WO2001073823A2 - Modulares automatisiertes prozesssystem - Google Patents
Modulares automatisiertes prozesssystem Download PDFInfo
- Publication number
- WO2001073823A2 WO2001073823A2 PCT/DE2001/001164 DE0101164W WO0173823A2 WO 2001073823 A2 WO2001073823 A2 WO 2001073823A2 DE 0101164 W DE0101164 W DE 0101164W WO 0173823 A2 WO0173823 A2 WO 0173823A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process modules
- configurations
- modules
- information
- fluid
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0421—Multiprocessor system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00801—Means to assemble
- B01J2219/0081—Plurality of modules
- B01J2219/00813—Fluidic connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00801—Means to assemble
- B01J2219/0081—Plurality of modules
- B01J2219/00815—Electric connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/0095—Control aspects
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25005—Fluid bus for communication in process system with several fluidic control modules
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25297—Identify controlled element, valve, and read characteristics
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25312—Pneumatic, hydraulic modules, controlled valves
Definitions
- a system for the production of semiconductor substrates which consists of several process modules arranged in a row.
- the process modules are energy and Benö ⁇ supplied via a common media bus with data saturated chemicals, gases and liquids; the fluids are also disposed of via the media bus.
- At least one of the process modules is designed to feed the fluids into the fluid bus or to dispose of the fluids.
- the media bus has electrical lines for data and energy transmission and different pipelines for the different fluids.
- junction boxes with electrical connections and fluid connections are provided along the media bus, to which the individual process modules can be connected with corresponding mating connections.
- the fluid connections are equipped with self-closing valves that the fluid connections at its seal is not Schlos ⁇ senem process module to the outside. Depending on the requirements, individual process modules can therefore be added, removed or replaced in a comparatively simple manner within the known system.
- EP-A-0 303 565 a system for producing a chemical product in particular is known.
- the different manufacturing steps take place in different fixed or mobile process modules, each comprising a control unit and a chemical unit, the manufacturing step in question being carried out controlled by the control unit within the chemical unit.
- the control units of the different process modules are connected to a higher-level control system in the form of a process control system via data lines.
- the Chemical units within the process modules are supplied or disposed of individually via supply and disposal lines with the substances required or generated during manufacture.
- the subject of an earlier German Patent Application with the official file number 199 54 855.2 is a system for the automated processing of fluids with buttable, interchangeable process modules, common to both via a common data and GE over a multi-channel ⁇ fluid bus are interconnected.
- the configuration of at least some of the channels of the fluid bus in the areas of its connection to the individual process modules can be set, configuration reporting devices reporting information about the set actual configurations via the data bus to a higher-level control of the system.
- the object of the invention is to ensure a safe process flow in a modular automated process system, in particular in a chemical or biological microsystem.
- the object is achieved by the modular automated process system specified in claim 1.
- the respectively configured actual configurations of the process modules are reported to the higher-level control, which compares the actual configurations with the target configurations and shows deviations, for example, by visual output or in the form of alarms.
- the configurations can include both internal settings of the process modules, in particular the parameters set in each case, and the external connections of the process modules include each other.
- the external connections mean in particular the exchange of substances to be treated as part of the processing of the process between the process modules.
- a process system with multichannel fluid connections for example a fluid bus
- these are the configurations of the fluid bus in the areas of its connection to the process modules, with different fluid connections of the process modules being able to be connected to different fluid channels of the fluid bus according to the configured configuration.
- At least some of the configurations, in particular the internal settings, that is to say for example the parameters, of the process modules by transmitting Em setting information, here for example the parameter values can be automatically set by the higher-level controller or a programming device via the data connection to the process modules. If the channels of the fluid connections are connected to the fluid connections of the process modules via controllable valves, the configuration of the fluid connections between the process modules can also be set automatically. However, it is also possible for the individual fluid connections to be produced manually, in which case the configurations set in each case are recognized by the configuration reporting devices of the process modules and reported to the higher-level control system.
- the information about the desired configurations of the process modules to be set is preferably generated by a simulation device which simulates the process to be processed in terms of information technology, that is to say in a non-experimental manner.
- the simulation device receives information about the process to be processed, for example information about the chemicals which are to react with one another in a reactor module, and also information about the available process modules.
- the simulation device can assist the user in the selection and configuration Support the process modules or independently select and configure the required process modules based on access to stored expert knowledge.
- an information technology model of the wish to build end modular process system with which the process development and possibly also deviations from it can be simulated to ⁇ special dangerous process state.
- the process modules After the process system has been set up, the actual configurations of the process modules are compared with the target configurations provided by the simulation device, so that errors can be recognized in good time.
- the configuration of process modules can take place automatically, the information supplied by the simulation device about the target configurations to be set is transmitted to the process modules as configuration information.
- the information about the target configurations to be set is also displayed, in particular with regard to the respective configurations to be carried out manually, preferably on a visualization unit, for example a monitor.
- FIG. 1 shows an exemplary embodiment of the modular process system according to the invention in the form of a simplified block diagram
- FIG. 2 shows a second exemplary embodiment of the process system according to the invention
- FIG. 3 shows a third exemplary embodiment
- FIG. 4 shows an example for the determination and selection of the process modules to be used by a simulation device.
- Figure 1 shows a modular automated process system for the automated treatment of fluids, for example different liquids or gases. Under treatment is, for example, the Analy ⁇ se of the fluids and / or synthesis by chemical reac- tions of fluids, including the necessary side ⁇ functions such as to understand the preparation, mixing, filtering, claim or pressure build-up by means of pumps, heating, evaporation, etc..
- the process system consists of different process modules 1, 2, 3, 4 and 5, which are arranged in a row and to which sub-processes are carried out automatically.
- the process modules 1 to 5 can accordingly be different types of analysis modules, reactor modules with, for example, microreactors, pump modules, filter modules, energy supply modules, fluid supply and disposal modules, etc.
- Each process module 1 to 5 each has a control unit 6 and a fluid unit 7, the actual subprocess within the fluid unit 7 being carried out as a function of control signals 8 from the control unit 6.
- Process signals 9 recorded in the fluid unit 7, for example pressure values or analysis values, are transmitted to the control unit 6.
- the control units 6 m of different process modules 1 to 5 are connected to one another via a data bus 10 and a power supply bus 11.
- the fluid units 7 are connected to one another via a fluid bus 12, which consists of a plurality of parallel channels 13, through which the required fluids are routed.
- the configuration of the channels 13 is adjustable in the area 14 of the connection of the fluid bus 12 to the individual fluid units 7 m in the process modules 1 to 5.
- the process modules 1 to 5 can have further external connections.
- the process module 1 is used to provide basic functions for the process system, for which the
- the data connection 16 can also be designed as a direct continuation of the data bus 10.
- the process system is connected to the fluid unit 7 of the process module 1, external fluid lines 19 and 20 for feeding in or discharging the fluids required.
- a battery or fuel cell module m is also considered for the energy supply.
- a fluid is fed into the process system via a supply container 21 that can be plugged into the process module, while, for example, a disposal container 22 for receiving a fluid from the process system is connected to the process module 5
- the data bus 10, the power supply bus 11 and the fluid bus 12 are each formed from internal bus sections within the process modules 1 to 5 which are lined up, the process modules 1 to 5 being held next to one another on a common carrier 23, for example a top-hat rail , By pushing or plugging the required process modules 1 to 5 onto the carrier 23, the buses 10 to 12 are formed.
- Process modules 1 to 5 can be configured both internally and externally.
- the internal configuration includes, in particular, the parameterization of process modules 1 to 5, parameter values being transferable from the higher-level controller 17 or a programming device (not shown here) via the data connection 16 and the data bus 10 to the control units 6 m of the individual process modules 1 to 5.
- the internal configuration includes settings that can be made via process elements 24 on process modules 1 to 5.
- the external configuration here means the integration of the individual process modules 1 to 5 m in the process system. In addition to the selection and sequence of process modules 1 to 5, this also includes the configurations of the channels 13 m regions 14 of the connection of the fluid bus 12 with the Fluidempond 7 m the individual process modules 1 to 5.
- the respective channel configuration can thereby by the user manually, for example, by setting not shown valves in the Ver ⁇ course of the passages 13 and the channel branches to the Fluidem ⁇ units are set. 7 If the valves are designed to be controllable, their setting can also be carried out automatically by the control unit 6, the corresponding adjustment information being transferable from the higher-level control 17 to the individual control units 6 to the process modules 1 to 5.
- the process modules 38, 39 and 40 each have a control unit 6 and a fluid unit 7 in accordance with the example described above, the control units 6 being connected to one another via a data bus 10 and an energy supply bus 11.
- the process modules 38, 39 and 40 are connected with their respective fluid units 7 here via adapters 41, 42 and 43 to a fluid bus 44 with a plurality of channels 45.
- adapters 41, 42 and 43 there are different interconnections between the channels of the incoming and outgoing fluid bus and the fluid ports and outlets 46 of the fluid unit 7 m in the respective process module 38 to 40.
- Each adapter, for example 43 each has a configuration entry.
- solution device 47 with an information interface to the connected process module, for example 40, for transmission information about the set channel configuration to the configuration reporting device 26 of the module-specific control unit 6.
- the corresponding information is stored here, for example, as coding on a chip 48 of the adapter 43, so that the information can be read out by the control unit 6.
- the process modules 49 and 50 each have a control unit 6 and a fluid unit 7 in accordance with the examples described above, the control units 6 in turn being connected to one another via a data bus 10 and a power supply bus 11.
- the fluid units 7 are connected to fluid bus sections 51 and 52 formed within the process modules 49 and 50, the fluid bus sections 51 and 52 of all process modules 49 and 50 being lined up forming the fluid bus 53 of the process system.
- the channels 56 of the fluid bus 53 are configured here with the aid of configuration modules 54 and 55, which can be added to the series of process modules 49, 50 between them. Depending on the configuration module 54 or 55 used, there is a different interconnection of the channels 56 of adjacent process modules 49 and 50.
- the configuration modules 54 and 55 each have their own configuration message device 57 connected to the data bus 10 for transmitting information about the channel configuration set the higher-level controller 17. As indicated by dashed lines, this information can alternatively also be coded in a chip 58 according to the example shown in FIG. 2
- Information interfaces 59 are transmitted to the configuration reporting devices 26 of the immediately adjacent process modules 49 and 50, respectively.
- a device 60 is connected to the data connection 16, which device is used to generate and provide information about the desired Configurations of the process modules 1 to 5, or 38 to 40 m Figure 2 and 49, 50 m Figure 3 is used.
- a simulation device 62 information and technical simulation of the process system to be executed m the process due to predetermined Informa ⁇ functions to be executed on the process and on the basis of given information on the purpose for related disposal process modules.
- This information is part m a storage device 61 stored, can be retrieved in part from external data sources, such as Internet data sources, and in part by the user input 60 m Simula ⁇ tion device.
- the information about the available process modules and the possibilities of their configuration are contained in the storage device 61.
- a suitable selection of process modules for example 1 to 5 and their target configurations, can be determined at least partially automatically by means of the simulation device 60, with the information technology process model obtained thereby being able to simulate the process to be carried out, including the simulation of errors and dangerous states is.
- the information determined in this way about the suitable selection of process modules and their target configuration is displayed within the simulation device 60 or, for example, on the visualization unit 18 of the higher-level control 17 as a process system image or in some other way, so that the visualized information is used to build up the process system the process modules can be done.
- the process modules are configured partly manually by the user according to the visualized information about the target configurations and partly automatically by transferring the target configurations as setting values (parameter values) to the control units 6 m the process modules 1 to 5.
- the actual configurations set by the configuration notification messages 26 of the individual process modules 1 to 5 are applied transfer the higher-level control 17 and compare it there with the target configurations supplied by the simulation device 60, deviations being shown on the visualization device 18. This comparison can also be carried out in the process system during the process flow, in order to be able to recognize configuration changes which have been made during the process flow or which have arisen due to errors and, if appropriate, to be able to trigger an alarm.
- FIG. 4 illustrates the process simulation m of the simulation device 62 on the basis of a simplified flow diagram.
- Information 63 about the m process used and produced chemicals, including their response behavior and information 64 about the stationary for grouting Listemoudule and its configurability a ⁇ A are supplied to integrated Modeil Struktur 65 em process model provides 65th Information about the structure of the process system and about the target configurations of the process modules 67 are part of the process module.
- Target configurations 67 are changed in a targeted manner before they are transferred as target data 69 to this higher-level control.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Programmable Controllers (AREA)
Abstract
Bei einem modularen automatisierten Prozesssystem mit zur automatisierten Abarbeitung eines Prozesses konfigurierbaren und jeweils vorgegebenen Teilprozesse abarbeitenden Prozessmodulen, die über eine Datenverbindung an einer übergeordneten Steuerung angeschlossen sind, weisen die Prozessmodule (1 bis 5) Konfigurationsmeldeeinrichtungen (26) zur Bereitstellung von über die Datenverbindung (16) lesbaren Informationen über die eingestellten Ist-Konfigurationen auf; die übergeordnete Steuerung (17) ist an einer Einrichtung (60) zur Bereitstellung von Informationen über einzustellende SollKonfigurationen der Prozessmodule (1 bis 5) angeschlossen und ermittelt Abweichungen zwischen den Ist-Konfigurationen und den Soll-Konfigurationen.
Description
Beschreibung
Modulares automatisiertes Prozesssystem
Aus der US-A-5 083 364 ist ein System zur Herstellung von Halbleitersubstraten bekannt, das aus mehreren aneinander gereihten Prozessmodulen besteht. Die Prozessmodule werden über einen gemeinsamen Medienbus mit Daten, Energie und benö¬ tigten Chemikalien, Gasen und Flüssigkeiten versorgt; die Entsorgung der Fluide erfolgt ebenfalls über den Medienbus. Mindestens eines der Prozessmodule ist für die Einspeisung der Fluide in den Fluidbus bzw. die Entsorgung der Fluide ausgebildet. Der Medienbus weist elektrische Leitungen für die Daten- und Energieübertragung und unterschiedliche Rohr- leitungen für die verschiedenen Fluide auf. In einem durch die Größe der Prozessmodule vorgegebenen Rasterabstand sind entlang des Medienbusses Anschlusskästen mit elektrischen Anschlüssen und Fluidanschlüssen vorgesehen, an denen die einzelnen Prozessmodule mit entsprechenden Gegenanschlüssen anschließbar sind. Die Fluidanschlüsse sind mit selbstschließenden Ventilen ausgestattet, die bei nicht angeschlos¬ senem Prozessmodul die betreffenden Fluidanschlüsse nach außen abdichten. Innerhalb des bekannten Systems können daher je nach Anforderung einzelne Prozessmodule auf vergleichswei- se einfache Weise hinzugefügt, entfernt oder ausgetauscht werden.
Aus der EP-A-0 303 565 ist ein System zur Herstellung insbesondere eines chemischen Produktes bekannt. Die unterschied- liehen Herstellungsschritte erfolgen in unterschiedlichen feststehenden oder mobilen Prozessmodulen, die jeweils eine Steuerungseinheit und eine Chemieeinheit umfassen, wobei innerhalb der Chemieeinheit der betreffende Herstellungsschritt gesteuert durch die Steuerungseinheit ausgeführt wird. Die Steuerungseinheiten der unterschiedlichen Prozessmodule sind über Datenleitungen an einer übergeordneten Steuerung in Form eines Prozessleitsystems angeschlossen. Die
Chemieeinheiten innerhalb der Prozessmodule werden individuell über Ver- und Entsorgungsleitungen mit den bei der Herstellung benotigten bzw. anfallenden Stoffen versorgt bzw. entsorgt .
Gegenstand einer alteren deutschen Patentanmeldung mit dem amtlichen Aktenzeichen 199 54 855.2 ist ein System zur automatisierten Behandlung von Fluiden mit aneinanderreihbaren, austauschbaren Prozessmodulen, die sowohl über einen gemeinsamen Datenbus als auch über einen mehrkanaligen ge¬ meinsamen Fluidbus miteinander verbunden sind. Die Konfiguration zumindest eines Teils der Kanäle des Fluidbusses m den Bereichen seiner Verbindung mit den einzelnen Prozessmodulen ist einstellbar, wobei Konfigurationsmeldeeinrichtungen Informationen ber die eingestellten Ist-Konflgurationen über den Datenbus an eine übergeordnete Steuerung des Systems melden.
Der Erfindung liegt die Aufgabe zugrunde, m einem modularen automatisierten Prozesssystem, insbesondere m einem chemischen oder biologischen Mikrosystem einen sicheren Prozessablauf zu gewahrleisten.
Gemäß der Erfindung wird die Aufgabe durch das m Anspruch 1 angegebene modulare automatisierte Prozesssystem gelost.
Vorteilhafte Weiterbildungen des erfmdungsgemaßen Prozesssystems sind den Unteranspruchen zu entnehmen.
Bei dem erfmdungsgemaßen Prozesssystem werden die jeweils eingestellten Ist-Konflgurationen der Prozessmodule an die übergeordnete Steuerung gemeldet, die die Ist-Konflgurationen mit Soll-Konflgurationen vergleicht und Abweichungen beispielsweise durch visuelle Ausgabe oder m Form von Alarmen darstellt. Die Konfigurationen können dabei sowohl innere Einstellungen der Prozessmodule, insbesondere die jeweils eingestellten Parameter, als auch die äußeren Verbindungen
der Prozessmodule untereinander umfassen. Unter den äußeren Verbindungen ist dabei insbesondere der Austausch von im Rahmen der Abarbeitung des Prozesses zu behandelnden Stoffen zwischen den Prozessmodulen zu verstehen. Bei einem Prozess- syste mit mehrkanaligen Fluidverb dungen, z.B. einem Fluidbus, sind dies die Konfigurationen des Fluidbusses den Bereichen seiner Verbindung mit den Prozessmodulen, wobei e nach eingestellter Konfiguration unterschiedliche Fluidanschlüsse der Prozessmodule mit unterschiedlichen Fluidkanalen des Fluidbusses verbunden sein können.
Vorzugsweise ist zumindest ein Teil der Konfigurationen, insbesondere die inneren Einstellungen, also beispielsweise die Parameter, der Prozessmodule durch Übertragung von Em- Stellinformationen, hier z.B. die Parameterwerte, von der übergeordneten Steuerung oder einem Programmiergerat über die Datenverbindung an die Prozessmodule automatisch einstellbar. Wenn die Kanäle der Fluidverbmdungen ber steuerbare Ventile an die Fluidanschlüsse der Prozessmodule angeschlossen sind, kann auch die Konfiguration der Fluidverbmdungen zwischen den Prozessmodulen automatisch eingestellt werden. Es ist aber auch möglich, dass die einzelnen Fluidverbmdungen manuell hergestellt werden, wobei dann die jeweils eingestellten Konfigurationen von den Konfigurationsmeldeeinrichtungen der Prozessmodule erkannt und an die übergeordnete Steuerung gemeldet werden.
Die Informationen über die einzustellenden Soll-Konflgurationen der Prozessmodule werden vorzugsweise durch eine Simu- lationsemπchtung generiert, die den abzuarbeitenden Prozess informationstechnisch, also nicht-experimentell, simuliert. Dazu erhalt die Simulationseinrichtung Informationen des abzuarbeitenden Prozesses, also beispielsweise Angaben über die Chemikalien, welche m einem Reaktormodul miteinander reagieren sollen, und darüber hinaus Informationen über die zu Verfugung stehenden Prozessmodule. Dabei kann die Simulationseinrichtung den Anwender bei der Auswahl und Konfigura-
tion der Prozessmodule unterstützen oder aufgrund von Zugriff auf gespeichertes Expertenwissen selbständig eine Auswahl und Konfiguration der jeweils benotigten Prozessmodule vornehmen. Es entsteht somit ein informationstechnisches Modell des auf- zubauenden modularen Prozesssystems, mit dem sich der Prozessverlauf und gegebenenfalls auch Abweichungen davon, ins¬ besondere gefahrliche Prozesszustande, simulieren lassen. Auf diese Weise lasst sich schließlich eine geeignete Auswahl und Konfiguration der Prozessmodule zum Aufbau des Prozesssystems finden. Nach dem Aufbau des Prozesssystems werden die Ist- Konflgurationen der Prozessmodule mit den durch die Simulationseinrichtung gelieferten Soll-Konflgurationen verglichen, so dass Fehler rechtzeitig erkannt werden können. Soweit, wie oben bereits erwähnt, die Konfiguration von Pro- zessmodulen automatisch erfolgen kann, werden die von der Simulationseinrichtung gelieferten Informationen über die einzustellenden Soll-Konflgurationen als Emstellmforma- tionen an die Prozessmodule übertragen. Darüber hinaus werden die Informationen über die einzustellenden Soll-Konflguratio- nen insbesondere auch im Hinblick auf die jeweils manuell vorzunehmenden Konfigurationen, vorzugsweise auf einer Visua- lisierungsemheit, beispielsweise einem Monitor dargestellt.
Zur weiteren Erläuterung der Erfindung wird im folgenden auf die Figuren der Zeichnung Bezug genommen; im einzelnen zeigen
Figur 1 ein Ausfuhrungsbeispiel des erfmdungsgemaßen modularen Prozesssystems m Form eines vereinfachten Blockschaltbildes, Figur 2 ein zweites Ausfuhrungsbeispiel des erfmdungsgemaßen Prozesssystems sowie Figur 3 ein drittes Ausfuhrungsbeispiel und Figur 4 ein Beispiel für die Ermittlung und Auswahl der zu verwendenden Prozessmodule durch eine Simulations- einrichtung.
Figur 1 zeigt ein modulares automatisiertes Prozesssystem zur automatisierten Behandlung von Fluiden, z.B. unterschiedliche Flüssigkeiten oder Gase. Unter Behandlung ist z.B. die Analy¬ se der Fluide und/oder die Synthese durch chemische Reaktio- nen von Fluiden einschließlich der dazu erforderlichen Neben¬ funktionen wie Aufbereiten, Mischen, Filtrieren, Forderung oder Druckaufbau mittels Pumpen, Erwärmung, Verdampfung usw. zu verstehen. Das Prozesssystem besteht aus unterschiedlichen aneinandergereihten Prozessmodulen 1, 2, 3, 4 und 5, denen Teilprozesse automatisiert ausgeführt werden. Bei den Prozessmodulen 1 bis 5 kann es sich dementsprechend um verschiedenartige Analysenmodule, Reaktormodule mit beispielsweise Mikroreaktoren, Pumpenmodule, Filtermodule, Energiever- sorgungsmodule, Fluidversorgungs- und -entsorgungsmodule usw. handeln. Jedes Prozessmodul 1 bis 5 weist hier jeweils eine Steuerungseinheit 6 und eine Fluidemheit 7 auf, wobei der eigentliche Teilprozess innerhalb der Fluidemheit 7 m Abhängigkeit von Steuersignalen 8 der Steuerungseinheit 6 ausgef hrt wird. In der Fluidemheit 7 aufgenommene Prozess- Signale 9, z.B. Druckwerte oder Analysenwerte, werden an die Steuerungseinheit 6 übertragen. Die Steuerungseinheiten 6 m unterschiedlichen Prozessmodulen 1 bis 5 sind über einen Datenbus 10 und einen Energieversorgungsbus 11 miteinander verbunden. Die Fluidemheiten 7 sind über einen Fluidbus 12 miteinander verbunden, der aus einer Mehrzahl von parallelen Kanälen 13 besteht, m denen die jeweils benotigten Fluide gefuhrt werden. Die Konfiguration der Kanäle 13 ist im Bereich 14 der Verbindung des Fluidbusses 12 mit den einzelnen Fluidemheiten 7 m den Prozessmodulen 1 bis 5 einstellbar.
Die Prozessmodule 1 bis 5 können zusatzlich zu den Verbindungen mit dem Datenbus 10, dem Energieversorgungsbus 11 und dem Fluidbus 12 weitere externe Anschlüsse aufweisen. Bei dem gezeigten Beispiel dient das Prozessmodul 1 zur Bereitstel- lung von Grundfunktionen für das Prozesssystem, wozu die
Steuerungseinheit 6 an einer externen Stromversorgungsquelle 15 und über eine Datenverbindung 16, z.B. einen externen Bus,
an einer übergeordneten Steuerung 17, beispielsweise einem Leitsystem, mit Visualisierungsemheit 18 angeschlossen ist. Die Datenverbindung 16 kann alternativ auch als unmittelbare Fortfuhrung des Datenbusses 10 ausgebildet sein. An der Fluidemheit 7 des Prozessmoduls 1 sind externe Fluidlei- tungen 19 und 20 zu Einspeisung bzw. zum Abfuhren benötigter Fluide das Prozesssystem angeschlossen. Für die Energieversorgung kommt alternativ auch ein Batterie- oder Brennstoffzellenmodul m Betracht. Bei dem Prozessmodul 2 erfolgt die Einspeisung eines Fluids m das Prozesssystem über einen an das Prozessmodul ansteckbaren Versorgungsbehalter 21, wahrend z.B. an dem Prozessmodul 5 ein Entsorgungsbehalter 22 zur Aufnahme eines Fluids aus dem Prozesssystem angesteckt
Wie hier schematisch dargestellt ist, sind der Datenbus 10, der Energieversorgungsbus 11 und der Fluidbus 12 jeweils aus internen Busabschnitten innerhalb der aneinandergereihten Prozessmodule 1 bis 5 gebildet, wobei die Prozessmodule 1 bis 5 auf einem gemeinsamen Trager 23, beispielsweise einer Hutschiene, nebeneinander gehalten sind. Durch Aufschieben oder Aufstecken der jeweils benotigten Prozessmodule 1 bis 5 auf den Trager 23 werden so die Busse 10 bis 12 gebildet.
Die Prozessmodule 1 bis 5 sind sowohl nach innen als auch nach außen konfigurierbar. Die innere Konfiguration umfasst dabei insbesondere die Parametrierung der Prozessmodule 1 bis 5, wobei Parameterwerte von der übergeordneten Steuerung 17 oder einem hier nicht gezeigten Programmiergerat aus über die Datenverbindung 16 und den Datenbus 10 an die Steuerungseinheiten 6 m den einzelnen Prozessmodulen 1 bis 5 übertragbar sind. Darüber hinaus umfasst die innere Konfiguration Einstellungen, die über Bedienelemente 24 an den Prozessmodulen 1 bis 5 vorgenommen werden können. Unter der äußeren Konfigu- ration ist hier die Einbindung der einzelnen Prozessmodule 1 bis 5 m das Prozesssystem zu verstehen. Dazu gehören neben der Auswahl und Reihenfolge der Prozessmodule 1 bis 5 auch
die Konfigurationen der Kanäle 13 m den Bereichen 14 der Verbindung des Fluidbusses 12 mit den Fluidemheiten 7 m den einzelnen Prozessmodulen 1 bis 5. Die jeweilige Kanalkonfiguration kann dabei von dem Anwender manuell beispielsweise durch Einstellung von hier nicht gezeigten Ventilen im Ver¬ lauf der Kanäle 13 und der Kanalabzweigungen zu dem Fluidem¬ heiten 7 eingestellt werden. Sind die Ventile steuerbar ausgebildet, so kann deren Einstellung auch automatisch durch die Steuerungseinheit 6 erfolgen, wobei die entsprechenden Emstellmformationen von der übergeordneten Steuerung 17 aus an die einzelnen Steuerungseinheiten 6 den Prozessmodulen 1 bis 5 übertragbar sind. Die jeweils eingestellte Kanalkon- figuration wird mittels einer Konfigurationserfassungsem- richtung 25 erfasst und zusammen mit allen anderen Informa- tionen über die innere und äußere Konfiguration des betref¬ fenden Prozessmoduls 1 bis 5 m einer m der Steuerungsem- heit 6 integrierten Konflgurationsmeldeemrichtung 26 hinterlegt, von wo aus diese Informationen durch die übergeordnete Steuerung 7 über den Datenbus 10 und die Datenverbindung 16 abrufbar sind.
Bei dem m Figur 2 ausschnittsweise gezeigten Beispiel des erfmdungsgemaßen Prozesssystems weisen die Prozessmodule 38, 39 und 40 entsprechend den zuvor beschriebenen Beispiel jeweils eine Steuerungseinheit 6 und eine Fluidemheit 7 auf, wobei die Steuerungseinheiten 6 über ein Datenbus 10 und ein Energieversorgungsbus 11 untereinander verbunden sind. Die Prozessmodule 38, 39 und 40 sind mit ihren jeweiligen Fluidemheiten 7 hier über Adapter 41, 42 und 43 an einen Fluidbus 44 mit einer Mehrzahl von Kanälen 45 angeschlossen. Je nach verwendetem Adapter 41 bis 43 ergeben sich unterschiedliche Verschaltungen zwischen den Kanälen des ankommenden und abgehenden Fluidbusses und den Fluidem- und ausgangen 46 der Fluidemheit 7 m dem jeweiligen Prozessmodul 38 bis 40. Je- der Adapter, z.B. 43, weist jeweils eine Konfigurationserfas- sungsemrichtung 47 mit einer Informationsschnittstelle zu dem angeschalteten Prozessmodul, z.B. 40, zu Übertragung
einer Information über die eingestellte Kanalkonflguration an die Konfigurationsmeldeeinrichtung 26 der moduleigenen Steuerungseinheit 6 auf. Die entsprechende Information ist hier z.B. als Codierung einem Chip 48 des Adapters 43 abgelegt, so dass die Information von der Steuerungseinheit 6 ausgelesen werden kann.
Bei dem m Figur 3 gezeigten Beispiel des erfmdungsgemaßen Prozesssystems weisen die Prozessmodule 49 und 50 ent- sprechend den zuvor beschriebenen Beispielen jeweils eine Steuerungseinheit 6 und eine Fluidemheit 7 auf, wobei die Steuerungseinheiten 6 wiederum über einen Datenbus 10 und einen Energieversorgungsbus 11 untereinander verbunden sind. Die Fluidemheiten 7 sind an innerhalb der Prozessmodule 49 und 50 ausgebildeten Fluidbusabschnitten 51 bzw. 52 angeschlossen, wobei die Fluidbusabschnitte 51 bzw. 52 aller aneinandergereihten Prozessmodule 49 und 50 den Fluidbus 53 des Prozesssystems bilden. Die Konfiguration der Kanäle 56 des Fluidbusses 53 erfolgt hier mit Hilfe von Konfigura- tionsmodulen 54 und 55, die m die Reihe der Prozessmodule 49, 50 zwischen diesen emfugbar sind. Je nach verwendetem Konfigurationsmodul 54 bzw. 55 ergibt sich eine unterschiedliche Verschaltung der Kanäle 56 benachbarter Prozessmodule 49 und 50. Die Konflgurationsmodule 54 und 55 weisen hier jeweils eine an den Datenbus 10 angeschlossene eigene Konfi- gurationsmeldeemπchtung 57 zu Übertragung von Informationen über die eingestellte Kanalkonfiguration an die übergeordnete Steuerung 17 auf. Wie gestrichelt angedeutet ist, können diese Informationen alternativ auch entsprechend dem m Figur 2 gezeigten Beispiel als Codierung m einem Chip 58 über
Informationsschnittstellen 59 an die Konflgurationsmeldeem- πchtungen 26 der unmittelbar benachbarten Prozessmodule 49 bzw. 50 übertragen werden.
Wie Figur 1 zeigt, ist an der Datenverbindung 16 eine Einrichtung 60 angeschlossen, die zur Generierung und Bereitstellung von Informationen über die einzustellenden Soll-
Konfigurationen der Prozessmodule 1 bis 5, bzw. 38 bis 40 m Figur 2 und 49, 50 m Figur 3 dient. Bei der Einrichtung 60 handelt es sich hier um eine Simulationseinrichtung 62 zur informationstechnischen Simulation des m dem Prozesssystem abzuarbeitenden Prozesses aufgrund von vorgegebenen Informa¬ tionen über den abzuarbeitenden Prozess sowie aufgrund von vorgegebenen Informationen über die hierfür zur Verfugung stehenden Prozessmodule. Diese Informationen sind zum Teil m einer Speichereinrichtung 61 hinterlegt, können zum Teil von externen Datenquellen, z.B. Internet-Datenquellen, abgerufen werden und werden zum Teil durch den Anwender m die Simula¬ tionseinrichtung 60 eingegeben. Insbesondere die Informationen über die zu Verfugung stehenden Prozessmodule und die Möglichkeiten ihrer Konfigurierung sind in der Speicherem- richtung 61 enthalten. Aufgrund dieser Informationen kann mittels der Simulationseinrichtung 60 zumindest teilautoma- tisch eine geeignete Auswahl von Prozessmodulen, z.B. 1 bis 5 und deren Soll-Konflgurationen bestimmt werden, wobei mit dem dabei erhaltenen informationstechnischen Prozessmodell eine Simulation des durchzuführenden Prozesses einschließlich der Simulation von Fehlern und Gefahrenzustanden möglich ist. Die so ermittelten Informationen über die geeignete Auswahl von Prozessmodulen und deren Soll-Konflguration wird innerhalb der Simulationseinrichtung 60 oder beispielsweise auf der Visualisierungsemheit 18 der übergeordneten Steuerung 17 als Prozesssystem-Bild oder sonstiger Weise dargestellt, so dass anhand dieser visualisierten Informationen ein Aufbau des Prozesssystems aus den Prozessmodulen erfolgen kann. Die Konfiguration der Prozessmodule, z.B. 1 bis 5, erfolgt dabei zum Teil manuell durch den Anwender entsprechend den visualisierten In ormationen über die Soll-Konflgurationen und zu einem anderen Teil automatisch durch Übertragung der Soll- Konfigurationen als Einstellwerte (Parameterwerte) an die Steuerungseinheiten 6 m den Prozessmodulen 1 bis 5. Nach Aufbau und Konfiguration des Prozesssystems werden die eingestellten Ist-Konflgurationen von den Konflgurations- meldeemπchtungen 26 der einzelnen Prozessmodule 1 bis 5 an
die übergeordnete Steuerung 17 übertragen und dort mit den von der Simulationseinrichtung 60 gelieferten Soll-Konfi- gurationen verglichen, wobei Abweichungen auf der Visualisie- rungsemπchtung 18 dargestellt werden. Dieser Vergleich kann auch wahrend des Prozessablaufs m dem Prozesssystem durchgeführt werden, um wahrend des Prozessablaufs vorgenommene oder aufgrund von Fehlern entstehende Konfigurationsanderungen zu erkennen und gegebenenfalls einen Alarm auslosen zu können.
Figur 4 verdeutlicht die Prozesssimulation m der Simulationseinrichtung 62 anhand eines vereinfachten Ablaufdiagramms. Informationen 63 über die m dem Prozess verwendeten und erzeugten Chemikalien einschließlich ihres Reaktionsverhaltens und Informationen 64 über die zur Verfugung stehenden Prozessmoudule und ihre Konfigurierbarkeit werden einer Ein¬ heit zu Modeilbildung 65 zugeführt, die em Prozessmodell 65 liefert. Informationen über den Aufbau des Prozesssystems und über die Soll-Konflgurationen der Prozessmodule 67 sind dabei Bestandteil des Prozessmoduls. Als Ergebnis von mforma- tionstechnischen Simulationen des Prozesses 68 können die
Soll-Konflgurationen 67 gezielt verändert werden, bevor sie als Soll-Daten 69 an diese übergeordnete Steuerung übergeben werden.
Claims
1. Modulares automatisiertes Prozesssystem mit zur auto¬ matisierten Abarbeitung eines Prozesses konfigurierbaren und jeweils vorgegebene Teilprozesse abarbeitenden Prozessmodulen (1 bis 5; 38 bis 40; 49, 50) , die über eine Datenverbindung
(16) an einer übergeordneten Steuerung (17) angeschlossen sind, wobei die Prozessmodule (1 bis 5; 38 bis 40; 49, 50) Konflgurationsmeldeemrichtungen (26) zur Bereitstellung von über die Datenverbindung (16) lesbaren Informationen über die eingestellten Ist-Konflgurationen aufweisen, wobei die übergeordnete Steuerung (17) an einer Einrichtung (60) zur Bereitstellung von Informationen über einzustellende Soll- Konfigurationen der Prozessmodule (1 bis 5; 38 bis 40; 49, 50) angeschlossen ist und wobei die übergeordnete Steuerung
(17) Abweichungen zwischen den Ist-Konflgurationen und den Soll-Konflgurationen ermittelt und bereitstellt.
2. Prozesssystem nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t , dass die Konfigurationen innere
Einstellungen der Prozessmodule (1 bis 5; 38 bis 40; 49, 50) und/oder äußere Verbindungen der Prozessmodule (1 bis 5; 38 bis 40; 49, 50) untereinander umfassen.
3. Prozesssystem nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die äußeren Verbindungen den Austausch von im Rahmen der Abarbeitung des Prozesses zu behandelnden Stoffen zwischen den Prozessmodulen (1 bis 5; 38 bis 40; 49, 50) umfassen.
4. Prozessystem nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass die äußeren Verbindungen konfigurierbare mehrkanalige Fluidverbmdungen (12; 44; 53) zwischen den Prozessmodulen (1 bis 5; 38 bis 40; 49, 50) umfassen.
5. Prozesssystem nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zumindest em Teil der Konfigurationen, insbesondere die inneren Einstellungen der Prozessmodule (1 bis 5; 38 bis 40; 49, 50), durch Übertragung von Emstellmformationen über die Datenverbin¬ dung (10) an die Prozessmodule (1 bis 5; 38 bis 40; 49, 50) automatisch einstellbar ist.
6. Prozessystem nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Ein¬ richtung (60) zur Bereitstellung von Informationen über einzustellende Soll-Konflgurationen eine Simulationseinrichtung (62) zur informationstechnischen Simulation des abzuarbeitenden Prozesses aufgrund von vorgegebenen Infor- mationen über den abzuarbeitenden Prozess und aufgrund von vorgegebenen Informationen über die dafür zu Verfugung stehenden Prozessmodule aufweist und dass die Simulationseinrichtung im Rahmen der Simulation die Informationen über die einzustellenden Soll-Konflgurationen der Prozessmodule (1 bis 5; 38 bis 40; 49, 50) generiert.
7. Automatisierungssystem nach Anspruch 5 und 6, d a - d u r c h g e k e n n z e i c h n e t , dass zur automatischen Einstellung von Konfigurationen der Prozessmodule (1 bis 5; 38 bis 40; 49, 50) die entsprechenden Informationen über die einzustellenden Soll-Konflgurationen als Emstellmformationen an die Prozessmodule (1 bis 5; 38 bis 40; 49, 50) übertragen werden.
8. Prozesssystem nach Anspruch 6 oder 7, d a d u r c h g e k e n n z e i c h n e t , dass die Informationen über die einzustellenden Soll-Konflgurationen der Prozessmodule (1 bis 5; 38 bis 40; 49, 50) auf einer Visualisierungsemheit (18) anzeigbar sind.
9. Prozesssystem nach einem der Ansprüche 6 bis 8, d a - d u r c h g e k e n n z e i c h n e t , dass die Simula- tionseinrichtung (62) dazu ausgebildet ist, aufgrund von Informationen über den abzuarbeitenden Prozess die Auswahl von dafür geeigneten Prozessmodulen (1 bis 5; 38 bis 40; 49, 50) aus einer vorgegebenen Menge von unterschiedlichen zur Verfügung stehenden Prozessmodulen und deren Konfiguration automatisch vorzunehmen oder einen Anwender bei der Auswahl und Konfiguration zu unterstützen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10015423.9 | 2000-03-28 | ||
DE2000115423 DE10015423A1 (de) | 2000-03-28 | 2000-03-28 | Modulares automatisiertes Prozesssystem |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001073823A2 true WO2001073823A2 (de) | 2001-10-04 |
WO2001073823A3 WO2001073823A3 (de) | 2002-02-14 |
Family
ID=7636723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/001164 WO2001073823A2 (de) | 2000-03-28 | 2001-03-26 | Modulares automatisiertes prozesssystem |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10015423A1 (de) |
WO (1) | WO2001073823A2 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1336432A2 (de) * | 2002-02-15 | 2003-08-20 | Syrris Limited | Ein Mikroreaktor |
WO2006038014A1 (en) * | 2004-10-07 | 2006-04-13 | Glaxo Group Limited | A method |
DE102005047041B3 (de) * | 2005-09-30 | 2006-12-14 | Siemens Ag | Mikrofluidiksystem |
EP1789173A2 (de) * | 2004-04-20 | 2007-05-30 | Akribio Corp. | Multifunktionelles multireaktorinstrument für chemische synthesen |
US8216525B2 (en) | 2005-09-27 | 2012-07-10 | Siemens Aktiengesellschaft | Modular microfluidic system |
EP3318935A1 (de) * | 2016-11-08 | 2018-05-09 | ABB Schweiz AG | Verfahren zum betrieb eines prozessmoduls in einer modularen prozessanlage |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6944512B2 (en) | 2000-10-09 | 2005-09-13 | Seimens Aktiengesellschaft | Device and method for carrying out the decentralized production of desired products from different starting materials, and an automated process system |
DE20202807U1 (de) | 2002-02-22 | 2002-05-16 | Ehrfeld Mikrotechnik GmbH, 55234 Wendelsheim | Mikroreaktorsystem für die Erkennung und Kontrolle von Mikroreaktormodulen |
DE10216714A1 (de) * | 2002-04-10 | 2004-01-15 | INSTITUT FüR ANGEWANDTE CHEMIE BERLIN-ADLERSHOF E.V. | Modularer Verbindungspunkt für Einrichtungen der Mikroreaktionstechnik |
DE10323090B4 (de) * | 2003-05-16 | 2005-07-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Modulares chemisches Mikroreaktionssystem sowie Verfahren hierfür |
DE102006022558A1 (de) * | 2006-05-15 | 2007-11-22 | Siemens Ag | Technische, insbesondere verfahrenstechnische Anlage |
DE102009030853A1 (de) * | 2009-06-26 | 2010-12-30 | Honeywell Technologies S.A.R.L. | Ein/Ausgabe-Einheit |
DE102009042762A1 (de) * | 2009-09-25 | 2011-03-31 | Abb Ag | Verfahren und Anordnung zur Unterstützung der Einrichtung, der Inbetriebnahme und des Tests einer Schaltanlage |
DE102010026494A1 (de) | 2010-07-07 | 2012-01-12 | Abb Ag | Verfahren zur Konfigurierung einer Steuerungseinrichtung |
DE102013020544A1 (de) * | 2013-12-12 | 2015-06-18 | Erwin Quarder Systemtechnik Gmbh | Verfahren zum Betreiben einer Automatisierungsanlage |
DE102017202199A1 (de) | 2017-02-13 | 2018-08-16 | Robert Bosch Gmbh | Gerät und verfahren zur inbetriebnahme und/oder wartung einer gesteuerten maschine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5452201A (en) * | 1993-08-24 | 1995-09-19 | Allen-Bradley Company, Inc. | Industrial controller with highly distributed processing |
EP0747795A2 (de) * | 1995-06-07 | 1996-12-11 | Xerox Corporation | Ein System zum generischen Beschreiben und zum Planen der Betriebsweise eines modularen Druckgeräts |
WO1997012301A1 (de) * | 1995-09-25 | 1997-04-03 | Siemens Aktiengesellschaft | Entwurfsverfahren für die anlagentechnik und rechnergestütztes projektierungssystem zur verwendung bei diesem verfahren |
WO2000004428A1 (de) * | 1998-07-15 | 2000-01-27 | OCé PRINTING SYSTEMS GMBH | Verfahren und einrichtung zur konfiguration eines rechnergestützten systems |
DE19838469A1 (de) * | 1998-08-25 | 2000-03-02 | Abb Research Ltd | Prozeßsteuer- und Regelsystem mit verteilter Verarbeitung |
WO2001036085A1 (de) * | 1999-11-15 | 2001-05-25 | Siemens Aktiengesellschaft | System zur automatisierten behandlung von fluiden, mit aneinanderreihbaren, austauschbaren prozessmodulen |
-
2000
- 2000-03-28 DE DE2000115423 patent/DE10015423A1/de not_active Ceased
-
2001
- 2001-03-26 WO PCT/DE2001/001164 patent/WO2001073823A2/de active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5452201A (en) * | 1993-08-24 | 1995-09-19 | Allen-Bradley Company, Inc. | Industrial controller with highly distributed processing |
EP0747795A2 (de) * | 1995-06-07 | 1996-12-11 | Xerox Corporation | Ein System zum generischen Beschreiben und zum Planen der Betriebsweise eines modularen Druckgeräts |
WO1997012301A1 (de) * | 1995-09-25 | 1997-04-03 | Siemens Aktiengesellschaft | Entwurfsverfahren für die anlagentechnik und rechnergestütztes projektierungssystem zur verwendung bei diesem verfahren |
WO2000004428A1 (de) * | 1998-07-15 | 2000-01-27 | OCé PRINTING SYSTEMS GMBH | Verfahren und einrichtung zur konfiguration eines rechnergestützten systems |
DE19838469A1 (de) * | 1998-08-25 | 2000-03-02 | Abb Research Ltd | Prozeßsteuer- und Regelsystem mit verteilter Verarbeitung |
WO2001036085A1 (de) * | 1999-11-15 | 2001-05-25 | Siemens Aktiengesellschaft | System zur automatisierten behandlung von fluiden, mit aneinanderreihbaren, austauschbaren prozessmodulen |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1336432A2 (de) * | 2002-02-15 | 2003-08-20 | Syrris Limited | Ein Mikroreaktor |
EP1336432A3 (de) * | 2002-02-15 | 2006-01-11 | Syrris Limited | Ein Mikroreaktor |
EP1789173A2 (de) * | 2004-04-20 | 2007-05-30 | Akribio Corp. | Multifunktionelles multireaktorinstrument für chemische synthesen |
EP1789173A4 (de) * | 2004-04-20 | 2008-04-23 | Akribio Corp | Multifunktionelles multireaktorinstrument für chemische synthesen |
WO2006038014A1 (en) * | 2004-10-07 | 2006-04-13 | Glaxo Group Limited | A method |
US8216525B2 (en) | 2005-09-27 | 2012-07-10 | Siemens Aktiengesellschaft | Modular microfluidic system |
DE102005047041B3 (de) * | 2005-09-30 | 2006-12-14 | Siemens Ag | Mikrofluidiksystem |
EP3318935A1 (de) * | 2016-11-08 | 2018-05-09 | ABB Schweiz AG | Verfahren zum betrieb eines prozessmoduls in einer modularen prozessanlage |
Also Published As
Publication number | Publication date |
---|---|
DE10015423A1 (de) | 2001-10-11 |
WO2001073823A3 (de) | 2002-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19954855C1 (de) | System zur automatisierten Behandlung von Fluiden, mit einanderreihbaren, austauschbaren Prozeßmodulen | |
DE19917398C2 (de) | Modulares chemisches Mikrosystem | |
WO2001073823A2 (de) | Modulares automatisiertes prozesssystem | |
DE102004025875B4 (de) | Funktionsblock mit Boolescher Logik | |
DE69926519T2 (de) | Strukturierungssystem zur überwachung und steuerung der ausrüstung einer anlage | |
EP2012201B1 (de) | Verfahren zum Programmieren einer Sicherheitssteuerung | |
EP0906596B1 (de) | Prozessautomatisierungssystem | |
DE10106558C1 (de) | System zur automatisierten Behandlung von Fluiden, mit aneinanderreihbaren, austauschbaren Prozessmodulen | |
DE19718284C2 (de) | Verfahren und Vorrichtung zum Überwachen einer Anlage mit mehreren Funktionseinheiten | |
EP2315088B1 (de) | Sicherheitssteuerung | |
EP2098926B1 (de) | Verfahren und Vorrichtung zum Programmieren und/oder Konfigurieren einer Sicherheitssteuerung | |
EP2356527B1 (de) | Sicherheitssteuerung und verfahren zum steuern einer automatisierten anlage mit einer vielzahl von anlagenhardwarekomponenten | |
EP0597561A1 (de) | Übertragungssystem zum Datenaustausch | |
EP0413044B1 (de) | Flexibles Automatisierungssystem für variable industrielle Prozesse | |
WO2014072340A1 (de) | Produktionsanlage eines chemischen oder pharmazeutischen produktes | |
EP2045678B1 (de) | Transparenter handover für mobile Komponenten eines Automatisierungssystems | |
DE102014100970A1 (de) | Verfahren und Vorrichtung zum sicheren Abschalten einer elektrischen Last | |
DE102013108910B4 (de) | Elektromagnetventilsteuervorrichtung | |
EP0647891B1 (de) | Verarbeitungsmodul für ein modulares Automatisierungssystem | |
EP2557464B1 (de) | Verfahren zum Betrieb eines Automatisierungssystems | |
DE10356985A1 (de) | Datenübertragungseinrichtung | |
WO2006100296A1 (de) | Verfahrenstechnische, insbesondere mikroverfahrenstechnische anlage | |
LU500646B1 (de) | Technik zur Bereitstellung einer Diagnosefunktionalität für eine auf einer speicherprogrammierbaren Steuerung basierenden Anwendung | |
EP2093845B1 (de) | Modulare Sicherheitssteuerung | |
DE102021123596A1 (de) | Technik zur Bereitstellung einer Diagnosefunktionalität für eine auf einer speicherprogrammierbaren Steuerung basierenden Anwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |