Nothing Special   »   [go: up one dir, main page]

WO2001005545A1 - Discharge surface treating electrode and production method thereof - Google Patents

Discharge surface treating electrode and production method thereof Download PDF

Info

Publication number
WO2001005545A1
WO2001005545A1 PCT/JP1999/003830 JP9903830W WO0105545A1 WO 2001005545 A1 WO2001005545 A1 WO 2001005545A1 JP 9903830 W JP9903830 W JP 9903830W WO 0105545 A1 WO0105545 A1 WO 0105545A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
powder
surface treatment
discharge surface
discharge
Prior art date
Application number
PCT/JP1999/003830
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Goto
Toshio Moro
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CN99810834A priority Critical patent/CN1116954C/en
Priority to US09/787,359 priority patent/US6935917B1/en
Priority to PCT/JP1999/003830 priority patent/WO2001005545A1/en
Priority to DE19983550T priority patent/DE19983550B4/en
Priority to CH00483/01A priority patent/CH694120A5/en
Priority to JP2001510616A priority patent/JP3852580B2/en
Publication of WO2001005545A1 publication Critical patent/WO2001005545A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/001Starting from powder comprising reducible metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • B23H1/06Electrode material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1094Alloys containing non-metals comprising an after-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • a discharge is generated between an electrode and a material to be treated, and the energy causes a hard film made of an electrode material or a hard film made of a substance in which the electrode material reacts with discharge energy on the surface of the material to be treated.
  • the present invention relates to an electrode for discharge surface treatment to be formed and used for a discharge surface treatment operation, and to an improvement in a manufacturing method thereof. Background art
  • techniques for forming a hard coating on the surface of a material to be treated to impart corrosion resistance and abrasion resistance include, for example, a discharge surface disclosed in Japanese Patent Application Laid-Open No. 5-148686.
  • a processing method In this technology, primary processing (deposition processing) is performed using a green compact electrode formed by mixing and compressing WC (tungsten carbide) powder and Co (cobalt) powder.
  • WC tungsten carbide
  • Co cobalt
  • This method can form a hard coating with strong adhesion to steel, but forms a hard coating with strong adhesion to sintered materials such as cemented carbide. It is difficult.
  • 1 is a green compact electrode formed by compression molding of TiH2 powder
  • 2 is a material to be processed
  • 3 is a processing tank
  • 4 is a working fluid
  • 5 is a green compact electrode 1 and a material 2 to be processed.
  • 6 is a control circuit for controlling on / off of the switching element 5
  • 7 is a power supply
  • 8 is a resistor
  • 9 is a formed hard coating.
  • Electrodes used in such a discharge surface treatment are difficult to handle without a certain degree of strength, and the electrodes are excessively disintegrated due to the discharge energy during the discharge surface treatment, and the electrode material is exposed to the surface of the material to be treated. There is a problem that it cannot be adhered in a molten state.
  • the electrode for discharge surface treatment is required to have appropriate strength and fragility. Materials with such properties include metal hydrides, but there is a safety problem due to the danger of spontaneous ignition when exposed to water. Therefore, a practical electrode for discharge surface treatment containing metal hydride in the electrode material could not be obtained. Disclosure of the invention
  • the present invention has been made in order to solve the above-mentioned problems, and a practical electrode for discharge surface treatment, which can improve the treatment efficiency of the discharge surface treatment, is excellent in safety, and can reduce the production cost, and The purpose is to obtain a manufacturing method.
  • the discharge surface treatment electrode according to the first invention is a discharge surface treatment used for discharge surface treatment for generating a discharge between the electrode and the material to be treated and forming a hard coating on the surface of the material to be treated by the energy.
  • the electrode for use is formed by mixing at least a powder of a metal carbide and a powder of a metal hydride, performing a heat treatment after compression molding, and releasing hydrogen in the metal hydride.
  • the metal carbide is titanium carbide
  • the metal hydride is titanium hydride
  • a mixing ratio of the metal carbide powder and the metal hydride powder is set in accordance with an intended electrode strength and susceptibility to collapse. Is what you do.
  • a method for producing an electrode for discharge surface treatment comprising: generating a discharge between the electrode and a material to be treated; and using the energy to form a hard coating on the surface of the material to be treated.
  • electrodes for surface treatment of electric discharge used
  • at least a powder of a metal carbide and a powder of a metal hydride are mixed, heat treatment is performed after compression molding, and hydrogen in the metal hydride is released to produce the electrode for discharge surface treatment. is there.
  • a method for producing an electrode for discharge surface treatment according to a fifth invention is the method according to the fourth invention, wherein the metal carbide is titanium carbide, and the metal hydride is titanium hydride.
  • the mixing ratio of the powder of the metal carbide and the powder of the metal hydride is adjusted to a desired electrode strength and susceptibility to collapse. It is set in accordance with this.
  • the discharge surface treatment electrodes according to the first invention and the second invention have an effect of being inexpensive and excellent in safety.
  • the electrode for discharge surface treatment according to the third invention has the same effects as the first invention, and the electrode for discharge surface treatment having the strength and collapse of the electrode suitable for the intended discharge surface treatment characteristics is provided.
  • the electrode for discharge surface treatment using the electrode for discharge surface treatment there is an effect that a good hard film can be formed according to the characteristics of the material to be treated.
  • the method for manufacturing an electrode for discharge surface treatment according to the fourth and fifth inventions has an effect that an electrode for discharge surface treatment that is inexpensive and excellent in safety can be stably supplied. Further, in the discharge surface treatment using the electrode for discharge surface treatment manufactured by this manufacturing method, there is an effect that a good hard coating can be formed on the material to be processed and the processing efficiency can be improved.
  • the method for producing an electrode for discharge surface treatment according to the sixth invention is the same as that of the fourth invention. It is possible to manufacture an electrode for discharge surface treatment that has the same effect, and has the strength and fragility of the electrode suitable for the intended discharge surface treatment characteristics. In the surface treatment, there is an effect that a good hard film can be formed according to the characteristics of the material to be treated. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an explanatory view showing an electrode for discharge surface treatment according to the present invention and a method for producing the same.
  • FIG. 2 is an explanatory diagram showing a configuration example of a discharge surface treatment apparatus using the discharge surface treatment electrode according to the present invention.
  • FIG. 3 is an explanatory diagram showing a configuration example of a conventional discharge surface treatment apparatus using a discharge surface treatment electrode.
  • a discharge surface treatment electrode is required to have appropriate strength and fragility, and metal hydride, which is a material having such characteristics, has a problem in safety. Therefore, it is necessary to manufacture an electrode made of a material having the same strength and susceptibility as a metal hydride for a discharge surface treatment electrode, and having no problem in terms of safety.
  • the strength of a compact electrode formed by compressing powder has a close relationship with the hardness of the powder. In other words, when the powder has a high hardness, for example, when it is a metal carbide or the like, the shape of the powder is not easily changed even by compression molding. is there.
  • the powder has a low hardness, for example, a powder of a simple metal
  • the powder is easily deformed by compression molding, and thus has a property of hardening strongly. Therefore, it was found that by mixing powders having different hardnesses at a predetermined mixing ratio and compression molding, an electrode for discharge surface treatment having an intended strength and susceptibility to collapse can be obtained.
  • an electrode is manufactured by mixing TiC powder, which is a metal carbide (high hardness) and Ti powder, which is a simple metal (low hardness), as powders having different hardnesses, and compression molding.
  • TiC powder which is a metal carbide (high hardness)
  • Ti powder which is a simple metal (low hardness)
  • compression molding a simple metal
  • the particle size of the electrode material powder must be about 10 im or less in order to improve the discharge characteristics in the discharge surface treatment, but a material having a sticky Ti Therefore, it is difficult to reduce the particle size of the Ti powder. That is, in order to pulverize the powder, a device called a ball mill is usually used in which the powder and ceramic balls are put into a cylindrical container and rotated.
  • the powder is deformed because Ti is a sticky material, but the fineness of the powder does not progress very much. Therefore, when the electrode material is Ti powder, a very high manufacturing cost is required to reduce the particle size of the electrode material powder suitable for the electrode for discharge surface treatment. I can't get it.
  • FIG. 1 shows an explanatory view of an electrode for discharge surface treatment according to the present invention and a method for manufacturing the same using an electrode material selected from such a viewpoint.
  • T i C powder 1 1 is a metal carbide powder
  • T i H 2 powder is 1 2 metal hydride Powder
  • 1 3 metal alone It is Ti powder which is a powder.
  • 2 shows a configuration using the electrode for discharge surface treatment according to the present invention.
  • 2 is a material to be treated
  • 3 is a processing tank
  • 4 is a working fluid
  • 5 is a switching element for switching the voltage and current applied between the electrodes
  • 6 is a switching element.
  • 5 is a control circuit for controlling ON / OFF
  • 7 is a power supply
  • 8 is a resistor
  • 10 is a discharge surface treatment electrode according to the present invention
  • 14 is a hard coating formed on the material 2 to be treated.
  • a discharge is generated between the discharge surface treatment electrode 10 and the material to be treated 2, so that a hard coating having a strong adhesion to the surface of the material to be treated 2 by the discharge energy 14 can be formed.
  • T i C powder 11 is a material having high hardness
  • T i H 2 powder 12 is a material having low hardness.
  • the strength and fragility of the electrode can be adjusted by the mixing ratio of these powders. According to experiments, compression molding is possible when the mixing ratio of TiC powder 11 and TiH2 powder 12 is in the range of about 1: 9 to 9: 1, and the mixing ratio of TiH2 powder 12 is possible. It is known that the strength of the green compact increases with the increase of the pressure. Therefore, by changing the mixing ratio between the metal carbide powder and the metal hydride powder, it is possible to change the strength of the green compact and, consequently, to change the electrode strength and the fragility.
  • the compression molding can be performed by placing the mixed powder as the electrode material in a mold and applying pressure by pressing or the like.
  • the particle size is reduced (from lm to 3 im or less).
  • T i C can easily produce a fine powder industrially, and T i H 2 can be ground very easily.
  • a mixture of TiC powder having a small particle size and TiH2 powder having a large particle size is subjected to a pulverizing treatment by the above-mentioned ball mill.
  • Particle size A mixed powder of T i C and T i H 2 having a small particle size can be obtained. In this way, a powder having a small particle size can be easily formed, so that the powder production cost can be reduced.
  • the strength is low and it is easily broken for use as an electrode for discharge surface treatment.
  • the TiC powder and the TiH2 powder are mixed at a predetermined mixing ratio, and the green compact ((a) in FIG. 1) formed by compression molding is subjected to heat treatment to decompose the TiH2.
  • the metal T i By releasing hydrogen to form the metal T i, it is possible to obtain a practical discharge surface treatment electrode 10 ((b) in FIG. 1) having appropriate strength, fragility, and safety. it can.
  • the heat treatment can be performed by, for example, high-frequency heating the green compact of FIG. 1 (a) in an electric furnace.
  • the electrode for electrical-discharge surface treatment according to the present invention is suitable for use in electrical-discharge surface treatment work. Further, the method for producing an electrode for discharge surface treatment according to the present invention is suitable for producing the electrode for discharge surface treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

A practical-use discharge surface treating electrode (10) having a proper strength and safety and being easy to crumble and used for discharge surface treating for forming a hard coat on the surface of an untreated material by discharge energy produced between the electrode and the untreated material, wherein a production method thereof comprises the steps of mixing TiC powder (11) as metal carbide powder with TiH2 powder (12) as metal hydride powder, compression-molding the mixture and heat-treating the molded product to release hydrogen in the TiH2 powder (12) and obtain Ti powder (13).

Description

明 細 書 放電表面処理用電極及びその製造方法 技術分野  Description Electrode for surface treatment of electric discharge and manufacturing method thereof
この発明は、 電極と被処理材料との間に放電を発生させ、 そのエネル ギにより、 被処理材料表面に電極材料からなる硬質被膜あるいは電極材 料が放電エネルギにより反応した物質からなる硬質被膜を形成する、 放 電表面処理作業に用いる放電表面処理用電極及びその製造方法の改良に 関するものである。 背景技術  According to the present invention, a discharge is generated between an electrode and a material to be treated, and the energy causes a hard film made of an electrode material or a hard film made of a substance in which the electrode material reacts with discharge energy on the surface of the material to be treated. The present invention relates to an electrode for discharge surface treatment to be formed and used for a discharge surface treatment operation, and to an improvement in a manufacturing method thereof. Background art
従来、 被処理材料表面に硬質被膜を形成して、 耐食性、 耐磨耗性を付 与する技術としては、 例えば、 日本国特開平 5 - 1 4 8 6 1 5号公報に 開示された放電表面処理方法がある。 この技術は、 W C (タングステン カーバイ ド) 粉末と C o (コバルト) 粉末を混合して圧縮成形してなる 圧粉体電極を使用して 1次加工 (堆積加工) を行い、 次に銅電極等の比 較的電極消耗の少ない電極に交換して 2次加工 (再溶融加工) を行う、 2つの工程からなる金属材料の放電表面処理方法である。 この方法は、 鋼材に対しては強固な密着力をもった硬質被膜を形成できるが、 超硬合 金のような焼結材料に対しては強固な密着力をもった硬質被膜を形成す ることは困難である。  Conventionally, techniques for forming a hard coating on the surface of a material to be treated to impart corrosion resistance and abrasion resistance include, for example, a discharge surface disclosed in Japanese Patent Application Laid-Open No. 5-148686. There is a processing method. In this technology, primary processing (deposition processing) is performed using a green compact electrode formed by mixing and compressing WC (tungsten carbide) powder and Co (cobalt) powder. This is a two-step discharge surface treatment method for metallic materials, in which the electrode is replaced with an electrode with relatively low electrode wear and secondary processing (remelting processing) is performed. This method can form a hard coating with strong adhesion to steel, but forms a hard coating with strong adhesion to sintered materials such as cemented carbide. It is difficult.
しかし、 我々の研究によると、 T i (チタン) 等の硬質炭化物を形成 する材料を電極として、 被処理材料である金属材料との間に放電を発生 させると、 再溶融の過程なしに強固な硬質被膜を被処理材料である金属 表面に形成できることがわかっている。 これは、 放電により消耗した電 極材料と加工液中の成分である炭素が反応して T i C (炭化チタン) が 生成することによるものである。 また、 T i H 2 (水素化チタン) 等の 金属水素化物の圧粉体電極により、 被処理材料である金属材料との間に 放電を発生させると、 T i等の材料を使用する場合よりも、 迅速にかつ 密着性が高い硬質被膜を形成できることがわかっている。 さらに、 T i H 2等の水素化物に他の金属やセラミックスを混合した圧粉体電極によ り、 被処理材料である金属材料との間に放電を発生させると、 硬度、 耐 磨耗性等様々な性質をもった硬質被膜を素早く形成することができるこ とがわつている。 However, according to our research, if a material that forms a hard carbide such as Ti (titanium) is used as an electrode and a discharge is generated between the material to be treated and a metal material, a strong It has been found that a hard coating can be formed on the surface of the metal to be treated. This is due to the power consumed by the discharge. This is due to the reaction between the electrode material and carbon, a component in the working fluid, to form TiC (titanium carbide). In addition, when a discharge is generated between the metal material to be processed by the compacted electrode of a metal hydride such as Ti H 2 (titanium hydride), it is more difficult than when using a material such as Ti. However, it has been found that a hard coating film having high adhesion can be formed quickly. Furthermore, if a discharge is generated between the metal material as the material to be processed by the compacted electrode in which other metals or ceramics are mixed with a hydride such as TiH2, the hardness, abrasion resistance, etc. It has been shown that hard coatings with various properties can be formed quickly.
このような方法については、 例えば、 日本国特開平 9一 1 9 2 9 3 7 号公報に開示されており、 このような放電表面処理に用いる装置の構成 例を第 3図により説明する。 図において、 1は T i H 2粉末を圧縮成形 してなる圧粉体電極、 2は被処理材料、 3は加工槽、 4は加工液、 5は 圧粉体電極 1と被処理材料 2に印加する電圧及び電流のスィツチングを 行うスイッチング素子、 6はスイッチング素子 5のオン ·オフを制御す る制御回路、 7は電源、 8は抵抗器、 9は形成された硬質被膜である。 このような構成により、 圧粉体電極 1 と被処理材料 2との間に放電を発 生させることにより、 放電エネルギにより、 鉄鋼、 超硬合金等の被処理 材料 2の表面に強固な密着力をもつた硬質被膜 9を形成することができ る。  Such a method is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-192937, and a configuration example of an apparatus used for such a discharge surface treatment will be described with reference to FIG. In the figure, 1 is a green compact electrode formed by compression molding of TiH2 powder, 2 is a material to be processed, 3 is a processing tank, 4 is a working fluid, and 5 is a green compact electrode 1 and a material 2 to be processed. A switching element for switching applied voltage and current, 6 is a control circuit for controlling on / off of the switching element 5, 7 is a power supply, 8 is a resistor, and 9 is a formed hard coating. With such a configuration, a discharge is generated between the green compact electrode 1 and the material 2 to be processed, and a strong adhesive force to the surface of the material 2 to be processed, such as steel or cemented carbide, is generated by the discharge energy. It is possible to form the hard coating 9 having the following.
このような放電表面処理に用いる電極としては、 ある程度の強度がな いと取り扱いが困難であると共に、 放電表面処理の際に放電エネルギに より電極が過度に崩れすぎ、 電極材料が被処理材料の表面に溶融した状 態で付着できないという問題がある。 また、 電極の強度が高く、 電極が 固まりすぎている場合には、 放電表面処理の際に放電エネルギにより電 極が崩れにくく、 処理効率が低下するという問題がある。 したがって、 放電表面処理用電極には、 適度な強度及び崩れやすさが要求される。 こ のような特性をもった材料として、 金属水素化物が挙げられるが、 水に 触れると自然発火する危険があるため、 安全面での問題がある。 したが つて、 金属水素化物を電極材料に含む実用的な放電表面処理用電極を得 ることはできなかった。 発明の開示 Electrodes used in such a discharge surface treatment are difficult to handle without a certain degree of strength, and the electrodes are excessively disintegrated due to the discharge energy during the discharge surface treatment, and the electrode material is exposed to the surface of the material to be treated. There is a problem that it cannot be adhered in a molten state. In addition, when the strength of the electrode is high and the electrode is too hard, there is a problem that the electrode is not easily collapsed by discharge energy at the time of the discharge surface treatment, and the treatment efficiency is reduced. Therefore, The electrode for discharge surface treatment is required to have appropriate strength and fragility. Materials with such properties include metal hydrides, but there is a safety problem due to the danger of spontaneous ignition when exposed to water. Therefore, a practical electrode for discharge surface treatment containing metal hydride in the electrode material could not be obtained. Disclosure of the invention
この発明は、 前記の課題を解決するためになされたものであり、 放電 表面処理の処理効率の向上が図れ、 安全性に優れると共に製造コストを 低減できる、 実用的な放電表面処理用電極及びその製造方法を得ること を目的とする。  The present invention has been made in order to solve the above-mentioned problems, and a practical electrode for discharge surface treatment, which can improve the treatment efficiency of the discharge surface treatment, is excellent in safety, and can reduce the production cost, and The purpose is to obtain a manufacturing method.
第 1の発明に係る放電表面処理用電極は、 電極と被処理材料との間に 放電を発生させ、 そのエネルギにより、 前記被処理材料表面に硬質被膜 を形成する放電表面処理に用いる放電表面処理用電極において、 少なく とも金属炭化物の粉末と金属水素化物の粉末とを混合し、 圧縮成形後に 加熱処理を行い、 前記金属水素化物中の水素を放出させて形成されるも のである。  The discharge surface treatment electrode according to the first invention is a discharge surface treatment used for discharge surface treatment for generating a discharge between the electrode and the material to be treated and forming a hard coating on the surface of the material to be treated by the energy. The electrode for use is formed by mixing at least a powder of a metal carbide and a powder of a metal hydride, performing a heat treatment after compression molding, and releasing hydrogen in the metal hydride.
第 2の発明に係る放電表面処理用電極は、 第 1の発明において、 前記 金属炭化物が炭化チタンであり、 前記金属水素化物が水素化チタンであ るものである。  In the electrode for discharge surface treatment according to a second invention, in the first invention, the metal carbide is titanium carbide, and the metal hydride is titanium hydride.
第 3の発明に係る放電表面処理用電極は、 第 1の発明において、 前記 金属炭化物の粉末と前記金属水素化物の粉末との混合比を、 所期の電極 強度及び崩れやすさに合わせて設定するものである。  In the electrode for discharge surface treatment according to a third aspect, in the first aspect, a mixing ratio of the metal carbide powder and the metal hydride powder is set in accordance with an intended electrode strength and susceptibility to collapse. Is what you do.
第 4の発明に係る放電表面処理用電極の製造方法は、 電極と被処理材 料との間に放電を発生させ、 そのエネルギにより、 前記被処理材料表面 に硬質被膜を形成する放電表面処理に用いる放電表面処理用電極の製造 方法において、 少なくとも金属炭化物の粉末と金属水素化物の粉末とを 混合し、 圧縮成形後に加熱処理を行い、 前記金属水素化物中の水素を放 出させて前記放電表面処理用電極を製造するものである。 According to a fourth aspect of the present invention, there is provided a method for producing an electrode for discharge surface treatment, comprising: generating a discharge between the electrode and a material to be treated; and using the energy to form a hard coating on the surface of the material to be treated. Of electrodes for surface treatment of electric discharge used In the method, at least a powder of a metal carbide and a powder of a metal hydride are mixed, heat treatment is performed after compression molding, and hydrogen in the metal hydride is released to produce the electrode for discharge surface treatment. is there.
第 5の発明に係る放電表面処理用電極の製造方法は、 第 4の発明にお いて、 前記金属炭化物が炭化チタンであり、 前記金属水素化物が水素化 チタンであるものである。  A method for producing an electrode for discharge surface treatment according to a fifth invention is the method according to the fourth invention, wherein the metal carbide is titanium carbide, and the metal hydride is titanium hydride.
第 6の発明に係る放電表面処理用電極の製造方法は、 第 4の発明にお いて、 前記金属炭化物の粉末と前記金属水素化物の粉末との混合比を、 所期の電極強度及び崩れやすさに合わせて設定するものである。  According to a sixth aspect of the present invention, in the method for producing an electrode for discharge surface treatment according to the fourth aspect, the mixing ratio of the powder of the metal carbide and the powder of the metal hydride is adjusted to a desired electrode strength and susceptibility to collapse. It is set in accordance with this.
この発明は前記のように構成されているため、 以下に示すような効果 を奏する。  Since the present invention is configured as described above, it has the following effects.
第 1の発明及び第 2の発明に係る放電表面処理用電極は、 安価かつ安 全性に優れるという効果がある。 また、 この放電表面処理用電極を用い た放電表面処理において、 被処理材料に良好な硬質被膜を形成できると 共に処理効率を向上することができるという効果がある。  The discharge surface treatment electrodes according to the first invention and the second invention have an effect of being inexpensive and excellent in safety. In addition, in the discharge surface treatment using the discharge surface treatment electrode, there is an effect that a good hard film can be formed on the material to be treated and the treatment efficiency can be improved.
第 3の発明に係る放電表面処理用電極は、 第 1の発明と同様の効果を 奏すると共に、 所期の放電表面処理特性に適した電極の強度及び崩れや すさをもつ放電表面処理用電極が得られ、 この放電表面処理用電極を用 いた放電表面処理において、 被処理材料の特性に合わせた良好な硬質被 膜を形成できるという効果がある。  The electrode for discharge surface treatment according to the third invention has the same effects as the first invention, and the electrode for discharge surface treatment having the strength and collapse of the electrode suitable for the intended discharge surface treatment characteristics is provided. Thus, in the discharge surface treatment using the electrode for discharge surface treatment, there is an effect that a good hard film can be formed according to the characteristics of the material to be treated.
第 4の発明及び第 5の発明に係る放電表面処理用電極の製造方法は、 安価かつ安全性に優れる放電表面処理用電極を安定供給することができ るという効果がある。 また、 この製造方法により製造した放電表面処理 用電極を用いた放電表面処理において、 被処理材料に良好な硬質被膜を 形成できると共に処理効率を向上することができるという効果がある。 第 6のの発明に係る放電表面処理用電極の製造方法は、 第 4の発明と 同様の効果を奏すると共に、 所期の放電表面処理特性に適した電極の強 度及び崩れやすさをもつ放電表面処理用電極を製造することができ、 こ の放電表面処理用電極を用いた放電表面処理において、 被処理材料の特 性に合わせた良好な硬質被膜を形成できるという効果がある。 図面の簡単な説明 The method for manufacturing an electrode for discharge surface treatment according to the fourth and fifth inventions has an effect that an electrode for discharge surface treatment that is inexpensive and excellent in safety can be stably supplied. Further, in the discharge surface treatment using the electrode for discharge surface treatment manufactured by this manufacturing method, there is an effect that a good hard coating can be formed on the material to be processed and the processing efficiency can be improved. The method for producing an electrode for discharge surface treatment according to the sixth invention is the same as that of the fourth invention. It is possible to manufacture an electrode for discharge surface treatment that has the same effect, and has the strength and fragility of the electrode suitable for the intended discharge surface treatment characteristics. In the surface treatment, there is an effect that a good hard film can be formed according to the characteristics of the material to be treated. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明に係る放電表面処理用電極及びその製造方法を示 す説明図である。  FIG. 1 is an explanatory view showing an electrode for discharge surface treatment according to the present invention and a method for producing the same.
第 2図は、 この発明に係る放電表面処理用電極を用いた放電表面処理 装置の構成例を示す説明図である。  FIG. 2 is an explanatory diagram showing a configuration example of a discharge surface treatment apparatus using the discharge surface treatment electrode according to the present invention.
第 3図は、 従来の放電表面処理用電極を用いた放電表面処理装置の構 成例を示す説明図である。 発明を実施するための最良の形態  FIG. 3 is an explanatory diagram showing a configuration example of a conventional discharge surface treatment apparatus using a discharge surface treatment electrode. BEST MODE FOR CARRYING OUT THE INVENTION
背景技術において示したように、 放電表面処理用電極には適度な強度 及び崩れやすさが要求され、 このような特性をもった材料である金属水 素化物には安全面での問題がある。 したがって、 金属水素化物と同様の 放電表面処理用電極に適した強度及び崩れやすさをもち、 かつ、 安全面 での問題がない材料からなる電極を製造する必要がある。 この目的で、 各種の材料について行った実験により、 粉末を圧縮成形した圧粉体電極 の強度は、 粉末の硬度と密接な関係があることがわかった。 すなわち、 粉末が高硬度である場合、 例えば、 金属炭化物等である場合には、 圧縮 成形しても粉末の形状が変わりにくいため、 成形が困難か、 あるいは、 成形ができても脆くなる性質がある。 また、 粉末が低硬度である場合、 例えば、 金属単体の粉末等である場合には、 圧縮成形すると粉末が容易 に変形するため、 強く固まる性質がある。 したがって、 硬度の異なる粉末を所定の混合比で混合し圧縮成形する ことにより、 所期の強度及び崩れやすさをもつ放電表面処理用電極を得 ることができることがわかった。 As shown in the background art, a discharge surface treatment electrode is required to have appropriate strength and fragility, and metal hydride, which is a material having such characteristics, has a problem in safety. Therefore, it is necessary to manufacture an electrode made of a material having the same strength and susceptibility as a metal hydride for a discharge surface treatment electrode, and having no problem in terms of safety. For this purpose, experiments conducted on various materials have shown that the strength of a compact electrode formed by compressing powder has a close relationship with the hardness of the powder. In other words, when the powder has a high hardness, for example, when it is a metal carbide or the like, the shape of the powder is not easily changed even by compression molding. is there. When the powder has a low hardness, for example, a powder of a simple metal, the powder is easily deformed by compression molding, and thus has a property of hardening strongly. Therefore, it was found that by mixing powders having different hardnesses at a predetermined mixing ratio and compression molding, an electrode for discharge surface treatment having an intended strength and susceptibility to collapse can be obtained.
次に、 一例として、 硬度の異なる粉末として、 金属炭化物 (高硬度) である T i C粉末と金属単体 (低硬度)' である T i粉末を混合し、 圧縮 成形して電極を製造する場合について説明する。 放電表面処理用電極と しては、 放電表面処理における放電特性を良好にするために、 その電極 材料粉末の粒径を 1 0 i m程度以下にする必要があるが、 T iが粘りの ある材料であるため、 T i粉末の粒径を小さくすることは困難である。 すなわち、 粉末を粉砕するためには、 通常、 円筒容器内に粉末とセラミ ックスのボールを入れて回転させるボールミルという装置が用いられる が、 このような装置を使用しても、 T i粉末の場合には、 T iが粘りの ある材料であるため、 粉末の変形は生じるが、 粉末の微細化はあまり進 まないためである。 したがって、 電極材料が T i粉末の場合においては、 放電表面処理用電極に適した電極材料粉末の粒径の微細化に極めて高い 製造コストが必要となるため、 実用的な放電表面処理用電極を得ること ができない。  Next, as an example, an electrode is manufactured by mixing TiC powder, which is a metal carbide (high hardness) and Ti powder, which is a simple metal (low hardness), as powders having different hardnesses, and compression molding. Will be described. For the electrode for discharge surface treatment, the particle size of the electrode material powder must be about 10 im or less in order to improve the discharge characteristics in the discharge surface treatment, but a material having a sticky Ti Therefore, it is difficult to reduce the particle size of the Ti powder. That is, in order to pulverize the powder, a device called a ball mill is usually used in which the powder and ceramic balls are put into a cylindrical container and rotated. In this case, the powder is deformed because Ti is a sticky material, but the fineness of the powder does not progress very much. Therefore, when the electrode material is Ti powder, a very high manufacturing cost is required to reduce the particle size of the electrode material powder suitable for the electrode for discharge surface treatment. I can't get it.
以上より、 放電表面処理用電極に所期の強度及び崩れやすさを付与す るために硬度の異なる粉末を所定の混合比で混合することと共に、 これ ら粉末の粒径の微細化を実用的な製造コストで行うことができる、 電極 材料の選定が重要である。 このような観点により選定された電極材料を 使用した、 この発明に係る放電表面処理用電極及びその製造方法の説明 図を第 1図に示す。 図において、 1 0はこの発明に係る放電表面処理用 電極、 1 1は金属炭化物粉末である T i C粉末、 1 2は金属水素化物粉 末である T i H 2粉末、 1 3は金属単体粉末である T i粉末である。 ま た、 第 2図は、 この発明に係る放電表面処理用電極を使用して構成した 放電表面処理装置の一例であり、 図において、 2は被処理材料、 3は加 ェ槽、 4は加工液、 5は極間に印加する電圧及び電流のスイッチングを 行うスィツチング素子、 6はスィツチング素子 5のオン · オフを制御す る制御回路、 7は電源、 8は抵抗器、 1 0はこの発明に係る放電表面処 理用電極、 1 4は被処理材料 2に形成された硬質被膜である。 このよう な構成により、 放電表面処理用電極 1 0と被処理材料 2との間に放電を 発生させることにより、 放電エネルギにより、 被処理材料 2の表面に強 固な密着力をもった硬質被膜 1 4を形成することができる。 From the above, it is practical to mix powders having different hardnesses at a predetermined mixing ratio in order to impart the desired strength and susceptibility to collapse to the electrode for discharge surface treatment, and to reduce the particle size of these powders practically. It is important to select electrode materials that can be manufactured at low manufacturing costs. FIG. 1 shows an explanatory view of an electrode for discharge surface treatment according to the present invention and a method for manufacturing the same using an electrode material selected from such a viewpoint. In FIG, 1 0 the electrode for electrical-discharge surface treatment according to the present invention, T i C powder 1 1 is a metal carbide powder, T i H 2 powder is 1 2 metal hydride Powder, 1 3 metal alone It is Ti powder which is a powder. FIG. 2 shows a configuration using the electrode for discharge surface treatment according to the present invention. In the figure, 2 is a material to be treated, 3 is a processing tank, 4 is a working fluid, 5 is a switching element for switching the voltage and current applied between the electrodes, and 6 is a switching element. 5 is a control circuit for controlling ON / OFF, 7 is a power supply, 8 is a resistor, 10 is a discharge surface treatment electrode according to the present invention, and 14 is a hard coating formed on the material 2 to be treated. . With such a configuration, a discharge is generated between the discharge surface treatment electrode 10 and the material to be treated 2, so that a hard coating having a strong adhesion to the surface of the material to be treated 2 by the discharge energy 14 can be formed.
第 1図の (a ) において、 T i C粉末 1 1が高硬度の材料であり、 T i H 2粉末 1 2が低硬度の材料である。 前記のように、 これらの粉末の 混合比により、 電極の強度及び崩れやすさを調整することができる。 実 験により、 T i C粉末 1 1 と T i H 2粉末 1 2の混合比が 1 : 9から 9 : 1程度の範囲で圧縮成形が可能であり、 T i H 2粉末 1 2の混合比が増 えるに従い、 圧粉体の強度が増すことがわかっている。 したがって、 こ の金属炭化物粉末と金属水素化物粉末との混合比を変えることにより、 圧粉体の強度を変えることができ、 ひいては電極強度及び崩れやすさを 変えることができる。  In (a) of FIG. 1, T i C powder 11 is a material having high hardness, and T i H 2 powder 12 is a material having low hardness. As described above, the strength and fragility of the electrode can be adjusted by the mixing ratio of these powders. According to experiments, compression molding is possible when the mixing ratio of TiC powder 11 and TiH2 powder 12 is in the range of about 1: 9 to 9: 1, and the mixing ratio of TiH2 powder 12 is possible. It is known that the strength of the green compact increases with the increase of the pressure. Therefore, by changing the mixing ratio between the metal carbide powder and the metal hydride powder, it is possible to change the strength of the green compact and, consequently, to change the electrode strength and the fragility.
また、 圧縮成形は、 前記の電極材料である混合粉末を金型に入れてプ レス等により圧力をかけて行うことができる。  The compression molding can be performed by placing the mixed powder as the electrode material in a mold and applying pressure by pressing or the like.
このように、 金属炭化物粉末である T i C粉末 1 1 と金属水素化物粉 末である T i H 2粉末 1 2により圧粉体を形成することにより、 粒径を 小さく ( l m〜3 i m以下) することが容易となる。 これは、 T i C は工業的に微細な粉末を製造することが容易であり、 また、 T i H 2は 極めて容易に粉砕することが可能であるためである。 例えば、 粒怪の小 さな T i C粉末と粒径の大きな T i H 2粉末を混合して、 前記のボール ミルにより粉末の粉砕処理を行うと、 T i H 2粉末は微細化され、 粒径 の小さな T i C及び T i H 2の混合粉末を得ることができる。 このよう にして、 容易に小さな粒径の粉末を形成できるため粉末製造コストを低 減することができる。 As described above, by forming a green compact by using the TiC powder 11 which is a metal carbide powder and the TiH2 powder 12 which is a metal hydride powder, the particle size is reduced (from lm to 3 im or less). ). This is because T i C can easily produce a fine powder industrially, and T i H 2 can be ground very easily. For example, a mixture of TiC powder having a small particle size and TiH2 powder having a large particle size is subjected to a pulverizing treatment by the above-mentioned ball mill. Particle size , A mixed powder of T i C and T i H 2 having a small particle size can be obtained. In this way, a powder having a small particle size can be easily formed, so that the powder production cost can be reduced.
しかし、 この状態のままでは、 放電表面処理用電極として使用するに は強度が低く壊れやすい。 また、 水素化チタンを含むことにより自然発 火の危険性もある。 そこで、 T i C粉末と T i H 2粉末とを所定の混合 比で混合し、 圧縮成形してなる圧粉体 (第 1図の (a ) ) を加熱処理し、 T i H 2を分解し水素を放出させ金属 T i とすることにより、 適度な強 度及び崩れやすさ並びに安全性をもった実用的な放電表面処理用電極 1 0 (第 1図の (b ) ) を得ることができる。  However, in this state, the strength is low and it is easily broken for use as an electrode for discharge surface treatment. There is also a danger of spontaneous ignition due to the inclusion of titanium hydride. Therefore, the TiC powder and the TiH2 powder are mixed at a predetermined mixing ratio, and the green compact ((a) in FIG. 1) formed by compression molding is subjected to heat treatment to decompose the TiH2. By releasing hydrogen to form the metal T i, it is possible to obtain a practical discharge surface treatment electrode 10 ((b) in FIG. 1) having appropriate strength, fragility, and safety. it can.
前記の加熱処理は、 第 1図の (a ) の圧粉体を、 例えば、 電気炉中に て高周波加熱することにより行うことができる。  The heat treatment can be performed by, for example, high-frequency heating the green compact of FIG. 1 (a) in an electric furnace.
このような製造方法により、 放電表面処理の処理効率の向上が図れ、 安全性に優れると共に、 安価な放電表面処理用電極を安定供給すること ができる。  According to such a manufacturing method, it is possible to improve the treatment efficiency of the discharge surface treatment, to provide excellent safety, and to stably supply an inexpensive electrode for discharge surface treatment.
以上の説明では、 金属炭化物粉末として T i C粉末を、 金属水素化物 粉末として T i H 2粉末を使用する場合について示したが、 他の金属炭 化物粉末及び金属水素化物粉末を使用しても同様の効果を奏する。 産業上の利用可能性  In the above description, the case where T i C powder is used as the metal carbide powder and T i H 2 powder is used as the metal hydride powder, but other metal carbide powder and metal hydride powder may be used. A similar effect is achieved. Industrial applicability
以上のように、 この発明に係る放電表面処理用電極は、 放電表面処理 作業に用いられるのに適している。 また、 この発明に係る放電表面処理 用電極の製造方法は、 前記放電表面処理用電極の製造に適している。  As described above, the electrode for electrical-discharge surface treatment according to the present invention is suitable for use in electrical-discharge surface treatment work. Further, the method for producing an electrode for discharge surface treatment according to the present invention is suitable for producing the electrode for discharge surface treatment.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電極と被処理材料との間に放電を発生させ、 そのエネルギにより、 前記被処理材料表面に硬質被膜を形成する放電表面処理に用いる放電表 面処理用電極において、 1. An electric discharge is generated between the electrode and the material to be treated, and the energy of the electric discharge is used to form a hard coating on the surface of the material to be treated.
少なくとも金属炭化物の粉末と金属水素化物の粉末とを混合し、 圧縮 成形後に加熱処理を行い、 前記金属水素化物中の水素を放出させて形成 されることを特徴とする放電表面処理用電極。  An electrode for discharge surface treatment formed by mixing at least a powder of a metal carbide and a powder of a metal hydride, performing heat treatment after compression molding, and releasing hydrogen in the metal hydride.
2 . 請求の範囲 1において、 前記金属炭化物が炭化チタンであり、 前 記金属水素化物が水素化チタンであることを特徴とする放電表面処理用  2. The discharge surface treatment according to claim 1, wherein the metal carbide is titanium carbide, and the metal hydride is titanium hydride.
3 . 請求の範囲 1において、 前記金属炭化物の粉末と前記金属水素化 物の粉末との混合比を、 所期の電極強度及び崩れやすさに合わせて設定 することを特徴とする放電表面処理用電極。 3. The discharge surface treatment method according to claim 1, wherein a mixing ratio of the metal carbide powder and the metal hydride powder is set in accordance with an intended electrode strength and susceptibility to collapse. electrode.
4 . 電極と被処理材料との間に放電を発生させ、 そのエネルギにより、 前記被処理材料表面に硬質被膜を形成する放電表面処理に用いる放電表 面処理用電極の製造方法において、  4. In the method for producing an electrode for discharge surface treatment used in a discharge surface treatment for forming a hard film on the surface of the material to be treated by generating a discharge between the electrode and the material to be treated,
少なくとも金属炭化物の粉末と金属水素化物の粉末とを混合し、 圧縮 成形後に加熱処理を行い、 前記金属水素化物中の水素を放出させて前記 放電表面処理用電極を製造することを特徴とする放電表面処理用電極の 製造方法。  A discharge characterized by mixing at least a metal carbide powder and a metal hydride powder, performing heat treatment after compression molding, and releasing the hydrogen in the metal hydride to produce the discharge surface treatment electrode. Manufacturing method of surface treatment electrode.
5 . 請求の範囲 4において、 前記金属炭化物が炭化チタンであり、 前 記金属水素化物が水素化チタンであることを特徴とする放電表面処理用 電極の製造方法。  5. The method for producing an electrode for discharge surface treatment according to claim 4, wherein the metal carbide is titanium carbide, and the metal hydride is titanium hydride.
6 . 請求の範囲 4において、 前記金属炭化物の粉末と前記金属水素化 物の粉末との混合比を、 所期の電極強度及び崩れやすさに合わせて設定 することを特徴とする放電表面処理用電極の製造方法。 6. In Claim 4, the mixing ratio of the metal carbide powder and the metal hydride powder is set in accordance with the desired electrode strength and susceptibility to collapse. A method for producing an electrode for discharge surface treatment.
PCT/JP1999/003830 1999-07-16 1999-07-16 Discharge surface treating electrode and production method thereof WO2001005545A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN99810834A CN1116954C (en) 1999-07-16 1999-07-16 Discharge surface treating electrode and production method thereof
US09/787,359 US6935917B1 (en) 1999-07-16 1999-07-16 Discharge surface treating electrode and production method thereof
PCT/JP1999/003830 WO2001005545A1 (en) 1999-07-16 1999-07-16 Discharge surface treating electrode and production method thereof
DE19983550T DE19983550B4 (en) 1999-07-16 1999-07-16 Electrode for a spark discharge coating and manufacturing method therefor
CH00483/01A CH694120A5 (en) 1999-07-16 1999-07-16 Discharge surface treatment electrode production comprises mixing titanium carbide powder with titanium powder hydride powder, compression-molding the mixture and heat-treating to release hydrogen and obtain titanium powder
JP2001510616A JP3852580B2 (en) 1999-07-16 1999-07-16 Discharge surface treatment electrode and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1999/003830 WO2001005545A1 (en) 1999-07-16 1999-07-16 Discharge surface treating electrode and production method thereof
CH00483/01A CH694120A5 (en) 1999-07-16 1999-07-16 Discharge surface treatment electrode production comprises mixing titanium carbide powder with titanium powder hydride powder, compression-molding the mixture and heat-treating to release hydrogen and obtain titanium powder

Publications (1)

Publication Number Publication Date
WO2001005545A1 true WO2001005545A1 (en) 2001-01-25

Family

ID=33030471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003830 WO2001005545A1 (en) 1999-07-16 1999-07-16 Discharge surface treating electrode and production method thereof

Country Status (3)

Country Link
CH (1) CH694120A5 (en)
DE (1) DE19983550B4 (en)
WO (1) WO2001005545A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640476A1 (en) * 2003-06-05 2006-03-29 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
WO2006057052A1 (en) * 2004-11-29 2006-06-01 Mitsubishi Denki Kabushiki Kaisha Electrode for resistance welding, method for producing resistance welding electrode, resistance welding system, and resistance welding line
US20070068793A1 (en) * 2003-05-29 2007-03-29 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
WO2008010263A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Electric Corporation Process for producing electrode for discharge surface treatment and method of discharge surface treatment
EP1630255A4 (en) * 2003-06-04 2008-10-29 Mitsubishi Electric Corp Electrode for discharge surface treatment, and method for manufacturing and storing the same
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US7776409B2 (en) 2003-06-10 2010-08-17 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method
US7834291B2 (en) 2003-05-29 2010-11-16 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment
US7892410B2 (en) 2003-06-04 2011-02-22 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment method and discharge surface treatment apparatus
WO2011027825A1 (en) 2009-09-03 2011-03-10 株式会社Ihi Electric discharge surface treatment
WO2012035580A1 (en) 2010-09-16 2012-03-22 三菱電機株式会社 Discharge surface treatment method
WO2012035581A1 (en) 2010-09-16 2012-03-22 三菱電機株式会社 Method for forming surface layer by means of electric discharge machining, and said surface layer
DE112009004783T5 (en) 2009-05-20 2012-08-02 Mitsubishi Electric Corp. Method of forming a surface layer, method of forming an erosion resistant component and steam turbine blade
DE112009005100T5 (en) 2009-07-28 2012-09-13 Mitsubishi Electric Corporation An erosion-resistant machine component, method for forming a surface layer of a machine component, and method of manufacturing a steam turbine
DE112010005590T5 (en) 2010-05-26 2013-03-14 Mitsubishi Electric Corp. Electrode for spark erosion surface treatment and spark erosion surface treatment coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225824A (en) * 1997-02-17 1998-08-25 Kagaku Gijutsu Shinko Jigyodan Discharge surface treatment method, and treatment device
JPH11827A (en) * 1997-06-10 1999-01-06 Res Dev Corp Of Japan Electric discharge surface treating method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB913301A (en) * 1958-03-25 1962-12-19 Emi Ltd Improvements in or relating to the formation of firmly adherent coatings of refractory materials on metal
JPH0665733B2 (en) * 1985-11-26 1994-08-24 株式会社東芝 Electrode machining electrode material and method for producing the same
JP3093846B2 (en) * 1991-11-18 2000-10-03 科学技術振興事業団 Surface treatment method for metal materials
JP3537939B2 (en) * 1996-01-17 2004-06-14 独立行政法人 科学技術振興機構 Surface treatment by submerged discharge
JP3563203B2 (en) * 1996-06-12 2004-09-08 独立行政法人 科学技術振興機構 Surface treatment method by electric discharge machining and its apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225824A (en) * 1997-02-17 1998-08-25 Kagaku Gijutsu Shinko Jigyodan Discharge surface treatment method, and treatment device
JPH11827A (en) * 1997-06-10 1999-01-06 Res Dev Corp Of Japan Electric discharge surface treating method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US8377339B2 (en) 2002-07-30 2013-02-19 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US20070068793A1 (en) * 2003-05-29 2007-03-29 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
US7834291B2 (en) 2003-05-29 2010-11-16 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment
US7892410B2 (en) 2003-06-04 2011-02-22 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment method and discharge surface treatment apparatus
EP1630255A4 (en) * 2003-06-04 2008-10-29 Mitsubishi Electric Corp Electrode for discharge surface treatment, and method for manufacturing and storing the same
US7915559B2 (en) 2003-06-04 2011-03-29 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method for manufacturing electrode, and method for storing electrode
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
EP1640476A4 (en) * 2003-06-05 2010-11-17 Mitsubishi Electric Corp Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
EP1640476A1 (en) * 2003-06-05 2006-03-29 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
US20100180725A1 (en) * 2003-06-05 2010-07-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
US7776409B2 (en) 2003-06-10 2010-08-17 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method
JP4575924B2 (en) * 2004-11-29 2010-11-04 三菱電機株式会社 Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
JPWO2006057052A1 (en) * 2004-11-29 2008-06-05 三菱電機株式会社 Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
WO2006057052A1 (en) * 2004-11-29 2006-06-01 Mitsubishi Denki Kabushiki Kaisha Electrode for resistance welding, method for producing resistance welding electrode, resistance welding system, and resistance welding line
WO2008010263A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Electric Corporation Process for producing electrode for discharge surface treatment and method of discharge surface treatment
DE112009004783T5 (en) 2009-05-20 2012-08-02 Mitsubishi Electric Corp. Method of forming a surface layer, method of forming an erosion resistant component and steam turbine blade
DE112009005100T5 (en) 2009-07-28 2012-09-13 Mitsubishi Electric Corporation An erosion-resistant machine component, method for forming a surface layer of a machine component, and method of manufacturing a steam turbine
WO2011027825A1 (en) 2009-09-03 2011-03-10 株式会社Ihi Electric discharge surface treatment
JPWO2011027825A1 (en) * 2009-09-03 2013-02-04 株式会社Ihi Discharge surface treatment
DE112010005590T5 (en) 2010-05-26 2013-03-14 Mitsubishi Electric Corp. Electrode for spark erosion surface treatment and spark erosion surface treatment coating
DE112010005590B4 (en) 2010-05-26 2022-10-27 Mitsubishi Electric Corp. Electrode for electrical discharge surface treatment and electrical discharge surface treatment coating
WO2012035581A1 (en) 2010-09-16 2012-03-22 三菱電機株式会社 Method for forming surface layer by means of electric discharge machining, and said surface layer
WO2012035580A1 (en) 2010-09-16 2012-03-22 三菱電機株式会社 Discharge surface treatment method

Also Published As

Publication number Publication date
CH694120A5 (en) 2004-07-30
DE19983550T1 (en) 2001-10-04
DE19983550B4 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2001005545A1 (en) Discharge surface treating electrode and production method thereof
Groza Field-activated sintering
RU2294397C2 (en) Electrode for treatment of the surface with the electric discharge, the method of treatment of the surface with the electric discharge and the device for treatment of the surface with the electric discharge
WO2001023641A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
WO2008032359A1 (en) Process for producing electrode for electric discharge surface treatment and electrode for electric discharge surface treatment
JP5172465B2 (en) Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode
WO2001023640A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
US6935917B1 (en) Discharge surface treating electrode and production method thereof
WO2004044260A1 (en) Sputtering target and powder for production thereof
EP1630255B1 (en) Electrode for discharge surface treatment, and method for manufacturing and storing the same
WO2004108990A1 (en) Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
WO2004111301A1 (en) Electrode for electrical discharge coating and its evaluation method, and method of electrical discharge coating
WO1999047730A1 (en) Method for discharge surface treatment, and device and electrode for conducting the method
JP3852580B2 (en) Discharge surface treatment electrode and method for producing the same
JP3149330B2 (en) Tungsten carbide sintered body
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
JP2000336404A (en) Method for pulverizing wc-containing alloy, oxide powder of wc-containing alloy, method for regenerating wc- containing alloy, regenerated wc-containing alloy powder, production of cemented carbide using the same powder and cemented carbide using the same powder
JP4320523B2 (en) ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD
JP2004091241A (en) Tungsten carbide type super-hard material and manufacturing method thereof
JP2005213560A (en) Method for manufacturing electrode for electrical discharge surface treatment and electrode for electrical discharge surface treatment
WO2008010263A1 (en) Process for producing electrode for discharge surface treatment and method of discharge surface treatment
KR101465625B1 (en) Manufacturing method of WC-hard metal powder using hard metal scrap
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JP4119461B2 (en) Manufacturing method of electrode for discharge surface treatment
JP3899402B2 (en) Method for producing diamond-titanium carbide composite sintered body

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99810834.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CH CN DE JP US

WWE Wipo information: entry into national phase

Ref document number: 09787359

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19983550

Country of ref document: DE

Date of ref document: 20011004

WWE Wipo information: entry into national phase

Ref document number: 19983550

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607