WO2002060154A1 - Systeme et procede permettant d"effectuer des transactions de communication a distance - Google Patents
Systeme et procede permettant d"effectuer des transactions de communication a distance Download PDFInfo
- Publication number
- WO2002060154A1 WO2002060154A1 PCT/US2001/002414 US0102414W WO02060154A1 WO 2002060154 A1 WO2002060154 A1 WO 2002060154A1 US 0102414 W US0102414 W US 0102414W WO 02060154 A1 WO02060154 A1 WO 02060154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication device
- application
- resident
- remote communication
- web server
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/14—Session management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/958—Organisation or management of web site content, e.g. publishing, maintaining pages or automatic linking
- G06F16/972—Access to data in other repository systems, e.g. legacy data or dynamic Web page generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/04—Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/60—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
- H04L67/62—Establishing a time schedule for servicing the requests
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/568—Storing data temporarily at an intermediate stage, e.g. caching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/14—Backbone network devices
Definitions
- the present invention relates to both a system and method for conducting online and
- the primary reason for this limitation is the need for a constant connection between the handheld device to carry out a real-time communication with a remote source.
- a connection may be unavailable and therefore the device
- the present invention answers the needs for practical asynchronous and real-time mobile communications and transactions by providing applications in which the logic of the developed application resides on the remote communication device, i.e., client device, thereby enabling 0 online and offline operation.
- the present invention enables real-time applications to run on a remote communication device and to receive and store data through a resident web server and resident browser on the remote communication device.
- a resident web server and resident browser By enabling local communications between the resident server and resident browser, offline communications and real-time applications can occur when the 5 device is not connected to a desired network.
- a network connection When a network connection is established, a transaction and associated data can be transmitted to the desired location on the network, such as an enterprise web server for further processing.
- the remote communication device can utilize a resident browser and hypertext transfer protocol (HTTP) to communicate with a resident web server
- low-memory applications !0 such as active server page applications or Java server page applications can be maintained locally on the remote communication device. Accordingly, such applications can be called by the enterprise web server through the resident browser of the remote communications device, regardless of connection status to the network, to conduct a necessary transaction directly on the remote communication device. Further, data for such transactions can be stored until a later '5 network connection is established for transmitting the transaction to a desired network destination, such as an enterprise's network.
- HTTP hypertext transfer protocol
- the resident browser and resident web server architecture of the present invention allows more immediate transaction processing when a network connection, preferably a wireless network connection, is reestablished with the enterprise web server.
- a network connection preferably a wireless network connection
- the transaction can be more quickly processed on an enterprise network to update necessary data and files within a variety of network applications.
- SOAP simple object access protocol
- a further aspect of the present invention is a resident browser modification control to enable a user's access to one or more resident browser functions to be limited. For instance, it may be undesirable for a user to have access to particular standard functions of an existing commercially available browser, such as Pocket Internet Explorer.
- An embodiment of the present invention enables selective customization of the browser.
- Another aspect of the present invention is a hardware interface for an application running on the remote communication device to communicate with one or more hardware peripherals connected to the remote communication device. It is often desirable for a handheld remote communication device to communicate with an attached hardware peripheral such as a printer, scanner, or the like.
- a hardware detector and interface in the present invention permits deployment of the proper extensions and drivers to enable proper communication of a connected peripheral.
- Another object of the present invention is to enable deployment and updating of files from an enterprise web server to the remote communication device.
- one or more extractable files is packaged into a second file, such as a CABinet (CAB) file, for distribution from an enterprise web server to a desired remote communication device.
- CAB CABinet
- the desired files can be extracted for carrying out operations on the device.
- a version controller may also be used to check a version of an application resident on the remote communication device and update it with a more recent version of the application from an enterprise web server.
- a security controller to prevent unauthorized access to the resident web server on the remote communication device.
- a Windows CE web server on a remote communication device does not presently have the ability to prevent non-resident requests to the resident web server, leaving the remote communication device vulnerable to unauthorized remote access.
- the remote firewall subsequently becomes vulnerable to unauthorized requests as the communication pathway will appear to be an authorized communication pathway between the remote communication device and a non-resident enterprise web server. Accordingly, a security controller is provided to prevent unauthorized access in such scenarios.
- a further aspect of the present invention is a method for communicating asynchronously with a network from a remote communication device by caching a transaction destined for the network from an application running in the resident browser as an asynchronous post object in the remote communication device when the remote communication device is not connected to the network.
- the asynchronous post object may be sent to the enterprise web server on the network from the resident web server of the device when a connection is present.
- Another embodiment of the present invention includes a method for persistent storage of application data for an application running on a remote communication device.
- a typical active server page receives a transaction through a traditional PC browser, such as Internet Explorer or Netscape Navigator
- session and application objects are created to preserve the data when a user, for instance, alternates between applications.
- a handheld browser does not provide this functionality, the present invention enables the creation of session objects and application objects for applications running on the remote communication device.
- a development template for a web application creation tool is implemented for a developer to create an application for use on the remote communication device.
- plug-ins are used to extend the capabilities of existing active server page and java server page creation tools to accommodate the template.
- scripts created with the development template may be validated for compatibility with the handheld remote communication device on which the application will run.
- a deployment wizard utilizing CAB files is used to distribute the developed applications to the remote communication device.
- FIG. 1 is a relational block diagram of the client-side (remote communication device) architecture of an embodiment of the present invention.
- FIG. 2 is a relational block diagram of the development environment for an application of
- FIG. 3 is a block diagram of a client browser in an embodiment of the present invention.
- FIG. 4 is a relational block diagram illustrating the processing of an asynchronous post
- FIG. 5 is a block diagram of application and session objects for an application running on
- a client device in an embodiment of the present invention.
- FIG. 6 is a relational block diagram of version control processing in an embodiment of
- FIG. 7 is a relational block diagram illustrating the processing of a remote procedure call
- FIG. 8 is a relational block diagram of database binding in an embodiment of the present
- FIG. 9 is a relational block diagram of security controls in an embodiment of the present
- FIG. 10 is a relational bock diagram of hardware and signature capture data transfer in an
- FIG. 1 1 is a relational block diagram of application deployment in an embodiment of the
- FIG. 12 is a relational block diagram of a SOAP parser interface for a resource connector
- FIG. 13 is a directory tree diagram of an exemplary client web server directory structure
- FIG. 14 is a flow diagram of an exemplary installation process of the present invention.
- FIG. 15 is a flow diagram of an exemplary post-reboot installation process of the present invention.
- FIG. 16 is a flow diagram of an exemplary execution process of a device sync page in the present invention.
- FIG. 17 is a flow diagram of an exemplary execution process of a sync svr initial installation sequence in the present invention.
- FIG. 18 is a flow diagram of an exemplary execution process of a sync svr normal synchronization sequence in the present invention.
- FIG. 19 is a flow diagram of an exemplary SOAP call from an active server page process i 0 of the present invention.
- FIG. 20 is a directory tree diagram of an exemplary remote web server directory structure in the present invention.
- ActiveX Objects - compiled code that can be dynamically referenced from an application during execution on computing platforms manufactured and sold by Microsoft Corporation, Redmond, Washington.
- Enterprise Application an enterprise application is a program used by an enterprise employee that empowers them to perform their assigned tasks by allowing them to input and extract enterprise data.
- HTTP HyperText Transport Protocol
- HTTP is the communications protocol used to connect to servers on the World Wide Web. HTTP's primary function is to establish a connection with a Web server and transmit HTML pages to the client browser.
- IDE Integrated Development Environment
- J-ScriptTM Microsoft Corporation's implementation of the JavaScriptTM supporting creation of ActiveXTM objects.
- JavaScript - JavaScript is a popular scripting language that is widely supported in Web browsers and other Web tools. JavaScript is easier to use than Java, but not as powerful and deals mainly with the elements on the Web page. On the client, JavaScript is maintained as source code embedded into an HTML document.
- Java Servlet A Java application that runs in a Web server or application server and provides server-side processing, typically to access a database or perform e-commerce processing. It is a Java-based replacement for CGI scripts and proprietary plug-ins written in C and C++ for specific Web servers (ISAPI, NSAPI). Because they are written in Java, servlets are portable between servers and operating systems.
- Scripting Language Ascii text which can be embedded in an HTML page and subsequently interpreted and executed by an HTML browser.
- SSJS Server Side Java Script
- SSJS includes a library of objects and functions for accessing databases, sending e-mail and performing other tasks.
- SOAP Simple Object Access Protocol
- SOAP is a protocol from Microsoft for accessing objects on the Web.
- SOAP employs XML syntax to send text commands across the
- SOAP Internet using HTTP.
- SOAP is supported in COM, DCOM, Internet Explorer, and Microsoft's
- XML extensible Markup Language
- XML is an open standard for describing data from the W3C.
- XML is used for defining data elements on a Web page and business-to-business documents.
- XML uses a similar tag structure as HTML; however, whereas HTML defines how elements are displayed, XML defines what those elements contain.
- HTML uses predefined tags, but XML allows tags to be defined by the developer of the page. Thus, virtually any data items, such as product, sales representative, and amount due, can be identified, allowing Web pages to function like database records.
- XML supports business-to-business transactions and is expected to become the dominant format for electronic data interchange.
- the present invention provides a system and method for the communication of a remote communication device (client device), including handheld computers, personal digital assistants
- PDAs personal computers
- the present invention preferably enables such devices to transfer data over a network to an enterprise web server.
- an enterprise web server e.g., a remote communication device utilizing Microsoft Windows CE operating system and a Windows CE web server, those of ordinary skill in the art will appreciate that other operating systems and web servers may be adapted for use in the present invention.
- FIG. 1 shows a client-side architecture for a remote communication device 20 in the system of the present invention.
- the client device 20 can establish a local or network connection with a web server through a data transfer protocol 50.
- HTTP provides a suitable protocol for such communications, which may occur via a traditional wire connection, such as a modem and telephone line, or wirelessly.
- the client device 20 is provided with a resident web browser 100, such as Microsoft Pocket Explorer, capable of communications with both a network and a resident web server 200 through HTTP protocol 50.
- the resident browser 20 communications preferably include the ability to call Html or ASP pages, either from the resident web server 200 or from a network web server 700 (Fig. 8).
- the resident browser 100 can call an application 205, such as an active server page, from the resident web server 200 to enable a user to conduct a transaction with the called application 205 running in the resident server 200.
- transactions can be carried out locally by a user of the client device 20.
- the resident web server 200 is preferably for operation in the WinCE environment, thus suited for operation on a client device 20 such as a handheld computer.
- the resident web server 200 is preferably for operation in the WinCE environment, thus suited for operation on a client device 20 such as a handheld computer.
- the 200 accepts calls for the page/application 205 from the resident web browser 100.
- the desired page is called, it is returned from the resident web server 200 to the resident browser 100 for viewing and action by a user.
- Data that is received or data objects called by the application 205 are transferred between the application 205 and a resident database 300 through a database interface 400.
- the application 205 Preferably, the
- database interface 400 is ADOCE 3.0, and the database 400 is Windows CE compatible.
- the client device database 300 is updated from the web server 700 (Fig. 8) that may operate in variety of operating systems 30, such as Windows, Unix, or Linux.
- the rules and mapping for a database binding operation 762 are created by database tool 760 (Fig. 8).
- Database binding tool 760 is a graphical tool for creating and storing these rules, mappings, and database metadata as, for example, an XML document 730.
- DB Binding object 320 executes XML documents containing binding instructions to update records, delete records, create tables, delete tables, and the like, in database 300 of the client device 20.
- the ASP application 205 accesses the resident database 300 through ActiveX Data Objects (ADO) 400.
- Database schedule executable module (abrundbsync.exe) is an executable file that, when called, executes data preparation for a given application for all registered users.
- database filter module provides a tool to create a client database structure for an application and to map tables and fields for the client database from a server resident database.
- the database filter also provides the mechanism by which a database package can be linked to an accompanying data filtering object which has been implemented, by the application developer, to perform application and user specific transformations on data extracted by the database filter from the server resident database.
- the database filter When executed, the database filter creates an XML document representing the table mappings, relationships, and filters that have been created with the tool. This XML document is later used by a data filtering object to prepare application and user specific data.
- Database synchronization object module (abdbsync.dll) enables creation of a client database transformation file which will subsequently be downloaded to a device.
- the database synchronization object opens a table created by a console component of an administrative component 750 (Fig. 6) which lists the database packages which must be run for a given application and whether these database packages are to be run by abrundbsync.exe on a schedule or run dynamically as each user synchronizes.
- the database synchronization object provides a method that is called by abrundbsync.exe which retrieves all of the users from a table created by the console and for a given application 5 creates all of the database packages which are to be run on the schedule for each user.
- the database synchronization object also provides a method allowing the synchronization server to pass a username as a parameter. This method retrieves all of the applications assigned to the given user from a table maintained by the console. For each application, the method prepares the database packages which are to be run dynamically for the given user by checking a [0 table which contains this information. Once the database synchronization object has completed preparation of database packages, the synchronization server is able to look in the directory assigned to the user for any database transformation files and prepare them for download to the device.
- all client files associated with the architecture of the present .5 invention are located on the client device 20 (Fig. 1) using a consistent directory architecture.
- the "root" directory for the client device 20 is located in a main system directory 1001 of the "Program Files" directory of the client device 20.
- Home directory 1005 for the client device 20 contains the default page for the system along with several associated pages that give the device user access to the functionality of the 10 present invention and the applications installed on the client device 20. Exemplary associated pages are listed in Table 1 :
- the default application (default.asp) provides the default interface.
- the first time the default application is run it checks a flag to see if the device is a new device which has just installed the components of the present invention. If the device is new, it immediately runs the Synchronization Executive to install the users applications and supporting databases.
- the client synchronization application (absync.asp) provides a button labeled "sync" which is used to execute a device synchronization operation.
- the "sync” button is pressed the synchronization executive (abdosync.asp) is called to execute the synchronization operation.
- the synchronization application also provides a total of the pending asynchronous post operations and the date and time of the most recent synchronization operation.
- the server module synchronization executive (abdosync.asp) is called when the synchronization button is activated on the synchronization application (absync.asp) page.
- the synchronization executive (abdosync.asp) performs two main tasks: (1) executes pending asynchronous post calls and (2) calls the synchronization server to perform (i) application version control, (ii) synchronization of user data, and (iii) component version control.
- a virtual bin directory 1007 and database directory 1009 are also included within home directory 1005 of the client device 20.
- Monitor directory 1015 contains pages which provide information on the status of the client device 20 such as battery level, memory level, and installed applications.
- the monitoring pages are located in their own virtual directory to allow a unique virtual path to directly access the monitoring pages from a remote browser.
- Table 2 provides an exemplary page included in monitor directory 1015 of the client device 20:
- a virtual bin directory 1017 and database directory 1019 are also included within the monitor directory 1015.
- a system administrator is able to view status information of client devices 20 from the monitor directory [0 1015 in real-time.
- a monitoring module is implemented on the network web server 700 using applets and servlets and, as a result, is accessible remotely over the web.
- ASP pages running in the CE web server 200 respond to requests with status information regarding the client device 20.
- the monitoring service allows an administrator to determine which users are connected, view the battery and available memory levels of the connected 5 devices from the respective monitor directory 1015 (Fig. 13) and view statistical information about the client device 20 and user such as the time elapsed since the last communication with the network web server 700 and the versions of applications and system components that have been installed on the client device 20.
- Apps directory 1025 contains an application O directory 1030 for each application installed on the client device 20.
- bin directory 1035 contains all web pages and associated files that comprise an application.
- Db directory 1040 contains any database files associated with application files in the adjacent bin directory 1035.
- Bin directories are configured as "virtual directories" on the client device's local web server 200 (Fig. 1) to facilitate easy navigation and file linking in applications.
- the network web server 700 with which the client device 20 communicates similarly has consistent remote server directory structure 1700 with installation root 1701 to facilitate operation of the system server modules.
- Home directory 1710 of the network web server 700 contains the web applications that provide access to system services and supporting files.
- a virtual login directory 1712, virtual bin directory 1714, and database directory 1716 are subdirectories of the home directory 1710 for the remote web server 700 .
- Utilities directory 1720 of the network web server 700 contains files that are used by server modules to accomplish miscellaneous tasks such as CAB file creation.
- a bin directory 1721 is a subdirectory of the utilities directory 1720.
- Users directory 1732 of the network web server 700 contains subdirectories for each client device user 1732 with a temp directory 1734 for each user where files are placed in preparation for download to the user's device 20.
- Applications directory 1740 of the network web server 700 contains application subdirectories 1742 in which database package (dbpkg) subdirectories 1744 for each application are contained.
- Components directory 1750 of the network web server 700 contains three subdirectories: ASP 1760, processor 1780, and device 1770.
- ASP directory 1760 contains a home subdirectory 1762 and monitor 1764 subdirectory.
- Processor directory 1780 contains a subdirectory 1772 and 1774 for each supported processor and any components which are dependent on the target processor. These directories also contain the web server files corresponding to each supported processor.
- Device subdirectory 1770 contains a folder 1782 and 1784 for each supported device and any components which must be compiled specifically for the corresponding device such as the abdevio.dll (Table 3).
- resident browser 100 includes a user interface (UI) component 110, a hardware component 120, and a signature capture component 130.
- UI component 110 depicted in FIG. 3, is a customized interface for adding and removing functionality from a third party client device browser 100, such as Pocket Internet Explorer.
- Feature removal 112 allows removal or disabling of a function of the browser 100. For example, it may be desirable to limit an employee's ability to access the Internet from the client device 20. Feature removal 112 thus enables unauthorized Internet access from the .0 browser 100 to be disabled.
- custom buttons 114 and custom menus 116 provide direct access to applications and transactional controls from resident browser 100.
- a button calling a particular application such as a calculation application, may be added to resident browser 100.
- the application is immediately called 5 from the resident web server 200 and available for use. Accordingly, tasks are simplified by the customized menus and buttons.
- hardware component 120 in client device 20 enables an application to access hardware peripherals of the client device 20.
- hardware component 120 communicates with peripheral controls, such as 122, 124, 126, and !0 128.
- peripheral controls include scanner control 122, printer control 124, magnetic card reader (MCR) control 126, and serial input/output (I/O) control 128.
- Scanner control 122 provides access to a barcode read, for example, connecting or installed in the client device 20.
- Printer control 124 supports a variety of printers through a specific printer API, depending on the printer, and an application hardware layer.
- MCR control 126 supports a magnetic card reader connecting or installed in client device 20.
- Serial I/O control 128 directly accesses the serial port of client device 20, supporting synchronous and asynchronous reading from the port.
- signature capture component 130 enables capturing of a signature from a stylus to the client device 20.
- a signature can be saved, such as a GIF format graphics file, for encoding/decoding 132 and can be transferred over a network to the web server 700 in a SOAP envelope.
- COM component object model
- resident web server 200 of client device 20 includes a version controller 210, a deployment and configuration controller 220, and a security controller 230.
- FIG. 6 shows version controller 210 providing version control services for an ASP application 205, as well as other client device 20 components and files.
- Network web server 700 delivers applications, version updates, and necessary components via transfer protocol 50 to client device 20.
- a user may initiate version
- controller 210 to check network web server 700 for latest releases of components and applications.
- a console component of the administrative component 750 enables configuring and administering installation via a web interface.
- the console maintains several tables which contain key information about the system, such as user information, application information, user to application assignments, and the like. Preferably these tables are managed using Microsoft SQL Server.
- Offline applications and components are downloaded to the client device 20 via version control services 210.
- Administrative component 750 is preferably implemented with a Web application. Version control 210 is the process of updating the applications that have been deployed to client device 20 and, if necessary, the ActiveX controls and/or the device web server 200.
- Version control 210 is initiated by the user of the client device 20 as changes made to the client device 20 configuration during version control 210 may necessitate reboot of the client device 20.
- the homepage/main menu application on the client device 20 has a "sync" button which will allow the user to perform many functions including version control 210.
- the "sync" button is clicked the following sequence of events takes place: (1) the client device 20 transmits any pending Asynchronous Post transactions; (2) the client device 20 performs version control of the applications; (3) the client device 20 performs database synchronization; and (4) the client device 20 performs version control of the system and resident web server components.
- Version control and synchronization of the applications, system components, and database is initiated by the device using a SOAP request to the network web server 700.
- This SOAP request includes XML documents indicating the versions of applications and system components currently installed on the client device 20.
- the network web server 700 Upon receipt of this request, the network web server 700 checks for any new versions of applications or components for the user and type of client device sending the request and prepares a file for any new versions for the client device 20.
- CAB file For Windows-powered client devices 20, a CAB file is sent to the client device 20 in response to the version control SOAP request.
- This CAB file includes any new applications for the user, any updated or new system components for the device, and the database transformations necessary for the user.
- a device synchronization page allows the device to transfer all pending asynchronous requests stored in the device to the network web server 700, to call the synchronization server for updates to the installed components, applications and data, and to call the deployment engine in the device to run and install the updates received.
- the device sync page connects to the local database 300 (Fig. 1) and retrieves all pending asynchronous post calls at step 1304. For each request retrieved at step 1306, a SOAP object is called to make the synchronous call to the network web server at step 1308. Response envelopes are written to the log at step 1310. After all asynchronous posts are executed, the device sync page sends a SOAP call to the sync server at step 1314. The path received from the call is used to request the download from the server at step 1316. A call to the deployment object in the device is made to unpack the CAB files received at step 1318. A call to the device database manager is made to create, update and/or remove database structures, and populate tables with the received data at step 1320. A subsequent call to the deployment manager is made if the updates received require a reboot of the device at step 1322.
- sync svr abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviations: abbreviation server
- the synchronization server module (absyncsvr.dll) 1250 is a COM+ component that is invoked by the client synchronization application (absync.asp) to perform application version control, database synchronization, and component version control.
- the synchronization server 1250 provides a method which retrieves the manufacturer and model of the client device 20 and the user operating the client device 20.
- the synchronization server 1250 uses this information to select the client device 20 dependent components for the client device 20, the applications assigned to the user, and the database setup files for the user.
- the synchronization server 1250 packages these files and returns them to the calling device 20.
- the synchronization server 1250 looks in the folder assigned to the user performing the synchronization operation for an XML document defining the tasks which it must perform. For each application installed on the client device 20, the synchronization server 1250 checks to see if there is a new version of the application available and for the location of the new application. After retrieving all new or updated applications, the synchronization server 1250 must determine whether it must call the data synchronization executive to dynamically retrieve application data for the user or whether the application data has been previously prepared in which case the synchronization server 1250 must determine the location of the already prepared database transformation file.
- the synchronization server 1250 After retrieving the database transformation file, the synchronization server 1250 checks to see if there are any new or updated system components for the device being used and retrieves any such components as well as checks for a new configuration file for the client device 20. After retrieving all files necessary for download, the synchronization server 1250 uses a packager module (abpackager.dll) to create a download file of all of the necessary files, places this download file in the current user's subdirectory in the temp directory, and returns this location to the client device 20 of the caller who initiated the process. Packager module (abpackager.dll) provides a method allowing a caller to set the URL of the main web server. When creating a CAB file for the default applications, this URL will be included in the CAB file and will be set in the registry when the CAB file is executed.
- a packager module (abpackager.dll)
- the path is used to retrieve the data files and proceed to pack the same in the CAB file at step 1412.
- the Sync Svr then retrieves any device dependant components and pack them in a second CAB file at step 1414. All CAB files (applications, data, device specific components) are repacked and compressed in a final CAB file at step 1416. The path of the location of this CAB file is returned at step 1418. Step 1420 ends the process. Referring to FIG. 18, execution of sync svr 1250 during normal synchronization is shown.
- the normal sync differs from the "initial install" in Fig. 17 in that the checks 1510, 1516, 1524, 1528, 1532 (Fig.
- the sync svr 1250 retrieves the list of application at step 1508, the sync svr 1250 checks the admin db for new versions of the application at step 1510. If a new version exists, the sync svr 1250 retrieves the new version of the application and packs it in a CAB file at step 1512.
- the sync svr 1250 checks the admin db for changes to the default application at step 1245 and 1516 (Fig. 15). If a new version exists, the new default application is retrieved and packed in a CAB file at step 1518. A call is then made to the abdbSync.dll with user name to determine data requirements at step 1520. The data files returned are then packed in a CAB file at step 1522.
- the sync svr 250 checks the admin db for new versions of processor or OS components at step 1524. New versions of processors and OS components are retrieved and packed in a CAB file at step 1526. The sync svr 250 checks the admin db for new versions of OEM and model components at step 1528.
- the new components are retrieved and packed in a CAB file at step 1530.
- the sync svr 250 checks the admin db for new versions of the webserver for the specific OS and processor at step 1532. If a new version exists, the new components are retrieved and packed in a CAB file at step 1534. A user packager then takes all the Cab files created for the particular device and packs them in a global CAB file at step 1538.
- a security controller 230 enforces security policy in the client device 20.
- a system administrator establishes a security policy that will be consistently enforced throughout all phases of execution of the system.
- the first option available to administrators of the system is whether users are allowed to initially access the system from beyond the local firewall. If the administrator chooses to prevent initial access to the system from beyond the firewall, devices which request the logon/authentication page from beyond the local area network will automatically be denied access.
- the system of the present invention supports communication using both HTTP and
- HTTPS HyperText Transfer Protocol
- the security policy in effect dictates whether normal or secure posts are used in transmissions which are controlled by the system.
- a developer has the option to use either HTTP or HTTPS as he or she sees fit.
- From network web server 700 administrators can determine whether HTTP or HTTPS protocols are required for data transmission between client device 20 and remote network operating system 30. Determination of normal or secure posts occurs via security controller 230 based on settings associated with application 205.
- users may be required to have client certificates which can be authenticated by authentication handler 770. A user logging into the system will receive an installation containing a client certificate assigned to user/device by the digital certificate server 780.
- each transmission between client device 20 and remote web server 700 will include authentication of the client certificate by the server 700 and an authentication of the server 700 by the browser 100 (Fig. 1) of the client device 20.
- an administrative component 750 (Fig. 6) a system administrator is able to revoke client certificates if necessary and set expiration time for client certificates.
- security controller 230 preferably controls external, i.e. non-resident requests, from outside of the network, limiting access and communication to only specified external web servers. Further, security controller 230 protects unauthorized external pages of remote web server 700 from being run from client browser 100 by an unauthorized requester, including not only the client device user, but an external request proxying through the client browser 100.
- application object 260 and session object 265 for an ASP application 205 are shown.
- An interface for persistent storage available to resident web server 200 are made available through an application object 260 and a session object 265.
- Data and features associated with an application and session may be stored in the respective objects.
- Datatypes such as integer, string, boolean, and the like, can persist on client device 20 as a user
- the present invention extends the capability of a client operating system, such as Windows CE, which is otherwise unequipped to provide for persistent storage of application data associated with an application object 260 and session object 265.
- remote procedure call component 240 and asynchronous post object 245 are communication components utilizing a SOAP envelope 250 for data transfer and
- FIG. 7 shows remote procedure call component 240 providing client device 20 access to remote server-resident COM objects 724 and Java objects 728. Calling for a server-resident object is invoked from a script of the ASP application 205. If the client device 20 is offline, an error is sent in a SOAP envelope to indicate remote server status. If the client device 20 is
- remote server SOAP broker 720 reads the procedure call 240 from the MethodName header of the SOAP envelope 250 and calls the procedure and gets the response.
- the response from the procedure is sent back in another SOAP envelope saving the response in the HTTP body and the procedure name concatenated with 'Response' in the MethodName HTTP header.
- the MessageType HTTP header is set to CallResponse.
- an asynchronous post object 245 in the client device 20 caches a transaction 247, preferably in XML format, when the client device 20 is offline from the network web server 700.
- a transaction 247 preferably in XML format
- stored posts in a client device queue are sent to remote web server 700 in a SOAP envelope 250 containing an XML document via HTTP 50. Postings can be triggered from the client device 20 through a triggering component,
- :0 including, for example, a user-activated manual trigger, a time interval trigger, or a trigger activated upon each new request being processed, i.e., a new request triggers an attempt to send all cached posts.
- Server module synchronization executive (abdosync.asp) (Table 1) calls Asynchronous Post Objects on the client device 20 as queued SOAP requests and are sent by the executive from the client device 20 to the SOAP router on the main server 700. The responses from these objects are packaged in SOAP envelopes by the SOAP router and returned to the synchronization executive where the executive deposits each return envelope in the log repository.
- the format of the log repository is as follows: (Application Name); (Asynchronous Post ID); (Response SOAP Envelope).
- the Application Name is the name of the application that made the asynchronous post SOAP call.
- the Asynchronous Post ID is an application defined ID which is used by the application to associate the log entry with the call or transaction to which the response corresponds.
- the Response SOAP Envelope holds the actual XML envelope received in response to the asynchronous call that was made.
- asynchronous post handler 270 receives SOAP enveloped requests from the client device 20, and performs a transaction matching the SOAP request.
- the requests are handled by a user-defined transaction involving, for example, calls to an Enterprise Resource Planning (ERP) system, a database, or any other enterprise resource, and results will be sent back.
- ERP Enterprise Resource Planning
- an execution process 1600 of a SOAP call from an ASP 205 (Fig. 1) for generating an asynchronous post object 245 (Fig. 1) is offline or passing the request to a remote server when online is shown.
- a SOAP call is initiated at step 1602.
- Step 1604 determines whether the SOAP call is asynchronous, offline, or synchronous, online. If offline, an asynchronous object is created at step 1612 from abSOAP.dll.
- a SOAP envelope is created from the object and an identification is assigned. The object is saved in asynchronous- post queue at step 1616, ending execution at step 1618.
- a synchronous object is created from abSOAP.dll at step 1606.
- a SOAP envelope is created from the object and sent as a request to remote server at step 1608.
- a response is accessed the remote client application from the object. Execution ends at step 1618.
- FIG. 2 shows web development environment 500, that may include, for example, standard web development tools such as Microsoft Front page 2000, NetObjects Fusion and Microsoft Visual Interdev.
- Visual development plug-in 510 extends a standard development tool to enable a developer to create an application 520 with attributes and functionality compatible with the client device on which the application will run. For example, screen size limitations are not adequately handled by standard web development tools, and visual development plug-in 510 enables application 520 to be optimally created for use under such limitations.
- Visual development plug-in 510 includes templates for use of components of the present invention, such as hardware, SOAP, and the like, in application 520.
- Visual development plug-in 510 also includes a script-checking component for validating compatibility of a developed application with the client device platform components.
- deployment of application 520 and components 610 to client device 20 via a deployment wizard is shown.
- deployment package 600 is a CABinet (CAB) file.
- CAB files are deployed, preferably securely via HTTPS 51, to client device 20.
- initial deployment includes client/resident web server files 205 for installation on the client device 20.
- Other deployed files, both initial and future distributions to client device 20, include CAB files containing extractable client components 612, client settings 203, and client applications 205.
- a file is extracted and installed from its respective CAB on client device 20 for resident use.
- web server 200 files are the files necessary to run Microsoft CE Web Server. These files are preferably asp.dll, httpd.dll, httpdsvc.exe and httpdadm.dll.
- the CE Web Server files are deployed in one CAB file 600 which is compiled for the target processor.
- the CAB files for the CE Web Server are stored in the "WebServers" subdirectory of the installation directory on the remote web server 700.
- the files are preferably named for the processors that they support, i.e., "WebServerSH3.cab", "WebServerMIPS.cab”.
- the CE Web Server is deployed with a set of default settings. These settings can later be changed through an XML document that is passed to the device during synchronize operations.
- the CAB file which installs the resident web server sets a registry entry which is a flag indicating that the device should be reset. This flag is read by other controls after synchronization to determine when the device must be reset.
- Components 612 preferably include the following files listed in Table 3:
- Device components extend the capabilities of the device's web server 200 and browser 100 and also facilitate many specific operations on the client device 20.
- ASP Extender (abaspex.dll) provides the application and session objects for ASP applications running on the client device as detailed in Table 4:
- SessionID Integer
- Configuration component provides an interface to make configuration changes to the device operating system and to retrieve the current configuration settings as set forth in Table 5:
- Database Manager (abdbmgr.dll) performs transformations against the local client database as prescribed by the XML document delivered to the client device 20 during synchronization operations.
- Deployment Manager (abdeploy.dll) performs resetting of the client device 20 and unzipping of deployed files as detailed in Table 6:
- Table 6 deploy->resetDevice(CheckFlag Reboots the device; If CheckFlag parameter is set, As Boolean): void control checks the registry for a flag indicating reset before starting reboot.
- RunFile As Decompresses a ZIP file; If RunFile parameter is Boolean: void set, control runs the file after decompressing it.
- Device I/O component provides access to device specific hardware extensions such as scanners and magnetic card readers.
- the version of this component deployed to the client device 20 is dependent on the manufacturer and model of the device.
- Device information (abinfo.dll) component is used to retrieve the versions of the applications installed and the versions of the components of the present invention installed as detailed in Table 7:
- Device status component (abstatus.dll) is used by the monitoring application to retrieve the current running status of the device as detailed in Table 8:
- Security filter provides security to the CE web server 200. Using ISAPI filter the server is instructed to discard all requests except those coming from the local host or the central server 700.
- Shell manager (abshell.dll) enables applications to modify the shell of the operating system of the client device 20.
- SOAP manager component (absoap.dll) provides remote applications with two objects: SyncPost and AsyncPost that allow SOAP calls to be made from the client device 20. Synchronous SOAP calls object enables the creation and transmission of SOAP envelopes and retrieval of responses to transmitted requests as detailed in Table 9: Table 9
- a VARIANT containing the response converted to it's corresponding COM type At the time of writing, complex types are not supported. A NULL value will be present when: a) the type is unknown b) a transmission error occurred
- Asynchronous Post Object provides a similar interface as the SyncPost object for creating a SOAP envelope but stores all envelopes created in a cache where they will remain until the next user-initiated synchronization operation.
- Standard I/O component (abstdio.dll) provides access to non-device specific hardware functionality which includes: access to the serial port, capture of touch-screen input, and access to portable printers. The object supporting portable printers supports printing through the infrared port.
- TAPI component (abtapi.dll) provides access to the telephone application programming interface.
- FIG. 20 of the installation directory on network web server 700.
- This subdirectory has two subdirectories: "Device” 1770 and "Processor” 1780.
- the "Device” subdirectory has a folder, such as folders 1772 and 1774, for each supported device with the device specific CAB file (i.e. abdevio.dll cab) stored in that folder.
- the "Processor” subdirectory has a folder for each supported processor with the components corresponding to the processor.
- the CAB files for the processor-specific components are stored in the Processor subdirectory root and are named for the processors that they support (i.e. "ComSH3.cab", “ComMIPS.cab”)
- each application can consist of several files (ex: .jpg's, .asp's, .htm's ). Each application has a directory in which all files comprising the application are stored. To deploy a new application or new version of an application a system administrator will use an administration controller to indicate the location of the application files
- Application data preferably includes an XML document which includes all database transformations corresponding to a given application and user. This XML document will be interpreted by the abdbmgr.exe component on the client device 20 in order to make the necessary database modifications. Each application data XML document will be stored in the corresponding user's directory in the "Users" subdirectory 1730 of the installation directory on
- XML documents preferably include those listed in Table 10 below:
- application data XML documents 780 are deployed as a CAB file 600 (Fig.2).
- This CAB file is created by the database filter tool 760 in the manner specified by the end user.
- the database filter tool 760 performs the required database tasks and data preparation then updates the corresponding XML document 730 appropriately.
- the database filter tool 760 then packages the XML document 730 in a device independent CAB file 600 (Fig.2).
- Initial installation to the client device 20 of the present invention includes the download and installation of the system components common to all client devices.
- initial installation sequence 1100 is shown.
- the client device user will open the client web browser 100 on the client device 20 and enter the URL of the network web server 700 extended with the services of the present invention. This request is routed to the default page.
- the network web server 700 responds with a logon/authentication page which is delivered using SSL.
- the security policy in effect may prevent this page from being sent if that the policy specifies that the page will only be delivered to client devices inside the firewall and if a client requests the page from outside the firewall.
- the Setup DLL completes the installation by rebooting the device at step 1135.
- post-reboot initial installation sequence 1200 is shown.
- the device After the reboot, the device will open the resident web browser 100 and load the default ASP page 1245. This page will read a flag indicating that a new installation is in progress.
- the default ASP application After completing the installation, the default ASP application returns to the client home page which allows users to select an application, if multiple applications are deployed, or, if only one application is deployed the initial page of the application will be displayed.
- an embodiment of the present invention includes an interface for
- a SOAP envelope is preferably securely communicated from the client device 20 to the network web server 700 preferably via HTTPS 51.
- the SOAP enveloped transaction is passed from the network web server 700 to resource connector 800 interfaced with SOAP parser 810.
- resource connector 800 is a Java 2 Platform
- the present invention advantageously provides a cross-platform solution that supports devices and servers using the most popular operating systems in use across the world.
- the present invention provides a consistent development and administration framework for end-users allowing them to use the technologies with which they are most comfortable.
- Preferred compatibility of the present invention with client device platforms is detailed in Table 11 :
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/002414 WO2002060154A1 (fr) | 2001-01-25 | 2001-01-25 | Systeme et procede permettant d"effectuer des transactions de communication a distance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/002414 WO2002060154A1 (fr) | 2001-01-25 | 2001-01-25 | Systeme et procede permettant d"effectuer des transactions de communication a distance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002060154A1 true WO2002060154A1 (fr) | 2002-08-01 |
Family
ID=21742271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/002414 WO2002060154A1 (fr) | 2001-01-25 | 2001-01-25 | Systeme et procede permettant d"effectuer des transactions de communication a distance |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2002060154A1 (fr) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6509473B1 (en) * | 2000-10-16 | 2003-01-21 | The United States Of America As Represented By The Secretary Of The Air Force | Energetic triazolium salts |
WO2005022404A1 (fr) * | 2003-09-03 | 2005-03-10 | International Business Machines Corporation | Navigation hors connexion avec un dispositif mobile |
WO2007138584A2 (fr) * | 2006-05-29 | 2007-12-06 | Sandisk Il Ltd. | Architecture de serveur web local distribuée pour dispositifs de stockage |
US8190703B2 (en) | 2008-04-23 | 2012-05-29 | Microsoft Corporation | Extensible browser platform for web applications |
US8533847B2 (en) | 2007-05-24 | 2013-09-10 | Sandisk Il Ltd. | Apparatus and method for screening new data without impacting download speed |
US8839403B2 (en) | 2007-12-31 | 2014-09-16 | Sandisk Il Ltd. | Local proxy system and method |
US8849856B2 (en) | 2008-12-16 | 2014-09-30 | Sandisk Il Ltd. | Discardable files |
US8886760B2 (en) | 2009-06-30 | 2014-11-11 | Sandisk Technologies Inc. | System and method of predictive data acquisition |
US9015209B2 (en) | 2008-12-16 | 2015-04-21 | Sandisk Il Ltd. | Download management of discardable files |
US9020993B2 (en) | 2008-12-16 | 2015-04-28 | Sandisk Il Ltd. | Download management of discardable files |
US9104686B2 (en) | 2008-12-16 | 2015-08-11 | Sandisk Technologies Inc. | System and method for host management of discardable objects |
US9600787B2 (en) | 2013-05-16 | 2017-03-21 | Toshiba Global Commerce Solutions Holdings Corporation | Deferring authentication and resource loading while starting an enterprise system |
CN109922148A (zh) * | 2019-03-04 | 2019-06-21 | 网易(杭州)网络有限公司 | 跨平台服务方法、装置和系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5999941A (en) * | 1997-11-25 | 1999-12-07 | Micron Electronics, Inc. | Database access using active server pages |
WO2000048084A1 (fr) * | 1999-02-10 | 2000-08-17 | Tibersoft Corporation | Systeme internet avec accelerateur et agent de fonctionnement hors reseau |
GB2350452A (en) * | 1999-01-28 | 2000-11-29 | Ibm | Method and apparatus for providing responses for requests of off-line clients |
-
2001
- 2001-01-25 WO PCT/US2001/002414 patent/WO2002060154A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5999941A (en) * | 1997-11-25 | 1999-12-07 | Micron Electronics, Inc. | Database access using active server pages |
GB2350452A (en) * | 1999-01-28 | 2000-11-29 | Ibm | Method and apparatus for providing responses for requests of off-line clients |
WO2000048084A1 (fr) * | 1999-02-10 | 2000-08-17 | Tibersoft Corporation | Systeme internet avec accelerateur et agent de fonctionnement hors reseau |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6509473B1 (en) * | 2000-10-16 | 2003-01-21 | The United States Of America As Represented By The Secretary Of The Air Force | Energetic triazolium salts |
WO2005022404A1 (fr) * | 2003-09-03 | 2005-03-10 | International Business Machines Corporation | Navigation hors connexion avec un dispositif mobile |
US10331755B2 (en) | 2003-09-03 | 2019-06-25 | International Business Machines Corporation | Transport and administration model for offline browsing |
US9811603B2 (en) | 2003-09-03 | 2017-11-07 | International Business Machines Corporation | Transport and administration model for offline browsing |
WO2007138584A2 (fr) * | 2006-05-29 | 2007-12-06 | Sandisk Il Ltd. | Architecture de serveur web local distribuée pour dispositifs de stockage |
WO2007138584A3 (fr) * | 2006-05-29 | 2008-01-24 | Sandisk Il Ltd | Architecture de serveur web local distribuée pour dispositifs de stockage |
US8706799B2 (en) | 2006-05-29 | 2014-04-22 | Sandisk Il Ltd. | Method and apparatus to exchange information with a local storage device |
US8725840B2 (en) | 2006-05-29 | 2014-05-13 | Sandisk Il Ltd. | Autonomous local web-server updating |
US8533847B2 (en) | 2007-05-24 | 2013-09-10 | Sandisk Il Ltd. | Apparatus and method for screening new data without impacting download speed |
US9137249B2 (en) | 2007-12-31 | 2015-09-15 | Sandisk Il Ltd. | Local proxy system and method |
US8839403B2 (en) | 2007-12-31 | 2014-09-16 | Sandisk Il Ltd. | Local proxy system and method |
US8190703B2 (en) | 2008-04-23 | 2012-05-29 | Microsoft Corporation | Extensible browser platform for web applications |
US9020993B2 (en) | 2008-12-16 | 2015-04-28 | Sandisk Il Ltd. | Download management of discardable files |
US9104686B2 (en) | 2008-12-16 | 2015-08-11 | Sandisk Technologies Inc. | System and method for host management of discardable objects |
US9015209B2 (en) | 2008-12-16 | 2015-04-21 | Sandisk Il Ltd. | Download management of discardable files |
US8849856B2 (en) | 2008-12-16 | 2014-09-30 | Sandisk Il Ltd. | Discardable files |
US8886760B2 (en) | 2009-06-30 | 2014-11-11 | Sandisk Technologies Inc. | System and method of predictive data acquisition |
US9600787B2 (en) | 2013-05-16 | 2017-03-21 | Toshiba Global Commerce Solutions Holdings Corporation | Deferring authentication and resource loading while starting an enterprise system |
CN109922148A (zh) * | 2019-03-04 | 2019-06-21 | 网易(杭州)网络有限公司 | 跨平台服务方法、装置和系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020161826A1 (en) | System and method for remote communication transactions | |
US20060173951A1 (en) | System and method for transfer, control, and synchronization of data | |
US7117504B2 (en) | Application program interface that enables communication for a network software platform | |
US10636084B2 (en) | Methods and systems for implementing on-line financial institution services via a single platform | |
US6341314B1 (en) | Web-based virtual computing machine | |
US7890961B2 (en) | Method and apparatus for providing desktop application functionality in a client/server architecture | |
US7249131B2 (en) | System and method for dynamically caching dynamic multi-sourced persisted EJBs | |
US6996599B1 (en) | System and method providing multi-tier applications architecture | |
US6922695B2 (en) | System and method for dynamically securing dynamic-multi-sourced persisted EJBS | |
US7665094B2 (en) | Systems and methods for mobile communication | |
JP5534520B2 (ja) | スマートカードにブラウザベースでアクセスするシステムおよび方法 | |
US8769127B2 (en) | Cross-domain solution (CDS) collaborate-access-browse (CAB) and assured file transfer (AFT) | |
CA2782674C (fr) | Systeme et procede pour obtenir un acces web virtuel | |
US20130124695A1 (en) | Mobility Device Method | |
US20030233483A1 (en) | Executing software in a network environment | |
US20030195951A1 (en) | Method and system to dynamically detect, download and install drivers from an online service | |
JP2003514279A (ja) | 共有インターネットストレージリソース、そのユーザインタフェースシステム及び方法 | |
US20060136564A1 (en) | Bi-directional communication between a web client and a web server | |
JP2002533830A (ja) | クライアント−サーバネットワークにおいてクライアントノードの近隣プログラムを判定するための装置および方法 | |
CA2494590A1 (fr) | Procede et systeme pour executer des applications sur un dispositif mobile | |
WO2002060154A1 (fr) | Systeme et procede permettant d"effectuer des transactions de communication a distance | |
RU2237275C2 (ru) | Сервер и способ (варианты) определения программного окружения клиентского узла в сети с архитектурой клиент/сервер | |
US20030158895A1 (en) | System and method for pluggable URL pattern matching for servlets and application servers | |
US8725797B2 (en) | Providing access to managed content in rich client application environments | |
WO2004012094A1 (fr) | Systeme et procede de transfert, commande et synchronisation de donnees |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |