WO2001077751A1 - Visual restitution device with 3 window large fields - Google Patents
Visual restitution device with 3 window large fields Download PDFInfo
- Publication number
- WO2001077751A1 WO2001077751A1 PCT/FR2001/001046 FR0101046W WO0177751A1 WO 2001077751 A1 WO2001077751 A1 WO 2001077751A1 FR 0101046 W FR0101046 W FR 0101046W WO 0177751 A1 WO0177751 A1 WO 0177751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- visual
- screens
- restitution
- fields
- faces
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B9/00—Simulators for teaching or training purposes
- G09B9/02—Simulators for teaching or training purposes for teaching control of vehicles or other craft
- G09B9/08—Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
- G09B9/30—Simulation of view from aircraft
- G09B9/32—Simulation of view from aircraft by projected image
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/54—Accessories
- G03B21/56—Projection screens
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
- G03B37/04—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
Definitions
- the present invention relates to a system for rendering the visual environment for a simulator. Application to the flight simulator.
- flight simulators The objective of flight simulators is to restore the most realistic environment possible, in which the user feels "immersed". For this it is necessary that the surfaces of the images are as large as possible so that the vision pyramid has instantaneous fields greater than the visual characteristics of the eye, that is to say that the peripheral vision of the observer is engaged. in visual perception.
- the most widespread means currently is the use of a sphere on which are projected synthesized and / or prerecorded images, and in the vicinity of the center of which is arranged a cabin in which the user takes place.
- the images are projected by several projection devices.
- Patent WO 98/01841 proposes, to remedy the problems of high costs of studying and assembling a sphere as well as the significant difficulties of harmonizing the many imaging channels, a flight simulator comprising a plurality of front, side and top screens.
- the flat screens are arranged in such a way that they fit into an imaginary sphere. This is centered on the theoretical eye where the observer is placed.
- the side screens are trapezoidal and not orthogonal to the background screen.
- Gaps in existing techniques it is possible to summarize, starting from the sphere example which is the solution which comes closest to wide field use by: 1) very high cost of acquiring structures, 2) minimum number of channels from 4 to 6 with identical resolution, 3) very high cost of projection systems, 4) great complexity of a complete system, 5) significant difficulty of harmonization and obtaining a correct contrast, 6) difficult maintainability and only by specialists.
- Gap 1 a sphere 8 m in diameter, delivered, mounted, painted, fitted (electricity, air conditioning, walkways) with the supporting structures of the projectors, the doors and ready to receive a simulation cabin ⁇ 2.5 MF.
- Gap 2 to cover a horizontal field of ⁇ 100 ° and a vertical field of ⁇ 60 ° with a resolution of 5 'of arc, 6 channels of high definition imagery are required. With 3 channels only the vertical and horizontal fields are impossible to reach or the resolution is too low (below the minimum acceptable value).
- Gap 3 The performance required for projectors to correctly restore sphere images is much more severe than for the rear projection technique.
- the coefficient of "technicality" is between 2.5 and 6 for equipment which must be very high-end professional.
- Gap 4 Upstream studies of physical location of projectors, calculation and image correction are delicate and long. The study of a new structure is quite heavy.
- Gap 5 The harmonization which consists in that an element of an image is seen exactly under the good angles of Euler by the observer and coherent of its instruments (in particular head-up viewfinder in aeronautics) or with reality, in general poses problem as a realization of the sights, as writing of the procedures and development (adjustment).
- a sphere of which we illuminate a point reflects light through its screen (the skin of the painted sphere diffuses and is reflected endlessly) and re-emits this light which "lights up" the sphere (therefore which destroys the image) as soon as the image surfaces are a little large.
- This point known as the spherical integration phenomenon is intrinsic to the means of direct projection (cinema room or simulator).
- the object of the invention is to remedy all these shortcomings by proposing a simpler solution, of easy design and implementation, which offers by construction a very satisfactory real visual immersion in order to achieve a remarkable quality / cost ratio. .
- the present invention respects the positions and sizes of all the elements of the images as they are in reality.
- the observer therefore has the restitution of the outside world from the right angles.
- the visual rendering system with large horizontal and vertical fields comprises a plurality of flat screens associated two by two in dihedra characterized in that said dihedra are straight and are not orthogonal to the reference trihedron of the theoretical eye .
- the visual rendering system comprises at least three screens and is fully operational from three screens, each one associated with an image production device.
- the screens have a polygonal shape. In a configuration with three screens, the middle one can be square and the other two rectangular. But the most satisfactory version consists of a rectangle front face of 5/4 or 4/3 format and the two side faces of the same format, either 5/4 or 4/3.
- FIG. 1a represents the original three-sided cube, the deformation of which makes it possible to obtain the configuration with 3 screens, FIG. 1b being a variant,
- FIG. 2 is a view of the cube being deformed
- FIG. 3 is a perspective view of the arrangement of the screens
- FIGS. 4a, 4b, 4c represent the possible trace of a horizontal plane on the screens
- FIG. 5 is a side view of the screens 11 and 12 with the cabin and the user
- FIGS. 6a and 6b represent the arrangements of the projectors
- FIG. 7 is a section view of the assembly of the screens by bevel
- FIG. 8 is the development of the three faces
- Figure 9 is the sketch of visibility.
- the cube 10 is located at a height z ⁇ 4 m; it therefore intercepts the plane 16.
- FIG. 3 The edges 14 and 15 are no longer parallel or orthogonal to the three axes of the frame of reference (23).
- Figures 4a, 4b and 4c show the trace 17 of the intersection of the plane 16 with the cube 10 seen from inside the cube 10 by the theoretical eye.
- the selected projection system consists in physically linking a projector 21 to a screen (11, 12, 13).
- the projector should be placed behind the screen. If space is limited, a mirror 22 can be used, as shown in FIG. 6b, which deflects the beam and therefore shortens the distance to the screen.
- the bevel 25 as shown in Figure 7, will advantageously be chosen.
- the goal is to make the junction between screens as invisible as possible so that the eye is nothing to hang onto.
- the eye must be taken by the content (the image) and not by the container (the support).
- the bevel allows a stronger physical bond than the edge to edge and is less sensitive to sources of stray light.
- Figure 9 shows the advantage provided by this screen arrangement. Two lines of visibility are represented for 3 windows of the same surface, one 27 concerning a sphere, the other 28 concerning the new concept (symmetrical left part of the right part).
- the theoretical eye is here placed at an "arbitrary" point determined approximately therefore not optimized.
- the values calculated from this choice are in the table in FIG. 8.
- the diagram of the drawing immediately shows the whole point of applying this new principle.
- the angle ⁇ in the first row of the table represents the horizontal scan corresponding to a rotation around the z axis.
- the angle ⁇ appearing in the second and third lines represents the vertical scan ⁇ corresponding to the rotation around the y axis as a function of a rotation of angle ⁇ .
- the use of this new device is not limited to an aircraft simulator but can be used in the simulation of driving, naval driving and even for fun purposes such as for a shooting range or ski or toboggan courses .
- Another application consists in making the outline of visibility asymmetrical by slight rotation of the assembly around an axis to be defined. In this way, we can favor the left or right part of the visual rendering for specific applications such as landing on an aircraft carrier, dropping for military transport, which both are always on the same side.
- the present invention also makes it possible to embed in
- the frontal image is a head-up type symbology which is generally situated around the horizontal plane.
- the front face is not of square format but polygonal in the general case and of the same format as the lateral faces in particular. This does not change anything for image generation machines. Only the calculations of the associated fields are to be resumed. In this way, the outline of visibility dissymmetrizes (which means choosing a side to be favored) and significantly increases the high vertical field between 0 ° and around 75 ° of deposit (see the variant in Figure 9)
- Fig 9 visibility diagram element 10 cube element 11 white face element 12 red face element 13 blue face element 14 edge between white and red faces element 15 edge between white and blue faces element 16 horizontal plane element 17 trace on the horizontal plane on screens element 18 user element 19 cabin element 20 space to house the cabin element 21 pro ector element 22 mirror element 23 reference t ⁇ èdre element 24 theoretical eye element 25 bevels element 26 horizontal plane element 27 vertical plane element 28 image surfaces in sphere element 29 image surfaces with l 'invention
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Projection Apparatus (AREA)
Abstract
The invention concerns a visual restitution device with 3 window large fields for visual restitution providing an artificial visual environment of flight simulator and more particularly for a helicopter. The invention is characterised in that with only 3 windows it provides very great visibility pattern and it also provides a simple and inexpensive solution to a complex problem. Its horizontal field very easily attains ?110°. Its front vertical field reaches up to +90°. Its lateral fields reach down to 70°. The device is based on a structure of right angles, arranged in a specific manner, and enabling an the whole field of vision to be inscribed within the images. In accordance with the principle of overhead projection, the observer, in schematic eye position, is located somewhere inside said volume and sees each of the 3 faces beneath the horizontal and vertical fields which form large base viewing pyramids. In fact he is immersed in the action. The concept can be used for all simulation systems requiring restitution of visual environment: 1) replacing a sphere site; 2) any form of visual restitution with 3 windows for various simulators: aeroplanes, cars, ships, for sports, such as skiing/bobsleigh/ canoeing and the like; 3) virtual reality for architect firm, exhibition parks and the like.
Description
DISPOSITIF DE RESTITUTION VISUELLE GRANDS CHAMPS 3 FENETRES 3 WINDOWS LARGE FIELD VISUAL RESTORATION DEVICE
La présente invention se rapporte à un système de restitution de l'environnement visuel pour simulateur. Application au simulateur de vol.The present invention relates to a system for rendering the visual environment for a simulator. Application to the flight simulator.
L'objectif des simulateurs de vol est de restituer un environnement le plus réaliste possible, dans lequel l'utilisateur se sente « immerger ». Pour cela il faut que les surfaces des images soient les plus grandes possibles pour que la pyramide de vision ait des champs instantanés supérieurs aux caractéristiques visuelles de l'oeil, c'est-à- dire que la vision périphérique de 1 ' observateur soit engagée dans la perception visuelle.The objective of flight simulators is to restore the most realistic environment possible, in which the user feels "immersed". For this it is necessary that the surfaces of the images are as large as possible so that the vision pyramid has instantaneous fields greater than the visual characteristics of the eye, that is to say that the peripheral vision of the observer is engaged. in visual perception.
Le moyen le plus répandu actuellement est l'utilisation d'une sphère sur laquelle sont projetées des images synthétisées et/ou préenregistrées, et dans les environs du centre de laquelle est disposée une cabine dans laquelle prend place l'utilisateur. Les images sont projetées par plusieurs dispositifs de projection.The most widespread means currently is the use of a sphere on which are projected synthesized and / or prerecorded images, and in the vicinity of the center of which is arranged a cabin in which the user takes place. The images are projected by several projection devices.
Ces dispositifs présentent cependant certains inconvénients. Ils sont très encombrants puisque le diamètre de la sphère peut atteindre 8 à 10 mètres et ils sont très coûteux à livrer, à monter, à peindre, à aménager. Les études amonts d'implantation physique des projecteurs, de calcul et de correction d'image sont délicates. L'étude d'une nouvelle structure est donc assez lourde. Pour être performante, elle nécessite plus de trois canaux d'imageries (fenêtres).These devices have certain drawbacks, however. They are very bulky since the diameter of the sphere can reach 8 to 10 meters and they are very expensive to deliver, to assemble, to paint, to arrange. Upstream studies of physical location of projectors, calculation and image correction are tricky. The study of a new structure is therefore quite heavy. To be effective, it requires more than three imaging channels (windows).
Le brevet WO 98/01841 propose, pour remédier aux problèmes de coûts élevés d'étude et de montage d'une sphère ainsi qu'aux difficultés importantes d'harmonisation des nombreux canaux d'imagerie, un simulateur de vol comprenant une pluralité d'écrans frontal, latéraux et supérieur. Les écrans, plats, sont arrangés entre eux de telle manière qu'ils s'inscrivent dans une sphère imaginaire. Celle-ci est centrée sur l'oeil théorique où est placé l'observateur. Les
écrans latéraux sont trapézoïdaux et non orthogonaux à l'écran de fond.Patent WO 98/01841 proposes, to remedy the problems of high costs of studying and assembling a sphere as well as the significant difficulties of harmonizing the many imaging channels, a flight simulator comprising a plurality of front, side and top screens. The flat screens are arranged in such a way that they fit into an imaginary sphere. This is centered on the theoretical eye where the observer is placed. The side screens are trapezoidal and not orthogonal to the background screen.
Une telle réalisation présente toutefois l'inconvénient d'utiliser au moins quatre écrans et au moins autant de canaux d'imagerie. L'harmonisation des images est donc délicate et le coût de fabrication demeure élevé.However, such an embodiment has the drawback of using at least four screens and at least as many imaging channels. Harmonizing images is therefore delicate and the manufacturing cost remains high.
Lacunes des techniques existantes. Il est possible de résumer, en partant de l'exemple sphère qui est la solution qui se rapproche le plus de l'usage grand champ par : 1) coût très élevé d'acquisition des structures, 2) nombre de canaux minimum de 4 à 6 à résolution identique, 3)coût très élevé des systèmes de projection, 4) grande complexité d'un système complet, 5) difficulté importante d'harmonisation et d'obtention d'un contraste correct, 6) maintenabilité difficile et uniquement par des spécialistes .Gaps in existing techniques. It is possible to summarize, starting from the sphere example which is the solution which comes closest to wide field use by: 1) very high cost of acquiring structures, 2) minimum number of channels from 4 to 6 with identical resolution, 3) very high cost of projection systems, 4) great complexity of a complete system, 5) significant difficulty of harmonization and obtaining a correct contrast, 6) difficult maintainability and only by specialists.
Lacune 1 : une sphère de 8 m de diamètre, livrée, montée, peinte, aménagée (électricité, climatisation, passerelles) avec les structures porteuses des projecteurs, les portes et prête à recevoir une cabine de simulation ≈ 2,5 MF.Gap 1: a sphere 8 m in diameter, delivered, mounted, painted, fitted (electricity, air conditioning, walkways) with the supporting structures of the projectors, the doors and ready to receive a simulation cabin ≈ 2.5 MF.
Lacune 2 : pour couvrir un champ horizontal de ± 100° et un champ vertical de ± 60° avec une résolution de 5' d'arc, il faut 6 canaux d'imagerie de haute définition. Avec 3 canaux seulement les champs vertical et horizontal sont impossibles à atteindre ou la résolution beaucoup trop faible (en dessous de la valeur minimum acceptable).Gap 2: to cover a horizontal field of ± 100 ° and a vertical field of ± 60 ° with a resolution of 5 'of arc, 6 channels of high definition imagery are required. With 3 channels only the vertical and horizontal fields are impossible to reach or the resolution is too low (below the minimum acceptable value).
Lacune 3 : Les performances nécessaires aux projecteurs pour restituer correctement les images en sphère sont beaucoup plus sévères que pour la technique de rétro projection. Le coefficient de "technicité" est compris entre 2,5 et 6 pour le matériel qui doit être professionnel très haut de gamme.Gap 3: The performance required for projectors to correctly restore sphere images is much more severe than for the rear projection technique. The coefficient of "technicality" is between 2.5 and 6 for equipment which must be very high-end professional.
Lacune 4 : Les études amonts d'implantation physique des projecteurs, de calcul et de correction d'image sont
délicates et longues. L'étude d'une nouvelle structure est assez lourde.Gap 4: Upstream studies of physical location of projectors, calculation and image correction are delicate and long. The study of a new structure is quite heavy.
Lacune 5 : L'harmonisation qui consiste à ce qu'un élément d'une image soit vu exactement sous les bons angles d'Euler par l'observateur et cohérent de ses instruments (notamment viseur tête haute en aéronautique) ou avec la réalité, pose en général problème en tant que réalisation des moyens de mire, qu'écriture des procédures et mise au point (réglage). Par ailleurs, par construction, une sphère dont on éclaire un point, réfléchie la lumière par son écran (la peau de la sphère peinte diffuse et réfléchie à l'infini) et ré-émet cette lumière qui "allume" la sphère (donc qui détruit l'image) dès que les surfaces images sont un peu grandes. Ce point connu comme le phénomène d'intégration sphérique est intrinsèque aux moyens de projection directe (salle de cinéma ou simulateur).Gap 5: The harmonization which consists in that an element of an image is seen exactly under the good angles of Euler by the observer and coherent of its instruments (in particular head-up viewfinder in aeronautics) or with reality, in general poses problem as a realization of the sights, as writing of the procedures and development (adjustment). In addition, by construction, a sphere of which we illuminate a point, reflects light through its screen (the skin of the painted sphere diffuses and is reflected endlessly) and re-emits this light which "lights up" the sphere (therefore which destroys the image) as soon as the image surfaces are a little large. This point known as the spherical integration phenomenon is intrinsic to the means of direct projection (cinema room or simulator).
Le but de 1 ' invention est de remédier à tous ces défauts en proposant une solution plus simple, de conception et de mise en oeuvre aisée, qui offre par construction une immersion visuelle réelle très satisfaisante afin d'aboutir à un rapport qualité/coût remarquable.The object of the invention is to remedy all these shortcomings by proposing a simpler solution, of easy design and implementation, which offers by construction a very satisfactory real visual immersion in order to achieve a remarkable quality / cost ratio. .
La présente invention respecte les positions et grandeurs de tous les éléments des images telles qu'elles sont dans la réalité. L'observateur a donc la restitution du monde extérieur sous les bons angles .The present invention respects the positions and sizes of all the elements of the images as they are in reality. The observer therefore has the restitution of the outside world from the right angles.
Le système de restitution visuelle à grands champs horizontaux et verticaux conforme à l'invention comprend une pluralité d'écrans plats associés deux à deux en dièdres caractérisé en ce que lesdits dièdres sont droits et sont non orthogonaux au trièdre de référence de l'oeil théorique.The visual rendering system with large horizontal and vertical fields according to the invention comprises a plurality of flat screens associated two by two in dihedra characterized in that said dihedra are straight and are not orthogonal to the reference trihedron of the theoretical eye .
Le système de restitution visuelle selon 1 ' invention comporte au moins trois écrans et est complètement opérationnel à partir de trois écrans, chacun étant associé à
un dispositif de production d'images. Les écrans ont une forme polygonale. Dans une configuration à trois écrans, celui du milieu peut être carré et les deux autres rectangulaires. Mais la version la plus satisfaisante est constituée d'une face frontale rectangle de format 5/4 ou 4/3 et les deux faces latérales de même format, soit 5/4 ou 4/3.The visual rendering system according to the invention comprises at least three screens and is fully operational from three screens, each one associated with an image production device. The screens have a polygonal shape. In a configuration with three screens, the middle one can be square and the other two rectangular. But the most satisfactory version consists of a rectangle front face of 5/4 or 4/3 format and the two side faces of the same format, either 5/4 or 4/3.
La description suivante se réfère aux dessins annexés qui représentent, sans aucun caractère limitatif, un exemple de réalisation à trois écrans d'un système de restitution visuelle à grands champs horizontaux et verticaux conforme àThe following description refers to the appended drawings which represent, without any limiting character, an exemplary embodiment with three screens of a visual reproduction system with large horizontal and vertical fields in accordance with
1 ' invention.1 invention.
La figure la représente le cube originel à trois faces dont la déformation permet d'obtenir la configuration à 3 écrans, la figure lb étant une variante,FIG. 1a represents the original three-sided cube, the deformation of which makes it possible to obtain the configuration with 3 screens, FIG. 1b being a variant,
La figure 2 est une vue du cube en cours de déformation,FIG. 2 is a view of the cube being deformed,
La figure 3 est une vue en perspective de la disposition des écrans,FIG. 3 is a perspective view of the arrangement of the screens,
Les figures 4a, 4b, 4c représentent la trace possible d'un plan horizontal sur les écrans,FIGS. 4a, 4b, 4c represent the possible trace of a horizontal plane on the screens,
La figure 5 est une vue de côté des écrans 11 et 12 avec la cabine et l'utilisateur,FIG. 5 is a side view of the screens 11 and 12 with the cabin and the user,
Les figures 6a et 6b représentent les dispositions des projecteurs , La figure 7 est une vue en section de l'assemblage des écrans par biseau,FIGS. 6a and 6b represent the arrangements of the projectors, FIG. 7 is a section view of the assembly of the screens by bevel,
La figure 8 est le développé des trois faces,FIG. 8 is the development of the three faces,
La figure 9 est l'épure de visibilité.Figure 9 is the sketch of visibility.
En référence aux figures annexées on voit un système de restitution visuelle a grands champs horizontaux et verticaux opérationnel à partir de seulement 3 écrans plats disposés d'une façon particulière dans l'espace. L'architecture des écrans va être décrite en procédant par étape.With reference to the appended figures we see a visual rendering system with large horizontal and vertical fields operational from only 3 flat screens arranged in a particular way in space. The architecture of the screens will be described by proceeding in stages.
Selon la figure la, considérons un cube 10 de seulement 3 faces (la face 11 du fond, la face 12 côte droit, la face 13 du dessous), dont chaque face a pour dimension, a titre
d'exemple, 4 x 4 m. Les faces 11 et 12, d'une part, et les faces 11 et 13, d'autre part, forment ainsi deux dièdres droits respectivement d'arête 14 et 15, les deux autres arêtes de la face 11 non communes aux faces 12 et 13 étant sécantes au point A. Déplaçons par translation les faces 12 et 13, comme indiqué sur la figure 2, respectivement le long des arêtes 14 et 15.According to the figure la, let us consider a cube 10 of only 3 faces (the face 11 of the bottom, the face 12 right side, the face 13 of the bottom), of which each face has for dimension, as example, 4 x 4 m. The faces 11 and 12, on the one hand, and the faces 11 and 13, on the other hand, thus form two straight dihedrons of edge 14 and 15 respectively, the two other edges of the face 11 not common to the faces 12 and 13 being intersecting at point A. Let us move the faces 12 and 13 by translation, as indicated in FIG. 2, respectively along the edges 14 and 15.
Considérons ensuite un plan horizontal 16 virtuel portant un référentiel 23 d'axe X, Y, Z et dont l'origine 0 est l'oeil théorique 24 (position dans l'espace où se situe l'observateur qui utiliserait un seul oeil - oeil cyclope).Then consider a virtual horizontal plane 16 carrying a frame of reference 23 of axis X, Y, Z and whose origin 0 is the theoretical eye 24 (position in space where the observer is located who would use only one eye - eye Cyclops).
Considérons que le cube 10 est situé à une hauteur z < 4 m ; il intercepte donc le plan 16. Les arêtes 14 et 15 sont alors parallèles ou orthogonales aux trois axes. A partir de la figure 2, faisons tourner le cube 10 d'un angle φ = 45° autour d'un axe colinéaire à l'axe X du référentiel 23, puis faisons tourner le cube 10 par exemple d'un angle θ = 36° (valeur de l'application) autour d'un axe colinéaire à l'axe Y du référentiel 23. Déplaçons le cube 10 par rapport au référentiel 23 de manière à ce que l'origine 0 du référentiel se situe dans le cube 10 avec à sa verticale le point A. Cette configuration est représentée sur la figureLet us consider that the cube 10 is located at a height z <4 m; it therefore intercepts the plane 16. The edges 14 and 15 are then parallel or orthogonal to the three axes. From Figure 2, rotate the cube 10 by an angle φ = 45 ° around an axis collinear with the X axis of the repository 23, then rotate the cube 10 for example by an angle θ = 36 ° (value of the application) around an axis collinear with the axis Y of the reference frame 23. Let us move the cube 10 compared to the reference frame 23 so that the origin 0 of the reference frame is located in the cube 10 with vertically point A. This configuration is shown in the figure
3. Les arêtes 14 et 15 ne sont désormais plus parallèles ou orthogonales aux trois axes du référentiel (23). Les figures 4a, 4b et 4c représentent la trace 17 de l'intersection du plan 16 avec le cube 10 vue de l'intérieur du cube 10 par l'oeil théorique.3. The edges 14 and 15 are no longer parallel or orthogonal to the three axes of the frame of reference (23). Figures 4a, 4b and 4c show the trace 17 of the intersection of the plane 16 with the cube 10 seen from inside the cube 10 by the theoretical eye.
L'usage de ce dispositif en simulation implique toujours la présence d'un observateur 18. Pour un simulateur d'aéronef par exemple, celui-ci est assis dans un simulacre de cockpit 19. La structure porteuse générant une ombre pour l'observateur, il n'y a pas besoin d'image sous le cockpit et en dehors de la zone de visibilité (épure de visibilité). Pour cette raison les faces 12 et 13 peuvent être translatées le long des arêtes 14 et 15 et ainsi libérer un espace 20 pour le support physique du cockpit 19, tout en réglant au mieux la vision latérale basse. La figure 5 représente
l'utilisateur 18 assis dans un cockpit 19, ce dernier étant situé dans l'espace 20.The use of this device in simulation always implies the presence of an observer 18. For an aircraft simulator for example, the latter is seated in a simulated cockpit 19. The carrying structure generating a shadow for the observer, there is no need for an image under the cockpit and outside the visibility zone (sketch of visibility). For this reason the faces 12 and 13 can be translated along the edges 14 and 15 and thus free up a space 20 for the physical support of the cockpit 19, while optimally adjusting the low lateral vision. Figure 5 shows the user 18 seated in a cockpit 19, the latter being located in the space 20.
Comme indiqué sur la figure 6a, le système retenu de projection consiste à lier physiquement un projecteur 21 à un écran (11, 12, 13). On doit placer le projecteur derrière l'écran. Si la place est limitée, on peut utiliser un miroir 22, tel que représenté sur la figure 6b, qui dévie le faisceau et raccourci donc la distance à l'écran.As indicated in FIG. 6a, the selected projection system consists in physically linking a projector 21 to a screen (11, 12, 13). The projector should be placed behind the screen. If space is limited, a mirror 22 can be used, as shown in FIG. 6b, which deflects the beam and therefore shortens the distance to the screen.
Les surfaces planes que forment les écrans doivent être parfaitement raccordées aux surfaces contiguës . Pour ce faire, le biseau 25, tel que représenté figure 7, sera avantageusement choisi. L'objectif est de rendre le moins visible possible la jonction entre écrans pour que l'oeil n'est rien sur lequel s'accrocher. L'oeil doit être pris par le contenu (l'image) et non par le contenant (le support). Le biseau permet un lien physique plus fort que le bord à bord et est moins sensible aux sources de lumières parasites.The flat surfaces that the screens form must be perfectly connected to the adjoining surfaces. To do this, the bevel 25, as shown in Figure 7, will advantageously be chosen. The goal is to make the junction between screens as invisible as possible so that the eye is nothing to hang onto. The eye must be taken by the content (the image) and not by the container (the support). The bevel allows a stronger physical bond than the edge to edge and is less sensitive to sources of stray light.
La figure 9 permet de constater 1 ' avantage apporté par cette disposition d'écran. Deux épures de visibilité sont représentées pour 3 fenêtres de même surface, l'une 27 concernant une sphère, l'autre 28 concernant le nouveau concept (partie gauche symétrique de la partie droite).Figure 9 shows the advantage provided by this screen arrangement. Two lines of visibility are represented for 3 windows of the same surface, one 27 concerning a sphere, the other 28 concerning the new concept (symmetrical left part of the right part).
L'oeil théorique est ici placé à un point « quelconque » déterminé approximativement donc non optimisé. Les valeurs calculées à partir de ce choix sont dans le tableau de la figure 8. Le graphe de 1 ' épure montre immédiatement tout l'intérêt de la mise en application de ce nouveau principe. L'angle Ψ figurant dans la première ligne du tableau représente le balayage horizontal correspondant à une rotation autour de l'axe z. L'angle θ figurant dans les seconde et troisième lignes représente le balayage vertical θ correspondant à la rotation autour de l'axe y en fonction d'une rotation d'angle Ψ .
L'usage de ce nouveau dispositif ne se limite pas à un simulateur d'aéronef mais peut être exploité dans la simulation de conduite automobile, navale et même à des fins ludiques telles que pour un stand de tir ou des parcours à ski ou en luge. Une autre application consiste à rendre asymétrique l'épure de visibilité par légère rotation de l'ensemble autour d'un axe à définir. De la sorte, on peut privilégier la partie gauche ou droite de la restitution visuelle pour des applications particulières telles que 1 ' appontage sur un porte-avions, le largage pour le transport militaire, qui tous deux se font toujours du même côté.The theoretical eye is here placed at an "arbitrary" point determined approximately therefore not optimized. The values calculated from this choice are in the table in FIG. 8. The diagram of the drawing immediately shows the whole point of applying this new principle. The angle Ψ in the first row of the table represents the horizontal scan corresponding to a rotation around the z axis. The angle θ appearing in the second and third lines represents the vertical scan θ corresponding to the rotation around the y axis as a function of a rotation of angle Ψ. The use of this new device is not limited to an aircraft simulator but can be used in the simulation of driving, naval driving and even for fun purposes such as for a shooting range or ski or toboggan courses . Another application consists in making the outline of visibility asymmetrical by slight rotation of the assembly around an axis to be defined. In this way, we can favor the left or right part of the visual rendering for specific applications such as landing on an aircraft carrier, dropping for military transport, which both are always on the same side.
La présente invention permet également d'incruster dansThe present invention also makes it possible to embed in
I ' image frontale une symbologie de type tête haute qui se situe généralement autour du plan horizontal.The frontal image is a head-up type symbology which is generally situated around the horizontal plane.
Selon une variante non représentée du dispositif, on peut ajouter 1 ou 2 faces et/ou travailler avec des surfaces non rectangles. Il est notamment possible de travailler avec un écran 11 non pas de forme carrée mais polygonale, en comblant les vides situés entre les arêtes libres de l'écranAccording to a variant not shown of the device, one can add 1 or 2 faces and / or work with non-rectangular surfaces. It is in particular possible to work with a screen 11 not of square shape but polygonal, by filling the gaps located between the free edges of the screen
II et les écrans 12 et 13.II and screens 12 and 13.
Le développé des trois faces, avec une variante décrite ci-dessous, est intéressante sur le plan géométrique. En effet, toute la simplicité de la construction peut apparaître et faire comprendre les liens géométriques entre le plan horizontal et les trois faces.The development of the three faces, with a variant described below, is interesting on the geometric level. Indeed, all the simplicity of the construction can appear and make understand the geometrical links between the horizontal plane and the three faces.
Sur la figure 8, il est possible de manière graphique, d'y retrouver presque toutes les valeurs angulaires à partir de la seule connaissance des distances de l'oeil théorique aux faces. Est portée sur cette vue à plat, une variante en pointillée sur la face frontale pour passer du format carré à rectangle dans le sens horizontal. Il peut être, bien sûr, rectangle dans le plan vertical (sens qui est représenté sur la figure 9 ) .
Variantes :1a variante classique consiste à ajouter une ou deux faces et, ou, travailler avec des surfaces non rectangles .In FIG. 8, it is possible graphically to find almost all of the angular values there from knowledge of the distances from the theoretical eye to the faces alone. Is shown on this flat view, a dotted variant on the front face to go from square format to rectangle in the horizontal direction. It can be, of course, rectangle in the vertical plane (direction which is represented on figure 9). Variants: the classic variant consists of adding one or two faces and, or, working with non-rectangular surfaces.
Le rajout d'une ou deux faces (suivant le principe du dièdre droit) est possible, mais cela revient à construire un cube ou une boîte à quatre ou cinq faces posées à plat. L'intérêt s'en trouve réduit d'autant.The addition of one or two faces (according to the principle of the right dihedral) is possible, but this amounts to building a cube or a box with four or five faces placed flat. The interest is reduced accordingly.
Une variante de détail pleinement satisfaisante est de dire que la face frontale n'est pas de format carré mais polygonal dans le cas général et de même format que les faces latérales en particulier. Cela ne change rien pour les machines de génération d'image. Seuls les calculs des champs associés sont à reprendre. De la sorte, l'épure de visibilité se dissymétrise (ce qui oblige à choisir un côté à privilégier) et augmente de façon significative le champ vertical haut entre 0° et environ 75° de gisement (voir la variante sur la figure 9)A fully satisfactory variant of detail is to say that the front face is not of square format but polygonal in the general case and of the same format as the lateral faces in particular. This does not change anything for image generation machines. Only the calculations of the associated fields are to be resumed. In this way, the outline of visibility dissymmetrizes (which means choosing a side to be favored) and significantly increases the high vertical field between 0 ° and around 75 ° of deposit (see the variant in Figure 9)
Cette variante doit être incluse dans la première version de ce concept, vu l'avantage en terme de champs, très adaptée aux sources d'images synthétiques et d'investissement dérisoire. En outre la complexité en est inchangée.This variant must be included in the first version of this concept, given the advantage in terms of fields, very suitable for sources of synthetic images and paltry investment. In addition the complexity is unchanged.
Applications envisagées : 1) remplacement d'un site sphère, 2) création d'un site de restitution visuelle grands champs à bas coût, 3) site expérimental de restitution visuelle pour : - viseur de casque, - démonstrateur de Base de Données, 4) toute forme de restitution visuelle à partir de trois fenêtres pour divers simulateurs : -d'avions, - de voitures, - de bateaux, etc. 5) toute forme de restitution visuelle de trois fenêtres pour divers simulateurs ludiques réels ou virtuels : ski, luge, tir, etc. - parcours immersif, - homme cinéma numérique etc. 6) toute forme de restitution visuelle de trois fenêtres pour usage professionnel ou institutionnel : - cabinet d'architecte, - urbaniste, service technique régionaux, etc. - instituts, universités, etc. parc d'exposition : de la Villette, etc.
L'ensemble peut aussi être réalisé à une échelle différente de un. Exemple : 1 , 5 ou 0 , 8 ou 0 , 5 voir 0,3 ce qui permet de mettre la tête confortablement dans la "boîte".Applications envisioned: 1) replacement of a sphere site, 2) creation of a low cost large field visual restitution site, 3) experimental visual restitution site for: - helmet viewfinder, - Database demonstrator, 4 ) any form of visual rendering from three windows for various simulators: -planes, - cars, - boats, etc. 5) any form of visual rendering of three windows for various real or virtual fun simulators: skiing, sledging, shooting, etc. - immersive journey, - digital cinema man, etc. 6) any form of visual rendering of three windows for professional or institutional use: - architectural firm, - urban planner, regional technical service, etc. - institutes, universities, etc. exhibition center: de la Villette, etc. The set can also be produced on a scale other than one. Example: 1, 5 or 0, 8 or 0, 5 see 0.3 which allows you to put your head comfortably in the "box".
On peut même envisager une échelle à 0,2 soit 0,8 m x 0,8 m ou 0,8 x l m et remplacer la rétro projection par de la collimation. On obtient ainsi un système plus cher mais très haut de gamme avec seulement trois fenêtres de visualisation. Associé au concept de "glass cockpit" c'est particulièrement bien adapté à la réalité virtuelle. Adaptation spécifique. Dans le cas d'un environnement visuel pour une activité ludique telle que le kayac ou rafting par exemple, il n'y a pas besoin d'image vers le haut (zone zénithale), on peut donc avec le même concept mettre un angle thêta θ nul au dispositif. Si le dispositif est employé comme simulateur d'entraînement de parachutisme, alors la vision zénithale est indispensable pour «s'y croire». Il faut le redresser jusqu'à la verticale θ = 90°, ne plus décaler les faces rouge et bleue (elles restent jointives), et probablement utiliser des faces de format 16/9, pour privilégier le défilement vertical et tenir compte des sources filmées en TVHD.We can even consider a scale at 0.2 or 0.8 m x 0.8 m or 0.8 x l m and replace the rear projection with collimation. This results in a more expensive but very high-end system with only three viewing windows. Associated with the concept of "glass cockpit" it is particularly well suited to virtual reality. Specific adaptation. In the case of a visual environment for a fun activity such as kayaking or rafting for example, there is no need for an image upwards (zenithal zone), we can therefore with the same concept put a theta angle θ void at the device. If the device is used as a parachuting training simulator, then the overhead vision is essential to "believe it". It must be straightened up to the vertical θ = 90 °, no longer shift the red and blue faces (they remain contiguous), and probably use 16/9 format faces, to favor vertical scrolling and take into account filmed sources in HDTV.
L ' épure de visibilité permet une vue comparative pour trois fenêtres de même surface dans une sphère et avec ce nouveau concept (partie gauche symétrique de la partie droite). L'oeil théorique est ici placé à un point "quelconque" déterminé approximativement donc non optimisé. Les valeurs calculées à partir de ce choix sont dans le tableau ci-dessous.The visibility sketch allows a comparative view for three windows of the same surface in a sphere and with this new concept (symmetrical left part of the right part). The theoretical eye is here placed at an "arbitrary" point determined approximately therefore not optimized. The values calculated from this choice are in the table below.
Le graphe de l'épure montre immédiatement tout l'intérêt de la mise en application de ce nouveau principe. Bien que la représentation cartésienne ne soit pas la meilleure (une pro ection de Hammer qui conserve _es angles est meilleure), elle permet néanmoins une comparaison.
Fig la le cuoeThe diagram of the diagram immediately shows all the interest of the application of this new principle. Although the Cartesian representation is not the best (a Hammer pro ection which keeps the angles is better), it nevertheless allows a comparison. Fig la cuoe
Fig lb cuoe avec faces plus grandesFig lb cuoe with larger faces
Fig 2 cube avec faces αeplaceesFig 2 cube with square faces
Fig 3 perspective des écransFig 3 perspective of the screens
Fig 4a ' 4o 4c traces du plan horizontal sur les écransFig 4a '4o 4c traces of the horizontal plane on the screens
Fig 5 vue latérale avec utilisateur dans la cabineFig 5 side view with user in the cabin
Fig 6a ι 5D vues de dessus et côté du projecteurFig 6a ι 5D top and side views of the projector
Fig 7 vue de dessus des biseauxFig 7 top view of the bevels
Fig 8 développé des trois facesFig 8 developed from three sides
Fig 9 épure de visibilité élément 10 cube élément 11 face blanche élément 12 face rouge élément 13 face bleue élément 14 arête entre faces blanche et rouge élément 15 arête entre faces blanche et bleue élément 16 plan horizontal élément 17 trace au plan horizontal sur écrans élément 18 utilisateur élément 19 cabine élément 20 espace pour loger la cabine élément 21 pro ecteur élément 22 miroir élément 23 tπèdre de référence élément 24 œil théorique élément 25 biseaux élément 26 plan horizontal élément 27 plan verticaux élément 28 surfaces images en sphère élément 29 surfaces images avec l'invention
Fig 9 visibility diagram element 10 cube element 11 white face element 12 red face element 13 blue face element 14 edge between white and red faces element 15 edge between white and blue faces element 16 horizontal plane element 17 trace on the horizontal plane on screens element 18 user element 19 cabin element 20 space to house the cabin element 21 pro ector element 22 mirror element 23 reference tπèdre element 24 theoretical eye element 25 bevels element 26 horizontal plane element 27 vertical plane element 28 image surfaces in sphere element 29 image surfaces with l 'invention
Claims
REVENDICATIONS
1 Dispositif de restitution visuelle comprenant une pluralité d'écrans1 Visual display device comprising a plurality of screens
(11, 12, 13) plats associes deux a deux en dièdres caractéπse en ce que lesdits dièdres sont droits et que l'arête (14, 15) de chacun est ni orthogonale m parallèle à chacun des axes du tπèdre de référence (23) de l'œil théorique (24).(11, 12, 13) dishes associated two by two in dihedra characterized in that said dihedra are straight and that the edge (14, 15) of each is neither orthogonal m parallel to each of the axes of the reference tπèdre (23) of the theoretical eye (24).
2 Dispositif de restitution visuelle selon la revendication 1 caractérisé en ce qu'il comprend au moms trois écrans (11, 12, 13)2 visual rendering device according to claim 1 characterized in that it comprises at least three screens (11, 12, 13)
3 Dispositif de restitution visuelle selon la revendication 1 caractérisé en ce que les deux écrans latéraux (12, 13) sont disposés suivant l' arête (14) orthogonales à l'arête (15) de l'écran frontal (11)3 Visual rendering device according to claim 1 characterized in that the two side screens (12, 13) are arranged along the edge (14) orthogonal to the edge (15) of the front screen (11)
4 Dispositif de restitution visuelle selon la revendication 1 caractérisé en ce que les deux écrans latéraux (12, 13) peuvent être déplacés en glissant le long des arêtes (14, 15) orthogonales à l'écran frontal (11).4 Visual rendering device according to claim 1 characterized in that the two side screens (12, 13) can be moved by sliding along the edges (14, 15) orthogonal to the front screen (11).
5 Dispositif de restitution visuelle selon la revendication 2 caractérisé en ce que l'ensemble des trois écrans (11, 12, 13) peut être onenté de façon quelconque par rapport au trièdre de référence (23) 6 Dispositif de restitution visuelle selon la revendication 2 caractérisé en ce que chaque écran est associé à au moms un dispositif de production d'images (21) 7 Dispositif de restitution visuelle selon la revendication 1 caractérisé en ce que deux écrans contigus sont raccordés par un biseau (25) et bord à bord. 8 Dispositif de restitution visuelle selon l'une des revendications précédentes caractéπse en ce que les écrans sont des polygones à quatre côtés de format précis
5 visual rendering device according to claim 2 characterized in that all three screens (11, 12, 13) can be aligned in any way relative to the reference trihedron (23) 6 visual rendering device according to claim 2 characterized in that each screen is associated with at least one image production device (21) 7 Visual reproduction device according to claim 1 characterized in that two contiguous screens are connected by a bevel (25) and edge to edge. 8 Visual rendering device according to one of the preceding claims caractéπse in that the screens are polygons with four sides of precise format
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR00/04450 | 2000-04-07 | ||
FR0004450A FR2807527B1 (en) | 2000-04-07 | 2000-04-07 | LARGE FIELD THREE-WINDOW VISUAL RESTORATION DEVICE |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/783,476 Division US7307726B2 (en) | 2000-12-18 | 2007-04-10 | Device for ellipsometric two-dimensional display of a sample, display method and ellipsometric measurement method with spatial resolution |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001077751A1 true WO2001077751A1 (en) | 2001-10-18 |
Family
ID=8848980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2001/001046 WO2001077751A1 (en) | 2000-04-07 | 2001-04-06 | Visual restitution device with 3 window large fields |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2807527B1 (en) |
WO (1) | WO2001077751A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5137450A (en) * | 1990-11-05 | 1992-08-11 | The United States Of America As Represented By The Secretry Of The Air Force | Display for advanced research and training (DART) for use in a flight simulator and the like |
EP0522204A1 (en) * | 1989-10-23 | 1993-01-13 | McCutchen, David | Method and apparatus for dodecahedral imaging system |
EP0714083A2 (en) * | 1994-11-18 | 1996-05-29 | Hughes Training, Inc | Uniform-brightness, high-gain display structures and methods |
WO1998001841A1 (en) * | 1995-03-20 | 1998-01-15 | Mcdonnell Douglas Corporation | Modular video display system |
EP0982946A1 (en) * | 1998-08-28 | 2000-03-01 | Lucent Technologies Inc. | Compact high resolution panoramic viewing system |
-
2000
- 2000-04-07 FR FR0004450A patent/FR2807527B1/en not_active Expired - Fee Related
-
2001
- 2001-04-06 WO PCT/FR2001/001046 patent/WO2001077751A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0522204A1 (en) * | 1989-10-23 | 1993-01-13 | McCutchen, David | Method and apparatus for dodecahedral imaging system |
US5137450A (en) * | 1990-11-05 | 1992-08-11 | The United States Of America As Represented By The Secretry Of The Air Force | Display for advanced research and training (DART) for use in a flight simulator and the like |
EP0714083A2 (en) * | 1994-11-18 | 1996-05-29 | Hughes Training, Inc | Uniform-brightness, high-gain display structures and methods |
WO1998001841A1 (en) * | 1995-03-20 | 1998-01-15 | Mcdonnell Douglas Corporation | Modular video display system |
EP0982946A1 (en) * | 1998-08-28 | 2000-03-01 | Lucent Technologies Inc. | Compact high resolution panoramic viewing system |
Also Published As
Publication number | Publication date |
---|---|
FR2807527A1 (en) | 2001-10-12 |
FR2807527B1 (en) | 2003-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0358559B1 (en) | Reproduction system for the visual environment of a pilot in a simulator | |
US8066379B2 (en) | Internal projection system for projecting coherent light imagery onto a three-dimensional surface | |
EP0875021B1 (en) | Static screen for animated pictures | |
EP3526965B1 (en) | System for forming a floating image | |
FR2675613A1 (en) | HEAD FIXING PROJECTION DISPLAY SYSTEM PROVIDED WITH A BEAM SEPARATOR. | |
FR2669746A1 (en) | COLLIMATE VIEWING DEVICE WITH SPHERICAL MIRROR OFF-AXIS FOR SIMULATOR. | |
US6163408A (en) | Compact visual simulation system | |
Osato et al. | Compact optical system displaying mid-air images movable in depth by rotating light source and mirror | |
FR2615297A1 (en) | APPARATUS REPRODUCING THE APPARENT VISION OF THE ASTRES | |
US8860783B2 (en) | Quasi-three-dimensional display apparatus | |
WO2001077751A1 (en) | Visual restitution device with 3 window large fields | |
BE1022580B1 (en) | Method of obtaining immersive videos with interactive parallax and method of viewing immersive videos with interactive parallax | |
EP1405040A1 (en) | Method for the display of cartographic information on an aeroplane screen | |
KR20210014840A (en) | EDU 3D holographic image module kit | |
FR2863729A3 (en) | Visual environment restoration device for stimulator of e.g. aircraft, has two lateral screens associated in dihedrals whose edges are neither orthogonal nor parallel to planes formed by axis of reference trihedral | |
FR2891062A1 (en) | Optical device for e.g. advertising display, has lenticular network comprising elementary devices each with optical system presenting identical optical characteristics and symmetry axis of rotation perpendicular to focal plane of lens | |
FR2687491A1 (en) | Vehicle simulator with a wide visual field and low moving masses | |
FR2552397A1 (en) | System for display of several images and its airborne use | |
Niall | Vision and Displays for Military and Security Applications: The Advanced Deployable Day/Night Simulation Project | |
FR2785230A1 (en) | TV advertising/council logo image projector ground marker having computer with presentation position support held video projector and fixed focus image ground displaying and allowing image paint filling. | |
CA2045287A1 (en) | Real tridimensional image projection method | |
FR2706661A1 (en) | Simulator with a spherical screen of small dimensions and with devices for realistic visual display of external scenes | |
FR3000351A1 (en) | Method for utilizing immersive video of multimedia file on e.g. smart phone, involves holding displaying of immersive video such that display retains orientation fixed on orientation of site during changing orientation of display device | |
WO2007017600A2 (en) | Method and device for adjusting video flows forming a wideband video, and associated display method and device | |
Niall | A summary of proceedings for the Advanced Deployable Day/Night Simulation Symposium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |