Nothing Special   »   [go: up one dir, main page]

WO2001094370A1 - Coenzyme derivatives and enzymes appropriate therefor - Google Patents

Coenzyme derivatives and enzymes appropriate therefor Download PDF

Info

Publication number
WO2001094370A1
WO2001094370A1 PCT/JP2001/004771 JP0104771W WO0194370A1 WO 2001094370 A1 WO2001094370 A1 WO 2001094370A1 JP 0104771 W JP0104771 W JP 0104771W WO 0194370 A1 WO0194370 A1 WO 0194370A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dehydrogenase
reagent
general formula
compound
Prior art date
Application number
PCT/JP2001/004771
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Futatsugi
Hiroshi Oonogi
Mutsuhiro Date
Yuzo Mimata
Fumihiko Yamaguchi
Original Assignee
Wako Pure Chemical Industries, Ltd.
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries, Ltd., Asahi Kasei Kabushiki Kaisha filed Critical Wako Pure Chemical Industries, Ltd.
Priority to AU2001262702A priority Critical patent/AU2001262702A1/en
Publication of WO2001094370A1 publication Critical patent/WO2001094370A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • the present invention relates to oxidized nicotinamide amide adenine dinucleotide (NAD), oxidized nicotinamide amide adenine dinucleotide phosphate (NADP), which exhibits excellent stability.
  • NAD oxidized nicotinamide amide adenine dinucleotide
  • NADP oxidized nicotinamide amide adenine dinucleotide phosphate
  • the present invention relates to an enzyme, an enzymatic measurement method using the same, and a reagent for enzymatic measurement.
  • a reaction using a redox enzyme such as a dehydrogenase using a coenzyme such as NAD, NADH, NADP, and NADPH as an electron transfer medium is used.
  • freeze-drying technology has been developed, but it cannot be applied to liquid drugs that are currently dominating the clinical diagnostics field.
  • a stabilization method by adding a polyol US Pat. No. 4,271,264
  • a method of adding boric acid JP-A-62-198697
  • a method of adding an alkali metal JP-A-7-229192
  • a method of adding a chelating agent Japanese Patent Laid-Open No. 2000-7696
  • Japanese Patent Laid-Open No. 2000-7696 has also been developed, but all of these are effective for short-term stabilization, but are not suitable for long-term stabilization or preservation of temperature load conditions. Is not effective enough to stabilize the enzyme, and these additives may adversely affect other conjugated enzymes, measurement systems, the environment, etc., and their use is often restricted. .
  • dehydrogenases having reactivity to coenzyme derivatives include, for example, WO98 / 33936, TTier ws sp. @ 3-propionylpyridine-type NADH derivative derived from Porcine heart. Malate dehydrogenase, which is reactive against it, has been reported.
  • WO 98/33936 also reports glucose-6-phosphate dehydrogenase which is reactive to 3-propionylpyridine type NADH derivatives, but the name of the producing bacterium and the dehydrogenase are described. There is no disclosure or suggestion of properties such as stability in solution or reactivity to coenzyme derivatives.
  • the present invention has been made in view of the above-described circumstances, and provides a long-term stable coenzyme derivative, a dehydrogenase having high reactivity with these coenzyme derivatives, and having excellent stability, and Providing reagents for enzymatic assay that use these, for example, have a storage stability of at least 12 months or more at 10 ° C, usually 13 months or more, and 30 ° What you do
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that derivatives of NAD, NADP, NADH, and NADPH that are stable over a long period of time, especially under a temperature load condition.
  • the present inventors have succeeded in finding a dehydrogenase which has high reactivity with these coenzymes and is stable under a temperature load, and has completed the present invention.
  • the present invention has the following configurations.
  • Y a represents a hydroxyl group or a phosphoric acid residue
  • R a is indicates alkenylidene group
  • n a is 0 or 1
  • Y a represents a hydroxyl group or a phosphoric acid residue
  • R a is indicates alkenylidene group
  • n a is 0 or 1
  • Y represents a hydroxyl group or a phosphoric acid residue
  • R represents an alkylene group or an alkenylidene group
  • represents 0 or 1
  • X ′ represents a carboxylic acid group, a thiocarpoxyl group, a sulfonic acid group or a sulfonic acid group.
  • a reagent for enzymatic assay that has a storage stability of at least 12 months when stored at ° C.
  • Y a represents a hydroxyl group or a phosphoric acid residue
  • R a is indicates alkenylidene group
  • n a is 0 or 1
  • Measurement reagent
  • Y a represents a hydroxyl group or a phosphoric acid residue
  • R a is indicates alkenylidene group
  • n a is 0 or 1
  • a reaction ratio of 4.0% to the compound or its reduced form
  • a dehydrogenase having a residual activity of 70% or more after storage at 37 ° C for 10 days in 5 OmM Tris_HC1 (pH 7.5) buffer.
  • R b represents an alkenylidene group
  • n b is 0 or 1
  • X b is (wherein, R u b represents a hydrogen atom or a hydrocarbon residue.)
  • R 12 b is - R 5 b, - NHR 6 b or - N (R 6 b) in (R 7 b) represents an (wherein, R 5 b or 2 carbon atoms in the hydrocarbon represents a residue
  • RJ 3 and R 7 b are each independently hydrogen atom, represents an optionally substituted hydrocarbon residue or an amino group.
  • R 14 b represents -R 5 b ', -NHR 6 b ' or -N (R 6 b ') (R 7 b ') (wherein, R 5 b ' represents the number 2 or more hydrocarbon residues atoms, a R 6 b 'and R 7 b' are each independently may have a substituent hydrocarbon residue or an amino group.).
  • a sulfonic acid group or a group derived therefrom, an optionally substituted hydrocarbon residue, -CH NOH group or -CN group. ⁇ .
  • R e represents an alkenylidene group, represents 0 or 1
  • X represents a hydrogen atom or a hydrocarbon residue.
  • Q represents an oxygen atom or a sulfur atom
  • R 15 e is -NHR 6 .
  • - N (R) represents the (R) (in the formula, each represents a R 6 e and R independently represent a hydrogen atom, an alkyl group which may have a location substituent.).
  • R d represents an alkenylidene group
  • n d represents 0 or 1
  • X d is
  • R u d is to Table hydrocarbon residue hydrogen atom or 3 or more carbon atoms.
  • -COOR u d in -COR 12 d [wherein, R 12 d is - R 5 d, -NHR 6 d or -N (R 6 d ) (R 7 d ) (wherein, R 5 d represents a hydrocarbon residue having 4 to 5 carbon atoms, and R 6 d and R each independently represent a substituent. Represents an alkyl group which may be present).
  • R 14 d represents -R 5 d ',' -NHR 6 d ', or -N (R) (R 7 d ')
  • R 5 d ' is carbonized.
  • R 6 d ′ and R / ′ each independently represent a hydrocarbon residue or an amino group which may have a substituent.
  • R e represents a alkenylidene group
  • n e is 0 or 1
  • X e is
  • R "e represents a hydrogen atom or a hydrocarbon residue.) -COOR n e, in -CQ'R 15 e [wherein, Q 'represents an oxygen atom or a sulfur atom, the R 15 e - Represents NHR 6 e or -N (R 6 e ) (R 7 e ) (wherein, R 6 e and R 7 e each independently represent a hydrogen atom or an alkyl group which may have a substituent; Represents a sulfonic acid group or a group derived therefrom, a hydrocarbon residue which may have a substituent, or a -CN group.
  • a reagent for enzymatic measurement comprising the compound according to any one of (6) to (9).
  • a reagent for measuring enzymology comprising: the compound according to any one of (6) to (9) above; and a dehydrogenase.
  • Y a represents a hydroxyl group or a phosphoric acid residue
  • R a is indicates alkenylidene group
  • n a is 0 or 1
  • the reaction ratio to the compound represented by the formula or its reduced form is 40% or more, and stored at 50 ° C in Tris-HC1 (pH 7.5) buffer at 37 ° C for 10 days. A dehydrogenase having a remaining activity of 70% or more.
  • the alkenylidene group represented by R a may be any of straight chained, branched or cyclic, preferably ⁇ Luque two isopropylidene groups from 2 to 6 carbon atoms, among them carbon Alkenylidene groups of the number 2-3 are particularly preferred.
  • alkenylidene group such as a vinylene group and a probenylene group.
  • the in hydrocarbon residues may also be a hydrocarbon residue optionally having a substituent represented by x a, for example, linear, branched or cyclic alkyl Groups, especially lower alkyl groups having 1 to 6 carbon atoms, aryl groups, aralkyl groups and the like.
  • aryl groups are preferred.
  • lower alkyl groups such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc.
  • Examples include aryl groups such as phenyl and naphthyl, and aralkyl groups such as benzyl.
  • substituents include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine.
  • the group derived from the carboxyl group represented by X a for example, the formula - COOR ⁇ a (wherein, Rn a represents a hydrogen atom or a hydrocarbon residue.) Shown in Carboxylic acid ester group of the formula - COR 12 a ⁇ wherein, R 12 a is, -R 5 a, - NHR 6 a or - N (R 6 a) ( R 7 a) represents a wherein, R 5 a represents a hydrocarbon residue, R 6 a and R 7 a represents independently a hydrogen atom, which may have a substituent hydrocarbon residue or an amino group. ]. Ashiru group, represented by the formula ⁇ - CONHR 13 a (.
  • R 13 a is a hydrocarbon residue, an amino group or a substituted amino group) at the indicated Ru carboxylic acid amide group, an aldehyde group (-CHO ), A cyano group (—CN), and the like.
  • Examples of the group derived from a sulfonic acid group include a group represented by the formula —SO 2 NR a “R ai ” (where R a ”and R a ′′ ′ are hydrogen) .
  • sulfonic acid amide group represented by may be mentioned, and as the groups derived from Chiokarupokishiru group, for example the formula - in CSR 14 a (wherein, R 14 a is carbonized A hydrogen residue, an amino group or a substituted amino group).
  • the hydrocarbon residue represented by ru a for example, methyl, Echiru group, n- propyl group, iso- Purobiru group, n- butyl group, iso- butyl group, tert- butyl group, a cyclopentyl group, cyclohexylene
  • a linear, branched or cyclic lower alkyl group having 1 to 6 carbon atoms such as a xyl group; an aryl group such as a phenyl group or a naphthyl group; an aralkyl group such as a benzyl group or a phenyl group; Can be
  • the hydrocarbon residue represented by R 5 a for example Echiru group, n- propyl group, iso- propyl, n- heptyl group, iso- butyl group, tert- butyl group, consequent opening pentyl group, cyclohexyl A straight-chain, branched or cyclic lower alkyl group having 2 to 6 carbon atoms such as a group; an aryl group such as a phenyl group and a naphthyl group; an aralkyl group such as a benzyl group and a phenethyl group; .
  • hydrocarbon residue in the optionally substituted hydrocarbon residue which may have a substituent group represented by R 6 a and R 7, for example, a straight, branched or cyclic ⁇ alkyl group, in particular carbon Lower alkyl group, aryl group, aralkyl
  • substituent group represented by R 6 a and R 7 for example, a straight, branched or cyclic ⁇ alkyl group, in particular carbon Lower alkyl group, aryl group, aralkyl
  • Specific examples include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples thereof include lower alkyl groups such as a xyl group, for example, an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group.
  • substituent include a hydroxyl group, a nitro group, an amino group, and a halogen atom such as chlorine, bromine, fluorine and iodine.
  • R 1 3 a the hydrocarbon residue, such as methyl group, Echiru group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, tert- butyl group, Shiguropenchiru group A straight-chain, branched or cyclic lower alkyl group having 1 to 6 carbon atoms such as a cyclohexyl group; an aryl group such as a phenyl group and a naphthyl group; an aralkyl group such as a benzyl group and a phenethyl group; And so on.
  • the hydrocarbon residue such as methyl group, Echiru group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, tert- butyl group, Shiguropenchiru group
  • a straight-chain, branched or cyclic lower alkyl group having 1 to 6 carbon atoms such as a cycl
  • one or two of the hydrogen atoms are, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl
  • Aralkyl groups for example, those in which the above alkyl group is substituted by a hydroxyalkyl group in which one hydroxyl group is substituted, etc.
  • Examples of the hydrocarbon residue represented by R a ′′ and R a ′′ ′ include a methyl group A linear chain having 1 to 6 carbon atoms, such as an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group and a cyclohexyl group; Branched or cyclic low Alkyl group, for example phenyl group, Ariru group such as a naphthyl group, for example, base Njiru group, and a Ararukiru groups such as phenethyl group.
  • the hydrocarbon residue represented by R 1 4 a for example, methyl, Echiru group, C1-C6 linear, branched, or cyclic such as n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl, etc.
  • lower alkyl groups such as phenyl and naphthyl, and aralkyl groups such as benzyl and phenethyl.
  • Examples of the substituted amino group include an alkylamino group and a dialkylamino group.
  • the alkyl group referred to herein includes, for example, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, Examples thereof include linear, branched or cyclic lower alkyl groups having 1 to 6 carbon atoms such as .-butyl group, tert-butyl group, cyclopentyl group and cyclohexyl group.
  • a group represented by -R a n a X a are those attached to the 3-position of the pin lysine ring is particularly preferred.
  • n a is and X a at 0 - in COR 12 a group
  • R 12 a is - R 5 a , - NHR 6 a or - N (R 6 a) represents a (R 7 a)
  • R 5 a is a hydrocarbon residue
  • R 6 a and R 7 a are each independently a hydrogen atom Represents a hydrocarbon residue or an amino group which may have a substituent.
  • n a is 0 and X a is- COOR u a 3 ⁇ 4 (wherein, R n a represents a hydrogen atom or a hydrocarbon residue.), or - in COR 12 a group [wherein, R 12 a is - R 5 a, -NHR 6 a or - n ( R 6 a) (representing the R 7 "(wherein, R 5 a is a hydrocarbon residue, each R 6 a and R 7 a are independently hydrogen, which may have a substituent carbide A hydrogen residue or an amino group.).], And particularly, in the general formula [1], (R a ) n aX a is a methoxycarbonyl group (—COOCH 3 ), A reduced form of an ethoxycarbonyl group (—COOC 2 H 5 ) or an ethyl
  • Ya is a hydroxyl group and (R a) n a X a methoxy Cal Poni Le Or reduction of those Echirukaruponiru a group, or in the general formula [1] is a reduced form of Y a is a phosphoric acid residue and (R a) n a X a Gae Chirukaruponiru which those groups.
  • the alkylene group or alkenylidene group represented by R is a straight-chain. Which may be branched or cyclic, for example, a lower alkylene group having 1 to 6 carbon atoms or an alkenylidene group having 2 to 6 carbon atoms, and particularly, an alkylene group having 1 to 3 carbon atoms or 2 to 3 carbon atoms is preferable.
  • the alkenylidene group is particularly preferred.
  • an alkylene group such as a methylene group, an ethylene group, a methylethylene group, an ethylmethylene group, a propylene group, an ethylethylene group, a cyclopentylene group, a cyclohexylene group, for example, a vinylene group, a probe And alkenylidene groups such as a len group.
  • examples of the hydrocarbon residue in the optionally substituted hydrocarbon residue represented by X and are, for example, a linear or branched hydrocarbon residue. Or a cyclic alkyl group, particularly a lower alkyl group having 1 to 6 carbon atoms, an aryl group, an aralkyl group, and the like.
  • the substituent include a hydroxyl group, a nitro group, and an amino group such as chlorine, bromine, fluorine, and io
  • the group derived from the force Rupokishiru groups represented by X ' for example, a carboxylic acid ester group of the formula -COOR, wherein -! ⁇ Shi Le group represented by COR 2, wherein - carboxylic acid represented by CONHR 3
  • Examples include an amide group, an aldehyde group (—CHO), and a cyano group (—CN).
  • Examples of the group derived from the sulfonic acid group include a sulfonic acid amide group represented by the formula —S0 2 NR “R” ′ Is mentioned.
  • Ri is, for example, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, a cyclohexyl group
  • R 2 is for example Echiru group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, tert- heptyl group, a cyclopentyl group, a straight C 2 -C 6 such as cyclohexyl group
  • a chain, branched or cyclic lower alkyl group for example, an aryl group such as a phenyl group or a naphthyl group, for example, an aralkyl group such as a benzyl group or a phenethyl group
  • R 3 represents, for example, a methyl group
  • Cyclic lower alkyl groups such as phenyl and naphthyl, and other aryl groups such as benzyl and phenyl;
  • An aralkyl group such as an ethenyl group, for example, those in which the above alkyl group is substituted by a hydroxyalkyl group in which one hydroxy group is substituted, and the like can be given.
  • R "and R” ' represent a hydrogen atom such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, a cyclopentyl group;
  • a linear, branched or cyclic lower alkyl group having 1 to 6 carbon atoms such as a hexyl group, for example, an aryl group such as a phenyl group or a naphthyl group, for example, an aralkyl group such as a benzyl group or a phenethyl group. Is shown.
  • R 4 is, for example, methyl group, E Ji Le group, n- propyl group, iso- A linear, branched or cyclic C1-C6 lower alkyl group such as propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl, etc .; lower alkyl, e.g.
  • phenyl And aralkyl groups such as naphthyl group, for example, benzyl group, phenethyl group, etc., amino group, substituted amino group and the like, and the substituted amino group mentioned here includes an alkylamino group and a dialkylamino group.
  • alkyl group referred to herein include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the group represented by-(R) nX' is particularly preferably a group bonded to the 3-position of the pyridine ring.
  • the coenzyme derivatives represented by the following general formulas [2-1], [2-2], [2-3] and [2-4] of the present invention are themselves It is new.
  • the alkenylidene group represented by R b , R c , R d and R e may be any of linear, branched or cyclic, and has 2 to 6 carbon atoms.
  • a alkenylidene group having 2 to 3 carbon atoms is particularly preferable. Specific examples include an alkenylidene group such as a vinylene group and a probenylene group.
  • the compound has a substituent represented by X b , X c , x d and x e
  • the hydrocarbon residue in the hydrocarbon residue which may be used include a linear, branched or cyclic alkyl group, particularly a lower alkyl group having 1 to 6 carbon atoms, an aryl group, an aralkyl group and the like. Among them, an aryl group is preferable.
  • lower alkyl groups such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group and cyclohexyl group;
  • substituents include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine.
  • Examples of the group derived from a sulfonic acid group represented by X b , X c , X d and X e include, for example, a group represented by the formula: S 0 2 NR a "R a "'(where R a ''and Ra "'Is a hydrogen atom or charcoal Shows a hydride residue. And the like.
  • Examples thereof include a branched or cyclic lower alkyl group, for example, an aralkyl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group and a phenethyl group.
  • It is preferably a lower alkyl group having 1 to 6 carbon atoms.
  • a straight-chain, branched or cyclic lower alkyl group having 3 to 6 carbon atoms such as phenyl group and naphthyl group having 6 to 12 carbon atoms such as benzyl group and phenethyl group having 7 carbon atoms.
  • ⁇ 8 aralkyl And the like.
  • X b is - general formula COR 12 b [wherein, R 12 b is - R 5 b, - NHR 6 b or - represents an N (R 6 b) (R 7 b) (wherein, R 5 b is table number 2 or more hydrocarbon residue carbon, R 6 b and R 7 b are each independently a hydrogen atom, a hydrocarbon residue but it may also have a substituent Or an amino group.).
  • R 12 b is R 5 b is a hydrocarbon residue having 2 or more carbon atoms represented by R 5 b in the case where, and X b is - in CSR 14 b [wherein the R 14 b - R 5 b ', -NHR 6 b' or - N (R 6 b ') (R 7 b') represents a (wherein, R 5 b 'represents 2 or more hydrocarbon residue having a carbon number, R 6 b' And R 7 b ′ each independently represent a hydrocarbon residue or an amino group which may have a substituent.)
  • the hydrocarbon residue having 2 or more carbon atoms represented by R 5 b ′ includes, for example, ethyl group, n-propyl group, iso-propyl group, n- C2-C6 linear, branched or cyclic lower alkyl groups such as butyl group, iso-butyl group, tert
  • X d is -COR 12 d (wherein, R 12 d represents -R 5 d , -NHR 6 d or -N (R 6 d ) (R 7 d )
  • R 5 d represents a hydrocarbon residue having 4 to 5 carbon atoms
  • R 6 d and R 6 each independently represent an alkyl group which may have a substituent.
  • examples of the hydrocarbon residue having 4 to 5 carbon atoms represented by R 5 d include an iso-propyl group, an n-butyl group, an iso-butyl group, A linear, branched or cyclic lower alkyl group having 4 to 5 carbon atoms such as a tert-butyl group and a cyclopentyl group is exemplified.
  • X d is -CSR 14 d (where R 14 d is -R 5 d ', -NHR 6 d ' or -N (R 6 d ') (R) (In the formula, R / represents a hydrocarbon residue, and R 6 d ′ and R each independently represent a hydrocarbon residue or an amino group which may have a substituent.) And a hydrocarbon represented by R when R 14 d is R 5 d ′ Residues include, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc. And straight-chain, branched or cyclic lower alkyl groups such as phenyl and naphthyl, and aralkyl such as benzyl and phenethyl
  • X b is - Formula a COR 12 b
  • R 12 b is - NHR 6 b, or -N (R 6 b) when it is (R 7 b) R 6 b , R 7 b
  • X - is a CSR 14 b
  • R 14 b is -NHR 6 b 'or - N (R 6 b') (R 7 b ') when it is R 6 b', R 7 b
  • Examples of the hydrocarbon residue in the hydrocarbon residue optionally having a substituent represented by ′ include a linear, branched or cyclic alkyl group, particularly a lower alkyl having 1 to 6 carbon atoms.
  • lower alkyl Go such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc.
  • substituent include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine.
  • X e is -CQR 15 e [wherein Q represents an oxygen atom or a sulfur atom, and 1 ⁇ is -NHR 6 C or -N (R 6 C ) (R 7 C) represents an (wherein, each R 6 C and R are independently hydrogen, represents an optionally substituted alkyl group ..).
  • R 15 c is - NHR 6 C or - N (R 6 C) ( R 7 C) an R 6 C in the case where, R 7 C, the general formula - In [2 3],
  • X d Represents -COR 12 d (wherein / represents -R 5 d , -NHR 6 d or -N (R 6 d ) (R 7 d ) (wherein, R 5 d represents a carbon atom having 4 to 5 carbon atoms) It represents a hydrogen residue, represents an alkyl group which may R 6 d and R 7 d is have each independently substituent.).
  • R 12 d is -NHR 6 d or -N (R 6 d ) (R 7 d )
  • R 6 d , R in the general formula [2-3]
  • X d is- CSR 14 d (where R d is -R 5 d ', -NHR 6 d ' Or -N (R 6 d ') (R 7 d '), wherein R represents a hydrocarbon residue, and R 6 d 'and R' each independently have a substituent. Represents a good hydrocarbon residue or amino group.)
  • X e is -CQ'R 15 e (wherein Q 'represents an oxygen atom or a sulfur atom, and R 15 e represents -NHR 6 e or -N (R 6 e ) (R 7 e ) (wherein R 5 e and R 7 e each independently represent a hydrogen atom or an alkyl group which may have a substituent.) Wherein R 15 e is -NHR 6 e or -N (R 6 e ) (R 7 e ), and R 6 e , an alkyl group which may have a substituent represented by R 7 e.
  • alkyl group in the above examples include a linear, branched or cyclic alkyl group, particularly a lower alkyl group having 1 to 6 carbon atoms, and specifically, for example, a methyl group, an ethyl group, an n- Propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl and the like.
  • substituent include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine.
  • n c is 0, the group represented by X c is - COOI ⁇ in and a lower alkyl group
  • (R c ) n c X c is a methoxycarbonyl group (—COOCH 3 ) or an ethoxycarponyl group (—COOC 2 H 5 ) group.
  • n e is 0, represented by X e It is preferred and is a lower alkyl group in, inter alia, in the general formula [2-4], (R e) n e X e turtle Tokishikaruponiru group (-COOCH 3) or ethoxy Cal Poni Le group (- Those which are COOC 2 H 5 ) groups are particularly preferred.
  • the compounds (NAD derivatives and NADP derivatives) represented by the general formulas [1], [3], [2-1] and [2-3] according to the present invention can be prepared by a method known per se, for example, J.BiO.Chem. , 203., 484 (1954).
  • NAD NAD may be reacted in the presence of transglycosidase using the corresponding pyridine derivative as a substrate.
  • the transglycosidase used in the above method may be any as long as it has a property of catalyzing an exchange reaction between nicotinamide of NAD and a pyridine derivative as a substrate, and examples thereof include NAD + nucleoside.
  • the origin may be any as long as it has the above-mentioned properties, and examples thereof include those derived from animal organs such as those derived from pig brain and those derived from bovine spleen, and those derived from microorganisms.
  • the buffer used may be any buffer that does not inhibit the exchange reaction, and those usually used in this field may be used.
  • NADP derivative a compound represented by the general formula [1] or a compound represented by the formula [3] wherein Y is a phosphate residue, or a compound represented by the general formula [2-1]
  • the compound shown (NADP derivative) can be prepared, for example, using the corresponding pyridine derivative as a substrate in the presence of transglycosidase. Manufactured by the method of reacting NADP
  • the reaction is usually performed in a suitable buffer, and the transglycosidase reaction is usually performed at 25 to 45 ° (: preferably at 30 to 37 ° C, usually for 10 minutes to 168 hours). It is preferably performed for 1 to 24 hours.
  • the transglycosidase used in the above method includes NAD Any substance having a property of catalyzing the exchange reaction between nicotinamide of p and a pyridine derivative as a substrate may be used, and examples thereof include NADP + nucleoside.
  • the origin may be any having the above-mentioned properties, and examples thereof include those derived from animal organs, such as those derived from bush brain and those derived from bovine spleen, and those derived from microorganisms.
  • the buffer used may be any buffer which does not inhibit the exchange reaction by transglycosidase, and those usually used in this field may be used.
  • the compounds (NADH derivatives and NADPH derivatives) represented by the general formulas [1 '], [3'], [2-2] and [2-4] according to the present invention can be prepared by a method known per se, for example, Biochem. It can be easily manufactured according to the method described in Z., 2S ⁇ , 66 (1938).
  • the compounds represented by the general formulas [1], [3], [2-1] and [2-4] may be reduced with a reducing agent.
  • the reduction reaction is usually carried out in a suitable solution at a temperature of usually 0 to 37 ° C, preferably 20 to 30 ° C, usually 0:! To 8 hours, preferably 1 to 2 hours.
  • the reducing agent used in the above method may be any one usually used in this field, and examples thereof include sodium hydrosulfite, sodium borohydride, and poranpyridine.
  • Examples of the solution to be used include a solution usually used in this field, such as water.
  • the solution may contain, for example, a buffer or sodium bicarbonate for the purpose of preventing generation of bubbles. Compounds represented by the general formulas [1], [1 '], [3], [3'], [2-1], [2-2], [2-3] and [2-4] described above.
  • the buffer used is not particularly limited as long as it is generally used in this field.
  • N- [tris (hydroxymethyl) methyl] glycine Tricine
  • N, N-bis (2-hydroxyethyl) Glycine N-tris (hydroxymethyl) methyl-3-aminopropanesulfonate (TAPS)
  • TAPS N-tris (hydroxymethyl) methyl-3-aminopropanesulfonate
  • AMPSO 3-[(1,1-dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfonic acid]
  • AMPSO N-cyclohexyl-2-aminoenesulfonic acid
  • CAPSO N-cyclohexyl-2-hydroxy-3-aminopropanesulfonic acid
  • AMP 2-amino-2-methyl-1-propanol
  • Good buffers such as N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), for example Examples include citrate,
  • the concentration used is appropriately selected from the concentration range usually used in this field.
  • the compound according to the present invention obtained by the above method may be purified, if necessary, by a purification method known per se, for example, a method described in J. Biol. Chem., 241.3707 (1966). .
  • a purification method known per se for example, a method described in J. Biol. Chem., 241.3707 (1966). .
  • the dehydrogenase according to the present invention will be described.
  • the dehydrogenase according to the present invention has a reaction ratio to the compound represented by the general formula [1] or a reduced form thereof (the compound represented by the general formula [1 ′]) of 40% or more, And having a residual activity of 70% or more after storage for 10 days at 37 ° C in 50 mM Tris-HC1 (pH 7.5) buffer It is.
  • '' Specifically, it has properties as described above, for example, alcohol dehydrogenase, malate dehydrogenase, lactate dehydrogenase, isoquenate dehydrogenase, glycerol dehydrogenase, glycerol 3-phosphate Dehydrogenase., Dali cellaldehyde phosphate dehydrogenase, Darco's dehydrogenase, Glucose 6-phosphate dehydrogenase, 6-Phosphodalconate dehydrogenase, Daltamate dehydrogenase, Formate dehydrogenase Enzymes, xanthine dehydrogenase, cholesterol dehydrogenase, leucine dehydrogenase, pyruvate dehydrogenase, sarcosine dehydrogenase, D-3-hydroxybutyrate dehydrogenase, 3 ⁇ -hydro Xisteroide dehydrogenase, / 3-hydroxy
  • malate dehydrogenase or lucose-16-phosphate dehydrogenase having the above-mentioned properties is preferable.
  • malate dehydrogenases those having the following physicochemical properties are particularly preferred.
  • Y a is a hydroxyl group
  • R a) n a X a is Echirukaru Poniru group or a reactive ratio reduced form of which is what a methoxycarbonyl group is 4 0% or more
  • Y a is a hydroxyl group
  • (R a ) n a X a is an ethylcarl'ponyl group or a methoxycarbonyl group, 0.1 15 mM or less.
  • glucose-16-phosphate dehydrogenases those having the following physicochemical properties are particularly preferred.
  • Y a is phosphoric acid residue
  • R a) n a X a is - CH- reactivity ratio to what NOH a group 70% or more.
  • the origin of the dehydrogenase as described above is not particularly limited, and examples include various microorganisms such as bacteria and yeast, for example, tissues and cells derived from animals, and cells derived from plants, for example.
  • a dehydrogenated lactate for example, Escherichia such as Escherichia coh, Aerobacter genus such as Aerobacter aeroaenes ⁇ Aerobacter cloacae, Enterobacter Enter such as Enterooacter aeroaenes, and Citrobactef freundii, etc. Tr> Serratia marcescens Serratia plymuthicum, Serratia marcescens Serratia, eg Pro Fo> Proteus genus such as Proteus rettqen ', Salmonella such as 7L ⁇ Salmonella typhimurium> ⁇ .
  • Flavobacterium lutescens Flavobacterium arborescens> Flavooacterium car> sulatum, Flavobacterium autothermophilum Flavobacterium menigosepticum Bacillus subtilis, Bacillus natto, Bacillus pumilus, Bacillus licheniformis, Bacillus cereus ⁇ Bacillus stearothermophilus, Bacillus thuringiensis, Bacillus bacterium, Agrobacterium, Agrobacterium, Bacillus bacillus, Bacillus bacillus, Bacillus bacillus genus Agrobacterium such as radiobacter, Agrobacterium tumefaciens, etc., e.
  • Pimelobacter genus such as Pimelobacter simplex; e.g., Hafrtia such as Hafnia alvei; e.g., Acinetobacter genus such as Acinetobacter calcoaceticus; e.g.
  • Pseudomonas dacunhae Pseudomonas aureofaciens ⁇ Pseudomonas genus such as Pseudomonas dimirtuta, Pseudomonas fluore s certs, Pseudomonas taetrolens ⁇ Pseudomonas maltophilia, Pseudomonas syringae Pseudomonas desmolytica, Pseudomonas putida, etc.
  • Hansenula anomala, Hansenula miso, Hansenula octospora, Hansenula petersonii ⁇ Hansenula genus such as Hansenula polymorpha, Sporobolomyces L such as L ⁇ Sporobolomyces salmonicolor, etc. nagoyaensis, etc.), e.g. fma Candida my co derma, Candida pelliculosa ⁇ Candida genus, such as Candida solani, Candida methonolica, Candida maltosa, Candida carlo silignicola, Candida humicola, etc.
  • Rhodotorula ⁇ such as glutieris, for example, Trichosporon genus such as Trichosporon cutaneum, for example, Mucor i, such as Mucor racemosus, Mucor jansseni, etc. l ⁇ .
  • Trichosporon genus such as Trichosporon cutaneum
  • Mucor i such as Mucor racemosus, Mucor jansseni, etc. l ⁇ .
  • Mycobacterium phlei ⁇ D My co bacterium i> ⁇ ⁇ Nocardia genus such as Nocardia mexicanc Nocardia autotrophics Nocardia uniformis; Rhodococcus genus such as X.
  • Rhodococcus erythropolis Streptomyces genus such as Streptomyces griseolus and Streptomyces scabies, for example rhe such as TTienm / s sp genus rws, for example, tissues such as heart, adrenal cortex, liver, etc., derived from animals such as pigs, pests, rats, and rats.
  • a mutant such as the above-described strain or tissue cell may be used.
  • Bacillus licheniformis is more preferred, and Bacillus licheniformis ⁇ AKS-23 is particularly preferred.
  • Bacillus licheniformis ⁇ AKS-23 was deposited at the Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Life Science and Industrial Technology, as "FERMBP-7492". Available.
  • Escherichia J such as Escherichia coh '
  • genus Aerobacter such as xi Aerobacter aerogenes, eg ⁇ Enterobacter ⁇ such as Enterobacter aerogenes,?
  • Serratia exhibition of Serratia marcescens etc. eg [3 ⁇ 4 Flavobacterium capsulatum ⁇ ⁇ Flavobacterium ⁇ ! Bacillus sp.
  • Brenne Horfe genus such as __Brenne Herbertfe Rasse, ac Saccharomyces sake ⁇ Distillery yeasts Wine yeasts Baker's yeast, Munchen beer yeast, Base beer yeast ', Saccharomyces cerevisiae var.
  • Saccharomyces lactis Saccharom ces chevalier, Saccharom ces drosphilarum
  • Saccharomyces cerevisiae Saccharomyces bay anus etc.
  • the genus Saccharomyces (column _ Pichia polymorpha, Pichia naganishii Hansenula anomala, Hansenula miso, Hansenula octospora Hansenula petersoni Hansenula genus such as Hansenula anomala, e.g.
  • f U eg _ Sporvtricus genus such as Sporotncus schencKii; As Aspergillus such as Aspergillus ceUolosaev; tissue such as spleen, adrenal cortex, liver, mammary gland, etc. from animals such as pigs, horses, rats, rats, etc. And the like.
  • Bacillus i3 ⁇ 4 is more preferred, and Bacillus licheniformis is more preferred, and Bacillus licheniformis ⁇ AKS-75 is particularly preferred.
  • Bacillus licheniformis ⁇ ⁇ 7 3 _ 7-5 was sent to the Ministry of Economy, Trade and Industry, Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, as “FERM ⁇ ⁇ -7349 3”. Deposited and available to anyone.
  • glutamate dehydrogenase for example, the genus Aerobacter such as Aerocicier cZoacae, ⁇ . U, e.g., Streptomyces genus such as Streptomyces albus, e.g., Pyrococcus woeseu Pyrococcus ⁇ Rococcs genus such as Pyrobaculum islandicum, for example, tissues derived from plants such as endo, corn, soybean, etc., for example, tissues such as liver, kidney hull, brain, etc. derived from animals such as pigs, pests, chicks, and chickens And the like.
  • it may be a mutant such as the above-described strain or tissue cell.
  • Pyrococcus woeseL Pyrococcus furiosus Probaculum islandicum is preferable, and Pyrobaculum islandicum (DSM 4184) is particularly preferred.
  • Staphylococcus F such as Sia hyZococcus sp> Bacillus genus such as Bacillus stearothermoohilus, for example Leuconostoc genus such as Leuconostoc mesenterides, eg Brevibacterium protophormiae etc. genus Pseudomonas of ncyanea, such as Rhodococcus erythropolis, etc. And the like.
  • lactate dehydrogenase it may be a mutant such as a strain or a tissue cell as described above.
  • the dehydrogenase of the present invention can be produced, for example, by culturing the above-described tissue cells derived from microorganisms, plants and animals according to a conventional method.
  • the obtained culture is obtained by a conventional method such as filtration or centrifugation to obtain a culture filtrate or culture supernatant containing the enzyme, or a microorganism, plant or animal tissue cell from which the enzyme has been cultured.
  • the culture is subjected to conventional methods such as filtration or centrifugation to collect microbial, plant and animal-derived tissue cells, suspended in an appropriate buffer, and (4) After lysozyme and lyophilized it by a conventional method such as freeze-thawing, a crude extract containing the enzyme may be obtained by a conventional method such as filtration or centrifugation.
  • the culture method may be solid culture or liquid culture, but is preferably aeration culture using a flask, a jar or the like.
  • the medium to be used those usually used for culturing the target tissue cells derived from microorganisms, plants and animals are widely used.
  • Glucose, glycerol, sorbitol, lactose, etc. as carbon sources, yeast extract, meat extract, tryptone, peptone, etc. as nitrogen sources, and sodium chloride, magnesium chloride, magnesium sulfate, calcium chloride, etc. as inorganic salts.
  • the culture conditions are, for example, pH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 25 to 80 ° C, preferably 35 to 60 T.
  • the target enzyme may be collected at a culture time when the enzyme to be used has the highest titer, for example, 18 to 30 hours.
  • tissue cells derived from microorganisms, plants and animals are separated from the culture solution by centrifugation, and this is separated from phosphorus. After suspending in a buffer such as an acid buffer or Tris-HCl buffer, crush it with lysozyme, ultrasonic waves, glass peas, etc. and centrifuge, and collect the soluble fraction as a crude enzyme solution.
  • a buffer such as an acid buffer or Tris-HCl buffer
  • Examples of the method for purifying malate dehydrogenase include known protein and enzyme isolation and purification means.
  • General enzyme purification such as fractional precipitation with organic solvents such as acetone or ethanol, salting out with ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, gel filtration, etc.
  • Purified malate dehydrogenase can be obtained by appropriately selecting and combining the methods.
  • a stabilizer such as sucrose or glycerol is added in an amount of about 5 to 50%, and an amino acid or coenzyme is added in an amount of about 0.01 to 0.1%.
  • a film such as colorless and transparent PET (polyethylene terephthalate) via a binder.
  • the culture method may be solid culture or liquid culture, but preferably aeration culture using a flask, a jar or the like.
  • the medium to be used may be tissue microbes derived from microorganisms, plants and animals. Those commonly used for culturing cells and the like are widely used. Carbon sources such as ducose, glycerol, sorbitol, and lactose; nitrogen sources such as yeast extract, meat extract, tryptone, and peptone; and inorganic salts such as sodium chloride, magnesium chloride, calcium chloride, magnesium sulfate, manganese chloride, Copper chloride, zinc chloride, cobalt sulfate or the like may be used.
  • Carbon sources such as ducose, glycerol, sorbitol, and lactose
  • nitrogen sources such as yeast extract, meat extract, tryptone, and peptone
  • inorganic salts such as sodium chloride, magnesium chloride, calcium chloride, magnesium sulfate, manganese chloride, Copper chloride, zinc chloride, cobalt sulfate or the like may be used.
  • the culture conditions are, for example, PH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 15 to 45 ° C, preferably 25 to 35.
  • the target enzyme may be collected at a culture time at which the enzyme has the highest titer, for example, 18 to 30 hours.
  • cells are separated from the culture solution by centrifugation and the like, and this is separated into a phosphate buffer solution. After suspending in a buffer such as Tris-HCl buffer, lysate with lysozyme, ultrasonic waves, glass beads, etc., and centrifuge to collect the soluble fraction as a crude enzyme solution.
  • a buffer such as Tris-HCl buffer, lysate with lysozyme, ultrasonic waves, glass beads, etc.
  • Examples of a method for purifying glucose-6-phosphate dehydrogenase include known protein and enzyme isolation and purification means.
  • General enzyme purification such as fractional precipitation using organic solvents such as acetone or ethanol, salting out using ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, gel filtration, etc.
  • Purified glucose 16-phosphate dehydrogenase can be obtained by appropriately selecting and combining the methods.
  • the method for preserving glucose 16-phosphate dehydrogenase is as follows. Stabilizers such as sucrose and glycerol are about 5 to 50%, and amino acids and coenzymes are 0.01 to 0.1%. %, And then cryopreserved or lyophilized.
  • colorless and transparent PET polyethylene terephthalate
  • the culture method may be solid culture or liquid culture, but preferably aeration culture using a flask, a jar or the like.
  • Glucose, glycerol, sorbitol, lactose, etc. as carbon sources, yeast extract, meat extract, tryptone, peptone, etc. as nitrogen sources, sodium chloride, magnesium chloride, magnesium sulfate, calcium chloride, etc. as inorganic salts Good.
  • the culture conditions are, for example, pH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 15 to 45 ° C, preferably 25 to 35 ° C.
  • the target enzyme may be collected at a culture time at which the target enzyme has the highest titer, for example, 18 to 30 hours.
  • tissue cells derived from microorganisms, animals and animals are separated from a culture solution by centrifugation, and this is separated from phosphoric acid. After suspending in a buffer solution such as a buffer solution or Tris-HCl buffer solution, crush it with lysozyme, ultrasonic waves, glass beads, etc., and centrifuge, and collect the soluble fraction as a crude enzyme solution.
  • a buffer solution such as a buffer solution or Tris-HCl buffer solution
  • Examples of the method for purifying glutamic acid dehydrogenase include known protein and enzyme isolation and purification means. For example, fractional precipitation with an organic solvent such as acetone or ethanol, salting out with ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, A purified glutamate dehydrogenase can be obtained by appropriately selecting and combining general enzyme purification methods such as a tea chromatography method and a gel filtration method.
  • Glutamate dehydrogenase can be stored by adding a stabilizer such as sucrose or glycerol in an amount of about 5 to 50%, and adding amino acids or coenzymes in an amount of about 0.01 to 0.1%, and cryopreserving it. Alternatively, freeze-drying is preferred.
  • the enzyme can be stored on a film such as colorless and transparent PET (polyethylene terephthalate) using a binder to fix the enzyme (for example, when obtaining lactate dehydrogenase, the culture method may be solid culture). Liquid culture may be used, but aeration culture using a flask, a jar or the like is preferred.
  • Glucose, glycerol, sorbitol, lactose, etc. are used as carbon sources, yeast extract, meat extract, tryptone, peptone, etc. are used as nitrogen sources, and sodium chloride, magnesium chloride, magnesium sulfate, calcium chloride, etc. are used as inorganic salts. I just need.
  • the culture conditions are, for example, pH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 15 to 45 ° C, preferably 25 to 40. It is only necessary to collect the target enzyme in a culturing time to obtain a titer, for example, 18 to 30 hours.
  • tissue cells derived from microorganisms, plants, and animals are separated from the culture solution by centrifugation, and this is separated from phosphorus. After suspending in a buffer such as acid buffer or Tris-HCl buffer, lysozyme, ultrasonic, Crush with a solution, centrifuge, and collect the soluble fraction as a crude enzyme solution.
  • a buffer such as acid buffer or Tris-HCl buffer
  • human erythrocytes may be collected, destroyed by adding a buffer, and recovered as a crude enzyme solution.
  • lactate dehydrogenase examples include known protein and enzyme isolation and purification means. Common enzymes such as fractional precipitation using an organic solvent such as acetone or ethanol, salting out using ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, gel filtration, etc. Purified lactate dehydrogenase can be obtained by appropriately selecting and combining purification methods.
  • Lactate dehydrogenase can be stored by adding a stabilizer such as sucrose or glycerol in an amount of about 5 to 50% and adding an amino acid or a capture enzyme in an amount of about 0.01 to 0.1%. Alternatively, freeze-drying and preservation are preferred. It can also be stored by a storage method in which the enzyme is fixed onto a film of colorless and transparent PET (polyethylene terephthalate) through a binder.
  • the Km value of the obtained dehydrogenase may be determined by a conventional method, and the reactivity ratio (%) to the coenzyme derivative can be determined by using the following formula. '
  • each dehydrogenase may be determined by a conventional method. That is, for example, each activity of malate dehydrogenase, lactate dehydrogenase, and glutamic acid dehydrogenase is measured by using a predetermined substrate and a predetermined reduced coenzyme (NADH or NADPH) or reduced coenzyme derivative described in the following table.
  • NADH or NADPH predetermined reduced coenzyme
  • enzyme reaction in the presence of (NADH or NADPH derivative) and measure the decrease in absorbance at the maximum absorption wavelength of reduced coenzyme (NADH or NADPH) or reduced coenzyme derivative (NADH or NADPH derivative)
  • the enzyme activity can be calculated by using the following formula.
  • the activity of glucose-6-phosphate dehydrogenase, glucose dehydrogenase, cholesterol dehydrogenase, 3 ⁇ -hydroxysteroid dehydrogenase and sorbitol dehydrogenase was measured in the table below.
  • the enzyme reaction is carried out in the presence of the prescribed substrate and the prescribed oxidized coenzyme (NAD or NADP) or the oxidized coenzyme derivative (NAD or NADP derivative) described above, and the reduced coenzyme (NADH or NADPH) or
  • the measurement can be performed by measuring the increase in absorbance at the maximum absorption wavelength of the reduced coenzyme derivative (a derivative of NADH or NADPH) and calculating the enzymatic activity using the following formula.
  • Enzyme activity (U / ml) ⁇ A / ⁇ X (V + n) X1 / nX1 / X ⁇ A: Absorbance difference per minute
  • the compound according to the present invention can be used in an enzymatic assay using NAD, NADP, NADH or NADPH and any reagent used therefor including NAD, NADP, NADH or 'NADPH. Alternatively, it can be used in place of NADPH.
  • any method utilizing a reaction represented by the following formula 10 may be used.
  • Y is the same as described above.
  • alcohol dehydrogenase, malate dehydrogenase, and lactic acid dehydration are usually performed in the field of clinical testing, biochemistry, and food.
  • the enzymatic measurement method of the present invention is based on the enzymatic measurement method using NAD, NADP, NADH or NADPH as described above, except that the compound according to the present invention is used instead of NAD, NADP, NADH or NADPH.
  • the other reagents to be used may be appropriately selected according to the enzymatic measurement method.
  • an enzymatic assay using NAD, NADP, NADH or NADPH In the reagent used in the above, the compound according to the present invention or a reduced form thereof may be used in place of the conventionally used NAD, NADP, NADH or NADPH, and the measurement may be performed according to the enzymatic measurement method. .
  • the components to be measured in the present invention are as described above, and the samples to be measured include those containing the components to be measured as described above, such as the clinical test field, the biochemistry field, the food field, etc.
  • various body fluids such as serum, plasma, cerebrospinal fluid, and saliva
  • excretions such as urine and feces (diluted products)
  • lymphocytes blood cells
  • various cells and extracts of various biological tissues
  • biologically derived samples such as plant tissues, plant-derived samples such as cell extracts, and microorganism-derived samples such as microbial cultures and extracts, and food-derived samples such as foods and extracts thereof.
  • the reagent for the enzymatic measurement of the present invention is used in place of the reagent for the enzymatic measurement method using NAD, NADP, NADH or NADPH as described above in measuring the component to be measured in the sample to be measured as described above. It is used. .
  • the reagent of the present invention has the general formula [1], [1,], [3], [3 '], [2-1], [2-2], [2-3] and [2-4] It contains the compound shown in the table, has long-term storage (preservation) stability, which has been difficult in the past, at least 12 months or more at 10 ° C storage, usually 13 months or more, 30 ° It can be used without deterioration for more than 2.5 months when stored in C. '
  • the storage stability as described above refers more specifically to the activity of the compound according to the present invention as a coenzyme when stored at 10 ° C for 2 months. % Or more, preferably 90% or more, usually 85% or more when stored at 13 ° C for 13 months, usually 90% or more, usually 50% or more when stored at 30 ° C for 2.5 months, preferably 60% or more , More preferably 65% or more, for example
  • it means that it can be used as a coenzyme used for various enzymological measurements in combination with various dehydrogenases.
  • % Or more more preferably 95% or more, and usually 65% or more, preferably 70% or more, more preferably 75% or more when stored at 30 ° C for 2.5 months.
  • % Or more more preferably 95% or more, and usually 65% or more, preferably 70% or more, more preferably 75% or more when stored at 30 ° C for 2.5 months.
  • dehydrogenases it also means that it can be used as a coenzyme for various enzymatic measurements.
  • the reagents of the present invention include, for example, those comprising an aqueous solvent solution in which these compounds are contained in an aqueous solvent, those in which these compounds are impregnated in an absorbent carrier and dried, or those comprising these compounds. It is composed of various forms such as a lyophilized product, and is preferably composed of an aqueous solvent solution.
  • the reagent of the present invention has storage stability as described above in any of these forms, and in particular, the stability in an aqueous solvent solution is dramatically increased as compared with the conventional reagent. . That is, when an aqueous solvent solution containing the coenzyme derivative according to the present invention is prepared as a coenzyme solution for an enzymatic assay using various dehydrogenases, the coenzyme activity in the coenzyme derivative solution is as follows. It shows storage stability as described above.
  • the compound represented by the general formula [1] includes a compound represented by the general formula [1]: There are, and X a in n a is 0 - in COR 12 a group [wherein, R 12 a is - R 5 a -NHR 6 a or -N (R 6 a) (R 7 a) represents a (wherein , R 5 a is a hydrocarbon residue, represents a R 6 a and R 7 a Waso respectively independently a hydrogen atom, which may have a substituent hydrocarbon residue or an amino group.) .
  • n a is 0, X a is - COOR (wherein, R u a is a hydrogen atom or a hydrocarbon residue.) u a S or - in COR 12 a group [wherein, R 12 a is - R 5 a -NHR 6 a or - N (R 6 a) (R 7 a) represents a (wherein, R 5 a is a hydrocarbon residue, each R 6 a and R independently represent a hydrogen atom, a hydrocarbon residue which may have a substituent Or an amino group.).
  • (R a ) n a X a is a methoxycarbonyl group (—COOCH 3 ), an ethoxycarbonyl group (—COOC 2 H 5 ) or Ethyl carbonyl group. (—COC 2 H 5 ) A reduced form thereof is preferred.
  • a group Ru indicated by X e -COOI ⁇ is preferably a lower alkyl group.
  • (R e ) n c X e is a methoxycarbonyl group (-COOCH 3 ) or an ethoxycarponyl group Those having a (—COOC 2 H 5 ) group are particularly preferred, and those having a methoxycarbonyl group are more preferred.
  • the reagent of the present invention has a general formula [1], [1 '], [3], [3'], [2-1], [2-2], [2-3] and [2-4] Or NAD, NADP, NADH or as described above, except that these compounds are used.
  • Other reagents commonly used in enzymatic assays using NADPH may be used in the normally used concentration range.
  • the amount of the compound of the present invention or its reduced form used in the reagent (method) of the present invention varies depending on the kind of the compound or reduced form used, the principle of the measuring method to be used, the kind, etc. Therefore, it cannot be said unconditionally, but the final concentration at the time of carrying out the target oxidation-reduction reaction is usually 0.1 mM to 50 mM, preferably 0.1 mM to 20 mM, and more preferably O. lmM to! OmM.
  • the aqueous solvent used in the present invention is not particularly limited as long as it is generally used in this field.
  • N- [tris (hydroxymethyl) methyl] glycine Tricine
  • N, N-bis ( 2-hydroxysethyl) glycine N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid
  • TAPS N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid
  • AMPSO 3- [(1,1-dimethyl-2-hydroxyhydryl) amino-2-hydroxypropanesulfonic acid]
  • AMPSO N-cyclohexyl-2-aminoethanesulfonic acid
  • CAPSO N-cyclohexyl-2-hydroxy-13-aminopropanesulfonic acid
  • AMP 2-amino-2-methyl-1-propanol
  • PES piperazine-1,4-bis (2-ethanesulfonic acid
  • PPES includes buffering agents such as acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl
  • the concentration of the buffer used is not particularly limited as long as it is a concentration generally used in this field. It is not limited, but is usually 1 mM to 1000 ⁇ , preferably 10 mM to 500 mM.
  • the absorbent carrier used in the present invention is not particularly limited as long as it is generally used in this field, and examples thereof include a porous sheet or membrane, a foam (foam), a woven fabric, Non-woven fabrics, knits and the like can be mentioned. Examples of these materials include natural, semi-synthetic, and synthetic materials.
  • These materials can be obtained by molding these materials by a conventional method such as papermaking, film forming, foam molding, knitting, or weaving.
  • these materials include cotton, hemp, silk, cellulose, rock wool, animal hair, nitrocellulose, cellulose acetate, glass (fiber), carbon (fiber), boron (fiber), polyamide, and aramide.
  • the method of impregnating and drying the compound of the present invention or a reduced form thereof in an absorbent carrier as described above may be any method generally used in this field, and is not particularly limited.
  • Examples of the solution containing the compound of the present invention or a reduced form thereof include the same as the aqueous solvent used in the present invention described above. Other reagents used in this field may be appropriately contained.
  • the amount of the compound of the present invention or its reduced form to be impregnated into the absorbent carrier is determined by the type of the compound or reduced form to be used, the principle of the measurement method to be used, the kind, etc. Although it cannot be said unconditionally because it differs depending on the difference in the amount of the compound, the amount of impregnation per unit area (m 2 ) of the portion of the absorbent carrier impregnated with the compound of the present invention or its reduced form is usually 0.05 to 25 mM, preferably 0.05 to 25 mM. 55 mM, more preferably 0.05-2.5 mM.
  • the reagent (method) of the present invention as described above is a compound of the present invention (general formulas [1], [1 '], [3], [3'], [2-1], Compounds represented by [2-2], [2-3] and [2-4]) and dehydrogenases are generally and generally used.
  • the dehydrogenase used in the reagent (method) of the present invention is not particularly limited as long as it can use the compound according to the present invention as a substrate.
  • the reaction ratio with respect to the compound (coenzyme derivative) of the present invention serving as a substrate is 10% or more, more preferably 20% or more, even more preferably 40% or more, or 5 OmM T ris-HC 1 (pH 7.5) 37 ° in buffer (: 50% or more, preferably 60% or more, more preferably 70% or more after storage for 10 days) At least 10%, more preferably at least 20%, even more preferably at least 40%, and more preferably at least 50%, with respect to the compound of the present invention (coenzyme derivative) as a substrate. 37 ° C. in mM Tris-HC1 (pH 7.5) buffer (50% or more, more preferably 60% or more, more preferably 60% or more after storage for 10 days) Or more than 70%.
  • alcohol dehydrogenase malate dehydrogenase, lactate dehydrogenase, isoquenate dehydrogenase, glycerol dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde aldehyde phosphate dehydrogenase Hydrogenase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphodalconic dehydrogenase glutamic dehydrogenase, formate dehydrogenase Hydrogenase, xanthine dehydrogenase, cholesterol dehydrogenase, oral isine dehydrogenase, pyruvate dehydrogenase, sarcosine dehydrogenase, D-3-hydroxybutylate dehydrogenase, 3 ⁇ -hydroxy Sterol dehydrogenase,) 3-hydroxyamyl dehydrogenase, hydroxybutyl dehydrogena
  • the reaction ratio with respect to the dehydrogenase according to the present invention is not less than 40%. Yes, and it is preferable that the remaining activity after storage for 10 days at 37 ° C. in a buffer solution of 50 1111 ⁇ is 37% or more at 70 ° C. is 70% or more.
  • malate dehydrogenase or glucose 16-phosphate dehydrogenase having the above-mentioned properties is preferred, and preferred embodiments, origins, methods of obtaining them, and the like are as described above.
  • the coenzyme used in combination with the dehydrogenase may be a compound other than the compound according to the present invention or a reduced form thereof. Derivatives thereof can also be used. That is, the dehydrogenase according to the present invention can be used in place of a conventional dehydrogenase in an enzymatic assay using the dehydrogenase and any reagent used therein, including the dehydrogenase. However, except that the dehydrogenase according to the present invention is used in place of the conventional dehydrogenase, it may be carried out according to a known enzymatic measurement method using a dehydrogenase. Other reagents may be appropriately selected according to the enzymatic measurement method.
  • the amount of the dehydrogenase used differs depending on the type of the dehydrogenase used, the principle of the measurement method used, the type, etc., and cannot be determined unconditionally. but usually 0.1 to a final concentration of: L0 6 IUZ ml, preferably 0.! 1010 5 IUZml, more preferably 0.1 to 10 4 IU / ml.
  • the combination of the compound of the present invention and a dehydrogenase is not particularly limited, but for example, the following combinations are preferable.
  • Y a is phosphoric acid residue in combination coenzyme derivative coenzyme derivative dehydrogenase formula which may be a substrate [1],
  • Glucose-6-phosphate represents a lower alkyl group.
  • Or-CH dehydrogenase NOH group
  • Y a is a hydroxyl group
  • Ya is a phosphate residue, malate dehydrogenase ⁇ ? ⁇ 0 and X or -COR 12 d group or -V is
  • Y a is phosphoric acid residue in the general formula [1],
  • Formula ⁇ 1] in Y a is be phosphoric acid residues
  • n a is 0 and X a is -COR / group or-
  • Moto ⁇ coenzyme derivative is capable dehydrogenase general formula [1] Y a is phosphoric acid residue,
  • Y a is a hydroxyl group
  • Formula ant in [1] Y a is a hydroxyl group, malate dehydrogenase
  • Xa is an ethylcarbonyl group or a methyl group
  • Y a is a hydroxyl group
  • Xa is an ethylcarbonyl group or methoxy lactate dehydrogenase
  • Y a is a hydroxyl group in the general formula [1],
  • 1, 12, and 17 are used, for example, for measuring glutamate oxalate acetic acid transaminase in a sample to be measured, and 2, 13, and 18 are used for measurement.
  • it is used for measuring glutamate pyruvate transaminase in a sample to be measured
  • 3, 10, and 15 are used, for example, for measuring creatine kinase in a sample to be measured.
  • 3, 4, 10, and 15 are used, for example, for measuring Darcos in a sample to be measured, and 5, 14, and 19 are used, for example, for measuring urea nitrogen in a sample to be measured.
  • 6, 11, and 16 are used, for example, for measuring inorganic phosphorus in a sample to be measured.
  • 7 is used, for example, for measuring cholesterol in a sample to be measured
  • 8 is, for example, used for measuring bile acid in a sample to be measured
  • 9 is, for example, used for measuring bile acid in a sample to be measured.
  • Used for measuring sorbitol in samples is there.
  • the other reagents used in the present invention as described above cannot be described unconditionally because they differ depending on the principle and type of the measurement method to be used. Examples include enzyme substrates, color formers, nucleotides such as ATP, and the like, which are generally used at concentrations used in this field.
  • a chelating agent such as ethylenediaminetetraacetic acid (EDTA), a preservative such as azide, a surfactant such as triton X-100, a stabilizer, a metal salt, an enzyme, etc.
  • EDTA ethylenediaminetetraacetic acid
  • An activator, an effect avoiding agent for avoiding the influence of various coexisting substances present in the sample to be measured, and the like can be appropriately added at a working concentration usually used in this field.
  • the reagent of the present invention contains all of the compound of the present invention or a reduced form thereof, and / or the dehydrogenase of the present invention, and the other reagents as described above, and preferably contains an aqueous medium containing all of them.
  • It may be a so-called one-reagent system consisting of a solution, or a plurality of those containing these components appropriately divided, preferably a multi-reagent system such as a so-called two-reagent system consisting of an aqueous medium solution. .
  • the reagent of the present invention includes the compound of the present invention and, if necessary, an activator such as a chelating agent, a preservative, a surfactant, a stabilizer, a metal salt, an enzyme, etc. And a coenzyme or dehydrogenase standard (standardized from an aqueous medium solution), or a calibrator, preferably containing an effect avoiding agent for avoiding the effects of various coexisting substances present in the water.
  • an activator such as a chelating agent, a preservative, a surfactant, a stabilizer, a metal salt, an enzyme, etc.
  • a coenzyme or dehydrogenase standard standardized from an aqueous medium solution
  • a calibrator preferably containing an effect avoiding agent for avoiding the effects of various coexisting substances present in the water.
  • glutamic acid oxalate acetate transaminase glutamine
  • glutamine A specific description will be given using a reagent for measuring acid pyruvate transaminase, creatine kinase, glucose, urea nitrogen, inorganic phosphorus, cholesterol, bile acid, and sorbitol as an example.
  • Reagent for measuring glutamate oxalate acetate transaminase The reduced form of the compound according to the present invention, or Z and dehydrogenase, may be used, for example, for the determination of glutamate oxalate acetate transaminase using the principle represented by the following reaction formula. It can be applied to reagents (methods). Glutamate oxalate acetate transaminase
  • Examples of the reagents for measuring acetic acid for acetic acid + NADH + ⁇ + malic acid + NAD glutamate oxaloacetate transaminase include, for example, L-aspartic acid, Q! -Ketoglutaric acid, dehydrogenase (apple Acid dehydrogenases), compounds prepared according to the present invention (NADH or NADPH derivatives) and the like as the main components are typical examples.
  • a multi-reagent system may be used.
  • the above-mentioned components further include the lactate dehydrogenase according to the present invention for the purpose of consuming endogenous pyruvic acid and not affecting the measurement system. preferable.
  • the dehydrogenase of the present invention (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase) and the compound of the present invention It is preferable to use a combination of the compounds of the present invention. Particularly, it is preferable to use a combination of the dehydrogenase of the present invention (malate dehydrogenase and lactate dehydrogenase) and the compound of the present invention at the same time.
  • This dehydrogenase (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase) may be used in combination with a conventional coenzyme or a derivative thereof, or a conventional dehydrogenase and the present invention may be used. May be used in combination with the compound (NADH or NADPH derivative).
  • an activating agent such as pyridoxal phosphate, for example, a preservative such as sodium azide
  • a preservative such as sodium azide
  • Reagents other than the enzyme are included in the reagent for measuring glutamic acid oxalate acetic acid transaminase so that the concentration in the reaction solution at the time of the measurement of dalminic acid oxaloacetate transaminase is within the concentration range used in the measurement method known per se. It may be added, and its origin is not particularly limited.
  • the pH of the reagent may be appropriately selected from a range used in a measurement method known per se, and is not particularly limited.
  • the reagent for measuring glutamate oxalate acetic acid transaminase as described above includes L-aspartic acid, haeketoglutaric acid, the dehydrogenase according to the present invention (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase).
  • the dehydrogenase according to the present invention malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase.
  • a compound (NADH or NADPH derivative) according to the present invention are preferably used in a two-reagent system in which each of them is contained in at least one of the first reagent and the second reagent.
  • a first reagent comprising an acid, a dehydrogenase according to the present invention (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase), a compound according to the present invention (NADH or NADPH derivative), and the like; Particularly preferred is a combination of a second reagent containing ⁇ -ketoglutaric acid or the like, and a combination of the second reagent and L-aspartic acid further added. Arbitrariness.
  • the dehydrogenase according to the present invention malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase
  • the compound according to the present invention are simultaneously used in combination
  • Enzyme or malate dehydrogenase and lactate dehydrogenase) and a conventional capture enzyme or a derivative thereof, or a conventional dehydrogenase and a compound according to the present invention (NADH or NADPH derivative) may be used in combination.
  • the reduced form of the compound according to the present invention, or Z and dehydrogenase are, for example, reagents for measuring glutamate pyruvate transaminase using the principle shown by the following reaction formula ( Method). Glutamate pyruvate
  • Examples of the reagents for measuring pyrylevic acid + NADH + ⁇ lactic acid + NAD glutamate pyruvate transaminase include, for example, L-alanine, ⁇ -ketoglutarate, the dehydrogenase of the present invention (lactate dehydrogenase), and the present invention.
  • a typical example is a compound prepared using the compound (NADH or NADPH derivative) according to the present invention as a main component, and may be a one-reagent system or a multi-reagent system such as a two-reagent system.
  • the dehydrogenase (lactate dehydrogenase) of the present invention is preferable to use the dehydrogenase (lactate dehydrogenase) of the present invention and the compound of the present invention in combination at the same time, but the dehydrogenase (lactate dehydrogenase) of the present invention is preferably used in combination.
  • a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase may be used in combination with the compound (NADH or NADPH derivative) of the present invention.
  • an activator such as pyridoxal phosphate
  • a preservative such as sodium azide
  • N, N-bis (2-hydroxyethyl) glycine N-tris (hydroxymethyl) methyl-3-aminoaminopropanesulfonic acid (TAPS), 3 — [(1,1-Dimethyl-12-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO)
  • N-cyclohexyl N-cyclohexyl
  • the reduced form of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention can be used by measuring the concentration in the reaction solution at the time of measuring glutamate pyruvate transaminase by a method known per se. It may be added to the reagent for measuring glutamate pyruvate transaminase so as to have a concentration range within a certain range, and the origin and the like are not particularly limited.
  • the pH of the reagent may be appropriately selected from a range used in a method known per se, and is not particularly limited.
  • the reagent for measuring glutamate-pyruvate transaminase as described above includes L-alanine, ketoglutarate, the dehydrogenase according to the present invention (lactate dehydrogenase), and the compound according to the present invention (NADH or NADPH derivative).
  • At least one of the first and second reagents It is preferable to use a two-reagent system in such a form, and in particular, comprises L-alanine, the dehydrogenase according to the present invention (lactate dehydrogenase), the compound according to the present invention (NADH or NADPH derivative) and the like.
  • Particularly preferred is a combination of the first reagent and a second reagent containing, for example, sieve glutaric acid. Further, a combination of the second reagent and L-alanine further added thereto is particularly preferable.
  • the dehydrogenase (lactate dehydrogenase) according to the present invention and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention (lactate dehydrogenase) is preferably used in combination.
  • a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NADH or NADPH derivative) according to the present invention may be used in combination.
  • the compound and / or dehydrogenase according to the present invention can be applied, for example, to a creatine kinase measuring reagent (method) using the principle shown by the following reaction formula. Creatine kinase
  • 6-Phospho-D-Darconolactone + NADPH + H + Specific examples of the reagent for measuring creatine kinase include, for example, creatine kinase activators (eg, thiol compounds such as thioglycerol, 2-mercaptoethanol, 2-mercaptoethanesulfonic acid, and N-acetylcysteine) , Glucose, hexokinase or dal :?
  • creatine kinase activators eg, thiol compounds such as thioglycerol, 2-mercaptoethanol, 2-mercaptoethanesulfonic acid, and N-acetylcysteine
  • Glucose hexokinase or dal :?
  • Those prepared by using as the main components are listed as typical examples, and may be a single-reagent system or a multi-reagent system such as a two-reagent system.
  • the dehydrogenase according to the present invention and the compound according to the present invention are preferably used in combination at the same time, but the dehydrogenase according to the present invention and a conventional coenzyme or a derivative thereof are used in combination. It may be used, or a conventional glucose-16-phosphate dehydrogenase may be used in combination with the compound (NAD or NADP derivative) of the present invention.
  • the above-described reagents for creatine kinase measurement include, for example, EDTA and diamine for stabilizing thiol compounds and preventing coloring of the reagents.
  • Chelating agents such as nocyclohexanetetraacetic acid monohydrate (CyDTA), diaminopropanoltetraacetic acid (DPTA- ⁇ H), ethylenediaminediacetic acid (EDDA;), and hydroxyxethyliminodiacetic acid (HIDA)
  • CBDTA nocyclohexanetetraacetic acid monohydrate
  • DPTA- ⁇ H diaminopropanoltetraacetic acid
  • EDDA ethylenediaminediacetic acid
  • HIDA hydroxyxethyliminodiacetic acid
  • it is desirable to contain salts thereof alkali metal salts, ammonium salts, etc.
  • preservatives such as sodium azide, sodium chloride, etc.
  • preservatives such as sodium azide, sodium chloride, etc.
  • polyoxyethylene cetyl ether, polyoxeti'lenoleyl ether, polyoxyethylene lauryl ether eg, Emalgen 120: manufactured by Kao Corporation
  • Polyoxyethylene alkylphenyl ether eg, polyoxyethylene octyl phenyl ether (eg, triton X—10 0: manufactured by Rom & Haas Co., Ltd.
  • nonionic surfactants such as polyoxyethylene sodium phenyl ether, polyoxyethylene nonyl phenyl ether, and polyethylene glycol monolaurate.
  • surfactants such as imidazo Ichiru buffer, bis (2 hydroxy Echiru) I Mino Tris (hydroxymethyl) methane (bis-Tris) buffer, etc. buffering agent, for example AMP, diadenosine tetraphosphate (AP 4 a ), AP 5 a, Jiade Noshin sixth diadenosine polyphosphate such as phosphate (AP 6 a), gives a positive error in the creatine kinase activity present in the body fluid specimen in adenyl Nirusanki kinase (AK) activity
  • reagents that are usually used in CK activity assays, such as AK inhibitors to avoid the effects of, can be included in the concentration range normally used in this field. Not a horse.
  • the compound according to the present invention or its reduced form, and the reagents other than the dehydrogenase according to the present invention can be used by measuring the concentration in the reaction solution at the time of creatine kinase measurement by a method known per se. It may be added to the reagent for measuring creatine kinase so as to have a concentration range within the above range, and the origin and the like are not particularly limited.
  • the reagents for measuring creatine kinase as described above include thiol compounds, ADP, hexokinase (or dalcokinase), the dehydrogenase according to the present invention (glucose-6-phosphate dehydrogenase), and the present invention.
  • the dehydrogenase according to the present invention and the compound according to the present invention are preferably used in combination at the same time, but the dehydrogenase according to the present invention and the conventional coenzyme or its derivative are used.
  • Used in combination or A conventional glucose 1.6-phosphate dehydrogenase may be used in combination with the compound of the present invention (NAD or NADP derivative).
  • the pH of a creatine phosphate-containing reagent is adjusted to the alkaline side, for example, usually 7.5 to: LO, Preferably, it is set to 8 to 9.5.
  • the first reagent and the second reagent that is, the buffer for the first reagent and the second reagent, so that the pH at the time of measuring the CK activity is the optimal pH of CK, for example, the range of pH 6.0 to 7.2.
  • Buffers that can be used for creatine phosphate-containing reagents for such purposes include, for example, Bicine, N- [tris (hydrogishimethyl) methyl] glycine, and the like.
  • concentration of the buffer used may be appropriately selected from the concentration range usually used in this field.
  • the compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring glucose using a principle represented by the following reaction formula.
  • reagent for measuring 6-phosphodalconolactone + NAD (P) H + H + glucose specifically, for example, hexokinase or glucokinase, adenosine 5'-triphosphate, magnesium ion, dehydration according to the present invention, And the compounds according to the present invention (NAD or NADP derivatives), etc., were prepared as the main components. It may be a system or a multi-reagent system such as a two-reagent system.
  • the dehydrogenase (glucose 6-phosphate dehydrogenase) according to the present invention and the compound according to the present invention simultaneously, but the dehydrogenase according to the present invention is used in combination.
  • Glucose-16-phosphate dehydrogenase and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase may be combined with the compound (NAD or NADP derivative) of the present invention. You can use it.
  • a preservative such as sodium azide for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine N, N-bis (2-hydroxy Glycine, N-tris (hydroxymethyl) methyl-13-aminopropanesulfonic acid (TAPS), 3-[(1,1-dimethyl-2-hydroxy Tyl) amino-2-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-3-aminoaminopropanesulfonic acid (CAPSO) ), 2-amino-2-methyl-11-propanol (AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) ( Good buffering agents such as PIPES), for example, buffer
  • the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are adjusted so that the concentration in the reaction solution at the time of glucose measurement falls within the concentration range used in a measurement method known per se. What is necessary is just to add to a glucose measuring reagent, and also the origin etc. are not specifically limited.
  • the pH of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited.
  • the reagent for measuring glucose as described above includes hexokinase or glycokinase, adenosine 5'-triphosphate, hexokinase or dalcokinase, magnesium ion, the dehydrogenase according to the present invention (Dulkose-16-phosphate dehydrogenation) It is preferable to use a two-reagent system in which each of the enzyme (enzyme) and the compound (NAD or NADP derivative) of the present invention is contained in at least one of the first reagent and the second reagent.
  • a first reagent comprising the dehydrogenase (glucose-6-phosphate dehydrogenase) according to the present invention, the compound (NAD or NADP derivative) according to the present invention, etc., and adenosine 5'-triphosphate and the like.
  • a second reagent comprising It is preferable to use a two-reagent system in which magnesium ions are contained in at least one of the first reagent and the second reagent.
  • the dehydrogenase (glucose-6-li, acid dehydrogenase) according to the present invention and the compound according to the present invention at the same time.
  • a combination of an enzyme (glucose-6-phosphate dehydrogenase) and a conventional coenzyme or a derivative thereof, or a combination of a conventional dehydrogenase and a compound of the present invention (NAD or NADP derivative) May be used.
  • the compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring glucose using a principle represented by the following reaction formula.
  • glucose measuring reagent examples include, specifically, the dehydrogenase (glucose dehydrogenase) according to the present invention.
  • Typical examples thereof include compounds prepared using the compound (NAD or NADP derivative) according to the present invention as a main component, and may be a multi-reagent system such as a one-reagent system or a two-reagent system. .
  • the dehydrogenase according to the present invention (glucose dehydrogenase) and the compound according to the present invention are preferably used in combination at the same time, but the dehydrogenase according to the present invention (glucose dehydrogenase) is preferably used.
  • the dehydrogenase according to the present invention (glucose dehydrogenase) is preferably used.
  • the compound (NAD or NADP derivative) according to the present invention may be used in combination.
  • a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis (2- (Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS;), 3-[(1,1-dimethyl-2-hydroxyethyl) amino-1-hydroxypropanesulfonic acid] ( AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl_2-hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-1-methyl-1-propanol (CAPSO) Good buffering agents such as AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), and piperazine-1,4-bis (2-ethanesulfonic acid)
  • Tricine N- [tris (hydroxymethyl)
  • the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are adjusted so that the concentration in the reaction solution at the time of glucose measurement falls within the concentration range used in a measurement method known per se. What is necessary is just to add to a glucose measuring reagent, and also the origin etc. are not specifically limited.
  • the pH of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited.
  • the reagent for measuring glucose as described above includes a compound (NAD or NADP derivative) according to the present invention and a dehydrogenase (glucose dehydration) according to the present invention.
  • a compound (NAD or NADP derivative) according to the present invention is preferably used in at least one of the first reagent, the drug and the second reagent in a two-reagent system.
  • the compound (NAD or NADP derivative) according to the present invention is preferably used.
  • the dehydrogenase (glucose dehydrogenase) according to the present invention and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase (glucose dehydrogenase) according to the present invention is preferably used simultaneously.
  • An enzyme) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
  • the reduced form and / or dehydrogenase of the compound according to the present invention can be applied to, for example, a reagent (method) for measuring urea nitrogen using the principle shown by the following reaction formula. ⁇ lease
  • reagent for measuring urea nitrogen include, for example, urease, polyketoglutaric acid, the dehydrogenase of the present invention (glutamic acid dehydrogenase), and the compound of the present invention (NADH or NADPH derivative).
  • Main ingredient The one prepared by using as a typical one may be a one-reagent system or a multi-reagent system such as a two-reagent system.
  • the dehydrogenase according to the present invention (glutamic acid dehydrogenase) and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention (glutamic acid dehydrogenase) is preferably used.
  • a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound according to the present invention (NADH or NADPH derivative) may be used in combination.
  • a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis ( 2-Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), 3-[(1,1—dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO ), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP) Good buffering agents such as N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES),
  • Tricine N- [tris (hydroxymethyl) methyl]
  • the reduced form of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention have a concentration in the reaction solution at the time of urea nitrogen measurement which is used in a measurement method known per se. What is necessary is just to add to the reagent for urea nitrogen measurement so that it may become the range, and also the origin etc. are not specifically limited.
  • the pH of the reagent may be appropriately selected from a range used in a method known per se, and is not particularly limited.
  • the reagent for measuring urea nitrogen as described above includes at least one of urease, ⁇ -ketoglutaric acid, the compound of the present invention (NADH or NADPH derivative), and the dehydrogenase of the present invention (glutamic acid dehydrogenase). It is preferable to use a two-reagent system in such a form as to be contained in one of the first reagent and the second reagent.
  • the first reagent comprising the compound (NADH or NADPH derivative) of the present invention and the like are preferably used.
  • Particularly preferred is a combination with a second reagent containing urea, perase, ⁇ -ketoglutarate, the dehydrogenase (glutamate dehydrogenase) of the present invention, and the like.
  • the dehydrogenase (glutamic acid dehydrogenase) of the present invention and the compound of the present invention are preferably used simultaneously in combination, but the dehydrogenase (glutamic acid dehydration) of the present invention is preferably used in combination.
  • the enzyme may be used in combination with a conventional coenzyme or a derivative thereof, or the conventional dehydrogenase may be used in combination with the compound of the present invention (NADH or NADPH derivative).
  • NADH or NADPH derivative the compound of the present invention
  • the reduced form of the compound according to the present invention, or Z and dehydrogenase is also applied to a reagent (method) for measuring urea nitrogen, which combines a so-called ammonia elimination method using, for example, the principle shown by the following reaction formula. can do.
  • the reagents for measuring urea nitrogen are isoquenate dehydrogenase, isoquenate, —ketoglutarate, magnesium ion, and the dehydrogenase according to the present invention (glutamate dehydrogenase).
  • An enzyme a combination of a first reagent containing a compound (NADH or NADPH derivative) according to the present invention and a second reagent containing perase and the like.
  • the dehydrogenase (glutamic acid dehydrogenase) of the present invention and the compound of the present invention are preferably used simultaneously in combination, but the dehydrogenase (glutamic acid dehydration) of the present invention is preferably used in combination.
  • the enzyme may be used in combination with a conventional coenzyme or a derivative thereof, or the conventional dehydrogenase may be used in combination with the compound of the present invention (NADH or NADPH derivative).
  • a preservative such as sodium azide for example, N- [tris (hydroxymethyl) method Tyl] glycine (Tricine), N, N-bis (2-hydroxyethyl) glycine, N-tris (hydroxymethyl) 'methyl-3-aminopropanesulfonic acid (TAPS), 3-[(1,1-dimethyl- 2-Hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-2-aminoenesulfonic acid (CHES;), N-cyclohexyl_2-hydroxy-13-aminopropane Sulfonic acid (CAPSO), 2-amino-2-methyl-11-propanol (AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS;), piperazine-1, 4-pis (2- Good buffers such as ethanesulfonic acid (Tricine), N, N-bis (2-hydroxyethyl) gly
  • the reduced form of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention have a concentration in the reaction solution at the time of urea nitrogen measurement which is used in a measurement method known per se. What is necessary is just to add to the reagent for urea nitrogen measurement so that it may become the range, and also the origin etc. are not specifically limited.
  • the pH of the reagent may be appropriately selected from a range used in a method known per se, and is not particularly limited.
  • the compound or the compound and the dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring inorganic phosphorus using a principle represented by the following reaction formula.
  • Pudding nucleoti Pudding nucleoti
  • hypoxanthine + NAD uric acid + 2 NADH inorganic phosphorus measurement reagents include, for example, inosine, purine nucleotide phosphorylase, the dehydrogenase according to the present invention (xanthine dehydrogenase), the compound according to the present invention (NAD or Those prepared using NADP induction) or the like as the main component are listed as typical examples, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
  • the dehydrogenase according to the present invention (xanthine dehydrogenase)
  • the compound of the present invention are preferably used in combination, but the dehydrogenase of the present invention (xanthine dehydrogenase) may be used in combination with a conventional coenzyme or its derivative, or May be used in combination with the compound (NAD or NADP derivative) of the present invention.
  • a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis ( 2-hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropa Sulfonic acid (TAPS), 3-[(1,1-dimethyl-2-hydroxyethyl) amino-1-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-2-aminoaminosulfonic acid (CHES) N-cyclohexyl-2-hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-12-methyl-1-propanol (AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS) ), Good buffers such as piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES)
  • PPES piperazine-1,4-bis (2-ethanesulfonic
  • the concentration of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention in the reaction solution at the time of measuring the inorganic phosphorus falls within the concentration range used by a measurement method known per se.
  • it may be added to the reagent for measuring inorganic phosphorus, and its origin is not particularly limited.
  • the pH of the reagent may also be appropriately selected from a range used in a measurement method known per se, and is not particularly limited.
  • the reagent for measuring inorganic phosphorus as described above includes at least purine nucleotide phosphorylase, inosine, the dehydrogenase according to the present invention (xanthine dehydrogenase) and the compound according to the present invention (NAD or NADP derivative) at least. It is preferably used in a two-reagent system in a form contained in either the first reagent or the second reagent.
  • purine nucleotide phosphorylase, the dehydrogenase according to the present invention (xanthine dehydrogenase) and the like Particularly preferred is a combination of the first reagent comprising the compound and the second reagent comprising inosine, the compound of the present invention (NAD or NADP derivative) and the like.
  • the dehydrogenase (xanthine dehydrogenase) according to the present invention and the compound according to the present invention are preferably used in combination at the same time.
  • An enzyme) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
  • the compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring inorganic phosphorus using a principle represented by the following reaction formula. sucrose
  • a reagent for measuring inorganic phosphorus include, for example, sucrose, sucrose phosphorylase, glucose-1,6-bisphosphate, and the present invention.
  • sugar-6-phosphate dehydrogenase the dehydrogenase according to the present invention
  • NAD or NADP derivative the compound according to the present invention
  • these are listed as typical examples, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
  • dehydrogenase glucose-6-phosphate dehydrogenase
  • An enzyme glucose-6-phosphate dehydrogenase
  • NAD NADP derivative
  • a preservative such as sodium azide, for example, N- [tris (vidroxymethyl) methyl] glycine (Tricine), N, N-bis (2 —Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl —3-aminopropanesulfonic acid (TAPS), 3-[(1,1—dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] ( AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-3-hydroxyaminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP) Good buffering agents such as N-cyclohexyl 3-aminopropanesulfonic acid (CAPS;), piperazine-1,4-bis (2-e
  • the compound other than the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are used in a method known per se for measuring the concentration in the reaction solution at the time of measuring inorganic phosphorus. What is necessary is just to add to the inorganic phosphorus measurement reagent so that it may become the concentration range used, and also the origin etc. are not specifically limited.
  • the pH of the reagent may also be appropriately selected from a range used in a measurement method known per se, and is not particularly limited.
  • the reagents for measuring inorganic phosphorus as described above include glucose-1,6-bisphosphate, sucrose, phosphodalcomtase, sucrose phosphorylase, the dehydrogenase according to the present invention (glucose-6-phosphate dehydrogenase) )
  • the compound (NAD or NADP derivative) according to the present invention are preferably used in a two-reagent system in a form such that each is contained in at least one of the first reagent and the second reagent.
  • First reagent comprising 1,6-bisphosphate, sucrose, phosphodal-comtase, dehydrogenase according to the present invention (glucose-6-phosphate dehydrogenase), compound according to the present invention (NAD or NADP derivative), etc. And a second reagent containing sucrose phosphorylase and the like, and further preferably a sucrose added to the second reagent.
  • the dehydrogenase (glucose-6-phosphate dehydrogenase) according to the present invention and the compound according to the present invention at the same time.
  • the enzyme (glucose 6-phosphate dehydrogenase) may be used in combination with a conventional coenzyme or its derivative, or the conventional dehydrogenase may be used in combination with the compound (NAD or NADP derivative) of the present invention. They may be used in combination.
  • the compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring cholesterol using a principle represented by the following reaction formula.
  • NADH + H + + cholester-4-ene-3-year-old cholesterol measuring reagent specifically includes, for example, cholesterol esterase, the dehydrogenase according to the present invention (cholesterol dehydrogenase), and the present invention.
  • Typical examples include compounds prepared using the compound (NAD or NADP derivative) according to the above as a main component, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
  • the dehydrogenase cholesterol dehydrogenase
  • the compound of the present invention it is preferable to use the dehydrogenase (cholesterol dehydrogenase) of the present invention and the compound of the present invention in combination at the same time.
  • An enzyme) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
  • the reagent for measuring cholesterol as described above includes, for example, polio.
  • Emulgen 120 manufactured by Kao Corporation
  • polyoxyethylene alkylphenyl ether for example, polyoxyethylene octylphenyl ether (for example, Triton X-100: ROHM ' And Haas Co.), polyoxyethylene isooctyl phenyl ether, polyoxyethylene nonylphenyl ether, etc.
  • Nonionic surfactants such as ethylene glycol monolaurate, and hydrazine, for example, are preferably included for the purpose of expanding the calibration range.
  • cationic surfactants such as stearyltrimethylammonium chloride and alkylbenzyldimethyl
  • anionic surfactants such as colic acid, dexcholate, and polyoxyethylene alkylphenol ether sodium sulfate.
  • Surfactants such as amphoteric surfactants such as stearyl betaine and 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolidum betaine; preservatives such as sodium azide
  • Tricine N- [tris (hydroxymethyl) methyl] glycine
  • TAPS N-bis (2-hydroxyethyl) glycine
  • TAPS N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid
  • AMPSO N-cyclohexyl-2-aminoethanesulfonic acid
  • CAPSO N-cyclohexyl-1-hydroxy-13-aminopropanesulfonic acid
  • 2-amino-2-methyl-1-propano Good buffering agents such as AMP, N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), and piperazine-1
  • the reagent for measuring cholesterol as described above includes cholesterol esterase, the compound of the present invention (NAD or NADP derivative) and the dehydrogenase of the present invention (cholesterol dehydrogenase), and if necessary, for example, hydrazine. It is preferable to use a two-reagent system in which each of the Noeon surfactants is contained in at least one of the first reagent and the second reagent.
  • cholesterol esterase the compound according to the present invention (NAD Or a NADP derivative)
  • a first reagent comprising hydrazine, for example, a nonionic surfactant
  • the dehydrogenase cholesterol dehydrogenase
  • a nonionic type Particularly preferred is a combination with a second reagent containing a surfactant or the like.
  • dehydrogenase cholesterol dehydrogenase
  • the compound of the present invention in combination at the same time.
  • a coenzyme or a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
  • the compound and / or dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring bile acids using a principle represented by the following reaction formula.
  • 3-ketosteroid + NADH + HT Specific examples of the reagent for measuring bile acids include the dehydrogenase of the present invention (3 (3 ⁇ 4-hydroxysteroid dehydrogenase)) and the compound of the present invention (NAD or NADP derivative).
  • those prepared by using as a reagent may be a single reagent system or a multi-reagent system such as a two-reagent system.
  • the dehydrogenase according to the present invention (3-hydroxyhydroxy dehydrogenase) and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention is preferably used in combination.
  • (3Q! -K-Droxysteroid dehydrogenase) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used. They may be used in combination.
  • the above-mentioned reagents for measuring bile acids include, for example, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene lauryl ether [for example, Emulgen 120: manufactured by Kao Corporation], polyoxyethylene.
  • Alkyl phenyl ethers for example, polyoxyethylene octyl, phenyl ether (for example, Triton X-100: manufactured by Rohm and Haas), polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl It is desirable to contain a nonionic surfactant such as polyethylene glycol monolaurate.
  • cationic surfactants such as stearyltrimethylammonium chloride and alkylbenzyldimethyl, for example, stearyl benzoin.
  • 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazo Surfactants such as amphoteric surfactants such as rhinebetaine; preservatives such as sodium azide; N_ [tris (hydroxymethyl) methyl] glycine (Tricine), N, N— Screw ( 2-Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3, -aminopropanesulfonic acid (TAPS), 3-[(1,1 dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfo Acid] (AMPS0), N-cyclohexyl-2-aminoaminosulfonic acid (CHES), N-cyclohexyl_2-hydroxy-3-aminoaminopropanesulfonate (CAPS
  • the concentration of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention in the reaction solution at the time of bile acid measurement is within the concentration range used in the measurement method known per se. What is necessary is just to add it to the reagent for measuring bile acids, and its origin is not particularly limited.
  • the pH of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited.
  • the compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring sorbitol using a principle represented by the following reaction formula. Sorbitol dehydrogenase
  • the reagent for measuring fruc I ⁇ I + NADH + + ⁇ sorbitol include, for example, the dehydrogenase according to the present invention (sorbitol dehydrogenase), the compound according to the present invention (NAD or NADP derivative) and the like.
  • a typical example thereof is prepared by using as a main component, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
  • the dehydrogenase according to the present invention (sorbitol dehydrogenase) and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention (sorbitol dehydrogenase) is preferably used.
  • a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
  • a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis ( 2-hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminobutanepansulfonic acid (TAPS), 3-[(1,1-dimethyl-2-hydroxysethyl) amino-2-hydroxypropanesulfonic acid] ( AMPSO), N-cyclohexyl 2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2—hydroxy-3—aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1- Good buffering agents such as propanol (AMP), N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), piperazin-1,4-bis (2-ethanesulfonic acid) (PIPES),
  • Tricine N- [tris (hydroxymethyl) methyl] gly
  • the compound other than the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are adjusted so that the concentration in the reaction solution at the time of sorbitol measurement falls within the concentration range used in the measurement method known per se. What is necessary is just to add it to the reagent for measuring Sohlhitol, and the origin etc. are not particularly limited.
  • the ⁇ of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited.
  • Examples and Comparative Examples will be described, but the present invention is not limited thereto.
  • NADP nucleosidase
  • DPNase bovine spleen, prepared according to the method of Zatman et al., J. Biol. Chem., 2, 197 (1953)
  • TCA trichloroacetic acid
  • the obtained crude aldoxime-type NADP derivative was purified with a DOWE-X column (manufactured by Dow Chemical Company) according to a conventional method to obtain 5 g of an aldoxime-type NADP derivative.
  • Example 3 Methyl nicotinate CH 3 758.4 342.5
  • Example 4 Ethyl nicotinate 2 n 5 772.4 342.5
  • Example 5 Propyl nicotinate 3 7 786.4 342
  • Example 6 Isopropyl nicotinate II 786.4 341
  • Example 7 butyl nicotinate 4 ⁇ 9 800.4 342.5
  • Example 8 isobutyl nicotinate // 800.4 342
  • Example 9 sec-butyl nicotinate II 800.4 341.5
  • Example 10 ieri-butyl nicotinate II 800.4 341
  • Example 11 Nicotin aldehyde ⁇ 728.4
  • Example 12 acetyl pyridinepyridine CH 3 742.4 362.5
  • Example 13 propionyl pyridine C 2 H 5 756.4 363
  • Example 14 ptyryl pyridine C 3 H 7 770.4 363.5
  • Example 15 Isobutyryl pyridine CO-R II.
  • a propionylpyridine type NAD derivative was created as follows according to the method described in J. Bi0. Chem. 209, 484 (1954).
  • the obtained crude propionylpyridine-type NAD derivative was purified with a DOWE-X column (manufactured by Dow Chemical Company) according to a conventional method to obtain 3 g of a propionyl-pyridine-type NAD derivative.
  • Example 34 Methyl nicotinate CH 3 677.4 342.5
  • Example 35 Ethyl nicotinate 2 691.4 342.5
  • Example 36 Propyl nicotinate 705.4 342
  • Example 37 Isopropyl nicotinate // 705.4 341
  • Example 38 nicotinic acid butyl 4 H Q 719.4 342.5
  • Example 39 Nicotinic acid isobutyl II 719.4 '342
  • Example 40 Nicotinic acid sec- heptyl II 719.4 341.5
  • Example 41 Nicotinic acid ieri- heptyl II 719.4
  • a methyl nicotinate NADPH derivative was created as follows according to the method described in Biochem. Z., 297, 66 (1938) and the like.
  • Example 3 500 mg of the methyl nicotinate NADP derivative obtained in Example 3 was dissolved in 40 ml of a 1% aqueous sodium hydrogen carbonate solution. To the solution was added 250 mg of sodium hydrosulfite with stirring under a nitrogen stream, and the mixture was reacted at 25 ° C for 2 hours.Then, oxygen was blown for 15 minutes to stop the reaction. A crude methyl nicotinic acid type NADPH derivative was obtained.
  • the obtained crude methyl nicotinate NADPH derivative was purified by HPLC according to a conventional method to obtain 60 mg of a methyl nicotinate NADPH derivative. Table 5 shows the obtained results.
  • Example 53 is shown after Example 55 in view of the classification of the substituent at the 3-position of the pyridine ring in the pyridine derivative.
  • Example 53 Methyl nicotinate CH 3 759.4 342.5
  • Example 57 Propyl nicotinate C 3 H 7 787.4 342
  • Example 58 Isopropyl nicotinate II 787.4 341
  • Example 59 butyl nicotinate> 801.4 342.5
  • Example 60 isobutyl nicotinate II 801.4 342
  • Example 61 sec-butyl nicotinate II 801.4 341.5
  • Example 62 ieri-butyl nicotinate II 801.4 341
  • Example 63 Nicotinaldehyde ⁇ 729.4 example 64 Asechirubirijin CH 3 743.4 362.5 example 65 propionic two Rubirijin 2 ⁇ 5 757.4 363
  • example Petit Lil pyridine C 3 H 7 771.4 363.5
  • example iso Petit Lil pyridine CO-R 1, 771.4 362.5 example
  • Example 69 isovaleryl pyridine II 785.4 363
  • Example 70 ieri-valeryl pyridine II 785.4 362
  • Example 71 Benzoyl pyridine C 6 H 5 805.5 365
  • a propionylpyridin-type NADH derivative was created as follows according to the method described in Biochem. Z., 297, 66 (1938).
  • the obtained crude propionylpyridine type NADH derivative was purified by HPLC according to a conventional method to obtain 200 mg of a propionylpyridine type NADH derivative.
  • Example 90 is shown after Example 113 in view of the classification of the substituent at the pyridine ring 3-position in the pyridine derivative.
  • Example 9 1 to 1 2 6
  • the oxime-type NADP derivative according to the present invention has a stability of 90% or more even when stored at 10 ⁇ for 12 months or more, whereas the natural-type NADP derivative has a 70% stability.
  • the oxime-type NADP derivative has about 80% stability even after 2.5 months storage, whereas the natural-type NADP derivative Has only about 2Q% stability. That is, it can be seen that the oxime-type NADP derivative has significantly improved storage stability as compared with the natural-type NADP.
  • the propionylpyridin-type NADP derivative according to the present invention has a stability of 90% or more even when stored at 10 ° C for 12 months or more, whereas the natural type NADP is about 70% .
  • the propionyl bipyridine-type NADP derivative has about 65% stability even after storage for 2.5 months.
  • natural NADP has only about 20% stability. That is, it can be seen that the propionylpyridine type NADP derivative has significantly improved storage stability as compared with the natural type NADP.
  • a solution obtained by dissolving 1 mmol of aldoxime-type NAD derivative or natural NAD in 2 O mM PIPES buffer (pH 6.5) is stored at a predetermined temperature for a predetermined number of days, and the remaining amount of the coenzyme is determined by HPLC (reverse phase column chromatography; The analysis was performed using a mobile phase (acetonitrile monophosphate buffer), and the peak areas were compared.
  • Table 11 shows the results. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100. - Table 11
  • the aldoxime-type NAD derivative according to the present invention has almost the same residual ratio as that immediately after dissolution even when stored at 10 ° C for more than 12 months.
  • Natural NAD is about 80%, especially when stored under a temperature load of 30 ⁇ , aldoxime NAD derivative has 80% stability even after storage for 2.5 months. It can be seen that native NAD has only 35% stability. That is, it can be seen that the aldoxime-type NAD derivative has significantly improved storage stability as compared with the natural-type NAD.
  • the propionylpyridin-type NAD derivative according to the present invention has almost the same residual ratio as that immediately after dissolution even when stored at 10 ° C for 12 months or more.
  • natural NAD is about 80%, especially when stored under a temperature load of 30 ° C
  • propionyl pyridine NAD derivative has about 70% stability even after storage for 2.5 months.
  • native NAD has only 35% stability. That is, it can be seen that the propionylviridine type NAD derivative has significantly improved storage stability as compared with the natural type NAD.
  • a solution prepared by dissolving 0.2 mmol of propionylpyridine-type NADPH derivative or natural-type NADPH in 1 O mM Tris-hydrochloric acid buffer (pH 8) is stored at a predetermined temperature for a predetermined number of days, and the remaining amount of the coenzyme is determined by HPLC (reverse phase column chromatography; (Mobile phase: acetonitrile monophosphate buffer), and the peak areas were compared.
  • Table 13 shows the results. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100.
  • the propionylpyridin-type NADPH derivative according to the present invention has a stability of about 95% even when stored at 10 ° C for 12 months or more.
  • native NADPH is about 80%, especially when stored under a temperature load of 30 ° C, propionylpyridinated NADPH derivatives have a stability of 76% even after storage for 2.5 months. It can be seen that native NADPH has only a 55% stability. That is, it can be seen that the propionylpyridine type NADPH derivative has significantly improved storage stability as compared with the natural type NADPH.
  • Propiorubidin-type NADH derivative or natural-type NADH prepared by digesting 0.2 mmol of NADH derivative in hydrochloric acid buffer (pH 9.0) is stored at a prescribed temperature, and the remaining amount of coenzyme is determined by HPLC (reverse phase). Column chromatography; mobile phase: acetonitrile phosphate buffer) and the peak areas were compared.
  • the propionylpyridin-type NADH derivative according to the present invention has a residual ratio that is almost the same as that immediately after dissolution even when stored at 10 to 12 months or more.
  • Natural NADH is about 80%, especially when stored under a temperature load condition of 30 ° C, propionylpyridine-type NADH derivative has about 80% stability even after 2.5 months storage.
  • native NADH has only 60% stability.
  • the propionylviridine-type NADH derivative has significantly improved storage stability as compared with the natural-type NADH.
  • a solution prepared by dissolving 0.2 mmol of methyl nicotinate NADH derivative or natural NADH in 2 O mM Tris-hydrochloric acid buffer (pH 8) is stored at a predetermined temperature, and the remaining amount of the coenzyme is determined by HPLC (reverse phase column chromatography; (Mobile phase: acetonitrile monophosphate buffer), and the peak areas were compared. '
  • the methyl nicotinate-type NADH derivative according to the present invention has almost the same residual ratio as that immediately after dissolution even when stored at 10 ° C for 12 months or more.
  • Native NADH is about 80%, especially when stored under 30 ° C temperature load, methyl nicotinate NADH derivative has about 75% stability even after 2.5 months storage
  • native NADH has only 60% stability. That is, it can be seen that the methyl nicotinate NADH derivative has significantly improved storage stability as compared with the natural NADH.
  • Example 1 3 4 Bacillus licheniformis-AK S-2 3 (FE RM BP
  • a malate dehydrogenase-producing strain (AKS-3) was isolated from soil collected from a field in Oni-cho, Taga-gun, Shizuoka Prefecture.
  • the activity of the enzyme produced by the strain was measured by the following method using the following measurement reagent. '
  • the enzyme activity was determined from the absorbance difference (Ab-Aa) between the absorbances (Aa) and (Ab).
  • the absorbance difference (Ab- A a) when is 0.2 or more ' is the enzyme solution 1 0 0 mM K 2 HP_ ⁇ 4 - diluted with KH 2 P_ ⁇ 4 buffer (pH 8. 0) The measurements were taken.
  • Enzyme activity (UZmI) (AbAa) / fX20X Enzyme dilution factor f; Millimol molecular absorption number of NADH or 3-propionylviridine-NADH
  • the strain was cultured by the following method, and the enzyme produced from the strain was extracted and purified.
  • the cells were collected by centrifugation, suspended in 25 mM Tris-HCl buffer (pH 7.5), adjusted to 2 L, and an ultrasonic crusher manufactured by BRAN SON. (Cell Disruptor) for 30 minutes to obtain a disrupted cell solution. This solution was centrifuged at 800 rpm for 20 minutes to obtain 1.8 L of the supernatant.
  • the supernatant was filtered, and 3 L (10 ⁇ 38 cm) of Q—Sepharose BB (Pharmacia) buffered with 25 mM Tris-HCl buffer (pH 7.5) was used. Elution was performed through a column with a step gradient of 0-0.5 M NaCl. As a result, an active fraction (704U) was eluted at a NaCl concentration of 0.3 to 0.4M. The obtained active fraction was concentrated using an ultra module (ACP _110, manufactured by Asahi Kasei) and then concentrated in 20 L of 25 mM Tris-HCl (pH 7.5) at 5 ° C overnight. Dialyzed.
  • ACP _110 manufactured by Asahi Kasei
  • the obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Advantec) and an Namicon membrane (NMWL 100 000), and 25 mM Tris-hydrochloric acid (pH 7.5) 1 Dialysis was performed overnight at 0 ° C at 5 ° C. Next, pass through a column of B 1 u e.—Sepharose CL-6B (Pharmacia) l O Om l (3. OX 14.2 cm), and run a 0-0.5 M NaCl linear graph. Elution was performed with a gentler. As a result, an active fraction (4.15 U) was eluted at a NaCl concentration of 0.2 to 0.3 M. '
  • the obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Advantec) and an Namicon membrane (NMWL 1000), and 25 mM Tris-HCl (pH 7.5) 1 Then, the solution was dialyzed overnight at 0 ° for 5 ° (: overnight. Then, ammonium sulfate was dissolved so that the obtained active fraction became 15%, and phenyl-buffered with 15% ammonium sulfate was dissolved. The mixture was passed through a column of Sepharose HP (Pharmacia) 200 ml (3.0 x 28.5 cm) and eluted with a linear gradient of 0 to 15% ammonium sulfate. The active fraction (251 U) was eluted at an ammonium sulfate concentration of ⁇ 2%.
  • the obtained active fraction was concentrated using Centriflow membrane corn (CF25, manufactured by Amicon), dialyzed against 1 L of 25 mM Tris-hydrochloric acid (pH 7.5) at 5 ° C overnight, and purified. It was a standard sample (1.1 ml, 203 U).
  • the physicochemical properties of the malate dehydrogenase obtained by the above method are shown below.
  • PH 5.0-6.0 is acetate buffer ( ⁇ - ⁇ ), pH 6.0-8.0 is phosphate buffer ( ⁇ - ⁇ ), pH 7.5-: L 0.0 Tris-HCl buffer (life- ⁇ ), pH 10.0 to 12.0: glycine-NaOH buffer (image-violence) It was 9.5 to 10.0.
  • Each buffer was treated at 40 ° C for 60 minutes, and the titer activity was measured. As a result, it was stable around pH 5.5 to 8.0.
  • Fig. 4 shows the results.
  • the molecular weight was determined to be 3300 0 ⁇ 300 0 (SDS) and 1 160 0 0 0 ⁇ 5 00 (TS Kge 1-G 3 00 0 S WX L (By a gel filtration method using TOSHI CORPORATION).
  • the Km for oxalacetic acid was 1.58 mM and the Km for NADH was 0.024 mM. Further, the Km for 3-propionylpyridine-NADH obtained in Example 90 was 0.1 mM.
  • -na indicates the storage stability of malate dehydrogenase obtained in Example 134
  • ⁇ - ⁇ indicates the storage stability of malate dehydrogenase obtained in Comparative Example 1. Each shows stability.
  • the molecular weight was 3500 (S.DS-PAGE).
  • the isoelectric point was 4.8.
  • the optimum pH was 7.8.
  • Example 1 35 Bacillus licheniformisAK S-75 (F E RM B P
  • Bacillus licheniformis ⁇ AK S-75 was obtained from IAM 11054 obtained from the Institute for Molecular and Cellular Biology, University of Tokyo, This strain has been deposited with the Ministry of Economy, Trade and Industry of the National Institute of Advanced Industrial Science and Technology as "FERM BP-7493".
  • the activity of the enzyme produced by the strain was measured by the following method using the following measurement reagent.
  • the absorbance difference (Ab-A a) is 0.2 or more in an enzyme solution when made 1 0 0m MK 2 HP0 4 - KH 2 P_ ⁇ 4 buffer (. PH 8 0) line measurement and diluted with ivy .
  • Enzyme activity (U / mI) (AbAa) / fX20X Enzyme dilution factor f; NA DPH or 3-Pyridinealdoxime-NA DPH Molecular extinction coefficient
  • the strain was cultured by the following method, and the enzyme produced from the strain was extracted and purified.
  • the cells are collected by centrifugation, suspended in 25 mM Tris-HCl buffer (pH 7.5), adjusted to 2 L, and sonicated with a BRAN SON ultrasonic crusher (The mixture was treated for 30 minutes using Cell Disruptor to obtain a disrupted cell solution. This solution was centrifuged at 800 rpm for 20 minutes to obtain 1.8 L of the supernatant.
  • the obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Ad vantec) and an Namicon membrane (NMWL 1000) to obtain 25 mM Tris-HCl (pH 7.5). Dialysis was performed overnight at 5 ° C against 10 L. Next, it was passed through a column of Phenyl-Sepharose HP (Pharmacia) 200 ml (3.0 x 28.5 cm) and eluted with a linear gradient of 0 to 15% ammonium sulfate. . As a result, an active fraction (100,000 U) was eluted at an ammonium sulfate concentration of 6 to 10%.
  • the obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Ad vantec) and an Namicon membrane (NMWL 1000), and 25 mM Tris-hydrochloric acid (PH 7.5) 1 Dialysis was performed overnight at 0 ° C at 5 ° C. Next, pass through a 100 ml (3.0 x 14.2 cm) column of B1ue-Sepharose CL-6B (Pharmacia), and apply a linear gradient of 0 to 1.0 M NaC1. Elution was performed with the reagent. As a result, an active fraction (985 U) was eluted at a NaCl concentration of 0.5 to 0.7 M.
  • the obtained active fraction was concentrated using Centriflow membrane corn (Amicon, CF25), dialyzed against 1 L of 25 mM Tris-HCl (pH 7.5) at 5 ° C overnight, It was used as a purified sample (1 lml, 974U).
  • PH 5.0-6.0 is acetate buffer ( ⁇ - ⁇ )
  • pH 6.0-8.0 is phosphate buffer (mouth-mouth)
  • pH 7.5-9.0 is Tris-HCl
  • the optimum pH was pH 7.0 to 9.0. ;
  • Each buffer was treated at 40 ° (:, 60 minutes), and the titer activity was measured.
  • the image-reference indicates the thermostability of glucose 16-phosphate dehydrogenase obtained in Example 135, and ⁇ - ⁇ indicates the Darco obtained in Comparative Example 2.
  • the thermostability of Soo 6-phosphate dehydrogenase is shown.
  • the molecular weight was found to be 4400 ⁇ 400 (SDS) and 260,000 ⁇ 100,000.
  • SDS 4400 ⁇ 400
  • a 1 U / ml enzyme solution was prepared using a 50 mM Tris-HCl buffer at pH 8.0. After heat treatment at each temperature for 10 minutes, the residual activity was measured according to the above titration method. As a result, it was stable up to around 37 ° C. The results are shown in FIG. 9 together with Example 135.
  • Gan-Qin indicates the storage stability of glucose 16-phosphate dehydrogenase obtained in Example 13 35
  • ⁇ - ⁇ indicates the darcos obtained in Comparative Example 2. 1 shows the storage stability of Su-6-phosphate dehydrogenase.
  • the isoelectric point was 4.6.
  • the optimum pH was 7.8.
  • Enzyme activity was measured by the following method using the following measurement reagents. (Measurement reagent)
  • 0.95 ml of the reagent to be measured is placed in a cell with an optical path length of 1 cm, preliminarily heated at 37 ° C for 5 minutes, and then at a wavelength of 340 nm 3 minutes after the addition of 0.05 ml of the enzyme solution.
  • the absorbance (Aa) and the absorbance (Ab) 4 minutes after the addition of the enzyme solution were measured.
  • the enzyme activity was determined to be 5 k from the absorbance difference (Ab-Aa) between the absorbances (Aa) and (Ab).
  • Enzyme activity (U / mI) (Ab-Aa) / fX20X Enzyme dilution factor f; NADH or 3-propionylviridine-NADH or Methyl nicotinate-NADH
  • the enzyme was extracted and purified by the following methods.
  • the obtained active fraction was concentrated by ffl using an ultra-membrane concentrator (manufactured by Ad vantec) and an Namicon membrane (NMWL 100 000), and concentrated to 1 L of 25 mM Tris-hydrochloric acid (pH 7.5). The solution was dialyzed overnight at 5 ° C to obtain a purified sample (20 ml, 1190 U).
  • the reactivity ratio was 11% ( NADHZ 3-propionylpyridine-NADH) and 75% (NAD HZ methyl nicotinate-NADH).
  • R-2 10 mM N, N-bis (2-hydroxyethyl) daricin (Bicine) buffer (pH 9.0)
  • the measurement was performed under the following conditions using an automatic analyzer, Model 171 manufactured by Hitachi, Ltd.
  • Example 13 Instead of glucose-6-phosphate dehydrogenase in R-1 of Example 36 (Example 135), a commercially available glucose-16-phosphate dehydrogenase (from the genus Leuconostoc) was used.
  • R-1 was prepared using the same reagents as in Example 13 36 except that natural NADP was used instead of 3-pyridinealdoxime-NADP.
  • R-2 the same one as in Example 1 36 was used.
  • Example 13 was carried out in the same manner.
  • Example 1336 Percentage of glucose-6-phosphate dehydrogenase and NADP remaining in the reagent after storage of R-1 at 30 ° C for 1 month (when the activity value immediately after preparation of the reagent is 100%)
  • Table 17 shows the results of measurement using 20 samples of human serum using the reagents immediately after preparation
  • Table 18 shows the results together with those of Example 1336.
  • FIG. 11 shows the correlation between the measured values obtained in Example 1336 and Comparative Example 3 when 20 samples of human serum were used as samples using the reagent immediately after preparation.
  • Example 13 36 both glucose-6-phosphate dehydrogenase and 3-pyridinealdoxime-NADP had a high residual ratio of 75% or more. While the range maintained the same performance as immediately after the preparation, in Comparative Example 3, although glucose-16-phosphate dehydrogenase showed a high residual rate, the NADP activity was significantly higher than immediately after the preparation. It can be seen that the calibration range has been significantly reduced.
  • the measurement was performed under the following conditions using an automatic analyzer, Model 717, manufactured by Hitachi, Ltd.
  • Measurement wavelength sub wavelength 405 nm / main wavelength 340 nm
  • Example 13 Using NADH in place of 3-propionylpyridine-NADH in R-1 of 37, and commercially available glutamate dehydrogenase in place of glutamate dehydrogenase in R-2 (Reference Example 24) Except for using an enzyme (derived from bovine liver), it was prepared using the same one as in Example 13 37.
  • urea nitrogen had a linearity of up to 200 mg / dL using any of the reagents of Example 1337 and Comparative Example 4, but was kept at 30 ° C for 1 month. Later, when the reagent of Example 13 37 was used, urea nitrogen had a linearity of up to 200 mg / dL, whereas when the reagent of Comparative Example 4 was used, the urea nitrogen It had a linearity only up to 150 mgZd L. Table 20
  • Example 13 the performance immediately after the preparation of the reagent was good in both Example 13 37 and Comparative Example 4, but when the reagent was stored at 3 Ot for 1 month, the results were as shown in Example 13.
  • Reagent 7 had high residual rates for both glutamate dehydrogenase and 3-port pionylpyridine-NADH, and the calibration range maintained the same performance as immediately after preparation. It can be seen that the NADH activity of the reagent of Comparative Example 4 was significantly lower than that immediately after preparation, and the calibration range was also significantly reduced.
  • the measurement was performed under the following conditions using an automatic analyzer, Model 717, manufactured by Hitachi, Ltd.
  • Measurement wavelength sub wavelength 40'5 nm / main wavelength 340 nm
  • Example 1 In place of 3-propionylpyridine-NADH in R-1 of 38, NADH was used, and instead of malate dehydrogenase (Example 134), a commercially available malate dehydrogenase (porcine) was used. Heart extract) and the same as in Example 1338 except that a commercially available lactate dehydrogenase (from chicken heart) was used instead of lactate dehydrogenase (Reference Example 23). Prepared.
  • Example 13 was carried out in the same manner.
  • Example 1338 Immediately after the preparation, when using any of the reagents of Example 1338 and Comparative Example 5, it had a linearity of up to 1000 IU / L of glutamate oxalate acetic acid transaminase, but it was 30 ° After storage of C, the reagent of Example 1 38 had a linearity of 100 IU / mL or more with respect to transglutamate acetic acid glutamate when compared with the comparative example. When 5 reagents were used, glutamate oxaloacetate transaminase had only a linearity of up to 500 IU / mL.
  • Lactate dehydrogenase (Reference Example 23) 900 0 I U / L
  • the measurement was performed under the following conditions using an automatic analyzer, Model 717, manufactured by Hitachi, Ltd.
  • Measurement wavelength sub-wavelength 4 0 5 n mZ main wavelength 34 0 n m
  • Example 13 In place of 3-propionylpyridine-NADH in R-1 of 39, NADH was used, and instead of lactate dehydrogenase (Reference Example 23), a commercially available lactate dehydrogenase (derived from chicken heart) was used.
  • R-1 was prepared in the same manner as in Example 13 39 except that) was used.
  • R-2 the same one as in Example 39 was used.
  • Example 13 was carried out in the same manner. '
  • Table 23 shows the results of measurement using 20 samples of human serum as a sample, using the reagents immediately after preparation, and Table 24 together with Example 1339.
  • FIG. 14 shows the correlation between the measured values obtained in Example 1339 and Comparative Example 6 when 20 samples of human serum were used as samples using the reagent immediately after preparation.
  • the reagents of Example 13 39 and Comparative Example 6 each had a linearity of up to 1000 IU / L of dalminic acid pyruvate transaminase.
  • the reagent of Example 13 39 had a linearity of at least 100 IU / mL of glutamate-pyruvate transaminase, whereas the reagent of Comparative Example 6 Had a linearity of up to 100 IU / mL of glutamate-pyruvate transaminase.
  • the present invention provides excellent stability of oxidized nicotinamide adenine dinucleotide (NAD), oxidized nicotinamide adenine dinucleotide phosphate (NADP), and reduced nicotinamide adenine dinucleotide (NADH).
  • NAD oxidized nicotinamide adenine dinucleotide
  • NADP oxidized nicotinamide adenine dinucleotide phosphate
  • NADH reduced nicotinamide adenine dinucleotide
  • a reagent for enzymological measurement is prepared using these coenzyme derivatives or dehydrogenase, it can be used for at least 12 months, usually 13 months, when stored at 10 ° C for a long time. When stored at 30 ° C, a reagent having a storage stability of 2.5 months or more can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Highly stale derivatives of oxidized nicotinamide adenine dinucleotide (NAD), oxidized nicotinamide adenine dinucleotide phosphate (NADP), reduced nicotinamide adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH); dehydrogenases which are highly reactive with these derivatives and show excellent stability; and an enzymological assay method and enzymological assay reagents by using the same. These reagents have high storage stability over a long time, i.e., at least 12 months (usually 13 months or longer) when stored at 10?C, and 2.5 months or longer when stored at 30?C.

Description

明 細 . 書 補酵素誘導体及びそれに適する酵素 技術分野 ' 本発明は、 優れた安定性を示す酸化型ニコチンアミ ドアデニンジヌク レオチド (NAD)、 酸化型ニコチンアミ ドアデニンジヌクレオチドリン 酸 (NADP)、 還元型ニコチンアミ ドアデニンジヌクレオチド (NADH)、 及び還元型ニコチンアミ ドアデニンジヌクレオチドリン酸 (NADPH) の誘導体、 これら誘導体に対して高い反応性を有し、 且つ優れた安定性 を示す脱水素酵素、 及びにこれらを使用した酵素学的測定方法並びに酵 素学的測定用試薬に関する。 技術背景  TECHNICAL FIELD The present invention relates to oxidized nicotinamide amide adenine dinucleotide (NAD), oxidized nicotinamide amide adenine dinucleotide phosphate (NADP), which exhibits excellent stability. Derivatives of reduced nicotinamide adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), dehydrogenation with high reactivity to these derivatives and excellent stability The present invention relates to an enzyme, an enzymatic measurement method using the same, and a reagent for enzymatic measurement. Technology background
臨床化学分野における血液 (血清、 血漿) 中の酵素量や物質量などの 成分分析や食品分野における成分分析において、 試薬の測定精度を上げ るため酵素反応を用いた測定法がしばしば利用されており、 該測定方法 の一つとして、 NAD、 NADH、 NADP、 NADPH 等の補酵素を電子授受 媒体として、脱水素酵素等の酸化還元酵素を使う反応が利用されている。  In the analysis of components such as the amount of enzymes and substances in blood (serum and plasma) in the field of clinical chemistry and in the field of component analysis in the food field, measurement methods using enzymatic reactions are often used to increase the measurement accuracy of reagents. As one of the measurement methods, a reaction using a redox enzyme such as a dehydrogenase using a coenzyme such as NAD, NADH, NADP, and NADPH as an electron transfer medium is used.
しかしながら、 これら補酵素や脱水素酵素は元来不安定であり、 測定 用試薬中でこれらを長期間安定に保存することは極めて困難であった。  However, these coenzymes and dehydrogenases are inherently unstable, and it has been extremely difficult to store them stably for a long time in the measurement reagent.
これまで、 これら補酵素の安定化法が種々検討されている。 その一つ の方法として、 凍結乾燥の技術が開発されているが、 現在臨床検査薬の 分野において主流を占めつつある液状 薬には適用できない。  Until now, various methods for stabilizing these coenzymes have been studied. As one method, freeze-drying technology has been developed, but it cannot be applied to liquid drugs that are currently dominating the clinical diagnostics field.
この凍結乾燥法の他に、アジドを添加する方法(特開昭 59-82398号) があるが、 アジドは他の共役酵素等を阻害する場合があり、 また、 人体 に有害で発ガン性を有するという問題がある。 また、 Cu、 Co, Mn, Zn 等の重金属を使用する方法 (特表平 10-513063) も開発されているが、 これら重金属の使用は環境汚染の原因となる。 In addition to this freeze-drying method, there is a method of adding azide (JP-A-59-82398). Azide may inhibit other conjugate enzymes and the like. Is harmful and has carcinogenicity. In addition, methods using heavy metals such as Cu, Co, Mn, and Zn have been developed (Table 10-513063), but the use of these heavy metals causes environmental pollution.
その他、 ポリオールの添加による安定化法 (米国特許第 4271264号)、 ホウ酸を添加する方法 (特開昭 62- 198697号)、 アルカリ金属を添加す る方法 (特開平 7-229 192 号)、 キレート剤を添加する方法 (特開 2000-7696 号) 等も開発されているが、 これらは何れも短期間の安定 化には効果があるものの、 長期間の安定化や温度負荷状態の保存での安 定化には充分な効果が得られず、 また、 これら添加物は、 他の共役酵素 や測定系あるいは環境等に対して悪影響を与える場合があり、 使用が制 限される場合も多い。  In addition, a stabilization method by adding a polyol (US Pat. No. 4,271,264), a method of adding boric acid (JP-A-62-198697), a method of adding an alkali metal (JP-A-7-229192), A method of adding a chelating agent (Japanese Patent Laid-Open No. 2000-7696) has also been developed, but all of these are effective for short-term stabilization, but are not suitable for long-term stabilization or preservation of temperature load conditions. Is not effective enough to stabilize the enzyme, and these additives may adversely affect other conjugated enzymes, measurement systems, the environment, etc., and their use is often restricted. .
このような状況下、 溶液状態に於いても優れた安定性を示す補酵素誘 導体の開発が望まれていた。  Under such circumstances, development of a coenzyme derivative showing excellent stability even in a solution state has been desired.
一方、 脱水素酵素も、 各種微生物、 動植物由来のものが種々報告され ているが (例えば、 J. Bacteriol. , ¾6),1777- 1787( 1967)や J. Biol. Chem. , 243(5) . 1016- 102 1 ( 1968)には、 Bacillus licheniformisから産 生されるリンゴ酸脱水素酵素、 J. Bacteriol. , l_m(3), 1 150- 1 159 ( 1973) から産生されるグルコース一 6—リン酸脱水素酵素等)、これら文献には, これら脱水素酵素の溶液状態での安定性や補酵素誘導体に対する反応性 については何等開示も示唆もなされていない。  On the other hand, various types of dehydrogenases have been reported from various microorganisms, animals and plants (for example, J. Bacteriol., ¾6), 177-1787 (1967) and J. Biol. Chem., 243 (5) 1016-1021 (1968) describes a malate dehydrogenase produced from Bacillus licheniformis, J. Bacteriol., L_m (3), 1150-1159 (1973). Phosphate dehydrogenase), none of these documents disclose or suggest the stability of these dehydrogenases in solution or the reactivity to coenzyme derivatives.
更に、 補酵素誘導体に対して反応性を有する脱水素酵素としては、 例 えば、 WO98/ 33936号に、 TTier ws sp.ゃブタ心臓 (Porcine heart) に由来する、 3—プロピオニルピリジン型 NADH誘導体に対して反応性 を有するリンゴ酸脱水素酵素が報告されている。  Further, examples of dehydrogenases having reactivity to coenzyme derivatives include, for example, WO98 / 33936, TTier ws sp. @ 3-propionylpyridine-type NADH derivative derived from Porcine heart. Malate dehydrogenase, which is reactive against it, has been reported.
しかしながら、 当該酵素は、 溶液状態での安定性や 3—プロピオニル ピリジン型 NADH誘導体に対する反応性が低いという問題があつた。 また、 同 WO98/33936号には、 3 —プロピオニルピリジン型 NADH 誘導体に対して反応性を有するグルコース一 6—リン酸脱水素酵素も報 告されているが、 生産菌名や、 当該脱水素酵素の溶液状態での安定性や 補酵素誘導体に対する反応性等の性質については何等開示も示唆もなさ れていない。 However, there was a problem that the enzyme had low stability in a solution state and low reactivity with a 3-propionylpyridine-type NADH derivative. WO 98/33936 also reports glucose-6-phosphate dehydrogenase which is reactive to 3-propionylpyridine type NADH derivatives, but the name of the producing bacterium and the dehydrogenase are described. There is no disclosure or suggestion of properties such as stability in solution or reactivity to coenzyme derivatives.
このように、 補酵素誘導体に対して高い反応性を有し、 且つ、 溶液状 態に於いても優れた安定性を有する脱水素酵素は、 これまで知られてい なかった。  As described above, a dehydrogenase having high reactivity with a coenzyme derivative and having excellent stability even in a solution state has not been known so far.
本発明は、 上記した如き状況に鑑みなされたもので、 長期間安定な補 酵素誘導体及びこれら補酵素誘導体に対して高い反応性を有し、 且つ優 れた安定性を有する脱水素酵素、 並びにこれらを用いた、 例えば 10°Cで 少なくとも 12力月以上、 通常 13力月以上、 30°(:で2.5カ月以上の貯蔵安 定性を有する、 長期間貯蔵安定な酵素学的測定用試薬を提供するもので める  The present invention has been made in view of the above-described circumstances, and provides a long-term stable coenzyme derivative, a dehydrogenase having high reactivity with these coenzyme derivatives, and having excellent stability, and Providing reagents for enzymatic assay that use these, for example, have a storage stability of at least 12 months or more at 10 ° C, usually 13 months or more, and 30 ° What you do
' 発明の開示 '' Disclosure of the invention
本発明者らは、 上記課題を解決するため鋭意研究の結果、 特に温度負 荷のかかった状態下に於いても、 長期間に亘つて安定な NAD、 NADP、 NADH及び NADPHの誘導体の創製に成功し、 また、 これらの補酵素に 対して高い反応性を有し、 且つ特に温度負荷のかかった状態下に於いて も、 安定な脱水素酵素を見出し、 本発明を完成するに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that derivatives of NAD, NADP, NADH, and NADPH that are stable over a long period of time, especially under a temperature load condition. The present inventors have succeeded in finding a dehydrogenase which has high reactivity with these coenzymes and is stable under a temperature load, and has completed the present invention.
即ち、 本発明は以下の構成よりなる。  That is, the present invention has the following configurations.
( 1 ) 一般式 [ 1 ] 、
Figure imgf000006_0001
(1) General formula [1],
Figure imgf000006_0001
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 カルボキシル基、 チォカルポキシル 基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOH を示す。) で表される化合物又は その還元体を含んでなる酵素学的測定用試薬。 , (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is carboxyl group, Chiokarupokishiru group, a sulfonic acid group or from those A derivable group, a hydrocarbon residue which may have a substituent or -CH = NOH.) Or a reduced form thereof. ,
(2) 一般式 [3]  (2) General formula [3]
Figure imgf000006_0002
Figure imgf000006_0002
(式中、 Yは水酸基又はリン酸残基を示し、 Rはアルキレン基又はアル ケニリデン基を示し、 ηは 0又は 1を示し、 X' は、 力ルポキシル基、 チォカルポキシル基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有していてもよい炭化水素残基、 ヒドロキシァミノ基又は- CH = ΝΟΗを示す。) で表される化合物又はその還元体の水性溶媒溶液から なる、 10°C保存時で少なくとも 12力月以上の貯蔵安定性を有する酵素 学的測定用試薬。  (In the formula, Y represents a hydroxyl group or a phosphoric acid residue, R represents an alkylene group or an alkenylidene group, η represents 0 or 1, and X ′ represents a carboxylic acid group, a thiocarpoxyl group, a sulfonic acid group or a sulfonic acid group. Or a hydrocarbon residue which may have a substituent, a hydroxyamino group or -CH = ΝΟΗ.) Or a reduced form thereof in an aqueous solvent solution. A reagent for enzymatic assay that has a storage stability of at least 12 months when stored at ° C.
(3) 一般式 [ 1 ]
Figure imgf000007_0001
(3) General formula [1]
Figure imgf000007_0001
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 力ルポキシル基、 チォカルポキシル 基、 'スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOH を示す。) で表される化合物又は その還元体と、 脱水素酵素とを含んでなる酵素学的測定用試薬。 (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is force Rupokishiru group, Chiokarupokishiru group, 'sulfonic acid group or A group derived therefrom, a hydrocarbon residue which may have a substituent, or -CH = NOH.) Or a reduced form thereof, and a dehydrogenase. Measurement reagent.
(4) 一般式 [ 1 ]  (4) General formula [1]
Figure imgf000007_0002
Figure imgf000007_0002
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 カルボキシル基、 チォカルポキシル 基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOH を示す。) で表される化合物又は その還元体と、 当該化合物又はその還元体に対する反応比が 4.0 %以上 であり、 且つ、 5 OmMの T r i s _HC 1 (p H 7. 5) 緩衝液中で 3 7°C、 1 0日間保 後の残存活性が 7 0 %以上である脱水素酵素とを 含んでなる酵素学的測定用試薬。 ' (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is carboxyl group, Chiokarupokishiru group, a sulfonic acid group or from those Or a reduced group derived therefrom or a hydrocarbon residue which may have a substituent or -CH = NOH), and a reaction ratio of 4.0% to the compound or its reduced form. And a dehydrogenase having a residual activity of 70% or more after storage at 37 ° C for 10 days in 5 OmM Tris_HC1 (pH 7.5) buffer. A reagent for enzymatic measurement. '
(5) 上記 ( 1 ) 〜 (4) に記載の何れかの試薬を用いることを特徴と する酵素学的測定方法。 (5) Use of any of the reagents described in (1) to (4) above Enzymatic measurement method.
(6) 一般式 [2-1 ]  (6) General formula [2-1]
Figure imgf000008_0001
Figure imgf000008_0001
{式中、 Rbはアルケニリデン基を示し、 nbは 0又は 1 を示し、 Xbは、 -COORn b (式中、 Ru bは水素原子又は炭化水素残基を表す。)、 -COR12 b 〔式中、 R12 bは- R5 b、 - NHR6 b又は- N(R6 b)(R7 b)を表す (式中、 R5 bは炭素 数 2以上の炭化水素残基を表し、 RJ3及び R7 bはそれぞれ独立して水素原 子、 置換基を有していても良い炭化水素残基又はアミノ基を表す。)。〕、 -CSR14 b 〔式中、 R14 bは- R5 b'、 -NHR6 b '又は- N(R6 b')(R7 b')を表す (式中、 R5 b 'は炭素数 2以上の炭化水素残基を表し、 R6 b '及び R7 b'はそれぞれ独立 して置換基を有していても良い炭化水素残基又はアミノ基を表す。)。〕、 スルホン酸基若しくはこれから誘導される基、 置換基を有していてもよ い炭化水素残基、 -CH = NOH基又は- CN基を示す。 }で表される化合物。{Wherein, R b represents an alkenylidene group, n b is 0 or 1, X b is (wherein, R u b represents a hydrogen atom or a hydrocarbon residue.) -COOR n b, - during COR 12 b [wherein, R 12 b is - R 5 b, - NHR 6 b or - N (R 6 b) in (R 7 b) represents an (wherein, R 5 b or 2 carbon atoms in the hydrocarbon represents a residue, RJ 3 and R 7 b are each independently hydrogen atom, represents an optionally substituted hydrocarbon residue or an amino group.). ], -CSR 14 b [wherein, R 14 b represents -R 5 b ', -NHR 6 b ' or -N (R 6 b ') (R 7 b ') (wherein, R 5 b ' represents the number 2 or more hydrocarbon residues atoms, a R 6 b 'and R 7 b' are each independently may have a substituent hydrocarbon residue or an amino group.). A sulfonic acid group or a group derived therefrom, an optionally substituted hydrocarbon residue, -CH = NOH group or -CN group. }.
(7) 一般式 [2-2] (7) General formula [2-2]
Figure imgf000008_0002
Figure imgf000008_0002
{式中、 Reはアルケニリデン基を示し、 は 0又は 1 を示し、 X。は、 -COORn c (式中、 は水素原子又は炭化水素残基を表す。)、 -CQR 15{Wherein, R e represents an alkenylidene group, represents 0 or 1, and X. Is -COOR n c (wherein, represents a hydrogen atom or a hydrocarbon residue.), -CQR 15
〔式中、 Q は酸素原子又は硫黄原子を表し、 R15 e は- NHR6。 又は- N(R ) (R )を表す (式中、 R6 e及び R はそれぞれ独立して水素原子、 置 換基を有していても良いアルキル基を表す。)。〕、 スルホン酸基若しくは これらから誘導される基、 置換基を有していてもよい炭化水素残基又は - CN基を示す。 } で表される化合物。 [In the formula, Q represents an oxygen atom or a sulfur atom, and R 15 e is -NHR 6 . Or - N (R) represents the (R) (in the formula, each represents a R 6 e and R independently represent a hydrogen atom, an alkyl group which may have a location substituent.). A sulfonic acid group or a group derived therefrom, a hydrocarbon residue which may have a substituent, or a -CN group. } A compound represented by the formula:
(8) 一般式 [2-3] '  (8) General formula [2-3] '
Figure imgf000009_0001
Figure imgf000009_0001
{式中、 Rdはアルケニリデン基を示し、 ndは 0又は 1 を示し、 Xdは、(In the formula, R d represents an alkenylidene group, n d represents 0 or 1, X d is
-COORu d (式中、 Ru dは水素原子又は炭素数 3以上の炭化水素残基を表 す。)、 -COR12 d 〔式中、 R12 dは- R5 d、 -NHR6 d又は- N(R6 d)(R7 d)を表す (式 中、 R5 dは炭素数 4〜 5の炭化水素残基を表し、 R6 d及び R はそれぞれ 独立して置換基を有していても良いアルキル基を表す。)。〕、 -CSR14 d〔式 中、 R14 dは- R5 d'、 '- NHR6 d '又は- N(R )(R7 d')を表す (式中、 R5 d 'は炭化水 素残基を表し、 R6 d '及び R /'はそれぞれ独立して置換基を有していても良 い炭化水素残基又はアミノ基を表す。)。〕、 スルホン酸基若しくはこれか ら誘導される基、置換基を有していてもよい炭化水素残基を示す。 }で表 される化合物。 (Wherein, R u d is to Table hydrocarbon residue hydrogen atom or 3 or more carbon atoms.) -COOR u d, in -COR 12 d [wherein, R 12 d is - R 5 d, -NHR 6 d or -N (R 6 d ) (R 7 d ) (wherein, R 5 d represents a hydrocarbon residue having 4 to 5 carbon atoms, and R 6 d and R each independently represent a substituent. Represents an alkyl group which may be present). ], -CSR 14 d (wherein, R 14 d represents -R 5 d ',' -NHR 6 d ', or -N (R) (R 7 d ')), wherein R 5 d 'is carbonized. Represents a hydrogen residue, and R 6 d ′ and R / ′ each independently represent a hydrocarbon residue or an amino group which may have a substituent.) A sulfonic acid group or a group derived therefrom, or a hydrocarbon residue which may have a substituent. }.
(9) 一般式 [2-4]
Figure imgf000010_0001
(9) General formula [2-4]
Figure imgf000010_0001
{式中、 Reはアルケニリデン基を示し、 neは 0又は 1 を示し、 Xeは、{Wherein, R e represents a alkenylidene group, n e is 0 or 1, X e is
-COORn e (式中、 R„eは水素原子又は炭化水素残基を表す。)、 -CQ'R15 e 〔式中、 Q'は酸素原子又は硫黄原子を表し、 R15 e は- NHR6 e又は- N(R6 e)(R7 e)を表す (式中、 R6 e及び R7 eはそれぞれ独立して水素原子、 置 換基を有していても良いアルキル基を表す。)。〕、 スルホン酸基若しくは これらから誘導される基、 置換基を有していてもよい炭化水素残基又は -CN基を示す。 } で表される化合物。 (Wherein, R "e represents a hydrogen atom or a hydrocarbon residue.) -COOR n e, in -CQ'R 15 e [wherein, Q 'represents an oxygen atom or a sulfur atom, the R 15 e - Represents NHR 6 e or -N (R 6 e ) (R 7 e ) (wherein, R 6 e and R 7 e each independently represent a hydrogen atom or an alkyl group which may have a substituent; Represents a sulfonic acid group or a group derived therefrom, a hydrocarbon residue which may have a substituent, or a -CN group.
( 1 0) 上記 (6) 〜 (9) に記載の何れかの化合物を含んでなる酵素 学的測定用試薬。  (10) A reagent for enzymatic measurement, comprising the compound according to any one of (6) to (9).
( 1 1 ) 上記 (6) 〜 (9) に記載の何れかの化合物と、 脱水素酵素と を含んでなる酵素学的測定用試薬。  (11) A reagent for measuring enzymology, comprising: the compound according to any one of (6) to (9) above; and a dehydrogenase.
( 1 2) —般式 [ 1 ]  (1 2) — General formula [1]
Figure imgf000010_0002
Figure imgf000010_0002
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 カルボキシル基、 チォカルポキシル 基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOHを示す。) で表される化合物又は その還元体に対する反応比が 40 %以上であり、 且つ、 5 0mMの T r i s -HC 1 (p H 7. 5) 緩衝液中で 3 7°C、 1 0日間保存後の残存 活性が 7 0 %以上である脱水素酵素。 (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is carboxyl group, Chiokarupokishiru group, a sulfonic acid group or from those Derived groups, having substituents Or -CH = NOH. ) The reaction ratio to the compound represented by the formula or its reduced form is 40% or more, and stored at 50 ° C in Tris-HC1 (pH 7.5) buffer at 37 ° C for 10 days. A dehydrogenase having a remaining activity of 70% or more.
( 1 3) 上記 ( 1 2) に記載の脱水素酵素を含んでなる酵素学的測定用  (13) An enzymatic assay comprising the dehydrogenase according to (12) above.
( 14) 上記 (6) 〜 (9) に記載の何れかの化合物の存在下に測定を 行うことを特徴とする酵素学的測定方法。 (14) An enzymatic assay method, wherein the assay is performed in the presence of any of the compounds according to (6) to (9).
( 1 5) 上記 ( 1 2) に記載の脱水素酵素の存在下に測定を行うことを 特徴とする酵素学的測定方法。  (15) An enzymatic measurement method, wherein the measurement is performed in the presence of the dehydrogenase according to (12).
( 1 6) 上記 (6) 〜 (9) に記載の何れかの化合物と、 上記 ( 1 2) に記載の脱水素酵素の存在下に測定を行うことを特徴とする酵素学的測 定方法。 発明を実施するための最良の形態  (16) An enzymatic measurement method characterized in that the measurement is carried out in the presence of any of the compounds according to (6) to (9) and the dehydrogenase according to (12). . BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 本発明に係る補酵素誘導体について以下に説明する。  First, the coenzyme derivative according to the present invention will be described below.
本発明に於いて、 一般式 [ 1 ]  In the present invention, the general formula [1]
Figure imgf000011_0001
Figure imgf000011_0001
で示される化合物の還元体は、 下記の一般式 [ 1 '] で示される (式中、 Ya、 Ra、 na、 Xaは前記と同じ。) The reduced form of the compound represented by is represented by the following general formula [1 '] (Wherein, Y a , R a , n a , and X a are the same as described above.)
Figure imgf000012_0001
一般式 [ 1 ] 及び に於いて、 Raで示されるアルケニリデン基 としては、 直鎖状、 分枝状又は環状の何れでもよく、 炭素数 2〜 6のァ ルケ二リデン基が好ましく、 中でも炭素数 2〜 3のァルケ二リデン基が 特に好ましい。
Figure imgf000012_0001
Formula [1] and at, the alkenylidene group represented by R a, may be any of straight chained, branched or cyclic, preferably § Luque two isopropylidene groups from 2 to 6 carbon atoms, among them carbon Alkenylidene groups of the number 2-3 are particularly preferred.
具体的には、 例えばビニレン基、 プロべ二レン基等のアルケニリデン 基が挙げられる。  Specific examples include an alkenylidene group such as a vinylene group and a probenylene group.
一般式 [ 1 ] 及び に於いて、 xaで示される置換基を有してい てもよい炭化水素残基に於ける炭化水素残基としては、 例えば直鎖状、 分枝状又は環状のアルキル基、 特に炭素数 1〜 6の低級アルキル基、 ァ リール基、 ァラルキル基等が挙げられ、 中でもァリール基が好ましい。 具体的には例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロペンチル基、 シクロ へキシル基等の低級アルキル基、 例えばフエニル基、 ナフチル基等のァ リール基、 例えばベンジル基等のァラルキル基等が挙げられる。 また、 置換基としては、 例えばヒドロキシル基、 アミノ基、 例えば塩素、 臭素、 フッ素、 ヨウ素等のハロゲン原子等が挙げられる。 Formula [1] and at, the in hydrocarbon residues may also be a hydrocarbon residue optionally having a substituent represented by x a, for example, linear, branched or cyclic alkyl Groups, especially lower alkyl groups having 1 to 6 carbon atoms, aryl groups, aralkyl groups and the like. Among them, aryl groups are preferred. Specifically, for example, lower alkyl groups such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc. Examples include aryl groups such as phenyl and naphthyl, and aralkyl groups such as benzyl. Examples of the substituent include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine.
X aで示されるカルボキシル基から誘導される基としては、 例えば式- COOR^ a (式中、 Rn aは、 水素原子又は炭化水素残基を示す。) で示さ れるカルボン酸エステル基、 式- COR12 a {式中、 R12 aは、 -R5 a、 - NHR6 a 又は- N(R6 a)(R7 a)を表す 〔式中、 R5 aは、 炭化水素残基を表し、 R6 a及び R7 aは、 夫々独立して水素原子、 置換基を有していても良い炭化水素残 基又はアミノ基を表す。〕。 } で示されるァシル基、 式- CONHR13 a (式中、 R13 aは、 炭化水素残基、 アミノ基又は置換アミノ基を示す。) で示され るカルボン酸アミド基、 アルデヒド基 (-CHO)、 シァノ基 (-CN) 等が 挙げられ、 スルホン酸基から誘導される基としては、 例えば式- SO2NRa"Rai" (式中、 Ra"及び Ra"'は、水素原子又は炭化水素残基を示す。) で示されるスルホン酸アミド基等が挙げられ、 また、 チォカルポキシル 基から誘導される基としては、 例えば式- CSR14 a (式中、 R14 aは、 炭化 水素残基、 アミノ基又は置換アミノ基を示す。)で示されるものが挙げら れる。 The group derived from the carboxyl group represented by X a, for example, the formula - COOR ^ a (wherein, Rn a represents a hydrogen atom or a hydrocarbon residue.) Shown in Carboxylic acid ester group of the formula - COR 12 a {wherein, R 12 a is, -R 5 a, - NHR 6 a or - N (R 6 a) ( R 7 a) represents a wherein, R 5 a represents a hydrocarbon residue, R 6 a and R 7 a represents independently a hydrogen atom, which may have a substituent hydrocarbon residue or an amino group. ]. Ashiru group, represented by the formula} - CONHR 13 a (. Wherein, R 13 a is a hydrocarbon residue, an amino group or a substituted amino group) at the indicated Ru carboxylic acid amide group, an aldehyde group (-CHO ), A cyano group (—CN), and the like. Examples of the group derived from a sulfonic acid group include a group represented by the formula —SO 2 NR a “R ai ” (where R a ”and R a ″ ′ are hydrogen) . indicating the atom or a hydrocarbon residue) sulfonic acid amide group represented by may be mentioned, and as the groups derived from Chiokarupokishiru group, for example the formula - in CSR 14 a (wherein, R 14 a is carbonized A hydrogen residue, an amino group or a substituted amino group).
Ruaで示される炭化水素残基としては、 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロビル基、 n-ブチル基、 iso-ブチル基、 tert-ブチ ル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級アルキル基、 例えばフエニル基、 ナフチル基等の ァリール基、 例えばべンジル基、 フエネチル基等のァラルキル基等が挙 げられる。 The hydrocarbon residue represented by ru a, for example, methyl, Echiru group, n- propyl group, iso- Purobiru group, n- butyl group, iso- butyl group, tert- butyl group, a cyclopentyl group, cyclohexylene A linear, branched or cyclic lower alkyl group having 1 to 6 carbon atoms such as a xyl group; an aryl group such as a phenyl group or a naphthyl group; an aralkyl group such as a benzyl group or a phenyl group; Can be
R5 aで示される炭化水素残基としては、 例えばェチル基、 n-プロピル 基、 iso-プロピル基、 n-プチル基、 iso-ブチル基、 tert-ブチル基、 シク 口ペンチル基、 シクロへキシル基等の炭素数 2〜 6の直鎖状、 分枝状又 は環状の低級アルキル基、 例えばフエニル基、 ナフチル基等のァリール 基、例えばべンジル基、 フエネチル基等のァラルキル基等が挙げられる。 また、 R6 a及び R7 で示される置換基を有していてもよい炭化水素残 基における炭化水素残基としては、 例えば直鎖状、 分枝状或は環状のァ ルキル基、 特に炭素数 1〜6の低級アルキル基、 ァリール基、 ァラルキ ル基等が挙げられ、 具体的には例えばメチル基、 ェチル基、 n-プロピル 基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シク 口ペンチル基、 シクロへキシル基等の低級アルキル基、 例えばフエニル 基、 ナフチル基等のァリール基、 例えばベンジル基等のァラルキル基等 が挙げられる。 置換基としては、 例えばヒドロキシル基、 ニトロ基、 ァ ミノ基、 例えば塩素、 臭素、 フッ素、 ヨウ素等のハロゲン原子等が挙げ られる。 The hydrocarbon residue represented by R 5 a, for example Echiru group, n- propyl group, iso- propyl, n- heptyl group, iso- butyl group, tert- butyl group, consequent opening pentyl group, cyclohexyl A straight-chain, branched or cyclic lower alkyl group having 2 to 6 carbon atoms such as a group; an aryl group such as a phenyl group and a naphthyl group; an aralkyl group such as a benzyl group and a phenethyl group; . As the hydrocarbon residue in the optionally substituted hydrocarbon residue which may have a substituent group represented by R 6 a and R 7, for example, a straight, branched or cyclic § alkyl group, in particular carbon Lower alkyl group, aryl group, aralkyl Specific examples include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group. Examples thereof include lower alkyl groups such as a xyl group, for example, an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group. Examples of the substituent include a hydroxyl group, a nitro group, an amino group, and a halogen atom such as chlorine, bromine, fluorine and iodine.
R1 3 aで示される、 炭化水素残基としては、 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル 基、 シグロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級アルキル基、 例えばフエ ル基、 ナフチル基等の ァリール基、 例えばべンジル基、 フエネチル基等のァラルキル基等が挙 げられる。 また、 置換アミノ基としてはその水素原子の 1個又は 2個が 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル 基、 iso-ブチル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル 基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級アルキル基、 例え ばフエニル基、 ナフチル基等のァリール基、 例えばべンジル基、 フエネ チル基等のァラルキル基、 例えば上記アルキル基に 1個のヒドロキシル 基が置換したヒドロキシアルキル基等で置換されたもの等が挙げられる Ra"及び Ra"'で示される炭化水素残基としては、 例えばメチル基、 ェチ ル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert- プチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直 鎖状、 分枝状又は環状の低級アルキル基、 例えばフエニル基、 ナフチル 基等のァリール基、 例えばべンジル基、 フエネチル基等のァラルキル基 等が挙げられる。 Represented by R 1 3 a, the hydrocarbon residue, such as methyl group, Echiru group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, tert- butyl group, Shiguropenchiru group A straight-chain, branched or cyclic lower alkyl group having 1 to 6 carbon atoms such as a cyclohexyl group; an aryl group such as a phenyl group and a naphthyl group; an aralkyl group such as a benzyl group and a phenethyl group; And so on. As the substituted amino group, one or two of the hydrogen atoms are, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl A straight-chain, branched or cyclic lower alkyl group having 1 to 6 carbon atoms, such as a cyclohexyl group, an aryl group such as a phenyl group or a naphthyl group, for example, a benzyl group, a phenyl group, etc. Aralkyl groups, for example, those in which the above alkyl group is substituted by a hydroxyalkyl group in which one hydroxyl group is substituted, etc. Examples of the hydrocarbon residue represented by R a ″ and R a ″ ′ include a methyl group A linear chain having 1 to 6 carbon atoms, such as an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group and a cyclohexyl group; Branched or cyclic low Alkyl group, for example phenyl group, Ariru group such as a naphthyl group, for example, base Njiru group, and a Ararukiru groups such as phenethyl group.
R1 4 aで示される炭化水素残基としては、 例えばメチル基、 ェチル基、 n -プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチ ル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級アルキル基、 例えばフエニル基、 ナフチル基等の ァリ一ル基、 例えばべンジル基、 フエネチル基等のァラルキル基等が挙 げられる。 また、 置換アミノ基としてはアルキルアミノ基、 ジアルキル アミノ基等が挙げられ、 ここで言うアルキル基としては、 例えばメチル 基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso.-ブチ ル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級アルキル基等が挙げられる。 前記一般式 [ 1 ] 及び [ 1 '] に於いて、 -RanaXaで示される基,は、 ピ リジン環の 3位に結合しているものが特に好ましい。 一般式 [ 1] 及び [ 1 '] で示される化合物の中で、 -(Ra),naXaで示さ れる基が、 -COORn^ - COR12 a、 -CONHR13 a、 -CSR14 a、 -CH=NOH 又は- CH=CHCONH2 (アクリルアミド基) で示されるものが好ましい。 なかでも、 一般式 [ 1] で示される化合物としては、 一般式 [ 1] に 於いて、 naが 0で且つ Xaが- COR12 a基 〔式中、 R12 aは- R5 a、 - NHR6 a又 は- N(R6 a)(R7 a)を表す (式中、 R5 aは炭化水素残基を表し、 R6 a及び R7 a はそれぞれ独立して水素原子、 置換基を有していても良い炭化水素残基 又はアミノ基を表す。)。〕 又は- CH = NOH基であるが、 或いは naが 1で 且つ Xaが- CONH2基であるものが好ましく、 特に、 一般式 [1] に於い て、 (Ra)naXaがアクリルアミド基 (-CH=CHCONH2)、 ェチルカルポ二 ル基 (-COC2H5) 又は- CH = NOH 基であるものが好ましく、 より好ま しくは、 一般式 [ 1] に於いて、 Yaが水酸基であり且つ (Ra)naXaがェチ ルカルポニル基又は- CH = NOH基であるもの、 或いは一般式 [ 1] に於 いて、 Yaがリン酸残基であり且つェチルカルポニル基又は- CH = NOH 基であるものである。 The hydrocarbon residue represented by R 1 4 a, for example, methyl, Echiru group, C1-C6 linear, branched, or cyclic such as n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl, etc. And lower alkyl groups such as phenyl and naphthyl, and aralkyl groups such as benzyl and phenethyl. Examples of the substituted amino group include an alkylamino group and a dialkylamino group.The alkyl group referred to herein includes, for example, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, Examples thereof include linear, branched or cyclic lower alkyl groups having 1 to 6 carbon atoms such as .-butyl group, tert-butyl group, cyclopentyl group and cyclohexyl group. In the general formula [1] and [1 '], a group represented by -R a n a X a, are those attached to the 3-position of the pin lysine ring is particularly preferred. In the general formula [1] and the compound represented by [1 '], - (R a), a group represented by n a X a is, -COORn ^ - COR 12 a, -CONHR 13 a, -CSR 14 a , —CH = NOH or —CH = CHCONH 2 (acrylamide group) are preferred. Among them, examples of the compound represented by the general formula [1], in the general formula [1], n a is and X a at 0 - in COR 12 a group [wherein, R 12 a is - R 5 a , - NHR 6 a or - N (R 6 a) represents a (R 7 a) (wherein, R 5 a is a hydrocarbon residue, R 6 a and R 7 a are each independently a hydrogen atom Represents a hydrocarbon residue or an amino group which may have a substituent.) ] Or - is a CH = NOH group, or n a is the and X a at 1 - CONH preferably has a 2 group, in particular, in the general formula [1], (R a) n a X a is preferably an acrylamide group (—CH = CHCONH 2 ), an ethylcarbyl group (—COC 2 H 5 ) or a —CH = NOH group, and more preferably, Y in the general formula [1] a is hydroxyl group and (R a) n a X a is E Ji Rukaruponiru group or - CH = as NOH a group, or the general formula [1] have at the, Y a is a phosphoric acid residue and Echirukaruponiru Group or -CH = NOH Is the base.
また、 一般式 [ 1 '] (一般式 [ 1 ] で示される化合物の還元体) で示 される化合物としては、 一般式 [ 1 ] に於いて、 naが 0であり、 Xaが- COORu a ¾ (式中、 Rn aは水素原子又は炭化水素残基を示す。) 又は - COR12 a基 〔式中、 R12 aは- R5 a、 -NHR6 a又は- N(R6 a)(R7 "を表す (式中、 R5 aは炭化水素残基を表し、 R6 a及び R7 aはそれぞれ独立して水素原子、 置換基を有していても良い炭化水素残基又はアミノ基を表す。)。〕である ものの還元体が好ましく、 特に、 一般式 [ 1 ] に於いて、 (Ra)naXaがメ トキシカルボニル基 (-COOCH3)、 エトキシカルポニル基 (-COOC2H5) 又はェチルカルポニル基 (-COC2H5) であるものの還元体が好ましく、 より好ましくは、 一般式 [ 1] に於いて、 Yaが水酸基であり且つ (Ra)naXa がメトキシカルポニル基又はェチルカルポニル基であるものの還元体、 或いは一般式 [ 1] に於いて、 Yaがリン酸残基であり且つ (Ra)naXaがェ チルカルポニル基であるものの還元体である。 本発明於いて、 一般式 [3] Further, as a compound represented by the general formula [1 '] (reduced form of the compound represented by the general formula [1]), in the general formula [1], n a is 0 and X a is- COOR u a ¾ (wherein, R n a represents a hydrogen atom or a hydrocarbon residue.), or - in COR 12 a group [wherein, R 12 a is - R 5 a, -NHR 6 a or - n ( R 6 a) (representing the R 7 "(wherein, R 5 a is a hydrocarbon residue, each R 6 a and R 7 a are independently hydrogen, which may have a substituent carbide A hydrogen residue or an amino group.).], And particularly, in the general formula [1], (R a ) n aX a is a methoxycarbonyl group (—COOCH 3 ), A reduced form of an ethoxycarbonyl group (—COOC 2 H 5 ) or an ethylcarbonyl group (—COC 2 H 5 ) is preferred. More preferably, in the general formula [1], Ya is a hydroxyl group and (R a) n a X a methoxy Cal Poni Le Or reduction of those Echirukaruponiru a group, or in the general formula [1] is a reduced form of Y a is a phosphoric acid residue and (R a) n a X a Gae Chirukaruponiru which those groups. In the present invention, the general formula [3]
Figure imgf000016_0001
Figure imgf000016_0001
で示される化合物の還元体は、 下記の一般式 [3 '] で示される。
Figure imgf000017_0001
The reduced form of the compound represented by is represented by the following general formula [3 ′].
Figure imgf000017_0001
(式中、 Y、 R、 n、 X'は前記と同じ。) 一般式 [ 3 ] 及び [ 3 ' ] に於いて、 Rで示されるアルキレン基又はァ ルケ二リデン基としては、 直鎖状、 分枝状又は環状の何れでもよく、 例 えば炭素数 1〜 6の低級アルキレン基又は炭素数 2〜 6のアルケニリデ ン基が好ましく、 中でも炭素数 1〜 3のアルキレン基又は炭素数 2〜 3 のァルケ二リデン基が特に好ましい。 具体的には、 例えば、 メチレン基、 エチレン基、 メチルエチレン基、 ェチルメチレン基、 プロピレン基、' ェ チルエチレン基、 シクロペンチレン基、 シクロへキシレン基等のアルキ レン基、 例えばビニレン基、 プロべ二レン基等のアルケニリデン基等が 挙げられる。  (In the formula, Y, R, n, and X ′ are the same as described above.) In the general formulas [3] and [3 ′], the alkylene group or alkenylidene group represented by R is a straight-chain. Which may be branched or cyclic, for example, a lower alkylene group having 1 to 6 carbon atoms or an alkenylidene group having 2 to 6 carbon atoms, and particularly, an alkylene group having 1 to 3 carbon atoms or 2 to 3 carbon atoms is preferable. The alkenylidene group is particularly preferred. Specifically, for example, an alkylene group such as a methylene group, an ethylene group, a methylethylene group, an ethylmethylene group, a propylene group, an ethylethylene group, a cyclopentylene group, a cyclohexylene group, for example, a vinylene group, a probe And alkenylidene groups such as a len group.
一般式 [ 3 ] 及び [ 3 ' ] に於いて、 X, で示される置換基を有してい てもよい炭化水素残基に於ける炭化水素残基としては、 例えば直鎖状、 分枝状又は環状のアルキル基、 特に炭素数 1〜 6の低級アルキル基、 ァ リール基、 ァラルキル基等が挙げられ、 具体的には例えばメチル基、 ェ チル基、 η-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-プチル基、 シクロペンチル基、 シクロへキシル基等の低級アルキル 基、 例えばフエニル基、 ナフチル基等のァリール基、 例えばベンジル基 等のァラルキル基等が挙げられる。 また、 置換基としては、 例えばヒド 口キシル基、 ニトロ基、 アミノ基、 例えば塩素、 臭素、 フッ素、 ヨウ素 等のハロゲン原子等が挙げられる。 In general formulas [3] and [3 '], examples of the hydrocarbon residue in the optionally substituted hydrocarbon residue represented by X and are, for example, a linear or branched hydrocarbon residue. Or a cyclic alkyl group, particularly a lower alkyl group having 1 to 6 carbon atoms, an aryl group, an aralkyl group, and the like.Specifically, for example, a methyl group, an ethyl group, an η-propyl group, an iso-propyl group, lower alkyl groups such as n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group and naphthyl group; and aralkyl groups such as benzyl group. . Examples of the substituent include a hydroxyl group, a nitro group, and an amino group such as chlorine, bromine, fluorine, and iodine. And the like.
X ' で示される力ルポキシル基から誘導される基としては、 例えば式 -COOR! で示されるカルボン酸エステル基、 式- COR2 で示されるァシ ル基、 式- CONHR3 で示されるカルボン酸アミド基、 アルデヒド基 (- CHO)、 シァノ基 (-CN) 等が挙げられ、 スルホン酸基から誘導される 基としては、 例えば式- S02 NR"R"'で示されるスルホン酸アミド基等が 挙げられる。 The group derived from the force Rupokishiru groups represented by X ', for example, a carboxylic acid ester group of the formula -COOR, wherein -! § Shi Le group represented by COR 2, wherein - carboxylic acid represented by CONHR 3 Examples include an amide group, an aldehyde group (—CHO), and a cyano group (—CN). Examples of the group derived from the sulfonic acid group include a sulfonic acid amide group represented by the formula —S0 2 NR “R” ′ Is mentioned.
上記式に於いて、 Ri は、 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロべ ンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環 状の低級アルキル基、 例えばフエニル基、 ナフチル基等のァリ一ル基、 例えばべンジル基、 フエネチル基等のァラルキル基を示し、 R2 は例え ばェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル 基、 tert-プチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 2 〜 6の直鎖状、 分枝状又は環状の低級アルキル基、 例えばフエニル基、 ナフチル基等のァリ一ル基、 例えばべンジル基、 フエネチル基等のァラ ルキル基を示し、 R3 は、例えばメチル基、 ェチル基、 n-プロピル基、 iso- プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロペンチ ル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の 低級アルキル基、 例えばフエニル基、 ナフチル基等のァリール基、 例え ばべンジル基、 フエネチル基等のァラルキル基、 アミノ基、 置換アミノ 基等を示し、 ここで言う置換アミノ基としてはその水素原子の 1個又は 2個が例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n- ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロペンチル基、 シクロへ キシル基等の炭素数 1〜 6の直鎖状、分枝状又は環状の低級アルキル基、 例えばフエニル基、 ナフチル基等のァリール基、 例えばべンジル基、 フ エネチル基等のァラルキル基、 例えば上記アルキル基に 1個のヒドロキ シル基が置換したヒドロキシアルキル基等で置換されたもの等が挙げら れる。 In the above formula, Ri is, for example, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, a cyclohexyl group A linear, branched or cyclic lower alkyl group having 1 to 6 carbon atoms, such as phenyl, naphthyl, etc., an aralkyl group such as benzyl, phenethyl, etc. , R 2 is for example Echiru group, n- propyl group, iso- propyl, n- butyl, iso- butyl group, tert- heptyl group, a cyclopentyl group, a straight C 2 -C 6 such as cyclohexyl group A chain, branched or cyclic lower alkyl group, for example, an aryl group such as a phenyl group or a naphthyl group, for example, an aralkyl group such as a benzyl group or a phenethyl group; R 3 represents, for example, a methyl group; , Ethyl, n-propyl, isopropyl, n-butyl Linear, branched or cyclic lower alkyl groups having 1 to 6 carbon atoms such as phenyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl, etc., for example, phenyl, naphthyl, etc. Represents an aralkyl group such as benzyl group, phenethyl group, etc., an amino group, a substituted amino group, etc., and the substituted amino group means one or two hydrogen atoms such as a methyl group, an ethyl group, etc. Group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc. Cyclic lower alkyl groups such as phenyl and naphthyl, and other aryl groups such as benzyl and phenyl; An aralkyl group such as an ethenyl group, for example, those in which the above alkyl group is substituted by a hydroxyalkyl group in which one hydroxy group is substituted, and the like can be given.
また、 R"及び R" 'は、 水素原子、 例えばメチル基、 ェチル基、 n-プロ ピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-プチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝 状又は環状の低級アルキル基、 例えばフエニル基、 ナフチル基等のァリ ール基、 例えばべンジル基、 フエネチル基等のァラルキル基を示す。  R "and R" 'represent a hydrogen atom such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, a cyclopentyl group; A linear, branched or cyclic lower alkyl group having 1 to 6 carbon atoms such as a hexyl group, for example, an aryl group such as a phenyl group or a naphthyl group, for example, an aralkyl group such as a benzyl group or a phenethyl group. Is shown.
X ' で示されるチォカルボキシル基から誘導される基としては、 例え ば式- CSR4 で示されるものが挙げられ、 R4 は、 例えばメチル基、 ェチ ル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-プチル基、 tert- ブチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直 鎖状、 分枝状又は環状の.低級アルキル基、 例えばフエニル基、 ナフチル 基等のァリール基、例えばべンジル基、 フエネチル基等のァラルキル基、 アミノ基、 置換アミノ基等を示し、 ここで言う置換アミノ基としてはァ ルキルアミノ基、 ジアルキルアミノ基等が挙げられ、 ここで言うアルキ ル基としては、 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピ ル基、 n-ブチル基、 iso-ブチル基、 tert-プチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級ァ ルキル基等が挙げられる。 ' The group derived from Chio carboxyl group represented by X ', for example Ba formula - one represented by the CSR 4 can be mentioned, R 4 is, for example, methyl group, E Ji Le group, n- propyl group, iso- A linear, branched or cyclic C1-C6 lower alkyl group such as propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl, etc .; lower alkyl, e.g. phenyl And aralkyl groups such as naphthyl group, for example, benzyl group, phenethyl group, etc., amino group, substituted amino group and the like, and the substituted amino group mentioned here includes an alkylamino group and a dialkylamino group. Examples of the alkyl group referred to herein include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group. Carbon number 1 to 6 linear etc., lower § alkyl group branched or cyclic and the like. '
前記一般式一般式 [ 3 ] 及び [ 3 ' ] に於いて、 - (R)nX'で示される基 は、 ピリジン環の 3位に結合しているものが特に好ましい。 これら一般式 [ 3 ] 及び [ 3 ' ] で示される化合物の中で、 -(R)nX'で 示される基が、 - COOR -COR2、 -CONHR3 , -CSR4 又は- CH=NO.H で示されるものが好ましい。 , 本発明に係る補酵素誘導体のうち、 本発明の下記一般式 [ 2 - 1 ]、 [ 2 -2 ]、 [ 2 - 3 ] 及び [ 2 -4 ] で示される補酵素誘導体は、 それ自体が新 規なものである。 In the general formulas [3] and [3 '], the group represented by-(R) nX' is particularly preferably a group bonded to the 3-position of the pyridine ring. 'Among the compounds represented by, - (R) nX general formulas [3] and [3]' group represented by is, - COOR -COR 2, -CONHR3, -CSR 4 or - CH = NO.H Are preferred. , Of the coenzyme derivatives according to the present invention, the coenzyme derivatives represented by the following general formulas [2-1], [2-2], [2-3] and [2-4] of the present invention are themselves It is new.
Figure imgf000020_0001
Figure imgf000020_0001
2-32-3
Figure imgf000020_0002
Figure imgf000021_0001
Figure imgf000020_0002
Figure imgf000021_0001
(式中、 Rb、 Rc、 Rd、 Re、 nb、 nc、 nd、 ne、 Xb、 Xc、 Xd、 Xeは前記と同 じ。) ' 上記一般式 [2-1:! .〜 [2-4] に於いて、 Rb、 Rc、 Rd及び Reで示 されるアルケニリデン基としては、 直鎖状、 分枝状又は環状の何れでも よく、 炭素数 2〜6のァルケ二リデン基が好ましく、 中でも炭素数 2〜 3のァルケ二リデン基が特に好ましい。具体的には、例えばビニレン基、 プロべ二レン基等のアルケニリデン基が挙げられる。 (Wherein, R b , R c , R d , R e , n b , n c , n d , ne , X b , X c , X d , and X e are the same as described above.) ' [2-1 :! In [2-4], the alkenylidene group represented by R b , R c , R d and R e may be any of linear, branched or cyclic, and has 2 to 6 carbon atoms. A alkenylidene group having 2 to 3 carbon atoms is particularly preferable. Specific examples include an alkenylidene group such as a vinylene group and a probenylene group.
一般式 [2-1 ]、 [2-2]、 [2-3] 及び [2-4] に於いて、 Xb、 Xc、 xd及び xeで示される、 置換基を有していてもよい炭化水素残基に於け る炭化水素残基としては、例えば直鎖状、分枝状又は環状のアルキル基、 特に炭素数 1〜6の低級アルキル基、 ァリール基、 ァラルキル基等が挙 げられ、 中でもァリール基が好ましい。 具体的には例えばメチル基、 ェ チル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル基等の低級アルキル 基、 例えばフエニル基、 ナフチル基等のァリール基、 例えばベンジル基 等のァラルキル基等が挙げられる。 また、 置換基としては、 例えばヒド 口キシル基、 アミノ基、 例えば塩素、 臭素、 フッ素、 ヨウ素等のハロゲ ン原子等が挙げられる。 In the general formulas [2-1], [2-2], [2-3] and [2-4], the compound has a substituent represented by X b , X c , x d and x e Examples of the hydrocarbon residue in the hydrocarbon residue which may be used include a linear, branched or cyclic alkyl group, particularly a lower alkyl group having 1 to 6 carbon atoms, an aryl group, an aralkyl group and the like. Among them, an aryl group is preferable. Specifically, for example, lower alkyl groups such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group and cyclohexyl group; Examples thereof include aryl groups such as phenyl and naphthyl, and aralkyl groups such as benzyl. Examples of the substituent include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine.
Xb、 Xc, Xd及び Xeで示される、 スルホン酸基から誘導される基とし ては、 例えば式- S02NRa"Ra"' (式中、 Ra' '及び Ra"'は、 水素原子又は炭 化水素残基を示す。) で示されるスルホン酸アミド基等が挙げられ。 Examples of the group derived from a sulfonic acid group represented by X b , X c , X d and X e include, for example, a group represented by the formula: S 0 2 NR a "R a "'(where R a ''and Ra "'Is a hydrogen atom or charcoal Shows a hydride residue. And the like.
Ra"及び Ra"'で示される炭化水素残基としては、 例えばメチル基、 ェチ ル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert- プチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直 鎖状、 分枝状又は環状の低級アルキル基、 例えばフエニル基、 ナフチ.ル 基等のァリール基、 例えばべンジル基、 フエネチル基等のァラルキル基 等が挙げられる。 . Examples of the hydrocarbon residue represented by Ra "and Ra "'include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group and a tert-butyl group. A linear, branched or cyclic lower alkyl group having 1 to 6 carbon atoms, such as a cyclopentyl group or a cyclohexyl group, for example, an aryl group such as a phenyl group or a naphthyl group, for example, a benzyl group, a phenethyl group And an aralkyl group such as a group. .
一般式 [ 2 - 1 ]、 [ 2 - 2 ] 及び [ 2 - 4 ] に於いて、 Xbが- COORu b (式 中、 R„bは水素原子又は炭化水素残基を表す。) である場合の Ru bで示 される炭化水素残基、 Xeが- COORu e (式中、 は水素原子又は炭化 水素残基を表す。) である場合の Ru eで示される炭化水素残基及び Xeが -COORu e (式中、 R„eは水素原子又は炭化水素残基を表す。) である場 合の R„eで示される炭化水素残基としては、 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-プチル基、 tert-ブチ ル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級アルキル基、 例えばフエニル基、 ナフチル基等の ァリール基、 例えばべンジル基、 フエネチル基等のァラルキル基等が挙 げられる。 General formula [2 - 1], in the - - [4 2], X b is - [2 2], and COOR u b (wherein, R "b represents a hydrogen atom or a hydrocarbon residue.) In hydrocarbon residues shown in some cases R u b, X e is - COOR u e hydrocarbon (wherein the represents a hydrogen atom or a hydrocarbon residue.) represented by R u e when it is When the residue and X e are —COOR u e (where R „ e represents a hydrogen atom or a hydrocarbon residue), the hydrocarbon residue represented by R„ e is, for example, a methyl group , Ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl, etc. Examples thereof include a branched or cyclic lower alkyl group, for example, an aralkyl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group and a phenethyl group.
好ましくは炭素数 1〜 6の低級アルキル基である。  It is preferably a lower alkyl group having 1 to 6 carbon atoms.
一般式 [ 2 - 3 ] に於いて、 Xdが- COOR„d (式中、 は水素原子又 は炭素数. 3以上の炭化水素残基を表す。) である場合の Rudで示される 炭素数 3以上の炭化水素残基としては、 例えば n-プロピル基、 iso-プロ ピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 3〜 6の直鎖状、 分枝状又は環状の低級ァ ルキル基、 例えばフエニル基、 ナフチル基等の炭素数 6〜 1 2のァリー ル基、 例えばべンジル基、 フエネチル基等の炭素数 7〜 8のァラルキル 基等が挙げられる。 In the general formula [2-3], it is represented by Ru d when X d is —COOR „ d (wherein, represents a hydrogen atom or a hydrocarbon residue having 3 or more carbon atoms). Examples of the hydrocarbon residue having 3 or more carbon atoms include, for example, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, and cyclohexyl group. A straight-chain, branched or cyclic lower alkyl group having 3 to 6 carbon atoms such as phenyl group and naphthyl group having 6 to 12 carbon atoms such as benzyl group and phenethyl group having 7 carbon atoms. ~ 8 aralkyl And the like.
一般式 [ 2 - 1 ] に於いて、 Xbが- COR12 b 〔式中、 R12 bは- R5 b、 - NHR6 b 又は- N(R6 b)(R7 b)を表す (式中、 R5 bは炭素数 2以上の炭化水素残基を表 し、 R6 b及び R7 bはそれぞれ独立して水素原子、 置換基を有していても良 い炭化水素残基又はアミノ基を表す。)。〕 であり、 R12 bが R5 bである場合 の R5 bで示される炭素数 2以上の炭化水素残基、 及び Xbが- CSR14 b 〔式 中、 R14 bは- R5 b'、 -NHR6 b '又は- N(R6 b')(R7 b')を表す (式中、 R5 b 'は炭素数 2以上の炭化水素残基を表し、 R6 b '及び R7 b'はそれぞれ独立して置換基を 有していても良い炭化水素残基又はアミノ基を表す。)。〕 であり、 R14 b が R5 b 'である場合の R5 b '示される炭素数 2以上の炭化水素残基としては、 例えばェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブ チル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル基等の炭素 数 2〜 6の直鎖状、 分枝状又は環状の低級アルキル基、 例えばフエニル 基、 ナフチル基等の炭素数 6〜 1 2のァリール基、 例えばべンジル基、 フエネチル基等の炭素数?〜 8のァラルキル基等が挙げられる。 In - [1 2], X b is - general formula COR 12 b [wherein, R 12 b is - R 5 b, - NHR 6 b or - represents an N (R 6 b) (R 7 b) (wherein, R 5 b is table number 2 or more hydrocarbon residue carbon, R 6 b and R 7 b are each independently a hydrogen atom, a hydrocarbon residue but it may also have a substituent Or an amino group.). A], R 12 b is R 5 b is a hydrocarbon residue having 2 or more carbon atoms represented by R 5 b in the case where, and X b is - in CSR 14 b [wherein the R 14 b - R 5 b ', -NHR 6 b' or - N (R 6 b ') (R 7 b') represents a (wherein, R 5 b 'represents 2 or more hydrocarbon residue having a carbon number, R 6 b' And R 7 b ′ each independently represent a hydrocarbon residue or an amino group which may have a substituent.) When R 14 b is R 5 b ′, the hydrocarbon residue having 2 or more carbon atoms represented by R 5 b ′ includes, for example, ethyl group, n-propyl group, iso-propyl group, n- C2-C6 linear, branched or cyclic lower alkyl groups such as butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc., for example, phenyl group, naphthyl group, etc. 6 to 12 carbon atoms of aryl groups, such as benzyl group and phenethyl group? To 8 aralkyl groups and the like.
一般式 [ 2 - 3 ] に於いて、 Xdが- COR12 d 〔式中、 R12 dは- R5 d、 -NHR6 d 又は- N(R6 d)(R7 d)を表す (式中、 R5 dは炭素数 4〜 5の炭化水素残基を表 し、 R6 d及び R .はそれぞれ独立して置換基を有していても良いアルキル 基を表す。)。〕 であり、 R12 dが R5 dである場合の R5 dで示される炭素数 4 〜 5の炭化水素残基としては、例えば iso-プロピル基、 n-ブチル基、 iso- ブチル基、 tert-ブチル基、 シクロペンチル基等の炭素数 4〜 5の直鎖状、 分枝状又は環状の低級アルキル基等が挙げられる。 In the general formula [2-3], X d is -COR 12 d (wherein, R 12 d represents -R 5 d , -NHR 6 d or -N (R 6 d ) (R 7 d ) (In the formula, R 5 d represents a hydrocarbon residue having 4 to 5 carbon atoms, and R 6 d and R 6 each independently represent an alkyl group which may have a substituent.) When R 12 d is R 5 d , examples of the hydrocarbon residue having 4 to 5 carbon atoms represented by R 5 d include an iso-propyl group, an n-butyl group, an iso-butyl group, A linear, branched or cyclic lower alkyl group having 4 to 5 carbon atoms such as a tert-butyl group and a cyclopentyl group is exemplified.
一般式 [ 2 - 3 ] に於いて、 Xdが- CSR14 d〔式中、 R14 dは- R5 d'、 - NHR6 d' 又は- N(R6 d')(R )を表す(式中、 R /は炭化水素残基を表し、 R6 d '及び R はそれぞれ独立して置換基を有していても良い炭化水素残基又はアミノ 基を表す。)。〕 であり、 R14 dが R5 d 'である場合の R で示される炭化水素 残基としては、 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピ ル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル基等の炭素数 1〜 6の直鎖状、 分枝状又は環状の低級ァ ルキル基、 例えばフエニル基、 ナフチル基等のァリール基、 例えばベン ジル基、 フエネチル基等のァラルキル基等が挙げられる。 In the general formula [2-3], X d is -CSR 14 d (where R 14 d is -R 5 d ', -NHR 6 d ' or -N (R 6 d ') (R) (In the formula, R / represents a hydrocarbon residue, and R 6 d ′ and R each independently represent a hydrocarbon residue or an amino group which may have a substituent.) And a hydrocarbon represented by R when R 14 d is R 5 d ′ Residues include, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc. And straight-chain, branched or cyclic lower alkyl groups such as phenyl and naphthyl, and aralkyl such as benzyl and phenethyl.
一般式 [ 2 - 1 ] に於いて、 Xbが- COR12 bであり、 R12 bが- NHR6 b又は -N(R6 b)(R7 b)である場合の R6 b、 R7 b、 及び X が- CSR14 bであり、 R14 bが -NHR6 b '又は- N(R6 b')(R7 b')である場合の R6 b'、 R7 b 'で示される置換基を有 していてもよい炭化水素残基に於ける炭化水素残基としては、 例えば直 鎖状、 分枝状又は環状のアルキル基、 特に炭素数 1〜 6の低級アルキル 基、 ァリ一ル基、 ァラルキル基等が挙げられ、 中でもァリール基が好ま しい。 具体的には例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロ ピル基、 n-ブチル基、 iso -プチル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル基等の低級アルキル碁、 例えばフエニル基、 ナフチル基 等のァリール基、 例えばベンジル基等のァラルキル基等が挙げられる。 また、 置換基としては、 例えばヒドロキシル基、 アミノ基、 例えば塩素、 臭素、 フッ素、 ヨウ素等のハロゲン原子等が挙げられる。 In - [1 2], X b is - Formula a COR 12 b, R 12 b is - NHR 6 b, or -N (R 6 b) when it is (R 7 b) R 6 b , R 7 b, and X - is a CSR 14 b, R 14 b is -NHR 6 b 'or - N (R 6 b') (R 7 b ') when it is R 6 b', R 7 b Examples of the hydrocarbon residue in the hydrocarbon residue optionally having a substituent represented by ′ include a linear, branched or cyclic alkyl group, particularly a lower alkyl having 1 to 6 carbon atoms. Groups, aryl groups, aralkyl groups and the like, among which the aryl group is preferred. Specifically, for example, lower alkyl Go such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, etc. Examples thereof include an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group. Examples of the substituent include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine.
一般式 [ 2 - 2 ] に於いて、 Xeが- CQR15 e 〔式中、 Qは酸素原子又は硫 黄原子を表し、 1^ は- NHR6 C又は- N(R6 C) (R7 C)を表す (式中、 R6 C及び R はそれぞれ独立して水素原子、 置換基を有していても良いアルキル 基を表す。.)。〕 であり、 R15 cが- NHR6 C又は- N(R6 C) (R7 C)である場合の R6 C、 R7 C、一般式 [ 2 - 3 ] に於いて、 Xdが- COR12 d〔式中、 /は- R5 d、 -NHR6 d 又は- N(R6 d)(R7 d)を表す (式中、 R5 dは炭素数 4〜 5の炭化水素残基を表 し、 R6 d及び R7 dはそれぞれ独立して置換基を有していても良いアルキル 基を表す。)。〕 であり、 R12 dが- NHR6 d又は- N(R6 d)(R7 d)である場合の R6 d、 R 、一般式 [ 2 - 3 ]に於いて、 Xdが- CSR14 d〔式中、 R dは- R5 d'、 -NHR6 d' 又は- N(R6 d')(R7 d')を表す(式中、 R は炭化水素残基を表し、 R6 d '及び R ' はそれぞれ独立して置換基を有していても良い炭化水素残基又はアミノ 基を表す。)。〕であり、 R14 dが- NHR 又は- N(R6 d')(R )である場合の R6 d', R7 d'、 一般式 [2-4] に於いて、 Xeが- CQ'R15 e 〔式中、 Q'は酸素原子又 は硫黄原子を表し、 R15 eは- NHR6 e又は- N(R6 e)(R7 e)を表す (式中、 R5 e及 び R7 eはそれぞれ独立して水素原子、 置換基を有していても良いアルキ ル基を表す。)。〕 であり、 R15 eが- NHR6 e又は- N(R6 e)(R7 e)である場合の R6 e、 R7 eで示される置換基を有していてもよいアルキル基に於けるアル キル基としては、 例えば直鎖状、 分枝状又は環状のアルキル基、 特に炭 素数 1〜 6の低級アルキル基が挙げられ、 具体的には例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 iso-ブチル基、 tert-ブチル基、 シクロペンチル基、 シクロへキシル基等が挙げられる。 また、 置換基としては、 例えばヒドロキシル基、 アミノ基、 例えば塩素、 臭素、 フッ素、 ヨウ素等のハロゲン原子等が挙げられる。 前記一般式 [ 2-1 ]、 [2-2]、 [2-3]及び[ 2-4]に於ぃて、-(1^)111¾13、 -(Rc)ncXc、 - (Rd)ndXd及び- (Re)neXeで示される基は、 ピリジン環の 3位 に結合しているものが特に好ましい。 一般式 [ 2 -1 ] で示される化合物の中でも、 一般式 [2- 1 ] に於い て、 nbが 0で且つ Xbで示される基が、 -COR12 b又は- CH=NOHである ものが好ましく、 なかでも、 一般式 [ 2-1 ] に於いて、 (Rb)nbXbがァク リルアミド基 (-CH=CHCONH2)、 ェチルカルポニル基 (-COC2H5) 又 は- CH = NOH基であるものが特に好ましい。 In the general formula [2-2], X e is -CQR 15 e [wherein Q represents an oxygen atom or a sulfur atom, and 1 ^ is -NHR 6 C or -N (R 6 C ) (R 7 C) represents an (wherein, each R 6 C and R are independently hydrogen, represents an optionally substituted alkyl group ..). A], R 15 c is - NHR 6 C or - N (R 6 C) ( R 7 C) an R 6 C in the case where, R 7 C, the general formula - In [2 3], X d Represents -COR 12 d (wherein / represents -R 5 d , -NHR 6 d or -N (R 6 d ) (R 7 d ) (wherein, R 5 d represents a carbon atom having 4 to 5 carbon atoms) It represents a hydrogen residue, represents an alkyl group which may R 6 d and R 7 d is have each independently substituent.). In the case where R 12 d is -NHR 6 d or -N (R 6 d ) (R 7 d ), R 6 d , R, in the general formula [2-3], X d is- CSR 14 d (where R d is -R 5 d ', -NHR 6 d ' Or -N (R 6 d ') (R 7 d '), wherein R represents a hydrocarbon residue, and R 6 d 'and R' each independently have a substituent. Represents a good hydrocarbon residue or amino group.) R 6 d ′ and R 7 d ′ when R 14 d is —NHR or —N (R 6 d ′) (R). In the general formula [2-4], X e is -CQ'R 15 e (wherein Q 'represents an oxygen atom or a sulfur atom, and R 15 e represents -NHR 6 e or -N (R 6 e ) (R 7 e ) (wherein R 5 e and R 7 e each independently represent a hydrogen atom or an alkyl group which may have a substituent.) Wherein R 15 e is -NHR 6 e or -N (R 6 e ) (R 7 e ), and R 6 e , an alkyl group which may have a substituent represented by R 7 e. Examples of the alkyl group in the above include a linear, branched or cyclic alkyl group, particularly a lower alkyl group having 1 to 6 carbon atoms, and specifically, for example, a methyl group, an ethyl group, an n- Propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, cyclopentyl, cyclohexyl and the like. Examples of the substituent include a hydroxyl group, an amino group, and a halogen atom such as chlorine, bromine, fluorine, and iodine. Formula [2-1], [2-2], at the [2-3] and [2-4] Ite, - (1 ^) 1 1 1 ¾ 13, - (R c) n c X c, - (R d) n d X d , and - a group represented by (R e) n e X e are those attached to the 3 position of the pyridine ring is particularly preferred. Among the compounds represented by the general formula [2-1], in the general formula [2-1], n b is 0 and the group represented by X b is -COR 12 b or -CH = NOH. Certain ones are preferable, and in particular, in the general formula [2-1], (R b ) n b X b is an acrylamide group (—CH = CHCONH 2 ), an ethylcarbonyl group (—COC 2 H 5 ) or Is particularly preferably a group of —CH 基 NOH.
一般式 [ 2-2 ] で示される化合物の中で、 一般式 [2-2] に於いて、 ncが 0で、 Xcで示される基が- COOI^ で且つ が低級アルキル基 であるものが好ましい、 なかでも、 一般式 [ 2-2] に於いて、 (Rc)ncXc がメトキシカルポニル基 (- COOCH3) 又はエトキシカルポニル基 (- COOC2H5) 基であるものが特に好ましい。 Among the compounds represented by the general formula [2-2], in the general formula [2-2], in n c is 0, the group represented by X c is - COOI ^ in and a lower alkyl group In particular, in the general formula [2-2], (R c ) n c X c is a methoxycarbonyl group (—COOCH 3 ) or an ethoxycarponyl group (—COOC 2 H 5 ) group. Some are particularly preferred.
一般式 [2-4] で示される化合物の中で、 一般式 [2-4] に於いて、 neが 0で、 Xeで示される
Figure imgf000026_0001
で且つ が低級アルキル基 であるものが好ましい、 なかでも、 一般式 [2-4] に於いて、 (Re)neXe がメ トキシカルポニル基 (-COOCH3) 又はエトキシカルポニル基 (- COOC2H5) 基であるものが特に好ましい。 本発明に係る一般式 [ 1 ]、 [ 3 ]、 [2-1 ] 及び [ 2-3] で示される 化合物 (NAD誘導体及び NADP誘導体) は、 自体公知の方法、 例えば J.BiO.Chem., 203., 484(1954)に記載の方法等に準じて容易に製造す ることができる。
Among the compounds represented by the general formula [2-4], in the general formula [2-4], in n e is 0, represented by X e
Figure imgf000026_0001
It is preferred and is a lower alkyl group in, inter alia, in the general formula [2-4], (R e) n e X e turtle Tokishikaruponiru group (-COOCH 3) or ethoxy Cal Poni Le group (- Those which are COOC 2 H 5 ) groups are particularly preferred. The compounds (NAD derivatives and NADP derivatives) represented by the general formulas [1], [3], [2-1] and [2-3] according to the present invention can be prepared by a method known per se, for example, J.BiO.Chem. , 203., 484 (1954).
即ち、 例えば、 本発明に係る化合物のうち、 一般式 [ 1 ] で示される 化合物又は [ 3] に於いて Yが水酸基で示される化合物、 或いは一般式  That is, for example, among the compounds according to the present invention, the compound represented by the general formula [1] or the compound represented by the formula [3] wherein Y is a hydroxyl group, or the general formula
[2-3] で示される化合物 (NAD 誘導体) を製造するには、 例えば、 対応するピリジン誘導体を基質として用い、 トランスグリコシダーゼの 存在下で NADを反応させればよい。  In order to produce the compound (NAD derivative) represented by [2-3], for example, NAD may be reacted in the presence of transglycosidase using the corresponding pyridine derivative as a substrate.
具体的には、 一般式 [4] '  Specifically, the general formula [4] '
Figure imgf000026_0002
Figure imgf000026_0002
で示される化合物 (NAD) と、 例えば対応する基質である一般式 [ 5(NAD) and the corresponding substrate represented by the general formula [5
1]、 [ 5-2] 又は [ 5-3]
Figure imgf000027_0001
1], [5-2] or [5-3]
Figure imgf000027_0001
(式中、 Xa、 Ra及び naは、 前記と同じ。) (In the formula, X a , R a and n a are the same as described above.)
"(R)nX' 5-21 "(R) nX '5-21
(式中、 X'、 R及び nは、 前記と同じ。)
Figure imgf000027_0002
(In the formula, X ', R and n are the same as described above.)
Figure imgf000027_0002
(式中、 Xd、 Rd及び ndは、 前記と同じ。) (In the formula, X d , R d and n d are the same as described above.)
で示される化合物 (ピリジン誘導体) とを、 トランスグリコシダ一ゼの : 存在下で反応させることにより得られる。 反応は通常適当な緩衝液中、 通常 2 5〜45°C、 好ましくは 3 0〜3 7でで、 通常 1 0分〜 1 6 8時 間、 好ましくは 1〜 24時間行われる。  (Pyridine derivative) in the presence of transglycosidase: The reaction is usually carried out in a suitable buffer, usually at 25 to 45 ° C., preferably 30 to 37 hours, usually for 10 minutes to 168 hours, preferably for 1 to 24 hours.
上記方法に於いて用いられるトランスグリコシダーゼとしては、 NAD のニコチン酸アミドと基質であるピリジン誘導体との交換反応を触媒す る性質を有するものであればよく、 例えば NAD+ヌクレオシダーゼ等が 挙げられる。 また、 その由来については上記した如き性質を有するもの であればよく、 例えばブタ脳由来のもの、 牛脾臓由来のもの等動物臓器 由来のものや、 微生物由来のものが挙げられる。 また、 使用される緩衝 液としては、 当該交換反応を阻害しないものであればよく、 通常この分 野で用いられるものが使用し得る。  The transglycosidase used in the above method may be any as long as it has a property of catalyzing an exchange reaction between nicotinamide of NAD and a pyridine derivative as a substrate, and examples thereof include NAD + nucleoside. The origin may be any as long as it has the above-mentioned properties, and examples thereof include those derived from animal organs such as those derived from pig brain and those derived from bovine spleen, and those derived from microorganisms. The buffer used may be any buffer that does not inhibit the exchange reaction, and those usually used in this field may be used.
. また、 例えば、 本発明に係る化合物のうち、 一般式 [ 1] で示される 化合物又は [3] に於いて Yがリン酸残基で示される化合物、 或いは一 般式 [2-1 ] で示される化合物 (NADP誘導体) は、 例えば、 対応する ピリジン誘導体を基質として用い、 トランスグリコシダーゼの存在下で NADPを反応させる方法等により製造される Further, for example, among the compounds according to the present invention, a compound represented by the general formula [1] or a compound represented by the formula [3] wherein Y is a phosphate residue, or a compound represented by the general formula [2-1] The compound shown (NADP derivative) can be prepared, for example, using the corresponding pyridine derivative as a substrate in the presence of transglycosidase. Manufactured by the method of reacting NADP
具体的には、 一般式 [6]  Specifically, the general formula [6]
Figure imgf000028_0001
Figure imgf000028_0001
で示される 合物 (NADP) と、 例えば対応する基質である一般式 [5 1]、 [5-2] 又は [ 5-4]
Figure imgf000028_0002
And the corresponding substrate, for example, the general formula [51], [5-2] or [5-4]
Figure imgf000028_0002
(式中、 Xa、 Ra及び naは、 前記と同じ。) (R、nX' 5-2(Wherein, X a, R a and n a are as defined above.) (R, nX '5-2
Figure imgf000028_0003
Figure imgf000028_0003
(式中、 . X'、 R及び nは、 前記と同じ。)
Figure imgf000028_0004
(Wherein, X ′, R and n are the same as above.)
Figure imgf000028_0004
(式中、 Xb、 Ra及び naは、 前記と同じ。) (Wherein, X b, R a and n a are as defined above.)
で示される化合物 (ピリジン誘導体) とを、 トランスグリコシダーゼの 存在下で反応させることにより得られる。 反応は通常適当な緩衝液中で 行われ、 トランスグリコシダーゼによる反応は、 通常 2 5〜4 5° (:、 好 ましくは 3 0〜 3 7 °Cで、 通常 1 0分〜 1 6 8時間、 好ましくは 1〜 2 4時間行われる。 (Pyridine derivative) in the presence of transglycosidase. The reaction is usually performed in a suitable buffer, and the transglycosidase reaction is usually performed at 25 to 45 ° (: preferably at 30 to 37 ° C, usually for 10 minutes to 168 hours). It is preferably performed for 1 to 24 hours.
上記方法に於いて用いられるトランスグリコシダーゼとしては、 NAD pのニコチン酸アミドと基質であるピリジン誘導体との交換反応を触媒 する性質を有するものであればよく、例えば NADP+ヌクレオシダーゼ等 が挙げられる。 また、 その由来については上記した如き性質を有するも のであればよく、 例えばブ夕脳由来のもの、 牛脾臓由来のもの等動物臓 器由来のものや、 微生物由来のものが挙げられる。 The transglycosidase used in the above method includes NAD Any substance having a property of catalyzing the exchange reaction between nicotinamide of p and a pyridine derivative as a substrate may be used, and examples thereof include NADP + nucleoside. The origin may be any having the above-mentioned properties, and examples thereof include those derived from animal organs, such as those derived from bush brain and those derived from bovine spleen, and those derived from microorganisms.
また、 使用される緩衝液としては、 トランスグリコシダ一ゼによる交 換反応を阻害しないものであればよく、 通常この分野で用いられるもの が使用し得る。 本発明に係る一般式 [ 1 ']、 [3 ']、 [2-2] 及び [2-4] で示され る化合物 (NADH誘導体及び NADPH誘導体) は、 自体公知の方法、 例 えば Biochem.Z.,2Sヱ, 66(1938)に記載の方法等に準じて容易に製造す ることができる。  The buffer used may be any buffer which does not inhibit the exchange reaction by transglycosidase, and those usually used in this field may be used. The compounds (NADH derivatives and NADPH derivatives) represented by the general formulas [1 '], [3'], [2-2] and [2-4] according to the present invention can be prepared by a method known per se, for example, Biochem. It can be easily manufactured according to the method described in Z., 2S ヱ, 66 (1938).
即ち、 一般式 [ 1] 、 [ 3] 、 [2-1] 及び [2-4] で示される化 合物を還元剤で還元させればよい。 還元反応は通常適当な溶液中、 通常 0〜37°C、 好ましくは 20〜30°Cで、 通常 0.:!〜 8時間、 好ましくは 1〜 2時間行われる。  That is, the compounds represented by the general formulas [1], [3], [2-1] and [2-4] may be reduced with a reducing agent. The reduction reaction is usually carried out in a suitable solution at a temperature of usually 0 to 37 ° C, preferably 20 to 30 ° C, usually 0:! To 8 hours, preferably 1 to 2 hours.
上記方法に於いて用いられる還元剤としては、 通常この分野で用いら れるものであればよく、 例えばハイ ドロサルファイトナトリウム、 水素 化ホウ素ナトリウム、 ポランピリジン等が挙げられる。 また、 使用さ る溶液としては、 通常この分野で用いられる例えば水等の溶液が挙げら れる。 当該溶液には、 例えば緩衝剤や、 気泡の発生を防止する目的等で 炭酸水素ナトリゥム等を含んでいてもよい。 以上述べた一般式 [ 1] 、 [ 1 ' ] 、 [3] 、 [3 ' ] 、 [2-1] 、 [2-2] 、 [2-3] 及び [2-4] で示される化合物を製造するために 用いられる緩衝剤としては、 通常この分野で用いられるものであれば特 に限定されないが、 例えば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine) 、 N , N—ビス (2—ヒドロキシェチル) グリシン 、 N—トリス (ヒドロキシメチル) メチル— 3—ァミノプロパンスルホ ン酸 (TAPS) 、 3— [ ( 1, 1一ジメチルー 2—ヒドロキシェチル) アミノー 2—ヒドロキシプロパンスルホン酸] (AMPSO) 、 N—シク 口へキシル— 2—アミノエ夕ンスルホン酸 (CHES) 、 N—シクロへキ シルー 2—ヒドロキシー 3—ァミノプロパンスルホン酸 (CAPSO) 、 2 —アミノー 2—メチルー 1—プロパノール (AMP) 、 N—シクロへキシ ルー 3—ァミノプロパンスルホン酸 (CAPS) 、 ピぺラジン— 1, 4— ビス (2—エタンスルホン酸) (PIPES) 等のグッド緩衝剤、 例えば酢 酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナ一ル、 ホウ酸塩、 コハ ク酸塩、 トリス (ヒドロキシメチル) ァミノメタン (Tris) 、 イミダゾ ール等が挙げられ、 なかでも中性付近に緩衝能を有するものが好ましい 。 また、 使用濃度としては、 通常この分野で用いられる濃度範囲から適 宜選択される。 上記した如き方法により得られた本発明に係る化合物は、 必要に応じ て自体公知の精製方法、 例えば J. Biol. Chem., 241. 3707 (1966)等 に記載の方法により精製してもよい。 次に、 本発明に係る脱水素酵素について説明する。 The reducing agent used in the above method may be any one usually used in this field, and examples thereof include sodium hydrosulfite, sodium borohydride, and poranpyridine. Examples of the solution to be used include a solution usually used in this field, such as water. The solution may contain, for example, a buffer or sodium bicarbonate for the purpose of preventing generation of bubbles. Compounds represented by the general formulas [1], [1 '], [3], [3'], [2-1], [2-2], [2-3] and [2-4] described above. To manufacture The buffer used is not particularly limited as long as it is generally used in this field. For example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis (2-hydroxyethyl) Glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonate (TAPS), 3-[(1,1-dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO) , N-cyclohexyl-2-aminoenesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP) Good buffers such as N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), for example Examples include citrate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) aminomethane (Tris), imidazole, etc. Those having a buffering capacity in the vicinity are preferred. The concentration used is appropriately selected from the concentration range usually used in this field. The compound according to the present invention obtained by the above method may be purified, if necessary, by a purification method known per se, for example, a method described in J. Biol. Chem., 241.3707 (1966). . Next, the dehydrogenase according to the present invention will be described.
本発明に係る脱水素酵素は、 上記した如き一般式 [ 1 ] で示される化 合物又はその還元体 (一般式 [ 1 ' ] で示される化合物) に対する反応比 が 4 0 %以上であり、 且つ、 5 0 mMの T r i s— H C 1 ( p H 7 . 5 ) 緩衝液中で 3 7 °C、 1 0日間保存後の残存活性が 7 0 %以上であるもの である。 ' 具体的には、 上記した如き性質を有する、 例えばアルコール脱水素酵 素、 リンゴ酸脱水素酵素、 乳酸脱水素酵素、 イソクェン酸脱水素酵素、 グリセロール脱水素酵素、 グリセ口一ルー 3—リン酸脱水素酵素.、 ダリ セロアルデヒドリン酸脱水素酵素、 ダルコ.一ス脱水素酵素、 グルコース — 6—リン酸脱水素酵素、 6—ホスホダルコン酸脱水素酵素、 ダルタミ ン酸脱水素酵素、 蟻酸脱水素酵素、 キサンチン脱水素酵素、 コレステロ ール脱水素酵素、 ロイシン脱水素酵素、 ピルべ一ト脱水素癣素、 ザルコ シン脱水素酵素、 D- 3-ヒドロキシプチレート脱水素酵素、 3·α—ヒドロ キシステロイ ド脱水素酵素、 /3—ヒドロォキシァミル脱水素酵素、 α— ォキシ酪酸脱水素酵素、 ソルビトール脱水素酵素、 ゥリジン二リン酸糖 . (UDPG) 脱水素酵素等が挙げられる。 The dehydrogenase according to the present invention has a reaction ratio to the compound represented by the general formula [1] or a reduced form thereof (the compound represented by the general formula [1 ′]) of 40% or more, And having a residual activity of 70% or more after storage for 10 days at 37 ° C in 50 mM Tris-HC1 (pH 7.5) buffer It is. '' Specifically, it has properties as described above, for example, alcohol dehydrogenase, malate dehydrogenase, lactate dehydrogenase, isoquenate dehydrogenase, glycerol dehydrogenase, glycerol 3-phosphate Dehydrogenase., Dali cellaldehyde phosphate dehydrogenase, Darco's dehydrogenase, Glucose 6-phosphate dehydrogenase, 6-Phosphodalconate dehydrogenase, Daltamate dehydrogenase, Formate dehydrogenase Enzymes, xanthine dehydrogenase, cholesterol dehydrogenase, leucine dehydrogenase, pyruvate dehydrogenase, sarcosine dehydrogenase, D-3-hydroxybutyrate dehydrogenase, 3α-hydro Xisteroide dehydrogenase, / 3-hydroxyamyl dehydrogenase, α-oxybutyrate dehydrogenase, sorbitol dehydrogenase, peridine diphosphate sugar (UDPG) Containing enzyme, and the like.
なかでも、 上記した如き性質を有する、 リンゴ酸脱水素酵素又はダル コース一 6—リン酸脱水素酵素が好ましい。 リンゴ酸脱水素酵素のなかでも、 下記の理化学的性質を有するものが 特に好ましい。  Among them, malate dehydrogenase or lucose-16-phosphate dehydrogenase having the above-mentioned properties is preferable. Among the malate dehydrogenases, those having the following physicochemical properties are particularly preferred.
(a) 5 OmMの T r i s -HC 1 (pH 7. 5) 緩衝液中で 3 Ί。じ、 ■ 1 0日間保存後の残存活性が 7 0 %以上、 .  (a) 3 中 で in 5 OmM Tris-HC1 (pH 7.5) buffer. The residual activity after storage for 10 days is 70% or more.
(b) 一般式 [ 1 ] において Yaが水酸基であり、 (Ra)naXaがェチルカル ポニル基又はメトキシカルボニル基であるものの還元体に対する反応性 比が 4 0 %以上、 (b) in the general formula [1] Y a is a hydroxyl group, (R a) n a X a is Echirukaru Poniru group or a reactive ratio reduced form of which is what a methoxycarbonyl group is 4 0% or more,
(c ) ォキサ口酢酸に対する Kmが 2 mM以下、  (c) The Km for oxa-mouth acetic acid is 2 mM or less,
(d) 一般式 [ 1 ] において Yaが水酸基であり、 (Ra)naXaがェチルカル 'ポニル基又はメトキシカルボニル基であるものの還元体に対する Kmが 0. 1 5 mM以下。 また、 グルコース一 6—リン酸脱水素酵素のなかでも、 下記の理化学 的性質を有するものが特に好ましい。 (d) In the general formula [1], Y a is a hydroxyl group, and (R a ) n a X a is an ethylcarl'ponyl group or a methoxycarbonyl group, 0.1 15 mM or less. Among the glucose-16-phosphate dehydrogenases, those having the following physicochemical properties are particularly preferred.
(a) 5 OmMの T r i s— HC 1 (p H 7. 5) 緩衝液中で 3 7° (:、 1 0日間保存後の残存活性が 7 0 %以上  (a) 37 ° in 5 OmM Tris-HC1 (pH 7.5) buffer (: 70% or more residual activity after storage for 10 days)
(b) 5 OmMの T r i s— HC 1 ( H 7. 5) 緩衝液を用いて調製 した 1 U/m 1の酵素溶液を 5 5°Cで 1 0分間熱処理した際の残存活性 が 8 0 %以上 ·  (b) The residual activity of a 1 U / m1 enzyme solution prepared using 5 OmM Tris-HC1 (H7.5) buffer solution at 55 ° C for 10 minutes was 80%. %that's all ·
( C ) 一般式 [ 1 ] において Yaがリン酸残基であり、 (Ra)naXaが - CH- NOH基であるものに対する反応性比が 7 0 %以上。 上記した如き脱水素酵素の由来については特に限定されないが、 例え ば細菌、 酵母等の各種微生物、 例えば動物由来組織、 細胞等、 例えば植 物由来細胞等が挙げられる。 より具体的には、 例えばリ ンゴ酸脱水素 素の場合は、 例えば Escherichia coh等の Escherichia 、 例 ¾ Aerobacter aeroaenes^ Aerobacter cloacae 等の Aerobacter 属 、 例 Enterooacter aeroaenes 等の Enterobacter厲、 例んほ Citrobactef freundii等の Citrobacter )禹、 例 ¾> Serratia marcescens Serratia plymuthicum、 Serratia marcescens の Serratia 、 例 ΐ fo> Proteus rettqen '等の Proteus属、 7L ^ Salmonella typhimurium等の Salmonella > ί列 . ί·ま Alcaligenes faecalis等の Alcaligenes属、例え (■ま Flavobacterium lutescens^ Flavobacterium arborescens> Flavooacterium car>sulatum、 Flavobacterium autothermophilum Flavobacterium menigosepticum 等の ひ oわ < cien't m属、 Λ. ^ Bacillus subtilis、 Bacillus natto、 Bacillus pumilus、 Bacillus licheniformis、 Bacillus cereus^ Bacillus stearothermophilus、 Bacillus thuringiensis、 Bacillus bre vis 等の Bacillus 、 Agrobacterium radiobacter、 Agrobacterium tumefaciens 、 Agrobacterium radiobacter 、 Agrobacterium tumefaciens等の Agrobacterium属、 例 fま Micrococcus ureae等の Micrococcus 属、 例え ま Cory neb act erium paurometabolum 等の Corynebacterium 属、 例 H Brevib acteriu m protophormiae 等の Brevibacterium 属、 例えま Cellulomonas flavigerta、 Cellulomonas biazotea等の Cellulomonas 属、 例; ¾ ま、 Pimelobacter simplex等の Pimelobacter 属、 例えば、 Hafnia alvei 等の Hafrtia 厲、 ί列えば、 Acinetobacter calcoaceticus 等 の Acinetobacter 属 、 例 え ί¾ Pseudomonas nboflavma、 Pseudomonas aeruginosa^ Pseuaomonas putida、 Pseudomonas fluorescens 、 Pseudomonas dacunhae、 Pseudomonas aureofaciens^ Pseudomonas dimirtuta、 Pseudomonas fluore s certs、 Pseudomonas taetrolens^ Pseudomonas maltophilia、 Pseudomonas syringae Pseudomonas desmolytica、 Pseudomonas putida等の Pseudomonas属、例え ^ま Distillery yeasts Saccharomyces sake、 Saccharomyces fermentati 等の Saccharomyces 禹、 例え Pichia saito Pichia nagariishii等の Pichia ίΆ、 例 ま Hansenula anomala、 Hansenula miso、 Hansenula octospora、 Hansenula petersonii ^ Hansenula polymorpha 等の Hansenula 属、 L ¾ Sporobolomyces salmonicolor 等の Sporobolomyces 厲、 例ん ま Cryptococcus terreus等の Cryptococcus属、 - fa Torulopsis aeria、 Torulopsis methanolovescens 、 Torulopsis nagoyaensis 等 の Torulopsis )禹、 例え fま Candida my co derma、 Candida pelliculosa^ Candida solani、 Candida methonolica、 Candida maltosa、 Candida carlo silignicola、 Candida humicola 等の Candida 属、 例え ま Wickerhamia fluorescens等の Wickerhamia属、 例 は Rhodotorula minuta、 Rnodotorula mucilひ gimosひ、 Rhodotorula rubra, Rhodotorula glutinis、 Rhodotorula rubra^ Rhodotorula glutiriis等の Rhodotorula 厲、例えば、 Trichosporon cutaneum等の Trichosporon属、例 Mucor racemosus、 Mucor jansseni 等の Mucor i¾、 例;^ば Asperaillus cellolosae^ Aspergillus oryzae等の Aspergillus厲、例え Ganoderma applanatum ^ CD Ganoderma S> ^!l ^. ^ Mycobacterium phlei ^ (D My co bacterium i > \Άえ Nocardia mexicanc Nocardia autotrophics Nocardia uniformis 等 の Nocardia 属 、 X. ^ Rhodococcus erythropolis 等の Rhodococcus 属、 例えば Streptomyces albus、 Streptomyces aureus, Streptomyces virginaL Streptomyces qriseus、 Streptomyces griseolus, Streptomyces scabies等の Streptomyces 属、 例えば TTienm/s sp等の rher ws属、 例えばブタ、 ゥシ、 ラット、 八ト等の動物由来の例えば心臓、 副腎皮質、 肝臓等の組織等が挙げられ る。 + (C) the general formula [1] Y a is phosphoric acid residue, (R a) n a X a is - CH- reactivity ratio to what NOH a group 70% or more. The origin of the dehydrogenase as described above is not particularly limited, and examples include various microorganisms such as bacteria and yeast, for example, tissues and cells derived from animals, and cells derived from plants, for example. More specifically, for example, in the case of a dehydrogenated lactate, for example, Escherichia such as Escherichia coh, Aerobacter genus such as Aerobacter aeroaenes ^ Aerobacter cloacae, Enterobacter Enter such as Enterooacter aeroaenes, and Citrobactef freundii, etc. Tr> Serratia marcescens Serratia plymuthicum, Serratia marcescens Serratia, eg Pro Fo> Proteus genus such as Proteus rettqen ', Salmonella such as 7L ^ Salmonella typhimurium> ί. , For example (Pama Flavobacterium lutescens ^ Flavobacterium arborescens> Flavooacterium car> sulatum, Flavobacterium autothermophilum Flavobacterium menigosepticum Bacillus subtilis, Bacillus natto, Bacillus pumilus, Bacillus licheniformis, Bacillus cereus ^ Bacillus stearothermophilus, Bacillus thuringiensis, Bacillus bacterium, Agrobacterium, Agrobacterium, Bacillus bacillus, Bacillus bacillus, Bacillus bacillus genus Agrobacterium such as radiobacter, Agrobacterium tumefaciens, etc., e. Genus Cellulomonas, e.g .; Pimelobacter genus such as Pimelobacter simplex; e.g., Hafrtia such as Hafnia alvei; e.g., Acinetobacter genus such as Acinetobacter calcoaceticus; e.g. , Pseudomonas dacunhae, Pseudomonas aureofaciens ^ Pseudomonas genus such as Pseudomonas dimirtuta, Pseudomonas fluore s certs, Pseudomonas taetrolens ^ Pseudomonas maltophilia, Pseudomonas syringae Pseudomonas desmolytica, Pseudomonas putida, etc. Hansenula anomala, Hansenula miso, Hansenula octospora, Hansenula petersonii ^ Hansenula genus such as Hansenula polymorpha, Sporobolomyces L such as L 等 Sporobolomyces salmonicolor, etc. nagoyaensis, etc.), e.g. fma Candida my co derma, Candida pelliculosa ^ Candida genus, such as Candida solani, Candida methonolica, Candida maltosa, Candida carlo silignicola, Candida humicola, etc. Rhodotorula の such as glutiriis, for example, Trichosporon genus such as Trichosporon cutaneum, for example, Mucor i, such as Mucor racemosus, Mucor jansseni, etc. l ^. ^ Mycobacterium phlei ^ (D My co bacterium i> \ ΆNocardia genus such as Nocardia mexicanc Nocardia autotrophics Nocardia uniformis; Rhodococcus genus such as X. ^ Rhodococcus erythropolis; Streptomyces genus such as Streptomyces griseolus and Streptomyces scabies, for example rhe such as TTienm / s sp genus rws, for example, tissues such as heart, adrenal cortex, liver, etc., derived from animals such as pigs, pests, rats, and rats.
尚、 リンゴ酸脱水素酵素を生産する能力を有するものであれば、 上記 した如き菌株又は組織細胞等の変異体であってもよい。  In addition, as long as it has the ability to produce malate dehydrogenase, a mutant such as the above-described strain or tissue cell may be used.
な力、 ¾ Serratia Jh ^ Proteus J > Salmonella 、 Alcaliaenes Flavobacterium属、 Bacillus属、 Agro.bacterium属、 Micrococcus Cory neb acterium 属 、 Brevibacterium 属、 Cellulomonas 属、 Pimelobacter属、 Hafnia属、 Acinetobacter属、 Pseudomonas属、 Saccharomyces属、 Pichia属、 Hansenula属、 Sporobolomyces属、 Cryptococcus 属、 Torulopsis 厲、 Candida 属、 Wickerhamia 厲、 Rhodotorula 属、 Trichosporon .、 Mucor 属、 Aspergillus 属、 Ganoderma属、 M cobacterium属、 Nocardia属、 Rhodococcus属、 Streptomjjces属、 動物由来組織が好ましい。 Serratia Jh ^ Proteus J> Salmonella, Alcaliaenes Flavobacterium, Bacillus, Agro.bacterium, Micrococcus Cory neb acterium, Brevibacterium, Cellulomonas, Pimelobacter, Hafnia, Acinetomus, Pseacomonas , Pichia, Hansenula, Sporobolomyces, Cryptococcus, Torulopsis 厲, Candida, Wickerhamia 厲, Rhodotorula, Trichosporon., Mucor, Aspergillus, The genus Ganoderma, the genus Mcobacterium, the genus Nocardia, the genus Rhodococcus, the genus Streptomjjces, and animal-derived tissues are preferred.
より好ましくは Bacillus属であり、なかでも、 Bacillus licheniformis がより好ましく、 特に Bacillus licheniformis · A K S— 2 3が特に好 ましい。  More preferably, it is of the genus Bacillus, and among them, Bacillus licheniformis is more preferred, and Bacillus licheniformis · AKS-23 is particularly preferred.
尚、 Bacillus licheniformis · A K S - 2 3は経済産業省工業技術院生 命工学工業技術研究所に 「微ェ研菌寄第 7 4 9 2号 (F E R M B P - 7 4 9 2 )」 として寄託され、 何人も入手可能である。 例えばグルコース一 6 — リ ン酸脱水素酵素の場合は、 例えば Escherichia coh'等の Escherichia J 、 例 x i Aerobacter aerogenes 等の Aerobacter属、例 ¾ Enterobacter aerogenes等の Enterobacter 厲、 ? i ま Serratia marcescens 等の Serratia 展、 例 【¾ Flavobacterium capsulatum ^ < Flavobacterium } !、例え νよ Bacillus sp. Bacillus subuhs、 Bacillus natto^ Bacillus licheniformis、 Bacillus sphaericus、 Bacillus cereus等の Bacillus属、 例え【ま Leuconostoc me s enter oides 等 の Leuconostoc 、 例 え Agrobacterium" tumefaciens 等の Agrobacterium 属、 例え Micrococcus sp 等の Micrococcus厲、 例 Λ_ Brennereihefe Rasse等の Brennereihefe属、 ¾ Saccharomyces sake^ Distillery yeasts Wine yeasts Baker's yeast、 Munchen beer yeast、 Base beer yeast'、 Saccharomyces cerevisiae var. ellipsoideus 、 Saccharomyces marxianus 、 Saccharomyces fragilis 、 Saccharomyces 、 fermentati 、 Saccharomyces lactis、 Saccharom ces chevalier Saccharom ces drosphilarum、 Saccharomyces cerevisiae、 Saccharomyces bay anus 等の Saccharomyces属、(列 _ Pichia polymorpha, Pichia naganishii 等の Pichia 属、 . Hansenula anomala、 Hansenula miso、 Hansenula octospora Hansenula petersoni Hansenula anomala 等の Hansenula属、 例えま Totulopsis nagcryaensis等の Totulopsis 属、例 _ (·ま Candida peUiculosa等の Candida属、例え Streptomyces albus 等の Streptomyces f禹、 例 _ Sporotncus schencKii 等の Sporvtricus属、 ¾ Aspergillus ceUolosaev等の Aspergillus 、 例えばブタ、 ゥシ、 ラット、 八ト等の動物由来の例えば脾、 副腎皮質、 肝臓、 乳腺等の組織等が挙げられる等が挙げられる。 Bacillus licheniformis · AKS-23 was deposited at the Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Life Science and Industrial Technology, as "FERMBP-7492". Available. For example, in the case of glucose 6-phosphate dehydrogenase, for example, Escherichia J such as Escherichia coh ', genus Aerobacter such as xi Aerobacter aerogenes, eg 例 Enterobacter の such as Enterobacter aerogenes,? i Serratia exhibition of Serratia marcescens etc., eg [¾ Flavobacterium capsulatum ^ <Flavobacterium}! Bacillus sp. Bacillus subuhs; Bacillus natto ^ Bacillus licheniformis; Bacillus sphaericus; Micrococcus sp, etc., e.g. Brennereihefe genus, such as __Brennereihefe Rasse, ac Saccharomyces sake ^ Distillery yeasts Wine yeasts Baker's yeast, Munchen beer yeast, Base beer yeast ', Saccharomyces cerevisiae var. , Saccharomyces lactis, Saccharom ces chevalier, Saccharom ces drosphilarum, Saccharomyces cerevisiae, Saccharomyces bay anus etc., the genus Saccharomyces, (column _ Pichia polymorpha, Pichia naganishii Hansenula anomala, Hansenula miso, Hansenula octospora Hansenula petersoni Hansenula genus such as Hansenula anomala, e.g. f U, eg _ Sporvtricus genus such as Sporotncus schencKii; As Aspergillus such as Aspergillus ceUolosaev; tissue such as spleen, adrenal cortex, liver, mammary gland, etc. from animals such as pigs, horses, rats, rats, etc. And the like.
尚、 グルコース— 6—リン酸脱水素酵素を生産する能力を有するもの であれば、 上記した如き菌株又は組織細胞等の変異体であってもよい。 より ナまし sは Bacillus i¾であり、な力でも、 Bacillus licheniformis がより好ましく、 特に Bacillus licheniformis · A K S— 7 5が特に好 ましい。 , 尚、 Bacillus licheniformis · Α Κ 3 _ 7 5は経済産業省工業技術院生 命工学工業技術研究所に 「微ェ研菌寄第 7 4 9 3号 (F E R M Β Ρ - 7 4 9 3 )」 として寄託され、 何人も入手可能である。 例えばグルタミン酸脱水素酵素の場合は、 例えば Aeroわ cicier cZoacae 等の Aerobacter属、 Ά. Flavohacterium menigosepticum 等の Flavohacterium j¾、例 (4 Nocardia er tnropous^ Nocardia globerula 等の Nocardia 、例 ί-ί Rhodococcus erythropous等の Rhodococcus 禹、 例 ば、 Streptomyces albus 等の Streptomyces 属、 例 ぱ、 Pyrococcus woeseu Pyrococcus
Figure imgf000036_0001
Pyrobaculum islandicum 等の ^rococc s属、 例えばエンドゥ、 トウモロコシ、 ダイズ等の植物 由来組織、 例えばブタ、 ゥシ、 ニヮトリ、 力エル等の動物由来の例えば 肝臓、 腎外皮、 脳等の組織等が挙げられる等が挙げられる。 尚、 グルタミン酸脱水素酵素を生産する能力を有するものであれば、 上記した如き菌株又は組織細胞等の変異体であつてもよい。
In addition, as long as it has the ability to produce glucose-6-phosphate dehydrogenase, it may be a mutant such as the above-described strain or tissue cell. Bacillus i¾ is more preferred, and Bacillus licheniformis is more preferred, and Bacillus licheniformis · AKS-75 is particularly preferred. In addition, Bacillus licheniformis · Κ 7 3 _ 7-5 was sent to the Ministry of Economy, Trade and Industry, Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, as “FERM 菌 Ρ-7349 3”. Deposited and available to anyone. For example, in the case of glutamate dehydrogenase, for example, the genus Aerobacter such as Aerocicier cZoacae, Ά. U, e.g., Streptomyces genus such as Streptomyces albus, e.g., Pyrococcus woeseu Pyrococcus
Figure imgf000036_0001
^ Rococcs genus such as Pyrobaculum islandicum, for example, tissues derived from plants such as endo, corn, soybean, etc., for example, tissues such as liver, kidney hull, brain, etc. derived from animals such as pigs, pests, chicks, and chickens And the like. In addition, as long as it has the ability to produce glutamate dehydrogenase, it may be a mutant such as the above-described strain or tissue cell.
より ナましくは、 Pvrococcus属でめり、な力でも、 Pyrococcus woeseL Pyrococcus furiosus P robaculum islandicum が、好ましく、 特に Pyrobaculum islandicum (DSM 4 1 8 4 ) 力 Sヌナまし 。  More preferably, Pyrococcus woeseL Pyrococcus furiosus Probaculum islandicum is preferable, and Pyrobaculum islandicum (DSM 4184) is particularly preferred.
尚 、 Pyrobaculum islanaicum ¾ Deutsche Sammlung von Mikroorganismen und Zellkulturenに寄託され、 何人も入手可能であ る。 また、 例えば乳酸脱水素酵素の場合は、 例えば Sia hyZococcus sp等 の Staphylococcus F > 例え Bacillus stearothermoohilus 等の Bacillus属、例えば Leuconostoc mesenterides等の Leuconostoc属、 例 は Brevibacterium protophormiae等の Brevibacterium > 例 Pseudomonas aeruginosa 、 Pseudomonas s ncyanea の Pseudomonas属、例えば Rhodococcus erythropolis等の Rhodococcus 属、 例えばブ夕、 ゥシ、 ニヮトリ、 ラット、 ハト、 ヒト等の動物由来の 例えば心臓、 筋肉、 脾、 副腎皮質、 肝臓、 乳腺等の組織、 赤血球等が挙 げられる等が挙げられる。  It has been deposited with Pyrobaculum islanaicum ¾ Deutsche Sammlung von Mikroorganismen und Zellkulturen and is available to anyone. For example, in the case of lactate dehydrogenase, for example, Staphylococcus F such as Sia hyZococcus sp> Bacillus genus such as Bacillus stearothermoohilus, for example Leuconostoc genus such as Leuconostoc mesenterides, eg Brevibacterium protophormiae etc. genus Pseudomonas of ncyanea, such as Rhodococcus erythropolis, etc. And the like.
尚、 乳酸脱水素酵素を生産する能力を有するものであれば、 上記した 如き菌株又は組織細胞等の変異体であってもよい。 本発明の脱水素酵素は、 例えば上記した如き微生物、 植物及び動物由 来の組織細胞等を常法に従って培養することにより製造することができ る。  In addition, as long as it has the ability to produce lactate dehydrogenase, it may be a mutant such as a strain or a tissue cell as described above. The dehydrogenase of the present invention can be produced, for example, by culturing the above-described tissue cells derived from microorganisms, plants and animals according to a conventional method.
また、 当該培養により得られる培養物から本発明の脱水素酵素を取得 するには、 例えば、 当該酵素が、 培養物のうち培養液中に存在する場合 は、 得られた培養物を濾過又は遠心分離等の常法により、 酵素を含有す 'る培養ろ液又は培養上清を得るか、 酵素が培養された微生物、 植物及び 動物由来の組織細胞等のペリブラズム又は細胞内に存在する場合は、 培 養物を濾過又は遠心分離等の常法に付して微生物、 植物及び動物由来の 組織細胞を集め、 適当な緩衝液に懸濁し、 例えば超音波ゃリゾチーム及 び凍結融解等の常法でこれを破壌した後、 濾過又は遠心分離等の常法で 酵素を含有する粗抽出液を得ればよい。 In order to obtain the dehydrogenase of the present invention from the culture obtained by the culture, for example, when the enzyme is present in the culture solution of the culture, The obtained culture is obtained by a conventional method such as filtration or centrifugation to obtain a culture filtrate or culture supernatant containing the enzyme, or a microorganism, plant or animal tissue cell from which the enzyme has been cultured. If present in the periplasm or inside the cells, the culture is subjected to conventional methods such as filtration or centrifugation to collect microbial, plant and animal-derived tissue cells, suspended in an appropriate buffer, and (4) After lysozyme and lyophilized it by a conventional method such as freeze-thawing, a crude extract containing the enzyme may be obtained by a conventional method such as filtration or centrifugation.
このようにして得られた、 本発明の脱水素酵素を含有する培養ろ液、 培養上清或いは粗抽出液から当該酵素を分離 ·精製するには、 自体公知 の分離 ·精製法を適切に組み合わせて実施すればよい。 これらの公知の 分離、 精製法としては、 塩析ゃ溶媒沈澱法等の溶解度の差を利用する方 法、 透析法、 限外濾過法、 ゲル濾過法、 或いは SDS—ポリアクリルアミ ドゲル電気泳動法等の主として分子量の差を利用する方法、 疎水クロマ トグラフィ一等の疎水性の差を利用する方法、 等電点電気泳動法等の等 電点の差を利用する方法、 ァフィ二ティークロマトグラフィー等の特異 的親和性を利用する方法等が挙げられる。 より具体的には、 例えばリンゴ酸脱水素酵素を取得する場合、 培養方 法としては、 固体培養で 液体培養でもよいが、 好ましくはフラスコ、 ジャー等による通気培養である。  In order to separate and purify the enzyme from the thus obtained culture filtrate, culture supernatant or crude extract containing the dehydrogenase of the present invention, appropriate separation and purification methods known per se are appropriately combined. It is sufficient to carry out. These known separation and purification methods include methods utilizing differences in solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis. Etc., mainly using differences in molecular weight, methods using hydrophobic differences such as hydrophobic chromatography, methods using isoelectric points such as isoelectric focusing, affinity chromatography, etc. And the like utilizing the specific affinity of the enzyme. More specifically, for example, when malate dehydrogenase is obtained, the culture method may be solid culture or liquid culture, but is preferably aeration culture using a flask, a jar or the like.
用いられる培地としては、 目的の、 微生物、 植物及び動物由来の組織 細胞等の培養に通常用いられるものが広く使用される。 炭素源としてグ ルコース、 グリセロール、 ソルビトール、 ラクトースなど、 窒素源とし ては酵母エキス、 肉エキス、 トリプトン、 ペプトンなど、 無機塩として は塩化ナトリウム、 塩化マグネシウム、 硫酸マグネシウム、 塩化カルシ ゥムなどを用いればよい。 また、 培養条件としては例えば p H 5 . 5〜 8 . 5、 好ましくは p H 6 . 5〜 7 . 5、 培養温度は 2 5〜 8 0 °C、 好ましくは 3 5〜 6 0 Tで 目的とする酵素が最高力価となる培養時間、 例えば 1 8〜 3 0時間にて 目的となる酵素を採取すればよい。 As the medium to be used, those usually used for culturing the target tissue cells derived from microorganisms, plants and animals are widely used. Glucose, glycerol, sorbitol, lactose, etc. as carbon sources, yeast extract, meat extract, tryptone, peptone, etc. as nitrogen sources, and sodium chloride, magnesium chloride, magnesium sulfate, calcium chloride, etc. as inorganic salts. Good. The culture conditions are, for example, pH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 25 to 80 ° C, preferably 35 to 60 T. The target enzyme may be collected at a culture time when the enzyme to be used has the highest titer, for example, 18 to 30 hours.
また、 微生物、 植物及び動物由来の組織細胞からのリンゴ酸脱水素酵 素の抽出方法としては、 例えば、 培養液から微生物、 植物及び動物由来 の組織細胞を遠心分離などによって分離し、 これをリン酸緩衝液、 トリ ス塩酸緩衝液などの緩衝液に懸濁した後、 リゾチーム、 超音波、 ガラス ピーズなどによって破砕して遠心分離し、 可溶性画分を粗酵素液として 回収する。  In addition, as a method for extracting malate dehydrogenase from tissue cells derived from microorganisms, plants and animals, for example, tissue cells derived from microorganisms, plants and animals are separated from the culture solution by centrifugation, and this is separated from phosphorus. After suspending in a buffer such as an acid buffer or Tris-HCl buffer, crush it with lysozyme, ultrasonic waves, glass peas, etc. and centrifuge, and collect the soluble fraction as a crude enzyme solution.
リンゴ酸脱水素酵素の精製方法としては、公知の蛋白質、酵素の単離、 精製手段等が挙げられる。 例えばアセトンまたはエタノールなどの有機 溶媒による分別沈殿法、 硫酸アンモニゥムなどによる塩析法、 イオン交 換クロマトグラフィー法、 疎水クロマトグラフィー法、 ァフィ二ティー クロマトグラフィー法、 ゲルろ過法などの一般的な酵素精製法を適宜選 択、 組み合わせて精製リンゴ酸脱水素酵素を得ることができる。  Examples of the method for purifying malate dehydrogenase include known protein and enzyme isolation and purification means. General enzyme purification such as fractional precipitation with organic solvents such as acetone or ethanol, salting out with ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, gel filtration, etc. Purified malate dehydrogenase can be obtained by appropriately selecting and combining the methods.
尚、 リンゴ酸脱水素酵素の保存方法としては、 安定化剤、 例えばショ 糖、 グリセロールなどを 5〜 5 0 %程度、. アミノ酸、 補酵素などを 0 . 0 1〜 0 . 1 %程度加えて凍結保存または凍結乾燥させて方法が好まし く、 無色透明の P E T (ポリエチレンテレフ夕レート) 等のフィルム上 にパインダーを介して酵素を固着する保存方法でも保存可能である。 また、 例えばグルコース一 6—リン酸脱水素酵素を取得する場合、 培 養方法としては、固体培養でも液体培養でもよいが好ましくはフラスコ、 ジャー等による通気培養である。  As a method for preserving malate dehydrogenase, a stabilizer such as sucrose or glycerol is added in an amount of about 5 to 50%, and an amino acid or coenzyme is added in an amount of about 0.01 to 0.1%. Preference is given to cryopreservation or freeze-drying, and it is also possible to preserve the enzyme on a film such as colorless and transparent PET (polyethylene terephthalate) via a binder. For example, when obtaining glucose 16-phosphate dehydrogenase, the culture method may be solid culture or liquid culture, but preferably aeration culture using a flask, a jar or the like.
用いられる培地としては目的の、 微生物、 植物及び動物由来の組織細 胞等の培養に通常用いられるものが広く使用される。 炭素源としてダル コース、 グリセロール、 ソルビトール、 ラクト一スなど、 窒素源として は酵母エキス、 肉エキス、 トリプトン、 ペプトンなど、 無機塩としては 塩化ナトリウム、 塩化マグネシウム、 塩化カルシウム、 硫酸マグネシゥ ム、 塩化マンガン、 塩化銅、 塩化亜鉛、 硫酸コバルトなどを用いればよ い。 The medium to be used may be tissue microbes derived from microorganisms, plants and animals. Those commonly used for culturing cells and the like are widely used. Carbon sources such as ducose, glycerol, sorbitol, and lactose; nitrogen sources such as yeast extract, meat extract, tryptone, and peptone; and inorganic salts such as sodium chloride, magnesium chloride, calcium chloride, magnesium sulfate, manganese chloride, Copper chloride, zinc chloride, cobalt sulfate or the like may be used.
また、 培養条件としては例えば P H 5 . 5〜 8 . 5、 好ましくは p H 6 . 5〜7 . 5、 培養温度は 1 5〜4 5 °C、 好ましくは 2 5〜 3 5 で 目的とする酵素が最高力価となる培養時間、 例えば 1 8〜 3 0時間にて 目的となる酵素を採取すればよい。  The culture conditions are, for example, PH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 15 to 45 ° C, preferably 25 to 35. The target enzyme may be collected at a culture time at which the enzyme has the highest titer, for example, 18 to 30 hours.
また、 微生物、 榫物及び動物由来の組織細胞からのグルコース一 6— リン酸脱水素酵素の抽出方法としては、 例えば、 培養液から菌体を遠心 分離などによって分離し、 これをリン酸緩衝液、 トリス塩酸緩衝液など の緩衝液に懸濁した後、 リゾチーム、 超音波、 ガラスビーズなどによつ て破砕して遠心分離し、 可溶性画分を粗酵素液として回収する。  In addition, as a method for extracting glucose 16-phosphate dehydrogenase from tissue cells derived from microorganisms, animals and animals, for example, cells are separated from the culture solution by centrifugation and the like, and this is separated into a phosphate buffer solution. After suspending in a buffer such as Tris-HCl buffer, lysate with lysozyme, ultrasonic waves, glass beads, etc., and centrifuge to collect the soluble fraction as a crude enzyme solution.
グルコース一 6—リン酸脱水素酵素の精製方法としては、 公知の蛋白 質、 酵素の単離、 精製手段等が挙げられる。 例えばアセトンまたはエタ ノールなどの有機溶媒による分別沈殿法、 硫酸アンモニゥムなどによる 塩析法、 イオン交換クロマトグラフィー法、疎水クロマトグラフィ一法、 ァフィ二ティークロマトグラフィー法、 ゲルろ過法などの一般的な酵素 精製法を適宜選択、 組み合わせて精製グルコース一 6—リン酸脱水素酵 素を得ることができる。  Examples of a method for purifying glucose-6-phosphate dehydrogenase include known protein and enzyme isolation and purification means. General enzyme purification such as fractional precipitation using organic solvents such as acetone or ethanol, salting out using ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, gel filtration, etc. Purified glucose 16-phosphate dehydrogenase can be obtained by appropriately selecting and combining the methods.
尚、 グルコース一 6—リン酸脱水素酵素の保存方法とじては、 安定化 剤、 例えばショ糖、 グリセロールなどを 5〜 5 0 %程度、 アミノ酸、 補 酵素などを 0 . 0 1〜 0 . 1 %程度加えて凍結保存または凍結乾燥させ て方法が好ましい。 また、 無色透明の P E T (ポリエチレンテレフタレ ート) 等のフィルム上にバインダーを介して酵素を固着する保存方法で も保存可能である。 例えばグルタミン酸脱水素酵素を取得する場合、 培養方法としては、 固体培養でも液体培養でもよいが、 好ましくはフラスコ、 ジャー等によ る通気培養である。 The method for preserving glucose 16-phosphate dehydrogenase is as follows. Stabilizers such as sucrose and glycerol are about 5 to 50%, and amino acids and coenzymes are 0.01 to 0.1%. %, And then cryopreserved or lyophilized. In addition, colorless and transparent PET (polyethylene terephthalate) ) Can also be stored by a storage method in which the enzyme is fixed on the film via a binder. For example, when obtaining glutamate dehydrogenase, the culture method may be solid culture or liquid culture, but preferably aeration culture using a flask, a jar or the like.
用いられる培地としては、 目的の、 微生物、 植物及び動物由来の組織 細胞等の培養に通常用いられるものが広く使用される。 炭素源としてグ ルコース、 グリセロール、 ソルビトール、 ラクトースなど、 窒素源とし ては酵母エキス、 肉エキス、 トリプトン、 ペプトンなど、 無機塩として は塩化ナトリウム、 塩化マグネシウム、 硫酸マグネシウム、 塩化カルシ ゥムなどを用いればよい。  As the medium to be used, those usually used for culturing the target tissue cells derived from microorganisms, plants and animals are widely used. Glucose, glycerol, sorbitol, lactose, etc. as carbon sources, yeast extract, meat extract, tryptone, peptone, etc. as nitrogen sources, sodium chloride, magnesium chloride, magnesium sulfate, calcium chloride, etc. as inorganic salts Good.
また、 培養条件としては例えば p H 5 . 5〜 8 . 5、 好ましくは p H 6 . 5〜7 . 5、 培養温度は 1 5〜4 5 °C、 好ましくは 2 5〜 3 5 °Cで 目的とする酵素が最高力価となる培養時間、 例えば 1 8〜 3 0時間にて 目的となる酵素を踩取すればよい。  The culture conditions are, for example, pH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 15 to 45 ° C, preferably 25 to 35 ° C. The target enzyme may be collected at a culture time at which the target enzyme has the highest titer, for example, 18 to 30 hours.
また、 微生物、 植物及び動物由来の組織細胞からのグルタミン酸脱水 素酵素の抽出方法としては、 例えば、 培養液から微生物、 榫物及び動物 由来の組織細胞を遠心分離などによって分離し、 これをリン酸緩衝液、 トリス塩酸緩衝液などの緩衝液に懸濁した後、 リゾチーム、 超音波、 ガ ラスビーズなどによって破碎して遠心分離し、 可溶性画分を粗酵素液と して回収する。  In addition, as a method for extracting glutamate dehydrogenase from tissue cells derived from microorganisms, plants and animals, for example, tissue cells derived from microorganisms, animals and animals are separated from a culture solution by centrifugation, and this is separated from phosphoric acid. After suspending in a buffer solution such as a buffer solution or Tris-HCl buffer solution, crush it with lysozyme, ultrasonic waves, glass beads, etc., and centrifuge, and collect the soluble fraction as a crude enzyme solution.
グルタミン酸脱水素酵素の精製方法としては、 公知の蛋白質、 酵素の 単離、 精製手段等が挙げられる。 例えばアセトンまたはエタノールなど の有機溶媒による分別沈殿法、 硫酸アンモニゥムなどによる塩析法、 ィ オン交換クロマトグラフィー法、 疎水クロマトグラフィ一法、 ァフイエ ティークロマトグラフィ一法、 ゲルろ過法などの一般的な酵素精製法を 適宜選択、 組み合わせて精製グルタミン酸脱水素酵素を得ることができ る。 Examples of the method for purifying glutamic acid dehydrogenase include known protein and enzyme isolation and purification means. For example, fractional precipitation with an organic solvent such as acetone or ethanol, salting out with ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, A purified glutamate dehydrogenase can be obtained by appropriately selecting and combining general enzyme purification methods such as a tea chromatography method and a gel filtration method.
尚、 グルタミン酸脱水素酵素の保存方法としては、 安定化剤、 例えば ショ糖、 グリセロールなどを 5〜 5 0 %程度、 アミノ酸、 補酵素などを 0. 0 1〜0. 1 %程度加えて凍結保存または凍結乾燥させて方法が好 ましい。 無色透明の P ET (ポリエチレンテレフタレート) 等のフィル ム上にパインダーを介して酵素を固着する保存方法でも保存可能である ( 例えば乳酸脱水素酵素を取得する場合、 垴養方法としては、 固体培養 でも液体培養でもよいが、 好ましくはフラスコ、 ジャー等による通気培 養である。 Glutamate dehydrogenase can be stored by adding a stabilizer such as sucrose or glycerol in an amount of about 5 to 50%, and adding amino acids or coenzymes in an amount of about 0.01 to 0.1%, and cryopreserving it. Alternatively, freeze-drying is preferred. The enzyme can be stored on a film such as colorless and transparent PET (polyethylene terephthalate) using a binder to fix the enzyme ( for example, when obtaining lactate dehydrogenase, the culture method may be solid culture). Liquid culture may be used, but aeration culture using a flask, a jar or the like is preferred.
用いられる培地としては、 目的の、 微生物、 植物及び動物由来の組織 細胞等の培養に通常用いられるものが広く使用される。 炭素源としてグ ルコース、 グリセロール、 ソルビトール、 ラク トースなど、 窒素源とし ては酵母エキス、 肉エキス、 トリプトン、 ペプトンなど、 無機塩として は塩化ナトリウム、 塩化マグネシウム、 硫酸マグネシウム、 塩化カルシ ゥムなどを用いればよい。  As the medium to be used, those usually used for culturing the target tissue cells derived from microorganisms, plants and animals are widely used. Glucose, glycerol, sorbitol, lactose, etc. are used as carbon sources, yeast extract, meat extract, tryptone, peptone, etc. are used as nitrogen sources, and sodium chloride, magnesium chloride, magnesium sulfate, calcium chloride, etc. are used as inorganic salts. I just need.
また、 培養条件としては例えば PH 5. 5〜8. 5、 好ましくは pH 6. 5〜7. 5、 培養温度は 1 5〜45°C、 好ましくは 2 5〜40 で 目的とする酵素が最高力価となる培養時間、 例えば 1 8〜 30時間にて 目的となる酵素を採取すればよ^。  The culture conditions are, for example, pH 5.5 to 8.5, preferably pH 6.5 to 7.5, and the culture temperature is 15 to 45 ° C, preferably 25 to 40. It is only necessary to collect the target enzyme in a culturing time to obtain a titer, for example, 18 to 30 hours.
また、 微生物、 植物及び動物由来の組織細胞からの乳酸脱水素酵素の 抽出方法としては、 例えば、 培養液から微生物、 植物及び動物由来の組 織細胞等を遠心分離などによって分離し、 これをリン酸緩衝液、 トリス 塩酸緩衝液などの緩衝液に懸濁した後、 リゾチーム、 超音波、 ガラスビ ーズなどによって破砕して遠心分離し、 可溶性画分を粗酵素液として回 収する。 In addition, as a method for extracting lactate dehydrogenase from tissue cells derived from microorganisms, plants, and animals, for example, tissue cells derived from microorganisms, plants, and animals are separated from the culture solution by centrifugation, and this is separated from phosphorus. After suspending in a buffer such as acid buffer or Tris-HCl buffer, lysozyme, ultrasonic, Crush with a solution, centrifuge, and collect the soluble fraction as a crude enzyme solution.
尚、 ヒ卜赤血球から取得する場合には、 ヒト赤血球を収集し、 緩衝液 を添加して破壊し、 粗酵素液として回収すればよい。  In the case of obtaining human erythrocytes from human erythrocytes, human erythrocytes may be collected, destroyed by adding a buffer, and recovered as a crude enzyme solution.
乳酸脱水素酵素の精製方法としては、 公知の蛋白質、 酵素の単離、 精 製手段等が挙げられる。 例えばアセトンまたはエタノールなどの有機溶 媒による分別沈殿法、 硫酸アンモニゥムなどによる塩析法、 イオン交換 クロマトグラフィー法、 疎水クロマトグラフィー法、 ァフィ二ティーク 口マトグラフィ一法、ゲルろ過法などの一般的な酵素精製法を適宜選択、 組み合わせて精製乳酸脱水素酵素を得ることができる。  Examples of the method for purifying lactate dehydrogenase include known protein and enzyme isolation and purification means. Common enzymes such as fractional precipitation using an organic solvent such as acetone or ethanol, salting out using ammonium sulfate, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, gel filtration, etc. Purified lactate dehydrogenase can be obtained by appropriately selecting and combining purification methods.
尚、 乳酸脱水素酵素の保存方法としては、 安定化剤、 例えばショ糖、 グリセロールなどを 5〜 5 0 % 程度、 アミノ酸、 捕酵素などを 0. 0 1 〜0. 1 %程度加えて凍結保存または凍結乾燥させて保存方法が好まし い。 無色透明の PET (ポリエチレンテレフタレート) 等のフィルム上 にバインダ一を介して酵素を固着する保存方法でも保存可能である。 得られた脱水素酵素の Km値は、 常法により求めればよく、 また、 補 酵素誘導体に対する反応性比 (%) は、 以下の計算式を用いることによ り求めることができる。 '  Lactate dehydrogenase can be stored by adding a stabilizer such as sucrose or glycerol in an amount of about 5 to 50% and adding an amino acid or a capture enzyme in an amount of about 0.01 to 0.1%. Alternatively, freeze-drying and preservation are preferred. It can also be stored by a storage method in which the enzyme is fixed onto a film of colorless and transparent PET (polyethylene terephthalate) through a binder. The Km value of the obtained dehydrogenase may be determined by a conventional method, and the reactivity ratio (%) to the coenzyme derivative can be determined by using the following formula. '
反応比 = 1 00 XA c t (補酵素誘導体) / A c t (補酵素) Reaction ratio = 100 XAct (coenzyme derivative) / Act (coenzyme)
A c t (補酵素誘導体);補酵素誘導体を用いて測定した場合の酵素 活性 A ct (coenzyme derivative); Enzyme activity measured using coenzyme derivative
A c t (補酵素) ;補酵素を用いて測定した場合の酵素活性 また、 本発明に於いて、 各脱水素酵素の活性も、 常法により求めれば よい。 即ち、 例えばリンゴ酸脱水素酵素、 乳酸脱水素酵素及びグルタミン酸 脱水素酵素の各活性測定は、 下表に記載の所定の基質及び所定の還元型 補酵素 (NADH 又は NADPH) 又は還元型補酵素誘導体 (NADH 又は NADPH の誘導体) の存在下、 酵素反応を行い、 還元型補酵素 (NADH 又は NADPH)又は還元型補酵素誘導体(NADH又は NADPHの誘導体) の極大吸収波長に於ける吸光度の減少を測定し、 下記計算式を用いて酵 素活性を計算することにより行うことができる。 Act (coenzyme); Enzyme activity when measured using a coenzyme. In the present invention, the activity of each dehydrogenase may be determined by a conventional method. That is, for example, each activity of malate dehydrogenase, lactate dehydrogenase, and glutamic acid dehydrogenase is measured by using a predetermined substrate and a predetermined reduced coenzyme (NADH or NADPH) or reduced coenzyme derivative described in the following table. (Enzyme reaction) in the presence of (NADH or NADPH derivative) and measure the decrease in absorbance at the maximum absorption wavelength of reduced coenzyme (NADH or NADPH) or reduced coenzyme derivative (NADH or NADPH derivative) However, the enzyme activity can be calculated by using the following formula.
また、 グルコース- 6-リン酸脱水素酵素、 グルコース脱水素酵素、 コレ ステロ一ル脱水素酵素、 3 α -ヒドロキシステロィド脱水素酵素及びソル ビトール脱水素酵素の各活性測定は、 下表に記載の所定の基質及び所定 の酸化型補酵素 (NAD又は NADP) 又は酸化型補酵素誘導体 (NAD又 は NADPの誘導体) の存在下、 酵素反応を行い、 還元型補酵素 (NADH 又は NADPH)又は還元型補酵素誘導体(NADH又は NADPHの誘導体) の極大吸収波長に於ける吸光度の増加を測定し、 下記計算式を用いて酵 素活性を計算することにより行うことができる。  The activity of glucose-6-phosphate dehydrogenase, glucose dehydrogenase, cholesterol dehydrogenase, 3α-hydroxysteroid dehydrogenase and sorbitol dehydrogenase was measured in the table below. The enzyme reaction is carried out in the presence of the prescribed substrate and the prescribed oxidized coenzyme (NAD or NADP) or the oxidized coenzyme derivative (NAD or NADP derivative) described above, and the reduced coenzyme (NADH or NADPH) or The measurement can be performed by measuring the increase in absorbance at the maximum absorption wavelength of the reduced coenzyme derivative (a derivative of NADH or NADPH) and calculating the enzymatic activity using the following formula.
Figure imgf000044_0001
Figure imgf000044_0001
〔酵素活性計算式〕 酵素活性 (U/m l ) = Δ A/ ε X ( V + n ) X 1 / n X 1 /X △ A : 1分間あたりの吸光度差 (Enzyme activity calculation formula) Enzyme activity (U / ml) = ΔA / εX (V + n) X1 / nX1 / X △ A: Absorbance difference per minute
ε :還元型補酵素又は還元型補酵素誘導体のミリモル分子吸光係数 η :添加した酵素量 (ml) ε: Millimol molecular extinction coefficient of reduced coenzyme or reduced coenzyme derivative η: Amount of enzyme added (ml)
V :反応液量 (ml) V: Reaction liquid volume (ml)
X :酵素の希釈倍率 以下に、 本発明の酵素学的測定方法並びに酵素学的測定用試薬につい て説明する。 X: Dilution factor of enzyme The enzymatic measurement method and the reagent for enzymatic measurement of the present invention are described below.
本発明に係る化合物は、 NAD、 NADP、 NADH又は NADPHを利用す る酵素学的測定法及びそこで用いられる、 NAD、 NADP、 NADH 又は' NADPHを含む任意の試薬に於いて、 NAD、 NADP、 NADH又は NADPH に代えて用いることができる。  The compound according to the present invention can be used in an enzymatic assay using NAD, NADP, NADH or NADPH and any reagent used therefor including NAD, NADP, NADH or 'NADPH. Alternatively, it can be used in place of NADPH.
NAD、 NADP、 NADH又は NADPHを利用する酵素学的測定法として は、 下式 1 0に示す反応を利用するものであればよい。  As an enzymatic assay using NAD, NADP, NADH or NADPH, any method utilizing a reaction represented by the following formula 10 may be used.
Figure imgf000045_0001
Figure imgf000045_0001
10
Figure imgf000045_0002
(式中、 Yは'前記と同じ。) 具体的には、 例えば臨床検査分野や生化学分野、 食品分野等で通常行 われている、 例えばアルコール脱水素酵素、 リンゴ酸脱水素酵素、 乳酸 脱水素酵素、 イソクェン酶脱水素酵素、 グリセロール脱水素酵素、 ダリ セロール一 3—リン酸脱水素酵素、 グリセロアルデヒドリン酸脱水素酵 素、 グルコース脱水素酵素、 グルコース一 6—リン酸脱水素酵素、 6— ホスホダルコン酸脱水素酵素、 グルタミン酸脱水素酵素、 蟻酸脱水素酵 素、 キサンチン脱水素酵素、 コレステロール脱水素酵素、 ロイシン脱水 素酵素、 ピルべ一ト脱水素酵素、 ザルコシン脱水素酵素、 D-3-ヒドロキ シブチレート脱水素酵素、 3 α—ヒドロキシステロイド脱水素酵素、 β ーヒドロォキシァミル脱水素酵素、 一ォキシ酪酸脱水素酵素、 ソルビ トール脱水素酵素、 UDPG脱水素酵素、 等の脱水素酵素、 ァスパラギン 酸アミノ トランスフェラ一ゼ (GOT)、 ァラニンアミノ トランスフェラ —ゼ(GPT)、 クレアチンキナーゼ(CK) 等の酵素、 遊離脂肪酸(NEFA)、 尿素窒素 (UN)、 クレアチニン (CRE)、 コレステロール、 無機リン (IP)、 胆汁酸等の生体内物質、 例えばグルタミン酸、 グルコース、 ソルビトー ル、 エタノール、 尿素、 乳酸、 アデノシン三リ 酸 (ATP) 等の化学物 質等の測定対象成分を、 上記式 10 に示す反応を利用して測定する方法 が挙げられる。
Ten
Figure imgf000045_0002
(In the formula, Y is the same as described above.) Specifically, for example, alcohol dehydrogenase, malate dehydrogenase, and lactic acid dehydration are usually performed in the field of clinical testing, biochemistry, and food. Dihydrogenase, Isoquen II dehydrogenase, Glycerol dehydrogenase, Dali serol-3-phosphate dehydrogenase, Glyceraldehyde phosphate dehydrogenase, Glucose dehydrogenase, Glucose 16-phosphate dehydrogenase, 6 — Phosphodalconate dehydrogenase, glutamate dehydrogenase, formate dehydrogenase, xanthine dehydrogenase, cholesterol dehydrogenase, leucine dehydrogenase, pyruvate dehydrogenase, sarcosine dehydrogenase, D-3- Hydroxybutyrate dehydrogenase, 3α-hydroxysteroid dehydrogenase, β-hydroxyamyl dehydrogenase, monooxybutyrate dehydrogenase Dehydrogenases such as elemental, sorbitol dehydrogenase, UDPG dehydrogenase, etc., enzymes such as aspartate aminotransferase (GOT), alanine aminotransferase (GPT), creatine kinase (CK), free fatty acids (NEFA), urea nitrogen (UN), creatinine (CRE), cholesterol, inorganic phosphorus (IP), bile acids, and other biological substances such as glutamic acid, glucose, sorbitol, ethanol, urea, lactic acid, and adenosine triacid ( A method of measuring a component to be measured such as a chemical substance such as ATP) using the reaction represented by the above formula 10 can be mentioned.
本発明の酵素学的測定方法は、 本発明に係る化合物を NAD、 NADP、 NADH又は NADPHの代わりに用いる以外は、上記した如き NAD、 NADP、 NADH又は NADPHを利用する酵素学的測定方法に準じて実施すればよ く、 使用されるその他の試薬類もこれら当該酵素学的測定方法に準じて 適宜選択すればよい。  The enzymatic measurement method of the present invention is based on the enzymatic measurement method using NAD, NADP, NADH or NADPH as described above, except that the compound according to the present invention is used instead of NAD, NADP, NADH or NADPH. The other reagents to be used may be appropriately selected according to the enzymatic measurement method.
即ち、 NAD、 NADP、 NADH又は NADPHを利用する酵素学的測定法 で用いられる試薬中に、 従来用いられている NAD、 NADP、 NADH又は NADPH の代わりに本発明に係る化合物又はその還元体を共存させて、 当該酵素学的測定方法に準じて測定を行えばよい。 That is, an enzymatic assay using NAD, NADP, NADH or NADPH In the reagent used in the above, the compound according to the present invention or a reduced form thereof may be used in place of the conventionally used NAD, NADP, NADH or NADPH, and the measurement may be performed according to the enzymatic measurement method. .
本発明に於ける測定対象成分としては前記した通りであり、 また、 測 定対象試料としては、上記した如き測定対象成分を含むものが挙げられ、 例えば臨床検査分野や生化学分野、 食品分野等で用いられる、 例えば血 清、 血漿、 髄液、 唾液等の各種体液、 尿、 糞便 (その希釈物等) 等の排 泄物、 リンパ球、 血球、 各種細胞類、 各種生体組織の抽出液等の生体由 来試料、 例えば植物の組織、 細胞の抽出液等の植物由来試料、 例えば微 生物培養液や抽出液等の微生物由来試料、 例えば食品又はその抽出液等 の食品由来試料等が挙げられる。 本発明の酵素学的測定用試薬は、 上記した如き測定対象試料中の測定 対象成分を測定するに当たり、 上記した如き NAD、 NADP、 NADH又は NADPH を利用する酵素学的測定方法用試薬の代わりに使用されるもの である。 .  The components to be measured in the present invention are as described above, and the samples to be measured include those containing the components to be measured as described above, such as the clinical test field, the biochemistry field, the food field, etc. For example, various body fluids such as serum, plasma, cerebrospinal fluid, and saliva, excretions such as urine and feces (diluted products), lymphocytes, blood cells, various cells, and extracts of various biological tissues Examples include biologically derived samples such as plant tissues, plant-derived samples such as cell extracts, and microorganism-derived samples such as microbial cultures and extracts, and food-derived samples such as foods and extracts thereof. . The reagent for the enzymatic measurement of the present invention is used in place of the reagent for the enzymatic measurement method using NAD, NADP, NADH or NADPH as described above in measuring the component to be measured in the sample to be measured as described above. It is used. .
本発明の試薬は、 一般式 [ 1 ]、 [ 1,]、 [3]、 [3 ']、 [2-1]、 [2- 2]、 [2-3] 及び [2-4] で示される化合物を含んでなるものであり、 従来困難であった長期間に亘る貯蔵 (保存) 安定性を有し、 10°C保存時 で少なくとも 12力月以上、 通常 13力月以上、 30°C保存時で 2.5力月 以上性能が劣化することなく使用可能である。 '  The reagent of the present invention has the general formula [1], [1,], [3], [3 '], [2-1], [2-2], [2-3] and [2-4] It contains the compound shown in the table, has long-term storage (preservation) stability, which has been difficult in the past, at least 12 months or more at 10 ° C storage, usually 13 months or more, 30 ° It can be used without deterioration for more than 2.5 months when stored in C. '
ここで、 上記した如き貯蔵安定性とは、 より具体的には、 本発明に係 る化合物にあっては、 当該化合物の補酵素としての活性が、 10°C 2力月 保存時で通常 85%以上、 好ましくは 90%以上、 10°C 1 3力月保存時で 通常 85%以上、 好ましくは 90%以上、 30°C2.5力月保存時で通常 50% 以上、 好ましくは 60%以上、 より好ましくは 65%以上保持され、 例え ば、 各種脱水素酵素と組み合わせて各種酵素学的測定に用いられる補酵 素として使用可能であることをいい、 また、 本発明に係る化合物の還元 体にあっては、 当該化合物の補酵素としての活性が、 ,10°C 2力月保存時 で通常 85 %以上、 好ましくは 90 %以上、 より好ましくは 95%以上、 10°C 1 3力月保存時で通常 85%以上、 好ましくは 90%以上、 より好ま しくは 95%以上、 30°C2.5力月保存時で通常 65%以上、好ましくは 70% 以上、 より好ましくは 75%以上保持され、 例えば、 各種脱水素酵素と組 み合わせて各種酵素学的測定に用いられる補酵素として使用可能である ことをいう。 Here, the storage stability as described above refers more specifically to the activity of the compound according to the present invention as a coenzyme when stored at 10 ° C for 2 months. % Or more, preferably 90% or more, usually 85% or more when stored at 13 ° C for 13 months, usually 90% or more, usually 50% or more when stored at 30 ° C for 2.5 months, preferably 60% or more , More preferably 65% or more, for example For example, it means that it can be used as a coenzyme used for various enzymological measurements in combination with various dehydrogenases.In the case of a reduced form of the compound according to the present invention, Has an activity of usually 85% or more, preferably 90% or more, more preferably 95% or more when stored at 10 ° C for 2 months, and usually 85% or more, preferably 90% when stored at 10 ° C for 13 months. % Or more, more preferably 95% or more, and usually 65% or more, preferably 70% or more, more preferably 75% or more when stored at 30 ° C for 2.5 months.For example, in combination with various dehydrogenases It also means that it can be used as a coenzyme for various enzymatic measurements.
尚、 本発明の試薬は、 例えばこれら化合物が水性溶媒中に含まれてな る水性溶媒溶液からなるもの、 これら化合物が吸収性担体に含浸 ·乾燥 されてなるもの或いはこれら化合物が含まれてなる凍結乾燥品からなる もの等種々の形態からなるものであり、 好ましくは、 水性溶媒溶液から なるものである。  The reagents of the present invention include, for example, those comprising an aqueous solvent solution in which these compounds are contained in an aqueous solvent, those in which these compounds are impregnated in an absorbent carrier and dried, or those comprising these compounds. It is composed of various forms such as a lyophilized product, and is preferably composed of an aqueous solvent solution.
本発明の試薬は、 これら何れの形態であっても上記した如き貯蔵安定 性を有し、 特に、 水性溶媒溶液中での安定性は、 従来のものに比較して 飛躍的に増大している。 即ち、 各種脱水素酵素を用いる酵素学的測定法 用の補酵素溶液として本発明に係る補酵素誘導体を含有する水性溶媒溶 液を調製した場合、 当該補酵素誘導体溶液中の補酵素活性は、 上記した 如き貯蔵安定性を示すのである。 本発明の試薬 (方法) に於いて用いられる一般式 [ 1 ] 又は [ 1 ' ] で 示される化合物のなかでも、一般式 [ 1 ]又は [ 1 ' ]に於いて、 -(Ra)naXa で示される基が、 -COORi! a、 -CORi 2 a、 -CONHRi 3、 -CSRi 4、 -CH=NOH 又は- CH=CHCONH2 (ァクリルアミ ド基) で示されるものが好ましい。 中でも、 一般式 [ 1 ] で示される化合物としては、 一般式 [ 1 ] に於 いて、 naが 0で且つ Xaが- COR12 a基 [式中、 R12 aは- R5 a -NHR6 a又は -N(R6 a)(R7 a)を表す (式中、 R5 aは炭化水素残基を表し、 R6 a及び R7 aはそ れぞれ独立して水素原子、 置換基を有していても良い炭化水素残基又は アミノ基を表す。)。] 又は- CH = NOH基である力 或いは naが 1·で且つ Xaが- CONH2基であるものが好ましく、 更に、 一般式 [ 1 ] に於いて、 (Ra)naXaがアクリルアミド基 (-CH=CHCONH2)、 ェチルカルポニル基 (-COC2H5) 又は- CH-NOH 基であるものが好ましい。 特に、 一般式 [ 1 ] に於いて、 Yaが水酸基の場合は、 (Ra)naXaがェチルカルポニル基 又は- CH NOH基であるものが好ましく、 また、 一般式 [ 1 ] に於いて、 Yaがリン酸残基の場合は、 (Ra)naXaがェチルカルポニル基又は- CH = NOH基であるものが好ましい。 The reagent of the present invention has storage stability as described above in any of these forms, and in particular, the stability in an aqueous solvent solution is dramatically increased as compared with the conventional reagent. . That is, when an aqueous solvent solution containing the coenzyme derivative according to the present invention is prepared as a coenzyme solution for an enzymatic assay using various dehydrogenases, the coenzyme activity in the coenzyme derivative solution is as follows. It shows storage stability as described above. Among the compounds represented by the general formula [1] or [1 '] used in the reagent (method) of the present invention, in the general formula [1] or [1'],-(R a ) n The group represented by a X a is -COORi! a , -CORi 2 a , -CONHRi 3 , -CSRi 4 , -CH = NOH or -CH = CHCONH 2 (an acrylamide group) are preferred. Among them, the compound represented by the general formula [1] includes a compound represented by the general formula [1]: There are, and X a in n a is 0 - in COR 12 a group [wherein, R 12 a is - R 5 a -NHR 6 a or -N (R 6 a) (R 7 a) represents a (wherein , R 5 a is a hydrocarbon residue, represents a R 6 a and R 7 a Waso respectively independently a hydrogen atom, which may have a substituent hydrocarbon residue or an amino group.) . ] Or - CH = NOH a group force or n a is the and X a at 1 · - CONH preferably has a 2 group, further, in the general formula [1], (R a) n a X a Is an acrylamide group (—CH = CHCONH 2 ), an ethylcarbonyl group (—COC 2 H 5 ), or a —CH—NOH group. In particular, in the general formula [1], if Y a is a hydroxy group, (R a) n a X a is Echirukaruponiru group or - At a preferably has a CH NOH group, the general formula [1] There are, if Y a is a phosphoric acid residue, (R a) n a X a is Echirukaruponiru group or - what is preferably CH = NOH group.
また、 一般式 [ 1] で示される化合物の還元体 (一般式 [ 1 '] で示さ れる化合物) としては、 一般式 [ 1 ] に於いて、 naが 0であり、 Xaが- COORu a S (式中、 Ru aは水素原子又は炭化水素残基を示す。) 又は- COR12 a基 [式中、 R12 aは- R5 a -NHR6 a又は- N(R6 a)(R7 a)を表す (式中、 R5 aは炭化水素残基を表し、 R6 a及び R はそれぞれ独立して水素原子、 置換基を有していても良い炭化水素残基又はアミノ基を表す。)。]である ものの還元体が好ましく、 更に、 一般式 [1] に於いて、 (Ra)naXaがメ トキシカルポニル基 (-COOCH3)、 エトキシカルボニル基 (-COOC2H5) 又はェチルカルポニル基.(-COC2H5) であるものの還元体が好ましい。 特に、 一般式 [ 1 ] に於いて、 Yaが水酸基の場合は、 (Ra)naXaがメトキ シカルポニル基又はェチルカルポニル基であるものの還元体が好ましく、 一般式 [ 1] に於いて、 Yaがリン酸残基の場合は、 (Ra)naXaがェチルカ ルポニル基であるものの還元体が好ましい。 As the reduced form of the compound represented by the general formula [1] (the compound represented by the general formula [1 ']), in the general formula [1], n a is 0, X a is - COOR (wherein, R u a is a hydrogen atom or a hydrocarbon residue.) u a S or - in COR 12 a group [wherein, R 12 a is - R 5 a -NHR 6 a or - N (R 6 a) (R 7 a) represents a (wherein, R 5 a is a hydrocarbon residue, each R 6 a and R independently represent a hydrogen atom, a hydrocarbon residue which may have a substituent Or an amino group.). In the general formula [1], (R a ) n a X a is a methoxycarbonyl group (—COOCH 3 ), an ethoxycarbonyl group (—COOC 2 H 5 ) or Ethyl carbonyl group. (—COC 2 H 5 ) A reduced form thereof is preferred. In particular, in the general formula [1], if Y a is a hydroxy group, in the (R a) n a X a is a reduced form of what is methoxide Shikaruponiru group or Echirukaruponiru group is preferable, the general formula [1] , if Y a is a phosphoric acid residue, (R a) n a X a is a is a reduced form being preferred Echiruka Ruponiru group.
本発明の試薬 (方法) に於いて用いられる一般式 [3] 又は [3 '] で 示される化合物のなかでも、 一般式 [3] 及び [3 '] に於いて、 -(R)nX' で示される基が、 - COOR - COR2、 -CONHR3、 -CSR4又は- CH=NOH で示されるものが好ましく、 特に- (R)nX'で示される基が- COOCH3、 - COC2H5、 -CONHCH2OH、 -CH-NOH又 fま- CONHCH3 で示されるも のが好ましい。 Among the compounds represented by the general formula [3] or [3 ′] used in the reagent (method) of the present invention, in the general formulas [3] and [3 ′],-(R) nX ′ Group, represented in - COOR - COR 2, -CONHR 3 , -CSR 4 or - preferably those represented by CH = NOH, especially - group represented by (R) nX 'is - COOCH 3, - COC 2 Those represented by H 5 , -CONHCH 2 OH, -CH-NOH or f-CONHCH 3 are preferred.
本発明の試薬 (方法) に於いて用いられる一般式 [2-1] で示される 化合物のなかでも、 一般式 [2-1 ] に於いて、 nbが 0で且つ Xbで示さ れる基が、 -COI12 b又は- CH=NOHであるものが好ましく、 なかでも、 一般式 [ 2- 1 ]に於いて、(Rb)nbXbがァクリルアミド基(-CH=CHCONH2)、 ェチルカルポニル基(-COC2H5)又は- CH=NOH基であるものが特に好 ましく、ェチルカルポニル基又は- CH = NOH基であるものが更に好まし い。 ' Among the compounds represented by the reagent of the present invention the general formula used at the (Method) [2-1], in the general formula [2-1], a group n b is represented by and X b 0 Is preferably -COI 12 b or -CH = NOH, and particularly, in the general formula [2-1], (R b ) n b X b is an acrylamide group (-CH = CHCONH 2 ), Particularly preferred are those having an ethylcarbonyl group (—COC 2 H 5 ) or —CH 基 NOH group, and more preferred are those having an ethylpropyl group or —CH = NOH group. '
本発明の試薬 (方法) に於いて用いられる一般式 [2-2] で示される 化合物のなかでも、 一般式 [2-2] に於いて、 が 0で、 Xeで示され る基が- COOI^ で且つ が低級アルキル基であるものが好ましい、 なかでも、 一般式 [2-2] に於いて、 (Re)ncXeがメトキシカルポニル基 (-COOCH3) 又はエトキシカルポニル基 (-COOC2H5) 基であるものが 特に好ましく、 メトキシカルポニル基であるものが更に好ましい。 Among the compounds represented by the reagent of the present invention the general formula used at the (Method) [2-2], in the general formula [2-2], in but 0, a group Ru indicated by X e -COOI ^ is preferably a lower alkyl group. In particular, in the general formula [2-2], (R e ) n c X e is a methoxycarbonyl group (-COOCH 3 ) or an ethoxycarponyl group Those having a (—COOC 2 H 5 ) group are particularly preferred, and those having a methoxycarbonyl group are more preferred.
本発明の試薬 (方法) に於いて用いられる一般式 [2-4] で示される 化合物のなかでも、 一般式 [2-4] に於いて、 ne力 SOで、 Xeで示され る基が- COOI^ で且つ が低級アルキル基であるものが好ましい、 なかでも、 一般式 [2-4] に於いて、 (Re)neXeがメトキシカルポニル基 (-COOCH3) 又はエトキシカルポニル基 (-COOC2H5) 基であるものが 特に好ましい。 Among the compounds represented by the reagent of the present invention the general formula used at the (Method) [2-4], in the general formula [2-4], in n e force SO, Ru indicated by X e group - COOI ^ and in are those preferably a lower alkyl group, among others, in the general formula [2-4], (R e) n e X e is methoxy Cal Poni Le group (-COOCH 3) or ethoxy Those which are carbonyl groups (—COOC 2 H 5 ) are particularly preferred.
本発明の試薬は、 一般式 [ 1 ]、 [ 1 ']、 [3]、 [3 ']、 [2-1]、 [2- 2 ]、 [2-3] 及び [2- 4] で示される化合物を含んでなるものであり、 これら化合物を用いる以外は、 上記した如き NAD、 NADP、 NADH又は NADPH を利用する酵素学的測定法で通常用いられるその他の試薬類を、 通常使用される濃度範囲で使用すればよい。 The reagent of the present invention has a general formula [1], [1 '], [3], [3'], [2-1], [2-2], [2-3] and [2-4] Or NAD, NADP, NADH or as described above, except that these compounds are used. Other reagents commonly used in enzymatic assays using NADPH may be used in the normally used concentration range.
本発明の試薬 (方法) に於いて、 用いられる本発明の化合物又はその 還元体.の使用量は、 用いる当該化合物又は還元体の種類や、 利用する測 定法の原理、 種類等の違いにより異なるため一概には言えないが、 目的 の酸化還元反応を行わせる際の最終濃度として通常 0.1mM〜50mM、 好ましくは 0.1mM〜20mM、 より好ましくは O. lmM〜: !OmMである。 本発明に於いて用いられる水性溶媒としては、 通常この分野で用いら れるものであれば特に限定されないが、 例えば N— [トリス (ヒドロキ シメチル) メチル] グリシン (Tricine)、 N , N—ビス (2—ヒドロキ シェチル) グリシン、 N—トリス (ヒドロキシメチル) メチルー 3—ァ ミノプロパンスルホン酸 (TAPS)、 3— [ ( 1, 1 一ジメチルー 2—ヒ ドロキシェチル) アミノー 2 —ヒ ドロキシプロパンスルホン酸] ( AMPSO )、 N —シクロへキシルー 2—アミノエタンスルホン酸 (CHES) , N—シクロへキシルー 2—ヒドロキシ一 3—ァミノプロパン スルホン酸 (CAPSO)、 2—アミノー 2—メチルー 1 一プロパノール (AMP) , N—シクロへキシルー 3—ァミノプロパンスルホン酸(CAPS) , ピぺラジン一 1, 4 一ビス ( 2 —エタンスルホン酸) (PIPES) 等のグッ ド緩衝剤、 例えば酢酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナ一 ル、 ホウ酸塩、 コハク酸塩、 トリス (ヒドロキシメチル) ァミノメタン (Tris)、 イミダゾール等の緩衝剤を含む、 例えば水等の溶液が挙げられ る。  The amount of the compound of the present invention or its reduced form used in the reagent (method) of the present invention varies depending on the kind of the compound or reduced form used, the principle of the measuring method to be used, the kind, etc. Therefore, it cannot be said unconditionally, but the final concentration at the time of carrying out the target oxidation-reduction reaction is usually 0.1 mM to 50 mM, preferably 0.1 mM to 20 mM, and more preferably O. lmM to! OmM. The aqueous solvent used in the present invention is not particularly limited as long as it is generally used in this field. For example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis ( 2-hydroxysethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), 3- [(1,1-dimethyl-2-hydroxyhydryl) amino-2-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-13-aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP), Good products such as N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES) Includes buffering agents such as acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) aminoamino (Tris), imidazole, etc., eg water Solution.
これら緩衝剤のなかでも 3〜 1 1、 好ましくは 5〜 9の pH範囲で緩 衝能を有するものが好ましく、 また、 緩衝剤の使用濃度としては、 通常 この分野で用いられる濃度であれば特に限定されず、 通常 l mM〜 1000πιΜ、 好ましくは 10mM〜500mMである。 本発明に於いて用いられる吸収性担体としては、 通常この分野で用い られるものであれば特に限定されないが、 例えば多孔性のシート状乃至 膜状物、 フォーム (発泡体)、 織布状物、 不織布状物、 編物状物等が挙げ られる。 これらの素材としては、 天然、 半合成又は合成のもの等が挙げ られ、 これら素材を、 抄紙、 製膜、 発泡成型、 編製、 織製等の常法によ り成型することにより得ることができる。これら素材の具体例としては、 例えば綿、 麻、 絹、 セルロース、 ロックウール、 獣毛、 ニトロセル口一. ス、 セルロースアセテート、 ガラス (繊維)、 カーボン (繊維)、 ボロン (繊維)、 ポリアミド、 ァラミド、 ポリビエルアルコール、 ポリビュルァ セテ一ト、 レーヨン、 ポリエステル、 ポリアクリル酸、 ポリアクリル酸 'エステル、 ポリプロピレン、 ポリエチレン、 ポリ塩化ビニル、 ポリ塩化 ビ二リデン等が挙げられる。 Among these buffers, those having a buffering ability in the pH range of 3 to 11, preferably 5 to 9 are preferable.The concentration of the buffer used is not particularly limited as long as it is a concentration generally used in this field. It is not limited, but is usually 1 mM to 1000πιΜ, preferably 10 mM to 500 mM. The absorbent carrier used in the present invention is not particularly limited as long as it is generally used in this field, and examples thereof include a porous sheet or membrane, a foam (foam), a woven fabric, Non-woven fabrics, knits and the like can be mentioned. Examples of these materials include natural, semi-synthetic, and synthetic materials. These materials can be obtained by molding these materials by a conventional method such as papermaking, film forming, foam molding, knitting, or weaving. . Specific examples of these materials include cotton, hemp, silk, cellulose, rock wool, animal hair, nitrocellulose, cellulose acetate, glass (fiber), carbon (fiber), boron (fiber), polyamide, and aramide. Polyvinyl alcohol, polyvinyl acetate, rayon, polyester, polyacrylic acid, polyacrylic acid ester, polypropylene, polyethylene, polyvinyl chloride, polyvinylidene chloride and the like.
尚、 本発明の化合物又はその還元体を上記した如き吸収性担体に含 浸 ·乾燥させる方法としては、 通常この分野で用いられる方法であれば よく、 特に限定されないが、 具体的には上記した如き吸収性担体を、 本 発明の化合物又はその還元体を含有する溶液中に浸漬後、 自然乾燥、 送 風乾燥或いは凍結乾燥等する方法、 上記した如き吸収性担体に、 本発明 の化合物又はその還元体を含有する溶液を塗布、 噴霧或いは滴下等した 後、 自然乾燥、 送風乾燥或いは凍結乾燥等する方法等が挙げられる。 尚、 本発明の化合物又はその還元体を含有させる溶液としては、 先に述べた 本発明に於いて用いられる水性溶媒と同様のものが挙げられ、 また、 こ のような溶液中には、 通常この分野で用いられるその他の試薬類を適宜 含有させておいてもよい。  The method of impregnating and drying the compound of the present invention or a reduced form thereof in an absorbent carrier as described above may be any method generally used in this field, and is not particularly limited. A method of immersing the absorbent carrier in a solution containing the compound of the present invention or a reduced form thereof, followed by natural drying, air drying or freeze drying, etc .; After applying, spraying, or dropping a solution containing a reduced form, a method such as natural drying, blast drying, or freeze drying may be used. Examples of the solution containing the compound of the present invention or a reduced form thereof include the same as the aqueous solvent used in the present invention described above. Other reagents used in this field may be appropriately contained.
また、吸収性担体に含浸させる本発明の化合物又はその還元体の量は、 用いる当該化合物又は還元体の種類や、 利用する測定法の原理、 種類等 の違いにより異なるため一概には言えないが、 吸収性担体の本発明の化 合物又はその還元体を含浸させる部分の単位面積 (m2) 当たりの含浸 量として通常 0.05〜25mM、 好ましくは 0.05〜5mM、 より好ましくは 0.05〜2.5mMである。 また、 通常、 上記した如き本発明の試薬 (方法) は、 本発明に係る化 合物 (一般式 [ 1 ]、 [ 1 ']、 [3]、 [ 3 ']、 [2-1 ]、 [2-2]、 [2-3] 及び [2-4] で示される化合物) と、 脱水素酵素とを含んでなるものが 一般,的である。 The amount of the compound of the present invention or its reduced form to be impregnated into the absorbent carrier is determined by the type of the compound or reduced form to be used, the principle of the measurement method to be used, the kind, etc. Although it cannot be said unconditionally because it differs depending on the difference in the amount of the compound, the amount of impregnation per unit area (m 2 ) of the portion of the absorbent carrier impregnated with the compound of the present invention or its reduced form is usually 0.05 to 25 mM, preferably 0.05 to 25 mM. 55 mM, more preferably 0.05-2.5 mM. Usually, the reagent (method) of the present invention as described above is a compound of the present invention (general formulas [1], [1 '], [3], [3'], [2-1], Compounds represented by [2-2], [2-3] and [2-4]) and dehydrogenases are generally and generally used.
本発明の試薬 (方法) に於いて用いられる脱水素酵素としては、 本発 明に係る化合物を基質とし得るものであればよく、 特に限定されない。 好ましくは、 基質となる本発明に係る化合物 (補酵素誘導体) に対す る反応比が 1 0 %以上、 より好ましくは 2 0 %以上、 更に好ましくは 4 0 %以上のもの、 或いは 5 OmMの T r i s— HC 1 ( p H 7. 5) 緩 衝液中で 3 7° (:、 1 0日間保存後の残存活性が 5 0 %以上、 より好まし くは 6 0 %以上、 更に好ましくは 7 0 %以上のものであり、 特に基質と なる本発明の化合物 (補酵素誘導体) に対する反応比が 1 0 %以上、 よ り好ましくは 2 0 %以上、 更に好ましくは 40 %以上であり、 且つ 5 0 mMの T r i s— HC 1 (p H 7. 5) 緩衝液中で 3 7° (:、 1 0日間保 存後の残存活性が 5 0 %以上、 より好ましくは 6 0 %以上、 更に好まし くは 7 0 %以上のものである。  The dehydrogenase used in the reagent (method) of the present invention is not particularly limited as long as it can use the compound according to the present invention as a substrate. Preferably, the reaction ratio with respect to the compound (coenzyme derivative) of the present invention serving as a substrate is 10% or more, more preferably 20% or more, even more preferably 40% or more, or 5 OmM T ris-HC 1 (pH 7.5) 37 ° in buffer (: 50% or more, preferably 60% or more, more preferably 70% or more after storage for 10 days) At least 10%, more preferably at least 20%, even more preferably at least 40%, and more preferably at least 50%, with respect to the compound of the present invention (coenzyme derivative) as a substrate. 37 ° C. in mM Tris-HC1 (pH 7.5) buffer (50% or more, more preferably 60% or more, more preferably 60% or more after storage for 10 days) Or more than 70%.
より具体的には、 例えばアルコール脱水素酵素、 リンゴ酸脱水素酵素 、 乳酸脱水素酵素、 イソクェン酸脱水素酵素、 グリセロール脱水素酵素 、 グリセロール一 3—リン酸脱水素酵素、 グリセ口アルデヒドリン酸脱 水素酵素、 グルコース脱水素酵素、 グルコース一 6—リン酸脱水素酵素 、 、 6—ホスホダルコン酸脱水素酵素グルタミン酸脱水素酵素、 蟻酸脱 水素酵素、 キサンチン脱水素酵素、 コレステロール脱水素酵素、 口イシ ン脱水素酵素、 ピルべ一ト脱水素酵素、 ザルコシン脱水素酵素、 D- 3-ヒ ドロキシプチレート脱水素酵素、 3 α—ヒドロキシステロィド脱水素酵 素、 )3—ヒドロォキシァミル脱水素酵素、 .ひ一ォキシ酪酸脱水素酵素、 ソルビト一ル脱水素酵素、 UDPG脱水素酵素等であって、 上記した性質 を有するものが挙げられ、 なかでも、 リンゴ酸脱水素酵素、 乳酸脱水素 酵素、 グルタミン酸脱水素酵素、 キサンチン脱水素酵素、 グルコース一 6—リン酸脱水素酵素、 グルコース脱水素酵素、 コレステロール脱水素 酵素、 3 ひ —ヒドロキシステロィド脱水素酵素、 'ソルビトール脱水素酵 素等が好ましい。 More specifically, for example, alcohol dehydrogenase, malate dehydrogenase, lactate dehydrogenase, isoquenate dehydrogenase, glycerol dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde aldehyde phosphate dehydrogenase Hydrogenase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphodalconic dehydrogenase glutamic dehydrogenase, formate dehydrogenase Hydrogenase, xanthine dehydrogenase, cholesterol dehydrogenase, oral isine dehydrogenase, pyruvate dehydrogenase, sarcosine dehydrogenase, D-3-hydroxybutylate dehydrogenase, 3α-hydroxy Sterol dehydrogenase,) 3-hydroxyamyl dehydrogenase, hydroxybutyrate dehydrogenase, sorbitol dehydrogenase, UDPG dehydrogenase, etc., having the above properties Among them, malate dehydrogenase, lactate dehydrogenase, glutamate dehydrogenase, xanthine dehydrogenase, glucose-6-phosphate dehydrogenase, glucose dehydrogenase, cholesterol dehydrogenase, 3 Preferred are hydroxyhydroxydehydrogenase, sorbitol dehydrogenase and the like.
上記した如き脱水素酵素の中でも、 本発明に係る脱水素酵素、 即ち、 一般式 [ 1 ] で示される化合物又はその還元体 (一般式 で示され る化合物) に対する反応比が 4 0 %以上であり、 且つ、 5 0 1111^の丁 i s—H C l ( p H 7 . 5 ) 緩衝液中で 3 7 °C、 1 0日間保存後の残存 活性が 7 0 %以上であるものが好ましく、 なかでも、 上記した如き性質 を有する、 リンゴ酸脱水素酵素又はグルコース一 6—リン酸脱水素酵素 が好ましく、 これらの好ましい態様、 由来、 入手方法等は先に述べた通 りである。  Among the dehydrogenases described above, the reaction ratio with respect to the dehydrogenase according to the present invention, that is, the compound represented by the general formula [1] or a reduced form thereof (the compound represented by the general formula) is not less than 40%. Yes, and it is preferable that the remaining activity after storage for 10 days at 37 ° C. in a buffer solution of 50 1111 ^ is 37% or more at 70 ° C. is 70% or more. However, malate dehydrogenase or glucose 16-phosphate dehydrogenase having the above-mentioned properties is preferred, and preferred embodiments, origins, methods of obtaining them, and the like are as described above.
尚、 本発明に於いて、 上記した如き本発明に係る脱水素酵素を用いる 場合、 当該脱水素酵素と組み合わせて用いられる補酵素としては、 本発 明に係る化合物又はその還元体以外の化合物又はその誘導体を使用する こともできる。 即ち、 本発明に係る脱水素酵素は、 脱水素酵素を用いる 酵素学的測定法及びそこで用いられる、 脱水素酵素を含む任意の試薬に 於いて、 従来の脱水素酵素の代わりに用いることができ、 本発明に係る 脱水素酵素を従来の脱水素酵素の代わりに用いる以外は、 自体公知の脱 水素酵素を用いる酵素学的測定方法に準じて実施すればよく、 使用され るその他の試薬類もこれら当該酵素学的測定方法に準じて適宜選択すれ ばよい。 In the present invention, when the dehydrogenase according to the present invention as described above is used, the coenzyme used in combination with the dehydrogenase may be a compound other than the compound according to the present invention or a reduced form thereof. Derivatives thereof can also be used. That is, the dehydrogenase according to the present invention can be used in place of a conventional dehydrogenase in an enzymatic assay using the dehydrogenase and any reagent used therein, including the dehydrogenase. However, except that the dehydrogenase according to the present invention is used in place of the conventional dehydrogenase, it may be carried out according to a known enzymatic measurement method using a dehydrogenase. Other reagents may be appropriately selected according to the enzymatic measurement method.
本発明の試薬 (方法) に於いて、 用いられる脱水素酵素の使用量は、 用いる脱水素酵素の種類や、 利用する測定法の原理、 種類等の違いによ り異なるため一概には言えないが、 最終濃度として通常 0.1〜: L06 IUZ ml、 好ましくは 0.:!〜 105 IUZml、 より好ましくは 0.1〜: 104 IU/ml である。 上記した如き本発明の試薬 (方法) に於いて、 本発明に係る化合物と 、 脱水素酵素との組み合わせとしては特に限定されないが、 例えば以下 の如き組み合わせが好ましい。 In the reagent (method) of the present invention, the amount of the dehydrogenase used differs depending on the type of the dehydrogenase used, the principle of the measurement method used, the type, etc., and cannot be determined unconditionally. but usually 0.1 to a final concentration of: L0 6 IUZ ml, preferably 0.! 1010 5 IUZml, more preferably 0.1 to 10 4 IU / ml. In the reagent (method) of the present invention as described above, the combination of the compound of the present invention and a dehydrogenase is not particularly limited, but for example, the following combinations are preferable.
組合せ 補酵素誘導体 補酵素誘導体を基質とし得る脱水素酵素 ύンゴ酸脱水素酵素 Combination Coenzyme Derivatives Dehydrogenases with Coenzyme Derivatives as Substrates
1 一般式 [1]で示される 又は  1 or represented by general formula [1]
化合物又は tの ¾兀体 リンゴ酸脱水素酵素及び乳酸脱水素酵素 :? N 1 1  Compound or t ¾ ¾ body malate dehydrogenase and lactate dehydrogenase:? N 1 1
2 一 乳酸脱水素酵素  2 lactate dehydrogenase
化合物又はその還元体  Compound or its reduced form
J0X c: *ίし J0X c: *
3 ェ グルコース- 6-リン酸脱水素酵素 化合物又はその還元体  3) Glucose-6-phosphate dehydrogenase compound or its reduced form
―船: ?f『"で ; h  -Ship:? F ""; h
4 グルコース脱水素酵素  4 Glucose dehydrogenase
化合物又はその還元体  Compound or its reduced form
―船 『1 1で ; hス  ―Ship “11”; h
5 グルタミン酸脱水素酵素  5 Glutamate dehydrogenase
化合物又はその還元体 Compound or its reduced form
^T JTT ^ci i4lKス^  ^ T JTT ^ ci i4lK ^
6 一 ώδΐ^ r i丄l』  6 ώ ώδΐ ^ r i 丄 l ''
キサンチン脱水素酵素 化合物又はその還元体  Xanthine dehydrogenase compound or its reduced form
―船 7^门1で h  ―H on ship 7 ^ 门 1
7 コレステロール脱水素酵素  7 Cholesterol dehydrogenase
化合物又はその還元体  Compound or its reduced form
8 一般式 [1]で示される 3 0! -ヒドロキシステロィド脱水素酵素 化合物又はその還元体 8 30! -Hydroxysteroid dehydrogenase compound represented by the general formula [1] or a reduced form thereof
9 一般式 [1]で示される ソルビ卜ール脱水素酵素 9 Sorbitol dehydrogenase represented by general formula [1]
化合物又はその還元体  Compound or its reduced form
また、 より好ましくは、 以下の組み合わせである Also, more preferably, the following combination
組合せ 補酵素誘導体 補酵素誘導体を基質 とし得る脱水素酵素 一般式 [1]において Yaがリン酸残基であり、 Y a is phosphoric acid residue in combination coenzyme derivative coenzyme derivative dehydrogenase formula which may be a substrate [1],
naか 0で且つ Xaか- COR12 a基 (式中、 R12 a n a or 0 and X a or — COR 12 a group (wherein, R 12 a
10 グルコース- 6-リン酸 基は低級アルキル基 表す。 ) 又は- CH = 脱水素酵素 NOH基であるもの  10 Glucose-6-phosphate represents a lower alkyl group. ) Or-CH = dehydrogenase NOH group
一般式 [1]において Yaが水酸基であリ、 が In the general formula [1], Y a is a hydroxyl group, and
0で且つ Xaか- COR12 a基 (式中、 R12 a基は 0 and whether Xa - COR 12 a group (wherein, R 12 a group
11 キサンチン脱水素酵 低級アルキル基を表す。 ) 又は - CH-NOH  11 Xanthine dehydrogenase Represents a lower alkyl group. ) Or-CH-NOH
基であるもの  What is the base
一般式 [1]において Yaがリン酸残基であり、 リンゴ酸脱水素酵素 η ?^ 0で且つ Xか- COR12 d基又は- Vは In the general formula [1], Ya is a phosphate residue, malate dehydrogenase η? ^ 0 and X or -COR 12 d group or -V is
12  12
COORn a'S (式中、 R12 a '及び Ru a'は低級ァ リンゴ酸脱水素酵素 及び乳酸脱水素酵素 ルキル基を表す。 ) であるものの還元体 '(Wherein, R 12 a S' and R u a 'is a lower § malate dehydrogenase and lactate dehydrogenase alkyl group.) COOR n a a a as reductants
一般式 [1]において Yaがリン酸残基であり、 Y a is phosphoric acid residue in the general formula [1],
n z?» U L M JXaX?»-COR12 ® I3.-nz? »ULM JXaX?»-COR 12 ® I3.-
13 乳酸脱水素酵素13 Lactate dehydrogenase
COORn a'S (式中、 R12 a '及び Rua'は低級ァ COOR n a 'S (where R 12 a ' and Ru a 'are lower
ルキル基を表す。 ) であるものの還元体  Represents a alkyl group. ) A reductant of
一般式〖1]において Yaがリン酸残基であリ、 Formula 〖1] in Y a is be phosphoric acid residues,
naが 0で且つ Xaが- COR /基又は-n a is 0 and X a is -COR / group or-
14 グルタミン酸脱水素14 Glutamate dehydrogenation
COORn a'S (式中、 /'及び Ru a'は低級ァ 酵素 COOR n a 'S (wherein, /' and R u a 'lower § enzyme
ルキル基を表す。 ) であるものの還元体 更に好ましくは、 以下の組み合わせである Represents a alkyl group. ) Is a reduced form, and more preferably, a combination of the following:
組合せ 補酵素誘導体 基暂 補酵素誘導体 とし得る脱水素酵素 一般式 [1]において Yaがリン酸残基であり、 In combination coenzyme derivative Moto暂coenzyme derivative is capable dehydrogenase general formula [1] Y a is phosphoric acid residue,
15 グルコース- 6-リン酸 (Ra)naXaが- CH = NOH基であるもの 脱水素酵素15 Glucose-6-phosphate (R a ) n a X a is -CH = NOH group Dehydrogenase
—般式 [1]において Yaが水酸基であリ、 —In the general formula [1], Y a is a hydroxyl group,
16 キサンチン脱水素酵 (Ra)naXaがェチルカルポニル基又は- CH= 16 Xanthine dehydrogenase (R a ) n a Xa is an ethylcarbonyl group or -CH =
NOH基であるもの  Those that are NOH groups
一般式 [1]において Yaが水酸基であリ、 リンゴ酸脱水素酵素Formula ant in [1] Y a is a hydroxyl group, malate dehydrogenase
17 (Ra)naXaがェチルカルボニル基又はメ卜キ ?は 17 (R a ) n a Xa is an ethylcarbonyl group or a methyl group
シカルボニル基であるものの還元体 リンゴ酸脱水素酵素  Reduced form of a cyclocarbonyl group Malate dehydrogenase
—般式 [1]において Yaが水酸基であり、 - In general formula [1] Y a is a hydroxyl group,
18 (Ra)naXaがェチルカルポニル基又はメ卜キ 乳酸脱水素酵素 18 (R a ) n a Xa is an ethylcarbonyl group or methoxy lactate dehydrogenase
シカルボニル基であるものの還元体  A reduced form of a cyclocarbonyl group
一般式 [1]において Yaが水酸基であり、 Y a is a hydroxyl group in the general formula [1],
グルタミン酸脱水素 Glutamate dehydrogenation
19 (Ra)naXaがェチルカルボニル基又はメ卜キ 酵素 19 (R a ) n a Xa is an ethylcarbonyl group or a methylenzyme
シカルポニル基であるものの還元体  A reduced form of a cyclical group
尚、 一般的には、 上記組み合わせのうち、 1、 1 2及び 1 7は、 例え ば測定対象試料中のグルタミン酸ォキザ口酢酸トランスアミナーゼ測定 用に用いられるものであり、 2、 1 3及び 1 8は、 例えば測定対象試料 中のグルタミン酸ピルビン酸トランスアミナーゼ測定用に用いられるも のであり、 また、 3、 1 0及び 1 5は、 例えば測定対象試料中のクレア チンキナーゼ測定用に用いられるものである。 また、 3、 4、 1 0及び 1 5は、 例えば測定対象試料中のダルコ一ス測定用に用いられるもので あり、 5、 1 4及び 1 9は、 例えば測定対象試料中の尿素窒素測定用に 用いられるものであり、 また、 6、 1 1及び 1 6は、 例えば測定対象試 料中の無機リン測定用に用いられるものである。 更に、 7は、 例えば測 定対象試料中のコレステロール測定用に用いられるものであり、 8は、 例えば測定対象試料中の胆汁酸測定用に用いられるものであり、 また、 9は、 例えば測定対象試料中のソルビトール測定用に用いられるもので ある。 上記した如き本発明に於いて用いられるその他の試薬類としては、 利 用する測定法の原理や種類等の違いにより異なるため一概には言えない が、 例えば'酸化還元酵素等の共役酵素、 当該酵素の基質、 発色剤、 ATP 等のヌクレオチド類等が挙げられ、 これらは通常この分野で用いられる 使用濃度で用いられる。 また、 必要に応じて例えばエチレンジァミン四 酢酸 (EDTA) 等のキレート剤、 例えばアジ化物等の防腐剤、 例えば卜 リトン X— 1 0 0等の界面活性剤、 安定化剤、 金属塩、 酵素等の賦活化 剤、 測定対象試料中に存在する各種共存物質の影響を回避するための影 響回避剤等を通常この分野で用いられる使用濃度で適宜添加することが できる。 本発明の試薬は、 本発明に係る化合物又はその還元体、 又は/及び本 発明に係る脱水素酵素と、 上記した如きその他の試薬類とを全て含むも の、 好ましくはこれらを全て含む水性媒体溶液からなる、 いわゆる 1試 薬系のものでも、 また、 これら成分を適宜分割含有する複数のもの、 好 ましくは水性媒体溶液からなる、 いわゆる 2試薬系等多試薬系のもでも 何れでもよい。 In general, among the above combinations, 1, 12, and 17 are used, for example, for measuring glutamate oxalate acetic acid transaminase in a sample to be measured, and 2, 13, and 18 are used for measurement. For example, it is used for measuring glutamate pyruvate transaminase in a sample to be measured, and 3, 10, and 15 are used, for example, for measuring creatine kinase in a sample to be measured. 3, 4, 10, and 15 are used, for example, for measuring Darcos in a sample to be measured, and 5, 14, and 19 are used, for example, for measuring urea nitrogen in a sample to be measured. 6, 11, and 16 are used, for example, for measuring inorganic phosphorus in a sample to be measured. Further, 7 is used, for example, for measuring cholesterol in a sample to be measured, 8 is, for example, used for measuring bile acid in a sample to be measured, and 9 is, for example, used for measuring bile acid in a sample to be measured. Used for measuring sorbitol in samples is there. The other reagents used in the present invention as described above cannot be described unconditionally because they differ depending on the principle and type of the measurement method to be used. Examples include enzyme substrates, color formers, nucleotides such as ATP, and the like, which are generally used at concentrations used in this field. If necessary, a chelating agent such as ethylenediaminetetraacetic acid (EDTA), a preservative such as azide, a surfactant such as triton X-100, a stabilizer, a metal salt, an enzyme, etc. An activator, an effect avoiding agent for avoiding the influence of various coexisting substances present in the sample to be measured, and the like can be appropriately added at a working concentration usually used in this field. The reagent of the present invention contains all of the compound of the present invention or a reduced form thereof, and / or the dehydrogenase of the present invention, and the other reagents as described above, and preferably contains an aqueous medium containing all of them. It may be a so-called one-reagent system consisting of a solution, or a plurality of those containing these components appropriately divided, preferably a multi-reagent system such as a so-called two-reagent system consisting of an aqueous medium solution. .
尚、 本発明の試薬には、 本発明に係る化合物と、 必要に応じて例えば キレート剤、 防腐剤、 界面活性剤、 安定化剤、 金属塩、 酵素等の賦活化 剤、 '測定対象試料中に存在する各種共存物質の影響を回避するための影 響回避剤等を含むもの、 好ましくは水性媒体溶液からなる補酵素又は脱 水素酵素標品ゃ標準物、 或いはキヤリブレーター等も含まれる。 以下に、 グルタミン酸ォキザ口酢酸トランスアミナーゼ、 グルタミン 酸ピルビン酸トランスアミナーゼ、 クレアチンキナ一ゼ、 グルコース、 尿素窒素、 無機リン、 コレステロール、 胆汁酸及びソルビトール測定用 試薬を例にとり、 具体的に説明する。 The reagent of the present invention includes the compound of the present invention and, if necessary, an activator such as a chelating agent, a preservative, a surfactant, a stabilizer, a metal salt, an enzyme, etc. And a coenzyme or dehydrogenase standard (standardized from an aqueous medium solution), or a calibrator, preferably containing an effect avoiding agent for avoiding the effects of various coexisting substances present in the water. Below, glutamic acid oxalate acetate transaminase, glutamine A specific description will be given using a reagent for measuring acid pyruvate transaminase, creatine kinase, glucose, urea nitrogen, inorganic phosphorus, cholesterol, bile acid, and sorbitol as an example.
〔グルタミン酸ォキザ口酢酸トランスァ'ミナ一ゼ測定用試薬〕 本発明に係る化合物の還元体、 又は Z及び脱水素酵素は、 例えば下記 反応式で示される原理を利用するグルタミン酸ォキザ口酢酸トランスァ ミナーゼ測定用試薬 (方法) に適用することができる。 グルタミン酸才キサ口酢酸 卜ランスアミナーゼ [Reagent for measuring glutamate oxalate acetate transaminase] The reduced form of the compound according to the present invention, or Z and dehydrogenase, may be used, for example, for the determination of glutamate oxalate acetate transaminase using the principle represented by the following reaction formula. It can be applied to reagents (methods). Glutamate oxalate acetate transaminase
L-ァスパラギン酸 + α -ケトグルタル酸 才キサ口酢酸 + L-グルタミン酸 リンゴ酸脱水素酵素  L-aspartic acid + α-ketoglutaric acid Acetate acetic acid + L-glutamic acid Malate dehydrogenase
才キサ口酢酸 + N A D H + Η + し-リンゴ酸 + N A D グルタミン酸ォキザロ酢酸トランスアミナーゼ測定用試薬としては、 具体的には、 例えば Lーァスパラギン酸、 Q!—ケトグルタル酸、 本発明 に係る脱水素酵素 (リンゴ酸脱水素酵素) 、 本発明に係る化合物 (NAD H又は NADPH誘導体) 等を、 その主要成分として用いて調製されたもの が、 代表的なものとして挙げられ、 1試薬系でも 2試薬系等の多試薬系 でもよく、 特に、 上記成分に更に、 内因性ピルビン酸を消費し、 本測定 系に影響を及ぼさないようにする等の目的で、 本発明に係る乳酸脱水素 酵素を加えたものが好ましい。  Examples of the reagents for measuring acetic acid for acetic acid + NADH + Η + malic acid + NAD glutamate oxaloacetate transaminase include, for example, L-aspartic acid, Q! -Ketoglutaric acid, dehydrogenase (apple Acid dehydrogenases), compounds prepared according to the present invention (NADH or NADPH derivatives) and the like as the main components are typical examples. A multi-reagent system may be used.In particular, the above-mentioned components further include the lactate dehydrogenase according to the present invention for the purpose of consuming endogenous pyruvic acid and not affecting the measurement system. preferable.
尚、 上記に於いて、 本発明に係る脱水素酵素 (リンゴ酸脱水素酵素、 又はリンゴ酸脱水素酵素及び乳酸脱水素酵素) と本発明に係る化合物と を同時に組み合わせて用いるのが好ましく、 特に、 本発明に係る脱水素 酵素 (リンゴ酸脱水素酵素及び乳酸脱水素酵素) と本発明に係る化合物 とを同時に組み合わせて用いるのが好ましいが、 本発明に係る脱水素酵 素 (リンゴ酸脱水素酵素、 又はリンゴ酸脱水素酵素及び乳酸脱水素酵素 ) と従来の補酵素又はその誘導体とを組み合わせて用いても、 或いは従 来の脱水素酵素と本発明に係る化合物 (NADH又は NADPH誘導体) とを 組み合わせて用いてもよい。 In the above, the dehydrogenase of the present invention (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase) and the compound of the present invention It is preferable to use a combination of the compounds of the present invention. Particularly, it is preferable to use a combination of the dehydrogenase of the present invention (malate dehydrogenase and lactate dehydrogenase) and the compound of the present invention at the same time. This dehydrogenase (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase) may be used in combination with a conventional coenzyme or a derivative thereof, or a conventional dehydrogenase and the present invention may be used. May be used in combination with the compound (NADH or NADPH derivative).
また、 上記した如きグルタミン酸ォキザ口酢酸トランスアミナーゼ測 定用試薬中には、 要すれば、 アポ酵素を活性化する目的で、 例えばピリ ドキサルリン酸等の活性化剤、 例えばアジ化ナトリウム等の防腐剤、 例 えば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine)、 N , N—ビス (2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロ キシメチル)メチルー 3—ァミノプロパンスルホン酸(TAPS)、 3— [ ( 1, 1 一ジメチルー 2—ヒドロキシェチル) アミノー 2—ヒドロキシプロパ ンスルホン酸] (AMPSO)、 N—シクロへキシル一 2—アミノエタンズ ルホン酸 (CHES)、 N—シクロへキシルー 2 —ヒドロキシー 3 —ァミノ プロパンスルホン酸 (CAPSO)、 2—アミノー 2—メチルー 1 一プロパ ノール (AMP)、 N—シクロへキシルー 3—ァミノプロパンスルホン酸 (CAPS)、 ピぺラジン— 1, 4一ビス ( 2 —エタンスルホン酸) (PIPES) 等のグッド緩蘅剤、 例えば酢酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナール、 ホウ酸塩、 コハク酸塩、 トリス (ヒドロキシメチル) アミ ノメタン (Tris)、 イミダゾール等の緩衝剤、 界面活性剤、 グリセロール 等、 通常グルタミン酸ォキザロ酢酸トランスアミナーゼ活性測定法に於 いて用いられる試薬類が、 通常この分野で用いられる濃度範囲で含まれ ていても良いことはいうまでもない。  Also, in the reagent for measuring glutamate oxalate acetic acid transaminase as described above, if necessary, for the purpose of activating apoenzyme, an activating agent such as pyridoxal phosphate, for example, a preservative such as sodium azide, For example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis (2-hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), 3-[(1,1-dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-1-aminoethanesulphonic acid (CHES), N-cyclohexyl-2-hydroxy- 3-aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP), N-cyclohexyl 3-amino Good lubricants such as nopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), such as acetate, glycine, citrate, phosphate, veronal, Buffers such as borate, succinate, tris (hydroxymethyl) aminomethane (Tris), imidazole, etc., surfactants, glycerol, etc., which are usually used in the method for measuring glutamate oxaloacetate transaminase activity, are usually used. It goes without saying that it may be contained within the concentration range used in this field.
上記に於いて、 本発明に係る化合物の還元体、 及び本発明に係る脱水 素酵素以外の試薬類は、 ダル夕ミン酸ォキザロ酢酸トランスアミナーゼ 測定時の反応液中の濃度が自体公知の測定法で用いられている濃度範囲 となるようにグルタミン酸ォキザ口酢酸トランスアミナーゼ測定用試薬 中に添加されればよく、 また、 その由来等についても特に限定されない 。 尚、 試薬の pHも、 自体公知の測定法で用いられている範囲から適宜選 択すれば良く、 特に限定されない。 In the above, the reduced form of the compound according to the present invention, and the dehydration according to the present invention Reagents other than the enzyme are included in the reagent for measuring glutamic acid oxalate acetic acid transaminase so that the concentration in the reaction solution at the time of the measurement of dalminic acid oxaloacetate transaminase is within the concentration range used in the measurement method known per se. It may be added, and its origin is not particularly limited. The pH of the reagent may be appropriately selected from a range used in a measurement method known per se, and is not particularly limited.
また、 上記した如きグルタミン酸ォキザ口酢酸トランスアミナーゼ測 定用試薬は、 L—ァスパラギン酸、 ひーケトグルタル酸、 本発明に係る 脱水素酵素 (リンゴ酸脱水素酵素、 又はリンゴ酸脱水素酵素及び乳酸脱 水素酵素) 及び本発明に係る化合物 (NADH又は NADPH誘導体) の夫々 が少なくとも第一試薬と第二試薬の何れかに含まれているような形態と した二試薬系での使用が好ましく、 特に、 Lーァスパラギン酸、 本発明 に係る脱水素酵素 (リンゴ酸脱水素酵素、 又はリンゴ酸脱水素酵素及び 乳酸脱水素酵素) 、 本発明に係る化合物 (NADH又は NADPH誘導体) 等 を含んでなる第一試薬と、 α—ケトグルタル酸等を含んでなる第二試薬 とを組み合わせたもの、 更には、 当該第二試薬に更に Lーァスパラギン 酸を加えたものが特に好ましい。  Further, the reagent for measuring glutamate oxalate acetic acid transaminase as described above includes L-aspartic acid, haeketoglutaric acid, the dehydrogenase according to the present invention (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase). ) And a compound (NADH or NADPH derivative) according to the present invention are preferably used in a two-reagent system in which each of them is contained in at least one of the first reagent and the second reagent. A first reagent comprising an acid, a dehydrogenase according to the present invention (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase), a compound according to the present invention (NADH or NADPH derivative), and the like; Particularly preferred is a combination of a second reagent containing α-ketoglutaric acid or the like, and a combination of the second reagent and L-aspartic acid further added. Arbitrariness.
尚、 上記に於いても、 本発明に係る脱水素酵素 (リンゴ酸脱水素酵素 、 又はリンゴ酸脱水素酵素及び乳酸脱水素酵素) と本発明に係る化合物 とを同時に組み合わせて用いるのが好ましく、 特に、 本発明に係る脱水 素酵素 (リンゴ酸脱水素酵素及び乳酸脱水素酵素) と本発明に係る化合 物とを同時に組み合わせて用いるのが好ましいが、 本発明に係る脱水素 酵素 (リンゴ酸脱水素酵素、 又はリンゴ酸脱水素酵素及び乳酸脱水素酵 素) と従来の捕酵素又はその誘導体とを組み合わせて用いても、 或いは 従来の脱水素酵素と本発明に係る化合物(NADH又は NADPH誘導体) と を組み合わせて用いてもよい。 〔グルタミン酸ピルビン酸トランスアミナ一ゼ測定用試薬〕 本発明に係る化合物の還元体、 又は Z及び脱水素酵素は、 例えば下記 反応式で示される原理を利用するグルタミン酸ピルビン酸トランスアミ ナーゼ測定用試薬 (方法) に適用することができる。 グルタミン酸ピルビン酸 In the above, it is preferable that the dehydrogenase according to the present invention (malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase) and the compound according to the present invention are simultaneously used in combination, In particular, it is preferable to use the dehydrogenase (malate dehydrogenase and lactate dehydrogenase) according to the present invention and the compound according to the present invention at the same time. Enzyme or malate dehydrogenase and lactate dehydrogenase) and a conventional capture enzyme or a derivative thereof, or a conventional dehydrogenase and a compound according to the present invention (NADH or NADPH derivative) And may be used in combination. [Reagent for measuring glutamate pyruvate transaminase] The reduced form of the compound according to the present invention, or Z and dehydrogenase are, for example, reagents for measuring glutamate pyruvate transaminase using the principle shown by the following reaction formula ( Method). Glutamate pyruvate
トランスアミナーゼ  Transaminase
L -ァラニン + α-ケトグルタル酸 ピルビン酸 + L-グルタミン酸 乳酸脱水素酵素  L-alanine + α-ketoglutarate pyruvate + L-glutamic acid lactate dehydrogenase
+  +
ピリレビン酸 + N A D H + Η 乳酸 + N A D グルタミン酸ピルビン酸トランスアミナーゼ測定用試薬としては、 具 体的には、 例えば Lーァラニン、 α—ケトグルタル酸、 本発明に係る脱 水素酵素 (乳酸酸脱水素酵素) 、 本発明に係る化合物 (NADH又は NAD PH誘導体) 等を、 その主要成分として用いて調製されたものが、 代表的 なものとして挙げられ、 1試薬系でも 2試薬系等の多試薬系でもよい。 尚、 上記に於いて、 本発明に係る脱水素酵素 (乳酸脱水素酵素) と本 発明に係る化合物とを同時に組み合わせて用いるのが好ましいが、 本発 明に係る脱水素酵素 (乳酸脱水素酵素) と従来の補酵素又はその誘導体 とを組み合わせて用いても、 或いは従来の脱水素酵素と本発明に係る化 合物 (NADH又は NADPH誘導体) とを組み合わせて用いてもよい。 また、 上記した如きグルタミン酸ピルビン酸トランスアミナーゼ測定 用試薬中には、 要すれば、 アポ酵素を活性化する目的で、 例えばピリ ド キサルリン酸等の活性化剤、 例えばアジ化ナトリウム等の防腐剤、 例え ば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine)、 N , N—ビス (2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシ メチル) メチル— 3 —ァミノプロパンスルホン酸 (TAPS)、 3— [ ( 1 , 1ージメチル一 2—ヒドロキシェチル) アミノー 2—ヒドロキシプロパ ンスルホン酸] (AMPSO)、 N—シクロへキシル _ 2 —アミノエタンス ルホン酸 (CHES)、 N—シク口へキシルー 2 —ヒドロキシ— 3 —ァミノ プロパンスルホン酸 (CAPSO)、 2—アミノー 2—メチル— 1—プロパ ノール (AMP)、 N—シクロへキシルー 3—ァミノプロパンスルホン酸 (CAPS) , ピぺラジン一 1, 4 —ビス ( 2 —エタンスルホン酸) (PIPES) 等のグッ ド緩衝剤、 例えば酢酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナール、 ホウ酸塩、 コハク酸塩、 トリス (ヒドロキシメチル) アミ ノメタン (Tris)、 イミダゾール等の緩衝剤、 界面活性剤、 グリセロール 等、 通常グルタミン酸ピルビン酸トランスアミナーゼ活性測定法に於い て用いられる試薬類が、 通常この分野で用いられる濃度範囲で含まれて いても良いことはいうまでもない。 Examples of the reagents for measuring pyrylevic acid + NADH + Ηlactic acid + NAD glutamate pyruvate transaminase include, for example, L-alanine, α-ketoglutarate, the dehydrogenase of the present invention (lactate dehydrogenase), and the present invention. A typical example is a compound prepared using the compound (NADH or NADPH derivative) according to the present invention as a main component, and may be a one-reagent system or a multi-reagent system such as a two-reagent system. In the above, it is preferable to use the dehydrogenase (lactate dehydrogenase) of the present invention and the compound of the present invention in combination at the same time, but the dehydrogenase (lactate dehydrogenase) of the present invention is preferably used in combination. ) And a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase may be used in combination with the compound (NADH or NADPH derivative) of the present invention. Further, in the reagent for measuring glutamate pyruvate transaminase as described above, if necessary, for the purpose of activating the apoenzyme, for example, an activator such as pyridoxal phosphate, for example, a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis (2-hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminoaminopropanesulfonic acid (TAPS), 3 — [(1,1-Dimethyl-12-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl — 2—aminoethanesulphonic acid (CHES), N—cyclohexyl 2-— Hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), piperazine-1, 4 — Good buffers such as bis (2-ethanesulfonic acid) (PIPES), such as acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris Roxymethyl) Aminomethane (Tris), imidazole and other buffering agents, surfactants, glycerol and other reagents normally used in the method for measuring glutamate-pyruvate transaminase activity are included in the concentration range usually used in this field. Needless to say, it may be.
上記に於いて、 本発明に係る化合物の還元体、 及び本発明に係る脱水 素酵素以外の試薬類は、 グルタミン酸ピルビン酸トランスアミナーゼ測 定時の反応液中の濃度が自体公知の測定法で用いられている濃度範囲と なるようにグルタミン酸ピルビン酸トランスアミナーゼ測定用試薬中に 添加されればよく、 また、 その由来等についても特に限定されない。 尚 、 試薬の pHも、 自体公知の測定法で用いられている範囲から適宜選択す れば良く、 特に限定されない。  In the above, the reduced form of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention can be used by measuring the concentration in the reaction solution at the time of measuring glutamate pyruvate transaminase by a method known per se. It may be added to the reagent for measuring glutamate pyruvate transaminase so as to have a concentration range within a certain range, and the origin and the like are not particularly limited. The pH of the reagent may be appropriately selected from a range used in a method known per se, and is not particularly limited.
また、 上記した如きグルタミン酸ピルビン酸トランスアミナーゼ測定 用試薬は、 Lーァラニン、 ーケトグルタル酸、 本発明に係る脱水素酵 素 (乳酸脱水素酵素) 及び本発明に係る化合物 (NADH又は NADPH誘導 体) の夫々が少なくとも第一試薬と第二試薬の何れかに含まれているよ うな形態とした二試薬系での使用が好ましく、 特に、 L—ァラニン、 本 発明に係る脱水素酵素 (乳酸脱水素酵素) 、 本発明に係る化合物 (NAD H又は NADPH誘導体) 等を含んでなる第一試薬と、 ひーケトグルタル酸 等を含んでなる第二試薬とを組み合わせたもの、 更に、 当該第二試薬に 更に L—ァラニンを加えたものが特に好ましい。 The reagent for measuring glutamate-pyruvate transaminase as described above includes L-alanine, ketoglutarate, the dehydrogenase according to the present invention (lactate dehydrogenase), and the compound according to the present invention (NADH or NADPH derivative). At least one of the first and second reagents It is preferable to use a two-reagent system in such a form, and in particular, comprises L-alanine, the dehydrogenase according to the present invention (lactate dehydrogenase), the compound according to the present invention (NADH or NADPH derivative) and the like. Particularly preferred is a combination of the first reagent and a second reagent containing, for example, sieve glutaric acid. Further, a combination of the second reagent and L-alanine further added thereto is particularly preferable.
尚、 上記に於いても、 本発明に係る脱水素酵素 (乳酸脱水素酵素) と 本発明に係る化合物とを同時に組み合わせて用いるのが好ましいが、 本 発明に係る脱水素酵素 (乳酸脱水素酵素) と従来の補酵素又はその誘導 体とを組み合わせて用いても、 或いは従来の脱水素酵素と本発明に係る 化合物 (NADH又は NADPH誘導体) とを組み合わせて用いてもよい。  In the above, the dehydrogenase (lactate dehydrogenase) according to the present invention and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention (lactate dehydrogenase) is preferably used in combination. ) And a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NADH or NADPH derivative) according to the present invention may be used in combination.
〔クレアチンキナーゼ測定用試薬〕 [Reagent for creatine kinase measurement]
'本発明に係る化合物又は/及び脱水素酵素は、 例えば下記反応式で示 される原理を利用するクレアチンキナーゼ測定用試薬 (方法) に適用す ることができる。 クレアチンキナーゼ  'The compound and / or dehydrogenase according to the present invention can be applied, for example, to a creatine kinase measuring reagent (method) using the principle shown by the following reaction formula. Creatine kinase
クレアチンリン酸 + AD P , ^ クレアチン + AT P へキソキナーゼ Creatine phosphate + AD P, ^ Creatine + ATP hexokinase
又は  Or
ダルコキナーゼ  Dalcokinase
AT P + D-グルコース ,  AT P + D-glucose,
AD P + D-グルコース 6-リン酸 グルコース- 6-リン酸脱水素酵素AD P + D-glucose 6-phosphate glucose-6-phosphate dehydrogenase
D-グルコース 6-リン酸 + NADP D-glucose 6-phosphate + NADP
6-ホスホ -D-ダルコノラク卜ン + NADPH + H + クレアチンキナーゼ測定用試薬としては、 具体的には、 例えばクレア チンキナーゼ活性化剤 (例えばチォグリセロール、 2—メルカプトエタ ノ一ル、 2—メルカプトエタンスルホン酸、 N-ァセチルシスティン等の チオール化合物) 、 グルコース、 へキソキナ一ゼ又はダル:?キナーゼ、 クレアチンリン酸、 アデノシン 5'-ジホスフェート、 マグネシウムィォ ン、 本発明に係る脱水素酵素 (グルコース一 6—リン酸脱水素酵素) , 本発明に係る化合物 (NAD又は NADP誘導体) 等を、 その主要成分とし て用いて調製されたものが、 代表的なものとして挙げられ、 1試薬系で も 2試薬系等の多試薬系でもよい。 6-Phospho-D-Darconolactone + NADPH + H + Specific examples of the reagent for measuring creatine kinase include, for example, creatine kinase activators (eg, thiol compounds such as thioglycerol, 2-mercaptoethanol, 2-mercaptoethanesulfonic acid, and N-acetylcysteine) , Glucose, hexokinase or dal :? Kinase, creatine phosphate, adenosine 5'-diphosphate, magnesium ion, the dehydrogenase of the present invention (glucose 16-phosphate dehydrogenase), the compound of the present invention (NAD or NADP derivative), etc. Those prepared by using as the main components are listed as typical examples, and may be a single-reagent system or a multi-reagent system such as a two-reagent system.
尚、 上記に於いて、 本発明に係る脱水素酵素と本発明に係る化合物と を同時に組み合わせて用いるのが好ましいが、 本発明に係る脱水素酵素 と従来の補酵素又はその誘導体とを組み合わせて用いても、 或いは従来 のグルコース一 6—リン酸脱水素酵素と本発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて用いてもよい。  In the above, the dehydrogenase according to the present invention and the compound according to the present invention are preferably used in combination at the same time, but the dehydrogenase according to the present invention and a conventional coenzyme or a derivative thereof are used in combination. It may be used, or a conventional glucose-16-phosphate dehydrogenase may be used in combination with the compound (NAD or NADP derivative) of the present invention.
また、 上記した如きクレアチンキナーゼ測定用試薬中には、 チォ ル 化合物の安定化及び試薬の着色防止の目的で、 例えば E D T A、 ジアミ  In addition, the above-described reagents for creatine kinase measurement include, for example, EDTA and diamine for stabilizing thiol compounds and preventing coloring of the reagents.
i  i
ノシクロへキサン四酢酸一水和物(C y D T A )、 ジァミノプロパノール 四酢酸 (D P T A—〇H )、 エチレンジァミン二酢酸 (E D D A;)、 ヒド ロキシェチルイミノ二酢酸(H I D A )等のキレート剤又はその塩類(ァ ルカリ金属塩、 アンモニゥム塩等)等を含有させておくことが望ましい。 また、 要すれば、 例えばアジ,化ナトリウム等の防腐剤、 例えばポリオキ シエチレンセチルエーテル、 ポリォキシェチ'レンォレイルエーテル、 ポ リオキシエチレンラウリルエーテル 〔例えば、 ェマルゲン 1 2 0 :花王 (株) 製〕、 ポリオキシエチレンアルキルフエ二ルェ一テル 〔例えばポリ ォキシエチレンォクチルフエニルエーテル (例えば、 トリ トン X— 1 0 0 : ロ一ム ·アンド ·ハ一ス社製)、 ポリォキシエチレンィソォクチルフ ェニルエーテル、ポリオキシエチレンノニルフエニルエーテル等〕、ポリ エチレングリコールモノラウレート等のノニオン型界面活性剤等の界面 活性剤、 例えばイミダゾ一ル緩衝剤、 ビス (2 ヒドロキ ェチル) ィ ミノ トリスー (ヒドロキシメチル) メタン (Bis-Tris) 緩衝剤等の緩衝 剤、 例えば A M P、 ジアデノシン四リン酸 (A P 4A)、 A P 5A、 ジアデ ノシン六リン酸 (A P 6 A ) 等のジアデノシンポリリン酸等の、 体液試 料中に存在するクレアチンキナーゼ活性に正誤差を与えるアデ二ル酸キ ナーゼ (A K) 活性の影響を回避するための A K阻害剤等、 通常 C K活 性測定法に於いて用いられる試薬類が、 通常この分野で用いられる濃度 範囲で含まれていても良いことはいうまでもない。 Chelating agents such as nocyclohexanetetraacetic acid monohydrate (CyDTA), diaminopropanoltetraacetic acid (DPTA-〇H), ethylenediaminediacetic acid (EDDA;), and hydroxyxethyliminodiacetic acid (HIDA) Alternatively, it is desirable to contain salts thereof (alkali metal salts, ammonium salts, etc.). In addition, if necessary, preservatives such as sodium azide, sodium chloride, etc., for example, polyoxyethylene cetyl ether, polyoxeti'lenoleyl ether, polyoxyethylene lauryl ether [eg, Emalgen 120: manufactured by Kao Corporation] Polyoxyethylene alkylphenyl ether (eg, polyoxyethylene octyl phenyl ether (eg, triton X—10 0: manufactured by Rom & Haas Co., Ltd.), nonionic surfactants such as polyoxyethylene sodium phenyl ether, polyoxyethylene nonyl phenyl ether, and polyethylene glycol monolaurate. surfactants such as imidazo Ichiru buffer, bis (2 hydroxy Echiru) I Mino Tris (hydroxymethyl) methane (bis-Tris) buffer, etc. buffering agent, for example AMP, diadenosine tetraphosphate (AP 4 a ), AP 5 a, Jiade Noshin sixth diadenosine polyphosphate such as phosphate (AP 6 a), gives a positive error in the creatine kinase activity present in the body fluid specimen in adenyl Nirusanki kinase (AK) activity It is important to note that reagents that are usually used in CK activity assays, such as AK inhibitors to avoid the effects of, can be included in the concentration range normally used in this field. Not a horse.
上記に於いて、 本発明に係る化合物又はその還元体、 及び本発明に係 る脱水素酵素以外の試薬類は、 クレアチンキナーゼ測定時の反応液中の 濃度が自体公知の測定法で用いられている濃度範囲となるようにクレア チンキナ一ゼ測定用試薬中に添加されればよく、 また、 その由来等につ いても特に限定されない。  In the above, the compound according to the present invention or its reduced form, and the reagents other than the dehydrogenase according to the present invention can be used by measuring the concentration in the reaction solution at the time of creatine kinase measurement by a method known per se. It may be added to the reagent for measuring creatine kinase so as to have a concentration range within the above range, and the origin and the like are not particularly limited.
また、 上記した如きクレアチンキナーゼ測定用試薬は、 チオール化合 物、 A D P、 へキソキナ一ゼ (又はダルコキナーゼ) 、 本発明に係る脱 水素酵素 (グルコース— 6—リン酸脱水素酵素) 、.本発明に係る化合物 (NAD又は NADP誘導体) 等を含んでなる第一試薬と、 クレアチンリン 酸を含んでなる第二試薬とを組み合わせたものであって、 グルコースと マグネシウムイオンの夫々が少なくとも第一試薬と第二試薬の何れかに 含まれているような形態とした二試薬系での使用が好ましい。  The reagents for measuring creatine kinase as described above include thiol compounds, ADP, hexokinase (or dalcokinase), the dehydrogenase according to the present invention (glucose-6-phosphate dehydrogenase), and the present invention. A combination of a first reagent comprising the compound (NAD or NADP derivative) according to the above and a second reagent comprising creatine phosphate, wherein each of glucose and magnesium ions is at least Use in a two-reagent system in a form such as to be included in any of the second reagents is preferred.
尚、 上記に於いても、 本発明に係る脱水素酵素と本発明に係る化合物 とを同時に組み合わせて用いるのが好ましいが、 本発明に係る脱水素酵 素と従来の補酵素又はその誘導体とを組み合わせて用いても、 或いは従 来のグルコース一.6—リン酸脱水素酵素と本発明に係る化合物 (NAD又 は NADP誘導体) とを組み合わせて用いてもよい。 In the above, the dehydrogenase according to the present invention and the compound according to the present invention are preferably used in combination at the same time, but the dehydrogenase according to the present invention and the conventional coenzyme or its derivative are used. Used in combination or A conventional glucose 1.6-phosphate dehydrogenase may be used in combination with the compound of the present invention (NAD or NADP derivative).
また、 クレアチンリン酸がアルカリ溶液中で安定であることは知られ ているので、 二試薬系の試薬に於ては、 クレアチンリン酸を含む試薬の pHをアルカリ側、 例えば通常 7.5〜: LO、 好まし くは 8〜9.5としてお くことが望ましい。 但し、 第一試薬と第二試薬混合時、 即ち、 C K活性 測定時の pHが C Kの至適 pH、例えば pH6.0〜7.2の範囲となるように, 第一試薬と第二試薬の緩衝剤や緩衝剤濃度とを適宜調製する必要がある こと、 更に、 クレアチンキナーゼ測定時にクレアチンキナーゼ活性を阻 害する緩衝剤や緩衝剤濃度は好ましくないことは言うまでもない。 この ような目的でクレアチンリン酸を含有する試薬に使用可能な緩衝剤とし ては、 例えば B i c i n e、 N— 〔トリス (ヒドロギシメチル) メチル〕 グリシン等が好ましく挙げられる。 尚、使用される緩衝剤の使用濃度は、 通常この分野で用いられる濃度範囲から適宜選択すればよい。  In addition, since creatine phosphate is known to be stable in an alkaline solution, in a two-reagent system, the pH of a creatine phosphate-containing reagent is adjusted to the alkaline side, for example, usually 7.5 to: LO, Preferably, it is set to 8 to 9.5. However, when mixing the first reagent and the second reagent, that is, the buffer for the first reagent and the second reagent, so that the pH at the time of measuring the CK activity is the optimal pH of CK, for example, the range of pH 6.0 to 7.2. Needless to say, it is necessary to appropriately adjust the concentration of the buffer and the concentration of the buffer, and further, the buffer or the concentration of the buffer that inhibits creatine kinase activity when measuring creatine kinase is not preferred. Buffers that can be used for creatine phosphate-containing reagents for such purposes include, for example, Bicine, N- [tris (hydrogishimethyl) methyl] glycine, and the like. The concentration of the buffer used may be appropriately selected from the concentration range usually used in this field.
〔グルコース測定用試薬〕 (Glucose measurement reagent)
本発明に係る化合物又は Z及び脱水素酵素は、 例えば下記反応式で示 される原理を利用するグルコース測定用試薬 (方法) に適用することが できる。 The compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring glucose using a principle represented by the following reaction formula.
へキソキナーゼ Hexokinase
又は  Or
ダルコキナーゼ  Dalcokinase
グルコース + AT P グルコース -6-リン酸 + AD P ダルコ一ス- 6-リン酸脱水素酵素 グルコース- 6-リン酸 + NAD(P) Glucose + ATP Glucose-6-phosphate + AD P Darcos-6-phosphate dehydrogenase Glucose-6-phosphate + NAD (P)
6-ホスホダルコノラク卜ン + NAD(P)H + H + グルコース測定用試薬としては、 具体的には、 例えばへキソキナーゼ 又はグルコキナーゼ、 アデノシン 5'-トリホスフェート、 マグネシウム イオン、 本発明に係る脱水素酵素 (グルコース _ 6—リン酸脱水素酵素 ) 、 本発明に係る化合物 (NAD又は NADP誘導体) 等を、 その主要成分 として用いて調製されたものが、 代表的なものとして挙げられ、 1試薬 系でも 2試薬系等の多試薬系でもよい。  As the reagent for measuring 6-phosphodalconolactone + NAD (P) H + H + glucose, specifically, for example, hexokinase or glucokinase, adenosine 5'-triphosphate, magnesium ion, dehydration according to the present invention, And the compounds according to the present invention (NAD or NADP derivatives), etc., were prepared as the main components. It may be a system or a multi-reagent system such as a two-reagent system.
尚、' 上記に於いて、 本発明に係る脱水素酵素 (グルコース一 6—リン 酸脱水素酵素) と本発明に係る化合物とを同時に組み合わせて用いるの が好ましいが、 本発明に係る脱水素酵素 (グルコース一 6 _リン酸脱水 素酵素) と従来の補酵素又はその誘導体とを組み合わせて用いても、 或 いは従来の脱水素酵素と本発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて用いてもよ.い。  In the above, it is preferable to use the dehydrogenase (glucose 6-phosphate dehydrogenase) according to the present invention and the compound according to the present invention simultaneously, but the dehydrogenase according to the present invention is used in combination. (Glucose-16-phosphate dehydrogenase) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase may be combined with the compound (NAD or NADP derivative) of the present invention. You can use it.
また、 上記した如きグルコース測定用試薬中には、、 要すれば、 例えば アジ化ナトリゥム等の防腐剤、 例えば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine N, N—ビス ( 2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシメチル) メチル一 3—ァミノプロパ ンスルホン酸 (TAPS)、 3— [( 1 , 1—ジメチル— 2—ヒドロキシェ チル) アミノー 2—ヒ—ドロキシプロパンスルホン酸] (AMPSO)、 N - シクロへキシル— 2—アミノエタンスルホン酸 (CHES)、 N—シクロへ キシルー 2—ヒドロキシー 3 —ァミノプロパンスルホン酸 (CAPSO)、 2—アミノー 2 _メチル一 1—プロパノール (AMP)、 N—シクロへキ シルー 3—ァミノプロパンスルホン酸 (CAPS)、 ピぺラジン一 1, 4 一 ビス (2—エタンスルホン酸) (PIPES) 等のグッド緩衝剤、 例えば酢酸 塩、 グリシン、 グリシルグリシン、 クェン酸塩、 リン酸塩、 ベロナール、 ホウ酸塩、 コハク酸塩、 トリス(ヒドロキシメチル)ァミノメタン(Tris) , イミダゾール等の緩衝剤、 界面活性剤等、 通常グルコース測定法に於い て用いられる試薬類が、 通常この分野で用いられる濃度範囲で含まれて いても良いことはいうまでもない。 In addition, in the above-mentioned reagent for measuring glucose, if necessary, a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine N, N-bis (2-hydroxy Glycine, N-tris (hydroxymethyl) methyl-13-aminopropanesulfonic acid (TAPS), 3-[(1,1-dimethyl-2-hydroxy Tyl) amino-2-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-3-aminoaminopropanesulfonic acid (CAPSO) ), 2-amino-2-methyl-11-propanol (AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) ( Good buffering agents such as PIPES), for example, buffers such as acetate, glycine, glycylglycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) aminoamino (Tris), imidazole It goes without saying that reagents, such as agents and surfactants, which are usually used in the glucose measurement method, may be contained in the concentration range usually used in this field.
上記に於いて、 本発明に係る化合物及び本発明に係る脱水素酵素以外 の試薬類は、 グルコース測定時の反応液中の濃度が自体公知の測定法で 用いられている濃度範囲となるようにグルコース測定用試薬中に添加さ れればよく、 また、 その由来等についても特に限定されない。 尚、 試薬 の pHも、自体公知の測定法で用いられている範囲から適宜選択すれば良 く、 特に限定されない。  In the above, the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are adjusted so that the concentration in the reaction solution at the time of glucose measurement falls within the concentration range used in a measurement method known per se. What is necessary is just to add to a glucose measuring reagent, and also the origin etc. are not specifically limited. The pH of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited.
また、 上記した如きグルコース測定用試薬は、 へキソキナーゼ又はグ ルコキナーゼ、 アデノシン 5'-トリホスフェート、 へキソキナーゼ又は ダルコキナーゼ、 マグネシウムイオン、 本発明に係る脱水素酵素 (ダル コース一 6—リン酸脱水素酵素) 及び本発明に係る化合物 (NAD又は N ADP誘導体) の夫々が少なくとも第一試薬と第二試薬の何れかに含まれ ているような形態とした二試薬系での使用が好ましく、 特に、 本発明に 係る脱水素酵素 (グルコース一 6 _リン酸脱水素酵素) 、 本発明に係る 化合物 (NAD又は NADP誘導体) 等を含んでなる第一試薬と、 アデノシ ン 5'-トリホスフエ一ト等を含んでなる第二試薬とを組み合わせたもの であって、 マグネシウムイオンが少なくとも第一試薬と第二試薬の何れ かに含まれているような形態とした二試薬系での使用が好ましい。 The reagent for measuring glucose as described above includes hexokinase or glycokinase, adenosine 5'-triphosphate, hexokinase or dalcokinase, magnesium ion, the dehydrogenase according to the present invention (Dulkose-16-phosphate dehydrogenation) It is preferable to use a two-reagent system in which each of the enzyme (enzyme) and the compound (NAD or NADP derivative) of the present invention is contained in at least one of the first reagent and the second reagent. A first reagent comprising the dehydrogenase (glucose-6-phosphate dehydrogenase) according to the present invention, the compound (NAD or NADP derivative) according to the present invention, etc., and adenosine 5'-triphosphate and the like. Combined with a second reagent comprising It is preferable to use a two-reagent system in which magnesium ions are contained in at least one of the first reagent and the second reagent.
尚、 上記に於いても、 本発明に係る脱水素酵素 (グルコース _ 6—リ, ン酸脱水素酵素) と本発明に係る化合物とを同時に組み合わせて用いる のが好ましいが、 本発明に係る脱水素酵素 (グルコース一 6—リン酸脱 水素酵素) と従来の補酵素又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵素と本発明に係る化合物 (NAD又は NADP誘導体 ) とを組み合わせて用いてもよい。 また、 本発明に係る化合物又は Z及び脱水素酵素は、 例えば下記反応 式で示される原理を利用するグルコース測定用試薬 (方法) にも適用す ることができる。 グルコース脱水素酵素  In the above, it is preferable to use the dehydrogenase (glucose-6-li, acid dehydrogenase) according to the present invention and the compound according to the present invention at the same time. A combination of an enzyme (glucose-6-phosphate dehydrogenase) and a conventional coenzyme or a derivative thereof, or a combination of a conventional dehydrogenase and a compound of the present invention (NAD or NADP derivative) May be used. Further, the compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring glucose using a principle represented by the following reaction formula. Glucose dehydrogenase
グ Jレコース + N A D ( P) ^ ダルコノラクトン + N A D ( P) H + H + このようなグルコース測定用試薬としては、 具体的には、 例えば本発明 に係る脱水素酵素 (グルコース脱水素酵素) 、 本発明に係る化合物 (N AD又は NADP誘導体) 等を、 その主要成分として用いて調製されたもの が、 代表的なものとして挙げられ、 1試薬系でも 2試薬系等の多試薬系 でもよい。 G Recose + NAD (P) ^ Darconolactone + NAD (P) H + H + Examples of such a glucose measuring reagent include, specifically, the dehydrogenase (glucose dehydrogenase) according to the present invention. Typical examples thereof include compounds prepared using the compound (NAD or NADP derivative) according to the present invention as a main component, and may be a multi-reagent system such as a one-reagent system or a two-reagent system. .
尚、 上記に於いて、 本発明に係る脱水素酵素 (グルコース脱水素酵素 ) と本発明に係る化合物とを同時に組み合わせて用いるのが好ましいが 、 本発明に係る脱水素酵素 (グルコース脱水素酵素) と従来の補酵素又 はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵素と本 発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて用いても よい。 In the above, the dehydrogenase according to the present invention (glucose dehydrogenase) and the compound according to the present invention are preferably used in combination at the same time, but the dehydrogenase according to the present invention (glucose dehydrogenase) is preferably used. Can be used in combination with a conventional coenzyme or its derivative, or The compound (NAD or NADP derivative) according to the present invention may be used in combination.
また、 上記した如きグルコース測定用試薬中には、 要すれば、 例えば アジ化ナトリウム等の防腐剤、 例えば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine)、 N , N—ビス (2 —ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシメチル) メチル— 3—ァミノプロパ ンスルホン酸 (TAPS;)、 3 - [ ( 1, 1 —ジメチルー 2—ヒドロキシェ チル) ァミノ一 2—ヒドロキシプロパンスルホン酸] (AMPSO)、 N - シクロへキシルー 2—アミノエタンスルホン酸 (CHES)、 N—シクロへ キシル _ 2—ヒドロキシ— 3—ァミノプロパンスルホン酸 (CAPSO)、 2—ァミノ一 2—メチルー 1 一プロパノール (AMP)、 N—シクロへキ シルー 3—ァミノプロパンスルホン酸 (CAPS)、 ピぺラジン— 1 , 4 一 ビス (2—エタンスルホン酸) (PIPES) 等のグッド緩衝剤、.例えば酢 酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナール、 ホウ酸塩、 コハ ク酸塩、 トリス (ヒドロキシメチル) 7ミノメタン (Tris)、 イミダゾ一 ル等の緩衝剤、 界面活性剤等、 通常グルコース測定法に於いて用いられ る試薬類が、 通常この分野で用いられる濃度範囲で含まれていても良い ことはいうまでもない。  In the glucose measuring reagent as described above, if necessary, a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis (2- (Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS;), 3-[(1,1-dimethyl-2-hydroxyethyl) amino-1-hydroxypropanesulfonic acid] ( AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl_2-hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-1-methyl-1-propanol (CAPSO) Good buffering agents such as AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), and piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES); For example, buffers such as acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) 7minomethane (Tris), imidazole, etc., surfactants, etc. However, it goes without saying that the reagents usually used in the glucose measurement method may be contained in the concentration range usually used in this field.
上記に於いて、 本発明に係る化合物及び本発明に係る脱水素酵素以外 の試薬類は、 グルコース測定時の反応液中の濃度が自体公知の測定法で 用いられている濃度範囲となるようにグルコース測定用試薬中に添加さ れればよく、 また、 その由来等についても特に限定されない。 尚、 試薬 の pHも、自体公知の測定法で用いられている範囲から適宜選択すれば良 く、 特に限定されない。  In the above, the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are adjusted so that the concentration in the reaction solution at the time of glucose measurement falls within the concentration range used in a measurement method known per se. What is necessary is just to add to a glucose measuring reagent, and also the origin etc. are not specifically limited. The pH of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited.
また、 上記した如きグルコース測定用試薬は、 本発明に係る化合物 ( NAD又は NADP誘導体) 及び本発明に係る脱水素酵素 (グルコース脱水 素酵素) の夫々が少なくとも第一試,薬と第二試薬の何れかに含まれてい るような形態とした二試薬系での使用が好ましく、 特に、 本発明に係る 化合物 (NAD又は NADP誘導体) 等を含んでなる第一試薬と、 本発明に 係る脱水素酵素 (グルコース脱水素酵素) 等を含んでなる第二試薬とを 組み合わせたものが特に好ましい。 In addition, the reagent for measuring glucose as described above includes a compound (NAD or NADP derivative) according to the present invention and a dehydrogenase (glucose dehydration) according to the present invention. Is preferably used in at least one of the first reagent, the drug and the second reagent in a two-reagent system. Particularly, the compound (NAD or NADP derivative) according to the present invention is preferably used. ) Are particularly preferred in combination with the second reagent comprising the dehydrogenase (glucose dehydrogenase) of the present invention.
尚、 上記に於いても、 本発明に係る脱水素酵素 (グルコース脱水素酵 素) と本発明に係る化合物とを同時に組み合わせて用いるのが好ましい が、 本発明に係る脱水素酵素 (グルコース脱水素酵素) と従来の補酵素 又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵素と 本発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて用いて もよい。  In the above, the dehydrogenase (glucose dehydrogenase) according to the present invention and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase (glucose dehydrogenase) according to the present invention is preferably used simultaneously. An enzyme) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
〔尿素窒素測定用試薬〕 [Urea nitrogen measurement reagent]
本発明に係る化合物の還元体、 又は/及び脱水素酵素は、 例えば下記 反応式で示される原理を利用する尿素窒素測定用試薬 (方法) に適用す ることができる。 ゥレアーゼ  The reduced form and / or dehydrogenase of the compound according to the present invention can be applied to, for example, a reagent (method) for measuring urea nitrogen using the principle shown by the following reaction formula.ゥ lease
尿素 + H 2 O ^ 2 N H 3 + C 0 2 Urea + H 2 O ^ 2 NH 3 + C 0 2
Ν Η 3 + α -ケトグルタル酸 + N A D ( P) H + H + グルタミン酸脱水素酵素 Ν Η 3 + α-ketoglutarate + NAD (P) H + H + glutamate dehydrogenase
^ N A D ( P) +グルタミン酸 + H 2 0 ^ NAD (P) + glutamic acid + H 2 0
尿素窒素測定用試薬としては、 具体的には、 例えばゥレアーゼ、 ひ一 ケトグルタル酸、 本発明に係る脱水素酵素 (グルタミン酸脱水素酵素) 、 本発明に係る化合物 (NADH又は NADPH誘導体) 等を、 その主要成分 として用いて調製されたものが、 代表的なものとして挙げられ、 1試薬 系でも 2試薬系等の多試薬系でもよい。 Specific examples of the reagent for measuring urea nitrogen include, for example, urease, polyketoglutaric acid, the dehydrogenase of the present invention (glutamic acid dehydrogenase), and the compound of the present invention (NADH or NADPH derivative). Main ingredient The one prepared by using as a typical one may be a one-reagent system or a multi-reagent system such as a two-reagent system.
尚、 上記に於いて、 本発明に係る脱水素酵素 (グルタミン酸脱水素酵 素) と本発明に係る化合物とを同時に組み合わせて用いるのが好ましい が、 本発明に係る脱水素酵素 (グルタミン酸脱水素酵素) と従来の補酵 素又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵素 と本発明に係る化合物(NADH又は NADPH誘導体) とを組み合わせて用 いてもよい。  In the above, the dehydrogenase according to the present invention (glutamic acid dehydrogenase) and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention (glutamic acid dehydrogenase) is preferably used. ) And a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound according to the present invention (NADH or NADPH derivative) may be used in combination.
また、 上記した如き尿素窒素測定用試薬中には、 要すれば、 例えばァ ジ化ナトリウム等の防腐剤、 例えば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine)、 N, N—ビス (2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシメチル) メチルー 3—ァミノプロパ ンスルホン酸 (TAPS)、 3 - [ ( 1 , 1 —ジメチルー 2—ヒドロキシェ チル) アミノー 2—ヒドロキシプロパンスルホン酸] (AMPSO)、 N - シクロへキシル— 2—アミノエタンスルホン酸 (CHES)、 N—シクロへ キシルー 2 —ヒドロキシー 3—ァミノプロパンスルホン酸 (CAPSO)、 2—アミノー 2 _メチル一 1—プロパノール (AMP)、 N—シクロへキ シルー 3—ァミノプロパンスルホン酸 (CAPS)、 ピぺラジン一 1, 4 一 ビス (2—エタンスルホン酸) (PIPES) 等のグッ ド緩衝剤、 例えば酢 酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナール、 ホウ酸塩、 コハ ク酸塩、 トリス (ヒドロキシメチル) ァミノメタン (Tris)、 イミダゾー ル等の緩衝剤、 例えば、 ジアミノシクロへキサン四酢酸—一水和物 (C y D T A )、 ジァミノプロパノール四酢酸 (D P T A—〇H )、 エチレン ジァミン二酢酸(E D D A )、ヒドロキシェチルイミノ二酢酸(H I D A ) 等のキレート剤、 界面活性剤等、 通常尿素窒素測定法に於いて用いら.れ る試薬類が、 通常この分野で用いられる濃度範囲で含まれていても良い ことはいうまでもない。 In the urea nitrogen measurement reagent as described above, if necessary, a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis ( 2-Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), 3-[(1,1—dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO ), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP) Good buffering agents such as N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), for example Buffers such as acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) amino methane (Tris), imidazole, etc., for example, diaminocyclohexanetetraacetic acid -Chelating agents such as monohydrate (CyDTA), diaminopropanoltetraacetic acid (DPTA-〇H), ethylenediaminediacetic acid (EDDA), hydroxyethyliminodiacetic acid (HIDA), surfactants, etc. The reagents usually used in the urea nitrogen measurement method may be contained in the concentration range usually used in this field. Needless to say.
上記に於いて、 本発明に係る化合物の還元体、 及び本発明に係る脱水 素酵素以外の試薬類は、 尿素窒素測定時の反応液中の濃度が自体公知の 測定法で用いられている濃度範囲となるように尿素窒素測定用試薬中に 添加されればよく、 また、 その由来等についても特に限定されない。 尚 、 試薬の pHも、 自体公知の測定法で用いられている範囲から適宜選択す れば良く、 特に限定されない。  In the above, the reduced form of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention have a concentration in the reaction solution at the time of urea nitrogen measurement which is used in a measurement method known per se. What is necessary is just to add to the reagent for urea nitrogen measurement so that it may become the range, and also the origin etc. are not specifically limited. The pH of the reagent may be appropriately selected from a range used in a method known per se, and is not particularly limited.
また、 上記した如き尿素窒素測定用試薬は、 ゥレアーゼ、 α —ケトグ ルタル酸、 本発明に係る化合物 (NADH又は NADPH誘導体) 及び本発明 に係る脱水素酵素 (グルタミン酸脱水素酵素) の夫々が少なくとも第一 試薬と第二試薬の何れかに含まれているような形態とした二試薬系での 使用が好ましく、 特に、 本発明に係る化合物 (NADH又は NADPH誘導体 ) 等を含んでなる第一試薬と、 ゥレアーゼ、 α—ケトグルタル酸、 本発 明に係る脱水素酵素 (グルタミン酸脱水素酵素) 等を含んでなる第二試 薬とを組み合わせたものが特に好ましい。  In addition, the reagent for measuring urea nitrogen as described above includes at least one of urease, α-ketoglutaric acid, the compound of the present invention (NADH or NADPH derivative), and the dehydrogenase of the present invention (glutamic acid dehydrogenase). It is preferable to use a two-reagent system in such a form as to be contained in one of the first reagent and the second reagent. Particularly, the first reagent comprising the compound (NADH or NADPH derivative) of the present invention and the like are preferably used. Particularly preferred is a combination with a second reagent containing urea, perase, α-ketoglutarate, the dehydrogenase (glutamate dehydrogenase) of the present invention, and the like.
尚、 上記に於いても、 本発明に係る脱水素酵素 (グルタミン酸脱水素 酵素) と本発明に係る化合物とを同時に組み合わせて用いるのが好まし いが、 本発明に係る脱水素酵素 (グルタミン酸脱水素酵素) と従来の補 酵素又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵 素と本発明に係る化合物(NADH又は NADPH誘導体) とを組み合わせて用い てもよい。 また、 本発明に係る化合物の還元体、 又は Z及び脱水素酵素は、 例え ば下記反応式で示される原理を利用する、 いわゆるアンモニア消去法を 組み合わせた尿素窒素測定用試薬 (方法) にも適用することができる。 グルタミン酸脱水素酵素 In the above, the dehydrogenase (glutamic acid dehydrogenase) of the present invention and the compound of the present invention are preferably used simultaneously in combination, but the dehydrogenase (glutamic acid dehydration) of the present invention is preferably used in combination. The enzyme may be used in combination with a conventional coenzyme or a derivative thereof, or the conventional dehydrogenase may be used in combination with the compound of the present invention (NADH or NADPH derivative). In addition, the reduced form of the compound according to the present invention, or Z and dehydrogenase, is also applied to a reagent (method) for measuring urea nitrogen, which combines a so-called ammonia elimination method using, for example, the principle shown by the following reaction formula. can do. Glutamate dehydrogenase
ΝΗ3 + α-ケトグルタ ルタミン酸 ΝΗ 3 + α-ketogluta glutamic acid
α—ケ卜グルタ
Figure imgf000076_0001
ソクェン酸 ゥレアーゼ:
α-keto gluta
Figure imgf000076_0001
Succinic acid perease:
尿素 + H 2 O ^ 2 N H 3 + C O 2 Urea + H 2 O ^ 2 NH 3 + CO 2
NH3 + α-ケトグルタル酸 + NAD(P)H + H + グルタミン酸脱水素酵素 NH 3 + α-ketoglutarate + NAD (P) H + H + glutamate dehydrogenase
^ N AD(P) +グルタミン酸 + H2O 上記した如き尿素窒素測定用試薬は、 イソクェン酸脱水素酵素、 イソ クェン酸、 —ケトグルタル酸、 マグネシウムイオン、 本発明に係る脱 水素酵素 (グルタミン酸脱水素酵素) 、 本発明に係る化合物 (NADH又 は NADPH誘導体) 等を含んでなる第一試薬と、 ゥレアーゼ等を含んで なる第二試薬とを組み合わせたものである。 ^ NAD (P) + glutamic acid + H 2 O As described above, the reagents for measuring urea nitrogen are isoquenate dehydrogenase, isoquenate, —ketoglutarate, magnesium ion, and the dehydrogenase according to the present invention (glutamate dehydrogenase). An enzyme), a combination of a first reagent containing a compound (NADH or NADPH derivative) according to the present invention and a second reagent containing perase and the like.
尚、 上記に於いても、 本発明に係る脱水素酵素 (グルタミン酸脱水素 酵素) と本発明に係る化合物とを同時に組み合わせて用いるのが好まし いが、 本発明に係る脱水素酵素 (グルタミン酸脱水素酵素) と従来の補 酵素又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵 素と本発明に係る化合物(NADH又は NADPH誘導体) とを組み合わせて 用いてもよい。  In the above, the dehydrogenase (glutamic acid dehydrogenase) of the present invention and the compound of the present invention are preferably used simultaneously in combination, but the dehydrogenase (glutamic acid dehydration) of the present invention is preferably used in combination. The enzyme may be used in combination with a conventional coenzyme or a derivative thereof, or the conventional dehydrogenase may be used in combination with the compound of the present invention (NADH or NADPH derivative).
尚、 上記した如き尿素窒素測定用試薬中には、 要すれば、 例えばアジ 化ナトリウム等の防腐剤、 例えば N— [トリス (ヒドロキシメチル) メ チル] グリシン (Tricine)、 N, N—ビス (2—ヒドロキシェチル) グ リシン、 N—トリス (ヒドロキシメチル) 'メチルー 3—ァミノプロパン スルホン酸 (TAPS)、 3 - [( 1 , 1—ジメチル— 2—ヒドロキシェチ ル) アミノー 2—ヒドロキシプロパンスルホン酸] (AMPSO)、 N—シ クロへキシルー 2—アミノエ夕ンスルホン酸 (CHES;)、 N—シクロへキ シル _ 2—ヒドロキシ一 3—ァミノプロパンスルホン酸 (CAPSO)、 2 —ァミノ一 2—メチル一 1一プロパノール (AMP)、 N—シクロへキシ ルー 3—ァミノプロパンスルホン酸 (CAPS;)、 ピペラジン— 1 , 4—ピ ス (2—エタンスルホン酸) (PIPES) 等のグッド緩衝剤、 例えば酢酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナール、 ホウ酸塩、 コハク酸塩、 トリス (ヒドロキシメチル) ァミノメタン (Tris)、 イミダゾ一ル等の緩 衝剤、 例えば、 ジアミノシクロへキサン四酢酸一一水和物 (CyDTA), ジァミノプロパノール四酢酸(DPTA_OH)、エチレンジァミン二酢 酸 (EDD A)、 ヒドロキシェチルイミノニ酢酸 (H I D A) 等のキレー ト剤、 界面活性剤等、 通常グルタミン酸ビルビン酸トランスアミナーゼ 活性測定法に於いて用いられる試薬類が、 通常この分野で用いられる濃 度範囲で含まれていても良いことはいうまでもない。 In the reagent for measuring urea nitrogen as described above, if necessary, a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) method Tyl] glycine (Tricine), N, N-bis (2-hydroxyethyl) glycine, N-tris (hydroxymethyl) 'methyl-3-aminopropanesulfonic acid (TAPS), 3-[(1,1-dimethyl- 2-Hydroxyethyl) amino-2-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-2-aminoenesulfonic acid (CHES;), N-cyclohexyl_2-hydroxy-13-aminopropane Sulfonic acid (CAPSO), 2-amino-2-methyl-11-propanol (AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS;), piperazine-1, 4-pis (2- Good buffers such as ethanesulfonic acid (PIPES), for example, acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) aminomethane (Tris) Absorbers such as imidazole, for example, diaminocyclohexanetetraacetic acid monohydrate (CyDTA), diaminopropanoltetraacetic acid (DPTA_OH), ethylenediamine diacetic acid (EDDA), hydroxyethyliminoni It is important to note that reagents usually used in the assay of glutamate-birubate transaminase activity, such as chelating agents such as acetic acid (HIDA) and surfactants, may be contained in the concentration range usually used in this field. Needless to say.
上記に於いて、 本発明に係る化合物の還元体、 及び本発明に係る脱水 素酵素以外の試薬類は、 尿素窒素測定時の反応液中の濃度が自体公知の 測定法で用いられている濃度範囲となるように尿素窒素測定用試薬中に 添加されればよく、 また、 その由来等についても特に限定されない。 尚 、 試薬の pHも、 自体公知の測定法で用いられている範囲から適宜選択す れば良く、 特に限定されない。  In the above, the reduced form of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention have a concentration in the reaction solution at the time of urea nitrogen measurement which is used in a measurement method known per se. What is necessary is just to add to the reagent for urea nitrogen measurement so that it may become the range, and also the origin etc. are not specifically limited. The pH of the reagent may be appropriately selected from a range used in a method known per se, and is not particularly limited.
〔無機リン測定用試薬〕 本発明に係る化合物又はノ及び脱水素酵素は、 例えば下記反応式で示 される原理を利用する無機リン測定用試薬 (方法) に適用することがで きる。 プリンヌクレオチ [Reagent for measuring inorganic phosphorus] The compound or the compound and the dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring inorganic phosphorus using a principle represented by the following reaction formula. Pudding nucleoti
ドホスホリラーゼ  Do phosphorylase
無機リン + ヒポキサンチン + リボース-卜リン酸 キサンチン脱水素酵素 Inorganic phosphorus + hypoxanthine + ribose-triphosphate xanthine dehydrogenase
ヒポキサンチン + N A D 尿酸 + 2 N A D H 無機リン測定用試薬としては、 具体的には、 例えばイノシン、 プリン ヌクレオチドホスホリラーゼ、 本発明に係る脱水素酵素 (キサンチン脱 水素酵素) 、 本発明に係る化合物 (NAD又は NADP誘導 ) 等を、 その 主要成分として用いて調製されたものが、 代表的なものとして挙げられ 、 1試薬系でも 2試薬系等の多試薬系でもよい。  Examples of hypoxanthine + NAD uric acid + 2 NADH inorganic phosphorus measurement reagents include, for example, inosine, purine nucleotide phosphorylase, the dehydrogenase according to the present invention (xanthine dehydrogenase), the compound according to the present invention (NAD or Those prepared using NADP induction) or the like as the main component are listed as typical examples, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
尚、 上記に於いて、 本発明に係る脱水素酵素 (キサンチン脱水素酵素 In the above, the dehydrogenase according to the present invention (xanthine dehydrogenase)
) と本発明に係る化合物とを同時に組み合わせて用いるのが好ましいが 、 本発明に係る脱水素酵素 (キサンチン脱水素酵素) と従来の補酵素又 はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵素と本 発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて用いても よい。 ) And the compound of the present invention are preferably used in combination, but the dehydrogenase of the present invention (xanthine dehydrogenase) may be used in combination with a conventional coenzyme or its derivative, or May be used in combination with the compound (NAD or NADP derivative) of the present invention.
また、 上記した如き無機リン測定用試薬中には、 要すれば、 例えばァ ジ化ナトリウム等の防腐剤、 例えば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine)、 N, N—ビス (2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシメチル) メチルー 3—アミノブロパ ンスルホン酸 (TAPS)、 3— [ ( 1 , 1 —ジメチル _ 2—ヒドロキシェ チル) ァミノ一 2—ヒドロキシプロパンスルホン酸] (AMPSO)、 N— シクロへキシル— 2 一アミノエ夕ンスルホン酸 (CHES)、 N—シクロへ キシルー 2—ヒドロキシー 3—ァミノプロパンスルホン酸 (CAPSO)、 2—ァミノ一 2—メチルー 1 一プロパノール (AMP)、 N—シクロへキ シル— 3—ァミノプロパンスルホン酸 (CAPS)、 ピぺラジン— 1, 4— ビス (2—エタンスルホン酸) (PIPES) 等のグッド緩衝剤、 例えば酢酸 塩、 グリシン、 クェン酸塩、 ベロナール、 ホウ酸塩、 コハク酸塩、 トリ ス (ヒドロキシメチル) ァミノメタン (Tris)、 イミダゾール等の緩衝剤, マグネシウムイオン、 界面活性剤等、 通常無機リン測定法に於いて用い られる試薬類が、 通常この分野で用いられる濃度範囲で含まれていても 良いことはいうまでもない。 Further, in the reagent for measuring inorganic phosphorus as described above, if necessary, a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis ( 2-hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropa Sulfonic acid (TAPS), 3-[(1,1-dimethyl-2-hydroxyethyl) amino-1-hydroxypropanesulfonic acid] (AMPSO), N-cyclohexyl-2-aminoaminosulfonic acid (CHES) N-cyclohexyl-2-hydroxy-3-aminopropanesulfonic acid (CAPSO), 2-amino-12-methyl-1-propanol (AMP), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS) ), Good buffers such as piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES) such as acetate, glycine, citrate, veronal, borate, succinate, tris ( Buffers such as (hydroxymethyl) aminomethane (Tris) and imidazole, magnesium ions, surfactants, and other reagents usually used in inorganic phosphorus determination methods are usually used in this field. It goes without saying that it may be contained in the concentration range.
上記に於いて、 本発明に係る化合物及び本発明に係る脱水素酵素以外 の試薬類は、 無機リン測定時の反応液中の濃度が自体公知の測定法で用 いられている濃度範囲となるように無機リン測定用試薬中に添加されれ ばよく、 また、 その由来等についても特に限定されない。 尚、 試薬の p Hも、 自体公知の測定法で用いられている範囲から適宜選択すれば良く 、 特に限定されない。  In the above, the concentration of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention in the reaction solution at the time of measuring the inorganic phosphorus falls within the concentration range used by a measurement method known per se. Thus, it may be added to the reagent for measuring inorganic phosphorus, and its origin is not particularly limited. The pH of the reagent may also be appropriately selected from a range used in a measurement method known per se, and is not particularly limited.
また、 上記した如き無機リン測定用試薬は、 プリンヌクレオチドホス ホリラーゼ、 イノシン、 本発明に係る脱水素酵素 (キサンチン脱水素酵 素) 及び本発明に係る化合物 (NAD又は NADP誘導体) の夫々が少なく とも第一試薬と第二試薬の何れかに含まれているような形態とした二試 薬系での使用が好ましく、 特に、 プリンヌクレオチドホスホリラーゼ、 本発明に係る脱水素酵素 (キサンチン脱水素酵素) 等を含んでなる第一 試薬と、 イノシン、 本発明に係る化合物 (NAD又は NADP誘導体) 等を 含んでなる第二試薬とを組み合わせたものが特に好ましい。 尚、 上記に於いても、 本発明に係る脱水素酵素 (キサンチン脱水素酵 素) と本発明に係る化合物とを同時に組み合わせて用いるのが好ましい が、 本発明に係る脱水素酵素 (キサンチン脱水素酵素) と従来の補酵素 又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵素と 本発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて用いて もよい。 また、 本発明に係る化合物又は Z及び脱水素酵素は、 例えば下記反応 式で示される原理を利用する無機リン測定用試薬 (方法) にも適用する ことができる。 スクロース In addition, the reagent for measuring inorganic phosphorus as described above includes at least purine nucleotide phosphorylase, inosine, the dehydrogenase according to the present invention (xanthine dehydrogenase) and the compound according to the present invention (NAD or NADP derivative) at least. It is preferably used in a two-reagent system in a form contained in either the first reagent or the second reagent. In particular, purine nucleotide phosphorylase, the dehydrogenase according to the present invention (xanthine dehydrogenase) and the like Particularly preferred is a combination of the first reagent comprising the compound and the second reagent comprising inosine, the compound of the present invention (NAD or NADP derivative) and the like. In the above, the dehydrogenase (xanthine dehydrogenase) according to the present invention and the compound according to the present invention are preferably used in combination at the same time. An enzyme) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination. In addition, the compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring inorganic phosphorus using a principle represented by the following reaction formula. sucrose
ホスホリラーゼ  Phosphorylase
無機リン + スクロース ― グルコース- 1-リン酸 + フルク I一ス ホスホダル コムターゼ グルコース- 1-リン酸 + グルコース- 1,6-ビスリン酸 5 グルコース- 6-リン酸 + グルコース -1, 6-ビスリン酸 グルコース- 6-リン酸脱水素酵素 グルコース- 6-リン酸 + NAD(P) Inorganic Phosphorus + Sucrose-Glucose-1-phosphate + Fruc I-phosphodal Comtase Glucose-1-phosphate + Glucose-1,6-bisphosphate 5 Glucose-6-phosphate + Glucose-1,6-bisphosphate Glucose -6-phosphate dehydrogenase glucose-6-phosphate + NAD (P)
++
6-ホスホダルコノラク卜ン + NAD(P)H + H このような無機リン測定用試薬としては、 具体的には、 例えばスクロ —ス、 スクロースホスホリラーゼ、 グルコース- 1,6-ビスリン酸、 本発明 に係る脱水素酵素 (グルコース- 6-リン酸脱水素酵素) 、 本発明に係る化 合物 (NAD又は NADP誘導体) 等を、 その主要成分として用いて調製さ れたものが、 代表的なものとして挙げられ、 1試薬系でも 2試薬系等の 多試薬系でもよい。 6-phosphodalconolactone + NAD (P) H + H Specific examples of such a reagent for measuring inorganic phosphorus include, for example, sucrose, sucrose phosphorylase, glucose-1,6-bisphosphate, and the present invention. Prepared using the dehydrogenase according to the present invention (glucose-6-phosphate dehydrogenase), the compound according to the present invention (NAD or NADP derivative) and the like as its main components. These are listed as typical examples, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
尚、 上記に於いて、 本発明に係る脱水素酵素 (グルコース- 6-リン酸脱 水素酵素) と本発明に係る化合物とを同時に組み合わせて用いるのが好 ましいが、 本発明に係る脱水素酵素 (グルコース- 6-リン酸脱水素酵素) と従来の補酵素又はその誘導体とを組み合わせて用いても、 或いは従来 の脱水素酵素と本発明に係る化合物 (NAD又は NADP誘導体) とを組み 合わせて用いてもよい。  In the above, it is preferable to use the dehydrogenase (glucose-6-phosphate dehydrogenase) of the present invention and the compound of the present invention in combination at the same time. An enzyme (glucose-6-phosphate dehydrogenase) may be used in combination with a conventional coenzyme or a derivative thereof, or a conventional dehydrogenase may be used in combination with the compound of the present invention (NAD or NADP derivative). May be used.
また、 上記した如き無機リン測定用試薬中には、 要すれば、 例えばァ ジ化ナトリウム等の防腐剤、 例えば N— [トリス (ビドロキシメチル) メチル] グリシン (Tricine)、 N, N—ビス (2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシメチル) メチル _ 3—ァミノプロパ ンスルホン酸 (TAPS)、 3 - [ ( 1, 1 —ジメチル— 2—ヒドロキシェ チル) アミノー 2—ヒドロキシプロパンスルホン酸] (AMPSO)、 N— シク口へキシルー 2—アミノエタンスルホン酸 (CHES)、 N—シクロへ キシルー 2—ヒドロキシー 3 —ァミノプロパンスルホン酸 (CAPSO)、 2—アミノー 2—メチルー 1 一プロパノール (AMP)、 N—シクロへキ シルー 3—ァミノプロパンスルホン酸 (CAPS;)、 ピぺラジン— 1, 4 一 ビス (2—エタンスルホン酸) (PIPES) 等のグッド緩衝剤、 例えば酢 酸塩、 グリシン、 クェン酸塩、 ベロナール、 ホウ酸塩、 コハク酸塩、 ト リス (ヒドロキシメチル) ァミノメタン (Tris:)、 イミダゾール等の緩衝 剤、 マグネシウムイオン、 界面活性剤等、 通常グルコース測定法に於い て用いられ 試薬類が、 通常この分野で用いられる濃度範囲で含まれて いても良いことはいうまでもない。  In the above-mentioned reagent for measuring inorganic phosphorus, if necessary, a preservative such as sodium azide, for example, N- [tris (vidroxymethyl) methyl] glycine (Tricine), N, N-bis (2 —Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl —3-aminopropanesulfonic acid (TAPS), 3-[(1,1—dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfonic acid] ( AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxy-3-hydroxyaminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propanol (AMP) Good buffering agents such as N-cyclohexyl 3-aminopropanesulfonic acid (CAPS;), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), For example, acetic acid, glycine, citrate, veronal, borate, succinate, tris (hydroxymethyl) amino methane (Tris :), imidazole and other buffering agents, magnesium ions, surfactants, etc. Normal glucose measurement It goes without saying that the reagents used in the method may be contained in the concentration range usually used in this field.
上記に於いて、 本発明に係る化合物及び本発明に係る脱水素酵素以外 の試薬類は、 無機リン測定時の反応液中の濃度が自体公知の測定法で用 いられている濃度範囲となるように無機リン測定用試薬中に添加されれ ばよく、 また、 その由来等についても特に限定されない。 尚、 試薬の p Hも、 自体公知の測定法で用いられている範囲から適宜選択すれば良く 、 特に限定されない。 In the above, the compound other than the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are used in a method known per se for measuring the concentration in the reaction solution at the time of measuring inorganic phosphorus. What is necessary is just to add to the inorganic phosphorus measurement reagent so that it may become the concentration range used, and also the origin etc. are not specifically limited. The pH of the reagent may also be appropriately selected from a range used in a measurement method known per se, and is not particularly limited.
また、 上記した如き無機リン測定用試薬は、 グルコース- 1 ,6-ビスリン 酸、 スクロース、 ホスホダルコムターゼ、 スクロースホスホリラ一ゼ、 本発明に係る脱水素酵素(グルコース- 6-リン酸脱水素酵素)及び本発明 に係る化合物 (NAD又は NADP誘導体) の夫々が少なくとも第一試薬と 第二試薬の何れかに含まれているような形態とした二試薬系での使用が 好ましく、 特に、 グルコース- 1,6-ビスリン酸、 スクロース、 ホスホダル コムターゼ、 本発明に係る脱水素酵素(グルコース- 6-リン酸脱水素酵素 ) 、 本発明に係る化合物 (NAD又は NADP誘導体) 等を含んでなる第一 試薬と、 スクロースホスホリラーゼ等を含んでなる第二試薬とを組み合 わせたもの、 更に、 当該第二試薬に更にスクロースを加えたものが特に 好ましい。  In addition, the reagents for measuring inorganic phosphorus as described above include glucose-1,6-bisphosphate, sucrose, phosphodalcomtase, sucrose phosphorylase, the dehydrogenase according to the present invention (glucose-6-phosphate dehydrogenase) ) And the compound (NAD or NADP derivative) according to the present invention are preferably used in a two-reagent system in a form such that each is contained in at least one of the first reagent and the second reagent. First reagent comprising 1,6-bisphosphate, sucrose, phosphodal-comtase, dehydrogenase according to the present invention (glucose-6-phosphate dehydrogenase), compound according to the present invention (NAD or NADP derivative), etc. And a second reagent containing sucrose phosphorylase and the like, and further preferably a sucrose added to the second reagent.
尚、 上記に於いても、 本発明に係.る脱水素酵素 (グルコース- 6-リン酸 脱水素酵素) と本発明に係る化合物とを同時に組み合わせて用いるのが 好ましいが、 本発明に係る脱水素酵素(グルコース- 6-リン酸脱水素酵素 ) と従来の補酵素又はその誘導体とを組み合わせて用いても、 或いは従 来の脱水素酵素と本発明に係る化合物 (NAD又は NADP誘導体) とを組 み合わせて用いてもよい。  In the above, it is preferable to use the dehydrogenase (glucose-6-phosphate dehydrogenase) according to the present invention and the compound according to the present invention at the same time. The enzyme (glucose 6-phosphate dehydrogenase) may be used in combination with a conventional coenzyme or its derivative, or the conventional dehydrogenase may be used in combination with the compound (NAD or NADP derivative) of the present invention. They may be used in combination.
〔コレステロール測定用試薬〕 (Cholesterol measurement reagent)
本発明に係る化合物又は Z及び脱水素酵素は、 例えば下記反応式で示 される原理を利用するコレステロール測定用試薬 (方法) に適用するこ とができる。 コレステロール The compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring cholesterol using a principle represented by the following reaction formula. cholesterol
エステラーゼ  Esterase
レステロールエステル + H 2 0 コレステロール + 脂肪酸 レステロール脱水素酵素 Les Te roll ester + H 2 0 cholesterol + fatty acid cholesterol dehydrogenase
レステロール + N A D  Resterol + N A D
N A D H + H + + コレス卜- 4-ェン -3-才ン コレステロール測定用試薬としては、 具体的には、 例えばコレステロ ールエステラーゼ、 本発明に係る脱水素酵素 (コレステロール脱水素酵 素) 、 本発明に係る化合物 (NAD又は NADP誘導体) 等を、 その主要成 分として用いて調製されたものが、 代表的なものとして挙げられ、 1試 薬系でも 2試薬系等の多試薬系でもよい。 NADH + H + + cholester-4-ene-3-year-old cholesterol measuring reagent specifically includes, for example, cholesterol esterase, the dehydrogenase according to the present invention (cholesterol dehydrogenase), and the present invention. Typical examples include compounds prepared using the compound (NAD or NADP derivative) according to the above as a main component, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
尚、 上記に於いて、 本発明に係る脱水素酵素 (コレステロール脱水素 酵素) と本発明に係る化合物とを同時に組み合わせて用いるのが好まし いが、 本発明に係る脱水素酵素 (コレステロール脱水素酵素) と従来の 補酵素又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素 酵素と本発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて 用いてもよい。 , また、 上記した如きコレステロール測定用試薬中には、 例えばポリオ  In the above, it is preferable to use the dehydrogenase (cholesterol dehydrogenase) of the present invention and the compound of the present invention in combination at the same time. An enzyme) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination. In addition, the reagent for measuring cholesterol as described above includes, for example, polio.
.一テル 〔例えば、 ェマルゲン 1 2 0 :花 王 (株) 製〕、 ポリオキシエチレンアルキルフエニルエーテル 〔例えばポ リオキシエチレンォクチルフエニルエーテル (例えば、 トリ トン X— 1 0 0 : ローム 'アンド ·ハース社製)、 ポリオキシエチレンイソォクチル フエニルエーテル、 ポリオキシエチレンノニルフエ二ルェ一テル等〕、ポ リエチレングリコ一ルモノラウレ一ト等のノニオン型界面活性剤、 検量 範囲を拡大する目的で、 例えばヒドラジン等を含有させておくことが望 ましい。 また、 要すれば、 例えば塩化ステアリルトリメチルアンモニゥ ム、 アルキルベンジルジメチル等のカチオン型界面活性剤、 例えばコ一 ル酸、 デォキシコール酸、 ポリオキシエチレンアルキルフエノールエー テル硫酸ナトリゥム等のァニオン型界面活性剤、 例えばステアリルベタ ィン、 2-アルキル- N-カルポキシメチル -N-ヒドロキシェチルイミダゾリ 二ゥムべタイン等の両性界面活性剤等の界面活性剤、 例えばアジ化ナト リウム等の防腐剤、 例えば N— [トリス (ヒドロキシメチル) メチル] グリシン (Tricine)、 N, N—ビス (2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシメチル) メチルー 3—ァミノプロパンスルホン 酸 (TAPS)、 3 - [ ( 1, 1 一ジメチルー 2—ヒドロキシェチル) アミ ノー 2—ヒドロキシプロパンスルホン酸] (AMPSO)、 N—シクロへキ シルー 2—アミノエタンスルホン酸 (CHES)、 N—シクロへキシル一 2 ーヒドロキシ一 3 —ァミノプロパンスルホン酸 (CAPSO)、 2—ァミノ - 2ーメチルー 1—プロパノ一ル (AMP)、 N—シク口へキシルー 3— ァミノプロパンスルホン酸 (CAPS)、 ピぺラジン— 1 , 4—ビス (2— エタンスルホン酸) (PIPES) 等のグッド緩衝剤、 例えば酢酸塩、 ダリ シン、 クェン酸塩、 リン酸塩、 ベロナール、 ホウ酸塩、 コハク酸塩、 ト リス (ヒドロキシメチル) ァミノメタン (Ti'is)、 イミダゾール等の緩衝 剤、 通常コレステロール測定法に於いて用いられる試薬類が、 通常この 分野で用いられる濃度範囲で含まれていても良いことはいうまでもない c 上記に於いて、 本発明に係る化合物及び本発明に係る脱水素酵素以外 の試薬類は、 コレステロール測定時の反応液中の濃度が自体公知の測定 法で用いられている濃度範囲となるようにコレステロール測定用試薬中 に添加されればよく、 また、 その由来等についても特に限定されない。 尚、 試薬の pHも、 自体公知の測定法で用いられている範囲から適宜選択 すれば良く、 特に限定されない。 .1 ter [for example, Emulgen 120: manufactured by Kao Corporation], polyoxyethylene alkylphenyl ether [for example, polyoxyethylene octylphenyl ether (for example, Triton X-100: ROHM ' And Haas Co.), polyoxyethylene isooctyl phenyl ether, polyoxyethylene nonylphenyl ether, etc.) Nonionic surfactants such as ethylene glycol monolaurate, and hydrazine, for example, are preferably included for the purpose of expanding the calibration range. Also, if necessary, cationic surfactants such as stearyltrimethylammonium chloride and alkylbenzyldimethyl, and anionic surfactants such as colic acid, dexcholate, and polyoxyethylene alkylphenol ether sodium sulfate. Surfactants such as amphoteric surfactants such as stearyl betaine and 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolidum betaine; preservatives such as sodium azide For example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis (2-hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), 3-[(1,1 dimethyl-2-hydroxyethyl) amino 2-hydroxypropanesulfone ] (AMPSO), N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-1-hydroxy-13-aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1-propano Good buffering agents such as AMP, N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), and piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), for example, acetic acid Buffers such as salt, daricin, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) aminomethane (Ti'is), imidazole, etc., usually used in cholesterol measurement reagents are found usually at the course c above that may be included in the concentration range used in this field, reagents other than dehydrogenase according to the compounds and the present invention according to the present invention , this The cholesterol measurement reagent may be added to the cholesterol measurement reagent such that the concentration in the reaction solution at the time of sterol measurement falls within the concentration range used in a measurement method known per se, and the origin and the like are not particularly limited. The pH of the reagent is also not particularly limited, and may be appropriately selected from the range used in the measurement method known per se.
また、 上記した如きコレステロール測定用試薬は、 コレステロールェ ステラーゼ、 本発明に係る化合物 (NAD又は NADP誘導体) 及び本発明 に係る脱水素酵素 (コレステロール脱水素酵素) 、 要すれば、 例えばヒ ドラジン、 例えばノエオン型界面活性剤の夫々が少なくとも第一試薬と 第二試薬の何れかに含まれているような形態とした二試薬系での使用が 好ましく、 特に、 コレステロールエステラーゼ、 本発明に係る化合物 ( NAD又は NADP誘導体) 、 要すれば、 例えばヒドラジン、 例えばノニォ ン型界面活性剤等を含んでなる第一試薬と、 本発明に係る脱水素酵素 ( コレステロール脱水素酵素) 、 要すれば、 例えばノニオン型界面活性剤 等を含んでなる第二試薬とを組み合わせたものが特に好ましい。  Further, the reagent for measuring cholesterol as described above includes cholesterol esterase, the compound of the present invention (NAD or NADP derivative) and the dehydrogenase of the present invention (cholesterol dehydrogenase), and if necessary, for example, hydrazine. It is preferable to use a two-reagent system in which each of the Noeon surfactants is contained in at least one of the first reagent and the second reagent. Particularly, cholesterol esterase, the compound according to the present invention (NAD Or a NADP derivative), if necessary, for example, a first reagent comprising hydrazine, for example, a nonionic surfactant, and the dehydrogenase (cholesterol dehydrogenase) according to the present invention, if necessary, for example, a nonionic type Particularly preferred is a combination with a second reagent containing a surfactant or the like.
尚、 上記に於いても、 本発明に係る脱水素酵素 (コレステロール脱水 素酵素) と本発明に係る化合物とを同時に組み合わせて用いるのが好ま. しいが、 本発明に係る脱水素酵素 (コレステロール脱水素酵素) と従来 の補酵素又はその誘導体とを組み合わせて用いても、 或いは従来の脱水 素酵素と本発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせ て用いてもよい。  In the above, it is preferable to use the dehydrogenase (cholesterol dehydrogenase) of the present invention and the compound of the present invention in combination at the same time. A coenzyme or a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
〔胆汁酸測定用試薬〕 (Bile acid measurement reagent)
本発明に係る化合物又は/及び脱水素酵素は、 例えば下記反応'式で示 される原理を利用する胆汁酸測定用試薬 (方法) に適用することができ る。  The compound and / or dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring bile acids using a principle represented by the following reaction formula.
3 α-ヒドロキシステロイド脱水素酵素 3 α-hydroxysteroid dehydrogenase
胆汁酸 + N A D ^ Bile acid + N A D ^
3-ケ卜ステロイド + N A D H + H T 胆汁酸測定用試薬としては、 具体的には、 例えば本発明に係る脱水素 酵素 (3 (¾ -ヒドロキシステロイド脱水素酵素) 、 本発明に係る化合物 ( NAD又は NADP誘導体) 等を、 その主要成分として用いて調製されたも のが、 代表的なものとして挙げられ、 1試藥系でも 2試薬系等の多試薬 系でもよい。 3-ketosteroid + NADH + HT Specific examples of the reagent for measuring bile acids include the dehydrogenase of the present invention (3 (¾-hydroxysteroid dehydrogenase)) and the compound of the present invention (NAD or NADP derivative). As a typical example, those prepared by using as a reagent may be a single reagent system or a multi-reagent system such as a two-reagent system.
尚、 上記に於いて、 本発明に係る脱水素酵素 (3ひ -ヒドロキシステロ ィド脱水素酵素) と本発明に係る化合物とを同時に組み合わせて用いる のが好ましいが、 本発明に係る脱水素酵素 (3 Q! - kドロキシステロイド 脱水素酵素) と従来の補酵素又はその誘導体とを組み合わせて用いても 、 或いは従来の脱水素酵素と本発明に係る化合物 (NAD又は NADP誘導 体) とを組み合わせて用いてもよい。  In the above, the dehydrogenase according to the present invention (3-hydroxyhydroxy dehydrogenase) and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention is preferably used in combination. (3Q! -K-Droxysteroid dehydrogenase) and a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used. They may be used in combination.
また、 上記した如き胆汁酸測定用試薬中には、 例えばポリオキシェチ レンセチルェ一テル、 ポリオキシエチレンォレイルエーテル、 ポリオキ シエチレンラウリルエーテル 〔例えば、 ェマルゲン 1 2 0 :花王 (株) 製〕 、 ポリオキシエチレンアルキルフエニルエーテル 〔例えばポリオキ シエチレンォクチ,ルフエ二ルエーテル (例えば、 トリ トン X— 1 0 0 : ローム · アンド ·ハース社製) 、 ポリォキシエチレンィソォクチルフエ ニルエーテル、 ポリォキシエチレンノニルフエ二ルェ一テル等〕 、 ポリ エチレングリコールモノラウレート等のノニオン型界面活性剤等を含有 させておくことが望ましい。 また、 要すれば、 例えば塩化ステアリルト リメチルアンモニゥム、 アルキルベンジルジメチル等のカチオン型界面 活性剤、 例えばステアリルべ夕イン.、 2-アルキル- N-カルポキシメチル- N-ヒドロキシェチルイミダゾリ二ゥムべタイン等の両性界面活性剤等 の界面活性剤、 例えばアジ化ナトリウム等の防腐剤、 例えば N _ [トリ ス (ヒドロキシメチル) メチル] グリシン (Tr i c i ne) 、 N , N—ビス ( 2—ヒドロキシェチル) グリシン、 N—トリス (ヒドロキシメチル) メ チルー 3 —ァミノプロパンスルホン酸 (TAPS) 、 3 - [ ( 1, 1ージメ チル— 2—ヒドロキシェチル) アミノー 2—ヒドロキシプロパンスルホ ン酸] (AMPS0) 、 N—シクロへキシル— 2—アミノエ夕ンスルホン酸 ( CHES) 、 N—シクロへキシル _ 2 —ヒドロキシ— 3 —ァミノプロパンス ルホン酸 (CAPS0) 、 2—ァミノ— 2—メチル _ 1 一プロパノール (AMP ) 、 N—シクロへキシル _ 3—ァミノプロパンスルホン酸 (CAPS) 、 ピ ペラジン一 1, 4 _ビス ( 2—エタンスルホン酸) (P IPES) 等のグッド 緩衝剤、 例えば酢酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナール 、 ホウ酸塩、 コハク酸塩、 トリス (ヒドロキシメチル) ァミノメタン (T r,i s) 、 イミダゾール等の緩衝剤等、 通常胆汁酸測定法に於いて用いられ る試薬類が、 通常この分野で用いられる濃度範囲で含まれていても良い ことはいうまでもない。 In addition, the above-mentioned reagents for measuring bile acids include, for example, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene lauryl ether [for example, Emulgen 120: manufactured by Kao Corporation], polyoxyethylene. Alkyl phenyl ethers [for example, polyoxyethylene octyl, phenyl ether (for example, Triton X-100: manufactured by Rohm and Haas), polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl It is desirable to contain a nonionic surfactant such as polyethylene glycol monolaurate. Also, if necessary, cationic surfactants such as stearyltrimethylammonium chloride and alkylbenzyldimethyl, for example, stearyl benzoin., 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazo Surfactants such as amphoteric surfactants such as rhinebetaine; preservatives such as sodium azide; N_ [tris (hydroxymethyl) methyl] glycine (Tricine), N, N— Screw ( 2-Hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3, -aminopropanesulfonic acid (TAPS), 3-[(1,1 dimethyl-2-hydroxyethyl) amino-2-hydroxypropanesulfo Acid] (AMPS0), N-cyclohexyl-2-aminoaminosulfonic acid (CHES), N-cyclohexyl_2-hydroxy-3-aminoaminopropanesulfonate (CAPS0), 2-amino-2-methyl_ 1 Good buffering agents such as monopropanol (AMP), N-cyclohexyl_3-aminoaminopropanesulfonic acid (CAPS), piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), for example Buffering agents such as acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) aminomethane (Tr, is), imidazole, etc. It is that reagents used In normal bile acid measuring method, usually it is needless to say that may be included in the concentration range used in this field.
上記に於いて、 本発明に係る化合物及び本発明に係る脱水素酵素以外 の試薬類は、 胆汁酸測定時の反応液中の濃度が自体公知の測定法で用い られている濃度範囲となるように胆汁酸測定用試薬中に添加されればよ く、 また、 その由来等についても特に限定されない。 尚、 試薬の pHも、 自体公知の測定法で用いられている範囲から適宜選択すれば良く、 特に 限定されない。  In the above, the concentration of the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention in the reaction solution at the time of bile acid measurement is within the concentration range used in the measurement method known per se. What is necessary is just to add it to the reagent for measuring bile acids, and its origin is not particularly limited. In addition, the pH of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited.
〔ソルビトール測定用試薬〕 (Sorbitol measurement reagent)
本発明に係る化合物又は Z及び脱水素酵素は、 例えば下記反応式で示 される原理を利用するソルビトール測定用試薬 (方法) に適用すること ができる。 ソルビ卜ール脱水素酵素 The compound or Z and dehydrogenase according to the present invention can be applied to, for example, a reagent (method) for measuring sorbitol using a principle represented by the following reaction formula. Sorbitol dehydrogenase
ソルビ! ^一ル + N A D ― Sorbi! ^ Il + N A D-
フルク I ^一ス + N A D H + Η τ ソルビトール測定用試薬としては、 具体的には、 例えば本発明に係る 脱水素酵素 (ソルビトール脱水素酵素) 、 本発明に係る化合物 (NAD又 は NADP誘導体) 等を、 その主要成分として用いて調製されたものが、 代表的なものとして挙げられ、 1試薬系でも 2試薬系等の多試薬系でも よい。 Specific examples of the reagent for measuring fruc I ^ I + NADH + + τ sorbitol include, for example, the dehydrogenase according to the present invention (sorbitol dehydrogenase), the compound according to the present invention (NAD or NADP derivative) and the like. A typical example thereof is prepared by using as a main component, and may be a multi-reagent system such as a one-reagent system or a two-reagent system.
尚、 上記に於いて、 本発明に係る脱水素酵素 (ソルビトール脱水素酵 素) と本発明に係る化合物とを同時に組み合わせて用いるのが好ましい が、 本発明に係る脱水素酵素 (ソルビトール脱水素酵素) と従来の補酵 素又はその誘導体とを組み合わせて用いても、 或いは従来の脱水素酵素 と本発明に係る化合物 (NAD又は NADP誘導体) とを組み合わせて用い てもよい。  In the above, the dehydrogenase according to the present invention (sorbitol dehydrogenase) and the compound according to the present invention are preferably used simultaneously in combination, but the dehydrogenase according to the present invention (sorbitol dehydrogenase) is preferably used. ) And a conventional coenzyme or a derivative thereof may be used in combination, or a conventional dehydrogenase and a compound (NAD or NADP derivative) of the present invention may be used in combination.
また、 上記した如きソルビトール測定用試薬中には、 要すれば、 例え ばアジ化ナトリウム等の防腐剤、 例えば N— [トリス (ヒドロキシメチ ル) メチル] グリシン (Tricine)、 N, N—ビス ( 2—ヒドロキシェチ ル) グリシン、 N—トリス (ヒドロキシメチル) メチルー 3 _アミノブ 口パンスルホン酸 (TAPS)、 3 - [ ( 1 , 1 —ジメチル— 2 —ヒドロキ シェチル) アミノー 2—ヒドロキシプロパンスルホン酸] (AMPSO)、 N—シク口へキシルー 2—アミノエタンスルホン酸 (CHES)、 N—シク 口へキシル— 2 — ヒ ドロキシー 3 —ァミ ノプロパンスルホン酸 (CAPSO)、 2—アミノー 2—メチルー 1 一プロパノール (AMP)、 N ーシクロへキシルー 3—ァミノプロパンスルホン酸 (CAPS)、 ピペラジ ンー 1 , 4一ビス (2 —エタンスルホン酸) (PIPES) 等のグッド緩衝剤、 例えば酢酸塩、 グリシン、 クェン酸塩、 リン酸塩、 ベロナ一ル、 ホウ酸 塩、 コハク酸塩、 トリス (ヒドロキシメチル) ァミノメタン (Tris)、 ィ ミダゾール等の緩衝剤、 界面活性剤等、 通常ソルビトール測定法に於い て用いられる試薬類が、 通常この分野で用いられる濃度範囲で含まれて いても良いことはいうまでもない。 In the reagent for measuring sorbitol as described above, if necessary, a preservative such as sodium azide, for example, N- [tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis ( 2-hydroxyethyl) glycine, N-tris (hydroxymethyl) methyl-3-aminobutanepansulfonic acid (TAPS), 3-[(1,1-dimethyl-2-hydroxysethyl) amino-2-hydroxypropanesulfonic acid] ( AMPSO), N-cyclohexyl 2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2—hydroxy-3—aminopropanesulfonic acid (CAPSO), 2-amino-2-methyl-1- Good buffering agents such as propanol (AMP), N-cyclohexyl 3-aminopropanesulfonic acid (CAPS), piperazin-1,4-bis (2-ethanesulfonic acid) (PIPES), For example, acetate, glycine, citrate, phosphate, veronal, borate, succinate, tris (hydroxymethyl) aminomethane (Tris), imidazole and other buffering agents, surfactants, etc., usually sorbitol It goes without saying that the reagents used in the measurement method may be contained in the concentration range usually used in this field.
上記に於いて、 本発明に係る化合物及び本発明に係る脱水素酵素以外 の試薬類は、 ソルビトール測定時の反応液中の濃度が自体公知の測定法 で用いられている濃度範囲となるようにソルヒトール測定用試薬中に添 加されればよく、 また、 その由来等についても特に限定されない。 尚、 試薬の ϋΗも、自体公知の測定法で用いられている範囲から適宜選択すれ ば良く、 特に限定されない。 以下に実施例及び比較例を挙げるが、 本発明はこれらにより何等限定 されるものではない。 実施例  In the above, the compound other than the compound according to the present invention and the reagents other than the dehydrogenase according to the present invention are adjusted so that the concentration in the reaction solution at the time of sorbitol measurement falls within the concentration range used in the measurement method known per se. What is necessary is just to add it to the reagent for measuring Sohlhitol, and the origin etc. are not particularly limited. In addition, the ϋΗ of the reagent may be appropriately selected from the range used in the measurement method known per se, and is not particularly limited. Hereinafter, Examples and Comparative Examples will be described, but the present invention is not limited thereto. Example
実施例 1 Example 1
アルドキシム型 NADP誘導体を、 J.Bio.Chem., 2na, 484(1954)に記 載の方法に準じて以下のように創製した。  An aldoxime-type NADP derivative was created as follows according to the method described in J. Bio. Chem., 2na, 484 (1954).
NADP (シグマ社製) 10gと 一ピリジンアルドキシム (アルドリツ チ社製) 10gとを、 リン酸緩衝液 (pH7.2) に溶解した。 次いで、 これ に NADP+ヌクレオシダーゼ (DPNase : 牛脾臓由来、 Zatman et al,J.Biol.Chem.,2 , 197(1953)の方法に準じて作製したもの) 5000u を加え、 3 0 °Cで 3時間反応させた後、 トリクロ口酢酸 (TCA) を加え て、 反応を停止した。 得られた反応液を遠心処理して蛋白を除去した。 得られた上清に 5倍量のァセトンを加え、生じた沈殿物を遠心処理によ り採取した。 得られた沈殿物を、 減圧下に乾燥させ、 粗アルドキシム型 NADP誘導体 1 1 gを得た。 10 g of NADP (manufactured by Sigma) and 10 g of monopyridinealdoxime (manufactured by Aldrich) were dissolved in a phosphate buffer (pH 7.2). Then, to this was added 5000u of NADP + nucleosidase (DPNase: bovine spleen, prepared according to the method of Zatman et al., J. Biol. Chem., 2, 197 (1953)), and added at 30 ° C for 3 hours. After reacting for an hour, the reaction was stopped by adding trichloroacetic acid (TCA). The resulting reaction solution was centrifuged to remove proteins. Acetone (5 times) was added to the obtained supernatant, and the resulting precipitate was centrifuged. Was collected. The obtained precipitate was dried under reduced pressure to obtain 11 g of a crude aldoxime-type NADP derivative.
さらに得られた粗アルドキシム型 NADP 誘導体を、 常法に従い DOWE— Xカラム (ダウケミカル社製) で精製し、 アルドォキシム型 NADP誘導体 5 gを得た。  Further, the obtained crude aldoxime-type NADP derivative was purified with a DOWE-X column (manufactured by Dow Chemical Company) according to a conventional method to obtain 5 g of an aldoxime-type NADP derivative.
得られた結果について、 表 1に示す。 実施例 2〜3 3  Table 1 shows the obtained results. Examples 2-3
NADP (シグマ社製) と所定のピリジン誘導体-とを用いて、 実施例 1 に記載した方法に準じて創製を行い、 対応する NADP誘導体を得た。 得 られた結果について、 表 1及び表 2に示す。 参考例 1〜 4  Using NADP (manufactured by Sigma) and a predetermined pyridine derivative-, a novel NADP derivative was obtained according to the method described in Example 1. Tables 1 and 2 show the obtained results. Reference Examples 1 to 4
NADP (シグマ社製) と所定のピリジン誘導体とを用いて、 実施例 1 に記載した方法に準じて創製を行い、 対応する NADP誘導体を得た。 得 られた結果について、 表 2に示す。 Using NADP (manufactured by Sigma) and a predetermined pyridine derivative, a novel NADP derivative was obtained according to the method described in Example 1. Table 2 shows the obtained results.
ピリジン誘導体 物性 Pyridine derivative properties
ピリジン環 3位の置換基  Pyridine ring 3-position substituent
=ェ *¾■ A max 誘導体名 置換基型 分子鼍  = ェ * ¾ ■ A max Derivative name Substituent type molecule 鼍
置換基型 (還元後) の置換基 R  Substituent type R (after reduction)
圭倫糊 1 kし°,リ1 «ノ?5ノ 7 Jノ IIレ, ^ +- Q Keirin glue 1 k し °, ri 1 «no? 5no 7 Jno IIre, ^ +-Q
ン */人 X CH=N - OH o 4.o trans ビリン レ) -ァクリ >)レ  * / Person X CH = N-OH o 4.o trans
実施例 2 CH=CHCONH 769.4 375 アミド Example 2 CH = CHCONH 769.4 375 amide
実施例 3 ニコチン酸メチル CH3 758.4 342.5 実施例 4 ニコチン酸ェチル 2n 5 772.4 342.5 実施例 5 ニコチン酸プロピル し 3Η7 786.4 342 実施例 6 ニコチン酸イソプロピル II 786.4 341 Example 3 Methyl nicotinate CH 3 758.4 342.5 Example 4 Ethyl nicotinate 2 n 5 772.4 342.5 Example 5 Propyl nicotinate 3 7 786.4 342 Example 6 Isopropyl nicotinate II 786.4 341
COO-R  COO-R
実施例 7 ニコチン酸プチル 4Η9 800.4 342.5 実施例 8 ニコチン酸イソプチル // 800.4 342 実施例 9 ニコチン酸 sec -プチル II 800.4 341.5 実施例 10 ニコチン酸 ieri-プチル II 800.4 341 実施例 11 ニコチンアルデヒド Η 728.4 実施例 12 ァセチ»レピリジン CH3 742.4 362.5 実施例 13 プロピオ二ルビリジン C2H5 756.4 363 実施例 14 プチリルピリジン C3H7 770.4 363.5 実施例 15 イソプチリルピリジン CO - R II . 770.4 362.5 実施例 16 バレリルピリジン C4ti9 784.4 364 実施例 17 イソバレリルピリジン // 784.4 363 実施例 18 iert-バレリルピリジン ,1 784.4 362 実施例 19 ベンゾィルピリジン C6H5 804.5 365 Example 7 butyl nicotinate 4 Η 9 800.4 342.5 Example 8 isobutyl nicotinate // 800.4 342 Example 9 sec-butyl nicotinate II 800.4 341.5 Example 10 ieri-butyl nicotinate II 800.4 341 Example 11 Nicotin aldehyde Η 728.4 Example 12 acetyl pyridinepyridine CH 3 742.4 362.5 Example 13 propionyl pyridine C 2 H 5 756.4 363 Example 14 ptyryl pyridine C 3 H 7 770.4 363.5 Example 15 Isobutyryl pyridine CO-R II. 770.4 362.5 Example 16 Valeryl pyridine C 4 ti 9 784.4 364 Example 17 Isovaleryl pyridine // 784.4 363 Example 18 iert-Valeryl pyridine, 1 784.4 362 Example 19 Benzoyl pyridine C 6 H 5 804.5 365
表 2 Table 2
Figure imgf000092_0001
参考例 5
Figure imgf000092_0001
Reference example 5
プロ ピオニルピリジン型 NAD 誘導体を、 J.Bi0.Chem. 209, 484( 1954)に記載の方法に準じて以下のように創製した。  A propionylpyridine type NAD derivative was created as follows according to the method described in J. Bi0. Chem. 209, 484 (1954).
NAD (シグマ社製) 10g とプロピオ二ルリジン (中島辰巳、 薬学雑 誌, 2 , 1010(1955)の方法に準じて作製したもの) 10g とを、 'リン酸緩 衝液 (pH7.2) に溶解した。 次いで、 これに NAD+ヌクレオシダ一ゼ (DPNase:ブタ脳由来、 Zatman et al., J. Biol. Chem., 20^,484( 1954) の方法に準じて作製したもの) 5000u を加え、 3 7 :で 3時間反応さ せた後、 トリクロ口酢酸 (TCA) を加えて、 反応を停止した。 得られた 反応液を遠心処理して蛋白を除去した。得られた上清に 5倍量のァセト ンを加え、 生じた沈殿物を遠心処理により採取した。 得られた沈殿物を、 減圧下に乾燥させ、 粗プロピオニルピリジン型 NAD誘導体 1 O gを得 た。 Dissolve 10 g of NAD (Sigma) and 10 g of propionyl lysine (Tatsumi Nakajima, prepared according to the method of Pharmaceutical Journal, 2, 1010 (1955)) in a phosphate buffer solution (pH 7.2) did. Then, NAD + nucleosidase (DPNase: derived from pig brain, Zatman et al., J. Biol. Chem., 20 ^, 484 (1954) After adding 5000u and reacting at 37: 3 for 3 hours, the reaction was stopped by adding trichloroacetic acid (TCA). The resulting reaction solution was centrifuged to remove proteins. A 5-fold amount of acetone was added to the obtained supernatant, and the resulting precipitate was collected by centrifugation. The obtained precipitate was dried under reduced pressure to obtain 10 g of a crude propionylpyridine-type NAD derivative.
さらに得られた粗プロピオニルピリジン型 NAD誘導体を、 常法に従 い DOWE— Xカラム (ダウケミカル社製) で精製し、 プロピオ二ルビ リジン型 NAD誘導体 3 gを得た。  Further, the obtained crude propionylpyridine-type NAD derivative was purified with a DOWE-X column (manufactured by Dow Chemical Company) according to a conventional method to obtain 3 g of a propionyl-pyridine-type NAD derivative.
得られた結果について、 表 4に示す。 実施例 3 4〜 5 2  Table 4 shows the obtained results. Example 3 4 to 5 2
NAD (シグマ社製) と所定のピリジン誘導体とを用いて、 参考例 5に 記載した方法に準じて創製を行い、 対応する NAD誘導体を得た。 得ら れた結果について、 表 3に示す。 参考例 6〜 2 2  Using NAD (manufactured by Sigma) and a predetermined pyridine derivative, a novel NAD derivative was obtained according to the method described in Reference Example 5 to obtain a corresponding NAD derivative. Table 3 shows the obtained results. Reference Examples 6 to 2 2
NAD (シグマ社製) と所定のピリジン誘導体とを用いて、 実施例 1に 記載した方法に準じて創製を行い、 対応する NAD 誘導体を得た。 得ら れた結果について、 表 4に示す。 表 3 Using NAD (manufactured by Sigma) and a predetermined pyridine derivative, a novel NAD derivative was obtained according to the method described in Example 1 to obtain a corresponding NAD derivative. Table 4 shows the obtained results. Table 3
ピリジン誘導体 物性  Pyridine derivative properties
ピリジン環 3位の置換基  Pyridine ring 3-position substituent
A max 導 分子量  A max derived molecular weight
置換基型 (還元後) の置換基 R  Substituent type R (after reduction)
実施例 34 ニコチン酸メチル CH3 677.4 342.5 実施例 35 ニコチン酸ェチル 2 691.4 342.5 実施例 36 ニコチン酸プロピル 705.4 342 実施例 37 ニコチン酸イソプロピル // 705.4 341 Example 34 Methyl nicotinate CH 3 677.4 342.5 Example 35 Ethyl nicotinate 2 691.4 342.5 Example 36 Propyl nicotinate 705.4 342 Example 37 Isopropyl nicotinate // 705.4 341
COO-R  COO-R
実施例 38 ニコチン酸ブチル 4HQ 719.4 342.5 実施例 39 ニコチン酸イソブチル II 719.4 ' 342 実施例 40 ニコチン酸 sec-プチル II 719.4 341.5 実施例 41 ニコチン酸 ieri-プチル II 719.4 Example 38 nicotinic acid butyl 4 H Q 719.4 342.5 Example 39 Nicotinic acid isobutyl II 719.4 '342 Example 40 Nicotinic acid sec- heptyl II 719.4 341.5 Example 41 Nicotinic acid ieri- heptyl II 719.4
実施例 42 N-メチルニコチンアミド CH3 676.4 334 実施例 43 N-ェチルニコチンアミド ^2H5 690.4 334.5 実施例 44 N-プロピルニコチンアミド し 3RT7 704.4 335 実施例 45 1S ΜT-—ィ、ノノプノ Πi H c_"ノ Jしレ ! 1キ j 、 ^ノ 7 / -=i; Κ yί // 7 i Π UΑT'. άT." ま lift侧 4fi N-プチルニコチンアミド C4H9 718.4 335.5 実施例 47 N-イソプチルニコチンアミド // 718.4 334.5 EXAMPLE 42 N-methyl-nicotinamide CH 3 676.4 334 EXAMPLE 43 N-E chill nicotinamide ^ 2 H 5 690.4 334.5 Example 44 N-propyl-nicotinamide and 3 RT 7 704.4 335 Example 45 1S ΜT-- I, Nonopno Πi H c_ "No J! 1 key j, ^ no 7 /-= i; Κ yί // 7 i Α UΑT '. ΆT." Ma lift 侧 4fi N-Butylnicotinamide C 4 H 9 718.4 335.5 Example 47 N-isobutyl nicotinamide // 718.4 334.5
CONH-R  CONH-R
実施例 48 N-ieri-ブチルニコチンアミド // 718.4 334 実施例 49 N-ベンジルニコチンアミド 752.4 Example 48 N-ieri-butylnicotinamide // 718.4 334 Example 49 N-benzylnicotinamide 752.4
実施例 50 Ν,Ν-ジメチルニコチンアミド (CH3)2 691.4 Example 50 Ν, Ν-dimethylnicotinamide (CH 3 ) 2 691.4
実施例 51 Ν,Ν-ジェチルニコチンアミド (C2H5)2 719.4 Example 51 Ν, Ν-Getyl nicotinamide ( C 2 H 5) 2 719.4
Ν- (ヒドロキシメチル) -ニコチン  Ν- (hydroxymethyl) -nicotine
実施例 52 CH2OH 692.4 340 Example 52 CH 2 OH 692.4 340
アミド Amide
表 4 Table 4
Figure imgf000095_0001
実施例 5 3
Figure imgf000095_0001
Example 5 3
ニコチン酸メチル型 NADPH誘導体を、 Biochem.Z. , 297 , 66 ( 1938) に記載の方法等に準じて以下のように創製した。  A methyl nicotinate NADPH derivative was created as follows according to the method described in Biochem. Z., 297, 66 (1938) and the like.
実施例 3で得られたニコチン酸メチル型 NADP誘導体 500mgを、 1 % 炭酸水素ナトリウム水溶液 40mlに溶解した。 当該溶液に、 窒素気流下 でハイドロサルフアイトナトリウム 250mgを攪拌しながら加えて、 2 5 °Cで 2時間反応させた後、 酸素を 1 5分間吹き込み反応を停止させ、 粗ニコチン酸メチル型 NADPH誘導体を得た。 500 mg of the methyl nicotinate NADP derivative obtained in Example 3 was dissolved in 40 ml of a 1% aqueous sodium hydrogen carbonate solution. To the solution was added 250 mg of sodium hydrosulfite with stirring under a nitrogen stream, and the mixture was reacted at 25 ° C for 2 hours.Then, oxygen was blown for 15 minutes to stop the reaction. A crude methyl nicotinic acid type NADPH derivative was obtained.
更に得られた粗ニコチン酸メチル型 NADPH誘導体を、 常法に従い H P L Cで精製し、 ニコチン酸メチル型 NADPH誘導体 60mgを得た。 得られた結果について、 表 5に示す。  Further, the obtained crude methyl nicotinate NADPH derivative was purified by HPLC according to a conventional method to obtain 60 mg of a methyl nicotinate NADPH derivative. Table 5 shows the obtained results.
尚、 表 5に於いて、 ピリジン誘導体に於けるピリジン環 3位の置換基 の分類上、'実施例 5 3を実施例 5 5の後に示した。 実施例 5 4〜 8 9  Note that, in Table 5, 'Example 53 is shown after Example 55 in view of the classification of the substituent at the 3-position of the pyridine ring in the pyridine derivative. Example 5 4 ~ 8 9
実施例 1、 2、 4〜 3 3及び参考例 1〜4で得られた NADP誘導体を 用いて、 実施例 5 3に記載した方法に準じて創製を行い、 対応する NAD PH誘導体を得た。 得られた結果を表 5及び表 6に示す。 Using the NADP derivatives obtained in Examples 1, 2, 4 to 33 and Reference Examples 1 to 4, creation was performed according to the method described in Example 53 to obtain the corresponding NAD PH derivative. Tables 5 and 6 show the obtained results.
表 5 Table 5
ピリジン誘導体 物性  Pyridine derivative properties
ピリジン環 3位の置換基  Pyridine ring 3-position substituent
λ max 誘導体名 置換基型 分子量  λ max Derivative name Substituent type Molecular weight
置換基型 (還元後) の置換基 R  Substituent type R (after reduction)
芙 511列 54 3-ピリンンァゾレドキン厶 CH-N-OH 744.4 334.5 irans-3- -ピリン レ )- "クリル Row 511 row 54 3-Pirinazoledkinmum CH-N-OH 744.4 334.5 irans-3- -Pirinre)-
実施例 55 CH=CHCONH2 770.4 375 アミド Example 55 CH = CHCONH 2 770.4 375 amide
実施例 53 ニコチン酸メチル CH3 759.4 342.5 実施例 56 ニコチン酸;!:チル 2"·5 773.4 342.5 実施例 57 ニコチン酸プロピル C3H7 787.4 342 実施例 58 ニコチン酸イソプロピル II 787.4 341 Example 53 Methyl nicotinate CH 3 759.4 342.5 Example 56 Nicotinic acid;!: Chill 2 ″ · 5 773.4 342.5 Example 57 Propyl nicotinate C 3 H 7 787.4 342 Example 58 Isopropyl nicotinate II 787.4 341
COO-R  COO-R
実施例 59 ニコチン酸ブチル し ΛΗΓ> 801.4 342.5 実施例 60 ニコチン酸イソブチル II 801.4 342 実施例 61 ニコチン酸 sec-ブチル II 801.4 341.5 実施例 62 ニコチン酸 ieri-プチル II 801.4 341 実施例 63 ニコチンアルデヒド Η 729.4 実施例 64 ァセチルビリジン CH3 743.4 362.5 実施例 65 プロピオ二ルビリジン 2η5 757.4 363 実施例 66 プチリルピリジン C3H7 771.4 363.5 実施例 67 イソプチリルピリジン CO-R 1, 771.4 362.5 実施例 68 バレリルピリジン 785.4 364 実施例 69 イソバレリルピリジン II 785.4 363 実施例 70 ieri-バレリルピリジン II 785.4 362 実施例 71 ベンゾィルピリジン C6H5 805.5 365 Example 59 butyl nicotinate> 801.4 342.5 Example 60 isobutyl nicotinate II 801.4 342 Example 61 sec-butyl nicotinate II 801.4 341.5 Example 62 ieri-butyl nicotinate II 801.4 341 Example 63 Nicotinaldehyde Η 729.4 example 64 Asechirubirijin CH 3 743.4 362.5 example 65 propionic two Rubirijin 2 η 5 757.4 363 example 66 Petit Lil pyridine C 3 H 7 771.4 363.5 example 67 iso Petit Lil pyridine CO-R 1, 771.4 362.5 example 68 valeryl pyridine 785.4 364 Example 69 isovaleryl pyridine II 785.4 363 Example 70 ieri-valeryl pyridine II 785.4 362 Example 71 Benzoyl pyridine C 6 H 5 805.5 365
表 6 Table 6
Figure imgf000098_0001
実施例 9 0
Figure imgf000098_0001
Example 9 0
プロピオニルピリ ジン型 NADH 誘導体を、 Biochem.Z., 297, 66( 1938)に記載の方法等に準じて以下のように創製した。  A propionylpyridin-type NADH derivative was created as follows according to the method described in Biochem. Z., 297, 66 (1938).
参考例 5で得られたプロピオニルピリジン型 NAD誘導体 500mgを、 1 %炭酸水素ナトリウム水溶液 40mlに溶解した。 当該溶液に、 窒素気 流下でハイドロサルファイトナトリウム 250mgを攪拌しながら加えて、 2 5 °Cで 2時間反応させた後、酸素を 1 5分間吹き込み反応を停止させ、 粗プロピオニルピリジン型 NADH誘導体を得た。 500 mg of the propionylpyridine type NAD derivative obtained in Reference Example 5 was dissolved in 40 ml of a 1% aqueous sodium hydrogen carbonate solution. To the solution was added 250 mg of sodium hydrosulfite with stirring under a nitrogen stream, and the mixture was reacted at 25 ° C for 2 hours.Then, oxygen was blown for 15 minutes to stop the reaction. A crude propionylpyridine type NADH derivative was obtained.
更に得られた粗プロピオニルピリジン型 NADH誘導体を、常法に従い H P L Cで精製し、 プロピオニルピリジン型 NADH誘導体 200mgを得 た。  Further, the obtained crude propionylpyridine type NADH derivative was purified by HPLC according to a conventional method to obtain 200 mg of a propionylpyridine type NADH derivative.
得られた結果について、 表 8に示す。  Table 8 shows the obtained results.
尚、 表 8に於いて、 ピリジン誘導体に於けるピリジン環 3位の置換基 の分類上、 実施例 9 0を実施例 1 1 3の後に示した。 実施例 9 1〜 1 2 6  Note that, in Table 8, Example 90 is shown after Example 113 in view of the classification of the substituent at the pyridine ring 3-position in the pyridine derivative. Example 9 1 to 1 2 6
実施例 3 4〜 5 2、 及び参考例 6〜2 2で得られた NAD誘導体を用い て、 実施例 9 0に記載した方法に準じて創製を行い、 対応する NADH誘 導体を得た。 得られた結果を表 7及び表 8に示す。 Using the NAD derivatives obtained in Examples 34 to 52 and Reference Examples 6 to 22, creation was performed in accordance with the method described in Example 90 to obtain a corresponding NADH derivative. Tables 7 and 8 show the obtained results.
表 7 Table 7
Figure imgf000100_0001
Figure imgf000100_0001
表 8 Table 8
Figure imgf000101_0001
実施例 1 2 7
Figure imgf000101_0001
Example 1 2 7
実施例 1で得られたアルドキシム型 NADP 誘導体と、 天然型 NADP との保存安定性を比較した。  The storage stability of the aldoxime-type NADP derivative obtained in Example 1 and natural-type NADP was compared.
1 O mM リン酸緩衝液 (pH6.5)にアルドキシム型 NADP誘導体又は天 然型 NADPを l mmol溶解したものを所定温度で所定日数保存し、 補酵 素の残存量を HPLC (逆相カラムクロマト ;移動相: ァセトニトリル一 リン酸緩衝液) で分析し、 各ピーク面積を比較した。 結果を表 9に示す。 尚、 値は、 溶解直後の値を 100とした場合の補酵 素残存率を示す。 1 mmol of an aldoxime-type NADP derivative or natural-type NADP dissolved in 1 mM phosphate buffer (pH 6.5) is stored at a specified temperature for a specified number of days, and the remaining amount of the coenzyme is determined by HPLC (reverse phase column chromatography). Mobile phase: acetonitrile monophosphate buffer), and the peak areas were compared. Table 9 shows the results. In addition, the value indicates the residual ratio of the coenzyme when the value immediately after dissolution is set to 100.
表 9  Table 9
Figure imgf000102_0001
表 9の結果から明らかなように、本発明に係るォキシム型 NADP誘導 体は、 10^で 12力月以上保存した場合でも 90 %以上の安定性を有する のに対し、 天然型 NADPは 70 %程度であること、 特に、 30°Cの温度負 荷状態で保存した場合には、 ォキシム型 NADP誘導体は、 2.5力月保存 後でも約 80 %の安定性を有するのに対して、 天然型 NADPは約 2Q %の 安定性しか有さないことが判る。 即ち、 ォキシム型 NADP誘導体は、 天 然型 NADPに比較して、 保存安定性が著しく向上していることが判る。 実施例 1 2 8
Figure imgf000102_0001
As is clear from the results in Table 9, the oxime-type NADP derivative according to the present invention has a stability of 90% or more even when stored at 10 ^ for 12 months or more, whereas the natural-type NADP derivative has a 70% stability. In particular, when stored under a temperature load of 30 ° C, the oxime-type NADP derivative has about 80% stability even after 2.5 months storage, whereas the natural-type NADP derivative Has only about 2Q% stability. That is, it can be seen that the oxime-type NADP derivative has significantly improved storage stability as compared with the natural-type NADP. Example 1 2 8
実施例 1 3で得られたプロピオニルピリジン型 NADP誘導体と、天然 型 NADPとの保存安定性を比較した。  The storage stability of the propionylpyridine type NADP derivative obtained in Example 13 and the natural type NADP were compared.
Γ 0 mM MES緩衝液 (pH6.5)にプロピオ二ルピリジン型 NADP誘導体 又は天然型 NADPを 1 mmol溶解したものを所定温度で所定日数保存し , 補酵素の残存量を HPLC 〈逆相カラムクロマト ;移動相: ァセトニトリ ルーリン酸緩衝液) で分析し、 各ピーク面積を比較した。  プ ロ A solution of 1 mmol of propionylpyridine-type NADP derivative or natural-type NADP dissolved in 0 mM MES buffer (pH 6.5) is stored at a predetermined temperature for a predetermined number of days, and the remaining amount of coenzyme is determined by HPLC <reverse phase column chromatography; (Mobile phase: acetate buffer solution) and the peak areas were compared.
結果を表 1 0に示す。 尚、 値は、 溶解直後の値を 100とした場合の補 酵素残存率を示す。 表 1 0 The results are shown in Table 10. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100. Table 10
Figure imgf000103_0001
表 1 0の結果から明らかなように、 本発明に係るプロピオニルピリジ ン型 NADP誘導体は、 10°Cで 12力月以上保存した場合でも 90 %以上 の安定性を有するのに対し、 天然型 NADPは 70 %程度であること、 特 に、 30°Cの温度負荷状態で保存した場合には、 プロピオ二ルビリジン型 NADP誘導体は、 2.5力月保存後でも約 65 %の安定性を有するのに対し て、 天然型 NADPは約 20 %の安定性しか有さないことが判る。 即ち、 プロピオニルピリジン型 NADP誘導体は、 天然型 NADPに比較して、 保存安定性が著しく向上していることが判る。 実施例 1 2 9
Figure imgf000103_0001
As is clear from the results in Table 10, the propionylpyridin-type NADP derivative according to the present invention has a stability of 90% or more even when stored at 10 ° C for 12 months or more, whereas the natural type NADP is about 70% .Especially, when stored under a temperature load condition of 30 ° C, the propionyl bipyridine-type NADP derivative has about 65% stability even after storage for 2.5 months. In contrast, natural NADP has only about 20% stability. That is, it can be seen that the propionylpyridine type NADP derivative has significantly improved storage stability as compared with the natural type NADP. Example 1 2 9
参考例 2 1で得られたアルドキシム型 NAD誘導体と、天然型 NADと の保存安定性を比較した。 '  The storage stability of the aldoxime-type NAD derivative obtained in Reference Example 21 and the natural-type NAD was compared. '
2 O mM PIPES緩衝液 (pH6.5)にアルドキシム型 NAD誘導体又は天 然型 NAD を l mmol溶解したものを所定温度で所定日数保存し、 補酵 素の残存量を HPLC (逆相カラムクロマト ;移動相: ァセトニトリル一 リン酸緩衝液) で分析し、 各ピーク面積を比較した。  A solution obtained by dissolving 1 mmol of aldoxime-type NAD derivative or natural NAD in 2 O mM PIPES buffer (pH 6.5) is stored at a predetermined temperature for a predetermined number of days, and the remaining amount of the coenzyme is determined by HPLC (reverse phase column chromatography; The analysis was performed using a mobile phase (acetonitrile monophosphate buffer), and the peak areas were compared.
結果を表 1 1に示す。 尚、 値は、 溶解直後の値を 100とした場合の補 酵素残存率を示す。 - 表 1 1 Table 11 shows the results. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100. - Table 11
Figure imgf000104_0001
表 1 1の結果から明らかなように、本発明に係るアルドキシム型 NAD 誘導体は、 10°Cで' 12力月以上保存した場合でも、 その残存率は溶解直 後と殆ど変わらないのに対し、 天然型 NADは 80 %程度であること、 特 に、 30Όの温度負荷状態で保存した場合には、 アルドキシム型 NAD誘 導体は、 2.5力月保存後でも 80 %の安定性を有するのに対して、 天然型 NADは 35 %の安定性しか有さないことが判る。 即ち、 アルドキシム型 NAD誘導体は、 天然型 NADに比較して、 保存安定性が著しく向上して いることが判る。 実施例 1 3 0
Figure imgf000104_0001
As is clear from the results in Table 11, the aldoxime-type NAD derivative according to the present invention has almost the same residual ratio as that immediately after dissolution even when stored at 10 ° C for more than 12 months. Natural NAD is about 80%, especially when stored under a temperature load of 30Ό, aldoxime NAD derivative has 80% stability even after storage for 2.5 months. It can be seen that native NAD has only 35% stability. That is, it can be seen that the aldoxime-type NAD derivative has significantly improved storage stability as compared with the natural-type NAD. Example 1 3 0
参考例 9で得られたプロピオニルピリジン型 NAD誘導体と、 天然型 NADとの保存安定性を比較した。  The storage stability of the propionylpyridine type NAD derivative obtained in Reference Example 9 was compared with the natural NAD.
2 O mM PIPES緩衝液 (pH6.5)にプロピオニルピリジン型 NAD誘導 体又は天然型 NAD を l mmol溶解したものを所定温度で所定日数保存 し、 補酵素の残存量を HPLC (逆相カラムクロマト ;移動相: ァセトニ トリル一リン酸緩衝液) で分析し、 各ピーク面積を比較した。  2 mmol of propionylpyridine NAD derivative or natural NAD dissolved in 2 O mM PIPES buffer (pH 6.5) was stored at a predetermined temperature for a predetermined number of days, and the remaining amount of coenzyme was determined by HPLC (reverse phase column chromatography; (Mobile phase: acetonitrile monophosphate buffer), and the peak areas were compared.
結果を表 1 2に示す。 尚、 値は、 溶解直後の値を 100とした場合の補 酵素残存率を示す。 表 1 2 The results are shown in Table 12. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100. Table 1 2
Figure imgf000105_0001
表 1 2の結果から明らかなように、 本発明に係るプロピオニルピリジ ン型 NAD誘導体は、 10°Cで 12力月以上保存した場合でも、 その残存 率は溶解直後と殆ど変わらないのに対し、 天然型 NADは 80 %程度であ ること、 特に、 30°Cの温度負荷状態で保存した場合には、 プロピオニル ピリジン型 NAD誘導体は、 2.5力月保存後でも約 70%の安定性を有す るのに対して、 天然型 NADは 35 %の安定性しか有さないことが判る。 即ち、 プロピオ二ルビリジン型 NAD誘導体は、 天然型 NADに比較して. 保存安定性が著しく向上していることが判る。 実施例 1 3 1
Figure imgf000105_0001
As is evident from the results in Table 12, the propionylpyridin-type NAD derivative according to the present invention has almost the same residual ratio as that immediately after dissolution even when stored at 10 ° C for 12 months or more. However, natural NAD is about 80%, especially when stored under a temperature load of 30 ° C, propionyl pyridine NAD derivative has about 70% stability even after storage for 2.5 months. In contrast, it can be seen that native NAD has only 35% stability. That is, it can be seen that the propionylviridine type NAD derivative has significantly improved storage stability as compared with the natural type NAD. Example 1 3 1
実施例 6 5で得られたプロピオニルピリジン型 NADPH誘導体と、 天 然型 NADPHとの保存安定性を比較した。  The storage stability of the propionylpyridine-type NADPH derivative obtained in Example 65 and the natural-type NADPH was compared.
1 O mM Tris—塩酸緩衝液 (pH 8 )にプロピオニルピリジン型 NADPH 誘導体又は天然型 NADPHを 0.2mmol溶解したものを所定温度で所定 日数保存し、 補酵素の残存量を HPLC (逆相カラムクロマト ;移動相: ァセトニトリル一リン酸緩衝液) で分析し、 各ピーク面積を比較した。 結果を表 1 3に示す。 尚、 値は、 溶解直後の値を 100とした場合の補 酵素残存率を示す。 表 1 3 A solution prepared by dissolving 0.2 mmol of propionylpyridine-type NADPH derivative or natural-type NADPH in 1 O mM Tris-hydrochloric acid buffer (pH 8) is stored at a predetermined temperature for a predetermined number of days, and the remaining amount of the coenzyme is determined by HPLC (reverse phase column chromatography; (Mobile phase: acetonitrile monophosphate buffer), and the peak areas were compared. Table 13 shows the results. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100. Table 13
Figure imgf000106_0001
表 1 3の結果から明らかなように、 本発明に係るプロピオニルピリジ ン型 NADPH誘導体は、 10°Cで 12力月以上保存.した場合でも、 95 %程 度の安定性を有しているのに対し、天然型 NADPHは 80 %程度であるこ と、 特に、 30°Cの温度負荷状態で保存した場合には、 プロピオニルピリ ジン型 NADPH誘導体は、 2.5力月保存後でも 76 %の安定性を有するの に対して、 天然型 NADPHは 55 %の安定性しか有さないことが判る。即 ち、 プロピオニルピリジン型 NADPH誘導体は、 天然型 NADPHに比較 して、 保存安定性が著しく向上していることが判る。 実施例 1 3 2
Figure imgf000106_0001
As is clear from the results in Table 13, the propionylpyridin-type NADPH derivative according to the present invention has a stability of about 95% even when stored at 10 ° C for 12 months or more. In contrast, native NADPH is about 80%, especially when stored under a temperature load of 30 ° C, propionylpyridinated NADPH derivatives have a stability of 76% even after storage for 2.5 months. It can be seen that native NADPH has only a 55% stability. That is, it can be seen that the propionylpyridine type NADPH derivative has significantly improved storage stability as compared with the natural type NADPH. Example 1 3 2
実施例 1 1 3で得られたプロピオニルピリジン型 NADH誘導体と、天 然型 NADHとの保存安定性を比較した。  The storage stability of the propionylpyridine-type NADH derivative obtained in Example 113 was compared with that of natural-type NADH.
1 O mM Tris—塩酸緩衝液 (pH9.0)にプロピオ二ルビ ύジン型 NADH 誘導体又は天然型 NADHを 0.2mmol獰解したものを所定温度で保存し、 補酵素の残存量を HPLC (逆相カラムクロマト ;移動相 : ァセトニトリ ルーリン酸緩衝液) で分析し、 各ピーク面積を比較した。  1 0.2 mM Propiorubidin-type NADH derivative or natural-type NADH prepared by digesting 0.2 mmol of NADH derivative in hydrochloric acid buffer (pH 9.0) is stored at a prescribed temperature, and the remaining amount of coenzyme is determined by HPLC (reverse phase). Column chromatography; mobile phase: acetonitrile phosphate buffer) and the peak areas were compared.
結果を表 1 4に示す。 尚、 値は、 溶解直後の値を 100とした場合の補 酵素残存率を示す。 表 1 4 The results are shown in Table 14. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100. Table 14
Figure imgf000107_0001
表 1 4の結果から明らかなように、 本発明に係るプロピオニルピリジ ン型 NADH誘導体は、 10 で 12力月以上保存した場合でも、 その.残存 率は溶解直後と殆ど変わらないのに対し、 天然型 NADHは 80%程度で あること、 特に、 30°Cの温度負荷状態で保存した場合には、 プロピオ二 ルピリジン型 NADH誘導体は、 2.5力月保存後でも約 80 %の安定性を 有するのに対して、 天然型 NADHは 60 %の安定性しか有さないことが 判る。 即ち、 プロピオ二ルビリジン型 NADH誘導体は、 天然型 NADH に比較して.、 保存安定性が著しく向上していることが判る。 実施例 1 3 3
Figure imgf000107_0001
As is evident from the results in Table 14, the propionylpyridin-type NADH derivative according to the present invention has a residual ratio that is almost the same as that immediately after dissolution even when stored at 10 to 12 months or more. Natural NADH is about 80%, especially when stored under a temperature load condition of 30 ° C, propionylpyridine-type NADH derivative has about 80% stability even after 2.5 months storage. In contrast, it can be seen that native NADH has only 60% stability. In other words, it can be seen that the propionylviridine-type NADH derivative has significantly improved storage stability as compared with the natural-type NADH. Example 1 3 3
実施例 9 0で得られたニコチン酸メチル型 NADH 誘導体と、 天然型 NADHとの保存安定性を比較した。  The storage stability of the methyl nicotinate NADH derivative obtained in Example 90 and the natural NADH was compared.
2 O mM Tris—塩酸緩衝液 (pH 8 )にニコチン酸メチル型 NADH 誘導 体又は天然型 NADHを 0.2mmol溶解したものを所定温度で保存し、 補 酵素の残存量を HPLC (逆相カラムクロマト ;移動相: ァセトニトリル 一リン酸緩衝液) で分析し、 各ピーク面積を比較した。 '  A solution prepared by dissolving 0.2 mmol of methyl nicotinate NADH derivative or natural NADH in 2 O mM Tris-hydrochloric acid buffer (pH 8) is stored at a predetermined temperature, and the remaining amount of the coenzyme is determined by HPLC (reverse phase column chromatography; (Mobile phase: acetonitrile monophosphate buffer), and the peak areas were compared. '
結果を表 1 5に示す。 尚、 値は、 溶解直後の値を 100とした場合の補 酵素残存率を示す。 表 1 5 The results are shown in Table 15. The value indicates the coenzyme residual ratio when the value immediately after dissolution is set to 100. Table 15
Figure imgf000108_0001
表 1 5の結果から明らかなように、 本発明に係るニコチン酸メチル型 NADH誘導体は、 10°Cで 12力月以上保存した場合でも、 その残存率は 溶解直後と殆ど変わらないのに対し、 天然型 NADHは 80%程度である こと、 特に、 30°Cの温度負荷状態で保存した場合には、 ニコチン酸メチ ル型 NADH誘導体は、 2.5力月保存後でも約 75%の安定性を有するの に対して、 天然型 NADHは 60%の安定性しか有さないことが判る。 即 ち、 ニコチン酸メチル型 NADH誘導体は、 天然型 NADHに比較して、 保存安定性が著しく向上していることが判る。 実施例 1 3 4 Bacillus licheniformis - AK S - 2 3 (F E RM B P
Figure imgf000108_0001
As is evident from the results in Table 15, the methyl nicotinate-type NADH derivative according to the present invention has almost the same residual ratio as that immediately after dissolution even when stored at 10 ° C for 12 months or more. Native NADH is about 80%, especially when stored under 30 ° C temperature load, methyl nicotinate NADH derivative has about 75% stability even after 2.5 months storage In contrast, it can be seen that native NADH has only 60% stability. That is, it can be seen that the methyl nicotinate NADH derivative has significantly improved storage stability as compared with the natural NADH. Example 1 3 4 Bacillus licheniformis-AK S-2 3 (FE RM BP
- 7 4 9 2 ) 由来リンゴ酸脱水素酵素 -7 4 9 2) Derived malate dehydrogenase
<菌株同定 > <Strain identification>
静岡県田方郡大仁町の田畑より採取した土から、 リンゴ酸脱水素酵素 を産生する菌株 (AK S— 2 3 ) を分離した。  A malate dehydrogenase-producing strain (AKS-23) was isolated from soil collected from a field in Oni-cho, Taga-gun, Shizuoka Prefecture.
その菌体の形態観察、 生理的性状試験及び菌株内 DN Aの G C含量の 測定を、 Gordon R. E., Hayanes W. C. and Pang C. H., "The Genus Observation of the morphology of the cells, physiological properties tests and determination of the GC content of DNA in the strain were performed by Gordon RE, Hayanes W.C. and Pang C.H., "The Genus
Bacillus" (1973), U. S. Department of Agricultureや Sneath P. H. A., Mair N. S., Sharpe M. E. and Holt J. G., "Bergey's Manual ofBacillus "(1973), U.S. Department of Agriculture, Sneath P.H.A., Mair N.S., Sharpe M.E. and Holt J.G.," Bergey's Manual of
Systematic Bacteriology", Vol.2 (1986), William & Wilkins等に従 つて行った。 . Systematic Bacteriology ", Vol.2 (1986), William & Wilkins, etc. I went. .
結果を表 1 6に示す。.  The results are shown in Table 16. .
6  6
Figure imgf000109_0001
Figure imgf000109_0001
1) NT;試 実 せ  1) NT;
2) HPLC法 (mol%) 表 1 6 に基づいて判定を行った結果、 当該菌株は、 Bacillus licheniformisであることが分かつたので、 当該菌株 ( A K S— 2 3 ) を、 Bacillus licheniformis A K S— 2 3株と同定命名した。 2) HPLC method (mol%) As a result of determination based on Table 16, it was found that the strain was Bacillus licheniformis, so that the strain (AKS-23) was The strain was identified and named Bacillus licheniformis AKS—23 strain.
尚、当該菌株は、経済産業省工業技術院生命工学工業技術研究所に「微 ェ研菌寄第 749 2号(FERM B P- 749 2)」 として寄託されてい る。  The strain has been deposited with the Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, as "FERM BP-7492 (FERM BP-7492)."
<酵素活性測定法 > <Enzyme activity measurement method>
下記の測定試薬を用いて、 下記の方法により、 当該菌株が産生する酵 素の活性を測定した。 '  The activity of the enzyme produced by the strain was measured by the following method using the following measurement reagent. '
(測定試薬)  (Measurement reagent)
l O OmM K2HP04— KH2P〇4緩衝液 (pH 8. 0) l O OmM K 2 HP0 4 - KH 2 P_〇 4 buffer (pH 8. 0)
2 5 0 iM NA,DH又は 3-プロピオニルピリジン一 NADH  250 iM NA, DH or 3-propionylpyridine-NADH
(実施例 90)  (Example 90)
I mM 塩化マグネシウム  I mM magnesium chloride
2 OmM ォキサル酢酸  2 OmM oxalacetic acid
(測定方法)  (Measuring method)
測定試薬 0. 9 5m 1を光路長 1 c mのセルに入れ、 3 7 °Cで 5分間 予備加温した後、 0. 0 5m'lの酵素液添加後 3分後の波長 340 nm における吸光度 (A a) と、 酵素液添加後 4分後の吸光度 (Ab) を測 定した。  Put 0.95 ml of the measuring reagent in a 1 cm pathlength cell, preheat at 37 ° C for 5 minutes, and add absorbance at 340 nm 3 minutes after adding 0.05 ml of enzyme solution. (Aa) and the absorbance (Ab) 4 minutes after addition of the enzyme solution were measured.
この吸光度 (Aa) と (Ab) の吸光度差 (Ab-Aa) より酵素活性 を求めた。  The enzyme activity was determined from the absorbance difference (Ab-Aa) between the absorbances (Aa) and (Ab).
尚、 吸光度差 (Ab- A a) が 0. 2以上になる時'は、 酵素液を 1 0 0 mM K2HP〇4— KH2 P〇4緩衝液 (pH 8. 0) で希釈して測定を 行った。 Incidentally, the absorbance difference (Ab- A a) when is 0.2 or more 'is the enzyme solution 1 0 0 mM K 2 HP_〇 4 - diluted with KH 2 P_〇 4 buffer (pH 8. 0) The measurements were taken.
また、 酵素活性 1単位は、 3 7°Cで 1分間に 1 モルの NAD又は 3 —プロピオニルピリジン一 NADを生成させる酵素量とし、 下記の計算 式により酵素活性を算出した。 . 酵素活性 (UZm I ) = (A b-A a) / f X 2 0 X酵素希釈倍率 f ; N A D H又は 3—プロピオ二ルビリジン一 N A D Hのミリモル分 子吸光数 One unit of the enzyme activity was defined as the amount of the enzyme that produces 1 mol of NAD or 3-propionylpyridine-NAD per minute at 37 ° C, and the enzyme activity was calculated by the following formula. . Enzyme activity (UZmI) = (AbAa) / fX20X Enzyme dilution factor f; Millimol molecular absorption number of NADH or 3-propionylviridine-NADH
<製造方法 >  <Production method>
以下の培地を用いて、 以下の方法により当該菌株を培養し、 当該菌株 から産生される酵素を抽出 ·精製した。  Using the following medium, the strain was cultured by the following method, and the enzyme produced from the strain was extracted and purified.
(培地組成)  (Medium composition)
1. 0 % 酵母エキス  1.0% yeast extract
1. 0 % トリプトン  1.0% trypton
0. 0 3 % M g S 04 0.0 3% M g S 0 4
1 0. 0 % Me d i um l 6 2  1 0.0% Me d i um l 6 2
1 0. 9 % KH2 P〇4 1 0.9% KH 2 P〇 4
42. 8 % N a 2HP 04 · 1 2 H20 42. 8% N a 2 HP 0 4 · 1 2 H 2 0
<M e d i urn 1 6 2 ( 1 L) >
Figure imgf000111_0001
<M edi urn 1 6 2 (1 L)>
Figure imgf000111_0001
2. O O g Mg C l 2 - 6 H20 2. OO g Mg C l 2 - 6 H 2 0
0. 1 5 g クェン酸 - 5. 0m l T r a c e e l eme n t  0.15 g cunic acid-5.0 ml T r a c e e l eme n t
<T r a c e e l eme n t ( 1 L ) >  <T r a c e e l eme n t (1 L)>
1 2. 8 g CH3 C OON a · 3 H21 2.8 g CH 3 C OON a3H 2
1. O O g F e S O 7 Η,Ο  1. O O g F e S O 7 Η, Ο
0. 5 0 g Mn C 1 4H,0  0.50 g Mn C1 4H, 0
0. 3 0 g C o C 1 6 H20 0.30 g C o C 16 H 20
0. 2 0 g Z n C 1 0. 0 5 g C u C 1 2 · 2 H20 0.20 g Z n C 1 0.0 5 g C u C 1 2H 2 0
0. 0 5 g N aMo 04 - 2 H20 . 0. 0 5 g N aMo 0 4 - 2 H 2 0.
0. 0 2 g H3B〇4 0.02 g H 3 B〇 4
0. 0 2 g N i C 12 · 6 H20 0. 0 2 g N i C 1 2 · 6 H 2 0
(培養 ·抽出 ·精製方法)  (Culture, extraction, purification method)
• 3 0 Lジャーに上記培地成分と 0. 1 %消泡剤(ダウコーニング社製、 F Sアンチフォーム 0 2 8 ) を含む液体培地 (p H 7. 0) 2 0 Lを仕 込み、 1 2 0°C、 2 0分間滅菌後、 上記と同一組成の培地で予備培養し た Bacillus licheniformis · AK S— 2 3の種菌 1 5 0m lを接種し、 5 5 で 18時間、 通気量 2 0 /m i n , 撹拌速度 2 0 0 r . p . mで 通気培養した。  • In a 30 L jar, add 20 L of a liquid medium (pH 7.0) containing the above medium components and 0.1% antifoaming agent (FS Antiform 028, manufactured by Dow Corning). After sterilizing at 0 ° C for 20 minutes, inoculate 150 ml of Bacillus licheniformis / AKS-23 inoculum pre-cultured in a medium with the same composition as above, and incubate at 55 for 18 hours with an air flow of 20 / The aeration culture was carried out at a stirring speed of 200 rpm for 2 min.
養後、 遠心分離にて集菌した後、 2 5.mMのトリス-塩酸緩衝液 (p H 7. 5) で懸濁して 2 Lに調整し、 B RAN S ON社製の超音波破砕 機 (C e l l D i s r u p t o r) を用いて、 3 0分間処理して、 菌 体破砕液を得た。 この液を 8 0 0 0 r . p. m.、 2 0分間遠心し、 上清 液 1. 8 L得た。  After culturing, the cells were collected by centrifugation, suspended in 25 mM Tris-HCl buffer (pH 7.5), adjusted to 2 L, and an ultrasonic crusher manufactured by BRAN SON. (Cell Disruptor) for 30 minutes to obtain a disrupted cell solution. This solution was centrifuged at 800 rpm for 20 minutes to obtain 1.8 L of the supernatant.
この上清液を濾過し、 濾液を 2 5mMのトリス-塩酸緩衝液(p H 7. 5) で緩衝化した Q— S e p h a r o s e B B (フアルマシア社製) 3 L ( 1 0 X 3 8 c m) のカラムに通し、 0〜 0. 5Mの N a C lのステ ップグラジェントで溶出を行った。 その結果、 0. 3〜 0. 4Mの N a C 1濃度で活性画分 ( 7 04U) が溶出された。 この得られた活性画分 を限外モジュール (旭化成製、 ACP _ 1 0 1 0) で濃縮レた後、 2 5 mMトリス-塩酸 (p H 7. 5) 2 0 Lに 5 °C、 一夜透析した。  The supernatant was filtered, and 3 L (10 × 38 cm) of Q—Sepharose BB (Pharmacia) buffered with 25 mM Tris-HCl buffer (pH 7.5) was used. Elution was performed through a column with a step gradient of 0-0.5 M NaCl. As a result, an active fraction (704U) was eluted at a NaCl concentration of 0.3 to 0.4M. The obtained active fraction was concentrated using an ultra module (ACP _110, manufactured by Asahi Kasei) and then concentrated in 20 L of 25 mM Tris-HCl (pH 7.5) at 5 ° C overnight. Dialyzed.
次に Q— S e p h a r o s e H P (フアルマシア社製) 5 0 0 m 1 ( 5. 0 X 2 5. 5 c m) のカラムに通し、 0〜 0. 5Mの N a C lのリニア グラジェントで溶出を行った。 その結果、 0. 3〜 0. 4Mの N a C l 濃度で活性画分 (68 9 U) が溶出された。 It is then passed through a column of Q—Sepharose HP (Pharmacia) 500 ml (5.0 x 25.5 cm) and eluted with a linear gradient of NaCl from 0 to 0.5 M. went. As a result, 0.3 to 0.4M NaCl An active fraction (689 U) was eluted at the concentration.
この得られた活性画分を限外膜濃縮機 (Ad v a n t e c社製) とァ ミコン膜 (NMWL 1 00 0 0 ) を用いて濃縮し、 2 5 mMトリス-塩酸 (p H 7. 5) 1 0 Lに 5°C、 一夜透析した。 次に、 B 1 u e.— S e p h a r o s e CL- 6 B (フアルマシア社製) l O Om l (3. O X 14. 2 cm) のカラムに通し、 0〜0. 5Mの N a C lのリニアグラ ジェン卜で溶出を行った。 その結果、 0. 2〜0. 3Mの N a C l濃度 で活性画分 (4 1 5U) が溶出された。 '  The obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Advantec) and an Namicon membrane (NMWL 100 000), and 25 mM Tris-hydrochloric acid (pH 7.5) 1 Dialysis was performed overnight at 0 ° C at 5 ° C. Next, pass through a column of B 1 u e.—Sepharose CL-6B (Pharmacia) l O Om l (3. OX 14.2 cm), and run a 0-0.5 M NaCl linear graph. Elution was performed with a gentler. As a result, an active fraction (4.15 U) was eluted at a NaCl concentration of 0.2 to 0.3 M. '
この得られた活性画分を限外膜濃縮機 (Ad v a n t e c社製) とァ ミコン膜 (NMWL 1 0 0 0 0 ) を用いて濃縮し、 2 5 mMトリス-塩酸 (pH 7. 5) 1 0 Lに 5° (:、 一夜透析した。 次にこの得られた活性画 分が 1 5 %となるように硫酸アンモニゥムを溶解し、 1 5 %の硫酸アン モニゥムで緩衝化された P e n y l -S e p h a r o s e HP (ファ ルマシア社製) 2 00m 1 (3. 0 X 28. 5 cm) のカラムに通し、 0〜 1 5 %の硫酸アンモニゥムのリニアグラジェントにより溶出を行つ た。 その結果、 0〜 2 %の硫酸アンモニゥム濃度で活性画分( 2 5 1 U) が溶出された。 '  The obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Advantec) and an Namicon membrane (NMWL 1000), and 25 mM Tris-HCl (pH 7.5) 1 Then, the solution was dialyzed overnight at 0 ° for 5 ° (: overnight. Then, ammonium sulfate was dissolved so that the obtained active fraction became 15%, and phenyl-buffered with 15% ammonium sulfate was dissolved. The mixture was passed through a column of Sepharose HP (Pharmacia) 200 ml (3.0 x 28.5 cm) and eluted with a linear gradient of 0 to 15% ammonium sulfate. The active fraction (251 U) was eluted at an ammonium sulfate concentration of ~ 2%.
この得られた活性画分をセントリフローメンブランコーン (アミコン 社製、 C F 2 5 ) を用いて濃縮し、 2 5mMトリス-塩酸 (pH 7. 5) 1 Lに 5°C、 一夜透析し、 精製標品 ( 1. lml、 2 0 3 U) とした.。 上記方法により得られたリンゴ酸脱水素酵素の理化学的性質を以下に 示す。  The obtained active fraction was concentrated using Centriflow membrane corn (CF25, manufactured by Amicon), dialyzed against 1 L of 25 mM Tris-hydrochloric acid (pH 7.5) at 5 ° C overnight, and purified. It was a standard sample (1.1 ml, 203 U). The physicochemical properties of the malate dehydrogenase obtained by the above method are shown below.
<理化学的性質 >  <Physicochemical properties>
( 1) 酵素作用  (1) Enzyme action
基質としてグルコース、 NADH又は実施例 9 0で得られた 3 _プロ ピオニルピリジン— NAD Hを用いた場合の酵素作用を以下に示す。 •才キサル酢酸 + N A D H→リンゴ酸 + N A D The enzymatic action when glucose, NADH or 3_propionylpyridine-NADH obtained in Example 90 is used as a substrate is shown below. • Liquis acetic acid + NADH → malic acid + NAD
■才キサル酢酸 + 3—プロピオ二ルビリジン— N A D H  ■ Sixyl acetic acid + 3-propionyl pyridine-NADH
→リンゴ酸 + 3—プロピオ二ルビリジン一 N A D (2) 至適 pH  → malic acid + 3-propionyl pyridine 1 N A D (2) Optimum pH
P H 5. 0〜6. 0は酢酸緩衝液 (◊-◊)、 p H 6. 0〜8. 0はリ ン酸緩衝液 (〇-〇)、 pH 7. 5〜: L 0. 0はトリス塩酸緩衝液 (命- ♦ )、 p H 1 0. 0〜 1 2. 0はグリシン— N a OH緩衝液 (像-暴) を 用いて力価活性を測定した結果、 至適 pHは pH 9. 5〜 1 0. 0であ つた。  PH 5.0-6.0 is acetate buffer (◊-◊), pH 6.0-8.0 is phosphate buffer (〇-〇), pH 7.5-: L 0.0 Tris-HCl buffer (life- ♦), pH 10.0 to 12.0: glycine-NaOH buffer (image-violence) It was 9.5 to 10.0.
その結果を図 1に示す。,  Figure 1 shows the results. ,
(3) pH安定性  (3) pH stability
50mM、 p H 5. 0〜6. 0の酢酸緩衝液 (◊-◊)、 50mM、 p H 6. 0〜8. 0のリン酸緩衝液 (〇-〇)、 5 0mM、 p H 7. 5〜 1 0. 0のトリス塩酸緩衝液 (♦-♦)、 5 0mM、 ρΗ Ι Ο. 0〜 1 2. 0のグリシン一 N a OH緩衝液 (き-き) を用い、 l U/m lの酵素溶液' を調製した。  50 mM, pH 5.0-6.0 acetate buffer (◊-◊), 50 mM, pH 6.0-8.0 phosphate buffer (〇-〇), 50 mM, pH 7. 5 to 10.0 Tris-HCl buffer (♦-♦), 50 mM, ρΗ Ο Ο. Use 1 to 2.0 Glycine-NaOH buffer (ki-ki), l U / ml Was prepared.
各緩衝液を 40°C、 6 0分処理し、 力価活性を測定した結果、 pH 5. 5〜 8. 0付近で安定あった。  Each buffer was treated at 40 ° C for 60 minutes, and the titer activity was measured. As a result, it was stable around pH 5.5 to 8.0.
その結果を図 2に示す。  Figure 2 shows the results.
(4) 至適温度  (4) Optimal temperature
上記の力価測定法における測定法を利用して、 30、 37, 45, 5 0, 60°Cで酵素反応を行った結果、 至適温度は 6 0°C付近であった。 その結果を図 3に示す。 - (5) 熱安定性  As a result of performing the enzyme reaction at 30, 37, 45, 50, and 60 ° C using the measurement method in the above titration method, the optimum temperature was around 60 ° C. Figure 3 shows the results. -(5) Thermal stability
5 0mM、 p H 8. 0のトリス-塩酸緩衝液を用い、 1 U/m 1の酵素 溶液を調製した。 それを各温度で 1 0分間熱処理した後、 上記の力価測 定法に従っての残存活性を測定した結果、 少なくとも 6 5°C付近まで安 定であった。 1 U / m1 enzyme using 50 mM Tris-HCl buffer at pH 8.0 A solution was prepared. After heat treatment at each temperature for 10 minutes, the residual activity was measured according to the above titration method, and as a result, it was stable to at least around 65 ° C.
その結果を図 4に示す。  Fig. 4 shows the results.
(6) 保存安定性  (6) Storage stability
5 OmMの T r i s _HC 1 (p H 7. 5) で 0. 2 U/m 1 に溶解 された酵素の活性を 3 7°C、 1 0日間測定した結果、 残存活性が 7 0 % であった。  The activity of the enzyme dissolved in 0.2 U / m 1 with 5 OmM Tris_HC1 (pH 7.5) was measured at 37 ° C for 10 days, and the residual activity was 70%. Was.
その結果を図 5に示す。  Figure 5 shows the results.
(7) 分子量  (7) Molecular weight
常法により分子量を測定した結果、分子量は 3 3 0 0 0 ± 3 0 0 0 (S D S) 及び 1 1 6 0 0 0 ± 5 0 0 0 (T S Kg e 1 - G 3 0 0 0 S WX L (東ソ一社製) を用いたゲル濾過法による) であった。  As a result of measuring the molecular weight by a conventional method, the molecular weight was determined to be 3300 0 ± 300 0 (SDS) and 1 160 0 0 0 ± 5 00 (TS Kge 1-G 3 00 0 S WX L (By a gel filtration method using TOSHI CORPORATION).
(8) Km値  (8) Km value
常法により Km値を測定した結果、 ォキサル酢酸に対する Kmは 1. 5 8mM、 NADHに対する Kmは 0. 0 2 4mMであった。 また、 実 施例 9 0で得られた 3—プロピオニルピリジン— NADHに対する Km は 0. 1 1 mMであった。  As a result of measuring the Km value by an ordinary method, the Km for oxalacetic acid was 1.58 mM and the Km for NADH was 0.024 mM. Further, the Km for 3-propionylpyridine-NADH obtained in Example 90 was 0.1 mM.
(9) 反応性比 (NADH/ 3—プロピオニルピリジン一 NADH) NADHと実施例 9 0で得られた 3—プロピオニルピリジン— N A D (9) Reactivity ratio (NADH / 3-propionylpyridine-NADH) NADH and 3-propionylpyridine obtained in Example 90-NAD
Hに対する反応性を比較した結果、 反応性比 (NADHZ 3—プロピオ ニルピリジン一 NADH) は 4 1 %であった。 比較例 1 市販の Thermus sp.由来リンゴ酸脱水素酵素 As a result of comparing the reactivity with H, the reactivity ratio (NADHZ3-propionylpyridine-NADH) was 41%. Comparative Example 1 Commercially available malate dehydrogenase from Thermus sp.
く理化学的性質 > ' Physicochemical properties> ''
( 1 ) 保存安定性 5 0 mMの T r i s— HC 1 (p H 7. 5) で 0. 2 U/m 1に溶解 された酵素の活性を 3 7°C、 1 0日間測定した結果、 残存活性が 54 % であった。 ' その結果を、 実施例 1 34と併せて図 5に示す。 (1) Storage stability The activity of the enzyme dissolved in 50 mM Tris-HC1 (pH 7.5) at 0.2 U / m1 was measured at 37 ° C for 10 days. As a result, the residual activity was 54%. there were. 'The results are shown in FIG. 5, together with Example 134.
尚、 図 5中、 -拿は、 実施例 1 34で得られたリンゴ酸脱水素酵素の 保存安定性を、 また、 〇-〇は、 比較例 1で得られたリンゴ酸脱水素酵素 の保存安定性を夫々示す。  In FIG. 5, -na indicates the storage stability of malate dehydrogenase obtained in Example 134, and 〇-〇 indicates the storage stability of malate dehydrogenase obtained in Comparative Example 1. Each shows stability.
(2) 反応性比 (NADHZ 3—プロピオニルピリジン一 NADH) NADHと実施例 9 0で得られた 3—プロピオニルピリジン— NAD Hに対する反応性を比較した結果、 反応性比 (NADH/ 3—プロピオ ニルピリジジ— NADH) は 3 7 %であった。  (2) Reactivity ratio (NADHZ 3-propionylpyridine-NADH) As a result of comparing the reactivity of NADH with 3-propionylpyridine-NADH obtained in Example 90, the reactivity ratio (NADH / 3-propionylpyridididiazine) was obtained. — NADH) was 37%.
(3) 分子量  (3) Molecular weight
常法により分子量を測定した結果、 分子量は 3 5 0 0 0 (S.D S-PA GE) であった。  As a result of measuring the molecular weight by a conventional method, the molecular weight was 3500 (S.DS-PAGE).
(4) 等電点  (4) Isoelectric point
常法により測定した結果、 等電点は 4. 8であった。  As a result of measurement by a conventional method, the isoelectric point was 4.8.
(5) 至適 pH  (5) Optimum pH
至適 pHは 7. 8であった。  The optimum pH was 7.8.
(6) 至適温度 .  (6) Optimal temperature.
至適温度は 7 0 °Cであった。 実施例 1 3 5 Bacillus licheniformis · AK S - 7 5 (F E RM B P The optimum temperature was 70 ° C. Example 1 35 Bacillus licheniformisAK S-75 (F E RM B P
— 749 3) 由来グルコース一 6—リン酸脱水素酵素 — 749 3) Derived glucose-6-phosphate dehydrogenase
<菌株 > <Strain>
Bacillus licheniformis · AK S - 7 5は東京大学分子細胞生物学研究 所細胞 ·機能高分子総合センターより入手した I AM 1 1 0 54を、経 済産業省工業技術院生命工学工業技術研究所に 「微ェ研菌寄第 7 49 3 号 (FERM B P-749 3」 として寄託した菌株である。 Bacillus licheniformis · AK S-75 was obtained from IAM 11054 obtained from the Institute for Molecular and Cellular Biology, University of Tokyo, This strain has been deposited with the Ministry of Economy, Trade and Industry of the National Institute of Advanced Industrial Science and Technology as "FERM BP-7493".
<酵素活性測定法 > <Enzyme activity measurement method>
下記の測定試薬を用いて、 下記の方法により、 当該菌株が産生する酵 素の活性を測定した。  The activity of the enzyme produced by the strain was measured by the following method using the following measurement reagent.
(測定試薬)  (Measurement reagent)
l O OmM K2HP04— KH2P04緩衝液 (pH 8. 0) l O OmM K 2 HP0 4 - KH 2 P0 4 buffer (pH 8. 0)
5 0 0 U NADP又は 3—ピリジンアルドキシム— NAD P  500 U U NADP or 3-pyridinealdoxime NAD P
(実施例 1)  (Example 1)
ImM 塩化マグネシウム  ImM magnesium chloride
1 OmM グルコース— 6—リン酸  1 OmM glucose-6-phosphate
(測定方法)  (Measuring method)
測定試薬 0. 9 5m lを光路長 1 cmのセルに入れ 3 7 °Cで 5分間予 備加温した後、 0. 0 5m 1の酵素液添加後 3分後の波長 340 nmに おける吸光度 (A a) と酵素液添加後 4分後の吸光度 (Ab) を測定し た。 ' この吸光度 (A a) と (Ab) の吸光度差'(Ab-A a) より酵素活性 を求めた。  0.95 ml of the measuring reagent was placed in a 1 cm pathlength cell, preliminarily heated at 37 ° C for 5 minutes, and the absorbance at a wavelength of 340 nm 3 minutes after the addition of 0.05 ml of the enzyme solution (Aa) and the absorbance (Ab) 4 minutes after addition of the enzyme solution were measured. Enzyme activity was determined from 'absorbance difference between this absorbance (Aa) and (Ab)' (Ab-Aa).
尚、 吸光度差 (Ab-A a) が 0. 2以上になる時は酵素液を 1 0 0m M K2HP04— KH2P〇4緩衝液 (pH8. 0) で希釈して測定を行 つた。 Incidentally, the absorbance difference (Ab-A a) is 0.2 or more in an enzyme solution when made 1 0 0m MK 2 HP0 4 - KH 2 P_〇 4 buffer (. PH 8 0) line measurement and diluted with ivy .
また、 酵素活性 1単位は 3 7°Cで 1分間に 1 ^モルの酸化型 NADを 生成させる酵素量とし、 下記の計算式により酵素活性を算出した。 酵素活性 (U/m I ) = (A b-A a) / f X 2 0 X酵素希釈倍率 f ; N A DPH又は 3—ピリジンアルドキシ厶— NA D PHのミリモ ル分子吸光係数 One unit of the enzyme activity was defined as the amount of enzyme capable of producing 1 ^ mol of oxidized NAD per minute at 37 ° C, and the enzyme activity was calculated by the following formula. Enzyme activity (U / mI) = (AbAa) / fX20X Enzyme dilution factor f; NA DPH or 3-Pyridinealdoxime-NA DPH Molecular extinction coefficient
<製造方法 > '  <Production method> ''
以下の培地を用いて、 以下の方法により当該菌株を培養し、 当該菌株 から産生される酵素を抽出 ·精製した。  Using the following medium, the strain was cultured by the following method, and the enzyme produced from the strain was extracted and purified.
(培地組成)  (Medium composition)
2. 0 % グリセロール  2.0% glycerol
1. 0 % 酵母エキス  1.0% yeast extract
1. 0 % ペプトン  1.0% peptone
0. 0 3 % Mg C l 2 - 7 H 20  0.0 3% Mg Cl 2-7 H 20
0. 1 % KH2P〇4 0.1% KH 2 P〇 4
0. 1 % K2H P 04 0.1% K 2 HP 0 4
(培養 ·抽出 ·精製方法)  (Culture, extraction, purification method)
3 0 Lジャーに上記培地成分と 0. 1 %消泡剤(ダウコ一ニング社製、 F Sアンチフォーム 0 2 8) を含む液体培地 (pH 7. 0) 2 0 Lを仕 込み、 1 2 0°C、 2 0分間滅菌後、 上記と同一組成の培地で予備培養し た Bacillus licheniformis · AK S - 7 5の種菌 1 5 0m l を接種し、 3 0°Cで 18時間、 通気量 2 0 /m i n, 撹拌速度 2 0 0 r . p . で 通気培養した。  In a 30 L jar, add 20 L of a liquid medium (pH 7.0) containing the above medium components and 0.1% antifoaming agent (FS Antifoam 028, manufactured by Dow Corning), and add 120 L After sterilizing at 20 ° C for 20 minutes, inoculate 150 ml of Bacillus licheniformis AK S-75 inoculum preliminarily cultured in a medium with the same composition as above, and incubate at 30 ° C for 18 hours, aeration volume of 20 Aeration culture was carried out at a speed of 200 rpm at a stirring speed of 200 rpm.
培養後、 遠心分離にて集菌した後、 2 5 mMのトリス-塩酸緩衝液 (p H 7. 5 ) で懸濁して 2 Lに調整し、 B RAN S ON社製の超音波破砕 機 (C e l l D i s r u p t o r) を用いて、 3 0分間処理して、 菌 体破砕液を得た。 この液を 8 0 0 0 r . p. m.、 2 0分間遠心し、 上清 液 1. 8 L得た。  After culturing, the cells are collected by centrifugation, suspended in 25 mM Tris-HCl buffer (pH 7.5), adjusted to 2 L, and sonicated with a BRAN SON ultrasonic crusher ( The mixture was treated for 30 minutes using Cell Disruptor to obtain a disrupted cell solution. This solution was centrifuged at 800 rpm for 20 minutes to obtain 1.8 L of the supernatant.
この上清液を濾過し、 濾液を 2 5 mMのトリス-塩酸緩衝液(pH 7. 5 ) で緩衝化した Q— S e p h a r o s, e B B (フアルマシア社製) 3 L ( 1 0 X 3 8 c m) のカラムに通し、 0〜 1. 0Mの KC 1のリニ アグラジェン卜で溶出を行った。 その結果、 0. 5Mの KC 1濃度で活 性画分 ( 1 1 7 0 U) が溶出された。 この得られた活性画分を限外モジ ユール (旭化成製、 AC P— 1 0 1 0 ) で濃縮した後、 2 5mMトリス- 塩酸 (PH 7. 5)· 2 0 Lに 5°C、 一夜透析した。 The supernatant was filtered, and the filtrate was buffered with 25 mM Tris-HCl buffer (pH 7.5). Q-Sepharos, eBB (Pharmacia) 3 L (10 X 38 cm ) Column, and 0 ~ 1.0M KC 1 lini Elution was performed with a gradient. As a result, an active fraction (117 U) was eluted at a KC1 concentration of 0.5 M. The obtained active fraction was concentrated with an ultrafine module (Asahi Kasei Co., AC P-101), and then added to 25 mM Tris-HCl (PH 7.5) · 20 L at 5 ° C overnight. Dialyzed.
次に Q— S e p h a r o s e H P (フアルマシア社製) 50 0 m 1 ( 5 · 0 X 2 5. 5 cm) のカラムに通し、 0〜 0. 5Mの N a C lのリニア グラジェントで溶出を行った。 その結果、 0. 1〜0. 2Mの N a C l 濃度で活性画分 ( 1 0 80 U) が溶出された。 .  It is then passed through a column of Q-Sepharose HP (Pharmacia) 500 m1 (5.0 x 25.5 cm) and eluted with a linear gradient of 0-0.5 M NaCl. Was. As a result, an active fraction (1080 U) was eluted at a NaCl concentration of 0.1 to 0.2 M. .
この得られた活性画分を限外膜濃縮機 (Ad v a n t e c社製) とァ ミコン膜 (NMWL 1 0 0 0 0) を用いて濃縮し、 2 5 mMトリス-塩酸 (p H 7. 5) 1 0 Lに 5°C、 一夜透析した。 次に P h e n y l — S e p h a r o s e HP (フアルマシア社製) 2 0 0m l (3. 0 X 2 8. 5 cm) のカラムに通し、 0〜 1 5 %の硫酸アンモニゥムのリニアグラ ジ ェントで溶出を行った。その結果、 6〜 1 0 %の硫酸アンモニゥム濃 度で活性画分 ( 1 00 0 U) が溶出された。  The obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Ad vantec) and an Namicon membrane (NMWL 1000) to obtain 25 mM Tris-HCl (pH 7.5). Dialysis was performed overnight at 5 ° C against 10 L. Next, it was passed through a column of Phenyl-Sepharose HP (Pharmacia) 200 ml (3.0 x 28.5 cm) and eluted with a linear gradient of 0 to 15% ammonium sulfate. . As a result, an active fraction (100,000 U) was eluted at an ammonium sulfate concentration of 6 to 10%.
この得られた活性画分を限外膜濃縮機 (Ad v a n t e c社製) とァ ミコン膜 (NMWL 1 0 0 0 0) を用いて濃縮し、 2 5 mMトリス-塩酸 ( P H 7. 5 ) 1 0 Lに 5 °C、 一夜透析した。 次に B 1 u e - S e p h a r o s e C L - 6 B (フアルマシア社製) 1 0 0m l (3. 0 X 1 4. 2 cm)のカラムに通し、 0〜 1. 0 Mの N a C 1のリニアグラジ ェ ントで溶出を行った。 その結果、 0. 5〜0. 7Mの N a C l濃度で活 性画分 (9 8 5 U) が溶出された。  The obtained active fraction was concentrated using an ultra-membrane concentrator (manufactured by Ad vantec) and an Namicon membrane (NMWL 1000), and 25 mM Tris-hydrochloric acid (PH 7.5) 1 Dialysis was performed overnight at 0 ° C at 5 ° C. Next, pass through a 100 ml (3.0 x 14.2 cm) column of B1ue-Sepharose CL-6B (Pharmacia), and apply a linear gradient of 0 to 1.0 M NaC1. Elution was performed with the reagent. As a result, an active fraction (985 U) was eluted at a NaCl concentration of 0.5 to 0.7 M.
この得られた活性画分をセントリフローメンブランコーン (アミコン 社製、 C F 2 5) を用いて濃縮し、 2 5 mMトリス-塩酸 (pH 7. 5) 1 Lに 5°C、 一夜透析し、 精製標品 ( 1 lml、 9 74U) とした。  The obtained active fraction was concentrated using Centriflow membrane corn (Amicon, CF25), dialyzed against 1 L of 25 mM Tris-HCl (pH 7.5) at 5 ° C overnight, It was used as a purified sample (1 lml, 974U).
上記方法により得られたグルコース一 6—リン酸脱水素酵素の理化学 的性質を以下に示す。 Physical and chemical properties of glucose-6-phosphate dehydrogenase obtained by the above method Properties are shown below.
<理化学的性質 > <Physicochemical properties>
(1) 酵素作用  (1) Enzyme action
基質としてグルコース、 NAD P又は実施例 1で得られた 3 _ピリジ ンアルドキシム— NAD Pを用いた場合の酵素作用を以下に示す。  The enzymatic action when glucose, NADP or 3_pyridinaldoxime-NADP obtained in Example 1 is used as a substrate is shown below.
■グルコース + N A D P ■ Glucose + N A D P
→d—ダルコノー <5—ラク 卜ンー 6—リン酸 + N A D P H •グルコース + 3—ピリジンアルドキシ厶— N A D P  → d-Darconau <5-Lactone 6-Phosphate + NADPH • Glucose + 3-Pyridinealdoxime-NADP
→d—ダルコノー (5—ラク トン— 6—リン酸 + 3—ピリジ ンァドキシ厶— N A D P H  → d—Dalconau (5-lactone—6-phosphate + 3-pyridinadoxime—NADPH
(2) 至適 pH  (2) Optimum pH
P H 5. 0〜 6. 0は酢酸緩衝液 (〇-〇)、 p H 6. 0〜8. 0はリ ン酸緩衝液 (口-口)、 pH 7. 5〜9. 0はトリス塩酸緩衝液 (秦 -秦) を用いて力価活性を測定した結果、 至適 pHは pH7. 0〜9. 0であ つた。 ;  PH 5.0-6.0 is acetate buffer (〇-〇), pH 6.0-8.0 is phosphate buffer (mouth-mouth), pH 7.5-9.0 is Tris-HCl As a result of measuring the titer activity using a buffer solution (Hata-Hata), the optimum pH was pH 7.0 to 9.0. ;
その結果を図 6に示す。  Figure 6 shows the results.
(3) pH安定性  (3) pH stability
5 OmM、 p H 5. 0〜6. 0の酢酸緩衝液 (〇-〇)、 50mM、 p H6. 0〜8. 0のリン酸緩衝液 (口-口)、 50mM、 p H 8. 0〜9. 0のトリス塩酸緩衝液 (暴-秦) を用い、 1 UZm 1の酵素溶液を調製し た。  5 OmM, pH 5.0-6.0 acetate buffer (〇-〇), 50 mM, pH 6.0-8.0 phosphate buffer (mouth-to-mouth), 50 mM, pH 8.0 An enzyme solution of 1 UZm1 was prepared using a Tris-HCl buffer (暴 -Hata) of ~ 9.0.
各緩衝液を 40° (:、 60分処理し、 力価活性を測定した結果、 pH6. 0〜9. 0付近で安定あった。  Each buffer was treated at 40 ° (:, 60 minutes), and the titer activity was measured.
その結果を図 7に示す。  Figure 7 shows the results.
(4) 至適温度 上記の力価測定法における測定法を利用して、 3 0、 3 7, 4 5, 5 0, 60°Cで酵素反応を行った結果、 至適温度は 6 0°C付近であった。 その結果を図 8に示す。 (4) Optimal temperature As a result of performing the enzyme reaction at 30, 37, 45, 50, and 60 ° C using the measurement method in the above titration method, the optimum temperature was around 60 ° C. Figure 8 shows the results.
(5) 熱安定性  (5) Thermal stability
5 0 mM、 ρ H 8. 0のトリス-塩酸緩衝液を用い、 1 UZm 1の酵素 溶液を調製した。 それを各温度で 1 0分間熱処理した後、 上記の力価測 定法に従って残存活性を測定した結果、 少なくとも 5 5°C付近まで安定 であった。  An enzyme solution of 1 UZm1 was prepared using 50 mM Tris-HCl buffer of RH 8.0. After heat treatment at each temperature for 10 minutes, the residual activity was measured according to the above titration method. As a result, it was stable at least up to around 55 ° C.
その結果を図 9に示す。  Figure 9 shows the results.
尚、 図 9中、 像-參は、 実施例 1 3 5で得られたグルコース一 6—リン 酸脱水素酵素の熱安定性を、 また、 〇-〇は、 比較例 2で得られたダルコ ースー 6—リン酸脱水素酵素の熱安定性を夫々示す。  In FIG. 9, the image-reference indicates the thermostability of glucose 16-phosphate dehydrogenase obtained in Example 135, and 〇-〇 indicates the Darco obtained in Comparative Example 2. The thermostability of Soo 6-phosphate dehydrogenase is shown.
(6) 保存安定性  (6) Storage stability
5 0 mMの T r i s— HC 1 ( H 7. 5) で 0: 2 U/m 1 に溶解 された酵素の活性を 3 7°C、 1 0日間測定した結果、 残存活性が 7 6 % であった。 ―  The activity of the enzyme dissolved in 50 mM Tris-HC1 (H7.5) at 0: 2 U / m1 was measured at 37 ° C for 10 days, and the remaining activity was found to be 76%. there were. ―
その結果を図 1 0に示す。  The results are shown in FIG.
(7) 分子量  (7) Molecular weight
常法により分子量を測定した結果、分子量は 440 0 0 ±400 0 (S D S ) 及び 2 6 0 0 00 ± 1 0 0 0 0. (TSKg e l - G 30 0 0 S W XL (東ソ一社製) を用いたゲル濾過法による) であった。  As a result of measuring the molecular weight by a conventional method, the molecular weight was found to be 4400 ± 400 (SDS) and 260,000 ± 100,000. By a gel filtration method).
( 8 ) Km値  (8) Km value
常法により Km値を測定した結果、 グルコース一 6—リン酸に対する Kmは 0. 34mM、 N A D Pに対する Kmは 0. 0 8mMであった。 また、 実施例 1で得られた 3—ピリジンアルドキシム一 NAD Pに対す る Kmは 0. 1 OmMであった。 (9) 反応性比 (NAD PZ 3—ピリジンアルドキシム一 NAD P) NAD Pと実施例 1で得られた 3—ピリジンアルドキシム— NAD P に対する反応性を比較した結果、 反応性比 (NADP/ 3—ピリジンァ ルドキシム一NAD P) は 7 5 %であった。 比較例 2 市販の LewcoMosiOC mesenteroides 由来ク レコース一 6— リン酸脱水素酵素 As a result of measuring the Km value by an ordinary method, the Km for glucose-6-phosphate was 0.34 mM, and the Km for NADP was 0.08 mM. The Km of 3-pyridinealdoxime-NADP obtained in Example 1 was 0.1 OmM. (9) Reactivity ratio (NAD PZ 3-pyridinealdoxime-NADP) As a result of comparing the reactivity of NADP with that of 3-pyridinealdoxime-NADP obtained in Example 1, the reactivity ratio (NADP / NADP / 3-Pyridine aldoxime-NAD P) was 75%. Comparative Example 2 Commercially available LewcoMosiOC mesenteroides derived glucose 6-phosphate dehydrogenase
<理化学的性質 > <Physicochemical properties>
( 1 ) 熱安定性  (1) Thermal stability
5 0mM、 p H 8. 0のトリス-塩酸緩衝液を用い、 1 U/m 1 の酵素 溶液を調製した。 それを各温度で 1 0分間熱処理した後、 上記の力価測 定法に従っての残存活性を測定した結果、 3 7 °C付近まで安定であった。 その結果を、 実施例 1 3 5と併せて図 9に示す。  A 1 U / ml enzyme solution was prepared using a 50 mM Tris-HCl buffer at pH 8.0. After heat treatment at each temperature for 10 minutes, the residual activity was measured according to the above titration method. As a result, it was stable up to around 37 ° C. The results are shown in FIG. 9 together with Example 135.
(2) 保存安定性  (2) Storage stability
5 OmMの T r i s— HC 1 (pH 7. 5) で 0. 2 U/m 1 に溶解 された酵素の活性を 3 7 t、 1 0日間測定した結果、 残存活性が 1 4 % であった。  The activity of the enzyme dissolved in 0.2 U / m 1 with 5 OmM Tris-HC1 (pH 7.5) was measured at 37 t for 10 days, and the residual activity was 14%. .
その結果を、 実施例 1 3 5と併せて図 1 0に示す。  The results are shown in FIG. 10 together with Example 135.
尚、 図 1 0中、 參-秦は、 実施例 1 3 5で得られたグルコース一 6—リ ン酸脱水素酵素の保存安定性を、 〇-〇は、 比較例 2で得られたダルコ一 スー 6—リン酸脱水素酵素の保存安定性を夫々示す。  In addition, in FIG. 10, Gan-Qin indicates the storage stability of glucose 16-phosphate dehydrogenase obtained in Example 13 35, and 〇-〇 indicates the darcos obtained in Comparative Example 2. 1 shows the storage stability of Su-6-phosphate dehydrogenase.
( 3) 反応性比 (NAD P/ 3—ピリジンアルドキシム一 NAD P) NAD Pと実施例 1で得られた 3—ピリジンアルドキシム— NAD P に対する反応性を比較した結果、 反応性比 (NAD PZ3—ピリジンァ ルドキシム一 NAD P) は 6 9 %であった。  (3) Reactivity ratio (NAD P / 3-pyridine aldoxime-1 NAD P) As a result of comparing the reactivity of NAD P with that of 3-pyridine aldoxime-NAD P obtained in Example 1, the reactivity ratio (NAD P PZ3-pyridinepyridine (NADP) was 69%.
(4) 分子量 常法により分子量を測定した結果、 分子量は 1 040 00 (サブュニ ット : 5 5 0 0 0 ) であった。 (4) Molecular weight As a result of measuring the molecular weight by a conventional method, the molecular weight was 1,040,000 (subunit: 550,000).
(5) 等電点  (5) Isoelectric point
常法により測定した結果、 等電点は 4. 6であった。  As a result of measurement by a conventional method, the isoelectric point was 4.6.
(6) 至適 pH  (6) Optimum pH
至適 pHは 7. 8であった。  The optimum pH was 7.8.
(7) 至適温度  (7) Optimum temperature
至適温度は 5 0°Cであった。 参考例 2 3 Human erythrocyte由来乳酸脱水素酵素  The optimum temperature was 50 ° C. Reference Example 23 Lactate dehydrogenase derived from human erythrocyte
< Human erythrocyte <Human erythrocyte
免疫生物研究所から購入した。  It was purchased from the Institute for Immunobiology.
<酵素活性測定法 > <Enzyme activity measurement method>
下記の測定試薬を用いて、 下記の方法により、 酵素活性を測定した。 (測定試薬)  Enzyme activity was measured by the following method using the following measurement reagents. (Measurement reagent)
l O OmM K2HP〇4— KH2P〇4緩衝液 (ρΗ 8. 0) l O OmM K 2 HP〇 4 — KH 2 P〇 4 buffer (ρΗ 8.0)
50 0 M NADH又は 3—プロピオニルピリジン— NAD H  50 0 M NADH or 3-propionylpyridine-NADH
(実施例 90)  (Example 90)
• 又はニコチン酸メチル—NADH (実施例 91)  • Or methyl nicotinate-NADH (Example 91)
ImM 塩化マグネシウム  ImM magnesium chloride
1 OmM ピルビン酸ナトリウム  1 OmM sodium pyruvate
(測定方法)  (Measuring method)
測定試薬 0. 9 5m lを光路長 1 cmのセルに入れ 3 7 °Cで 5分間予 備加温した後、 0. 0 5 m 1の酵素液添加後 3分後の波長 340 nmに おける吸光度 (Aa) と酵素液添加後 4分後の吸光度 (Ab) を測定し た。 この吸光度 (A.a) と (Ab) の吸光度差'(Ab- Aa) より酵素活性 を 5kめた。 0.95 ml of the reagent to be measured is placed in a cell with an optical path length of 1 cm, preliminarily heated at 37 ° C for 5 minutes, and then at a wavelength of 340 nm 3 minutes after the addition of 0.05 ml of the enzyme solution. The absorbance (Aa) and the absorbance (Ab) 4 minutes after the addition of the enzyme solution were measured. The enzyme activity was determined to be 5 k from the absorbance difference (Ab-Aa) between the absorbances (Aa) and (Ab).
尚、 吸光度差 (Ab-A a) が 0. 2以上になる時は酵素液を 1 0 0m M K2HP04— KH2P〇4緩衝液 (pH 8. 0) で希釈して測定を行 つた。 Incidentally, the absorbance difference (Ab-A a) 0 1 enzyme solution when is 0.2 or more 0 m MK 2 HP0 4 - line measurement was diluted with KH 2 P_〇 4 buffer (pH 8. 0) I got it.
また、 酵素活性 1単位は 3 7°Cで 1分間に 1 モルの酸化型 NADを 生成させる酵素量とし、 下記の計算式により酵素活性を算出した。 酵素活性 (U/m I ) = (A b-A a) / f X 2 0 X酵素希釈倍率 f ; N A D H又は 3—プロピオ二ルビリジン一 N A D H又はニコチン 酸メチルー N A D Hのミリモル分子吸光係数  One unit of the enzyme activity was defined as the amount of the enzyme that produces 1 mol of oxidized NAD per minute at 37 ° C, and the enzyme activity was calculated by the following formula. Enzyme activity (U / mI) = (Ab-Aa) / fX20X Enzyme dilution factor f; NADH or 3-propionylviridine-NADH or Methyl nicotinate-NADH
<製造方法 >  <Production method>
以下の方法により酵素を抽出 ·精製した。  The enzyme was extracted and purified by the following methods.
免疫生物研究所から購入した Human erythrocyte (溶血、 濾過、 粗 精製済み) に 2 Mとなるように塩化ナトリウムを溶解し、 それを 2 Mの 塩化ナトリゥムで緩衝化された P h e n y l -S e p h a r o s e H P (フアルマシア社製) 2 0 0m 1 (3. 0 X 2 8. 5 cm) のカラム に通し、 0〜 2 Mの硫酸アンモニゥムのリ二アグラジェントにより溶出 を行った。 その結果、 0. 1〜 0. 2 Mの N a C 1濃度で活性画分 ( 1 2 5 00 U) が溶出された。  Sodium chloride is dissolved to 2 M in Human erythrocyte (hemolyzed, filtered, and crudely purified) purchased from the Institute for Immunity and Biological Science, and the solution is added to Phenyl-Sepharose HP (Pharmenyl-Sepharose HP) buffered with 2 M sodium chloride. The solution was passed through a column of 200 ml (3.0 × 28.5 cm) manufactured by Pharmacia Co. and eluted with a linear gradient of 0 to 2 M ammonium sulfate. As a result, an active fraction (1.2500 U) was eluted at a NaCl concentration of 0.1 to 0.2 M.
この得られた活性画分を限外膜濃縮機 (Ad v a n t e c社製) とァ ミコン膜 (NMWL 1 0 00 0 ) を fflいて濃縮し、 2 5mMトリス-塩酸 (pH 7. 5) 1 Lに 5°C、 一夜透析し、 精製標品 (2 0 ml、 1 1 9 8 0U) とした。  The obtained active fraction was concentrated by ffl using an ultra-membrane concentrator (manufactured by Ad vantec) and an Namicon membrane (NMWL 100 000), and concentrated to 1 L of 25 mM Tris-hydrochloric acid (pH 7.5). The solution was dialyzed overnight at 5 ° C to obtain a purified sample (20 ml, 1190 U).
次に B 1 u e— S e p h a r o s e CL— 6 B (フアルマシア社製) 1 0 0m l (3. 0 X 14. 2 cm) のカラムに通し、 0〜2. 0 Mの N a C 1のリニアグラジェントで溶出を行った。 その結果、 0. 9 5 ~ 1 0. 5 MのN a C 1濃度で活性画分 (8 5 3 0 U) が溶出された。 この得られた活性画分をセントリフローメンブランコーン (アミコン 社製、 C F 2 5 ) を用いて濃縮し、 2 5 mMトリス-塩酸 (p H 7. 5 ) 1 Lに 5 °C、 一夜透析した、 精製標品 (5ml、 7 9 6 0 U) とした。 上記方法により得られた乳酸脱水素酵素の理化学的性質を以下に示す < <理化学的性質 > Next, pass through a 100 ml (3.0 x 14.2 cm) column of B 1 ue—Sepharose CL—6B (Pharmacia), Elution was performed with a linear gradient of NaC1. As a result, an active fraction (8530 U) was eluted at a NaCl concentration of 0.95 to 10.5 M. The obtained active fraction was concentrated using Centriflow membrane corn (Amicon, CF 25), and dialyzed against 1 L of 25 mM Tris-hydrochloric acid (pH 7.5) at 5 ° C. overnight. And a purified sample (5 ml, 796 U). The physicochemical properties of lactate dehydrogenase obtained by the above method are shown below << Physicochemical properties>
( 1 ) 反応性比 (NADH/ 3 —プロピオニルピリジン— NADH又は ニコチン酸メチル—NAD H)  (1) Reactivity ratio (NADH / 3-propionylpyridine-NADH or methyl nicotinate-NADH)
N AD Hと実施例 9 0で得られた 3—プロピオニルピリジン _ N A D H又は実施例 9 1で得られたニコチン酸メチルー NAD Hに対する反応 性を比較した結果、 反応性比は夫々、 1 1 % (NADHZ 3—プロピオ ニルピリジン— NADH)、 7 5 % (NAD HZニコチン酸メチル—N A DH) であった。  As a result of comparing the reactivity of NADH with 3-propionylpyridine_NADH obtained in Example 90 or methyl nicotinate-NADH obtained in Example 91, the reactivity ratio was 11% ( NADHZ 3-propionylpyridine-NADH) and 75% (NAD HZ methyl nicotinate-NADH).
尚、 その他の性質については、 臨床化学 (27, 93-98, 1998) に記載 されているものと同じであった。 参考例 2 4 Pyrobaculum islandicum (D S M 4 1 8 4 ) 由来グルタ ミン酸脱水素酵素  Other properties were the same as those described in Clinical Chemistry (27, 93-98, 1998). Reference Example 24 Glutamate dehydrogenase derived from 4 Pyrobaculum islandicum (DSM4184)
<菌株 > <Strain>
Pyrooacul m islanaicum 、 D S M 4 1 8 4 ) ¾ Deutsche Sammlung von Mikroorganismen und Zellkulturenより入手し 7こ。 <酵素活性測定法 >  Pyrooacul mislanaicum, DSM 4 1 8 4) 入手 Obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen. <Enzyme activity measurement method>
Appl. Environ. Microbiol., M, 2152-2157 (1998)ίこ記載の方法【こ 従って行った。  Appl. Environ. Microbiol., M, 2152-2157 (1998).
<製造方法 > Appl. Environ. Microbiol., M, 2152-2157 (1998) ίこ記載の方法【こ 従って行った。 <Production method> Appl. Environ. Microbiol., M, 2152-2157 (1998) 方法 The method described here.
<理化学的性質 > <Physicochemical properties>
( 1) 反応性比 (NADHZ3—プロピオ二ルビリジン— NADH又は ニコチン酸メチルー NADH)  (1) Reactivity ratio (NADHZ3-propionylviridine-NADH or methyl nicotinate-NADH)
NADHと実施例 9 0で得られた 3—プロピオニルピリジン— NAD H又は実施例 9 1で得られたニコチン酸メチルー NADHに対する反応 性を比較した結果、 反応性比は夫々、 24 % (NADHZ3—プロピオ 二ルビリジン一 NADH)、 6. 5 % (NADH/ニコチン酸メチルー N ADH) であった。 (  As a result of comparing the reactivity of NADH with 3-propionylpyridine-NADH obtained in Example 90 or methyl nicotinate-NADH obtained in Example 91, the reactivity ratio was 24% (NADHZ3-propionate). Nylviridine mono-NADH) and 6.5% (NADH / methyl nicotinate-NADH). (
尚、 その他の性質については、 Appl. Environ. Microbiol., , 2152-2157 (1998)に記載されているものと同じあった。 実施例 1 3 6 クレアチンキナーゼの測定  The other properties were the same as those described in Appl. Environ. Microbiol.,, 2152-2157 (1998). Example 1 Measurement of creatine kinase
<試料> <Sample>
ヒト血清 2 0検体 .  20 serum samples.
<試薬組成 > <Reagent composition>
R— 1 : 1 2 8 mM イミダゾール—酢酸緩衝液 (pH 6. 7 ) ' へキソキナーゼ (ロシュ社製:酵母由来) 3 I UZmL グルコース一 6—リン酸脱水素酵素 (実施例 1 3 5)  R—1: 128 mM imidazole-acetate buffer (pH 6.7) ′ Hexokinase (Roche: yeast) 3 I UZmL Glucose 16-phosphate dehydrogenase (Example 13 5)
6 I U/mL ' 3-ピリジンアルドキシム— NAD P (実施例 1) 2. 6mM AD P 2. 6 mM  6 I U / mL '3-pyridinealdoxime-NADP (Example 1) 2.6 mM AD P 2.6 mM
グルコース 2 0. 5 mM  Glucose 2 0.5 mM
チォグリセロール 1 20 mM  Thioglycerol 1 20 mM
酢酸マグネシウム 1 OmM EDTA— 2 N a 0. 5 mM Magnesium acetate 1 OmM EDTA—2 Na 0.5 mM
N a N3 0. 1 % N a N 3 0.1%
R- 2 : 1 0 mM N,N-ビス(2-ヒドロキシェチル)ダリシン(Bicine) 緩衝液 (pH 9. 0) R-2: 10 mM N, N-bis (2-hydroxyethyl) daricin (Bicine) buffer (pH 9.0)
クレアチンリン酸 1 5 5 mM  Creatine phosphate 1 5 5 mM
グルコース 2 0. 5 mM  Glucose 2 0.5 mM
N a N3 0. 1 % N a N 3 0.1%
<測定操作法 > <Measurement operation method>
日立製作所 (株) 製 7 1 70形自動分析装置を用いて下記の条件によ り測定を行った。  The measurement was performed under the following conditions using an automatic analyzer, Model 171 manufactured by Hitachi, Ltd.
(条件)  (Condition)
'試料: 5 L ·  'Sample: 5 L ·
R - 1 : 2 0 0 L  R-1: 200 L
R - 2 : 50 L  R-2: 50 L
測定条件: ダブル力イネティック  Measurement conditions: Double force inetic
レートアツセィ (24— 34) ( 1 0 - 1 5 ) 測定波長:副波長 40 5 nmZ主波長 340 n m  Rate Assy (24-34) (10-15) Measurement wavelength: Sub wavelength 405 nm Z Main wavelength 340 nm
<結果 > <Result>
R— 1を 3 Ot:で 1力月間保存した後の、 R_ 1中のグルコース一 6 ーリン酸脱水素酵素及び 3—ピリジンアルドキシム— NADPの残存率 (試薬調製直後の活性値を 1 0 0 %とした場合の割合) を表 1 7に、 調 製直後の R— 1及び R— 2を用いて、 ヒト血清 2 0検体を試料として測 定した結果を表 1 8に示す。 比較例 3 従来法によるクレアチンキナーゼの測定 <試料> After storage of R-1 for 1 month at 3 Ot :, the residual ratio of glucose-6-phosphate dehydrogenase and 3-pyridinealdoxime-NADP in R_1 (the activity value immediately after reagent preparation is 100 Table 17 shows the results of measurement using 20 samples of human serum using R-1 and R-2 immediately after preparation. Comparative Example 3 Measurement of Creatine Kinase by Conventional Method <Sample>
実施例 1 3 6と同じものを使用した。  The same one as in Example 13 was used.
<試薬組成 > <Reagent composition>
実施例 1 3 6の R— 1に於けるグルコース— 6 —リン酸脱水素酵素 (実施例 1 3 5 ) の代わりに市販のグルコース一 6 —リン酸脱水素酵素 (Leuconostoc属由来) を用い、 3—ピリジンアルドキシム一 N A D P の代わりに天然型 N A D Pを用いた以外は、 実施例 1 3 6と同じ試薬を 使用して R— 1を調製した。 尚、 R— 2は、 実施例 1 3 6と同じものを 使用した。  Example 13 Instead of glucose-6-phosphate dehydrogenase in R-1 of Example 36 (Example 135), a commercially available glucose-16-phosphate dehydrogenase (from the genus Leuconostoc) was used. R-1 was prepared using the same reagents as in Example 13 36 except that natural NADP was used instead of 3-pyridinealdoxime-NADP. As R-2, the same one as in Example 1 36 was used.
<測定操作法 > <Measurement operation method>
実施例 1 3 6と同様に行った。  Example 13 was carried out in the same manner.
<結果> <Result>
R— 1 を 3 0 °Cで 1力月間保存した後の、 試薬中のグルコース— 6 - リン酸脱水素酵素及び N A D Pの残存率 (試薬調製直後の活性値を 1 0 0 %とした場合の割合) を表 1 7に、 調製直後の試薬を用いて、 ヒト血 清 2 0検体を試料として測定した結果を表 1 8に、 実施例 1 3 6のそれ と併せて夫々示す。 また、 調製直後の試薬を用いて、 ヒト血清 2 0検体 を試料とした場合の実施例 1 3 6と比較例 3とで得られた測定値の相関 関係を図 1 1に示す。  Percentage of glucose-6-phosphate dehydrogenase and NADP remaining in the reagent after storage of R-1 at 30 ° C for 1 month (when the activity value immediately after preparation of the reagent is 100%) Table 17 shows the results of measurement using 20 samples of human serum using the reagents immediately after preparation, and Table 18 shows the results together with those of Example 1336. FIG. 11 shows the correlation between the measured values obtained in Example 1336 and Comparative Example 3 when 20 samples of human serum were used as samples using the reagent immediately after preparation.
表 1 7  Table 17
Figure imgf000128_0001
また、実施例 1 3 6の R— 1及び比較例 3の R— 1を用いた場合とも、 調製直後は、 クレアチンキナ一ゼ 2 00 0 I UZmL以上の直線性 を有していた。
Figure imgf000128_0001
In addition, when R-1 of Example 1 36 and R-1 of Comparative Example 3 were used, Immediately after the preparation, the creatine kinase had a linearity of 20000 I UZmL or more.
一方、 3 0°C保存後については、 実施例 1 3 6の R— 1を用いた場合 には、 調製直後と同様に、 クレアチンキナ一ゼ 2 0 0 0 I U/mL 以上の直線性を有していたのに対して、 比較例 3の R— 1を用いた場合 は、 クレアチンキナーゼ 1 0 0 0 I UZmL以下の直線性しか有し ていなかった。  On the other hand, after storage at 30 ° C, when R-1 of Example 13 36 was used, the creatine kinase had a linearity of 200 IU / mL or more as in the case immediately after preparation. On the other hand, when R-1 of Comparative Example 3 was used, the linearity was only less than 1000 IUZmL of creatine kinase.
表 1 8  Table 18
Figure imgf000129_0001
以上の結果から明らかなように、 試薬調製直後の性能は、 実施例 1 3 6及び比較例 3共に何れも良好であつたが、 R— 1を 3 0°Cで 1力月間 保存した場合には、 実施例 1 3 6では、 何れもグルコース— 6—リン酸 脱水素酵素及び 3—ピリジンアルドキシム— NAD P共に、 7 5 %以上 の高い残存率を有しており、 検量範囲も調製直後と同等の性能を保持し ていたのに対して、 比較例 3では、 グルコース一 6 _リン酸脱水素酵素 は高い残存率を示したものの、 NADP活性は調製直後に比べて著しく 低下しており、'これに伴って検量範囲も著しく低下していることが判る。 即ち、 3 0°C 1力月保存後も、 .本発明の試薬は調製直後と同等の性能 を保持していたのに対し、 従来の試薬は調製直後の性能を保持し得ない ことが判る。 実施例 1 3 7 尿素窒素の測定 ¾
Figure imgf000129_0001
As is clear from the above results, the performance immediately after the reagent preparation was good in both Example 13 and Comparative Example 3, but R-1 was kept at 30 ° C for 1 month. When stored, in Example 13 36, both glucose-6-phosphate dehydrogenase and 3-pyridinealdoxime-NADP had a high residual ratio of 75% or more. While the range maintained the same performance as immediately after the preparation, in Comparative Example 3, although glucose-16-phosphate dehydrogenase showed a high residual rate, the NADP activity was significantly higher than immediately after the preparation. It can be seen that the calibration range has been significantly reduced. That is, even after storage at 30 ° C for one month, the reagent of the present invention retained the same performance as immediately after preparation, whereas the conventional reagent could not retain the performance immediately after preparation. . Measurements ¾ of Example 1 3 7 Urea Nitrogen
<試料 >  <Sample>
ヒト血清 20検体  Human serum 20 samples
<試薬組成 > <Reagent composition>
. R - 1 : 3 5 mM トリス緩衝液 (p H 9. 5 ) R-1: 35 mM Tris buffer (pH 9.5)
3 _プロピオニルピリジン— N ADH (実施例 90)  3 _ propionylpyridine-N ADH (Example 90)
0. 3 1 mM  0.3 1 mM
N a N。 0. 1 % R- 2 : 0. 2 M リン酸緩衝液 ( p H 6. 6 )  N a N. 0.1% R-2: 0.2 M phosphate buffer (pH 6.6)
ウレァ一ゼ (ロシュ社製: ナ夕マメ由来)  Ulease (Roche: from Nayu beans)
40 1 I U/mL  40 1 I U / mL
, グルタミン酸脱水素酵素 (参考例 24)  , Glutamate dehydrogenase (Reference Example 24)
1. 9 3 I U/mL  1.93 IU / mL
ひーケトグルタル酸 2 2mM  Hiketoglutaric acid 2 2mM
N a N, 0. 1 % <測定操作法 > N a N, 0.1% <Measurement operation method>
日立製作所 (株) 製 7 1 7 0形自動分析装置を用いて下記の条件によ り測定を行った。  The measurement was performed under the following conditions using an automatic analyzer, Model 717, manufactured by Hitachi, Ltd.
(条件)  (Condition)
試料: 5 L  Sample: 5 L
R - 1 : 2 0 0 L  R-1: 200 L
R— 2 : 5 0 L  R—2: 50 L
測定条件: レートアツセィ (22— 2 7 )  Measuring conditions: Rate Atsushi (22-27)
測定波長:副波長 40 5 nm/主波長 340 nm  Measurement wavelength: sub wavelength 405 nm / main wavelength 340 nm
<結果〉 <Result>
試薬を 3 0°Cで 1力月間保存した後の、 R— 2 中のグルタミン酸脱水 素酵素及び R— 1 中の 3—プロピオニルピリジン— NAD Hの残存率 (試薬調製直後の活性値を 1 00 %とした場合の割合) を表 1 9に、 調 製直後の試薬を用いて、 ヒト血清 2 0検体を試料として測定した結果を 表 2 0に示す。 比較例 4 従来法による尿素窒素の測定  After storing the reagents at 30 ° C for one month, the residual ratio of glutamate dehydratase in R-2 and 3-propionylpyridine-NADH in R-1 (the activity value immediately after the reagent preparation was 100 Table 19 shows the results of measurement using 20 samples of human serum using the reagents immediately after preparation. Comparative Example 4 Measurement of Urea Nitrogen by Conventional Method
く試料〉 Sample)
実施例 1 3 7と同じものを使用した。  The same one as in Example 13 was used.
く試薬組成 > Reagent composition>
実施例 1 3 7の R— 1に於ける 3—プロピオニルピリジン— NADH の代わりに NAD Hを用い、 R— 2に於けるグルタミン酸脱水素酵素(参 考例 24) の代わりに市販のグルタミン酸脱水素酵素 (牛肝由来) を用 いた以外は、 実施例 1 3 7と同様のものを使用して調製した。  Example 13 Using NADH in place of 3-propionylpyridine-NADH in R-1 of 37, and commercially available glutamate dehydrogenase in place of glutamate dehydrogenase in R-2 (Reference Example 24) Except for using an enzyme (derived from bovine liver), it was prepared using the same one as in Example 13 37.
く測定操作法 > Measurement operation method>
実施例 1 3 7と同様に行った。 ぐ結果 > Example 13 was carried out in the same manner. Results>
試薬を 3 0°Cで 1力月間保存した後の、 R— 2中のグルタミン酸脱水 素酵素及び R— 1 中の NADHの残存率 (試薬調製直後の活性値を 1 0 0 %とした場合の割合) を表 1 9に、 調製直後の試薬を用いて、 ヒト血 清 20検体を試料として測定した結果を表 2 0に、 実施例 1 3 7と併せ て夫々示す。 また、 調製直後の試薬を用いて、 ヒト血清 2 0検体を試料 とした場合の実施例 1 ,3 7と比較例 4とで得られた測定値の相関関係を 図 1 2に示す。 ,  Residual rate of glutamate dehydratase in R-2 and NADH in R-1 after storage of the reagent at 30 ° C for 1 month (assuming that the activity value immediately after preparation of the reagent is 100%) Table 19 shows the results of measurement of 20 samples of human serum using the reagents immediately after preparation, along with Example 13 37. Fig. 12 shows the correlation between the measured values obtained in Examples 1 and 37 and Comparative Example 4 when 20 samples of human serum were used as samples using the reagent immediately after preparation. ,
表 1 9  Table 19
Figure imgf000132_0001
また、 調製直後は、 実施例 1 3 7及び比較例 4の試薬の何れを用いて も、 尿素窒素 2 0 0 mg/d Lまでの直線性を有していたが、 30°C 1力月後では、 実施例 1 3 7の試薬を用いた場合は尿素窒素 2 00m g/d Lまでの直線性を有していたのに対して、 比較例 4の試薬を用い た場合は、 尿素窒素 1 5 0 mgZd Lまでの直線性しか有していなか つた。 表 2 0
Figure imgf000132_0001
Immediately after preparation, urea nitrogen had a linearity of up to 200 mg / dL using any of the reagents of Example 1337 and Comparative Example 4, but was kept at 30 ° C for 1 month. Later, when the reagent of Example 13 37 was used, urea nitrogen had a linearity of up to 200 mg / dL, whereas when the reagent of Comparative Example 4 was used, the urea nitrogen It had a linearity only up to 150 mgZd L. Table 20
Figure imgf000133_0001
以上の結果から明らかなように、 試薬調製直後の性能は、 実施例 1 3 7及び比較例 4の何れも良好であつたが、 試薬を 3 Otで 1力月間保存 した場合、 実施例 1 3 7の試薬は、 グルタミン酸脱水素酵素及び 3—プ 口ピオニルピリジン一 NADH共に、 高い残存率を有しており、 検量範 囲も調製直後と同等の性能を保持していたのに対して、 比較例 4の試薬 は、 NADH活性が調製直後に比べて著しく低下しており、 これに伴つ て検量範囲も著しく低下していることが判る。
Figure imgf000133_0001
As is clear from the above results, the performance immediately after the preparation of the reagent was good in both Example 13 37 and Comparative Example 4, but when the reagent was stored at 3 Ot for 1 month, the results were as shown in Example 13. Reagent 7 had high residual rates for both glutamate dehydrogenase and 3-port pionylpyridine-NADH, and the calibration range maintained the same performance as immediately after preparation. It can be seen that the NADH activity of the reagent of Comparative Example 4 was significantly lower than that immediately after preparation, and the calibration range was also significantly reduced.
即ち、 3 0°C 1力月保存後も、 本発明の試薬は調製直後と同等の性能 を保持していたのに対し、 従来の試薬は調製直後の性能を保持し得ない とが判る, 実施例 1 3 8 グルタミン酸ォキザ口酢酸トランスアミナーゼの測定 <試料 > That is, even after storage at 30 ° C for one month, the reagent of the present invention maintained the same performance as immediately after preparation, whereas the conventional reagent could not maintain the performance immediately after preparation. Example 13 Measurement of glutamate oxalate acetate transaminase <Sample>
ヒト血清 2 0.検体  Human serum 20.Sample
<試薬組成 > · <Reagent composition>
R - 1 : 3 5 mM トリス緩衝液 (pH 9. 0)  R-1: 35 mM Tris buffer (pH 9.0)
L—ァスパラギン酸 l O OmM  L-aspartic acid l O OmM
3—プロピオニルピリジン一 NADH (実施例 9 0) 0. 3 1 mM  3-propionylpyridine-NADH (Example 90) 0.3 1 mM
リンゴ酸脱水素酵素 (実施例 1 34) 2 9 0 0 I U/L 乳酸脱水素酵素 (参考例 2 3 ) 1 5 0 0 I U/L  Malate dehydrogenase (Example 134) 290 IU / L Lactate dehydrogenase (Reference example 23) 150 IU / L
R- 2 : 1 7 8mM トリス緩衝液 (pH 5. 6 ) R-2: 178mM Tris buffer (pH 5.6)
L—ァスパラギン酸 42 0mM  L-aspartic acid 42 0 mM
α—ケトグルタル酸 3 1 mM  α-Ketoglutaric acid 3 1 mM
<測定操作法 > ' <Measurement operation method> ''
日立製作所 (株) 製 7 1 7 0形自動分析装置を用いて下記の条件によ り測定を行った。  The measurement was performed under the following conditions using an automatic analyzer, Model 717, manufactured by Hitachi, Ltd.
(条件)  (Condition)
試料: 1 3 L  Sample: 13 L
R - 1 : 2 6 0 L  R-1: 260 L
R- 2 : 1 3 0 L  R-2: 130 L
測定条件: レートアツセィ ( 1 9一 3 1)  Measurement conditions: Rate Atsushi (1 9 1 3 1)
測定波長:副波長 40 '5 n m/主波長 340 n m  Measurement wavelength: sub wavelength 40'5 nm / main wavelength 340 nm
<結果 > R— 1を 3 0°Cで 1力月間保存した後の、 試薬中のリンゴ酸脱水素酵 素、 乳酸脱水素酵素及び 3—プロピオニルピリジン一 NAD Hの残存率 (試薬調製直後の活性値を 1 0 0 %とした場合の割合) を表 2 1に、 調 製直後の試薬を用いて、 ヒト血清 2 0検体を試料として測定した結果を 表 2 2に示す。 比較例 5 従来法によるグルタミン酸ォキザロ酢酸トランスアミナーゼ の測定 <Result> After storing R-1 at 30 ° C for 1 month, the residual ratio of malate dehydrogenase, lactate dehydrogenase and 3-propionylpyridine-NADH in the reagent Table 21 shows the results of measurement using 20 samples of human serum using the reagents immediately after preparation. Comparative Example 5 Measurement of glutamate oxaloacetate transaminase by conventional method
<試料 > <Sample>
実施例 1 3 8と同じものを使用した。 ,  The same one as in Example 13 was used. ,
<試薬組成 > <Reagent composition>
実施例 1 3 8の R— 1に於ける 3—プロビォニルピリジン— NADH の代わりに NADHを用い、 リンゴ酸脱水素酵素 (実施例 1 34) の代 わりに市販のリンゴ酸脱水素酵素 (豚心臓由来) を用い、 また、 乳酸脱 水素酵素 (参考例 2 3 ) の代わりに市販の乳酸脱水素酵素 (鶏心臓由来) を用いた以外は、 実施例 1 3 8と同様のものを使用して調製した。  Example 1 In place of 3-propionylpyridine-NADH in R-1 of 38, NADH was used, and instead of malate dehydrogenase (Example 134), a commercially available malate dehydrogenase (porcine) was used. Heart extract) and the same as in Example 1338 except that a commercially available lactate dehydrogenase (from chicken heart) was used instead of lactate dehydrogenase (Reference Example 23). Prepared.
<測定操作法 > <Measurement operation method>
実施例 1 3 8と同様に行った。  Example 13 was carried out in the same manner.
<結果> <Result>
R— 1を 3 0°Cで 1力月間保存した後の、 R— 1中のリンゴ酸脱水素 酵素、 乳酸脱水素酵素及び NADHの残存率 (試薬調製直後の活性値を 1 0 0 %とした場合の割合) を表 2 1に、 調製直後の試薬を用いて、 ヒ ト血清 2 0検体を試料として測定した結果を表 22に、 実施例 1 3 8と 併せて夫々示す。 また、 調製直後の試薬を用いて、 ヒト血清 2 0検体を 試料とした場合の実施例 1 3 8と比較例 5とで得られた測定値の相関関 係を図 1 3に示す。 表 2 1 Residual rate of malate dehydrogenase, lactate dehydrogenase and NADH in R-1 after storing R-1 at 30 ° C for 1 month (Activity value immediately after reagent preparation is 100% Table 21 shows the measurement results, and Table 22 shows the results of measurements using 20 samples of human serum using the reagents immediately after preparation, together with Example 1 38. FIG. 13 shows the correlation between the measured values obtained in Example 1338 and Comparative Example 5 when 20 samples of human serum were used as samples using the reagent immediately after preparation. Table 2 1
Figure imgf000136_0001
また、 調製直後は、 実施例 1 3 8及び比較例 5の何れの試薬を用いた 場合も、 グルタミン酸ォキザ口酢酸トランスアミナーゼ 1 0 0 0 I U/Lまでの直線性を有していたが、 30°C保存後については、 実施例 1 3 8の試薬を,用いた場合はグルタミン酸ォキザ口酢酸トランスァミナ —ゼ 1 0 0 0 I U/mL以上の直線性を有していたのに対して、 比 較例 5の試薬を用いた場合は、 グルタミン酸ォキザロ酢酸トランスアミ ナーゼ 5 0 0 I U/mLまでの直線性しか有していなかった。
Figure imgf000136_0001
Immediately after the preparation, when using any of the reagents of Example 1338 and Comparative Example 5, it had a linearity of up to 1000 IU / L of glutamate oxalate acetic acid transaminase, but it was 30 ° After storage of C, the reagent of Example 1 38 had a linearity of 100 IU / mL or more with respect to transglutamate acetic acid glutamate when compared with the comparative example. When 5 reagents were used, glutamate oxaloacetate transaminase had only a linearity of up to 500 IU / mL.
表 2 2 Table 2 2
Figure imgf000137_0001
以上の結果から明らかなように、 試薬調製直後の性能は、 実施例 1 3 8及び比較例 5の何れも良好であつたが、 試薬を 3 0°Cで 1力月間保存 した場合、 実施例 1 3 8の試薬は、 リンゴ酸脱水素酵素、 乳酸脱水素酵 素及び 3—プロピオニルピリジン— NADH共、 高い残存率を有してお り、 検量範囲も調製直後と同等の性能を保持していたのに対して、 比較 例 5の試薬は、 リンゴ酸脱水素酵素及び NADH活性が調製直後に比べ て著しく低下しており、 これに伴って検量範囲も著しく低下しているこ とが判る。
Figure imgf000137_0001
As is clear from the above results, the performance immediately after the preparation of the reagent was good in both Example 13 and Comparative Example 5, but when the reagent was stored at 30 ° C for one month, the performance The reagents in 138 have high residual ratios for malate dehydrogenase, lactate dehydrogenase, and 3-propionylpyridine-NADH, and the same calibration range is maintained at the same level as immediately after preparation. On the other hand, in the reagent of Comparative Example 5, it was found that the malate dehydrogenase and NADH activities were significantly lower than immediately after preparation, and that the calibration range was also significantly reduced.
即ち、 30°C 1力月保存後も、 本発明の試薬は調製直後と同等の性能 を保持 のに対し、 従来の試薬は調製直後の性能を保持し得ない ことが判る 実施例 1 3 9 グルタミン酸ピルビン酸トランスアミナーゼの測定 <試料> That is, even after storage at 30 ° C for one month, the reagent of the present invention has the same performance as immediately after preparation. On the other hand, it can be seen that the conventional reagent cannot maintain the performance immediately after preparation.Example 13 9 Measurement of glutamate pyruvate transaminase <Sample>
ヒト血清 2 0検体  Human serum 20 samples
<試薬組成 > . <Reagent composition>.
R- 1 : 2 5mM トリス緩衝液 ( p H 9. 0 )  R-1: 25 mM Tris buffer (pH 9.0)
Lーァラニン酸 2 0 OmM  L-aranic acid 20 OmM
3—プロピオニルピリジン一 NAD H (実施例 9 0) 3-propionylpyridine-NADH (Example 90)
0. 3 1 mM . 0.3 1 mM.
乳酸脱水素酵素 (参考例 2 3 ) 9 0 0 0 I U/L  Lactate dehydrogenase (Reference Example 23) 900 0 I U / L
R - 2 : 2 6 0 mM トリス緩衝液 (pH 4. 8) R-2: 260 mM Tris buffer (pH 4.8)
L—ァラニン酸 1 1 5 0 mM  L-alanic acid 1 150 mM
α—ケトグルタル酸 4 6. 5 mM  α-Ketoglutaric acid 46.5 mM
<測定操作法 > <Measurement operation method>
日立製作所 (株) 製 7 1 7 0形自動分析装置を用いて下記の条件によ り測定を行った。  The measurement was performed under the following conditions using an automatic analyzer, Model 717, manufactured by Hitachi, Ltd.
(条件)  (Condition)
試料: 1 3 L  Sample: 13 L
R - 1 : 2 6 0 L  R-1: 260 L
R— 2 : 1 3 0 L  R—2: 130 L
測定条件: レートアツセィ ( 1 9 — 3 1 )  Measurement conditions: Rate Atsushi (1 9 — 3 1)
測定波長:副波長 4 0 5 n mZ主波長 34 0 n m  Measurement wavelength: sub-wavelength 4 0 5 n mZ main wavelength 34 0 n m
<結果 > R— 1を 3 0 °Cで 1力月間保存した後の、 R— 1中の乳酸脱水素酵素 及び 3—プロピオニルピリジン一 N A D Hの残存率 (試薬調製直後の活 性値を 1 0 0 %とした場合の割合) を表 2 3に、 調製直後の試薬を用い て、 ヒト血清 2 0検体を試料として測定した結果を表 2 4にに示す。 比較例 6 従来法によるグルタミン酸ピルビン酸トランスアミナーゼの 測定 <Result> After storing R-1 at 30 ° C for 1 month, the residual ratio of lactate dehydrogenase and 3-propionylpyridine-NADH in R-1 (the activity value immediately after the reagent preparation was 100% Table 23 shows the results of the measurement, and Table 24 shows the results of measurement using 20 samples of human serum using the freshly prepared reagent. Comparative Example 6 Measurement of Glutamate-Pyruvate Transaminase by Conventional Method
<試料 >  <Sample>
実施例 1 3 9と同じものを使用した。  The same one as in Example 13 was used.
<試薬組成 > <Reagent composition>
実施例 1 3 9の R— 1に於ける 3—プロピオニルピリジン— N A D H の代わりに N A D Hを用い、 また、 乳酸脱水素酵素 (参考例 2 3 ) の代 わりに市販の乳酸脱水素酵素 (鶏心臓由来) を用いた以外は、 実施例 1 3 9と同様のものを使用して R— 1を調製した。 尚、 R— 2は、 実施例 Ϊ 3 9と同じものを用いた。  Example 13 In place of 3-propionylpyridine-NADH in R-1 of 39, NADH was used, and instead of lactate dehydrogenase (Reference Example 23), a commercially available lactate dehydrogenase (derived from chicken heart) was used. R-1 was prepared in the same manner as in Example 13 39 except that) was used. As R-2, the same one as in Example 39 was used.
<測定操作法 > <Measurement operation method>
実施例 1 3 9と同様に行った。 '  Example 13 was carried out in the same manner. '
ぐ結果 > Results>
R— 1を 3 0 °Cで 1力月間保存した後の、 R— 1中の乳酸脱水素酵素 及び N A D Hの残存率 (試薬調製直後の活性値を 1 0 0 %とした場合の 割合) を表 2 3に、 調製直後の試薬を用いて、 ヒト血清 2 0検体を試料 として測定した結果を表 2 4に、実施例 1 3 9と併せて夫々示す。 また、 調製直後の試薬を用いて、 ヒト血清 2 0検体を試料とした場合の実施例 1 3 9と比較例 6とで得られた測定値の相関関係を図 1 4に示す。 表 2 3 After storage of R-1 at 30 ° C for 1 month, the residual ratio of lactate dehydrogenase and NADH in R-1 (percentage when the activity value immediately after preparation of the reagent was 100%) was calculated. Table 23 shows the results of measurement using 20 samples of human serum as a sample, using the reagents immediately after preparation, and Table 24 together with Example 1339. FIG. 14 shows the correlation between the measured values obtained in Example 1339 and Comparative Example 6 when 20 samples of human serum were used as samples using the reagent immediately after preparation. Table 23
Figure imgf000140_0001
また、 調製直後は、 実施例 1 3 9及び比較例 6の何れの試薬も、 ダル 夕ミン酸ピルビン酸トランスアミナ一ゼ 1 0 0 0 I U/Lまでの直 線性を有していたが、 3 0°C保存後については、 実施例 1 3 9の試薬は グルタミン酸ピルビン酸トランスアミナ一ゼ 1 0 0 0 I U/mL以 上の直線性を有していたのに対して、 比較例 6の試薬は、 グルタミン酸 ピルビン酸トランスアミナ一ゼ 1 0 0 I U/mLまでの直線性しか 有していなかった。
Figure imgf000140_0001
Immediately after the preparation, the reagents of Example 13 39 and Comparative Example 6 each had a linearity of up to 1000 IU / L of dalminic acid pyruvate transaminase. After storage at 0 ° C, the reagent of Example 13 39 had a linearity of at least 100 IU / mL of glutamate-pyruvate transaminase, whereas the reagent of Comparative Example 6 Had a linearity of up to 100 IU / mL of glutamate-pyruvate transaminase.
表 24 Table 24
Figure imgf000141_0001
以上の結果から明らかなように、 試薬調製直後の性能は、 実施例 1 3 9及び比較例 6共に何れも良好であつたが、 試薬を 3 0°Cで 1力月間保 存した場合には、 実施例 1 3 9の試薬は、 乳酸脱水素酵素及び 3 -プロ ピオニルピリジン一 NAD H共に高い残存率を有しており、 検量範囲も 調製直後と同等の性能を保持していたのに対して、比較例 6の試薬では,、 乳酸脱水素酵素活性及び NAD H活性は調製直後に比べて著しく低下し ており、 これに伴って検量範囲も著しく低下していることが判る。
Figure imgf000141_0001
As is clear from the above results, the performance immediately after the preparation of the reagent was good in both Example 13 and Comparative Example 6, but when the reagent was stored at 30 ° C for 1 hour month, However, the reagent of Example 13 39 had a high residual ratio for both lactate dehydrogenase and 3-propionylpyridine-NADH, and the calibration range maintained the same performance as immediately after preparation. On the other hand, in the reagent of Comparative Example 6, the lactate dehydrogenase activity and the NADH activity were significantly lower than immediately after the preparation, and it was found that the calibration range was also significantly reduced.
即ち、 30°C 1力月保存後も、 本発明の試薬は調製直後と同等の性能 を保持していたのに対し、 従来の試薬は調製直後の性能を保持し得ない ことが判る。 産業上の利用の可能性 That is, even after storage at 30 ° C for one month, the reagent of the present invention maintained the same performance as immediately after preparation, whereas the conventional reagent could not maintain the performance immediately after preparation. You can see that. Industrial applicability
以上述べた如く、 本発明は優れた安定性を示す酸化型ニコチンアミ ド アデニンジヌクレオチド(NAD)、 酸化型ニコチンアミ ドアデニンジヌク レオチドリン酸 (NADP)、還元型ニコチンアミ ドアデニンジヌクレオチド (NADH)、 及び還元型ニコチンアミ ドアデニンジヌクレオチドリン酸 (NADPH)の誘導体、 及びこれら補酵素誘導体に対して高い反応性を有し, 且つ優れた安定性を有する脱水素酵素、 並びにこれらを使用した試薬を 提供するものであり、 これら補酵素誘導体や脱水素酵素を用いて酵素学 的測定用試薬を調製すれば、 長期間、 10°C保存時で少なくとも 12力月 以上、 通常 13力月以上、 30°C保存時で 2.5力月以上の貯蔵安定性を有 する試薬が得られるという効果を奏する。  As described above, the present invention provides excellent stability of oxidized nicotinamide adenine dinucleotide (NAD), oxidized nicotinamide adenine dinucleotide phosphate (NADP), and reduced nicotinamide adenine dinucleotide (NADH). And nicotinamide deadenine dinucleotide phosphate (NADPH) derivatives, dehydrogenase having high reactivity with these coenzyme derivatives and excellent stability, and reagents using these If a reagent for enzymological measurement is prepared using these coenzyme derivatives or dehydrogenase, it can be used for at least 12 months, usually 13 months, when stored at 10 ° C for a long time. When stored at 30 ° C, a reagent having a storage stability of 2.5 months or more can be obtained.

Claims

請 求 の 範 囲 一般式 [ 1 ] Scope of claim General formula [1]
Figure imgf000143_0001
Figure imgf000143_0001
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 カルボキシル基、 チォカルポキシル 基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOHを示す。) で表される化合物又は その還元体を含んでなる酵素学的測定用試薬。 (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is carboxyl group, Chiokarupokishiru group, a sulfonic acid group or from those A group derived, a hydrocarbon residue which may have a substituent, or -CH = NOH) or a reduced form thereof.
2 . 一般式 [ 1 ] で示される化合物又はその還元体が水性溶媒中に含ま れてなる、 請求項 1に記載の酵素学的測定用試薬。  2. The reagent for enzymatic measurement according to claim 1, wherein the compound represented by the general formula [1] or a reduced form thereof is contained in an aqueous solvent.
3 . 化合物が、一般式 [ 1 ] において、 naが 0で且つ Xaが- COR12 a基〔式 中、 R12 aは - R5 a、 -NHR6 a又は- N(R6 a)(R7 a)を表す (式中、 R5 aは炭化水素 残基を表し、 R6 a及び R7 aはそれぞれ独立して水素原子、 置換基を有して いても良い炭化水素残基又はアミノ基を表す。)。〕 又は- CH = NOH基で あるか、 或いは naが 1で且つ Xaが- CONH2基であるものである'請求項 1又は 2に記載の酵素学的測定用試薬。 . 3 compound, in the general formula [1], n a is and X a at 0 - in COR 12 a group [wherein, R 12 a is - R 5 a, -NHR 6 a or - N (R 6 a ) (R 7 a) represents a (wherein, R 5 a is a hydrocarbon residue, each R 6 a and R 7 a are independently hydrogen, optionally substituted hydrocarbon residue Represents an amino group or an amino group.). ] Or - CH = NOH or a group, or n a is the and X a at 1 - CONH are those wherein 2 groups' enzymatic reagent for measuring according to claim 1 or 2.
4 . 化合物が、 一般式 [ 1 ] において、 (Ra)naXaがアクリルアミ ド基、 ェチルカルポニル基又は- CH = NOH 基であるものである請求項 1又は 2に記載の酵素学的測定用試薬。 . 4 compound, in the general formula [1], (R a) n a X a is acrylamide group, Echirukaruponiru group or - CH = claims NOH those wherein group 1 or 2 enzymatic according to Measurement reagent.
5 . 化合物が、 一般式 [ 1 ] において、 Yaが水酸基であり且つ (Ra)naXa がェチルカルポニル基又は- CH = NOH 基であるものである請求項 1又 は 2に記載の酵素学的測定用試薬。 . 5 compound, in the general formula [1], Y a is hydroxyl group and (R a) n a X a is Echirukaruponiru group or - CH = claims 1 also are those wherein NOH group Is the reagent for enzymatic measurement described in 2.
6.化合物が、一般式 [ 1 ]において、 Yaがリン酸残基であり且つ (Ra)naXa がェチルカルポニル基又は- CH NOH 基であるものである請求項 1又 は 2に記載の酵素学的測定用試薬。 6. The compound according to claim 1 or 2, wherein in the general formula [1], Ya is a phosphate residue and (R a ) n a X a is an ethylcarbonyl group or a —CH NOH group. The reagent for the enzymatic measurement according to the above.
7. 化合物が、 一般式 [ 1] において naが 0であり、 Xaが- COORu3基 (式中、 Ru aは水素原子又は炭化水素残基を示す。) 又は- COR12 a基 〔式 中、 R12 aは- R5 a -NHR6 a又は- N(R6"(R7 a)を表す (式中、 R5 aは炭化水素 残基を表し、 R6 a及び R /はそれぞれ独立して水素原子、 置換基を有して いても良い炭化水素残基又はアミノ基を表す。)。〕であるものの還元体で ある、 請求項 1又は 2に記載の酵素学的測定用試薬。 7. compounds, n a in the general formula [1] is 0, X a is - COORu 3 group (wherein, R u a is a hydrogen atom or a hydrocarbon residue.), Or - COR 12 a group wherein, R 12 a is - R 5 a -NHR 6 a or - N (R 6 "represents a (R 7 a) (wherein, R 5 a is a hydrocarbon residue, R 6 a and R / Independently represents a hydrogen atom, a hydrocarbon residue which may have a substituent, or an amino group.))], And is a reduced form of the enzymatic method according to claim 1 or 2. Measurement reagent.
8. 化合物が、 一般式 [ 1] において (Ra)naXaがメトキシカルポニル基、 エトキシカルポニル基又はェチルカルポニル基であるものの還元体であ る請求項 1又は 2に記載の酵素学的測定用試薬。 8. compounds, in the general formula [1] (R a) n a X a methoxy Cal Poni group, enzymatic measurement of claim 1 or 2 reductant Ru der those ethoxy local Poni group or Echirukaruponiru group For reagents.
9. 化合物が、 一般式 [ 1] において、 Yaが水酸基であり且つ iRa)naXa がメトキシカルポニル基又はェチルカルポニル基であるものの還元体で ある請求項 1又は 2に記載の酵素学的測定用試薬。 9. compound, in the general formula [1], Y a is a hydroxyl group and iR a) n a X a is enzymology of claim 1 or 2 which is a reducing substance of what is methoxy local Poni group or Echirukaruponiru group Measurement reagent.
1 0. 化合物が、 一般式 [ 1 ] において、 Yaがリン酸残基であり且つ (Ra)naXaがェチルカルポニル基であるものの還元体である請求項 1又は 2に記載の酵素学的測定用試薬。 1 0. compound, in the general formula [1], Y a is a phosphoric acid residue and (R a) enzyme according to claim 1 or 2 n a X a is a reduced form of what is Echirukaruponiru group Reagent for biological measurement.
1 1. 1 0°C保存時で少なくとも 1 2力月以上の貯蔵安定性を有する請 求項 1 1 0に記載の試薬。 11. The reagent according to claim 110, having storage stability of at least 12 months or more when stored at 110 ° C.
1 2. 一般式 [3]
Figure imgf000145_0001
1 2. General formula [3]
Figure imgf000145_0001
(式中、 Yは水酸基又はリン酸残基を示し、 Rはアルキレン基又はアル ケニリデン基を示し、 ηは 0又は 1を示し、 X ' は、 力ルポキシル基、 チォカルポキシル基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有していてもよい炭化水素残基、 ヒドロキシァミノ基又は- CH = ΝΟΗを示す。) で表される化合物又はその還元体の水性溶媒溶液から なる、 10°C保存時で少なくとも 12力月以上の貯蔵安定性を有する酵素 学的測定用試薬。 ' (Wherein, Y represents a hydroxyl group or a phosphoric acid residue, R represents an alkylene group or an alkenylidene group, η represents 0 or 1, and X ′ represents Or a hydrocarbon residue which may have a substituent, a hydroxyamino group or -CH = ΝΟΗ.) Or a reduced form thereof in an aqueous solvent solution. A reagent for enzymatic assay that has a storage stability of at least 12 months when stored at ° C. '
1 3 . 一般式 [ 1 ] 1 3. General formula [1]
Figure imgf000145_0002
Figure imgf000145_0002
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 力ルポキシル基、 チォカルポキシル 基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOH を示す。) で表される化合物又は その還元体と、 脱水素酵素とを含んでなる酵素学的測定用試薬。 (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is force Rupokishiru group, Chiokarupokishiru group, a sulfonic acid group or their Or a hydrocarbon residue which may have a substituent or -CH = NOH), or a reduced form thereof, and a dehydrogenase. Measurement reagent.
1 4 . 化合物が、 一般式 [ 1 ] において、 naが 0で且つ Xaが- COR12 a 基 〔式中、 R„aは- R5 a、 -NHR6 a又は- N(R6 a)(R7 a)を表す (式中、 R5 aは炭 化水素残基を表し、 R6 a及び R はそれぞれ独立して水素原子、 置換基を 有していても良い炭化水素残基又はアミノ基を表す。)。〕 又は- CH== NOH基であるか、或いは が 1で且つ Xaが- CONH2基であるものであ る請求項 1 3に記載の酵素学的測定用試薬。 . 1 4 compound, in the general formula [1], n a is and X a at 0 - in COR 12 a group [wherein, R "a is - R 5 a, -NHR 6 a or - N (R 6 a ) represents (R 7 a ) (wherein, R 5 a represents a hydrocarbon residue, and R 6 a and R each independently represent a hydrogen atom or a substituent. Represents a hydrocarbon residue or an amino group which may be possessed. ). ] Or - CH == NOH or a group, or is and X a is 1 - enzymatic reagent for measurement according to CONH 2 group der Ru claim 1 3 what is.
1 5. 化合物が、 一般式 [ 1] において、 (Ra)naXaがアクリルアミ ド基、 ェチルカルポニル基又は- CH = NOH 基であるものである請求項 1 3に 記載の酵素学的測定用試薬。 1 5. compounds, in the general formula [1], (R a) n a X a is acrylamide group, Echirukaruponiru group or - CH = claims NOH are those wherein group 1 3 enzymatic according to Measurement reagent.
1 6. 化合物が、 一般式 [ 1 ] において、 Yaが水酸基であり且つ (Ra)naXa がェチルカルポニル基又は- CH = NOH 基であるものである請求項 1 3 に記載の酵素学的測定用試薬。 1 6. compound, in the general formula [1], Y a is hydroxyl group and (R a) n a X a is Echirukaruponiru group or - CH = NOH enzyme according to claim 1 3 are those wherein group Reagent for biological measurement.
1 7. 化合物が、 一般式 [ 1] において、 Yaがリン酸残基であり且つェ チルカルポニル基又は- CH = NOH 基であるものである請求項 1 3に記 載の酵素学的測定用試薬。 17. The enzymatic assay according to claim 13, wherein the compound in the general formula [1], wherein Ya is a phosphoric acid residue and is an ethylcarbonyl group or a —CH = NOH group. For reagents.
1 8. 化合物が、 一般式 [ 1] において naが 0であり、
Figure imgf000146_0001
1 8. compound is a n a is 0 in the general formula [1],
Figure imgf000146_0001
基(式中、 Ru aは水素原子又は炭化水素残基を示す。)又は- COR12 a基〔式 中、 R12 aは- R5 a、 - NHR5 a又は- N(R6 a)(R7 a)を表す (式中、 R5 aは炭化水素 残基を表し、 R6 a及び R7 aはそれぞれ独立して水素原子、 置換基を有して いても良い炭化水素残基又はアミノ基を表す。)。〕であるものの還元体で ある、 請求項 1 3に記載の酵素学的測定用試薬。 -(Wherein, R u a is a hydrogen atom or a hydrocarbon residue.) Groups, or - in the COR 12 a group [wherein, R 12 a is - R 5 a, - NHR 5 a or - N (R 6 a ) (R 7 a) represents a (wherein, R 5 a is a hydrocarbon residue, each R 6 a and R 7 a are independently hydrogen, optionally substituted hydrocarbon residue Represents an amino group or an amino group.). 14. The enzymatic assay reagent according to claim 13, which is a reduced form of the enzyme. -
1 9. 化合物が、 一般式 [ 1] において (Ra)naXaがメトキシカルポニル 基、 エトキシカルボニル基又はェチルカルポニル基であるものの還元体 である請求項 1 3に記載の酵素学的測定用試薬。 1 9. compound, in the general formula [1] (R a) n a X a is for enzymatic measurement of claim 1 3 is a reduced form of what is methoxy local Poni group, an ethoxycarbonyl group or Echirukaruponiru group reagent.
20. 化合物が、 一般式 [ 1 ] において、 Yaが水酸基であり且つ (Ra)naXa がメトキシカルポニル基又はェチルカルポニル基である ¾;のの還元体で ある請求項 1 3に記載の酵素学的測定用試薬。 20. compounds, in the general formula [1], Y a is hydroxyl group and (R a) n a X a is ¾ methoxy local Poni group or Echirukaruponiru group; claim 1 3 which is of the reduced form Reagent for enzymatic measurement.
2 1. 化合物が、 一般式 [ 1] において、 Yaがリン酸残基であり且つ iRa)naXaがェチルカルポニル基である'ものの還元体である請求項 1 3に 記載の酵素学的測定用試薬。 ' 22. 脱水素酵素が、 一般式 [ 1] で示される化合物又はその還元体を 基質とし得る、 リンゴ酸脱水素酵素、 乳酸脱水素酵素、 グルタミン酸脱 水素酵素、 キサンチン脱水素酵素、 グルコース一 6—リン酸脱水素酵素、 5 グルコース脱水素酵素、 コレステロール脱水素酵素、 3 α—ヒドロキシ2 1. compound, in the general formula [1], Y a is a phosphoric acid residue and the iR a) n a X a is claim 1 3 is a reduced form of a a 'one Echirukaruponiru group The reagent for the enzymatic measurement according to the above. '22. Malate dehydrogenase, lactate dehydrogenase, glutamic acid dehydrogenase, xanthine dehydrogenase, glucose-1 which can use the compound represented by the general formula [1] or its reduced form as a substrate for dehydrogenase —Phosphate dehydrogenase, 5 glucose dehydrogenase, cholesterol dehydrogenase, 3α-hydroxy
, ステロイド脱水素酵素及びソルビトール脱水素酵素からなる群より選ば れるものである請'求項 1 3〜2 1の何れかに記載の酵素学的測定用試薬 23. 脱水素酵素が、 一般式 [ 1] で示される化合物の還元体を基質と し得る、 リンゴ酸脱水素酵素、 又はリンゴ酸脱水素酵素及び乳酸脱水素, A reagent for enzymatic measurement according to any one of claims 13 to 21, which is selected from the group consisting of steroid dehydrogenase and sorbitol dehydrogenase 23. The dehydrogenase has a general formula [ Malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase, which can use a reduced form of the compound represented by 1) as a substrate
10 酵素である請求項 22に記載の試薬。 23. The reagent according to claim 22, which is an enzyme.
24. 脱水素酵素が、 一般式 [1] で示される化合物の還元体を基質と し得る、 乳酸脱水素酵素である請求項 2 2に記載の試薬。  24. The reagent according to claim 22, wherein the dehydrogenase is lactate dehydrogenase which can use a reduced form of the compound represented by the general formula [1] as a substrate.
2 5. 脱水素酵素が、 一般式 [ 1 ] で示される化合物を基質とし得る、 グルコース一 6—リン酸脱水素酵素である請求項 22に記載の試薬。 23. The reagent according to claim 22, wherein the dehydrogenase is a glucose-16-phosphate dehydrogenase which can use a compound represented by the general formula [1] as a substrate.
15 26. 脱水素酵素が、 一般式 [ 1] で示される化合物を基質とし得る、 グルコース一 6—リン酸脱水素酵素又はグルコース脱水素酵素である請 求項 22に記載の試薬。 15 26. The reagent according to claim 22, wherein the dehydrogenase is glucose-16-phosphate dehydrogenase or glucose dehydrogenase, which can use the compound represented by the general formula [1] as a substrate.
2 7. 脱水素酵素が、 一般式 [ 1 ] で示される化合物の還元体を基質と し得る、 グルタミン酸脱水素酵素である請求項 22に記載の試薬。  23. The reagent according to claim 22, wherein the dehydrogenase is a glutamate dehydrogenase which can use a reduced form of the compound represented by the general formula [1] as a substrate.
20 28. ·脱水素酵素が、 一般式 [ 1] で示される化合物を基質とし得る、 キサンチン脱水素酵素である請求項 2 2に記載の試薬。 20 28. The reagent according to claim 22, wherein the dehydrogenase is a xanthine dehydrogenase which can use a compound represented by the general formula [1] as a substrate.
2 9. 脱水素酵素が、 一般式 [ 1 ] で示される化合物を基質とし得る、 コレステロール脱水素酵素である請求項 2 2に記載の試薬。  29. The reagent according to claim 22, wherein the dehydrogenase is a cholesterol dehydrogenase which can use a compound represented by the general formula [1] as a substrate.
3 0. 脱水素酵素が、 一般式 [1 ] で示される化合物を基質とし得る、 25 3 α—ヒドロキシステロィド脱水素酵素である請求項 2 2に記載の試薬。  30. The reagent according to claim 22, wherein the dehydrogenase is 253α-hydroxysteroid dehydrogenase which can use the compound represented by the general formula [1] as a substrate.
3 1. 脱水素酵素が、 一般式 [ 1.] で示される化合物を基質とし得る、 ソルビトール脱水素酵素である請求項 2 2に記載の試薬。 3 1. The dehydrogenase can use the compound represented by the general formula [1] as a substrate, 23. The reagent according to claim 22, which is sorbitol dehydrogenase.
32. 化合物が、 一般式 [ 1] において Yaがリン酸残基であり、 naが 0で且つ Xaが- CO /基 (式中、 /基は低級アルキル基を表す。) 又 は- CH = NOH基であるものであり、 脱水素酵素が、 当該化合 #/を基質と し得る、 グルコース一 6—リン酸脱水素酵素又はグルコース脱水素酵素 である請求項 2 2に記載の試薬。 32. compounds has the general formula [1] Y a is phosphoric acid residue, and X a in n a is 0 - CO / groups (. Wherein, / group is a lower alkyl group) or 23. The reagent according to claim 22, wherein CH is a NOH group, and the dehydrogenase is glucose 16-phosphate dehydrogenase or glucose dehydrogenase, which can use the compound # / as a substrate. .
3 3. 化合物が、 一般式 [ 1 ] において Yaがリン酸残基であり、 (Ra)naXa が- CH = NOH基であるものである、 請求項 3 2に記載の試薬。 3 3. compounds in the general formula [1] Y a is phosphoric acid residue, (R a) n a X a is - are those wherein CH = NOH group, reagent according to claim 3 2 .
34. 化合物が、 一般式 [ 1 ] において Yaが水酸基であり、 naが 0で 且つ Xaが- COR12 a '基(式中、 R12 a '基は低級アルキル基を表す。)又は- CH = NOH 基であるものであり、 脱水素酵素が、 当該化合物を基質とし得 る、 キサンチン脱水素酵素である請求項 22に記載の試薬。 34. compounds, Y a in the general formula [1] is a hydroxyl group, n a is and X a at 0 - COR 12 a 'group (wherein, R 12 a' group is a lower alkyl group.) 23. The reagent according to claim 22, wherein -CH is a NOH group, and the dehydrogenase is a xanthine dehydrogenase capable of using the compound as a substrate.
3 5. 化合物が、 一般式 [ 1 ] において Yaが水酸基であり、 (Ra)naXa がェチルカルポニル基又は- CH = NOH基であるものである、請求項 34 に記載の試薬。 3 5. compounds, Y a in the general formula [1] is hydroxyl group, (R a) n a X a is Echirukaruponiru group or - are those wherein CH = NOH group, reagent according to claim 34.
3 6. 化合物が、 一般式 [ 1 ] において Yaがリン酸残基であり、 naが 0で且つ Xaが- COR /基又は- COORna'基 (式中、 /及び Ru a'は低級 アルキル基を表す。) であるものの還元体であり、 脱水素酵素が、 当該化 合物を基質とし得る、 リンゴ酸脱水素酵素、 又はリンゴ酸脱水素酵素及 び乳酸脱水素酵素である請求項 2 2に記載の試薬。 , 3 6. compound is in the general formula [1] a Y a phosphoric acid residue, and X a in n a is 0 - COR / group or - COORn a 'group (wherein, / and R u a 'Represents a lower alkyl group.) Is a reductant, and the dehydrogenase is malate dehydrogenase, or malate dehydrogenase and lactate dehydrogenase which can use the compound as a substrate. 23. The reagent according to claim 22, wherein ,
3 7. 化合物が,、 一般式 [ 1 ] において Yaがリン酸残基であり、 naが 0で且つ Xa
Figure imgf000148_0001
(式中、 R12 a '及び Ru a'は低級 アルキル基を表す。) であるものの還元体であり、 脱水素酵素が、 当該化 合物を基質とし得る、 乳酸脱水素酵素である請求項 22に記載の試薬。
3 7. compound is Y a phosphoric acid residue in ,, general formula [1], n a is and X a 0
Figure imgf000148_0001
(Wherein, R 12 a 'and R u a' represents. A lower alkyl group) reduced form of what is, claims dehydrogenase, the reduction compound can be a substrate, lactate dehydrogenase Item 24. The reagent according to item 22, wherein
3 8. 化合物が、 一般式 [ 1] において Yaがリン酸残基であり、 naが 0で且つ Xaが- CORi /基又は- COOR '基 (式中、 /及び Ru a 'は低級 アルキル基を表す。) であるものの還元体であり、 脱水素酵素が、 当該化 合物を基質とし得る、 グルタミン酸脱水素酵素である請求項 2 2に記載 の試薬。 3 8. compound, general formula [1] Y a is phosphoric acid residue, and X a in n a is 0 - CORi / group or - COOR 'group (wherein, / and R u a' Is low Represents an alkyl group. 23. The reagent according to claim 22, which is a reduced form of the above, and wherein the dehydrogenase is a glutamate dehydrogenase which can use the compound as a substrate.
3 9. 化合物が、 一般式 [ 1 ] において Yaが水酸基であり、 (Ra)naXa がェチルカルポニル基又はメトキシカルポニル基であるものの還元体で ある、 請求項 3 6〜3 8の何れかに記載の試薬。 3 9. compound, Y a in the general formula [1] is hydroxyl group, (R a) n a X a is a reduced form of what is Echirukaruponiru group or a methoxy Cal Poni group, according to claim 3 6-3 8 The reagent according to any one of the above.
40. 請求項 2 5、 3 2又は 3 3の何れかに記載の試薬からなる、 試料 中のクレアチニンキナーゼ測定用試薬。  40. A reagent for measuring creatinine kinase in a sample, comprising the reagent according to any one of claims 25, 32, and 33.
41 : 請求項 2 6、 32又は 3 3の何れかに記載の試薬からなる、 試料 中のグルコース測定用試薬。 · 41: A reagent for measuring glucose in a sample, comprising the reagent according to any one of claims 26, 32, and 33. ·
42. 請求項 2 8、 34又は 3 5の何れかに記載の試薬からなる、 試料 中の無機リン測定用試薬。 42. A reagent for measuring inorganic phosphorus in a sample, comprising the reagent according to any one of claims 28, 34, or 35.
43. 請求項 2 3、 36又は 3 9の何れかに記載の試薬からなる、 試料 中のグルタミン酸ォキザロ酢酸トランスアミナ一ゼ測定用試薬。  43. A reagent for measuring glutamic acid oxaloacetate transaminase in a sample, comprising the reagent according to any one of claims 23, 36, and 39.
44. 請求項 24、 3 7又は 3 9の何れかに記載の試薬からなる、 試料 中のダル夕ミン酸ピルビン酸トランスアミナ一ゼ測定用試薬。 44. A reagent for measuring dalminic acid pyruvate transaminase in a sample, comprising the reagent according to any one of claims 24, 37 or 39.
45. 請求項 2 7、 3 8又は 3 9の何れかに記載の試薬からなる、 試料 中の尿素窒素測定用試薬。 45. A reagent for measuring urea nitrogen in a sample, comprising the reagent according to any one of claims 27, 38 or 39.
46. 請求項 2 9に記載の試薬からなる、 試料中のコレステロール測定 用試薬。  46. A reagent for measuring cholesterol in a sample, comprising the reagent according to claim 29.
47. 請求項 3 0に記載の試薬からなる、 試料中の胆汁酸測定用試薬。  47. A reagent for measuring bile acids in a sample, comprising the reagent according to claim 30.
48. 請求項 3 1に記載の試薬からなる、 試料中のソルビトール測定用48. For measuring sorbitol in a sample, comprising the reagent according to claim 31.
B式 5¾。 B formula 5¾.
49. 脱水素酵素が、 化合物又はその還元体に対して 1 0 %以上の反応 比を有するものである、 請求項 1 3〜48の何れかに記載の試薬。  49. The reagent according to any one of claims 13 to 48, wherein the dehydrogenase has a reaction ratio of 10% or more to the compound or its reduced form.
50. 脱永素酵素が、 5 OmMの T r i s— HC 1 (p H 7. 5) 緩衝 液中で 3 7°C、 1 0日間保存後の残存活性が 5 0 %以上である、 請求項 1 3〜49の何れかに記載の試薬。 50. Deoxygenase in 5 OmM Tris-HC1 (pH 7.5) buffer 50. The reagent according to any one of claims 13 to 49, which has a residual activity of 50% or more after storage at 37 ° C for 10 days in a liquid.
5 1. 一般式 [ 1] 5 1. General formula [1]
Figure imgf000150_0001
Figure imgf000150_0001
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 力ルポキシル基、 チォカルポキシル 基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOHを示す。) で表される化合物又は その還元体と、 当該化合物又はその還元体に対する反応比が 40 %以上 であり、 且つ、 5 OmMの T r i s— HC 1 (p H 7. 5) 緩衝液中で 3 7 °C、 1 0日間保存後の残存活性が 7 0 %以上である脱水素酵素とを 含んでなる酵素学的測定用試薬。 (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is force Rupokishiru group, Chiokarupokishiru group, a sulfonic acid group or their Or a hydrocarbon residue which may have a substituent or -CH = NOH), or a reduced form thereof, and a reaction ratio of the compound or the reduced form thereof to 40. Dehydrogenase that has a residual activity of 70% or more after storage for 10 days at 37 ° C in a 5 OmM Tris-HC1 (pH 7.5) buffer solution. A reagent for an enzymatic measurement comprising:
5 2. 脱水素酵素が、 リンゴ酸脱水素酵素又はグルコース一 6—リン酸 脱水素酵素である請求項 5 1に記載の試薬。  52. The reagent according to claim 51, wherein the dehydrogenase is malate dehydrogenase or glucose-6-phosphate dehydrogenase.
5 3. リンゴ酸脱水素酵素が、下記の理化学的性質を有するものである、 請求項 5 2に記載の試薬;  5 3. The reagent according to claim 52, wherein the malate dehydrogenase has the following physicochemical properties:
(a) 5 OmMの T r i s— HC 1 (p H 7. 5) 緩衝液中で 3 7°C、 1 0日間保存後の残存活性が 7 0 %以上、  (a) 5 OmM Tris-HC1 (pH 7.5) buffer at 37 ° C, 10 days after storage for 70 days or more,
(b) 一般式 [ 1 ] において Yaが水酸基であり、 (Ra)naXaがェチルカル ポニル基又はメトキシカルポニル基であるものの還元体に対する反応性 比が 40 %以上、 (b) a general formula [1] Y a hydroxyl group, (R a) n a X a is Echirukaru Poniru group or a methoxy Cal Poni reactivity ratio reduced form of what is Le group more than 40%,
( c ) ォキサ口酢酸に対する Kmが 2 mM以下、 (d) 一般式 [ 1 ] において Yaが水酸基であり、 (Ra)naXaがェチルカル ポニル基又はメトキシカルボニル基であるものの還元体に対する Kmが 0. 1 5 mM以下。 (c) Km for oxa-mouth acetic acid is 2 mM or less, (d) general formula [1] Y a is hydroxyl group, (R a) n a X a is Km is 0. 1 5 mM or less with respect to the reduction of what is Echirukaru Poniru group or a methoxy group.
' '
54. .リンゴ酸脱水素酵素が、 ScidHus属由来のものである請求項 5 2 5 又は 5 3に記載の試薬。 54. The reagent according to claim 52 or 53, wherein the malate dehydrogenase is derived from the genus ScidHus.
5 5. リンゴ酸脱水素酵素が、 Bacillus licheniformis S - 2 3 (F ERM B P— 7 49 2) 由来のものである請求項 5 4に記載の試薬。  5 5. The reagent according to claim 54, wherein the malate dehydrogenase is derived from Bacillus licheniformis S-23 (F ERM B P-7492).
5 6. グルコース一 6—リン酸脱水素酵素が、 下記の理化学的性質を有 するものである、 請求項 5 2に記載の試薬; 5 6. The reagent according to claim 52, wherein the glucose-16-phosphate dehydrogenase has the following physicochemical properties:
10 (a) 5 0 mMの T r i s — H C 1 (p H 7. 5) 緩衝液中で 3 7°C、 1 0日間保存後の残存活性が 7 0 %以上  10 (a) More than 70% residual activity after storage at 37 ° C for 10 days in 50 mM Tris-HCl (pH 7.5) buffer
(b) 5 0 mMの T r i s— H C 1 (p H 7. 5) 緩衝液を用いて調製 した l UZm 1の酵素溶液を 5 5°Cで 1 0分間熱処理した際の残存活性 が 8 0 %以上 '  (b) The residual activity of a 10 mM enzyme solution of lUZm1 prepared in 50 mM Tris-HC1 (pH 7.5) buffer was maintained at 55 ° C for 10 minutes. %that's all '
15 ( C ) 一般式 [ 1] において Yaがリン酸残基であり、 (Ra)naXaが- CH = NOH基であるものに対する反応性比が 7 0 %以上。 15 Y a in (C) the general formula [1] is a phosphoric acid residue, (R a) n a X a is - CH = reactivity ratio to what NOH a group 70% or more.
5 7. グルコース一 6—リン酸脱水素酵素が、 Sdci ws属由来のもので ある請求項 5 2又は 5 6に記載の試薬。  57. The reagent according to claim 52 or 56, wherein the glucose-16-phosphate dehydrogenase is derived from the genus Sdciws.
5 8 · グルコース— 6—リン酸脱水素酵素が、 Bacillus licheniformis A 20 KS - 7 5 (F ERM B P - 7 4 9 3 ) 由来のものである請求項 5 7 に記載の試薬。 ·  58. The reagent according to claim 57, wherein the 5-8-glucose-6-phosphate dehydrogenase is derived from Bacillus licheniformis A20KS-75 (FERMBP- 7493). ·
5 9. 請求項 5 3〜 5 5の何れかに記載の試薬からなる、 試料中のダル 夕ミン酸ォキザ口酢酸トランスアミナーゼ測定用試薬。  5 9. A reagent for measuring dalminic acid oxazate acetic acid transaminase in a sample, comprising the reagent according to any one of claims 53 to 55.
6 0. 請求項 5 6〜 5 8の何れかに記載の試薬からなる、 試料中のクレ 25 ァチンキナーゼ又はグルコース測定用試薬。  60. A reagent for measuring creatine kinase or glucose in a sample, comprising the reagent according to any one of claims 56 to 58.
6 1. 請求項 1〜 6 0の何れかに記載の測定用試薬を用いることを特徴 とする酵素学的測定方法。 6 1. Use of the measuring reagent according to any one of claims 1 to 60 Enzymatic measurement method.
6 2. —般式 [2-1 ] 6 2. —General formula [2-1]
Figure imgf000152_0001
Figure imgf000152_0001
{式中、 Rb アルケニリデン基を示し、 nbは 0又は 1 を示し、 Xbは、 -COORn b (式中、 Ru bは水素原子又は炭化水素残基を表す。)、 -COR12 b 〔式中、 R12 bは- R5 b、 -NHR6 b又は- N(R6 b)(R7 b)を表す (式中、 R5 bは炭素 数 2以上の炭化水素残基を表し、 R6 b及び R7 bはそれぞれ独立して水素原 子、 置換基を有していても良い炭化水素残基又はアミノ基を表す。)。〕、 -CSR14 b 〔式中、 R14 bは- R5 b'、 - NHR6 b '又は- N(R6 b')(R7 b')を表す (式中、 R5 b 'は炭素数 2以上の炭化水素残基を表し、 R6 b '及び R7 b 'はそれぞれ独立 して置換基を有していても良い炭化水素残基又はアミノ基を表す。)。〕、 スルホン酸基若しくはこれから誘導される基、 置換基を有していてもよ い炭化水素残基、 -CH = NOH基又は- CN基を示す。 }で表される化合物。 {Wherein, indicates a R b alkenylidene group, n b is 0 or 1, X b is (wherein, R u b represents a hydrogen atom or a hydrocarbon residue.) -COOR n b, -COR during 12 b [wherein, R 12 b is - R 5 b, -NHR 6 b or - N (R 6 b) ( 7 b R) represents a (wherein, R 5 b is a hydrocarbon residue of 2 or more carbon atoms represents a group, R 6 b and R 7 b are each independently hydrogen atom, it represents an optionally substituted hydrocarbon residue or an amino group.). ], -CSR 14 b [wherein, R 14 b represents -R 5 b ', -NHR 6 b ' or -N (R 6 b ') (R 7 b ') (wherein, R 5 b ' represents the number 2 or more hydrocarbon residues atoms, a R 6 b 'and R 7 b' are each independently may have a substituent hydrocarbon residue or an amino group.). A sulfonic acid group or a group derived therefrom, an optionally substituted hydrocarbon residue, -CH = NOH group or -CN group. }.
6 3. 一般式 [ 2 - 1 ] において、 nbが 0で Xbが-. COR12 b又は- CH = NOH 基である請求項 6 2に記載の化合物。 In - [1 2], n b is the X b 0 - 6 3. Formula. COR 12 b or - A compound according to claim 6 2 is CH = NOH group.
64. 一般式 [2-1 ] において、 (Rb)nbXbがアクリルアミド基、 ェチル 力ルポニル基又は- CH = NOH基である請求項 62に記載の化合物。 64. The compound according to claim 62, wherein in the general formula [2-1], (R b ) n b X b is an acrylamide group, an ethyl propylonyl group or a —CH = NOH group.
6 5. —般式 [2-2]
Figure imgf000153_0001
6 5. —General formula [2-2]
Figure imgf000153_0001
{式中、 Rcはアルケニリデン基を示し、 ncは 0又は 1 を示し、 Xcは、 -COOR c (式中、 は水素原子又は炭化水素残基を表す。)、 -CQR15 C {Wherein, Rc represents an alkenylidene group, n c represents 0 or 1, X c is, -COOR c (wherein, represents a hydrogen atom or a hydrocarbon residue.), -CQR 15 C
〔式中、 Q は酸素原子又は硫黄原子を表し、 R15 c は- NHR6 e又は- N(R6 e)(R7 e)を表す (式中、 R6 e及び R7 eはそれぞれ独立して水素原子、 置. 換基を有していても良いアルキル基を表す。)。〕、 スルホン酸基若しくは これらから誘導される基、 置換基を有していてもよい炭化水素残基又は -CN基を示す。 } で表される化合物。 [In the formula, Q represents an oxygen atom or a sulfur atom, and R 15 c represents -NHR 6 e or -N (R 6 e ) (R 7 e ) (wherein, R 6 e and R 7 e are respectively Independently represents a hydrogen atom or an alkyl group which may have a substituent.) A sulfonic acid group or a group derived therefrom, a hydrocarbon residue which may have a substituent, or a —CN group. } A compound represented by the formula:
6 6. —般式 [2-2] において、 ncが 0で、 Xcが- COORu cで且つ Rn c が低級アルキル基である請求項 6 5に記載の化合物。 6 6. - general formula in [2-2], in n c is 0, X c is - COOR and with u c compound according to claim 6 5 R n c is a lower alkyl group.
6 7. —般式 [2-2] において、 (Rc)ncXcがメトキシカルポニル基又は エトキシカルポニル基である請求項 6 5に記載の化合物。 67. The compound according to claim 65, wherein, in the general formula [2-2], (R c ) n c X c is a methoxycarbonyl group or an ethoxycarbonyl group.
6 8. —般式 [2-3] 6 8. —General formula [2-3]
Figure imgf000153_0002
Figure imgf000153_0002
{式中、 Rdはアルケニリデン基を示し、 ndは 0又は 1を示し、 Xdは、
Figure imgf000153_0003
(式中、 は水素原子又は炭素数 3以上の炭化水素残基を表 す。)、 -COR12 d 〔式中、 R12 dは- R5 d、 - NHR6 d又は- N(R6 d)(R.7 d)を表す (式 中、 R5 dは炭素数 4〜 5の炭化水素残基を表し、 R6 d及び R7 dはそれぞれ 独立して置換基を有していても良いアルキル基を表す。)。〕、 - CSR14 d〔式 中、 R14 dは- R 、 - NHR 又は- N(R6 d')(R7 d')を'表す (式中、 R5 d'は炭化水 素残基を表し、 R6 d '及び R 'はそれぞれ独立して置換基を有していても良 い炭化水素残基又はアミノ基を表す。)。〕、 スルホン酸基若しくはこれか ら誘導される基、置換基を有していてもよい炭化水素残基を示す。 }で表 される化合物。
(In the formula, R d represents an alkenylidene group, n d represents 0 or 1, X d is
Figure imgf000153_0003
(In the formula, represents a hydrogen atom or a hydrocarbon residue having 3 or more carbon atoms. You. ), In -COR 12 d [wherein, R 12 d is - R 5 d, - NHR 6 d or -. N (R 6 d) (R 7 d) represents an (wherein, R 5 d is 4 carbon atoms And R 5 d and R 7 d each independently represent an alkyl group which may have a substituent.). ],-CSR 14 d (wherein, R 14 d represents -R, -NHR or -N (R 6 d ') (R 7 d ')) (wherein, R 5 d is a hydrocarbon residue R 6 d ′ and R ′ each independently represent a hydrocarbon residue or an amino group which may have a substituent.) A sulfonic acid group or a group derived therefrom, or a hydrocarbon residue which may have a substituent. }.
6 9. 一般式 [ 2-4] 6 9. General formula [2-4]
Figure imgf000154_0001
Figure imgf000154_0001
{式中、 Reはアルケニリデン基を示し、 neは 0又は 1 を示し、 Xeは、 -COORu e (式中、 Ru eは水素原子又は炭化水素残基を表す。)、 -CQ'R15 e 〔式中、 Q'は酸素原子又は硫黄原子を表し、 R15 e は- NHR6 e又は- N(R6 e)(R7 e)を表す (式中、 R6 e及び R はそれぞれ独立して水素原子、 置 換基を有していても良いアルキル基を表す。)。〕、 スルホン酸基若しくは これらから誘導される基、 置換基を有していてもよい炭化水素残基又は - CN基を示す。 } で表される化合物。 {Wherein, R e represents a alkenylidene group, n e is 0 or 1, X e is (wherein, R u e represents a hydrogen atom or a hydrocarbon residue.) -COOR u e, - CQ′R 15 e (wherein, Q ′ represents an oxygen atom or a sulfur atom, and R 15 e represents —NHR 6 e or —N (R 6 e ) (R 7 e ) (wherein, R 6 e And R each independently represent a hydrogen atom or an alkyl group which may have a substituent.) A sulfonic acid group or a group derived therefrom, a hydrocarbon residue which may have a substituent, or a -CN group. } A compound represented by the formula:
7 0. —般式 [2-4] において、 ne力 0で、 Xeが- COOR^で且つ Ru e が低級アルキル基である請求項 6 9に記載の化合物。 7 0. - In general formula [2-4], in n e force 0, X e is - COOR ^ in and a compound according to claim 6 9 R u e is a lower alkyl group.
7 1. 一般式 [ 2-4] において、 (Re)neXeがメトキシカルポニル基又は エトキシカルポニル基である請求項 6 9に記載の化合物。 In 7 1. General formula [2-4], (R e) n e X e A compound according to claim 6 9 is methoxy local Poni group or ethoxy Cal Poni Le group.
7 2. 請求項 6 2〜7 1に記載の何れかの化合物を含んでなる酵素学的 測定用試薬。 7 2. Enzymatic comprising any of the compounds according to claims 62-71 Measurement reagent.
7 3. 請求項 6 2〜7 1に記載の何れかの化合物と、 脱水素酵素とを含 んでなる酵素学的測定用試薬。  7 3. A reagent for enzymatic measurement comprising the compound according to any one of claims 62 to 71 and a dehydrogenase.
74. 一般式 [ 1 ] 74. General formula [1]
Figure imgf000155_0001
Figure imgf000155_0001
(式中、 Yaは水酸基又はリン酸残基を示し、 Raはアルケニリデン基を示 し、 naは 0又は 1 を示し、 Xaは、 力ルポキシル基、 チォカルポキシル 基、 スルホン酸基若しくはこれらから誘導される基、 置換基を有してい てもよい炭化水素残基又は- CH = NOHを示す。) で表される化合物又は その還元体に対する反応比が 40 %以上であり、 且つ、 5 0mMのT r i s— HC 1 (pH 7. 5) 緩衝液中で 3 7 :、 1 0日間保存後の残存 活性が 7 0 %以上である脱水素酵素。 (Wherein, Y a represents a hydroxyl group or a phosphoric acid residue, R a is indicates alkenylidene group, n a is 0 or 1, X a is force Rupokishiru group, Chiokarupokishiru group, a sulfonic acid group or their Or a hydrocarbon residue which may have a substituent or -CH = NOH) or a reduced ratio thereof to a compound represented by the formula: Dehydrogenase having a residual activity of 70% or more after storage for 37 days in 0 mM Tris-HC1 (pH 7.5) buffer.
7 5. 脱水素酵素が、 リンゴ酸脱水素酵素又はグルコース一 6—リン酸 脱水素酵素である請求項 74に記載の脱水素酵素。  75. The dehydrogenase according to claim 74, wherein the dehydrogenase is malate dehydrogenase or glucose-6-phosphate dehydrogenase.
7 6. リンゴ酸脱水素酵素が、下記の理化学的性質を有するものである、 請求項 7 5に記載の脱水素酵素;  7 6. The dehydrogenase according to claim 75, wherein the malate dehydrogenase has the following physicochemical properties:
(a) 5 0 mMの T r i s—H C 1 (pH 7. 5) 緩衝液中で 3 7° (:、 1 0日間保存後の残存活性が 7 0 %以上、  (a) In a buffer of 50 mM Tris-HCl (pH 7.5) at 37 ° (:, the residual activity after storage for 10 days was 70% or more,
(b) 一般式 [ 1 ] において Yaが水酸基であり、 (Ra)naXaがェチルカル ポニル基又はメトキシカルポニル基であるものの還元体に対する反応性 比が 40 %以上、 (b) a general formula [1] Y a hydroxyl group, (R a) n a X a is Echirukaru Poniru group or a methoxy Cal Poni reactivity ratio reduced form of what is Le group more than 40%,
(c) ォキサ口酢酸に対する Kmが 2 mM以下、 (d) 一般式 [ Γ] において Yaが水酸基であり、 (Ra)naXaがェチルカル ポニル基又はメトキシカルボニル基であるものの還元体に対する. Kmが 0. 1 5 mM以下。 (c) The Km for oxa-mouth acetic acid is 2 mM or less, (d) general formula [gamma] Y a is hydroxyl group, (R a) n a X a is for reduction of what is Echirukaru Poniru group or a methoxy group. Km is 0. 1 5 mM or less.
7 7. リンゴ酸脱水素酵素が、 SaciHus属由来のものである請^項 7 5 又は 7: 6に記載の脱水素酵素。  7 7. The dehydrogenase according to claim 75 or 7: 6, wherein the malate dehydrogenase is derived from the genus SaciHus.
7 8. リンゴ酸脱水素酵素が、 Bacillus licheniformis A K S一 2 3 (F E RM B P— 7 4 9 2 ) 由来のものである請求項 7 7に記載の脱水素  7 8. The dehydrogenation according to claim 77, wherein the malate dehydrogenase is derived from Bacillus licheniformis AKS-23 (FERMBP- 7492).
7 9. ダルコ一スー 6—リン酸脱水素酵素が、 下記の理化学的性質を有 するものである、 請求項 7 5に記載の脱水素酵素; 7 9. The dehydrogenase according to claim 75, wherein the darco-6-phosphate dehydrogenase has the following physicochemical properties:
( a) 5 0 mMの T r i s _H C 1 ( p H 7. 5 ) 緩衝液中で 3 7 °C、 1 0日間保存後の残存活性が 7 0 %以上  (a) 70% or more residual activity after storage at 37 ° C for 10 days in 50 mM Tris _H C 1 (pH 7.5) buffer
(b) 5 OmMの T r i s — HC 1 (p H 7. 5) 緩衝液を用いて調製 した 1 UZm 1の酵素溶液を 5 5 で 1 0分間熱処理した際の残存活性 が 8 0 %以上  (b) Residual activity of 80% or more when 1 UZm1 enzyme solution prepared using 5 OmM Tris-HC1 (pH 7.5) buffer was heat-treated at 55 for 10 minutes.
(C ) 一般式 [ 1 ] において Yaがリン酸残基であり、 (Ra)naXaが- CH = NOH基であるものに対する反応性比が 7 0 %以上。 (C) the general formula [1] Y a is phosphoric acid residue, (R a) n a X a is - CH = reactivity ratio to what NOH a group 70% or more.
8 0. グルコース— 6—リン酸脱水素酵素が、 Saci ws属由来のもので ある請求項 7 5又は 7 9に記載の脱水素酵素。  80. The dehydrogenase according to claim 75 or 79, wherein the glucose-6-phosphate dehydrogenase is derived from the genus Saciws.
8 1. グルコース一 6 —リン酸脱水素酵素が、 Bacillus licheniformis A K S - 7 5 (F E RM B P— 7 4 9 3 ) 由来のものである請求項 8 0 に記載の脱水素酵素。 ' 8 1. The dehydrogenase according to claim 80, wherein the glucose-1-6-phosphate dehydrogenase is derived from Bacillus licheniformis AKS-75 (FERMBP- 7493). '
8 2. 請求項 7 4〜8 1の何れかに記載の脱水素酵素を含んでなる酵素 学的測定用試薬。  8 2. A reagent for enzymatic measurement comprising the dehydrogenase according to any one of claims 74 to 81.
8 3. 請求項 6 2〜 7 1の何れかに記載の化合物の存在下に測定を行う ことを特徴とする酵素学的測定方法。 8 3. An enzymatic assay method, wherein the assay is performed in the presence of the compound according to any one of claims 62 to 71.
8 4 . 請求項 7 4〜8 1の何れかに記載の脱水素酵素の存在下に測定を 行うことを特徴とする酵素学的測定方法。 84. An enzymatic assay method, wherein the assay is performed in the presence of the dehydrogenase according to any one of claims 74 to 81.
8 5 . 請求項 6 2〜 7 1の何れかに記載の化合物及び請求項 7 6〜 8 5. の何れかに記載の脱水素酵素の存在下に測定を行うことを特徴とする酵 素学的測定方法。  85. Enzymology wherein the measurement is carried out in the presence of the compound according to any one of claims 62 to 71 and the dehydrogenase according to any one of claims 76 to 85. Measurement method.
PCT/JP2001/004771 2000-06-07 2001-06-06 Coenzyme derivatives and enzymes appropriate therefor WO2001094370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001262702A AU2001262702A1 (en) 2000-06-07 2001-06-06 Coenzyme derivatives and enzymes appropriate therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-169946 2000-06-07
JP2000169946 2000-06-07

Publications (1)

Publication Number Publication Date
WO2001094370A1 true WO2001094370A1 (en) 2001-12-13

Family

ID=18672727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004771 WO2001094370A1 (en) 2000-06-07 2001-06-06 Coenzyme derivatives and enzymes appropriate therefor

Country Status (2)

Country Link
AU (1) AU2001262702A1 (en)
WO (1) WO2001094370A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038647A1 (en) * 2004-10-05 2006-04-13 Asahi Kasei Pharma Corporation Method for stabilizing coenzyme and composition therefor
WO2006107094A1 (en) * 2005-03-31 2006-10-12 Shino-Test Corporation Method of measuring glucose and reagent for measuring the same
JP2007028937A (en) * 2005-07-25 2007-02-08 Sysmex Corp Reagent for measuring activity of creatine kinase
EP1964928A1 (en) 2007-02-27 2008-09-03 F.Hoffmann-La Roche Ag Quinones as mediators for photometric tests
JP2008263996A (en) * 2008-06-02 2008-11-06 National Institute Of Advanced Industrial & Technology Method for producing and refining light-emitting beetle-derived red luciferase-stabilized form
US7553615B2 (en) 2005-07-28 2009-06-30 Roche Diagnostics Operations, Inc. Compounds, methods, complexes, apparatuses and uses relating to stabile forms of NAD/NADH
EP2093284A1 (en) 2008-02-19 2009-08-26 F.Hoffmann-La Roche Ag Stabilisation of dehydrogenases with stable coenzymes
WO2011020856A1 (en) 2009-08-20 2011-02-24 F. Hoffmann-La Roche Ag Stabilization of enzymes using stable coenzymes
EP2364988A1 (en) 2005-07-28 2011-09-14 F. Hoffmann-La Roche AG Stable NAD/NADH derivatives
US8106184B2 (en) 2005-11-18 2012-01-31 Cornell University Nicotinoyl riboside compositions and methods of use
US9359634B2 (en) 2009-02-19 2016-06-07 Roche Diabetes Care, Inc. Fast reaction kinetics of enzymes having low activity in dry chemistry layers
WO2017137491A1 (en) 2016-02-09 2017-08-17 Roche Diabetes Care Gmbh Mutant 3-hydroxybutyrate dehydrogenase from rhodobacter sphaeroides as well as methods and uses involving the same
JP2017216154A (en) * 2016-05-31 2017-12-07 アイシン精機株式会社 Bio battery
US10508267B2 (en) 2015-12-21 2019-12-17 Roche Diagnostics Operations, Inc. Mutant 3-hydroxybutyrate dehydrogenase from alcaligenes faecalis as well as methods and uses involving the same
CN114354524A (en) * 2021-03-02 2022-04-15 北京九强生物技术股份有限公司 Stable liquid detection kit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889292A (en) * 1994-09-27 1996-04-09 Asahi Chem Ind Co Ltd Mehtod for stabilizing xanthine dehydrogenase
WO1997019190A1 (en) * 1995-11-22 1997-05-29 Boehringer Mannheim Gmbh Stabilised coenzyme solutions and the use thereof for the determination of dehydrogenases or the substrates thereof in an alkaline medium
WO1998033936A1 (en) * 1997-02-04 1998-08-06 Specialty Assays, Inc. The use of nadph and nadh analogs in the measurement of enzyme activities and metabolites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889292A (en) * 1994-09-27 1996-04-09 Asahi Chem Ind Co Ltd Mehtod for stabilizing xanthine dehydrogenase
WO1997019190A1 (en) * 1995-11-22 1997-05-29 Boehringer Mannheim Gmbh Stabilised coenzyme solutions and the use thereof for the determination of dehydrogenases or the substrates thereof in an alkaline medium
WO1998033936A1 (en) * 1997-02-04 1998-08-06 Specialty Assays, Inc. The use of nadph and nadh analogs in the measurement of enzyme activities and metabolites

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879567B2 (en) 2004-10-05 2011-02-01 Asahi Kasei Pharma Corporation Method for stabilizing coenzyme and composition therefor
JPWO2006038647A1 (en) * 2004-10-05 2008-05-15 旭化成ファーマ株式会社 Coenzyme stabilization method and composition thereof
JP4986281B2 (en) * 2004-10-05 2012-07-25 旭化成ファーマ株式会社 Coenzyme stabilization method and composition thereof
US8026075B2 (en) 2004-10-05 2011-09-27 Asahi Kasei Pharma Corporation Method for stabilizing coenzyme and composition thereof
WO2006038647A1 (en) * 2004-10-05 2006-04-13 Asahi Kasei Pharma Corporation Method for stabilizing coenzyme and composition therefor
WO2006107094A1 (en) * 2005-03-31 2006-10-12 Shino-Test Corporation Method of measuring glucose and reagent for measuring the same
JP5286511B2 (en) * 2005-03-31 2013-09-11 株式会社シノテスト Glucose measurement method and reagent
JP2007028937A (en) * 2005-07-25 2007-02-08 Sysmex Corp Reagent for measuring activity of creatine kinase
EP2364989A1 (en) 2005-07-28 2011-09-14 F. Hoffmann-La Roche AG Stable NAD/NADH-derivatives
JP2012224638A (en) * 2005-07-28 2012-11-15 F Hoffmann-La Roche Ag Stable nad/nadh derivative
US9399790B2 (en) 2005-07-28 2016-07-26 Roche Diabetes Care, Inc. Stable NAD/NADH derivatives
EP2364988A1 (en) 2005-07-28 2011-09-14 F. Hoffmann-La Roche AG Stable NAD/NADH derivatives
US10167497B2 (en) 2005-07-28 2019-01-01 Roche Diabetes Care, Inc. Stable NAD/NADH derivatives
US7553615B2 (en) 2005-07-28 2009-06-30 Roche Diagnostics Operations, Inc. Compounds, methods, complexes, apparatuses and uses relating to stabile forms of NAD/NADH
US9139572B2 (en) 2005-07-28 2015-09-22 Roche Diagnostics Operations, Inc. Compounds, methods, complexes, apparatuses and uses relating to stabile forms of NAD/NADH
US8809013B2 (en) 2005-07-28 2014-08-19 Roche Diagnostics Operations, Inc. Stable NAD/NADH derivatives
US11077129B2 (en) 2005-11-18 2021-08-03 Cornell University Nicotinoyl riboside compositions and methods of use
US11633414B2 (en) 2005-11-18 2023-04-25 Cornell University Nicotinoyl riboside compositions and methods of use
US9000147B2 (en) 2005-11-18 2015-04-07 Cornell University Nicotyl riboside compositions and methods of use
US8106184B2 (en) 2005-11-18 2012-01-31 Cornell University Nicotinoyl riboside compositions and methods of use
US9321797B2 (en) 2005-11-18 2016-04-26 Cornell University Nicotinoyl riboside compositions and methods of use
US10668096B2 (en) 2005-11-18 2020-06-02 Cornell University Nicotinoyl riboside compositions and methods of use
US10206940B2 (en) 2005-11-18 2019-02-19 Cornell University Nicotinoyl riboside compositions and methods of use
EP1964928A1 (en) 2007-02-27 2008-09-03 F.Hoffmann-La Roche Ag Quinones as mediators for photometric tests
US9896666B2 (en) 2008-02-19 2018-02-20 Roche Diabetes Care, Inc. Stabilization of dehydrogenases with stable coenzymes
EP2093284A1 (en) 2008-02-19 2009-08-26 F.Hoffmann-La Roche Ag Stabilisation of dehydrogenases with stable coenzymes
US11220674B2 (en) 2008-02-19 2022-01-11 Roche Diabetes Care, Inc. Stabilization of dehydrogenases with stable coenzymes
JP2008263996A (en) * 2008-06-02 2008-11-06 National Institute Of Advanced Industrial & Technology Method for producing and refining light-emitting beetle-derived red luciferase-stabilized form
US9359634B2 (en) 2009-02-19 2016-06-07 Roche Diabetes Care, Inc. Fast reaction kinetics of enzymes having low activity in dry chemistry layers
EP2292751A1 (en) 2009-08-20 2011-03-09 Roche Diagnostics GmbH Stabilisation of enzymes with stable coenzymes
WO2011020856A1 (en) 2009-08-20 2011-02-24 F. Hoffmann-La Roche Ag Stabilization of enzymes using stable coenzymes
US9540702B2 (en) 2009-08-20 2017-01-10 Roche Diabetes Care, Inc. Stabilization of enzymes with stable coenzymes
US10508267B2 (en) 2015-12-21 2019-12-17 Roche Diagnostics Operations, Inc. Mutant 3-hydroxybutyrate dehydrogenase from alcaligenes faecalis as well as methods and uses involving the same
US10704029B2 (en) 2016-02-09 2020-07-07 Roche Diabetes Care, Inc. Mutant 3-hydroxybutyrate dehydrogenase from Rhodobacter sphaeroides as well as methods and uses involving the same
WO2017137491A1 (en) 2016-02-09 2017-08-17 Roche Diabetes Care Gmbh Mutant 3-hydroxybutyrate dehydrogenase from rhodobacter sphaeroides as well as methods and uses involving the same
JP2017216154A (en) * 2016-05-31 2017-12-07 アイシン精機株式会社 Bio battery
CN114354524A (en) * 2021-03-02 2022-04-15 北京九强生物技术股份有限公司 Stable liquid detection kit
CN114354524B (en) * 2021-03-02 2024-10-01 北京九强生物技术股份有限公司 Stable liquid detection kit

Also Published As

Publication number Publication date
AU2001262702A1 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
WO2001094370A1 (en) Coenzyme derivatives and enzymes appropriate therefor
US6867012B2 (en) Determination method of biological component and reagent kit used therefor
Ikawa et al. Enzymes involved in the last steps of the biosynthesis of mannitol in brown algae
Misono et al. Purification and characterization of a dimeric phenylalanine dehydrogenase from Rhodococcus maris K-18
Bothe et al. Pyruvate dehydrogenase complex, pyruvate: ferredoxin oxidoreductase and lipoic acid content in microorganisms
Saikusa et al. Metabolism of 2-oxoaldehydes in bacteria: purification and characterization of methylglyoxal reductase from Escherichia coli
Ohshima et al. Thermostable alanine dehydrogenase from thermophilic Bacillus sphaericus DSM 462: purification, characterization and kinetic mechanism
Maulik et al. NADPH/NADH‐dependent cold‐labile glutamate dehydrogenase in Azospirillum brasilense: Purification and properties
Germano et al. Purification and properties of L-alanine dehydrogenase from Desulfovibrio desulfuricans
Wohlfarth et al. Purification and characterization of NADP (+)-dependent 5, 10-methylenetetrahydrofolate dehydrogenase from Peptostreptococcus productus marburg
YAMAMOTO et al. The pathway of ammonia assimilation in Bacteroides fragilis
US4921786A (en) Novel NAD synthetase, assay method using said novel NAD synthetase and a process for production thereof
FR2545504A1 (en) METHOD OF TITRATION USING NAD-SYNTHETASE AND PROCESS FOR PRODUCTION OF ENZYME
JPS61187798A (en) Regeneration of coenzyme
JP3049217B2 (en) How to measure ADP
KUSTU et al. Adenylylation of bacterial glutamine synthetase: physiological significance
EP0525836B1 (en) Assay method using novel NAD synthetase
JP3181801B2 (en) Pyruvate orthophosphate dikinase and method for producing the same
Yokota et al. Reactivation of inactivated D-glucose dehydrogenase of a Bacillus species by pyridine and adenine nucleotides
Oikawa et al. Production of D-glutamate from L-glutamate with glutamate racemase and L-glutamate oxidase
JPH0292280A (en) Production of l-alaninedehydrogenase and novel bacterium strain belonging to sporolactobacillus
Kang et al. Biosynthetic enzymes of tetrahydrolimipterin from green sulfur bacterium Chlorobium limicola
JPH10191998A (en) Determination of 1,5ag or adp
JP4072667B2 (en) Uracilthymine dehydrogenase and method for producing the same
JP2000032980A (en) Stabilization of glucose-6-phosphate dehydrogenase and composition containing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase