Nothing Special   »   [go: up one dir, main page]

WO2001021296A1 - Mehrdimensionaler antrieb für arbeitsmaschinen - Google Patents

Mehrdimensionaler antrieb für arbeitsmaschinen Download PDF

Info

Publication number
WO2001021296A1
WO2001021296A1 PCT/EP2000/009283 EP0009283W WO0121296A1 WO 2001021296 A1 WO2001021296 A1 WO 2001021296A1 EP 0009283 W EP0009283 W EP 0009283W WO 0121296 A1 WO0121296 A1 WO 0121296A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
linear
linear drive
guide carriage
guide
Prior art date
Application number
PCT/EP2000/009283
Other languages
English (en)
French (fr)
Inventor
Günther Schmidt
Original Assignee
Siat Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siat Gmbh filed Critical Siat Gmbh
Publication of WO2001021296A1 publication Critical patent/WO2001021296A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/28Electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the invention relates to a system with at least two linear motors for the at least two-dimensional drive of the work platform or the tool of a work machine such.
  • a work platform, a work point, a machining tool, etc. have to be moved very precisely in several dimensions, e.g. B. in a position control device or positioning device, also called an actuator.
  • a work platform, a work point, a machining tool, etc. must be set in multidimensional oscillating movements, e.g. B. in mixing machines, vibrators or certain machine tools. All of these devices and machines require a drive that enables multi-dimensional movements.
  • a mixer with an oscillating drive for a movably mounted slide which can be set into vibrations in all three spatial axes, namely X-axis, Y-axis and Z-axis.
  • three nested frames, each of which can be oscillated by means of leaf springs are arranged, namely an X-frame, a Y-frame and a Z-frame, each of which is engaged by an electric oscillating drive.
  • the three swing frames which are not identical to each other, but are designed differently and support each other, transfer their respective swinging motion indirectly to the slide with the mixing container.
  • a device for driving a tool in particular for driving a drill bit that can be used in dentistry, is known, with a first and a second oscillating motor, which can be electric linear motors and which engage a swashplate, their Transfers wobble movement to a tool carrier via Bowden cables so that an inserted tool can perform a wobbling scraping movement for dental treatment.
  • a multi-dimensional drive the individual vibratory drives or linear drives are not identical to one another, and the type of coupling of the vibratory drives does not permit independent movements and movement transmissions to the tool.
  • the invention is therefore based on the object for a work machine such.
  • multidimensional, ie at least two-dimensional drive to create a drive system that is modular is built - thus customer-specific tasks can be solved inexpensively and quickly - and enables independent transfers of the movements initiated by the individual modules in the desired axis directions.
  • Characteristic of the drive system according to the invention is first of all that there are at least two (2D drive), z. B. three (SD drive) intersecting linear drive modules that are identical to each other, so that the drive system is modular, i.e. can easily be expanded from a 1 D version to a 3D version without having to change the individual modules in any way.
  • the linear drive modules of the same design also have corresponding physical properties.
  • the individual linear drive modules are not connected to one another in such a way that the linear movement of one linear drive module can only be transferred to the work platform or the tool of the machine after the moments of inertia of the other linear drive module / modules have been overcome, but rather the linear drive modules of the same type stand in such a way with each other and with the work platform or the tool via at least one force transmission element or coupling module that, despite movement overlaps, completely independent movement transmissions from the individual linear drive modules to the work platform or the tool of the working machine can be realized.
  • the individual linear drive modules which are preferably supplied with electrical energy, each have a stationary stator in which immerses a runner without difficulty, which, according to a further feature of the invention, is designed as a guide carriage guided on a linear guide for the linear movement in the X-axis, Y-axis, etc., each of which is attached to an axially acting spring element with, in particular, electronically controlled Spring force is supported.
  • the linearly movable guide slides of the linear drive modules are operatively connected to the work platform or the tool of the work machine.
  • each of the linear motors can transmit its forces and movements at any time, but controlled independently of one another, without play to the work platform or the tool.
  • all three spatial axes there are therefore position controls, positioning tasks, precisely vector-oriented impulses, an infinite number of variants of movement sequences and vibrating movements of substances contained in containers on the work platform, with simultaneous measurement of various substance properties such as. B. viscosity, weight, etc. possible, and that by precisely controllable reproducible motion sequences with the respective changeable parameters time, amplitude, force and frequency.
  • Very strong spatially directed impulses and high-frequency three-dimensional movements with frequencies up to approx. 1 kHz and accelerations up to approx. 160 m / s 2 with amplitudes of z. B. plus / minus 15 mm (total distance, e.g. 30 mm).
  • the drive system according to the invention allows z. B. on a positioning device, precise, backlash-free positioning without hysteresis errors, exact reproducibility and, above all, high dynamics of force and motion transmission, since the energy content of the linear motor of each linear drive module can be dimensioned much higher, based on its mass than with previously known drive systems, whereby high power to weight ratios can be achieved
  • FIG. 1 shows the top view of an individual linear drive module of the modularly constructed multidimensional drive system with a first embodiment of the linear guide
  • FIG. 3 shows the top view of a linear drive module with a second embodiment of the linear guide as an alternative to FIG. 1,
  • FIG. 4 shows a perspective schematic illustration of two intersecting linear drive modules for an at least two-dimensional drive
  • FIGS. 5 shows in perspective a force transmission element or coupling module inserted between two linear drive modules (X axis and Y axis) as an alternative to the force transmission elements of FIGS. 5, and
  • FIG. 7 expands the 2D drive of FIG. 6 to a 3D drive.
  • the linear drive module of FIGS. 1 and 2 has a stationary linear motor stator 10, in which a rotor 1 1 is immersed, which, for example, on a linear guide for the linear movement.
  • B. in the X-axis guided slide 12 is formed.
  • the guide carriage 12 can also be coupled directly to a stator.
  • the linearly movable guided guide carriage 12 is supported by a connecting element 13 on an axially acting spring element 14 with controlled spring force.
  • the guide carriage 12 is in operative connection with a work platform (not shown) or with a tool of a positioning device, a machine tool, etc.
  • the linear guide for the linear movement of the respective one-dimensionally movable guide carriage consists of two guide rods 15, 16 arranged parallel to each other, on which the respective guide carriage 12 is guided with virtually no play via slide bearings and / or roller bearings.
  • the guide rods 15, 16, like the stator 10, are fixed in place, specifically by means of fastening elements 17, 18.
  • the guide elements for linear guide of the respective guide carriage 12 consist of parallelogram arms 19, 20, 21, 22, which may consist of relatively wide leaf springs arranged vertically.
  • a parallelogram should result on both sides of the guide carriage 12.
  • the parallelogram arms 19 - 22, which extend approximately vertically from the guide carriage 12, are articulated thereon via joints 23, 24, 25, 26. Due to this positive engagement, the guide carriage 12 is free of play, very torsionally rigid and practically frictionless linearly movable.
  • the linear guide can thus be realized with very low weight and low moment of inertia, which increases the dynamics and strength of the linear drive module enormously.
  • the parallelogram arms 19 - 22, which oscillate at a small angle, are also equipped with a device for compensating for the offset in height of the circular arc, with joints 27, 28, 29, 30 which are connected via leaf spring elements 31, 32, 33, 34 are resiliently attached.
  • the spring element 14 counteracts the driving force of the linear motor and forms the necessary element for generating a mechanical resonant circuit, which in turn forms the prerequisite for generating a high mechanical efficiency of the linear drive module according to the invention. Since the practical use of the linear drive module in the multi-dimensional drive system according to the invention requires a wide range of the working frequency in the working machine with the finest gradations, it is necessary to adapt the spring force or the modulus of elasticity of this axially acting spring element 14 to the respective linear movement frequency so that at all set working frequencies, you can always work with the maximum efficiency. This high requirement can be met well with a spring with electronic control, which has the same effects on the physical process of the drive as different purely mechanical springs.
  • FIG. 4 shows, for a two-dimensional (2D) drive, two intersecting linear drive modules, in principle of the type of FIG. 1, ie. H. with intersecting guide carriages 12 of the X axis and the Y axis.
  • the force transmission elements or coupling modules between the two linear drive modules or their guide carriages 12 of the X-axis and Y-axis are not shown in FIG. 4, but in FIGS. 5, 6 and 7.
  • FIG. 5 schematically shows the guide carriage 12X which is linearly movable in the X axis and the guide carriage which is linearly movable in the Y axis. sledge 12Y.
  • On the guide carriage 12X at least two fixed in the X-axis direction, but flexible in the Y-axis direction, power transmission elements or coupling modules 35, 36 such.
  • B. leaf springs attached, and at least two fixed in the Y-axis direction, but flexible in the X-axis force transmission elements or coupling modules 37, 38 are also on the guide carriage 12Y also such.
  • the articulation of the power transmission elements in the desired direction is indicated by the articulated axes 39X, 40X, 41X, 42X.
  • FIG. 5 becomes a 3D drive if - advantageously for reasons of symmetry - at least two symmetrically opposite linear drive modules for the Z-space axis are arranged below the component 47 and are also connected to the latter via a force transmission element such as, for , B. leaf spring are in operative connection. While the power transmission elements shown in Fig. 5 35, 36, 37, 38 for the X-axis and Y-axis lie in vertical planes, the force transmission elements (not shown) for the Z-axis lie in a horizontal plane.
  • FIG. 6 Another type of force transmission element between two intersecting linear drive modules is shown in FIG. 6.
  • a force transmission element or coupling piece 50 is installed on the guide carriage 49 of the X axis, which on the one hand participates in the linear movements of the guide carriage 49 and on the other hand by means of at least one transverse to the X- Axially arranged guide rod 51, 52 on the guide carriage 49 in the Y direction can be moved back and forth.
  • the coupling piece 50 carries on its upper side a guide rod 53 lying in the X direction, to which the guide carriage 54 of the Y axis is articulated by means of articulated bearings 55, in such a way that linear freedom of movement for the guide rod 53 remains in the bearing 55.
  • the one-dimensional X and Y movements introduced via the X-axis guide carriage 49 and the respective one-dimensional X and Y movements initiated via the Y-axis guide carriage 54 can in turn be transmitted independently of one another to the coupling piece 50, which, as a result of undisturbed movement overlaps, can be any experiences the desired surface movement and transmits it to the work platform or positioning platform, which is to be fastened by means of fastenings 56, 57, 58, 59 on the upper side of the coupling piece 50.
  • FIG. 7 shows how the 2D drive of FIG. 6 easily becomes a 3D drive.
  • the coupling piece 50 is mounted on a coupling plate 60 via the fastenings 56, 57, 58, 59 which are extended downwards, and below the coupling plate 60 the linear drive module for the Z-axis is arranged with its guide slide 61, at the top end of which there is a Articulated head 62 a rod 63 is articulated, which at its upper end in turn via a joint head (not shown in Fig. 7) on the underside of the Coupling plate 60 attacks for transmission of motion in the Z direction.
  • the X and Y movements of the coupling piece 50 can be superimposed on Z axis movements lying transversely thereto.
  • the rod ends 62 permit pivoting movements of the rod 63 on all sides.
  • the working platform or positioning platform 64 arranged on the fastenings 56, 57, 58, 59 above the coupling piece 50 is shown in FIG. 7.
  • the guide carriages of the linear drive modules for the X-axis, the Y-axis and the Z-axis can be guided to their linear guidance on guide rods, as shown in principle in FIGS. 1 and 2, or on parallelogram arms, as shown in principle in FIG. 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

Um für eine Arbeitsmaschine wie z.B. Positioniergerät, Mischmaschine, Werkzeugmaschine oder dergl. mit wenigstens zweidimensionalem Antrieb ein Antriebssystem zu schaffen, das modular aufgebaut ist und das voneinander unabhängige Übertragungen der von den einzelnen Modulen eingeleiteten Bewegungen in die gewünschten Achsrichtungen ermöglicht, wird erfindungsgemäss ein Antriebssystem vorgeschlagen mit wenigstens zwei sich kreuzenden, unabhängig voneinander betreibbaren gleichartigen Linearantriebsmodulen (X-Achse, Y-Achse) mit jeweils einem ortsfesten Stator (10), in den ein Läufer (11) eintaucht, der als ein an einer Linearführung für die Linearbewegung in der X-Achse, Y-Achse etc. geführter Führungsschlitten (12) ausgebildet ist, der sich jeweils an einem axial wirkenden Federelement (14) mit gesteuerter Federkraft abstützt, wobei das X bzw. Y-Achsen-Linearantriebsmodul (2D-Version) bzw. das Z-Achsen-Linearantriebsmodul (3D-Version) bzw. der jeweilige Führungsschlitten mit der Arbeitsplattform bzw. mit dem Werkzeug in Wirkverbindung stehen.

Description

Mehrdimensionaler Antrieb für Arbeitsmaschinen
B E S C H R E I B U N G
Die Erfindung betrifft ein System mit wenigstens zwei Linearmotoren für den wenigstens zweidimensionalen Antrieb der Arbeitsplattform bzw. des Werkzeuges einer Arbeitsmaschine wie z. B. Positioniergerät, Mischmaschine, Werkzeugmaschine oder dergl.
In der Technik gibt es viele Bedarfsfälle, bei denen eine Arbeitsplattform, ein Arbeitspunkt, ein Bearbeitungswerkzeug etc. mehrdimensional ganz genau bewegt werden müssen, z. B. bei einem Lagerege- lungs- Gerät bzw. Positioniergerät, auch Aktuator genannt. Außerdem gibt es viele Bedarfsfälle, bei denen eine Arbeitsplattform, ein Arbeitspunkt, ein Bearbeitungswerkzeug etc. in mehrdimensionale Schwingbewegungen versetzt werden müssen, z. B. bei Mischmaschinen, Rüttelmaschinen oder auch bei bestimmten Werkzeugmaschinen. Alle diese Geräte und Arbeitsmaschinen bedürfen eines An- triebes, der die mehrdimensionalen Bewegungen ermöglicht.
Aus der DE-U 93 07 761 .0 ist bereits ein Mischer mit einem Schwingantrieb für einen beweglich gelagerten Objektträger bekannt, der in allen drei Raumachsen, nämlich X-Achse, Y-Achse und Z- Achse in Schwingungen versetzbar ist. Dabei sind drei ineinander verschachtelte, mittels Blattfedern jeweils für sich schwingfähige Rahmen aufgehängt angeordnet, nämlich ein X-Rahmen, ein Y-Rah- men und ein Z-Rahmen, an denen jeweils ein elektrischer Schwingantrieb angreift. Die drei Schwingrahmen, die untereinander nicht gleichartig, sondern unterschiedlich ausgebildet sind und die sich gegenseitig abstützen, übertragen ihre jeweilige Schwingbewegung mittelbar auf den Objektträger mit dem Mischbehälter. Schon die Ungleichheit der drei Schwingrahmen, auch bezüglich ihres Massenträgheitsmoments, erfordert eine stark unterschiedliche Behand- lung bzw. Steuerung der drei Schwingantriebe, wodurch der Betrieb des bekannten Mischers hinsichtlich der Erzielbarkeit ganz bestimmter gewünschter mehrdimensionaler Schwingbewegungen erschwert ist. Außerdem ist durch die Art der gegenseitigen Abstützung der drei Schwingrahmen beim bekannten Mischer die Gefahr nicht ausge- schlössen, daß bei der Übertragung der unterschiedlichen Schwingbewegungen auf den Objektträger das Massenträgheitsmoment des einen Schwingrahmens die Bewegung des anderen Schwingrahmens und schließlich die Bewegung des Objektträgers beeinflußt, wodurch voneinander unabhängige mehrdimensionale Bewegungen des Objektträgers nicht mehr möglich sind.
Aus der DE-A-196 41 120 ist eine Vorrichtung zum Antrieb eines Werkzeuges, insbesondere zum Antrieb eines in der Zahnmedizin einsetzbaren Bohrmeißels bekannt, mit einem ersten und einem zweiten Schwingmotor, die elektrische Linearmotoren sein können und die an einer Taumelscheibe angreifen, die ihre Taumelbewegung über Bowdenzüge auf einen Werkzeugträger überträgt, so daß ein eingesetztes Werkzeug eine taumelnde schabende Bewegung zur Zahnbehandlung ausführen kann. Auch bei diesem Konzept eines mehrdimensionalen Antriebes sind die einzelnen Schwingantriebe bzw. Linearantriebe nicht untereinander gleichartig, und die Art der Kopplung der Schwingantriebe läßt voneinander unabhängige Bewegungen und Bewegungsübertragungen auf das Werkzeug nicht zu.
Der Erfindung liegt daher die Aufgabe zugrunde, für eine Arbeitsmaschine wie z. B. Positioniergerät, Mischmaschine, Werkzeugmaschine oder dergl. mit mehrdimensionalem, d. h. wenigstens zweidimensio- nalem Antrieb ein Antriebssystem zu schaffen, das modular aufgebaut ist - somit kundenspezifische Aufgabenstellungen kostengünstig und schnell lösbar sind-, und das voneinander unabhängige Übertragungen der von den einzelnen Modulen eingeleiteten Bewegungen in die gewünschten Achsrichtungen ermöglicht.
Diese Aufgabe wird erfindungsgemäß mit einem Antriebssystem mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Charakteristisch für das erfindungsgemäße Antriebssystem ist zunächst einmal, daß es wenigstens zwei (2D-Antrieb), z. B. drei (SD- Antrieb) sich kreuzende Linearantriebsmodule aufweist, die untereinander gleichartig sind, so daß das Antriebssystem modular aufgebaut ist, d.h. von einer 1 D-Version in einfacher Weise bis zur 3D-Version erweitert werden kann, ohne die einzelnen Module irgendwie abändern zu müssen. Die gleichartig ausgestalteten Linearantriebsmodule weisen auch entsprechend gleichartige physikalische Eigenschaften auf. Die einzelnen Linearantriebsmodule sind dabei nicht so mitein- ander verbunden, daß die Linearbewegung des einen Linearantriebsmoduls nur nach Überwindung der Massenträgheitsmomente auch des oder der anderen Linearantriebsmoduls/- module auf die Arbeitsplattform bzw. das Werkzeug der Arbeitsmaschine übertragen werden kann, sondern die gleichartigen Linearantriebsmodule stehen derart untereinander sowie mit der Arbeitsplattform bzw. dem Werkzeug über jeweils wenigstens ein Kraftübertragungselement bzw. Kopplungsmodul in Wirkverbindung, daß trotz Bewegungsüberlagerungen voneinander völlig unabhängige Bewegungsübertragungen von den einzelnen Linearantriebsmodulen auf die Arbeitsplattform bzw. das Werkzeug der Arbeitsmaschine realisierbar sind.
Die vorzugsweise mit Elektroenergie versorgten einzelnen Linearantriebsmodule weisen jeweils einen ortsfesten Stator auf, in den beruh- rungslos ein Läufer eintaucht, der nach einem weiteren Merkmal der Erfindung als ein an einer Linearführung für die Linearbewegung in der X-Achse, Y-Achse etc. geführter Führungsschlitten ausgebildet ist, der sich jeweils an einem axial wirkenden Federelement mit ins- besondere elektronisch gesteuerter Federkraft abstützt. Die linear beweglichen Führungsschlitten der Linearantriebsmodule stehen mit der Arbeitsplattform bzw. mit dem Werkzeug der Arbeitsmaschine in Wirkverbindung.
Jedenfalls kann beim erfindungsgemäßen Antriebssystem jeder der Linearmotoren seine Kräfte und Bewegungen jederzeit beliebig, aber unabhängig voneinander gesteuert, spielfrei auf die Arbeitsplattform bzw. das Werkzeug übertragen. In allen drei Raumachsen sind daher Lageregelungen, Positionieraufgaben, genau vektoriell gerichtete Im- pulse, unendlich viele Varianten von Bewegungsabläufen und Rüttelbewegungen von Stoffen, die in Behältern der Arbeitsplattform enthalten sind, bei gleichzeitiger Messung verschiedener Stoffeigenschaften wie z. B. Viskosität, Gewicht etc. möglich, und zwar durch genau steuerbare reproduzierbare Bewegungsabläufe mit den jeweils veränderbaren Parametern Zeit, Amplitude, Kraft und Frequenz. Dabei werden sehr starke räumlich gerichtete Impulse und hochfrequente dreidimensionale Bewegungsabläufe mit Frequenzen bis über ca. 1 kHz und Beschleunigungen bis über ca. 160 m/s2 bei Amplituden von z. B. plus/minus 15 mm (Gesamtweg also z. B. 30 mm) erreicht.
Das erfindungsgemäße Antriebssystem ermöglicht angewendet z. B. auf ein Positioniergerät eine präzise spielfreie Positionierung ohne Hysteresefehler, eine genaue Reproduzierbarkeit und vor allem eine hohe Dynamik der Kraft- und Bewegungsübertragung, da der Energieinhalt des Linearmotors jeweils eines Linearantriebsmoduls, bezogen auf seine Masse, sehr viel höher dimensioniert werden kann als bei bisher bekannten Antriebssystemen, wodurch hohe Leistungsgewichte erreichbar sind.
Die Erfindung und deren weitere Merkmale und Vorteile werden an- hand der in den Figuren schematisch dargestellten Ausführungsbeispiele näher erläutert. Es zeigt:
Fig. 1 die Draufsicht auf ein einzelnes Linearantriebsmodul des modular aufgebauten mehrdimensionalen Antriebssystems mit einer er- sten Ausführungsform der Linearführung,
Fig. 2 die Seitenansicht auf das Linearantriebsmodul der Fig. 1 ,
Fig. 3 die Draufsicht auf ein Linearantriebsmodul mit einer zweiten Ausführungsform der Linearführung als Alternative zu Fig. 1 ,
Fig. 4 in perspektivischer schematischer Darstellung zwei sich kreuzende Linearantriebsmodule für einen wenigstens zweidimensionalen Antrieb,
Fig. 5 ebenfalls perspektivisch zwei sich kreuzende Linearantriebsmodule für den 2D-Antrieb einer Arbeitsplattform, die über Kraftübertragungselemente mit den Linearantriebsmodulen in Wirkverbindung steht,
Fig. 6 perspektivisch ein zwischen zwei Linearantriebsmodulen (X- Achse und Y-Achse) eingesetztes Kraftübertragungselement bzw. Kopplungsmodul als Alternative zu den Kraftübertragungselementen der Fig. 5, und
Fig. 7 den 2D-Antrieb der Fig. 6 erweitert zu einem 3D-Antrieb. Das Linearantriebsmodul der Fig. 1 und 2 weist einen ortsfesten Linearmotor- Stator 10 auf, in den ein Läufer 1 1 eintaucht, der als ein an einer Linearführung für die Linearbewegung z. B. in der X-Achse geführter Führungsschlitten 12 ausgebildet ist. Der Führungsschlitten 12 kann auch an einem Stator direkt angekoppelt sein. An seinem anderen Ende stützt sich der linear bewegliche geführte Führungsschlitten 12 über ein Verbindungselement 13 an einem axial wirkenden Federelement 14 mit gesteuerter Federkraft ab. Der Führungsschlitten 12 steht mit einer nicht dargestellten Arbeitsplattform bzw. mit einem Werkzeug eines Positioniergerätes, einer Werkzeugmaschine etc. in Wirkverbindung.
Die Linearführung zur Linearbewegung des jeweiligen eindimensional beweglichen Führungsschlittens besteht nach dem Ausführungsbei- spiel der Fig. 1 und 2 aus jeweils zwei zueinander parallel angeordneten Führungsstangen 15, 16, an denen der jeweilige Führungsschlitten 12 über Gleitlager und/oder Wälzlager praktisch spielfrei geführt ist. Die Führungsstangen 15, 16 sind wie der Stator 10 ortsfest befestigt, und zwar durch Befestigungselemente 17, 18.
Als Alternative zur Linearführung der Fig. 1 und 2 bestehen nach dem Ausführungsbeispiel der Fig. 3 die Führungselemente zur Linearführung des jeweiligen Führungsschlittens 12 aus Parallelogrammarmen 19, 20, 21 , 22, die aus vertikal angeordneten verhältnismäßig breiten Blattfedern bestehen können. Dabei soll sich zu beiden Seiten des Führungsschlittens 12 ein Parallelogramm ergeben. Die Parallelogrammarme 19 - 22, die vom Führungsschlitten 12 etwa senkrecht abgehen, sind an diesem über Gelenke 23, 24, 25, 26 angelenkt. Durch diesen Formschluß ist der Führungsschlitten 12 spielfrei, sehr torsionssteif und praktisch reibungsfrei linearbeweglich. Die Linearführung kann so mit sehr geringem Gewicht und geringem Trägheitsmoment realisiert werden, wodurch die Dynamik und Festigkeit des Linearantriebsmoduls enorm erhöht wird. An ihren dem Füh- rungsschlitten 12 abgewandten Außenenden sind die um einen kleinen Winkel pendelnden Parallelogrammarme 19 - 22 nach Fig. 3 noch mit einer Einrichtung zum Ausgleich des Kreisbogen-Höhenversatzes ausgestattet, mit Gelenken 27, 28, 29, 30, die über Blattfe- derelemente 31 , 32, 33, 34 nachgiebig befestigt sind.
Das Federelement 14 wirkt der Antriebskraft des Linearmotors entgegen und bildet das notwendige Element zur Erzeugung eines mechanischen Schwingkreises, der wiederum die Voraussetzung zur Erzeu- gung eines hohen mechanischen Wirkungsgrades des erfindungsgemäßen Linearantriebsmoduls bildet. Da der praktische Einsatz des Linearantriebsmoduls im erfindungsgemäßen mehrdimensionalen Antriebssystem einen weit gesteckten Rahmen der Arbeitsfrequenz bei der Arbeitsmaschine mit feinsten Abstufungen erforderlich macht, ist es erforderlich, die Federkraft bzw. den Elastizitätsmodul dieses axial wirkenden Federelements 14 so an die jeweilige Linearbewegungs- Frequenz anzupassen, daß bei allen eingestellten Arbeitsfrequenzen immer mit dem maximalen Wirkungsgrad gearbeitet werden kann. Diese hohe Anforderung läßt sich mit einer Feder mit elektronischer Steuerung, die auf den physikalischen Ablauf des Antriebs die gleichen Auswirkungen hat wie unterschiedliche rein mechanische Federn, gut erfüllen.
Fig. 4 zeigt für einen zweidimensionalen (2D) Antrieb zwei sich kreu- zende Linearantriebsmodule im Prinzip vom Typ der Fig. 1 , d. h. mit sich kreuzenden Führungsschlitten 12 der X-Achse und der Y-Achse. Die Kraftübertragungselemente bzw. Kopplungsmodule zwischen den beiden Linearantriebsmodulen bzw. deren Führungsschlitten 12 der X-Achse und Y-Achse sind in Fig. 4 nicht dargestellt, jedoch in Fig. 5, 6 und 7.
Fig. 5 zeigt schematisch den in der X-Achse linearbeweglichen Führungsschlitten 12X und den in der Y-Achse linearbeweglichen Füh- rungsschlitten 12Y. Am Führungsschlitten 12X sind wenigstens zwei in X-Achsrichtung beabstandete feste, aber in Y-Achsrichtung nachgiebige Kraftübertragungselemente bzw. Kopplungsmodule 35, 36 wie z. B. Blattfedern befestigt, und am Führungsschlitten 12Y sind wenig- stens zwei in Y-Achsrichtung beabstandete feste, aber in X-Achsrichtung nachgiebige Kraftübertragungselemente bzw. Kopplungsmodule 37, 38 ebenfalls wie z. B. Blattfedern befestigt. Die Gelenkigkeit der Kraftübertragungselemente jeweils in der gewünschten Richtung ist durch die eingezeichneten Gelenkachsen 39X, 40X, 41X, 42X an- gezeigt. Es sind also wenigstens vier (oder auch acht) sich kreuzweise gegenüberliegende sehr torsionssteife Kraftübertragungselemente 35 - 38 angeordnet, an deren den Führungsschlitten 12X, 12Y abgewandt liegenden Oberenden wiederum über Gelenke 43, 44, 45, 46 ein einstückiges kreuzförmiges Bauteil 47 mit Befestigungslöchern 48 zum Befestigen der Arbeitsplattform bzw. Positionierplattform einer Arbeitsmaschine angelenkt ist. Durch diese Art der Kopplung zweier Linearantriebsmodule kann beim Bauteil 47 jede beliebige gewünschte Flächenbewegung erzeugt werden, und zwar trotz Bewegungsüberlagerungen durch eine voneinander völlig unabhängige Übertragung der Linearbewegungen der X-Achse und der Y-Achse, d. h. ohne daß das Massenträgheitsmoment des einen Linearantriebsmoduls die Bewegung des anderen Linearantriebsmoduls behindert. Beide Linearantriebsmodule sind bei ihrer gesteuerten Bewegung energetisch entkoppelt, d. h. also auch hinsichtlich der Massenträg- heit entkoppelt, was keinen Widerspruch zur mechanischen Kopplung (Formschluß) der Ausführungsbeispiele darstellt.
Aus dem 2D-Antrieb der Fig. 5 wird ein 3D-Antrieb, wenn - mit Vorteil aus Symmetriegründen - wenigstens zwei sich symmetrisch gegen- überliegende Linearantriebsmodule für die Z-Raumachse unterhalb des Bauteils 47 angeordnet sind und mit diesem ebenfalls über ein Kraftübertragungselement wie z. B. Blattfeder in Wirkverbindung stehen. Während die in Fig. 5 dargestellten Kraftübertragungselemente 35, 36, 37, 38 für die X-Achse und Y-Achse in Vertikalebenen liegen, liegen die nicht dargestellten Kraftübertragungselemente für die Z- Achse in einer Horizontalebene.
Eine andere Art eines Kraftübertragungselements zwischen zwei sich kreuzenden Linearantriebsmodulen zeigt Fig. 6. Auf dem Führungsschlitten 49 der X-Achse ist ein Kraftübertragungselement bzw. Kopplungsstück 50 installiert, das einerseits die Linearbewegungen des Führungsschlittens 49 mitmacht und das andererseits mittels wenigstens einer quer zur X-Achse angeordneten Führungsstange 51 , 52 auf dem Führungsschlitten 49 in Y-Richtung hin- und herver- schieblich ist. Das Kopplungsstück 50 trägt an seiner Oberseite eine in X-Richtung liegende Führungsstange 53, an der der Führungsschlitten 54 der Y-Achse mittels Gelenklager 55 angelenkt ist und zwar so, daß linearer Bewegungsspielraum für die Führungsstange 53 im Lager 55 verbleibt.
Auf diese Weise können die über den X-Achsen-Führungsschlitten 49 und die über den Y-Achsen-Führungsschlitten 54 eingeleiteten jeweils eindimensionalen X- und Y- Bewegungen wiederum unabhängig von- einander auf das Kopplungsstück 50 übertragen werden, das infolge ungestörter Bewegungsüberlagerungen jede beliebige gewünschte Flächenbewegung erfährt und diese auf die Arbeitsplattform bzw. Positionierplattform überträgt, die mittels Befestigungen 56, 57, 58, 59 auf der Oberseite des Kopplungsstücks 50 zu befestigen ist.
Fig. 7 zeigt, wie aus dem 2D-Antrieb der Fig. 6 in einfacher Weise ein 3D-Antrieb wird. Dazu ist das Kopplungsstück 50 über die nach unten verlängerten Befestigungen 56, 57, 58, 59 auf einer Kopplungsplatte 60 aufgebaut, und unterhalb der Kopplungsplatte 60 ist das Linearan- triebsmodul für die Z-Achse mit seinem Führungsschlitten 61 angeordnet, an dessen Oberende über einen Gelenkkopf 62 eine Stange 63 angelenkt ist, die an ihrem oberen Ende wiederum über einen Gelenkkopf (in Fig. 7 nicht eingezeichnet) an der Unterseite der Kopplungsplatte 60 zur Bewegungsübertragung in Z-Richtung angreift. Auf diese Weise können den X- und Y- Bewegungen des Kopplungsstücks 50 quer dazu liegende Z-Achsen- Bewegungen überlagert werden. Dabei lassen die Gelenkköpfe 62 Schwenkbewe- gungen der Stange 63 nach allen Seiten zu. In Fig. 7 ist die auf den Befestigungen 56, 57, 58, 59 oberhalb des Kopplungsstücks 50 angeordnete Arbeitsplattform bzw. Positionierplattform 64 eingezeichnet.
Es versteht sich, daß nach Fig. 7 die Führungsschlitten der Linearan- triebsmodule für die X-Achse, die Y-Achse und die Z-Achse zu ihrer Linearführung geführt sein können an Führungsstangen, wie prinzipiell in Fig. 1 und 2 gezeigt, oder an Parallelogrammarmen, wie prinzipiell in Fig. 3 gezeigt.
Grundsätzlich besteht auch die Möglichkeit, pro Raumachse mehrere erfindungsgemäße Linearantriebsmodule parallel zueinander anzuordnen, die dann gesteuert in unterschiedliche Linearbewegungen versetzt werden können, um ganz bestimmte Bewegungsmuster der Arbeits- bzw. Positionierplattform bzw. des Arbeitswerkzeuges zu er- zielen.

Claims

A N S P R Ü C H E
1. System mit wenigstens zwei Linearmotoren für den wenigstens zweidimensionalen Antrieb der Arbeitsplattform bzw. des Werkzeuges einer Arbeitsmaschine wie z. B. Positioniergerät, Mischmaschine, Werkzeugmaschine oder dergl., gekennzeichnet durch wenigstens zwei sich kreuzende, unabhängig voneinander betreibbare gleichartige Linearantriebsmodule (X- Achse, Y-Achse) mit jeweils einem ortsfesten Stator (10), in den ein Läufer (1 1 ) eintaucht, der als ein an einer Linearführung für die Linearbewegung in der X-Achse, Y-Achse etc. geführter Führungsschlitten (12) ausgebildet ist, der sich jeweils an einem axial wirkenden Federelement (14) mit gesteuerter Federkaft abstützt, wobei das X bzw. Y-Achsen-Linearantriebsmodul (2D- Version) bzw. das Z-Achsen-Linearantriebsmodul (3D-Version) bzw. der jeweilige Führungsschlitten (12) mit der Arbeitsplattform bzw. mit dem Werkzeug in Wirkverbindung stehen.
2. System nach Anspruch 1 , gekennzeichnet durch einen dreidimensionalen Antrieb mit wenigstens drei Linearantriebsmodulen, wobei das Linearantriebsmodul für die Y-Achse über ein
Kraftübertragungselement bzw. Kopplungsmodul (35 - 38; 50) mit dem Linearantriebsmodul für die X-Achse und das Linearantriebsmodul für die Z-Achse mit den Linearantriebsmodulen für die X-Achse und die Y-Achse in Wirkverbindung stehen. System nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Linearführung zur Linearbewegung des jeweiligen eindimensional beweglichen Führungsschlittens (12) aus jeweils zwei zueinander parallel angeordneten Führungsstangen (15, 16) besteht, an denen der jeweilige Führungsschlitten (12) über Gleitlager und/ oder Wälzlager geführt ist.
4. System nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Führungselemente zur Linearbewegung des jeweiligen Führungsschlittens (12) aus Parallelogrammarmen (19 - 22) bestehen, die über Gelenke (23 - 26) am Führungsschlitten angelenkt sind.
System nach Anspruch 4, dadurch gekennzeichnet, daß die Parallelogrammarme (19 - 22) aus Blattfedern bestehen.
System nach Anspruch 4, dadurch gekennzeichnet, daß die pendelnden Parallelogrammarme (19 - 22) mit einer Einrichtung zum Ausgleich des Kreisbogen- Höhenversatzes ausgestattet sind.
7. System nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß als Kraftübertragungselemente bzw. Kopplungsmodule an dem bzw. an den Führungsschlitten (12X) des Linearantriebsmoduls für die X-Achse wenigstens zwei in X-Achsrichtung beab- standete feste, aber in Y-Achsrichtung nachgiebige Kraftübertragungselemente (35, 36) wie Blattfedern und an dem bzw. den Führungsschlitten (12Y) des Linearantriebsmoduls für die Y- Achse wenigstens zwei in Y-Achsrichtung beabstandete feste, aber in X-Achsrichtung nachgiebige Kraftübertragungselemente (37, 38) wie Blattfedern befestigt sind, so daß also wenigstens vier sich kreuzweise gegenüberliegende Kraftübertragungselemente angeordnet sind, an deren den Führungsschlitten abgewandt liegenden Oberseiten ein einstückiges z. B. kreuzförmiges Bauteil (47) als Basis der Arbeitsplattform bzw. Positionierplattform der Arbeitsmaschine angelenkt ist.
8. System nach Anspruch 7, dadurch gekennzeichnet, daß wenigstens zwei sich symmetrisch gegenüberliegende Linearantriebsmodule für die Z-Raumachse unterhalb des Bauteils (47) angeordnet sind und mit diesem ebenfalls über Kraftübertragungselemente wie z. B. Blattfedern in Wirkverbindung stehen.
9. System nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß zwischen zwei sich kreuzenden Linearantriebsmodulen bzw. deren Führungsschlitten (49) der X-Achse und (54) der Y-Achse ein Kraftübertragungselement bzw. Kopplungsstück (50) installiert ist, das einerseits die Linearbewegungen in der X-Achse mitmacht und das andererseits auf dem Führungsschlitten (49) der X-Achse in der Y-Achse beweglich gelagert ist, und daß an der Oberseite des die Arbeitsplattform bzw. Positionierplattform (64) tragenden Kopplungsstücks (50) der Führungsschlitten (54) des Linearantriebsmoduls der Y-Achse angelenkt ist, während an die Unterseite des Kopplungsstücks (50) über Zwischenglieder der Führungsschlitten (61 ) des Linearantriebsmoduls der Z- Achse anlenkbar ist.
10. System nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die jeweilige Federkraft bzw. der Ela- stizitätsmodul des jeweiligen axial wirkenden steuerbaren Federelements (14) so an die jeweilige Linearbewegungs-Frequenz anpaßbar ist, daß bei allen eingestellten Arbeitsfrequenzen der Arbeitsmaschine für jede Arbeitsdimension (X-Achse, Y-Achse, Z-Achse) ein jeweils maximaler Arbeitswirkungsgrad erzielbar ist.
PCT/EP2000/009283 1999-09-23 2000-09-22 Mehrdimensionaler antrieb für arbeitsmaschinen WO2001021296A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19945584.8 1999-09-23
DE19945584A DE19945584A1 (de) 1999-09-23 1999-09-23 Mehrdimensionaler Antrieb für Arbeitsmaschinen

Publications (1)

Publication Number Publication Date
WO2001021296A1 true WO2001021296A1 (de) 2001-03-29

Family

ID=7923018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009283 WO2001021296A1 (de) 1999-09-23 2000-09-22 Mehrdimensionaler antrieb für arbeitsmaschinen

Country Status (2)

Country Link
DE (1) DE19945584A1 (de)
WO (1) WO2001021296A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325456A (zh) * 2020-10-14 2023-06-23 倍福自动化有限公司 用于控制平面驱动系统的方法和平面驱动系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230022A1 (de) * 2002-07-04 2004-01-22 Gebr. Heller Maschinenfabrik Gmbh Antriebssystem sowie Vorschubachse einer Werkzeugmaschine mit wenigstens einem solchen Antriebssystem
DE10305045A1 (de) * 2003-02-06 2004-08-19 Leiner Gmbh Stanzvorrichtung
DE202012001836U1 (de) 2012-02-24 2012-04-11 Kastel Maschinenbau Gmbh Antriebseinrichtung für eine Bearbeitungsmaschine
DE102014119166B4 (de) 2014-12-19 2018-06-07 SMS Maschinenbau GmbH Schleifmaschine
DE102016205513A1 (de) * 2016-04-04 2017-10-05 Robert Bosch Gmbh Verfahren zum Transportieren eines Gutes, mehrdimensionaler Antrieb und Verarbeitungsvorrichtung
EP3958446A1 (de) * 2020-08-21 2022-02-23 Schneider Electric Industries SAS Linearmotorsystem und betriebsverfahren für ein solches

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT353151B (de) * 1973-12-24 1979-10-25 Beton Es Vasbetonipari Muevek Ruettelvorrichtung zum verdichten von koernigem und bzw. oder zaehfluessigem gut
JPS5976745A (ja) * 1982-10-27 1984-05-01 Toshiba Corp Xyテーブル
EP0218546A1 (de) * 1985-08-30 1987-04-15 Centre Suisse D'electronique Et De Microtechnique S.A. Vorrichtung für die Mikropositionierung
EP0258569A2 (de) * 1986-08-02 1988-03-09 BBC Brown Boveri AG Elektromagnetisches Stellelement
JPH01233606A (ja) * 1988-03-15 1989-09-19 Kubota Ltd Xyテーブルの機動構造
DE3813387A1 (de) * 1988-04-21 1989-11-02 Licentia Gmbh Verfahren zum betreiben eines magnetisch angetriebenen schwingfoerdergeraetes
EP0445404A2 (de) * 1990-03-09 1991-09-11 fischerwerke Artur Fischer GmbH & Co. KG Vorrichtung zur Herstellung von Bohrlöchern mit Hinterschneidung
DE9307761U1 (de) * 1993-05-22 1993-08-19 Kuston (Deutschland) GmbH, 47533 Kleve Mischer mit einem Schwingantrieb
US5259672A (en) * 1989-08-17 1993-11-09 University Of Leicester Shaking table having direct electromagnet drive
JPH06327275A (ja) * 1993-05-14 1994-11-25 Olympus Optical Co Ltd 超音波モータ
US5655836A (en) * 1995-09-01 1997-08-12 Preston Industries, Inc. Dual action shaker table using parallelogram linkages

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306464A (en) * 1977-11-08 1981-12-22 Robotics, Inc. Multi-directional mechanical positioning apparatus
DE4111889C2 (de) * 1991-04-09 1995-05-11 Mannesmann Ag Handhabungsvorrichtung
DE19532759B4 (de) * 1995-09-05 2004-07-01 Rexroth Star Gmbh Linearführungseinheit
DE19701830C2 (de) * 1996-02-07 1999-10-21 Vdw Ev Vorrichtung zur Bewegung eines Körpers im Raum
DE19758916B4 (de) * 1996-09-06 2011-12-08 Bosch Rexroth Mechatronics Gmbh Linearführungseinheit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT353151B (de) * 1973-12-24 1979-10-25 Beton Es Vasbetonipari Muevek Ruettelvorrichtung zum verdichten von koernigem und bzw. oder zaehfluessigem gut
JPS5976745A (ja) * 1982-10-27 1984-05-01 Toshiba Corp Xyテーブル
EP0218546A1 (de) * 1985-08-30 1987-04-15 Centre Suisse D'electronique Et De Microtechnique S.A. Vorrichtung für die Mikropositionierung
EP0258569A2 (de) * 1986-08-02 1988-03-09 BBC Brown Boveri AG Elektromagnetisches Stellelement
JPH01233606A (ja) * 1988-03-15 1989-09-19 Kubota Ltd Xyテーブルの機動構造
DE3813387A1 (de) * 1988-04-21 1989-11-02 Licentia Gmbh Verfahren zum betreiben eines magnetisch angetriebenen schwingfoerdergeraetes
US5259672A (en) * 1989-08-17 1993-11-09 University Of Leicester Shaking table having direct electromagnet drive
EP0445404A2 (de) * 1990-03-09 1991-09-11 fischerwerke Artur Fischer GmbH & Co. KG Vorrichtung zur Herstellung von Bohrlöchern mit Hinterschneidung
JPH06327275A (ja) * 1993-05-14 1994-11-25 Olympus Optical Co Ltd 超音波モータ
DE9307761U1 (de) * 1993-05-22 1993-08-19 Kuston (Deutschland) GmbH, 47533 Kleve Mischer mit einem Schwingantrieb
US5655836A (en) * 1995-09-01 1997-08-12 Preston Industries, Inc. Dual action shaker table using parallelogram linkages

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EVERETT W.D.: "Flexible drive rod system for three axis vibrator", NAVY TECHNICAL DISCLOSURE BULLETIN., vol. 10, no. 1, September 1984 (1984-09-01), OFFICE OF NAVAL RESEARCH. ARLINGTON., US, pages 17 - 20, XP002159165 *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 186 (M - 320) 25 August 1984 (1984-08-25) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 563 (P - 975) 14 December 1989 (1989-12-14) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 02 31 March 1995 (1995-03-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325456A (zh) * 2020-10-14 2023-06-23 倍福自动化有限公司 用于控制平面驱动系统的方法和平面驱动系统
CN116325456B (zh) * 2020-10-14 2024-05-31 倍福自动化有限公司 用于控制平面驱动系统的方法和平面驱动系统

Also Published As

Publication number Publication date
DE19945584A1 (de) 2001-03-29

Similar Documents

Publication Publication Date Title
EP0626194B1 (de) Mischer mit einem Schwingantrieb
EP2927660B1 (de) Vorrichtung zur Belastungsprüfung rotatorischer Prüflinge
DE102014111236B3 (de) Orbitalschüttler mit Auswuchtvorrichtung
DE102007007482A1 (de) Bearbeitungsvorrichtung für gedruckte Leiterplatinen und Bohrverfahren
WO1999048191A1 (de) Impulsentkoppelter direktantrieb
EP2910312A1 (de) Schwinganordnung für einen Rütteltisch oder eine Siebvorrichtung
WO2005107931A1 (de) Schüttelgerät für probengefässe
WO2012084779A1 (de) Vorrichtung mit zwei schwingungskomponenten zum spanenden bearbeiten eines werkstücks
WO2007003570A1 (de) Linear-vibrationsförderer
WO2001021296A1 (de) Mehrdimensionaler antrieb für arbeitsmaschinen
WO2007019897A1 (de) Vorrichtung zum schleifen und/oder finishen eines werkstücks
WO2011023185A2 (de) Einrichtung zur kompensation von drehmomenten, die durch beschleunigung von redundanten zusatzachsen bei mess- und werkzeugmaschinen entstehen mittels einer mehrzahl koordiniert linear bewegbarer ausgleichsmassen
DE69924098T2 (de) Bestückungsautomat für bauelemente
EP1216787A1 (de) Positioniervorrichtung
DE102004036796B3 (de) Vorrichtung zum Entkoppeln eines Anbauelements von einem bewegbaren Maschinenelement
DE60020158T2 (de) Zahnradprüf- oder läppmaschine
EP3308936B1 (de) Kunststoffspritzgussmaschine mit handhabungseinrichtung
EP1460006A1 (de) Vibrations-Linearförderer
EP1834754B1 (de) Vibrationsschweissanlage und Schwingkopf hierfür
DE19620195C1 (de) Füge- oder Trennmodul für Industrieroboter
AT521951B1 (de) Werkzeugmaschine
DE19826587A1 (de) Regelvorrichtung und -verfahren für Bearbeitungsmaschinen
DE4335944A1 (de) Verfahren und Rüttelvorrichtung zur Herstellung von plattenförmigen Betonfertigteilen
EP4159331B1 (de) Reinigungsvorrichtung mit oszillierender objektaufnahme
DE102015103164A1 (de) Scanvorrichtung mit wenigstens einer eindimensional scannenden Scaneinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP