WO2001098440A2 - Dispersant/viscosity improvers for lubricating oil and fuels - Google Patents
Dispersant/viscosity improvers for lubricating oil and fuels Download PDFInfo
- Publication number
- WO2001098440A2 WO2001098440A2 PCT/US2001/019880 US0119880W WO0198440A2 WO 2001098440 A2 WO2001098440 A2 WO 2001098440A2 US 0119880 W US0119880 W US 0119880W WO 0198440 A2 WO0198440 A2 WO 0198440A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carboxylic
- composition
- compound
- hydrocarbyl
- lower alkyl
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 28
- 239000010687 lubricating oil Substances 0.000 title claims abstract description 27
- 239000002270 dispersing agent Substances 0.000 title abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 189
- 229920000642 polymer Polymers 0.000 claims abstract description 173
- -1 methylene compound Chemical class 0.000 claims abstract description 127
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 75
- 150000001412 amines Chemical class 0.000 claims abstract description 60
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 52
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 52
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 51
- 150000001875 compounds Chemical class 0.000 claims abstract description 43
- 150000001728 carbonyl compounds Chemical class 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 150000001298 alcohols Chemical class 0.000 claims abstract description 27
- 239000000376 reactant Substances 0.000 claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 17
- 150000002736 metal compounds Chemical class 0.000 claims abstract description 11
- 150000002373 hemiacetals Chemical class 0.000 claims abstract description 7
- 229920001577 copolymer Polymers 0.000 claims description 64
- 229920000768 polyamine Polymers 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 61
- 239000003921 oil Substances 0.000 claims description 57
- 150000001993 dienes Chemical class 0.000 claims description 49
- 125000004432 carbon atom Chemical group C* 0.000 claims description 42
- 238000006243 chemical reaction Methods 0.000 claims description 39
- 239000000654 additive Substances 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 25
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 22
- 125000001931 aliphatic group Chemical group 0.000 claims description 19
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 claims description 18
- 229920006395 saturated elastomer Polymers 0.000 claims description 16
- 230000001050 lubricating effect Effects 0.000 claims description 15
- 125000002947 alkylene group Chemical group 0.000 claims description 13
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 claims description 13
- 239000003085 diluting agent Substances 0.000 claims description 11
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 11
- 230000000996 additive effect Effects 0.000 claims description 10
- 239000012141 concentrate Substances 0.000 claims description 10
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical group O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 9
- 229920000098 polyolefin Polymers 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 150000001299 aldehydes Chemical class 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 4
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 claims description 4
- 229940093858 ethyl acetoacetate Drugs 0.000 claims description 4
- 150000002576 ketones Chemical class 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 claims description 2
- LIRDIZPKBSSVBK-UHFFFAOYSA-N 3-o-ethyl 1-o-methyl propanedioate Chemical compound CCOC(=O)CC(=O)OC LIRDIZPKBSSVBK-UHFFFAOYSA-N 0.000 claims description 2
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical group COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 claims description 2
- 125000005907 alkyl ester group Chemical group 0.000 claims description 2
- 229910052705 radium Inorganic materials 0.000 claims description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 2
- 239000000463 material Substances 0.000 description 58
- 239000000178 monomer Substances 0.000 description 56
- 235000019198 oils Nutrition 0.000 description 53
- 239000000047 product Substances 0.000 description 47
- 229920001519 homopolymer Polymers 0.000 description 35
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 28
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 27
- 229910052799 carbon Inorganic materials 0.000 description 24
- 229920001400 block copolymer Polymers 0.000 description 23
- 239000011572 manganese Substances 0.000 description 21
- 238000006116 polymerization reaction Methods 0.000 description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 17
- OVJJVYHDJVQFSF-UHFFFAOYSA-N methyl 2-hydroxy-2-methoxyacetate Chemical compound COC(O)C(=O)OC OVJJVYHDJVQFSF-UHFFFAOYSA-N 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000002253 acid Substances 0.000 description 15
- 239000003999 initiator Substances 0.000 description 15
- 239000000314 lubricant Substances 0.000 description 15
- 150000003254 radicals Chemical class 0.000 description 15
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 14
- 239000005977 Ethylene Substances 0.000 description 14
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 14
- 125000003118 aryl group Chemical group 0.000 description 14
- 239000007795 chemical reaction product Substances 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 125000000623 heterocyclic group Chemical group 0.000 description 13
- 229920002554 vinyl polymer Polymers 0.000 description 13
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 12
- 239000004711 α-olefin Substances 0.000 description 12
- 150000001336 alkenes Chemical class 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 239000007859 condensation product Substances 0.000 description 11
- 238000005984 hydrogenation reaction Methods 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 150000005846 sugar alcohols Polymers 0.000 description 11
- 238000007792 addition Methods 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 9
- 150000001491 aromatic compounds Chemical class 0.000 description 8
- 150000001735 carboxylic acids Chemical class 0.000 description 8
- 239000003599 detergent Substances 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 8
- 239000003879 lubricant additive Substances 0.000 description 8
- 239000002480 mineral oil Substances 0.000 description 8
- 235000010446 mineral oil Nutrition 0.000 description 8
- 150000002989 phenols Chemical class 0.000 description 8
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- 229910052770 Uranium Inorganic materials 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 7
- 150000004885 piperazines Chemical class 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 6
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 5
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- 239000010689 synthetic lubricating oil Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- 239000004386 Erythritol Substances 0.000 description 4
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 229920002367 Polyisobutene Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 150000001338 aliphatic hydrocarbons Chemical group 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 239000002518 antifoaming agent Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 4
- 235000019414 erythritol Nutrition 0.000 description 4
- 229940009714 erythritol Drugs 0.000 description 4
- 150000002440 hydroxy compounds Chemical class 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 125000002524 organometallic group Chemical group 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920005604 random copolymer Polymers 0.000 description 4
- 239000000600 sorbitol Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 229960001124 trientine Drugs 0.000 description 4
- 150000003751 zinc Chemical class 0.000 description 4
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 150000001447 alkali salts Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000004996 alkyl benzenes Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000001414 amino alcohols Chemical class 0.000 description 3
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 229920001038 ethylene copolymer Polymers 0.000 description 3
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 229940098779 methanesulfonic acid Drugs 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 125000005702 oxyalkylene group Chemical class 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 150000003053 piperidines Chemical class 0.000 description 3
- 229920001281 polyalkylene Polymers 0.000 description 3
- 239000002685 polymerization catalyst Substances 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- VACHUYIREGFMSP-UHFFFAOYSA-N (+)-threo-9,10-Dihydroxy-octadecansaeure Natural products CCCCCCCCC(O)C(O)CCCCCCCC(O)=O VACHUYIREGFMSP-UHFFFAOYSA-N 0.000 description 2
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 2
- OOCCDEMITAIZTP-QPJJXVBHSA-N (E)-cinnamyl alcohol Chemical compound OC\C=C\C1=CC=CC=C1 OOCCDEMITAIZTP-QPJJXVBHSA-N 0.000 description 2
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- JPFGKGZYCXLEGQ-UHFFFAOYSA-N 1-(4-methoxyphenyl)-5-methylpyrazole-4-carboxylic acid Chemical compound C1=CC(OC)=CC=C1N1C(C)=C(C(O)=O)C=N1 JPFGKGZYCXLEGQ-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- NHIRIMBKJDSLBY-UHFFFAOYSA-N 3-[bis(3-hydroxypropyl)amino]propan-1-ol Chemical compound OCCCN(CCCO)CCCO NHIRIMBKJDSLBY-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- BBDKZWKEPDTENS-UHFFFAOYSA-N 4-Vinylcyclohexene Chemical compound C=CC1CCC=CC1 BBDKZWKEPDTENS-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 2
- VACHUYIREGFMSP-SJORKVTESA-N 9,10-Dihydroxystearic acid Natural products CCCCCCCC[C@@H](O)[C@@H](O)CCCCCCCC(O)=O VACHUYIREGFMSP-SJORKVTESA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 241001120493 Arene Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- QCOGKXLOEWLIDC-UHFFFAOYSA-N N-methylbutylamine Chemical compound CCCCNC QCOGKXLOEWLIDC-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 125000002723 alicyclic group Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 125000006294 amino alkylene group Chemical group 0.000 description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000012967 coordination catalyst Substances 0.000 description 2
- YEOCHZFPBYUXMC-UHFFFAOYSA-L copper benzoate Chemical compound [Cu+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 YEOCHZFPBYUXMC-UHFFFAOYSA-L 0.000 description 2
- 239000004148 curcumin Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- PFURGBBHAOXLIO-UHFFFAOYSA-N cyclohexane-1,2-diol Chemical compound OC1CCCCC1O PFURGBBHAOXLIO-UHFFFAOYSA-N 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 229920000359 diblock copolymer Polymers 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- WUSMNKZFOXUXJK-UHFFFAOYSA-N ethene;oxolane-2,5-dione Chemical group C=C.O=C1CCC(=O)O1 WUSMNKZFOXUXJK-UHFFFAOYSA-N 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N ethyl trimethyl methane Natural products CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N monoethanolamine hydrochloride Natural products NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 150000002780 morpholines Chemical class 0.000 description 2
- KPSSIOMAKSHJJG-UHFFFAOYSA-N neopentyl alcohol Chemical compound CC(C)(C)CO KPSSIOMAKSHJJG-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 150000003017 phosphorus Chemical class 0.000 description 2
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 150000003235 pyrrolidines Chemical class 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 150000003444 succinic acids Chemical class 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- OTXHZHQQWQTQMW-UHFFFAOYSA-N (diaminomethylideneamino)azanium;hydrogen carbonate Chemical compound OC([O-])=O.N[NH2+]C(N)=N OTXHZHQQWQTQMW-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- 229940083957 1,2-butanediol Drugs 0.000 description 1
- BGZGQDDKQNYZID-UHFFFAOYSA-N 1-(hydroxymethyl)cyclohexan-1-ol Chemical compound OCC1(O)CCCCC1 BGZGQDDKQNYZID-UHFFFAOYSA-N 0.000 description 1
- WTGGXKMCUUXBQR-UHFFFAOYSA-N 1-butyl-2-(4-methylphenyl)hydrazine Chemical compound CCCCNNC1=CC=C(C)C=C1 WTGGXKMCUUXBQR-UHFFFAOYSA-N 0.000 description 1
- FFWWXLMIYACZCP-UHFFFAOYSA-N 1-cyclohexyl-1-phenylhydrazine Chemical compound C=1C=CC=CC=1N(N)C1CCCCC1 FFWWXLMIYACZCP-UHFFFAOYSA-N 0.000 description 1
- CKOWFPOPTYAXHC-UHFFFAOYSA-N 1-decylnaphthalen-2-ol Chemical compound C1=CC=C2C(CCCCCCCCCC)=C(O)C=CC2=C1 CKOWFPOPTYAXHC-UHFFFAOYSA-N 0.000 description 1
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 1
- NSOAQRMLVFRWIT-UHFFFAOYSA-N 1-ethenoxydecane Chemical compound CCCCCCCCCCOC=C NSOAQRMLVFRWIT-UHFFFAOYSA-N 0.000 description 1
- XXCVIFJHBFNFBO-UHFFFAOYSA-N 1-ethenoxyoctane Chemical compound CCCCCCCCOC=C XXCVIFJHBFNFBO-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- UVHXEHGUEKARKZ-UHFFFAOYSA-N 1-ethenylanthracene Chemical class C1=CC=C2C=C3C(C=C)=CC=CC3=CC2=C1 UVHXEHGUEKARKZ-UHFFFAOYSA-N 0.000 description 1
- MNZGWEVNYBSBHA-UHFFFAOYSA-N 1-ethyl-2-phenylhydrazine Chemical compound CCNNC1=CC=CC=C1 MNZGWEVNYBSBHA-UHFFFAOYSA-N 0.000 description 1
- HYWXQFOMMUKUAV-UHFFFAOYSA-N 1-methyl-1-(4-nitrophenyl)hydrazine Chemical compound CN(N)C1=CC=C([N+]([O-])=O)C=C1 HYWXQFOMMUKUAV-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical class C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- ILJOIOLSOMYKNF-UHFFFAOYSA-N 2,3-didodecylphenol Chemical class CCCCCCCCCCCCC1=CC=CC(O)=C1CCCCCCCCCCCC ILJOIOLSOMYKNF-UHFFFAOYSA-N 0.000 description 1
- KPZBEZVZFBDKCG-UHFFFAOYSA-N 2,4-dibutylphenol Chemical compound CCCCC1=CC=C(O)C(CCCC)=C1 KPZBEZVZFBDKCG-UHFFFAOYSA-N 0.000 description 1
- VXHYVVAUHMGCEX-UHFFFAOYSA-N 2-(2-hydroxyphenoxy)phenol Chemical compound OC1=CC=CC=C1OC1=CC=CC=C1O VXHYVVAUHMGCEX-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical compound OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- MTLWTRLYHAQCAM-UHFFFAOYSA-N 2-[(1-cyano-2-methylpropyl)diazenyl]-3-methylbutanenitrile Chemical compound CC(C)C(C#N)N=NC(C#N)C(C)C MTLWTRLYHAQCAM-UHFFFAOYSA-N 0.000 description 1
- FNXXLDHPVGHXEM-UHFFFAOYSA-N 2-[(2-hydroxyphenyl)disulfanyl]phenol Chemical compound OC1=CC=CC=C1SSC1=CC=CC=C1O FNXXLDHPVGHXEM-UHFFFAOYSA-N 0.000 description 1
- BYACHAOCSIPLCM-UHFFFAOYSA-N 2-[2-[bis(2-hydroxyethyl)amino]ethyl-(2-hydroxyethyl)amino]ethanol Chemical compound OCCN(CCO)CCN(CCO)CCO BYACHAOCSIPLCM-UHFFFAOYSA-N 0.000 description 1
- CYOIAXUAIXVWMU-UHFFFAOYSA-N 2-[2-aminoethyl(2-hydroxyethyl)amino]ethanol Chemical compound NCCN(CCO)CCO CYOIAXUAIXVWMU-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- XOTLKHMCKYDSBU-UHFFFAOYSA-N 2-ethylpiperazine-1,4-diamine Chemical compound CCC1CN(N)CCN1N XOTLKHMCKYDSBU-UHFFFAOYSA-N 0.000 description 1
- FIWYWGLEPWBBQU-UHFFFAOYSA-N 2-heptylphenol Chemical compound CCCCCCCC1=CC=CC=C1O FIWYWGLEPWBBQU-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- JJRDRFZYKKFYMO-UHFFFAOYSA-N 2-methyl-2-(2-methylbutan-2-ylperoxy)butane Chemical compound CCC(C)(C)OOC(C)(C)CC JJRDRFZYKKFYMO-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical class CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- KEZYTBRZEHSOTF-UHFFFAOYSA-N 2-methylpropoxy-pentoxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCOP(S)(=S)OCC(C)C KEZYTBRZEHSOTF-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- WFCSWCVEJLETKA-UHFFFAOYSA-N 2-piperazin-1-ylethanol Chemical compound OCCN1CCNCC1 WFCSWCVEJLETKA-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FQHYQCXMFZHLAE-UHFFFAOYSA-N 25405-85-0 Chemical compound CC1(C)C2(OC(=O)C=3C=CC=CC=3)C1C1C=C(CO)CC(C(C(C)=C3)=O)(O)C3C1(O)C(C)C2OC(=O)C1=CC=CC=C1 FQHYQCXMFZHLAE-UHFFFAOYSA-N 0.000 description 1
- ZAXCZCOUDLENMH-UHFFFAOYSA-N 3,3,3-tetramine Chemical compound NCCCNCCCNCCCN ZAXCZCOUDLENMH-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- OAHMVZYHIJQTQC-UHFFFAOYSA-N 4-cyclohexylphenol Chemical compound C1=CC(O)=CC=C1C1CCCCC1 OAHMVZYHIJQTQC-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- KMVPXBDOWDXXEN-UHFFFAOYSA-N 4-nitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1 KMVPXBDOWDXXEN-UHFFFAOYSA-N 0.000 description 1
- UVEUVUQAVQTZTB-UHFFFAOYSA-N 4-phenylcyclohexa-1,5-diene-1,4-diol Chemical group C1=CC(O)=CCC1(O)C1=CC=CC=C1 UVEUVUQAVQTZTB-UHFFFAOYSA-N 0.000 description 1
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 1
- JWDWCHZBTPOBRT-UHFFFAOYSA-N 5-aminoheptan-3-ol Chemical compound CCC(N)CC(O)CC JWDWCHZBTPOBRT-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910021581 Cobalt(III) chloride Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- OEKPKBBXXDGXNB-IBISWUOJSA-N Digitalose Natural products CO[C@H]1[C@@H](O)[C@@H](C)O[C@@H](O)[C@@H]1O OEKPKBBXXDGXNB-IBISWUOJSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical class C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 1
- VHOQXEIFYTTXJU-UHFFFAOYSA-N Isobutylene-isoprene copolymer Chemical compound CC(C)=C.CC(=C)C=C VHOQXEIFYTTXJU-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 238000006000 Knoevenagel condensation reaction Methods 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- GTTSNKDQDACYLV-UHFFFAOYSA-N Trihydroxybutane Chemical class CCCC(O)(O)O GTTSNKDQDACYLV-UHFFFAOYSA-N 0.000 description 1
- LONQTZORWVBHMK-UHFFFAOYSA-N [N].NN Chemical compound [N].NN LONQTZORWVBHMK-UHFFFAOYSA-N 0.000 description 1
- MCDLETWIOVSGJT-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O MCDLETWIOVSGJT-UHFFFAOYSA-N 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-N acetoacetic acid Chemical class CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- OOCCDEMITAIZTP-UHFFFAOYSA-N allylic benzylic alcohol Natural products OCC=CC1=CC=CC=C1 OOCCDEMITAIZTP-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 239000006079 antiknock agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 150000008072 azecines Chemical class 0.000 description 1
- 150000001538 azepines Chemical class 0.000 description 1
- 150000001539 azetidines Chemical class 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 150000004916 azocines Chemical class 0.000 description 1
- 150000007982 azolidines Chemical class 0.000 description 1
- 150000008068 azonines Chemical class 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 229950011260 betanaphthol Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- YIEXROAWVNRRMJ-UHFFFAOYSA-N buta-1,3-diene;butyl prop-2-enoate Chemical compound C=CC=C.CCCCOC(=O)C=C YIEXROAWVNRRMJ-UHFFFAOYSA-N 0.000 description 1
- NSGQRLUGQNBHLD-UHFFFAOYSA-N butan-2-yl butan-2-yloxycarbonyloxy carbonate Chemical compound CCC(C)OC(=O)OOC(=O)OC(C)CC NSGQRLUGQNBHLD-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- KYBWARAGOBBTNW-UHFFFAOYSA-L butanoate;cadmium(2+) Chemical compound [Cd+2].CCCC([O-])=O.CCCC([O-])=O KYBWARAGOBBTNW-UHFFFAOYSA-L 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000011 cadmium carbonate Inorganic materials 0.000 description 1
- GKDXQAKPHKQZSC-UHFFFAOYSA-L cadmium(2+);carbonate Chemical compound [Cd+2].[O-]C([O-])=O GKDXQAKPHKQZSC-UHFFFAOYSA-L 0.000 description 1
- JOGSGUQZPZCJCG-UHFFFAOYSA-L cadmium(2+);dibenzoate Chemical compound [Cd+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 JOGSGUQZPZCJCG-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- RECUKUPTGUEGMW-UHFFFAOYSA-N carvacrol Chemical compound CC(C)C1=CC=C(C)C(O)=C1 RECUKUPTGUEGMW-UHFFFAOYSA-N 0.000 description 1
- HHTWOMMSBMNRKP-UHFFFAOYSA-N carvacrol Natural products CC(=C)C1=CC=C(C)C(O)=C1 HHTWOMMSBMNRKP-UHFFFAOYSA-N 0.000 description 1
- 235000007746 carvacrol Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229940055042 chromic sulfate Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 229910000356 chromium(III) sulfate Inorganic materials 0.000 description 1
- 239000011696 chromium(III) sulphate Substances 0.000 description 1
- 235000015217 chromium(III) sulphate Nutrition 0.000 description 1
- LRCIYVMVWAMTKX-UHFFFAOYSA-L chromium(ii) acetate Chemical compound [Cr+2].CC([O-])=O.CC([O-])=O LRCIYVMVWAMTKX-UHFFFAOYSA-L 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- IUYLTEAJCNAMJK-UHFFFAOYSA-N cobalt(2+);oxygen(2-) Chemical compound [O-2].[Co+2] IUYLTEAJCNAMJK-UHFFFAOYSA-N 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 229940097267 cobaltous chloride Drugs 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- RFKZUAOAYVHBOY-UHFFFAOYSA-M copper(1+);acetate Chemical compound [Cu+].CC([O-])=O RFKZUAOAYVHBOY-UHFFFAOYSA-M 0.000 description 1
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 1
- XNEQAVYOCNWYNZ-UHFFFAOYSA-L copper;dinitrite Chemical compound [Cu+2].[O-]N=O.[O-]N=O XNEQAVYOCNWYNZ-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- PQANGXXSEABURG-UHFFFAOYSA-N cyclohex-2-en-1-ol Chemical compound OC1CCCC=C1 PQANGXXSEABURG-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- NISGSNTVMOOSJQ-UHFFFAOYSA-N cyclopentanamine Chemical compound NC1CCCC1 NISGSNTVMOOSJQ-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical group [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- MPQBLCRFUYGBHE-JRTVQGFMSA-N digitalose Chemical compound O=C[C@H](O)[C@@H](OC)[C@@H](O)[C@@H](C)O MPQBLCRFUYGBHE-JRTVQGFMSA-N 0.000 description 1
- 125000004925 dihydropyridyl group Chemical group N1(CC=CC=C1)* 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- ZLGMDTFIJOOGJC-UHFFFAOYSA-N ethene;propanoic acid Chemical group C=C.CCC(O)=O ZLGMDTFIJOOGJC-UHFFFAOYSA-N 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229940046149 ferrous bromide Drugs 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- MHIBEGOZTWERHF-UHFFFAOYSA-N heptane-1,1-diol Chemical class CCCCCCC(O)O MHIBEGOZTWERHF-UHFFFAOYSA-N 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical class CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- DZZRNEZNZCRBOT-UHFFFAOYSA-N hexane-1,2,4-triol Chemical compound CCC(O)CC(O)CO DZZRNEZNZCRBOT-UHFFFAOYSA-N 0.000 description 1
- QCIYAEYRVFUFAP-UHFFFAOYSA-N hexane-2,3-diol Chemical compound CCCC(O)C(C)O QCIYAEYRVFUFAP-UHFFFAOYSA-N 0.000 description 1
- TXGJTWACJNYNOJ-UHFFFAOYSA-N hexane-2,4-diol Chemical compound CCC(O)CC(C)O TXGJTWACJNYNOJ-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 229960004337 hydroquinone Drugs 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ITAUHKJMPRCVIH-UHFFFAOYSA-K iron(3+);tribenzoate Chemical compound [Fe+3].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 ITAUHKJMPRCVIH-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- WYXXLXHHWYNKJF-UHFFFAOYSA-N isocarvacrol Natural products CC(C)C1=CC=C(O)C(C)=C1 WYXXLXHHWYNKJF-UHFFFAOYSA-N 0.000 description 1
- 150000002518 isoindoles Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000006080 lead scavenger Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- RNVVYVPDHMKDTL-UHFFFAOYSA-N methyl 2-(hydroxymethoxy)acetate Chemical compound COC(=O)COCO RNVVYVPDHMKDTL-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- AQGNVWRYTKPRMR-UHFFFAOYSA-N n'-[2-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCNCCN AQGNVWRYTKPRMR-UHFFFAOYSA-N 0.000 description 1
- GKZDIHQAXQMWGP-UHFFFAOYSA-N n,n,n',n'-tetrahydroxypropane-1,3-diamine Chemical compound ON(O)CCCN(O)O GKZDIHQAXQMWGP-UHFFFAOYSA-N 0.000 description 1
- SWVGZFQJXVPIKM-UHFFFAOYSA-N n,n-bis(methylamino)propan-1-amine Chemical compound CCCN(NC)NC SWVGZFQJXVPIKM-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- FUUUBHCENZGYJA-UHFFFAOYSA-N n-cyclopentylcyclopentanamine Chemical compound C1CCCC1NC1CCCC1 FUUUBHCENZGYJA-UHFFFAOYSA-N 0.000 description 1
- UKOVZLWSUZKTRL-UHFFFAOYSA-N naphthalid Chemical compound C1=CC(C(=O)OC2)=C3C2=CC=CC3=C1 UKOVZLWSUZKTRL-UHFFFAOYSA-N 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- LVBIMKHYBUACBU-CVBJKYQLSA-L nickel(2+);(z)-octadec-9-enoate Chemical compound [Ni+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LVBIMKHYBUACBU-CVBJKYQLSA-L 0.000 description 1
- JMWUYEFBFUCSAK-UHFFFAOYSA-L nickel(2+);octadecanoate Chemical compound [Ni+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O JMWUYEFBFUCSAK-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- OIPPWFOQEKKFEE-UHFFFAOYSA-N orcinol Chemical compound CC1=CC(O)=CC(O)=C1 OIPPWFOQEKKFEE-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000002103 osmometry Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229940090668 parachlorophenol Drugs 0.000 description 1
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 229960001553 phloroglucinol Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000352 poly(styrene-co-divinylbenzene) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- DHGFMVMDBNLMKT-UHFFFAOYSA-N propyl 3-oxobutanoate Chemical class CCCOC(=O)CC(C)=O DHGFMVMDBNLMKT-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 150000003870 salicylic acids Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- QPRQEDXDYOZYLA-UHFFFAOYSA-N sec-pentyl alcohol Natural products CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- HNVPEVZTAWKCRW-UHFFFAOYSA-N tert-butyl 3-chlorobenzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC(Cl)=C1 HNVPEVZTAWKCRW-UHFFFAOYSA-N 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000004853 tetrahydropyridinyl group Chemical group N1(CCCC=C1)* 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000004886 thiomorpholines Chemical class 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- JDLYKQWJXAQNNS-UHFFFAOYSA-L zinc;dibenzoate Chemical compound [Zn+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 JDLYKQWJXAQNNS-UHFFFAOYSA-L 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/1817—Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/92—Carboxylic acids
- C10M129/93—Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/95—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/123—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/22—Acids obtained from polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
Definitions
- TITLE DISPERSANT/NISCOSTTY IMPROVERS FOR LUBRICATING OIL AND FUELS
- This invention relates to hydrocarbyl substituted carboxylic compositions and derivatives prepared therefrom.
- the carboxylic compositions and derivatives are useful as dispersant/viscosity improvers for lubricating oil and fuel compositions.
- the viscosity of lubricating oils is generally dependent upon temperature. As the temperature of the oil is increased, the viscosity usually decreases.
- a viscosity improver The function of a viscosity improver is to reduce the extent of the decrease in viscosity as the temperature is raised or to reduce the extent of the increase in viscosity as the temperature is lowered, or both.
- a viscosity improver ameliorates the change of viscosity of an oil containing it with changes in temperature. The fluidity characteristics of the oil are improved.
- additives are used to improve lubricating oil and fuel compositions.
- Such additives include, but are not limited to dispersants and detergents of the ashless and ash-containing variety, oxidation inhibitors, anti-wear additives, friction modifiers, and the like.
- dispersants and detergents of the ashless and ash-containing variety
- oxidation inhibitors include, but are not limited to oxidation inhibitors, anti-wear additives, friction modifiers, and the like.
- Such materials are well known in the art and are described in many publications, for example, Smalheer, et al, "Lubricant Additives", Lezius-Hiles Co., Cleveland, OH, USA (1967); M.W. Ranney, Ed., "Lubricant Additives", Noyes Data Corp., Park Ridge, NJ, USA (1973); MJ.
- Dispersants are well-known in the lubricating art. Dispersants are employed in lubricants to keep impurities, particularly those formed during operation of mechanical devices such as internal combustion engines, automatic transmissions, etc. in suspension rather than allowing them to deposit as sludge or other deposits on the surfaces of lubricated parts.
- Dispersant-viscosity improvers are generally prepared by functionalizing, i.e., adding polar groups, to a hydrocarbon polymer .
- Hayashi et al, U.S. 4,670,173 relates to compositions suitable for use as dispersant-viscosity improvers made by reacting an acylating reaction product which is formed by reacting a hydrogenated block copolymer and an alpha,beta olefinically unsaturated reagent in the presence of free-radical initiators, then reacting the acylating product with a primary amine and optionally with a polyamine and a mono-functional acid.
- Chung et al, US 5,035,821 relates to viscosity index improver-dispersants comprised of the reaction products of an ethylene copolymer grafted with ethylenically unsaturated carboxylic acid moieties, a polyamine having two or more primary amino groups or polyol and a high functionality long chain hydrocarbyl substituted dicarboxylic acid or anhydride.
- 5,049,294 relates to dispersant/VI improvers produced by reacting an alpha,beta-unsaturated carboxylic acid with a selectively hydrogenated star-shaped polymer then reacting the product so formed with a long chain alkane-substituted carboxylic acid and with a to C ⁇ 8 amine containing 1 to 8 nitrogen atoms and/or with an alkane polyol having at least two hydroxy groups or with the preformed product thereof.
- Bloch et al U.S. 4,517,104, relates to oil soluble viscosity improving ethylene copolymers reacted or grafted with ethylenically unsaturated carboxylic acid moieties then with polyamines having two or more primary amine groups and a carboxylic acid component or the preformed reaction product thereof.
- Gutierrez et al U.S. 4,632,769, describes oil-soluble viscosity improving ethylene copolymers reacted or grafted with ethylenically unsaturated carboxylic acid moieties and reacted with polyamines having two or more primary amine groups and a C 22 to C 28 olefin carboxylic acid component.
- Lange, et al, U.S. 4,491,527 relates to ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants.
- compositions comprise derivatives of substituted carboxylic acids in which the substituent is a substantially aliphatic, substantially saturated hydrocarbon based radical containing at least about 30 aliphatic carbon atoms; said derivatives being the combination of: (A) at least one ester of said carboxylic acids in which all the alcohol moieties are derived from at least on mono- or polyhydroxyalkane; and (B) at least one heterocyclic condensation product of said substituted carboxylic acids containing at least one heterocyclic moiety which includes a 5- or 6-membered ring which contains at least two ring hetero atoms selected from the group consisting of oxygen, sulfur and nitrogen separated by a single carbon atom, at least one of said hetero atoms being nitrogen, and at least one carboxylic.
- carboxylic and heterocyclic moieties either being linked through an ester or amide linkage or being the same moiety in which said single carbon atom separating two ring hetero atoms corresponds to a carbonyl carbon atom of the substituted carboxylic acid.
- Lange, et al, U.S; 5,512,192 teach dispersant viscosity improvers for lubricating oil compositions comprising a vinyl substituted aromatic-aliphatic conjugated diene block copolymer grafted with an ethylenically unsaturated carboxylic acid reacted with at least one polyester containing at least one condensable hydroxy group and at least one polyamine having at least one condensable primary or secondary amino group, and optionally, at least one hydrocarbyl substituted carboxylic acid or anhydride.
- 5,540,851 describes dispersant viscosity improvers for lubricating oil compositions which are the reaction product of (a) an oil soluble ethylene-alpha olefin copolymer wherein the alpha olefin is selected from the group consisting of C 3 - 28 alpha olefins, said polymer having a number average molecular weight ranging from about 30,000 to about 300,000 grafted with an ethylenically unsaturated carboxylic acid or functional derivative thereof; with at least one polyester containing at least one condensable hydroxyl group, and at least one polyamine having at least one condensable primary or secondary amino group, and optionally at least one hydrocarbyl substituted carboxylic acid or anhydride.
- an oil soluble ethylene-alpha olefin copolymer wherein the alpha olefin is selected from the group consisting of C 3 - 28 alpha olefins, said polymer having a number average molecular weight
- carboxylic reactants for example, acids, esters, anhydrides, lactones, and others.
- carboxylic compounds used as intermediates for preparing lubricating oil additives include high molecular weight hydrocarbyl group substituted carboxylic acids such as succinic acids and anhydrides, aromatic acids, such as salicylic acids, and others.
- Illustrative carboxylic compounds are described in Lange et al , US 5,512,192, Lange US 5,540,851 and 5,811,378 andHayashi et al US 4,670,173.
- Such carboxylic acids are typically prepared by thermally reacting or free radical grafting of carboxylic groups such as maleic anhydride, acrylic compounds, etc.
- reaction rates are relatively low. Attempts to improve the conversion rate by increasing the reaction temperature and/or using super-atmospheric pressure often results in degradation of maleic anhydride to carbon dioxide, water and tar-like solids
- compositions of this invention are prepared employing raw materials that are different from, and are not suggested by, traditionally used raw materials.
- This invention relates to carboxylic compositions and derivatives thereof useful as dispersant viscosity improvers for lubricating oils and fuels.
- the carboxylic compositions are also useful as intermediates for preparing derivatives for use as dispersant viscosity improvers. Both the carboxylic compositions and the derivatives thereof find utility as dispersant/viscosity improvers for lubricating oil and fuel compositions.
- Hydrocarbyl group substituted carboxylic compositions are derived from (A) a hydrocarbon polymer having M n ranging from about 20,000 to about 500,000 and (B) an ⁇ , ⁇ -unsaturated carboxylic compound prepared by reacting (1) an active methylene compound of the formula o o
- R' C— CH 2 — COR and (2) a carbonyl compound of the general formula o R a C R b wherein R a is H or hydrocarbyl and R b is a member of the group consisting of H, hydrocarbyl and ? CR ; wherein each R' is independently R or OR arid each R is, independently, H or a hydrocarbyl group; and lower alkyl acetals, ketals, hemiacetals and hemiketals of the carbonyl compound (2).
- Carboxylic derivative compositions are obtained by reacting the carboxylic compositions with a reactant selected from the group consisting of (a) amines characterized by the presence within their structure of at least one condensable H-N ⁇ group, (b) alcohols, (c) reactive metal or reactive metal compounds, and (d) a combination of two or more of any of (a) through (c), the components of (d) being reacted with the carboxylic composition simultaneously or sequentially, in any order.
- a reactant selected from the group consisting of (a) amines characterized by the presence within their structure of at least one condensable H-N ⁇ group, (b) alcohols, (c) reactive metal or reactive metal compounds, and (d) a combination of two or more of any of (a) through (c), the components of (d) being reacted with the carboxylic composition simultaneously or sequentially, in any order.
- hydrocarbon means that the group being described has predominantly hydrocarbon character within the context of this invention.
- the groups are purely hydrocarbon in nature, that is they are essentially free of atoms other than carbon and hydrogen.
- oil soluble or dispersible is used.
- oil soluble or dispersible is meant that an amount needed to provide the desired level of activity or performance can be incorporated by being dissolved, dispersed or suspended in an oil of lubricating viscosity. Usually, this
- polymer' refers to polymers of all types, i.e., homopolymers and copolymers.
- homopolymer refers to polymers derived from essentially one monomeric species; copolymers are defined herein as being derived from 2 or more monomeric species.
- the hydrocarbon polymer is an essentially hydrocarbon based polymer, usually one having a number average molecular weight (M n ) between about 20,000 and about 500,000, often from about 20,000 to about 300,000, frequently from about 40,000 to about 200,000.
- M n number average molecular weight
- Molecular weights of the hydrocarbon polymer are determined using well known methods described in the literature. Examples of procedures for determining the molecular weights are gel permeation chromatography (GPC) (also known as size-exclusion chromatography) and vapor phase osmometry (VPO). It is understood that these are average molecular weights. GPC molecular weights are typically accurate within about 5-10%.
- a polymer with M n of about 20,000 may have some species as low as about 15,000.
- a polymer with M w about 35,000 andM n about 20,000 may have GPC peaks corresponding to polymer components as low as about 10,000 and as high as 75,000.
- GPC molecular weights referred to herein are polystyrene equivalent weights, i.e., are molecular weights determined employing polystyrene standards.
- a measurement which is complementary to a polymer's molecular weight is the melt index (ASTM D-1238).
- Polymers of high melt index generally have low molecular weight, and vice versa.
- the polymers of the present invention preferably have a melt index of up to 20 dg/min., more preferably 0.1 to 10 dg/min.
- the molecular weight of a polymer When the molecular weight of a polymer is greater than desired, it may be reduced by techniques known in the art. Such techniques include mechanical shearing of the polymer employing masticators, ball mills, roll mills, extruders and the like. Oxidative or thermal shearing or degrading techniques are also useful and are known. Details of numerous procedures for shearing polymers are given in U.S. 5,348,673 which is hereby incorporated herein by reference for relevant disclosures in this regard. Reducing molecular weight also tends to improve the subsequent shear stability of the polymer.
- the polymer may contain aliphatic, aromatic or cycloaliphatic components, or mixtures thereof. When the polymer is prepared from the monomers, it may contain substantial amounts of olefinic unsaturation, oftentimes far in excess of that which is desired for this invention.
- the polymer may be subjected to hydrogenation to reduce the amount of unsaturation to such an extent that the resulting hydrogenated polymer has olefinic unsaturation, based on the total number of carbon to carbon bonds in the polymer, of less than 5%, frequently less than 2%, often no more than 1% olefinic unsaturation. In one embodiment, the polymer is substantially saturated.
- substantially saturated is meant that no more than 5% of the carbon to carbon bonds, often no more than 1% and frequently no more than 0.5% of the carbon to carbon bonds are olefinically unsaturated. Most often, substantially saturated means that the polymer is essentially free of olefinic unsaturation.
- the reaction with (B) is conducted employing a free radical initiator. Such processes are described in U.S. Patents 5,512,192 and 5,540,851 which are incorporated herein by reference.
- the polymer (A) contains olefinic unsaturation and the reaction is conducted thermally, employing the well known "ene” process, optionally in the presence of added chlorine.
- the use of added chlorine during the reaction often facilitates the reaction. Nonetheless, in order to avoid the presence of chlorine in the grafted product and derivatives thereof, it is preferred to conduct the grafting reaction thermally or in the presence of a free radical initiator.
- the "ene” process is described in the literature, for example in U.S. Patent
- Chlorine assisted grafting is described in numerous patents including U.S. Patents 3,215,707; 3,912,764; and 4,234,435, which are incorporated herein by reference.
- Aromatic unsaturation is not considered olefinic unsaturation within the context of this invention. Depending on hydrogenation conditions, up to about 20% of aromatic groups may be hydrogenated; however, typically no more than about 5%, usually less than 1% of aromatic bonds are hydrogenated. Most often, substantially none of the aromatic bonds are hydrogenated.
- the polymer contains an average of from 1 to . about 9,000 olefinic double bonds, more often from about 1 to about 100 olefinic double bonds, even more often from about 1, frequently 2 to about 10, up to about
- the polymer contains about 1 olefinic double bond for about every 20, often for about every 70 to 7000 carbon atoms.
- the hydrocarbon polymer contains about 1 olefinic double bond for every 4,000 to
- the hydrocarbon polymer (P) contains about 1 olefinic double bond for about every 300 to 100,000 on M n basis.
- the polymer is substantially saturated, as defined hereinabove.
- the equivalent weight per mole of carbon to carbon double bonds is defined herein as the mole-equivalent weight.
- the polymer has one mole of carbon to carbon double bonds per 25,000 M n .
- the hydrocarbon polymer is at least one oil soluble or dispersible homopolymer or copolymer selected from the group consisting of:
- the hydrocarbon polymer may be a homopolymer or copolymer of one or more dienes.
- the dienes may be conjugated such as isoprene, butadiene and piperylene or non-conjugated such as 1-4 hexadiene, ethylidene norbornene, vinyl norbornene, 4-vinyl cyclohexene, and dicyclopentadiene.
- Polymers of conjugated dienes are preferred.
- Such polymers are conveniently prepared via free radical and anionic polymerization techniques. Emulsion techniques are commonly employed for free radical polymerization.
- useful polymers have M n ranging from about 20,000 to about 500,000. More often, useful polymers of this type have M n ranging from about 50,000 to about 150,000.
- These polymers may be and often are hydrogenated to reduce the amount of olefinic unsaturation present in the polymer. They may or may not be exhaustively hydrogenated. Hydrogenation is often accomplished employing catalytic methods. Catalytic techniques employing hydrogen under high pressure and at elevated temperature are well-known to those skilled in the chemical art. Other methods are also useful and are well known to those skilled in the art.
- the polymers include homopolymers and copolymers of conjugated dienes including polymers of 1,3-dienes of the formula
- each substituent denoted by R, or R with a numerical subscript is independently hydrogen or hydrocarbon based, wherein hydrocarbon based is as defined hereinabove.
- at least one substituent is H.
- the total carbon content of the diene will not exceed 20 carbons.
- Preferred dienes for preparation of the polymer are piperylene, isoprene, 2,3-dimethyl-l,3-butadiene, chloroprene and 1,3-butadiene. Suitable homopolymers of conjugated dienes are described, and methods for their preparation are given in numerous U.S. patents, including the following:
- U.S. 3,959,161 teaches the preparation of hydrogenated polybutadiene.
- 1,4-polyisoprene upon hydrogenation, becomes an alternating copolymer of ethylene and propylene.
- Copolymers of conjugated dienes are prepared from two or more conjugated dienes.
- Useful dienes are the same as those described in the preparation of homopolymers of conjugated dienes hereinabove.
- the following U.S. Patents describe diene copolymers and methods for preparing them:
- the hydrocarbon polymer is a copolymer of a vinyl- substituted aromatic compound and a conjugated diene.
- the vinyl substituted aromatics generally contain from 8 to about 20 carbons, preferably from 8 to 12 carbon atoms and most preferably, 8 or 9 carbon atoms.
- vinyl substituted aromatics examples include vinyl anthracenes, vinyl naphthalenes and vinyl benzenes (styrenic compounds). Styrenic compounds are preferred, examples being styrene, alpha-methystyrene, ortho-methyl styrene, meta- methyl styrene, para-methyl styrene, para-tertiary-butylstyrene and chlorostyrene, with styrene being preferred.
- the conjugated dienes generally have from 4 to about 10 carbon atoms and preferably from 4 to 6 carbon atoms.
- conjugated dienes include piperylene, 2,3-dimethyl-l,3-butadiene, chloroprene, isoprene and 1,3-butadiene, with isoprene and 1,3-butadiene being particularly preferred. Mixtures of such conjugated dienes are useful.
- the vinyl substituted aromatic content of these copolymers is typically in the range of about 20% to about 70% by weight, preferably about 40% to about 60% by weight.
- the aliphatic conjugated diene content of these copolymers is typically in the range of about 30% to about 80% by weight, preferably about 40% to about 60% by weight.
- the polymers, and in particular, styrene-diene copolymers can be random copolymers or block copolymers, which include regular block copolymers or random block copolymers.
- Random copolymers are those in which the comonomers are randomly, or nearly randomly, arranged in the polymer chain with no significant blocking of homopolymer of either monomer.
- Regular block copolymers are those in which a small number of relatively long chains of homopolymer of one type of monomer are alternately joined to a small number of relatively long chains of homopolymer of another type of monomer.
- Random block copolymers are those in which a larger number of relatively short segments of homopolymer of one type of monomer alternate with relatively short segments , of homopolymer of another monomer.
- the random, regular block and random block polymers used in this invention may be linear, or they may be partially or highly branched.
- the relative arrangement of homopolymer segments in a linear regular block or random block polymer is obvious. Differences in structure lie in the number and relative sizes of the homopolymer segments; the arrangement in a linear block polymer of either type is always alternating in homopolymer segments.
- Normal or regular block copolymers usually have from 1 to about 5, often 1 to about 3, preferably only from 1 to about 2 relatively large homopolymer blocks of each monomer.
- a linear regular diblock copolymer of styrene or other vinyl aromatic monomer (S) and diene (D) would have a general structure represented by a large block of homopolymer (S) attached to a large block of homopolymer (D), as: (S)s(D) d where subscripts s and d are as described hereinbelow.
- a regular linear tii-block copolymer of styrene or other vinyl aromatic monomer (S) and diene monomer (D) may be represented, for example, by (S) s (D) d (S), or (D) d (S) s (D) d .
- a third monomer (T) may be incorporated into linear, regular block copolymers.
- monomers (S), (D) and (T) can be represented by the general configurations:
- any regular block copolymer comprises relatively few, but relatively large, alternating homopolymer segments.
- (D) represents blocks derived from diene such as isoprene or butadiene
- “d” usually ranges from about 100 to about 2000, preferably from about 500 to about 1500
- (S) represents, for example, blocks derived from styrene
- "s” usually ranges from about 100 to about 2000, preferably from about 200 to about 1000
- a third block (T) is present, "t” usually ranges from about 10 to about 1000, provided that the M n of the polymer is within the ranges indicated as useful for this invention.
- the copolymers can be prepared by methods well known in the art. Such copolymers usually are prepared by anionic polymerization using Group la metals in the presence of electron-acceptor aromatics, or preformed organometallics such as sec-butyllithium as polymerization catalysts.
- the styrene/diene block polymers are usually made by anionic polymerization, using a variety of techniques, and altering reaction conditions to produce the most desirable features in the resulting polymer.
- the initiator can be either an organometallic material such as an alkyl lithium, or the anion formed by electron transfer from a Group la metal to an aromatic material such as naphthalene.
- a preferred organometallic material is an alkyl lithium such as sec-butyl lithium; the polymerization is initiated by addition of the butyl anion to either the diene monomer or to the styrene.
- a homopolymer of one monomer e.g., styrene
- each polymer molecule having an anionic terminus, and lithium gegenion.
- the carbanionic terminus remains an active imtiation site toward additional monomers.
- the resulting polymers when monomer is completely depleted, will usually all be of similar molecular weight and composition, and the polymer product will be "monodisperse" (i.e., the ratio of weight average molecular weight to number average molecular weight is very nearly 1.0).
- Subsequent introduction of additional styrene can produce a new poly S-block-poly D-block-poly S, or S-D-S triblock polymer; higher orders of block polymers can be made by consecutive stepwise additions of different monomers in different sequences.
- a living diblock polymer can be coupled by exposure to an agent such as a dialkyl dichlorosilane.
- an agent such as a dialkyl dichlorosilane.
- Block copolymers made by consecutive addition of styrene to give a relatively large homopolymer segment (S), followed by a diene to give a relatively large homopolymer segment (D), are referred to as poly-S-bZ ⁇ c£-poly-D copolymers, or S-D diblock polymers.
- metal naphthalide employed as initiator
- the dianion formed by electron transfer from metal, e.g., Na, atoms to the naphthalene ring can generate dianions which may initiate polymerization, e.g. of monomer S, in two directions simultaneously, producing essentially a homopolymer of S having anionic termini at both ends.
- one monomer or another in a mixture will polymerize faster, leading to a segment that is richer in that monomer, interrupted by occasional incorporation of the other monomer.
- This can be used to build a type of polymer referred to as a "random block polymer", or "tapered block polymer".
- a mixture of two different monomers is anionically polymerized in a non-polar paraffinic solvent, one will initiate selectively, and usually polymerize to produce a relatively short segment of homopolymer. Incorporation of the second monomer is inevitable, and this produces a short segment of different structure.
- Random block polymers are generally considered to be those comprising more than 5 such blocks. At some point, one monomer will become depleted, favoring incorporation of the other, leading to ever longer blocks of homopolymer, resulting in a "tapered block copolymer.”
- An alternative way of preparing random or tapered block copolymers involves initiation of styrene, and interrupting with periodic, or step, additions of ⁇ diene monomer.
- the additions are programmed according to the relative reactivity ratios and rate constants of the styrene and particular diene monomer.
- Promoters are electron-rich molecules that facilitate anionic initiation and polymerization rates while lessening the relative differences in rates between various monomers. Promoters also influence the way in which diene monomers are incorporated into the block polymer, favoring 1,2-polymerization of dienes over the normal 1,4-cis- addition. These polymers may have considerable olefinic unsaturation, which may be reduced, if desired. Hydrogenation to reduce the extent of olefinic unsaturation may be carried out to reduce approximately 90-99.1% of the olefinic unsaturation of the initial polymer, such that from about 90 to about 99.9% of the carbon to carbon bonds of the polymer are saturated..
- these copolymers contain no more than about 10%, preferably no more than 5% and often no more than about 0.5% residual olefinic unsaturation on the basis of the total amount of olefinic double bonds present in the polymer prior to hydrogenation.
- Unsaturation can be measured by a number of means well known to those of skill in the art, including infrared, nuclear magnetic resonance spectroscopy, bromine number; iodine number, and other means.
- Aromatic unsaturation is not considered to be olefinic unsaturation within the context of this invention.
- Hydrogenation techniques are well known to those of skill in the art.
- One common method is to contact the copolymers with hydrogen, often at superatmospheric pressure in the presence of a metal catalyst such as colloidal nickel, palladium supported on charcoal, etc.
- Hydrogenation may be carried out as part of the overall production process, using finely divided, or supported, nickel catalyst.
- Other transition metals may also be used to effect the transformation.
- Other techniques are known in the art.
- suitable commercially available regular linear diblock copolymers as set forth above include SHELLVIS ® -40, and SHELLVIS ® -50, both hydrogenated styrene-isoprene block copolymers, manufactured by Shell Chemical.
- suitable random block and tapered block copolymers include the various GLISSOVISCAL ® styrene-butadiene copolymers manufactured by BASF.
- a previously available random block copolymer was PHIL- AD ® viscosity improver, manufactured by Phillips Petroleum.
- the copolymers preferably have M n in the range of about 20,000 to about 500,000, more preferably from about 30,000 to about 150,000.
- the weight average molecular weight (M w ) for these copolymers is generally in the range of about 50,000 to about 500,000, preferably from about 50,000 to about 300,000.
- Copolymers of conjugated dienes with olefins containing aromatic groups e.g., styrene, methyl styrene, etc. are described in numerous patents including the following:
- Another useful hydrocarbon polymer is one which in its main chain is composed essentially of aliphatic olefin, especially alpha olefin, monomers.
- the polyolefins of this embodiment thus exclude polymers which have a large component of other types of monomers copolymerized in the main polymer , such as ester monomers, acid monomers, and the like.
- the polyolefin may contain impurity amounts of such materials, e.g., less than 5% by weight, more often less than 1% by weight, preferably, less than 0.1% by weight of other monomers.
- Useful polymers include oil soluble or dispersible polymers of alpha-olefins.
- the olefin copolymer preferably has a number average molecular weight (M n ) determined by gel-permeation chromatography employing polystyrene standards, ranging from about 20,000 to about 500,000, often from about 30,000 to about 300,000, often to about 200,000, more often from about 50,000 to about 150,000, even more often from about 80,000 to about 150,000.
- M n number average molecular weight
- (M w /M n ) range from about 1.5 to about 3.5, often to about 3.0, preferably, from about 1.7, often from about 2.0, to about 2.5.
- These polymers may be homopolymers or copolymers and are preferably polymers of alpha-olefins having from 2 to about 28 carbon atoms.
- Ri is alkyl of from 1 to 8 carbon atoms, and more preferably is alkyl of from 1 to 2 carbon atoms.
- Examples include homopolymers from monoolefins such as propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 4-methyl-l-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc and copolymers, preferably of ethylene with one or more of these monomers.
- the polymer of olefins is an ethylene- propylene copolymer.
- the ethylene content is preferably in the range of 20 to 80 percent by weight, and more preferably 30 to 70 percent by weight.
- the ethylene content of such copolymers most preferably is 45 to 65 percent, although higher or lower ethylene contents may be present.
- these polymers are substantially free of ethylene homopolymer, although they may exhibit a degree of crystallinity due to the presence of small crystalline polyethylene segments within their microstructure.
- the polymer is a homopolymer derived from a butene, particularly, isobutylene. Especially preferred is where the polymer comprises terminal vinylidene olefinic double bonds.
- the polymers employed in this embodiment may generally be prepared substantially in accordance with procedures which are well known in the art.
- Catalysts employed in the production of the reactant polymers are likewise well known.
- One broad class of catalysts particularly suitable for polymerization of ⁇ -olefins comprises coordination catalysts such as Ziegler or Ziegler-Natta catalysts comprising a transition metal atom.
- Ziegler-Natta catalysts are composed of a combination of a transition metal atom with an organo aluminum halide and may be used with additional complexing agents.
- metallocene compounds are the metallocene compounds. These are organometallic coordination compounds obtained as cyclopentadienyl derivatives of a transition metal or metal halide. The metal is bonded to the cyclopentadienyl ring by electrons moving in orbitals extending above and below the plane of the ring ( ⁇ bond).
- the use of such materials as catalysts for the preparation of ethylene-alpha olefin copolymers is described in U.S. Patent 5,446,221.
- the procedure described therein provides ethylene-alpha olefin copolymers having at least 30% of terminal ethenylidene unsaturation. This patent is hereby incorporated herein by reference for relevant disclosures.
- Polymerization using coordination catalysis is generally conducted at temperatures ranging between 20° and 300° C, preferably between 30° and 200°C.
- Reaction time is not critical and may vary from several hours or more to several minutes or less, depending upon factors such as reaction temperature, the monomers to be copolymerized, and the like.
- One of ordinary sldll in the art may readily obtain the optimum reaction time for a given set of reaction parameters by routine experimentation.
- the polymerization will generally be completed at a pressure of 1 to 40 MPa (10 to 400 bar).
- the polymerization may be conducted employing liquid monomer, such as liquid propylene, or mixtures of liquid monomers (such as mixtures of liquid propylene and 1-butene), as the reaction medium.
- liquid monomer such as liquid propylene, or mixtures of liquid monomers (such as mixtures of liquid propylene and 1-butene)
- polymerization may be accomplished in the presence of a hydrocarbon inert to the polymerization such as butane, pentane, isopentane, hexane, isooctane, decane, toluene, xylene, and the like.
- the reaction diluent (if any) and the alpha-olefin comonomer(s) are charged at appropriate ratios to a suitable reactor. Care should be taken that all ingredients are dry, with the reactants typically being passed through molecular sieves or other drying means prior to their introduction into the reactor. Subsequently, component(s) of the catalyst are introduced while agitating the reaction mixture, thereby causing polymerization to commence. Alternatively, component(s) of the catalyst may be premixed in a solvent and then fed to the reactor. As polymer is being formed, additional monomers may be added to the reactor. Upon completion of the reaction, unreacted monomer and solvent are either flashed or distilled off, if necessary by vacuum, and the copolymer withdrawn from the reactor.
- the polymerization may be conducted in a continuous manner by simultaneously feeding the reaction diluent (if employed), monomers, component(s) of the catalyst to a reactor and withdrawing solvent, unreacted monomer and polymer from the reactor so as to allow a residence time of ingredients long enough for forming polymer of the desired molecular weight; and separating the polymer from the reaction mixture.
- any of the techniques known in the prior art for control of molecular weight such as polymerization temperature control, may be used.
- the polymers are preferably formed in the substantial absence of added H 2 gas, that is, H 2 gas added in amounts effective to substantially reduce the polymer molecular weight.
- the polymers can be random copolymers, block copolymers, and random block copolymers.
- Ethylene propylene copolymers are usually random copolymers.
- Block copolymers may be obtained by conducting the reaction in a tubular reactor. Such a procedure is described in U.S. 4,804,794 which is hereby incorporated by reference for relevant disclosures in this regard. Numerous United States patents, including the following, describe the preparation of copolymers of alpha olefins.
- Copolymers of ethylene with higher alpha olefins are the most common copolymers of aliphatic olefins.
- Ethylene-propylene copolymers are the most common ethylene-alpha-olefin copolymers and are preferred for use in this invention.
- a description of an ethylene-propylene copolymer appears in U.S. 4,137,185 which is hereby incorporated herein by reference.
- ethylene-alpha olefin, usually ethylene-propylene, copolymers are commercially available from numerous sources including the Exxon, Texaco and Lubrizol Corporations. (4) Olefin-Diene Copolymers
- Another useful hydrocarbon polymer is one derived from olefins, especially lower olefins, and dienes.
- Preferred olefins are alpha olefins.
- Dienes may be non- conjugated or conjugated, usually non-conjugated.
- Useful olefins and dienes are the same as those described hereinabove and hereinafter in discussions of other polymer types.
- the copolymer is an ethylene-lower olefin-diene copolymer.
- the term lower refers to groups or compounds containing no more than 7 carbon atoms.
- the diene is non-conjugated.
- ethylene-propylene-diene copolymers are especially preferred.
- copolymers most often will have M n ranging from about 20,000 to about 500,000, preferably from about 50,000 to about 200,000. In another embodiment, theM n ranges from about 70,000 to about 350,000. These polymers often have a relatively narrow range of molecular weight as represented by the polydispersity value M w /M n . Typically, the polydispersity values are less than 10, more often less than 6, and preferably less than 4, often between 2 and 3. There are numerous commercial sources for lower olefin-diene copolymers.
- ORTHOLEUM® 2052 (a product marketed by the DuPont Company) which is a terpolymer having an ethylene ⁇ ropylene weight ratio of about 57:43 and containing 4-5 weight % of groups derived from 1,4-hexadiene monomer.
- Other commercially available olefin-diene copolymers including ethylene-propylene copolymers with ethylidene norbornene, with dicyclopentadiene, with vinyl norbornene, with piperylene (1,3-pentadiene), with 4-vinyl cyclohexene, and numerous other such materials are readily available. Olefin-diene copolymers and methods for their preparation are described in numerous patents including the following U.S. Patents: 3,291,780
- Another useful polymer is an olefin-conjugated diene copolymer.
- An example of such a polymer is butyl rubber, an isobutylene-isoprene copolymer.
- Polymerization can also be effected using free radical initiators in a well- known process, generally employing higher pressures than used with coordination catalysts. These polymers may be and frequently are hydrogenated to bring unsaturation to desired levels. As noted, hydrogenation may take place before or after reaction with the carboxylic reactant. (5) Star Polymer
- Star polymers are polymers comprising a nucleus and polymeric arms.
- Common nuclei include polyalkenyl compounds, usually compounds having at least two non-conjugated alkenyl groups, usually groups attached to electron withdrawing groups, e.g., aromatic nuclei.
- the polymeric arms are often homopolymers and copolymers of dienes, preferably conjugated dienes, vinyl substituted aromatic compounds such as monoalkenyl arenes, homopolymers of olefins such as butenes, especially isobutene, and mixtures thereof.
- Molecular weights (GPC peak) of useful star polymers range from about
- the polymers thus comprise a poly(polyalkenyl coupling agent) nucleus with polymeric arms extending outward therefrom.
- the star polymers are usually hydrogenated such that at least 80% of the olefinic carbon-carbon bonds are saturated, more often at least 90% and even more preferably, at least 95% are saturated.
- the polymers contain olefinic unsaturation; accordingly, they are not exhaustively saturated before reaction with the carboxylic reactant.
- the polyvinyl compounds making up the nucleus are illustrated by polyalkenyl arenes, e.g., divinyl benzene and poly vinyl aliphatic compounds. Dienes making up the polymeric arms are illustrated by butadiene, isoprene and the like.
- Monoalkenyl compounds include, for example, styrene and alkylated derivatives thereof.
- the arms are derived from dienes.
- the arms are derived from dienes and vinyl substituted aromatic compounds.
- the arms comprise polyisobutylene groups, often, isobutylene-conjugated diene copolymers. Arms derived from dienes or from dienes and vinyl substituted aromatic compounds are frequently substantially hydrogenated.
- Star polymers are well known in the art. Such material and methods for preparing same are described in numerous publications and patents, including the following United States patents which are hereby incorporated herein by reference for relevant disclosures contained therein:
- Star polymers are commercially available, for example as Shellvis 200 sold by Shell Chemical Co. Mixtures of two or more hydrocarbon polymers may be used. ⁇ - ⁇ -Unsaturated Carboxylic Compound
- the ⁇ , ⁇ -unsaturated carboxylic compound used in the preparation of the hydrocarbyl substituted carboxylic compositions of this invention are themselves prepared by reacting (1) an active methylene compound and (2) a carbonyl compound as described in detail herein. They are preferably polycarboxylic compounds of the general formula
- R c is R; — C— OR or — CHO; and each R is, independently, H or hydrocarbyl.
- the reacting of (1) an active methylene compound and (2) a carbonyl compound take place with or without solvent and with or without catalyst. Generally, the reaction takes place at temperatures between about 120°C and 170° for 4 to 8 hours with liberated water being removed during reaction.
- the Knoevenagel reaction wherein ⁇ , ⁇ -unsaturated compounds can be prepared by reaction of active methylene compounds with aldehydes is illustrative. Such reactions take place with or without solvent and with or without catalyst. Generally, the reaction takes place at temperatures between about 120°C and 170° for 4 to 8 hours with liberated water being removed during reaction.
- the reaction products are often fractionally distilled to obtained the desired ⁇ , ⁇ -unsaturated compound.
- Active methylene compounds (1) used to prepare B) the ⁇ , ⁇ -unsaturated carboxylic compound have the general formula
- Useful active methylene compounds include malonic acid and esters thereof, especially di-lower alkyl malonate esters, and acetoacetic acid esters, particularly, lower alkyl, such as methyl, ethyl and propyl acetoacetates.
- Especially preferred di-lower alkyl malonate esters are dimethyl malonate, diethyl malonate and methyl ethyl malonate.
- Especially preferred lower alkyl acetoacetates include methyl- or ethyl- acetoacetate.
- Carbonyl compounds used to prepare (B) the ⁇ , ⁇ -unsaturated carboxylic compound have the general formula
- each R' is independently R or OR and each R is, independently, H or a hydrocarbyl group; and lower alkyl acetals, ketals, hemiacetals and hemiketals of the carbonyl compound
- the carbonyl compound comprises an aldehyde wherein R a is H and R b is H or lower alkyl.
- the carbonyl compound comprises a ketone wherein each of R a and R b is a lower alkyl group.
- Formaldehyde is a useful aldehyde.
- Useful ketones include acetone and methyl ethyl ketone
- the carbonyl compound is a compound having the general formula 0 0
- each R' is independently R or OR and each R is, independently, H or a hydrocarbyl group; or a lower alkyl hemiacetal thereof.
- R' is a group of the formula OR wherein R is independently H or lower alkyl.
- Preferred carbonyl compounds are glyoxylic acids and reactive equivalents thereof.
- the carbonyl compound is glyoxylic acid or the hydrate thereof.
- Particularly preferred are lower alkyl esters of glyoxylic acid.
- a reactor is charged with 30 parts dimethyl malonate and 27.2 parts glyoxylic acid methyl ester methyl hemiacetal (hereinafter GMHA). While these are being mixed, 23.17 parts acetic anhydride are added from an addition funnel at ambient temperature. Heating is begun and after OJ hour the temperature is 105°C. Heating is continued while distillate is collected in a Dean-Stark trap. Heating is continued for 4.7 hours while the temperature is increased to 130°C. At this point 8 parts by volume distillate has been collected in the Dean-Stark trap. The temperature is increased to 160°C and is maintained for 7.5 hours while collecting 8.2 parts by volume additional distillate. Heating at 160°C is continued for 7 hours followed by heating to 200°C and vacuum distillation at 10 mm Hg pressure. Two fractions are obtained. Yield of desired product is 11.84 parts (25.8%).
- GMHA glyoxylic acid methyl ester methyl hemiacetal
- a reactor is charged with 30 parts dimethyl malonate and 27.2 parts GMHA.
- the materials are heated, under N 2 to 140 °C over 1 hour then temperature is maintained for 1.5 hours while collecting 6 parts by volume distillate in Dean-Stark trap The temperature is increased to 160°C and is maintained for 13 hours. The temperature is increased to 170°C and the materials are vacuum stripped at 5.2 mm Hg pressure. Solids and clear colorless liquid distill over and 6.48 parts white solid is isolated from the liquid by filtration through filter paper. The solid is the product at 14.13% yield.
- a reactor is charged with 253.73 parts dimethyl malonate and 230.65 parts GMHA.
- the materials are heated, under N 2 to 117°C then to 125 ° C over 5 hours while collecting 50 parts by volume distillate in a Dean-Stark trap.
- the temperature is increased to 130°C then to 170°C over 6.5 hours while collecting an additional 36.2 parts distillate.
- the temperature is increased to a maximum of 188°C at 4.5 mm Hg pressure while collecting 199.65 parts distillate (51% yield).
- the distillate is the product.
- a reactor is charged with 132.12 parts dimethyl malonate and 120.1 parts GMHA. To the stirring mixture are added 1.79 parts dibutylamine. The materials are heated under N 2 , to 130°C over 8.25 hours while collecting a total of 36.5 parts by weight distillate in a Dean-Stark trap. The materials are cooled to 110°C and vacuum distilled. The fraction collected at 6-10 mm Hg pressure and head temperature 134- 152°C (93.9 parts, 46.4% yield) is the product.
- a reactor is charged with 132.12 parts dimethyl malonate and 120.1 parts GMHA.
- the materials are heated, under N 2 , over 7 hours while collecting a total of 273 parts by volume (235 parts by weight) distillate in a Dean-Stark trap.
- the temperature is increased to 170°C and the materials are vacuum distilled.
- the fraction collected at 156-171°C pot temperature (21-5 mm Hg pressure, 139-170°C head temperature) (398.95 parts, 39.5 % yield) is the product.
- a reactor is charged with 264.24 parts dimethyl malonate, 240.2 parts GMHA and 5.49 parts 70% aqueous methane sulfonic acid.
- the materials are heated to 140°C over 6.25 hours while collecting a total of 63.8 parts distillate in a Dean-Stark trap. The temperature is increased to 160°C and is maintained for 2.5 hours while collecting an additional 29 parts by volume distillate.
- the materials are vacuum distilled collecting 230.68 parts, (57.07% yield) at pot temperature 154-162°C, head temperature 130-140°C and 5.6-30 mm Hg pressure as the product.
- Example (BV7 A reactor is charged with 132.12 parts dimethyl malonate, 120.01 parts
- a reactor is charged with 132.12 parts dimethyl malonate, 120.01 parts GMHA and 1.77 parts 30% aqueous NH OH.
- the materials are heated, under N 2 , to 151°C over 3 hours while collecting a total of 30.5 parts distillate in a Dean-Stark trap.
- the materials are vacuum distilled collecting 54.07 parts (26.74% yield) at pot temperature 145-157°C, head temperature 100-134°C at 6-7.8 mm Hg pressure as the product.
- Example (BV9 A reactor is charged with 532.3 parts GMHA, 585.6 parts dimethyl malonate and 6.08 parts 70% aqueous methanesulfonic acid.
- the materials are heated, under N 2 , to 130°C over 5.5 hours while collecting 43.79 parts distillate in a Dean-Stark trap. The temperature is increased to 140°C and is maintained for 1 hour while collecting an additional 91.82 parts distillate. The temperature is increased to 150°C over 1 hour and is maintained for 5.5 hours while collecting an additional 84.3 parts distillate. To the residue are added 4.62 parts Na 2 CO 3 , the materials are filtered then vacuum distilled to 150°C and 10 mm Hg pressure. The fraction distilling at 100- 130°C (246.01 parts, 27.5 % yield) is collected as the product.
- a reactor is charged with 720.6 parts GMHA and 660 parts dimethyl malonate.
- the materials are heated, under N 2 , to 120° C over 6 hours, collecting 81.22 parts distillate in a Dean-Stark trap.
- the temperature is increased to 150°C over 6 hours, collecting an additional 121.93 parts distillate.
- the temperature is maintained for 6 hours, collecting an additional 47.52 parts distillate.
- the materials are vacuum distilled collecting 401.69 parts (39.7% yield) at 150-160°C pot temperature, 100-127°C head temperature at 5 mm Hg pressure as the product.
- a reactor is charged with 160.17 parts dimethyl malonate and 120.1 parts GMHA.
- the materials are heated under N 2 to 150° C over 8 hours, collecting a total of 43 parts by volume distillate in a Dean-Stark trap. The temperature is maintained for 4 hours, collecting an additional 37.8 parts distillate.
- the materials are vacuum distilled. The fraction distilling 100-120°C head temperature at 3.3 mm Hg pressure (121.87 parts, 52.9% yield) is collected as product.
- a reactor is charged with 30 parts dimethyl malonate, 27.2 parts GMHA and 0.62 parts 70% aqueous methanesulfonic acid.
- the materials are heated to 160°C over 5 hours then the temperature is maintained for 3 hours.
- the materials are vacuum stripped to 130°C and 4.9 mm Hg.
- the solid-liquid mixture is obtained.
- the mixture is filtered through paper and 12,85 parts white solids (28% yield) is collected as the product.
- a reactor is charged with 240.2 parts GMHA, 264.24 parts dimethyl malonate and 25 parts of sulfonated poly(styrene-co-divinylbenzene) resin (AMBERLYST ® 35, Rohm and Haas)).
- the materials are heated, under N 2 , to 120°C over 7 hours, then maintained at temperature for 13.5 hours.
- the materials are filtered to remove Amberlyst 35, and the liquid filtrate is vacuum distilled.
- the fraction distilling at 150°C pot temperature, 95-125°C head temperature at 8.3 mm Hg pressure 138.1 parts, 34.1% yield, is collected as the product.
- Example (B 14) is collected as the product.
- a reactor is charged with 65.07 parts ethyl acetoacetate, 61.02 parts GMHA, 5.0 parts 3-aminopropyl-functionalized silica gel and 100 parts by volume toluene.
- the materials are heated, under N 2 , to 70°C over 0,5 hour, then temperature is maintained for hours. The temperature is increased to 80°C over 3.25 hour then to 90°C over 2 hours. The temperature is maintained at 90°C for 7 hours.
- the materials are vacuum distilled.
- the fraction distilling at 130°C pot temperature, 115°C head temperature at 5.4 mm Hg pressure (55.3 parts, 54.7% yield, is collected as the product.
- the product is 93.3% triethyl ethylenetricarboxylate as determined by gas chromatography/MS.
- Example (BV17) The crude liquid product (225 parts) of Example (B)-15 is vacuum distilled at maximum pot temperature of 200 °C and 4 mm Hg pressure. The distillate, a white solid in a clear liquid (total 148.87 parts) is collected and is the product.
- Example (BV17) The crude liquid product (225 parts) of Example (B)-15 is vacuum distilled at maximum pot temperature of 200 °C and 4 mm Hg pressure. The distillate, a white solid in a clear liquid (total 148.87 parts) is collected and is the product.
- Example (BV17) The crude liquid product (225 parts) of Example (B)-15 is vacuum distilled at maximum pot temperature of 200 °C and 4 mm Hg pressure. The distillate, a white solid in a clear liquid (total 148.87 parts) is collected and is the product.
- Example (BV17) The crude liquid product (225 parts) of Example (B)-15 is vacuum distilled at maximum pot temperature of 200 °C and 4 mm Hg pressure. The
- a reactor is charged with 1322.2 parts dimethyl malonate and 1201.8 parts GMHA.
- the materials are heated, under N 2 to 150°C over 5 hours then temperature is maintained for 5 hours.
- the temperature is increased to 145°C, is maintained for 1 hour, then is increased to 150°C and is maintained at temperature for 4 hours.
- a total of 427.38 parts distillate is collected.
- the materials are vacuum distilled, collecting the fraction distilling at 130-150°C/5 mm Hg pressure (477.3 parts, 23.6 % yield).
- a reactor is charged with 260.28 parts ethyl acetoacetate, 240.2 parts GMHA, 20 parts 3-aminopropyl-functionalized silica gel and 400 parts by volume toluene.
- the materials are heated, under N 2 , to 90°C over 1 hour then temperature is maintained at 90°C for 7.5 hours while removing distillate.
- the materials are filtered through filter paper which is subsequently washed with 100 parts by volume toluene.
- the filtrate and washings are vacuum stripped to 110°C pot temperature (80°C head temperature) at 3 mm Hg pressure, yielding 367.51 parts (91.78% yield) as the major product.
- Example (B 19 5 A portion of the product of Example (B)-18 (280 parts) is vacuum distilled to
- This invention is also directed to hydrocarbyl group substituted carboxylic compositions and a process for preparing said carboxylic compositions comprising 10 reacting
- R a C R b wherein R a is H or hydrocarbyl and R b is a member of the group consisting of H,
- each R' is independently R or OR and each R is, independently, H or a hydrocarbyl group; and lower alkyl acetals, ketals, hemiacetals and hemiketals of the carbonyl compound (2).
- Preferred reactants for use in the process are the same as those described hereinabove.
- Reactants (A) and (B) are generally reacted in amounts ranging from about
- an equivalent of (A) is defined as the molecular weight of (A) divided by the number of olefinic groups therein.
- the equivalent weight of a EPDM co-polymer having molecular weight of 20,000 and containing 4 olefinic groups is 5,000.
- about 3 moles (B) are reacted per equivalent of (A), while in
- the process may be conducted at ambient pressure, under superatmospheric pressure or under reduced pressure. Usually, except when volatile by-products are being removed from the reaction mixture under reduced pressure, there is usually no advantage to conduct the reaction under other than ambient pressure.
- the process is • conducted employing free radical conditions.
- Radical grafting is preferably carried out using free radical initiators such as peroxides, hydroperoxides, and azo compounds which decompose thermally within the grafting temperature range to provide said free radicals.
- free radical initiators such as peroxides, hydroperoxides, and azo compounds which decompose thermally within the grafting temperature range to provide said free radicals.
- Free radical generating reagents are well know to those skilled in the art. Examples include benzoyl peroxide, t-butyl perbenzoate, t-butyl metachloroperbenzoate, t-butyl peroxide, sec-butylperoxydicarbonate, azobisisobutyronitrile, and the like. Numerous examples of free radical-generating reagents, also known as free-radical initiators, are mentioned in the above- referenced tests by Flory and by Bovey and Winsl ⁇ w. An extensive listing of free- radical initiators appears in J. Brandrap and E. H.
- Preferred free radical-generating reagents include t-butyl peroxide, t- butylhydroperoxide, t-butyl perbenzoate, t-amyl peroxide, cumyl peroxide, t-butyl peroctoate, t-butyl-m-chloroperbenzoate and azobisisovaleronitrile.
- the free-radical initiators are generally used in an amount from 0.01 to about
- the initiators are used at about 0.05 to about 1 percent by weight.
- reaction is usually conducted at temperatures ranging between about 80°C to about 200°C, . preferably between about 130°C to about 170°C.
- reaction temperatures include reactivity of the system and the half-life of the initiator at a particular temperature.
- free radical generating reagent can be an important consideration. For example, when a polymer undergoing grafting with a monomer is diluted with a solvent such as a hydrocarbon oil, grafting of the monomer onto the oil diluent may occur. It has been observed that the choice of initiator affects the extent of grafting of the monomer onto the oil diluent.
- the process may be conducted thermally at temperatures ranging from ambient, usually from at least about 20°C up to about 250°C, more often from about 80°C to about 220°C.
- the process is conducted wherein said reacting of (A) the hydrocarbon polymer and (B) the ⁇ , ⁇ -unsaturated carboxylic compound is conducted with the addition of from about 0.1 to about 2.5 moles Cl 2 per mole of (B) polycarboxylic compound. In another embodiment, the reacting is conducted with the addition of from about 0.1 to about 2.2 moles Cl 2 per equivalent of olefinically unsaturated hydrocarbon.
- the process with added chlorine is also generally conducted at an elevated temperature, typically from about 130°C up to about 200°C.
- the solution is heated with stirring to 100°C under N 2 , 10 parts of the product of Example (B)-5 are added then the temperature is increased to 130°C.
- a solution of 5 parts t-butyl peroxybenzoate and 5 parts toluene is added dropwise over 0J5 hour. The temperature is maintained for 3 hours then the materials are cooled whereupon streaks of solid material appeared on reactor walls.
- Toluene 200 parts by volume, is added and the materials are heated to 130°C whereupon a solution of 2.5 parts t-butyl peroxybenzoate and 2.5 parts toluene added over 0.25 hour. The reaction is continued at 130°C for 3 hours. Upon cooling, a significantly reduced amount (estimated 1-2 parts) of solids adhere to reactor wall. The materials are vacuum stripped for 0.5 hour at 150°C and 20 mm Hg pressure. The residue is mixed with 800 parts mineral oil and the oil solution is collected as the product..
- the hydrocarbyl group substituted carboxylic compositions of this invention are useful as additives for lubricating oil compositions and may be incorporated in a minor amount into a major amount of an oil of lubricating viscosity. They also serve as intermediates to undergo further reaction with amines, alcohols and metal- containing compounds to prepare derivative compositions which are useful as dispersant viscosity improvers for lubricants and fuels.
- the carboxylic derivative compositions are also incorporated in a minor amount into a major amount of an oil of lubricating viscosity.
- a major amount is defined herein as any amount greater than 50% by weight and a minor amount is any amount less than 50% by weight provided the total of all components is 100%.
- hydrocarbyl group substituted carboxylic derivative compositions prepared by reacting at least one hydrocarbyl group substituted carboxylic composition of this invention with a reactant selected from the group consisting of (a) amines characterized by the presence within their structure of at least one condensable H-N ⁇ group, (b) alcohols, (c) reactive metal or reactive metal compounds, and (d) a combination of two or more of any of (a) through (c), the components of (d) being reacted with the carboxylic composition simultaneously or sequentially, in any order.
- a reactant selected from the group consisting of (a) amines characterized by the presence within their structure of at least one condensable H-N ⁇ group, (b) alcohols, (c) reactive metal or reactive metal compounds, and (d) a combination of two or more of any of (a) through (c), the components of (d) being reacted with the carboxylic composition simultaneously or sequentially, in any order.
- hydrocarbyl group substituted carboxylic compositions are described in detail hereinabove. Amines
- the amines may be monoamines or polyamines, typically polyamines, preferably ethylene amines, amine bottoms or amine condensates.
- the amines can be aliphatic, cycloaliphatic, aromatic, or heterocyclic, including aliphatic-substituted cycloaliphatic, aliphatic-substituted aromatic, aliphatic- substituted heterocyclic, cycloaliphatic-substituted aliphatic, cycloaliphatic- substituted heterocyclic, aromatic-substituted aliphatic, aromatic-substituted cycloaliphatic, aromatic-substituted heterocyclic, heterocyclic-substituted aliphatic, heterocyclic-substituted aliphatic, heterocyclic-substituted aliphatic, heterocyclic-substituted aliphatic, heterocyclic-substituted alicyclic, and heterocyclic-substituted
- Monoamines useful in this invention generally contain from 1 to about 24 carbon atoms, preferably 1 to about 12, and more preferably 1 to about 6.
- Examples of primary monoamines useful in the present invention include methylamine, propylamine, butylamine, cyclopentyl amine, dodecylamine, allylamine, cocoamine and stearylamine.
- Examples of secondary monoamines include dimethylamine, dipropylamine, dicyclopentylamine, methylbutylamine, etc.
- the monoamine may be an alkanol amine represented by at least one of the formulae:
- each R 4 is independently a hydrocarbyl group of one to about 22 carbon atoms or hydroxyhydrocarbyl group of two to about 22 carbon atoms, preferably one to about four, and R' is a divalent hydrocarbyl group of about two to about 18 carbon atoms, preferably two to about four.
- the group -R'-OH in such formulae represents the hydroxyhydrocarbyl group.
- R' can be an acyclic, alicyclic or aromatic group.
- R' is an acyclic straight or branched alkylene group such as an ethylene, 1,2-propylene, 1,2-butylene, 1,2-octadecylene, etc. group.
- each R 4 group When two R 4 groups are present in the same molecule they can be joined by a direct carbon-to-carbon bond or through a heteroatom (e.g., oxygen, nitrogen or sulfur) to form a 5-, 6-, 7- or 8- membered ring structure.
- heterocyclic amines include N-(hydroxyl . lower alkyl)-morpholines, -thiomorpholines, -piperidines, • - oxazolidines, -thiazolidines and the like.
- each R 4 is independently a methyl, ethyl, propyl, butyl, pentyl or hexyl group.
- alkanolamines examples include mono- and di- ethanolamine, ethylethanolamine, monomethylethanolamine, etc.
- the hydroxyamines can also be ether N-(hydroxyhydrocarbyl) amines. These are hydroxy poly(hydrocarbyloxy) analogs of the above-described hydroxy amines (these analogs also include hydroxyl-substituted oxyalkylene analogs).
- N-(hydroxyhydrocarbyl) amines can be conveniently prepared, for example, by reaction of epoxides with aforedescribed amines and can be represented by the formulae:
- R 4 may also be a hydroxypoly (hydrocarbyloxy) group.
- R 6 OR 1 NHR 7 wherein R 6 is a hydrocarbyl group, preferably an aliphatic group, more preferably an alkyl group, containing from 1 to about 24 carbon atoms, R 1 is a divalent hydrocarbyl group, preferably an alkylene group, containing from two to about 18 carbon atoms, more preferably two to about 4 carbon atoms and R 7 is H or hydrocarbyl, preferably H or aliphatic, more preferably H or alkyl, more preferably H. When R 7 is not H, then it preferably is alkyl containing from one to about 24 carbon atoms.
- Especially preferred ether amines are those available under the name ' SURFAM ® produced and marketed by Sea Land Chemical Co., Westlake, Ohio.
- the amine may also be a polyamine.
- the polyamine may be aliphatic, cycloaliphatic, heterocyclic or aromatic.
- useful polyamines include alkylene polyamines, hydroxy containing polyamines, polyoxyalkylene polyamines, arylpolyamines, and heterocyclic polyamines.
- Alkylene polyamines are represented by the formula H 2 N- Alkylene— N ⁇ - n R 5
- R 5 wherein n has an average value between about 1 and about 10, preferably about 2 to about 7, more preferably about 2 to about 5, and the "Alkylene" group has from 1 to about 10 carbon atoms, preferably about 2 to about 6, more preferably about 2 to about 4.
- R 5 ' is independently hydrogen, an aliphatic group or a hydroxy-substituted or amino-substituted aliphatic group of up to about 30 carbon atoms.
- R 5 is H or lower alkyl, most preferably, H.
- Alkylene polyamines include methylene-, ethylene-, butylene-, propylene-, pentylene- and other polyamines. Higher homologs and related heterocyclic amines such as piperazines and N-amino alkyl-substituted piperazines are also included. Specific examples of such polyamines are ethylene diamine, diethylene triamine, triethylene tetramine, tris-(2-aminoethyl)amine, propylene diamine, N,N- dimethylaminopropylamine, trimethylene diamine, tripropylene tetramine, tetraethylene pentamine, hexaethylene heptamine, pentaethylenehexamine, aminoethyl piperazine, etc.
- polyamines are described in detail under the heading "Diamines and Higher Amines” in Kirk Othmer's “Encyclopedia of Chemical Technology", 4th Edition, Vol. 8, pages 74-108, John Wiley and Sons, New York (1993) and in Meinhardt, et al, U.S. 4,234,435, both of which are hereby incorporated herein by reference for disclosure of useful polyamines.
- Such polyamines are most conveniently prepared by the reaction of ethylene dichloride with ammonia or by reaction of an ethylene imine with a ring opening reagent such as water, ammonia, etc. These reactions result in the production of a complex mixture of polyalkylene polyamines including cyclic condensation products such as the aforedescribed piperazines.
- Ethylene polyamine mixtures are useful.
- Other useful types of polyamine mixtures are those resulting from stripping of the above-described polyamine mixtures to leave as residue what is often termed "polyamine bottoms".
- alkylene polyamine bottoms can be characterized as having less than two, usually less than 1% (by weight) material boiling below about 200°C.
- a typical sample of such ethylene polyamine bottoms obtained from the Dow Chemical Company of Freeport, Texas, designated “E-100” has a specific gravity at 15.6°C of 1.0168, % nitrogen of 33.15 and a viscosity at 40°C of 121 centistokes.
- Another useful polyamine is a condensation product obtained by reaction of at least one hydroxy alkyl compound with at least one polyamine reactant containing at least one primary or secondary amino group.
- the hydroxy compounds are preferably polyhydric alcohols and amines.
- Preferably the hydroxy compounds are polyhydric amines.
- Polyhydric amines include any of the above-described monoamines reacted with an alkylene oxide (e.g., ethylene oxide, propylene oxide, butylene oxide, etc.) having two to about 20 carbon atoms, preferably two to about four.
- polyhydric amines examples include tri-(hydroxypropyl)amine, tris- (hydroxymethyl)amino methane, 2-amino-2-methyl-l,3-propanediol, N,N,N',N'- tetrakis(2-hydroxypropyl) ethylenediamine, and N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine.
- Polyamine reactants which react with the polyhydric alcohol or amine to form the condensation products or condensed amines, are described above.
- Preferred polyamine reactants include triethylenetetramine (TETA), tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), and mixtures of polyamines such as the above-described "amine bottoms".
- TETA triethylenetetramine
- TEPA tetraethylenepentamine
- PEHA pentaethylenehexamine
- the condensation reaction of the polyamine reactant with the hydroxy compound is conducted at an elevated temperature, usually about 60°C to about 265 °C in the presence of an acid catalyst.
- the amine condensates and methods of making the same are described in Steckel (US Patent 5,053,152) which is incorporated by reference for its disclosure to the condensates and methods of making amine condensates.
- the polyamines may be hydroxy-containing polyamines. These include hydroxy-containing polyamine analogs of hydroxy monoamines, particularly alkoxylated alkylenepolyamines. Such polyamines can be made by reacting the above-described alkylene amines with one or more of the above-described alkylene oxides. .
- alkoxylated alkylenepolyamines include N-(2- hydroxyethyl) ethylenediamine, N,N-di-(2-hydroxyethyl)-ethylenediamine, l-(2- hydroxyethyl) piperazine, mono-(hydroxypropyl)-substituted tetraethylenepentamine, N-(3-hydroxybutyl)-tetramethylene diamine, etc.
- Higher homologs obtained by condensation of the above illustrated hydroxy-containing polyamines through amino groups or through hydroxy groups are likewise useful. Condensation through amino groups results in a higher amine accompanied by removal of ammonia while condensation through the hydroxy groups results in products containing ether linkages accompanied by removal of water. Mixtures of two or more of any of the aforesaid polyamines are also useful.
- the polyamines may be polyoxyalkylene polyamines, including polyoxyethylene and polyoxypropylene diamines and the polyoxypropylene triamines having average molecular weights ranging from about 200 to about 2000.
- Polyoxyalkylene polyamines, including polyoxyethylene-polyoxypropylene polyamines, are commercially available, for example under the tradename JEFFAMINES ® from Texaco Chemical Co.
- U.S. Patent numbers 3,804,763 and 3.948,800 contain disclosures of polyoxyalkylene polyamines and are incorporated herein by reference for their disclosure of such materials.
- the polyamine may be a heterocyclic polyamine.
- the heterocyclic polyamines include aziridines, azetidines, azolidines, tetra- and dihydropyridines, pyrroles, indoles, piperidines, imidazoles, di- and tetrahydroimidazoles, piperazines, isoindoles, purines, N-aminoalkyl- thiomorpholines, N-aminoalkylmorpholines, N-aminoalkyl-piperazines, N,N - bisaminoalkyl piperazines, azepines, azocines, azonines, anovanes and tetra-, di- and perhydro derivatives of each of the above and mixtures of two or more of these heterocyclic amines.
- Preferred heterocyclic amines are the saturated 5- and 6- membered heterocyclic amines containing only nitrogen, or nitrogen with oxygen and/or sulfur in the hetero ring, especially the piperidines, piperazines, thiomorpholines, morpholines, pyrrolidines, and the like.
- Piperidine, aminoalkylsubstituted piperidines, piperazine, aminoalkylsubstituted piperazines, morpholine, aminoalkylsubstituted morpholines, pyrrolidine, - and aminoalkylsubstituted pyrrolidines are especially preferred.
- the aminoalkyl substituents are substituted on a nitrogen atom forming part of the hetero ring.
- heterocyclic amines include N-aminopropylmorpholine, N-amino-ethylpiperazine, and N,N'-diaminoethyl-piperazine.
- Hydroxy alkyl substituted heterocyclic polyamines are also useful. Examples include N-hydroxyethylpiperazine and the like.
- Another useful amine is the condensation product of a hydrocarbyl, preferably aliphatic, containing from about 30 to about 200 carbon atoms, substituted mono- or polycarboxylic acid with at least one of the aforementioned polyamines in relative amounts such that the resulting condensation product contains at least one condensable N-H group.
- the condensation product may be pre-formed condensation or formed in situ. The pre-formed condensation product is preferred. Examples include polyisobutenyl (M n ⁇ 1000) substituted succinic anhydride- ethylene polyamine and polypropylene (M n ⁇ 800) substituted propionic acid- ethylene polyamine reaction products wherein each contains at least one condensable N-H group.
- Hydrazine and substituted-hydrazine can also be used to form nitrogen- containing carboxylic dispersants. At least one of the nitrogens in the hydrazine must contain a hydrogen directly bonded thereto. Preferably there are at least two hydrogens bonded directly to hydrazine nitrogen and, more preferably, both hydrogens are on the same nitrogen.
- the substituents which may be present on the hydrazine include alkyl, alkenyl, aryl, aralkyl, alkaryl, and the like.
- the substituents are alkyl, especially lower alkyl, phenyl, and substituted phenyl such as lower alkoxy-substituted phenyl or lower alkyl-substituted phenyl.
- substituted hydrazines are methylhydrazine, N,N-dimethyl-hydrazine, N,N'-dimethylhydrazine, phenylhydrazine, N-phenyl-N'-ethylhydrazine, N-(para- tolyl)-N'-(n-butyl)-hydrazine, N-(para-nitrophenyl)-hydrazine, N-(para-nitrophenyl)- N-methyl-hydrazine, N,N'-di(para-chlorophenol)-hydrazine, N-phenyl-N- cyclohexylhydrazine, amino guanidine bicarbonate, and the like.
- the carboxylic derivative compositions produced by reacting the hydrocarbyl group substituted carboxylic composition of the invention and the amines described above are acylated amines which include amine salts, amides, imides and imidazolines as well as mixtures thereof.
- To prepare the carboxylic derivative compositions from the amines one or more of the hydrocarbyl group substituted carboxylic composition and one or more amines are heated, optionally in the presence of a normally liquid, substantially inert organic liquid solvent/diluent, at temperatures in the range of from about 80°C up to the decomposition point of any of the reactants or the product, but normally at temperatures in the range of from about 100°C up to about 300°C, provided 300°C does not exceed the decomposition point.
- an equivalent of amine is that amount of amine corresponding to the total weight of amine divided by the total number of nitrogens present having at least one H-N ⁇ group.
- octyl amine has an equivalent weight equal to its molecular weight
- ethylenediamine has an equivalent weight equal to one-half its molecular weight
- aminoethylpipera- zine with 3 nitrogen atoms but only two having at least one H-N ⁇ group, has an equivalent weight equal to one-half of its molecular weight.
- the carboxylic compositions may be reacted with (b) alcohols.
- Alcohols useful as (b) in preparing carboxylic derivative compositions of this invention from the hydrocarbyl group substituted carboxylic composition previously described include those compounds of the general formula
- R 3 -(OH) m wherein R 3 is a monovalent or polyvalent organic radical joined to the -OH groups through carbon-to-oxygen bonds (that is,
- the alcohols can be aliphatic, cycloaliphatic, aromatic, and heterocyclic, including aliphatic-substituted cycloaliphatic alcohols, aliphatic-substituted aromatic alcohols, aliphatic-substituted heterocyclic alcohols, cycloaliphatic-substituted aliphatic alcohols, cycloaliphatic- substituted aromatic alcohols, cycloaliphatic-substituted heterocyclic alcohols, heterocyclic-substituted aliphatic alcohols, heterocyclic-substituted cycloaliphatic alcohols, and heterocyclic-substituted aromatic alcohols.
- the mono- and polyhydric alcohols corresponding to the above formula will usually contain not more than about 40 carbon atoms and generally not more than about 20 carbon atoms.
- the alcohols may contain non- hydrocarbon substituents of the same type mentioned with respect to the amines above, that is, non-hydrocarbon substituents which do not interfere with the reaction of the alcohols with the acylating reagents of this invention.
- polyhydric alcohols are preferred.
- the monohydric and polyhydric alcohols useful as (b) include monohydroxy and polyhydroxy aromatic compounds.
- Monohydric and polyhydric phenols and naphthols are preferred hydroxyaromatic compounds.
- These hydroxy-substituted aromatic compounds may contain other substituents in addition to the hydroxy substituents such as halo, alkyl, alkenyl, alkoxy, alkyl-mercapto, nitro and the like.
- the hydroxy aromatic compound will contain 1 to 4 hydroxy groups.
- the aromatic hydroxy compounds are illustrated by the following specific examples: phenol, beta-naphthol, cresols, resorcinol, catechol, carvacrol, thymol, eugenol, p.p - dihydroxybiphenyl, hydroquinone, pyrogallol, phloroglucinol, orcin, guaicol, 2,4- dibutylphenol, propeneteframer-substituted phenol, didodecylphenol, 4,4 - methylene-bis-methylene-bis-phenol, alpha-decyl-beta-naphthol, polyisobutenyl- (molecular weight of about 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehyde, the condensation product of octylphenol with acetone, di(hydroxyphenyl
- Phenol itself and aliphatic hydrocarbon-substituted phenols are especially preferred.
- Each of the aliphatic hydrocarbon substituents may contain 100 or more carbon atoms but usually will have from 1 to 20 carbon atoms.
- Alkyl and alkenyl groups are the preferred aliphatic hydrocarbon substituents.
- monohydric alcohols which can be used as (b) include monohydric alcohols such as methanol, ethanol, isooctanol, cyclohexanol, behenyl alcohol, neopentyl alcohol, isobutyl alcohol, benzyl alcohol, beta-phenethyl alcohol, 2,-methylcyclohexanol, monomethyl ether of ethylene glycol, monobutyl ether of ethylene glycol, monopropyl ether of diethylene glycol, monododecyl ether of triethylene glycol, monooleate of ethylene glycol, monostearate of diethylene glycol, sec-pentyl alcohol, tert-butyl alcohol, and dioleate of glycerol.
- Alcohols within (b) may be unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, 1- cyclohexene-3-ol and oleyl alcohol.
- alcohols useful as (b) are the ether alcohols and amino alcohols including, for example, the oxyalkylene, oxy-arylene-, amino- alkylene-, and aminoarylene-substituted alcohols having one or more oxyalkylene, aminoalkylene or amino-aryleneoxy-arylene groups.
- CELLOS OLVE ® CARBITOL ®
- phenoxyethanol heptyl ⁇ henyl-(oxypropylene) 6 - OH, octyl-(oxyethylene) 3 o-OH phenyl-(oxyoctylene) 2 -OH, mono-(heptylphenyl- oxypropylene)-substituted glycerol, poly(styrene oxide), aminoethanol, 3-amino- ethylpentanol, di(hydroxyethyl)amine, p-aminophenol, tri(hydroxypropyl)amine, N- hydroxyethyl ethylenediamine, N,N,N',N'-tetrahydroxy-trimethylenediamine, and the like.
- the polyhydric alcohols preferably contain from 2 to about 10 hydroxy groups. They are illustrated, for example, by the alkylene glycols and polyoxyalkylene glycols mentioned above such as ethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, dibutylene glycol, and other alkylene glycols and polyoxyalkylene glycols in which the alkylene groups contain 2 to about 8 carbon atoms.
- polyhydric alcohols include glycerol, monooleate of glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, n-butyl ester of 9,10-dihydroxy stearic acid, methyl ester of 9,10-dihydroxy stearic acid, 1,2- butanediol, 2,3-hexanediol, 2,4-hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2-cyclohexanediol, and xylene glycol.
- Carbohydrates such as sugars, starches, celluloses, and so forth likewise can be used as (b).
- the carbohydrates may be exemplified by glucose, fructose, sucrose, rhamnose, mannose, glyceraldehyde, and galactose.
- Polyhydric alcohols having at least 3 hydroxyl groups, some, but not all of which have been esterified with an aliphatic monocarboxylic acid having from about 8 to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid or tall oil acid are useful as (b).
- an aliphatic monocarboxylic acid having from about 8 to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid or tall oil acid.
- partially esterified polyhydric alcohols are the monooleate of sorbitol, distearate of sorbitol, monooleate of glycerol, monostearate of glycerol, di- dodecanoate of erythritol, and the like.
- a preferred class of alcohols suitable as (b) are those polyhydric alcohols containing up to about 12 carbon atoms, and especially those containing 3 to 10 carbon atoms.
- This class of alcohols includes glycerol, erythritol, pentaerythritol, dipentaerythritol, gluconic acid, glyceraldehyde, glucose, arabinose, heptanediols, hexanetriols, butanetriols, guinic acid, 2,2,6,6-tetrakis-
- polyhydric alcohols for use as (b) are the polyhydric alkanols containing 3 to 10 carbon atoms and particularly, those containing 3 to 6 carbon atoms and having at least three hydroxyl groups.
- Such alcohols are exemplified by glycerol, erythritol, pentaerythritol, mannitol, sorbitol, 2-hydroxymethyl-2-methyl- 1 ,3-propanediol(trimethylolethane), 2-hydroxy-methyl- 2-ethyl-l,3-propanediol(trimethylpropane), 1,2,4-hexanetriol, and the like.
- (a) may contain alcoholic hydroxy substituents and (b) can contain primary, secondary, or tertiary amino substituents.
- amino alcohols can fall into both (a) and (b) provided they contain at least one primary or secondary amino group. If only tertiary amino groups are present, the amino alcohol belong only in (b).
- Reactive metals' or reactive metal compounds useful as (c) are those which will form carboxylic acid metal salts with the hydrocarbyl group substituted carboxylic composition of this invention and those which will form metal-containing complexes with the carboxylic derivative compositions produced by reacting the hydrocarbyl group substituted carboxylic composition with amines and/or alcohols as discussed above.
- Reactive metal compounds useful for preparing metal salts of hydrocarbyl group substituted carboxylic composition of this invention include those salts containing metals selected from the group consisting of Group I metals, Group II metals, Al, Pb, Sn, Co and Ni. Examples of compounds include the oxides, hydroxides, alcoholates, and carbonates of Ii, Na, K, Ca, Ba, Pb, Al, Sn, Ni and others. While reactive metals may also be employed, it is generally more convenient, and often more economical to employ the metal salts as reactants. An extensive listing of reactive metal compounds useful for preparing the metal salts of the hydrocarbyl group substituted carboxylic composition is provided in U.S. 3,271,310 (LeSuer) which is expressly incorporated herein by reference.
- Reactive metal compounds useful as (c) for the formation of complexes with the reaction products of the acylating reagents of this invention and amines are disclosed in U.S. Patent 3,306,908.
- Complex-forming metal reactants useful as (c) include the nitrates, nitrites, halides, carboxylates, phosphates, phosphites, sulfates, sulfites, carbonates, borates, and oxides of cadmium as well as metals having atomic numbers from 24 to 30 (including chromium, manganese, iron, cobalt, nickel, copper and zinc).
- transition or coordination metals are the so-called transition or coordination metals, i.e., they are capable of forming complexes by means of their secondary or coordination valence.
- Specific examples of the complex-forming metal compounds useful as the reactant in this invention are cobalt, cobaltous oxide, cobaltous chloride, cobaltic chloride, chromous acetate, chromic acetate, chromic sulfate, chromic hexanoate, manganous acetate, manganous benzoate, manganous nitrate, ferrous acetate, ferric benzoate, ferrous bromide, nickel nitrate, nickel dioleate, nickel stearate, copper (I) acetate, cupric benzoate, cupric formate, cupric nitrite; zinc benzoate, zinc borate, zinc chromate, cadmium benzoate, cadmium carbonate, cadmium butyrate. Hydrates of the above compounds are especially convenient for use in the process of this invention
- U.S. Patent 3,306,908 is expressly incorporated herein by reference for its discussion of reactive metal compounds suitable for forming such complexes and its disclosure of processes for preparing the complexes. Basically, those processes are applicable to the carboxylic derivative compositions of the acylating reagents of this invention with the amines as described above by substituting, or on an equivalent basis, the acylating reagents of this invention with the high molecular weight carboxylic acid acylating. agents disclosed in U.S. Patent 3,306,908. The ratio of equivalents of the acylated amine thus produced and the complex-forming metal reactant remains the same as disclosed in U.S. Patent 3,306,908.
- the lubricating compositions of this invention employ an oil of lubricating viscosity, including natural or synthetic lubricating oils and mixtures thereof.
- Natural oils include animal oils and vegetable oils (e.g. castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful. Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins, etc.
- alkylbenzenes polyphenyl, (e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.), alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologues thereof and the like.
- Another suitable class of synthetic lubricating oils that can be used comprises the esters of di- and polycarboxylic acids and those made from C 5 to C 2 o monocarboxylic acids and polyols and polyolethers.
- Other synthetic lubricating oils include liquid esters of phosphorus- containing acids, polymeric tetrahydrofurans and the like, silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils.
- Unrefined, refined and rerefined oils either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed hereinabove can be used in the compositions of the present invention.
- Unrefined oils are those obtained directly from natural or synthetic sources without further purification treatment.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
- Refined oils include solvent refined oils, hydrorefined oils, hydrofinished oils, hydrotreated oils, and oils obtained by hydrocracking and hydroisomerization techniques.
- Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
- oils of lubricating viscosity are given in Chamberlin, m, U.S. 4,326,972, European Patent Publication 107,282, and
- the products of this invention may also be used as additives for normally liquid fuels.
- the fuels used in the fuel compositions of this invention are well known to those skilled in the art and usually contain a major portion of a normally liquid fuel such as hydrocarbonaceous petroleum distillate fuel (e.g., motor gasoline as defined by ASTM Specifications D-439-89 and D-4814-91 and diesel fuel or fuel oil as defined in ASTM Specifications D-396-90 and D-975-91).
- a normally liquid fuel such as hydrocarbonaceous petroleum distillate fuel (e.g., motor gasoline as defined by ASTM Specifications D-439-89 and D-4814-91 and diesel fuel or fuel oil as defined in ASTM Specifications D-396-90 and D-975-91).
- Fuels containing non- hydrocarbonaceous materials such as alcohols, ether, organo-nitro compounds and the like, are also within the scope of this invention as are liquid fuels derived from vegetable or mineral sources.
- a range of alcohol and ether type compounds are described as oxygenates.
- Oxygenate-containing fuels are described in ASTM D-4814-91. Mix
- Particularly preferred fuels are gasoline, that is, a mixture of hydrocarbons having an ASTM boiling point of 60°C at the 10% distillation point to about 205°C at the 90% distillation point, oxygenates, and gasoline-oxygenate blends, all as defined in the aforementioned ASTM Specifications for automotive gasolines. Most preferred is gasoline.
- the fuel compositions typically contain from about 0.001% to about 2% by weight, more often up to about 0.5%, even more often up to about 0.2% by weight of the additives of this invention.
- the fuel compositions of the present invention may contain other additives which are well known to those skilled in the art. These can include anti-knock agents such as tetra-alkyl lead compounds, lead scavengers such as halo-alkanes, dyes, antioxidants such as hindered phenols, rust inhibitors such as alkylated succinic acids and anhydrides and derivatives thereof, bacteriostatic agents, auxiliary dispersants and detergents, gum inhibitors, fluidizers, metal deactivators, demulsifiers, anti-icing agents and the like.
- the fuel compositions of this invention may be lead-containing or lead-free fuels. Preferred are lead-free fuels.
- lubricating oil compositions of this invention may contain other components.
- the use of such additives is optional and the presence thereof in the compositions of this invention will depend on the particular use and level of performance required. Thus the other additive may be included or excluded.
- the compositions may comprise a zinc salt of a dithiophosphoric acid.
- Zinc salts of dithiophosphoric acids are often referred to as zinc dithiophosphates, zinc O,O - dihydrocarbyl dithiophosphates, and other commonly used names. They are sometimes referred to by the abbreviation ZDP.
- One or more zinc salts of dithiophosphoric acids may be present in a minor amount to provide additional extreme pressure, anti-wear and anti-oxidancy performance.
- additives that may optionally be used in the lubricating oils of this invention include, for example, auxiliary detergents and dispersants, viscosity improvers, oxidation inhibiting agents, pour point depressing agents, extreme pressure agents, anti-wear agents, color stabilizers and anti-foam agents.
- auxiliary detergents and dispersants for example, auxiliary detergents and dispersants, viscosity improvers, oxidation inhibiting agents, pour point depressing agents, extreme pressure agents, anti-wear agents, color stabilizers and anti-foam agents.
- viscosity improvers may be used in addition, to the compositions of this invention.
- Auxiliary extreme pressure agents and corrosion and oxidation inhibiting agents which may be included in the compositions of the invention are exemplified by chlorinated aliphatic hydrocarbons, organic sulfides and polysulfides, phosphorus esters including dihydrocarbon and trihydrocarbon phosphites, molybdenum compounds, and the like.
- Viscosity improvers are usually polymers, including polyisobutenes, polymethacrylic acid esters, diene polymers, polyalkyl styrenes, esterified styrene- maleic anhydride copolymers, alkenylarene-conjugated diene copolymers and polyolefins.
- Multifunctional viscosity improvers other than those of the present invention, which also have dispersant and/or antioxidancy properties are known and may optionally be used in addition to the products of this invention. Such products are described in numerous publications including those mentioned in the Background of the Invention. Each of these publications is hereby expressly incorporated by reference.
- Pour point depressants are often included in the lubricating oils described herein. See for example, page 8 of 'Lubricant Additives" by C.V. Smalheer and R. Kennedy Smith (Lezius-Hiles Company Publisher, Cleveland, Ohio, 1967). Pour point depressants, techniques for their preparation and their use are described in U. S. Patent numbers 2,387,501; 2,015,748; 2,655,479; 1,815,022; 2,191,498; 2,666,748; 2,721,877; 2,721,878; and 3,250,715 which are expressly incorporated by reference for their relevant disclosures.
- Anti-foam agents used to reduce or prevent the formation of stable foam include silicones or organic polymers. Examples of these and additional anti-foam compositions are described in "Foam Control Agents", by Henry T. Kerner (Noyes Data Corporation, 1976), pages 125-162.
- Detergents and dispersants may be of the ash-producing or ashless type.
- the ash-producing detergents are exemplified by oil soluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, phenols or organic phosphorus acids characterized by a least one direct carbon-to-phosphorus linkage.
- the term "basic salt” is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. Basic salts and techniques for preparing and using them are well known to those skilled in the art and need not be discussed in detail here.
- Ashless detergents and dispersants are so-called despite the fact that, depending on its constitution, the detergent or dispersant may upon combustion yield a nonvolatile residue such as boric oxide or phosphorus pentoxide; however, it does not ordinarily contain metal and therefore does not yield a metal-containing ash on combustion.
- a nonvolatile residue such as boric oxide or phosphorus pentoxide
- Many types are known in the art, and are suitable for use in the lubricants of this invention. The following are illustrative:
- the above-illustrated additives may each be present in lubricating compositions at a concentration of as little as 0.001% by weight, usually ranging from about 0.01% to about 20% by weight. In most instances, they each contribute from about 0.1% to about 10% by weight, more often up to about 5% by weight.
- compositions and other additives described herein can be added directly to the lubricant.
- they are diluted with a substantially inert, normally liquid organic diluent such as mineral oil, naphtha, benzene, toluene or xylene, to form an additive concentrate.
- Preferred additive concentrates contain the diluents referred to hereinabove. These concentrates usually comprise about 0.1 to about 80% by weight of the compositions of this invention and may contain, in addition, one or more other additives known in the art or described hereinabove. Concentrations such as 15%, 20%, 30% or 50% or higher may be employed.
- the instant invention also relates to lubricating oil compositions containing the carboxylic compositions of the invention.
- the carboxylic compositions of this invention may be blended directly into an oil or lubricating viscosity or, more often, are incorporated into an additive concentrate containing one or more other additives which in turn is blended into the oil.
- SAE 15W-40 lubricating oil compositions are prepared by blending 0.1 part of a 40% in oil solution of a styrene-maleate copolymer neutralized with aminopropylmorpholine; 6.5 parts of an additive concentrate prepared by combining
- SAE 15W-40 lubricating oil compositions are prepared by blending 0.1 part of a 40% in oil solution of a styrene-maleate copolymer neutralized with aminopropylmorpholine; 13 parts of the additive concentrate described in Example
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002413979A CA2413979A1 (en) | 2000-06-22 | 2001-06-21 | Dispersant-viscosity improvers for lubricating oils and fuels |
EP01963715A EP1294777B1 (en) | 2000-06-22 | 2001-06-21 | Dispersant/viscosity improvers for lubricating oil and fuels |
DE60138625T DE60138625D1 (en) | 2000-06-22 | 2001-06-21 | DISPERSANT / VISCOSITY INDEX ENHANCER FOR LUBRICATING OILS AND FUELS |
AU2001284642A AU2001284642A1 (en) | 2000-06-22 | 2001-06-21 | Dispersant/viscosity improvers for lubricating oil and fuels |
US10/311,511 US6677282B2 (en) | 2001-06-21 | 2001-06-21 | Dispersant-viscosity improvers for lubricating oil and fuels |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21328100P | 2000-06-22 | 2000-06-22 | |
US60/213,281 | 2000-06-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001098440A2 true WO2001098440A2 (en) | 2001-12-27 |
WO2001098440A3 WO2001098440A3 (en) | 2002-08-08 |
Family
ID=22794465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/019880 WO2001098440A2 (en) | 2000-06-22 | 2001-06-21 | Dispersant/viscosity improvers for lubricating oil and fuels |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1294777B1 (en) |
AU (1) | AU2001284642A1 (en) |
CA (1) | CA2413979A1 (en) |
DE (1) | DE60138625D1 (en) |
WO (1) | WO2001098440A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001098439A2 (en) * | 2000-06-22 | 2001-12-27 | The Lubrizol Corporation | Acylating agents and dispersants for lubricating oil and fuels |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2212506A (en) * | 1939-08-15 | 1940-08-27 | Eastman Kodak Co | Preparation of methylene dialkyl malonates |
US2782228A (en) * | 1953-05-21 | 1957-02-19 | Monsanto Chemicals | Preparation of adducts of liquid, linear polybutadiene and esters of itaconic and aconitic acids |
US4005993A (en) * | 1976-03-08 | 1977-02-01 | Ethyl Corporation | Novel gasoline compositions |
EP0005063A1 (en) * | 1978-04-26 | 1979-10-31 | Standard Oil Company | Reaction products having anti-static activity, process for their production and compositions containing them |
DE4412489A1 (en) * | 1994-04-12 | 1995-10-19 | Basf Ag | Fuel or lubricant additives, processes for their preparation and fuel or lubricant compositions containing these additives |
EP0759444A2 (en) * | 1995-08-22 | 1997-02-26 | The Lubrizol Corporation | Unsaturated hydroxycarboxylic compounds useful as intermediates for preparing lubricant and fuel additives |
EP0759435A2 (en) * | 1995-08-22 | 1997-02-26 | The Lubrizol Corporation | Process for preparing compositions useful as intermediates for preparing lubricating oil and fuel additives |
EP0882782A2 (en) * | 1997-06-05 | 1998-12-09 | The Lubrizol Corporation | Nitrogen-containing dispersant-viscosity improvers for lubricating oils |
EP0902023A2 (en) * | 1997-09-10 | 1999-03-17 | The Lubrizol Corporation | Process for preparing condensation product of hydroxy-substituted aromatic compounds and glyoxylic reactants |
-
2001
- 2001-06-21 DE DE60138625T patent/DE60138625D1/en not_active Expired - Fee Related
- 2001-06-21 EP EP01963715A patent/EP1294777B1/en not_active Expired - Lifetime
- 2001-06-21 CA CA002413979A patent/CA2413979A1/en not_active Abandoned
- 2001-06-21 WO PCT/US2001/019880 patent/WO2001098440A2/en active Application Filing
- 2001-06-21 AU AU2001284642A patent/AU2001284642A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2212506A (en) * | 1939-08-15 | 1940-08-27 | Eastman Kodak Co | Preparation of methylene dialkyl malonates |
US2782228A (en) * | 1953-05-21 | 1957-02-19 | Monsanto Chemicals | Preparation of adducts of liquid, linear polybutadiene and esters of itaconic and aconitic acids |
US4005993A (en) * | 1976-03-08 | 1977-02-01 | Ethyl Corporation | Novel gasoline compositions |
EP0005063A1 (en) * | 1978-04-26 | 1979-10-31 | Standard Oil Company | Reaction products having anti-static activity, process for their production and compositions containing them |
DE4412489A1 (en) * | 1994-04-12 | 1995-10-19 | Basf Ag | Fuel or lubricant additives, processes for their preparation and fuel or lubricant compositions containing these additives |
EP0759444A2 (en) * | 1995-08-22 | 1997-02-26 | The Lubrizol Corporation | Unsaturated hydroxycarboxylic compounds useful as intermediates for preparing lubricant and fuel additives |
EP0759435A2 (en) * | 1995-08-22 | 1997-02-26 | The Lubrizol Corporation | Process for preparing compositions useful as intermediates for preparing lubricating oil and fuel additives |
EP0882782A2 (en) * | 1997-06-05 | 1998-12-09 | The Lubrizol Corporation | Nitrogen-containing dispersant-viscosity improvers for lubricating oils |
EP0902023A2 (en) * | 1997-09-10 | 1999-03-17 | The Lubrizol Corporation | Process for preparing condensation product of hydroxy-substituted aromatic compounds and glyoxylic reactants |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001098439A2 (en) * | 2000-06-22 | 2001-12-27 | The Lubrizol Corporation | Acylating agents and dispersants for lubricating oil and fuels |
WO2001098439A3 (en) * | 2000-06-22 | 2003-02-06 | Lubrizol Corp | Acylating agents and dispersants for lubricating oil and fuels |
US6846783B2 (en) | 2000-06-22 | 2005-01-25 | The Lubrizol Corporation | Acylatign agents and dispersants for lubricating oil and fuels |
Also Published As
Publication number | Publication date |
---|---|
DE60138625D1 (en) | 2009-06-18 |
EP1294777B1 (en) | 2009-05-06 |
WO2001098440A3 (en) | 2002-08-08 |
AU2001284642A1 (en) | 2002-01-02 |
CA2413979A1 (en) | 2001-12-27 |
EP1294777A2 (en) | 2003-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5856279A (en) | Acylated nitrogen compounds useful as additives for lubricating oil and fuel compositions | |
EP0802255B1 (en) | Hydroxy-group containing acylated nitrogen compositions useful as additives for lubricating oil and fuel compositions | |
US6846783B2 (en) | Acylatign agents and dispersants for lubricating oil and fuels | |
EP0802256B1 (en) | Acylated nitrogen compounds useful as additives for lubricating oil and fuel compositions | |
EP0921136B1 (en) | Nitrogen containing dispersant-viscosity improvers | |
AU2001294510B2 (en) | Functionalized isobutylene-polyene copolymers and derivatives thereof | |
AU2001294510A1 (en) | Functionalized isobutylene-polyene copolymers and derivatives thereof | |
US6677282B2 (en) | Dispersant-viscosity improvers for lubricating oil and fuels | |
US6288013B1 (en) | Nitrogen containing dispersant-viscosity improvers | |
EP1190021B1 (en) | Lubricating oil additives | |
AU770789B2 (en) | Lubricating oil additives | |
EP1294777B1 (en) | Dispersant/viscosity improvers for lubricating oil and fuels | |
EP0882782A2 (en) | Nitrogen-containing dispersant-viscosity improvers for lubricating oils | |
EP0823471B1 (en) | Acylated nitrogen compounds useful as additives for lubricating oil and fuel compositions and intermediates useful for preparing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10311511 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2413979 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001963715 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001963715 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase in: |
Ref country code: JP |