEQ ID NO :8  Designed oligonucleotide primer to amplify a portion of human pRB gene SEQ ID NO: 8
Designed oligonucleotide primer to amplify a portion of human pRB gene Designed oligonucleotide primer to amplify a portion of human pRB gene
SEQ ID NO: 9 SEQ ID NO: 9
Designed oligonucleotide primer to amplify a portion of human GAPDH gene  Designed oligonucleotide primer to amplify a portion of human GAPDH gene
SEQ ID NO: 10  SEQ ID NO: 10
Designed oligonucleotide primer to amplify a portion of human GAPDH gene  Designed oligonucleotide primer to amplify a portion of human GAPDH gene
SEQ ID NO: 11  SEQ ID NO: 11
Designed oligonucleotide primer to amplify a portion of human pl30 gene  Designed oligonucleotide primer to amplify a portion of human pl30 gene
SEQ ID NO: 12 SEQ ID NO: 12
Designed oligonucleotide primer to amplify a portion of human pl30 gene  Designed oligonucleotide primer to amplify a portion of human pl30 gene
SEQ ID NO: 13  SEQ ID NO: 13
Designed oligonucleotide primer to amplify a portion of human pl30 gene  Designed oligonucleotide primer to amplify a portion of human pl30 gene
SEQ ID NO: 14  SEQ ID NO: 14
Designed oligonucleotide primer to amplify a portion of human pl30 gene  Designed oligonucleotide primer to amplify a portion of human pl30 gene
SEQ ID NO: 15  SEQ ID NO: 15
Designed oligonucleotide primer to amplify a portion of human pl6 gene Designed oligonucleotide primer to amplify a portion of human pl6 gene
SEQ ID NO: 16 SEQ ID NO: 16
Designed oligonucleotide primer to amplify a portion of human pl6 gene SEQ ID NO: 17  Designed oligonucleotide primer to amplify a portion of human pl6 gene SEQ ID NO: 17
Designed oligonucleotide primer to amplify a portion of human pl6 gene SEQ ID NO: 18 Designed oligonucleotide primer to amplify a portion of human pl6 gene SEQ ID NO: 18
Designed oligonucleotide primer to amplify a portion of human pl6 gene SEQ ID NO: 19  Designed oligonucleotide primer to amplify a portion of human pl6 gene SEQ ID NO: 19
Designed oligonucleotide primer to amplify a portion of human pl9 gene SEQ ID NO:20  Designed oligonucleotide primer to amplify a portion of human pl9 gene SEQ ID NO: 20
Designed oligonucleotide primer to amplify a portion of human pl9 gene SEQ ID NO :21  Designed oligonucleotide primer to amplify a portion of human pl9 gene SEQ ID NO: 21
Designed oligonucleotide primer to amplify a portion of human pl9 gene SEQ ID NO: 22  Designed oligonucleotide primer to amplify a portion of human pl9 gene SEQ ID NO: 22
Designed oligonucleotide primer to amplify a portion of human pl9 gene Designed oligonucleotide primer to amplify a portion of human pl9 gene
SEQ ID NO: 23 SEQ ID NO: 23
Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO:24  Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO: 24
Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO : 25  Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO: 25
Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO:26  Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO: 26
Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO : 27  Designed oligonucleotide primer to amplify a portion of human p27 gene SEQ ID NO: 27
Designed oligonucleotide primer to amplify a portion of human PCNA gene  Designed oligonucleotide primer to amplify a portion of human PCNA gene
SEQ ID NO:28  SEQ ID NO: 28
Designed oligonucleotide primer to amplify a portion of human PCNA gene  Designed oligonucleotide primer to amplify a portion of human PCNA gene
SEQ ID NO:29 SEQ ID NO: 29
Designed oligonucleotide primer to amplify a portion of human Ras oncogene  Designed oligonucleotide primer to amplify a portion of human Ras oncogene
SEQ ID NO : 30 SEQ ID NO: 30
Designed oligonucleotide primer to amplify a portion of human Ras oncogene Designed oligonucleotide primer to amplify a portion of human Ras oncogene
SEQ ID NO: 31 SEQ ID NO: 31
Designed oligonucleotide primer to amplify a portion of human pl8 gene SEQ ID NO : 32  Designed oligonucleotide primer to amplify a portion of human pl8 gene SEQ ID NO: 32
Designed oligonucleotide primer to amplify a portion of human pl8 gene Designed oligonucleotide primer to amplify a portion of human pl8 gene
SEQ ID NO: 33 SEQ ID NO: 33
Designed oligonucleotide primer to amplify a portion of human pl8 gene SEQ ID NO : 34  Designed oligonucleotide primer to amplify a portion of human pl8 gene SEQ ID NO: 34
Designed oligonucleotide primer to amplify a portion of human pl8 gene SEQ ID NO: 35  Designed oligonucleotide primer to amplify a portion of human pl8 gene SEQ ID NO: 35
Designed oligonucleotide primer to amplify a portion of human p21 gene SEQ ID NO:36  Designed oligonucleotide primer to amplify a portion of human p21 gene SEQ ID NO: 36
Designed oligonucleotide primer to amplify a portion of human p21 gene SEQ ID NO: 37  Designed oligonucleotide primer to amplify a portion of human p21 gene SEQ ID NO: 37
Designed oligonucleotide primer to amplify a portion of human pl4 gene Designed oligonucleotide primer to amplify a portion of human pl4 gene
SEQ ID NO : 38 SEQ ID NO: 38
Designed oligonucleotide primer to amplify a portion of human pl4 gene SEQ ID NO : 39  Designed oligonucleotide primer to amplify a portion of human pl4 gene SEQ ID NO: 39
Designed oligonucleotide primer to amplify a portion of human pl4 gene SEQ ID NO:40  Designed oligonucleotide primer to amplify a portion of human pl4 gene SEQ ID NO: 40
Designed oligonucleotide primer to amplify a portion of human pl4 gene  Designed oligonucleotide primer to amplify a portion of human pl4 gene

Claims

請 求 の 範 囲 The scope of the claims
1. 標的核酸中のポリアデ二ンヌクレオチド部分にハイブリダイズすることを 特徴とする標識ポリヌクレオチドプローブ。 1. A labeled polynucleotide probe that hybridizes to a polyadenylate nucleotide portion in a target nucleic acid.
2. ポリアデニンヌクレオチド部分が mRNAのポリリボアデニンヌクレオチ ドテールであることを特徴とする請求項 1記載の標識ポリヌクレオチドプローブ。  2. The labeled polynucleotide probe according to claim 1, wherein the polyadenine nucleotide portion is a polyriboadenine nucleotide tail of mRNA.
3. 鎖長が 50ヌクレオチド以上であることを特徴とする請求項 1記載の標識 ポリヌクレオチドプローブ。  3. The labeled polynucleotide probe according to claim 1, wherein the chain length is 50 nucleotides or more.
4. デォキシゥラシルヌクレオチド及び/又はデォキシチミンヌクレオチドか らなるポリヌクレオチドであることを特徴とする請求項 1記載の標識ポリヌタレ ォチドプローブ。  4. The labeled polynucleotide probe according to claim 1, wherein the probe is a polynucleotide comprising a deoxyperacyl nucleotide and / or a deoxythymine nucleotide.
5. 標識デォキシゥラシルヌクレオチド及び/又は標識デォキシチミンヌタレ ォチドを含有することを特徴とする請求項 1記載の標識ポリヌクレオチドプロー ブ。  5. The labeled polynucleotide probe according to claim 1, wherein the probe comprises a labeled deoxydilacil nucleotide and / or a labeled deoxythymine nutretide.
6. 放射性同位元素、 化学発光物質、 蛍光物質、 リガンドおよびレセプターか らなる群より選択される物質で標識されていることを特徴とする請求項 1記載の 標識ポリヌクレオチドプローブ。  6. The labeled polynucleotide probe according to claim 1, which is labeled with a substance selected from the group consisting of radioisotopes, chemiluminescent substances, fluorescent substances, ligands and receptors.
7. フル才レセィン、 カスケ一ドブノレー、 オレゴングリーン、 BOD I P Y、 ローダミングリーン, A l e x a F l u o r、 テキサスレツド、 Cy 3および Cy 5からなる群より選択される物質で標識されていることを特徴とする請求項 7. A claim characterized by being labeled with a substance selected from the group consisting of full-aged Resin, cascading Venorey, Oregon Green, BOD IPY, Rhodamine Green, Alexa Fluor, Texas Red, Cy3 and Cy5. Term
6記載の標識ポリヌクレオチドプローブ。 7. The labeled polynucleotide probe according to 6.
8. ポリリポアデニンヌクレオチドあるいはポリデォキシアデ-ンヌクレオチ ドを鍚型とし、 オリゴ dTをプライマーとしたヌクレオチド伸長反応を行う工程 を包含することを特徴とする請求項 1記載の標識ポリヌクレオチドプローブの調 製方法。  8. The method for preparing a labeled polynucleotide probe according to claim 1, comprising a step of performing a nucleotide extension reaction using a polylipadenine nucleotide or a polydoxyadenine nucleotide as a type I and oligo dT as a primer.
9. ヌクレオチド伸長反応がポリリボアデニンヌクレオチドを鐯型とした逆転 写反応であることを特徴とする請求項 8記載の標識ポリヌクレオチドプローブの 調製方法。  9. The method for preparing a labeled polynucleotide probe according to claim 8, wherein the nucleotide extension reaction is a reverse transcription reaction using a polyriboadenine nucleotide as a 鐯 type.
10. 铸型となるポリリポアデニンヌクレオチドあるいはポリデォキシアデ- ンヌクレオチドの鎖長が 50ヌクレオチド以上であることを特徴とする請求項 8 記載の標識ポリヌクレオチドプローブの調製方法。 10. Polylipadenine nucleotides or polydeoxyadenes that form 铸 9. The method for preparing a labeled polynucleotide probe according to claim 8, wherein the nucleotide length of the polynucleotide is 50 nucleotides or more.
11. ヌクレオチド伸長反応が、 デォキシヌクレオチド重合反応であることを 特徴とする請求項 8記載の標識ポリヌクレオチドプローブの調製方法。  11. The method for preparing a labeled polynucleotide probe according to claim 8, wherein the nucleotide extension reaction is a deoxynucleotide polymerization reaction.
12. 標識ポリヌクレオチドプローブの鎖長が 50ヌクレオチド以上であるこ とを特徴とする請求項 8記載の標識ポリヌクレオチドプローブの調製方法。  12. The method for preparing a labeled polynucleotide probe according to claim 8, wherein the length of the labeled polynucleotide probe is 50 nucleotides or more.
13. ヌクレオチド伸長反応が標識デォキシゥラシルヌクレオチド及び Z又は 標識デォキシチミンヌクレオチドを用いて行われることを特徴とする請求項 8記 載の標識ポリヌクレオチドプローブの調製方法。  13. The method for preparing a labeled polynucleotide probe according to claim 8, wherein the nucleotide extension reaction is carried out using a labeled deoxydilacil nucleotide and Z or a labeled deoxythymine nucleotide.
14. 標識デォキシゥラシルヌクレオチド 3リン酸及び/又は標識デォキシチ ミンヌクレオチド 3リン酸と非標識デォキシゥラシルヌクレオチド 3リン酸及ぴ 14. Labeled deoxyperacil nucleotide triphosphate and / or labeled deoxythyramine nucleotide triphosphate and unlabeled deoxyperacil nucleotide triphosphate and
Z又は非標識デォキシチミンヌクレオチド 3リン酸の含有モル比が 1::!〜 1 :When the molar ratio of Z or unlabeled deoxythymine nucleotide triphosphate is 1 ::! To 1:
3であるプローブ調製用反応液中で実施されることを特徴とする請求項 13記載 の標識ポリヌクレオチドプローブの調製方法。 14. The method for preparing a labeled polynucleotide probe according to claim 13, wherein the method is carried out in the probe preparation reaction solution of item 3.
15. 標識ポリヌクレオチドプローブが放射性同位元素、 化学発光物質、 蛍光 物質、 リガンドおよびレセプターからなる群より選択される物質で標識されてい ることを特徴とする請求項 8記載の標識ポリヌクレオチドプロープの調製方法。  15. The preparation of a labeled polynucleotide probe according to claim 8, wherein the labeled polynucleotide probe is labeled with a substance selected from the group consisting of a radioisotope, a chemiluminescent substance, a fluorescent substance, a ligand and a receptor. Method.
16. 標識ポリヌクレオチドプローブがフルォレセイン、 カスケードブルー、 オレゴングリーン、 BOD I PY、 ローダミングリーン, Al e xa F l uo r、 テキサスレッド、 Cy 3および Cy 5からなる群より選択される物質で標識 されていることを特徴とする請求項 15記載の標識ポリヌクレオチドプローブの 調製方法。  16. The labeled polynucleotide probe is labeled with a substance selected from the group consisting of fluorescein, Cascade Blue, Oregon Green, BODIPY, Rhodamine Green, Alexa Fluor, Texas Red, Cy3 and Cy5. The method for preparing a labeled polynucleotide probe according to claim 15, wherein
17. ポリアデ-ンヌクレオチド部分にハイプリダイズする標識ポリヌクレオ チドプロープを標的核酸を含む可能性のある試料とともに標的核酸が固定ィ匕され た担体とハイプリダイズさせる工程を包含することを特徴とする標的核酸の検出 方法。  17. A process for hybridizing a labeled polynucleotide probe that hybridizes to a polyadenylate nucleotide portion together with a sample that may contain the target nucleic acid and a carrier having the target nucleic acid immobilized thereon, the method comprising: Detection method.
18. ポリアデニンヌクレオチド部分が、 mRNAのポリリボアデニンヌクレ ォチドテールであることを特徴とする請求項 17に記載の標的核酸の検出方法。  18. The method for detecting a target nucleic acid according to claim 17, wherein the polyadenine nucleotide portion is a polyriboadenine nucleotide tail of mRNA.
19. 標識ポリヌクレオチドプローブが標識デォキシゥラシルヌクレオチド及 び/又は標識デォキシチミンヌクレオチドを含むことを特徴とする請求項 17又 は請求項 18に記載の標的核酸の検出方法。 19. If the labeled polynucleotide probe is a labeled deoxydilacil nucleotide or 19. The method for detecting a target nucleic acid according to claim 17 or 18, comprising a labeled deoxythymine nucleotide.
20. 放射性同位元素、 ィヒ学発光物質、 蛍光物質、 リガンドおよびレセプター カ^なる群より選択される物質で標識されている標識ポリヌクレオチドプローブ を用いることを特徴とする請求項 17記載の標的核酸の検出方法。  20. The target nucleic acid according to claim 17, wherein a labeled polynucleotide probe labeled with a substance selected from the group consisting of a radioisotope, a luminescent substance, a fluorescent substance, a ligand, and a receptor is used. Detection method.
21. フノレォレセイン、 カスケードブルー、 オレゴングリーン、 BOD I PY、 ローダミングリーン, Al e x a F l uo r、 テキサスレツド、 Cy 3および C y 5からなる群より選択される物質で標識されている標識ポリヌクレオチドプ ローブを用いることを特徴とする請求項 20記載の標的核酸の検出方法。  21. A labeled polynucleotide probe labeled with a substance selected from the group consisting of funolescein, Cascade Blue, Oregon Green, BOD I PY, Rhodamine Green, Alexa Fluo, Texas Red, Cy3 and Cy5. 21. The method for detecting a target nucleic acid according to claim 20, wherein:
22. a) 標的核酸を含む可能性のある第 1の試料を、 ポリアデニンヌクレオ チド部分にハイブリダィズする第 1の標識で標識されたポリヌクレオチドプロー ブとァニールさせる工程;  22. a) annealing a first sample, which may contain the target nucleic acid, with a polynucleotide probe labeled with a first label that hybridizes to a polyadenine nucleotide moiety;
b) 標的核酸を含む可能性のある、 第 1の試料とは異なる第 2の試料を、 ポリア デニンヌクレオチド部分にハイブリダイズする、 第 1の標識とは異なる第 2の標 識で標識されたポリヌクレオチドプローブとァニールさせる工程; b) a second sample different from the first sample, which may contain the target nucleic acid, is hybridized to the polyadenine nucleotide portion, and is labeled with a second label different from the first label. Annealing with a polynucleotide probe;
c) 工程 aおよび bで得られた標識ポリヌクレオチドプローブがァニールした、 標的核酸を含む可能性のある試料を、 標的核酸を固定ィヒした担体とハイプリダイ ズさせる工程;  c) hybridizing a sample, which may contain the target nucleic acid, to which the labeled polynucleotide probe obtained in steps a and b has been annealed, with a carrier on which the target nucleic acid is immobilized;
d) 固定ィ匕担体上にハイブリダィズした第 1および第 2の標識を検出する工程; および d) detecting the first and second labels hybridized on the immobilization carrier; and
e ) 検出される第 1および第 2の標識の有無または程度を比較する工程、 を包含することを特徴とする、 標的遺伝子発現の解析方法。 e) a step of comparing the presence or absence or the degree of the detected first and second labels, and a method for analyzing target gene expression.
23. フルォレセイン、 カスケードブルー、 オレゴングリーン、 BOD I PY、 ローダミングリーン, Al e x a F l uo r、 テキサスレツド、 Cy 3および C y 5からなる群より選択される物質で標識されている標識ポリヌクレオチドプ ローブを用いることを特徴とする請求項 22記載の標的遺伝子発現の解析方法。  23. A labeled polynucleotide probe labeled with a substance selected from the group consisting of fluorescein, Cascade Blue, Oregon Green, BOD I PY, Rhodamine Green, Alexa Fluo, Texas Red, Cy3 and Cy5. 23. The method for analyzing target gene expression according to claim 22, wherein the method is used.
24. ポリアデ二ンヌクレオチド部分にハイプリダイズすることを特徴とする 標識ポリヌクレオチドプローブと発現遺伝子のポリアデニンヌクレオチド以外の 部分にハイプリダイズすることを特徴とする標識ポリヌクレオチドプローブを組 み合わせて発現遺伝子を含む可能性のある試料とハイブリダイズさせる工程を包 含することを特徴とする発現遺伝子の解析方法。 24. Combination of a labeled polynucleotide probe characterized by hybridizing to a polyadenylate nucleotide portion and a labeled polynucleotide probe characterized by hybridizing to a portion other than polyadenine nucleotide of an expressed gene A method for analyzing an expressed gene, which comprises a step of hybridizing with a sample which may contain the expressed gene in combination.
25. フノレオレセイン、 カスケ一ドブノレー、 オレゴングリーン、 BOD I PY、 ローダミングリーン, Al e x a F l uo r、 テキサスレツド、 Cy 3および Cy 5からなる群より選択される物質で標識されている標識ポリヌクレオチドプ ロープを用いることを特徴とする請求項 24記載の標的核酸の解析方法。  25. A labeled polynucleotide probe that is labeled with a substance selected from the group consisting of funoleoresin, cascading vine, Oregon green, BOD I PY, rhodamine green, Alexa Fluor, Texas red, Cy3 and Cy5. 25. The method for analyzing a target nucleic acid according to claim 24, wherein the method is used.
PCT/JP2001/005783 2000-07-05 2001-07-04 Highly sensitive method of detecting nucleic acid WO2002002814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001271017A AU2001271017A1 (en) 2000-07-05 2001-07-04 Highly sensitive method of detecting nucleic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000204177A JP2004147501A (en) 2000-07-05 2000-07-05 Method for detecting dna with high sensitivity
JP2000-204177 2000-07-05
JP2001129603A JP2004147503A (en) 2001-04-26 2001-04-26 Method for detecting nucleic acid with high sensitivity
JP2001-129603 2001-04-26

Publications (1)

Publication Number Publication Date
WO2002002814A1 true WO2002002814A1 (en) 2002-01-10

Family

ID=26595453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005783 WO2002002814A1 (en) 2000-07-05 2001-07-04 Highly sensitive method of detecting nucleic acid

Country Status (2)

Country Link
AU (1) AU2001271017A1 (en)
WO (1) WO2002002814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423832A (en) * 2019-08-28 2019-11-08 华南理工大学 A kind of PCR detection primer of the Listeria monocytogenes based on specific gene target lmo0160

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853993A (en) * 1996-10-21 1998-12-29 Hewlett-Packard Company Signal enhancement method and kit
WO1999051772A1 (en) * 1998-04-07 1999-10-14 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridization assays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853993A (en) * 1996-10-21 1998-12-29 Hewlett-Packard Company Signal enhancement method and kit
WO1999051772A1 (en) * 1998-04-07 1999-10-14 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridization assays

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOLDSWORTHY S.M. ET AL.: "Variation in expression of genes used for normalization of northern blots after induction of cell proliferation", CELL. PROLIF., vol. 26, 1993, pages 511 - 518, XP002940686 *
MASAAKI MURAMATSU ET AL.: "Saibou kougaku bessatsu; genome science series (1), DNA maicro array to saishin PCR-hou", KABUSHIKI KAISHA HOUJUNSHA, 16 March 2000 (2000-03-16), pages 43 - 54, XP002940685 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423832A (en) * 2019-08-28 2019-11-08 华南理工大学 A kind of PCR detection primer of the Listeria monocytogenes based on specific gene target lmo0160

Also Published As

Publication number Publication date
AU2001271017A1 (en) 2002-01-14

Similar Documents

Publication Publication Date Title
US6500620B2 (en) Methods for amplifying and detecting multiple polynucleotides on a solid phase support
JP3433929B2 (en) Method for amplifying nucleic acid sequence
JP3514630B2 (en) Amplification and detection of nucleic acid sequences
US6376191B1 (en) Microarray-based analysis of polynucleotide sequence variations
JP5916166B2 (en) Methods and products for localized or spatial detection of nucleic acids in tissue samples
US6004755A (en) Quantitative microarray hybridizaton assays
EP4365305A2 (en) Method of detecting an analyte
JP2004535162A (en) Methods and compositions for amplification of RNA sequences
JPH025864A (en) Amplification of nucleic acid
CA2342838A1 (en) Molecular cloning using rolling circle amplification
IE882348L (en) Selective amplification of target polynucleotide sequences
JP2009505651A (en) Method for detection of microbial and antibiotic resistance markers and nucleic acid oligonucleotides therefor
WO2000047767A1 (en) Oligonucleotide array and methods of use
US20050118578A1 (en) Amplified nucleic acids and immobilized products thereof
US8435742B2 (en) Method and kit for detection/quantification of target RNA
WO2021003255A1 (en) Method and apparatus to normalize quantitative readouts in single-cell experiments
JP3883476B2 (en) Nucleic acid sequence amplification method
CN110818757A (en) Nucleotide analogs and method for screening DNA polymerase
WO2002002814A1 (en) Highly sensitive method of detecting nucleic acid
JP2002360247A (en) Nucleic acid-immobilized product
JP2004147503A (en) Method for detecting nucleic acid with high sensitivity
AU2004205118B2 (en) Method for amplifying nucleic acid sequence
JP2004147501A (en) Method for detecting dna with high sensitivity
JP2024156848A (en) Arrays and methods for detecting spatial information in nucleic acids - Patents.com
JP2001518787A (en) Nucleic acid hybridization detection system and its preparation and application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP