WO2001055043A1 - Low emissivity glass - Google Patents
Low emissivity glass Download PDFInfo
- Publication number
- WO2001055043A1 WO2001055043A1 PCT/JP2001/000442 JP0100442W WO0155043A1 WO 2001055043 A1 WO2001055043 A1 WO 2001055043A1 JP 0100442 W JP0100442 W JP 0100442W WO 0155043 A1 WO0155043 A1 WO 0155043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- oxide film
- glass
- thickness
- silicon oxide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3417—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
Definitions
- the present invention relates to a low-emissivity glass applied to a window glass of a building, an anti-fog window glass of a vehicle, a frozen showcase, a liquid crystal display, a plasma display, and the like.
- this low emissivity glass As a low emissivity glass used as a window glass or the like of a building, a glass having a configuration disclosed in Japanese Patent No. 1788555 is known. As shown in FIG. 3, this low emissivity glass is formed by sequentially forming a tin oxide film as a first layer, a silicon oxide film as a second layer, and a tin oxide film as a third layer on the surface of a glass substrate. The first layer and the second layer reduce the reflection color due to the thin film of the thin film, thereby preventing color unevenness.
- methods for forming a thin film on the surface of a glass substrate include a sputtering method, a vacuum evaporation method, a CVD method, and a spray method.
- the so-called float method is used to fabricate a glass ribbon serving as a glass substrate, and a raw material gas is sprayed on the surface of the glass ribbon in a high-temperature state in the float bath or after leaving the float bath to utilize the heat energy of the glass ribbon.
- On-line CVD for forming a film by thermal decomposition or the like on the glass ribbon is known.
- the cost can be significantly reduced.
- glass produced by the float bath method is based on soda lime glass and contains an alkali such as Na.
- the Sn source gas contains halogen such as C 1, and the C 1 reacts with Na to generate a salt (NaCl).
- a low-emissivity glass comprises a glass substrate containing an alkali, a silicon oxide film as a first layer, a tin oxide film as a second layer, and a silicon oxide film as a third layer.
- a tin oxide film was sequentially formed as a fourth layer.
- the silicon oxide and tin oxide constituting each layer have a force that occupies most of S i ⁇ 2 and S n ⁇ 2 in which the ratio of S i (S n) to O is 1: 2, respectively.
- silicon oxide film By forming a silicon oxide film on the first layer, even if it is a thin film, Na Diffusion) can be prevented.
- titanium oxide and zirconium oxide can be considered in addition to silicon oxide. Since silicon oxide has almost the same refractive index as glass and does not hinder the effect of reducing the reflection color by the upper layer film (tin oxide + silicon oxide), silicon is the best material.
- the fourth layer tin oxide film contains F (fluorine). Inclusion of F (fluorine) increases conductivity, thereby lowering the emissivity of glass and improving heat insulation performance.
- the thickness of the silicon oxide film as the first layer is 1 OA or more
- the thickness of the tin oxide film as the second layer is 200 to 500 A
- the thickness of the silicon oxide film as the third layer is The thickness is 200 to 500 persons
- the thickness of the tin oxide film as the fourth layer is preferably 250 OA or more, particularly preferably in the range of 3200 A to 3800 A, and if it is about 350 A,
- the film color can be changed to a cool color.
- the thickness is set to 200 to 50 OA and the thickness of the silicon oxide film as the third layer is set to 200 to 500 A in order to reduce the interference reflection color of the thin film, and tin oxide as the fourth layer (+ F)
- the thickness of the film is more than 250 A, preferably between 3200 and 380 A.
- the vertical thickness specified in JISR 3209 “Insulated double glass” This is to satisfy the emissivity ( ⁇ ) ⁇ 0.15 ”.
- FIG. 1 is a diagram illustrating on-line CVD as an example of a method for producing a low-emissivity glass according to the present invention.
- the main part is composed of a lift roll 3, which lifts the glass in a strip form from the float bath 2, a slow cooling unit 4 arranged downstream of the float bath 2, and a spray device 5, 6, 7, 8 arranged on the float bath 2.
- a lift roll 3 which lifts the glass in a strip form from the float bath 2
- a slow cooling unit 4 arranged downstream of the float bath 2
- a spray device 5, 6, 7, 8 arranged on the float bath 2.
- the molten glass is continuously poured from the melting furnace 1 onto the float bath 2. Then, the molten glass spreads uniformly on the surface of the tin bath 2 a, forms a ribbon-shaped glass 9 having a constant width, and flows toward the outlet of the float bath 2 while being gradually cooled on the float bath 2. During this time (with a glass temperature of 600 ° C. (: 750 ° C.)), a film is formed by thermal decomposition CVD.
- a mixed gas of monosilane, ethylene, and oxygen diluted with nitrogen is ejected from a spray device 5 disposed on the float bath 2 as a Si raw material-containing gas for forming a silicon oxide film as the first layer.
- a gas mixture containing dimethyltin dichloride (steam), oxygen and water diluted with nitrogen is spouted from the spraying device 6 as a Sn material-containing gas for forming a tin oxide film as the second layer, and the spraying device 7
- the same Si material-containing gas as described above, which forms a silicon oxide film as the third layer, is ejected from the spraying device 8, and the spray material 8 forms a Sn oxide film as the fourth layer.
- a mixture of dichloride (steam), oxygen, nitrogen and hydrogen fluoride (steam) Eject gas.
- the spraying devices 5, 6, 7, 8 can be moved up and down freely so as to be able to freely adjust to the thickness of the glass or the thickness of the target coating.
- the glass In the vicinity of the outlet of the float bath 2, the glass is cooled to about 600 ° C., which is not deformed even when placed on a roll. Then, the strip glass exiting the float bath 2 is sent into the slow cooling unit 4 via the lift-out roll 3.
- silicon raw material for forming the silicon oxide film in addition to the above-mentioned monosilane, disilane, trisilane, monochlorosilane, 1,2-dimethylsilane, 1,1,2-trimethyldisilane, 1,1,2,
- a silane compound such as 2-tetramethyldisilane, tetramethylorthosilicate, tetraethylorthosilicate, or the like can be used.
- Oxidizing raw materials include oxygen, steam, dry air, carbon dioxide, carbon monoxide, and carbon dioxide. Nitrogen, ozone, etc. can be used.
- the reaction of the silane compound is suppressed until the silane compound reaches the surface of the glass substrate, and the refractive index of the silicon oxide film is controlled.
- an unsaturated hydrocarbon such as ethylene, acetylene or toluene.
- the tin raw material for forming the tin oxide film may be monobutyltin trichloride, tin tetrachloride, dibutyltin dichloride, or dioctyltin.
- examples of the fluorine raw material include hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, and chlorodifluoromethane.
- a vacuum evaporation method, a sputtering method, a coating method, or the like can be applied.
- a spray method such as a CVD method, a melt spray method, a dispersion liquid spray method, and a powder spray method.
- the raw material gas is sprayed on the glass surface on the float bath in the on-line CVD apparatus, but the CVD apparatus may be arranged on the downstream side of the float bath, that is, at a location where the cooling section is provided. .
- FIG. 2 is an enlarged cross-sectional view of the low-emissivity glass obtained by the above-mentioned on-line CVD.
- a silicon oxide film as a first layer was formed on a glass substrate by 10 OA.
- a tin oxide film as a second layer is formed thereon with a thickness of 25 OA, and a silicon oxide film as a third layer is formed thereon with a thickness of 25 OA.
- a tin oxide film as a fourth layer is formed with a thickness of 3500 A.
- Example 2 the thickness of the silicon oxide film as the first layer was set to 5 OA, and the second layer, the third layer, and the fourth layer were manufactured in the same manner as in Example 1.
- Example 3 the thickness of the silicon oxide film as the first layer was set to 10 A, and the second layer, the third layer, and the fourth layer were manufactured in the same manner as in Example 1.
- a device without the silicon oxide film of the first layer was manufactured as a comparative example.
- Example 1 Example 2
- Example 3 Comparative Example Thickness of First Layer Silicon Oxide Film (A) 100 00 501 0 0 Haze Ratio of Low-E Film (%) 0.4 0.4 1. 0 1.5
- the silicon oxide film of the first layer is 1 OA or more
- the alkali barrier function is sufficiently exhibited, and the haze ratio is 1.0% or less.
- the haze ratio becomes 1.0% or less, cloudiness (white turbidity) can be surely suppressed.
- this low-emissivity glass can be used in applications where appearance is important, such as frozen showcases and show windows.
- the first layer of the silicon oxide film has its alkali barrier function at 50 A at about 50 A, so even if it is formed too thick, it is only uneconomical. Therefore, the thickness of the first silicon oxide film is preferably from 10 to 100 A, and more preferably from 50 to 100 A.
- the glass substrates of Examples 1 and 2 had a haze ratio of 0.4%, exhibited no turbid appearance, and exhibited excellent heat insulating properties.
- the glass substrate of the comparative example had a haze ratio (haze value) of 1.5% and was turbid. If the haze exceeds 1%, the glass will appear to be dirty because it has a slightly cloudy appearance compared to regular glass. Further, it is considered that the commercial value of the window glass is lost when the haze ratio rises to about 2%.
- the haze ratio was measured using an integrating sphere light transmittance measuring device (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.). Turbidity was confirmed visually.
- HGM-2DP integrating sphere light transmittance measuring device
- low-emissivity glass is not limited to windows for buildings and displays, but can also be applied to general industrial applications such as window glasses for automobiles, frozen showcases, and the like. It is also possible to achieve higher performance by interposing a transparent conductive film or a heat radiation film.
- the silicon oxide film is formed as the first layer on the surface of the glass substrate, it is possible to prevent Na (alkali) from diffusing from the glass, and to use online CVD. Also, no NaCl is generated in the conductive film. A low-emissivity glass having a low appearance rate and a good appearance can be obtained.
- the first layer that is in direct contact with the glass substrate is made of silicon oxide, there is almost no difference in the refractive index from the glass substrate, and the effect of reducing the reflection color by the second and third layers is utilized to achieve optical A very low emissivity glass can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
A low emissivity glass, characterized in that a silicon oxide film as a first layer is formed on a glass substrate, for example, in a thickness of 100 Å, a tin oxide film as a second layer is formed on the first layer, for example, in a thickness of 250 Å, a silicon oxide film as a third layer is formed on the second layer, for example, in a thickness of 250 Å, and a tin oxide film as a forth layer is formed on the third layer, for example, in a thickness of 3500 Å. The low emissivity glass is free from the formation of NaCl in an electrically conductive film therein and has no tubidness.
Description
明細書 低放射率ガラス 技術分野 Description Low emissivity glass Technical field
本発明は建築物の窓ガラス、 車両の防曇窓ガラス、 冷凍ショーケース、 液 晶ディスプレイやプラズマディスプレイ等に適用される低放射率ガラスに 関する。 背景技術 The present invention relates to a low-emissivity glass applied to a window glass of a building, an anti-fog window glass of a vehicle, a frozen showcase, a liquid crystal display, a plasma display, and the like. Background art
建築物の窓ガラス等として用いられる低放射率ガラスとして、 特許第 1 7 8 8 5 5 5号公報に開示される構成のものが知られている。 この低放射率ガ ラスは図 3に示すように、 ガラス基板の表面に、 第 1層として酸化錫膜を、 第 2層として酸化珪素膜を、 第 3層として酸化錫膜を順次形成しており、 第 1層と第 2層により、 薄膜の千涉による反射色を低減して、 色ムラを防止し ている。 As a low emissivity glass used as a window glass or the like of a building, a glass having a configuration disclosed in Japanese Patent No. 1788555 is known. As shown in FIG. 3, this low emissivity glass is formed by sequentially forming a tin oxide film as a first layer, a silicon oxide film as a second layer, and a tin oxide film as a third layer on the surface of a glass substrate. The first layer and the second layer reduce the reflection color due to the thin film of the thin film, thereby preventing color unevenness.
一方、 ガラス基板の表面に薄膜を形成する方法としては、 スパッタリング 法、 真空蒸着法、 C V D法やスプレー法等があるが、 高品質の低放射率ガラ スを効率よく大量生産するためには、 所謂フロート法でガラス基板となる帯 状ガラスを製作し、 フロートバス内若しくはフロートバスを出た後の高温状 態にある帯状ガラスの表面に原料ガスを吹き付けて帯状ガラスの有する熱 エネルギーを利用し、 前記帯状ガラス上での熱分解等によって成膜するオン ライン C V Dが知られている。 On the other hand, methods for forming a thin film on the surface of a glass substrate include a sputtering method, a vacuum evaporation method, a CVD method, and a spray method.In order to efficiently mass-produce high-quality low-emissivity glass, The so-called float method is used to fabricate a glass ribbon serving as a glass substrate, and a raw material gas is sprayed on the surface of the glass ribbon in a high-temperature state in the float bath or after leaving the float bath to utilize the heat energy of the glass ribbon. On-line CVD for forming a film by thermal decomposition or the like on the glass ribbon is known.
上記のオンライン C V Dにて、 ガラス基板の表面に、 第 1層として酸化錫 膜を、 第 2層として酸化珪素膜を、 第 3層として酸化錫膜を順次成膜できれ ば大幅なコストダウンが実現できるが以下の様な問題がある。
即ち、 フロートバス法にて生産されるガラスはソ一ダライムガラスがベ一 スであり、 N aなどのアルカリを含有している。 そして、 S n原料ガス中には C 1等のハロゲンが含まれており、 この C 1と N aが反応して塩 (N a C l ) を 生成する。生成された塩は、通常、 目視可能なサブミク口ンの大きさであり、 この塩が膜中に取り込まれると、 ヘイズ率 (=拡散透過率 (全透過率一直線 透過率) Z全透過率) が高くなり、 即ち濁りが生じ、 特にこの濁りが部分的 に発生するため外観品質が劣化し、 欠陥となり、 商品価値を大幅に低下せし める。 If the above-mentioned on-line CVD can form a tin oxide film as the first layer, a silicon oxide film as the second layer, and a tin oxide film as the third layer on the surface of the glass substrate, the cost can be significantly reduced. Although it can be realized, there are the following problems. That is, glass produced by the float bath method is based on soda lime glass and contains an alkali such as Na. The Sn source gas contains halogen such as C 1, and the C 1 reacts with Na to generate a salt (NaCl). The salt produced is usually the size of the visible submicron mouth, and when this salt is incorporated into the membrane, the haze rate (= diffuse transmittance (total transmittance straight transmittance) Z total transmittance) Turbidity occurs, and in particular, the turbidity is partially generated, so that the appearance quality is degraded and defective, and the commercial value is greatly reduced.
一方、 C 1等のハロゲンが含まれない S n原料、 例えば、 テトラメチルスズ ゃテトラプチルスズを用いれば、 塩は形成されないが、 成膜レートが低くコ スト高となり、 更に毒性等の問題で管理が面倒で環境上の問題もある。 On the other hand, if a Sn raw material that does not contain halogen such as C1 is used, for example, tetramethyltin / tetrabutyltin, no salt is formed, but the deposition rate is low and the cost is high. Management is cumbersome and there are environmental issues.
そこで現在では、 ガラス表面にオンライン C V Dにて第 1層としての酸化 錫膜を形成する際の温度を一定値まで下げて行う試みがなされているが、 こ の方法による場合には、 温度を制御するためにクーラーなどの設備を付加し なければならず、 大幅な設備変更を伴い、 更に、 フロートバス上でのガラス の搬送速度を変更すると表面温度が変化するので、 生産性の向上を図ること ができない。 発明の開示 At present, attempts have been made to lower the temperature at which the tin oxide film as the first layer is formed on the glass surface by online CVD to a certain value.However, in this method, the temperature is controlled. In order to improve productivity, it is necessary to add a cooler and other equipment, and the equipment must be changed drastically.In addition, changing the glass conveyance speed on the float bath changes the surface temperature, thereby improving productivity. Can not. Disclosure of the invention
上記課題を解決するため本発明に係る低放射率ガラスは、 アルカリを含有 するガラス基板の表面に、 第 1層として酸化珪素膜を、 第 2層として酸化錫 膜を、 第 3層として酸化珪素膜を、 第 4層として酸化錫膜を順次形成した。 ここで、 各層を構成する酸化珪素および酸化錫には、 それぞれ S i ( S n) と Oとの比が 1 : 2となる S i〇2及び S n〇2が大部分を占める力 化学量論的 に正確に 1 : 2とならない部分も存在し、 本発明はその部分までをも含む。 第 1層目に酸化珪素膜を形成することで、 薄膜でもガラスからの N a (ァ
ルカリ) の拡散を防止できる。 このようなアルカリバリヤ一層として;ま、 酸 化珪素の他に酸化チタンや酸化ジルコニウムが考えられるが、 チタンゃジル コニゥムは CVD法に用いることができる良質な工業的材料の入手が困難 であり、 又酸化珪素は屈折率がガラスとほぼ同一であるため、 上層膜 (酸化 錫+酸化珪素) による反射色の低減効果を妨げないので材料としては珪素が 最適 ある。 In order to solve the above-mentioned problems, a low-emissivity glass according to the present invention comprises a glass substrate containing an alkali, a silicon oxide film as a first layer, a tin oxide film as a second layer, and a silicon oxide film as a third layer. As the film, a tin oxide film was sequentially formed as a fourth layer. Here, the silicon oxide and tin oxide constituting each layer have a force that occupies most of S i〇 2 and S n〇 2 in which the ratio of S i (S n) to O is 1: 2, respectively. There are parts that do not logically make exactly 1: 2, and the present invention includes those parts. By forming a silicon oxide film on the first layer, even if it is a thin film, Na Diffusion) can be prevented. As such an alkali barrier layer, titanium oxide and zirconium oxide can be considered in addition to silicon oxide. Since silicon oxide has almost the same refractive index as glass and does not hinder the effect of reducing the reflection color by the upper layer film (tin oxide + silicon oxide), silicon is the best material.
また、第 4層の酸化錫膜には F (フッ素)を含有せしめることが好ましい。 F (フッ素) を含有せしめることで、 導電性が上がり、 これによりガラスの 放射率が低下して断熱性能が向上する。 Further, it is preferable that the fourth layer tin oxide film contains F (fluorine). Inclusion of F (fluorine) increases conductivity, thereby lowering the emissivity of glass and improving heat insulation performance.
また、 第 1層としての酸化珪素膜の膜厚は 1 O A以上、 第 2層としての酸 化錫膜の膜厚は 2 0 0〜5 0 0 A、 第 3層としての酸化珪素膜の膜厚は 2 0 0〜 500人、 第 4層としての酸化錫膜の膜厚は 2 5 0 O A以上が好ましく、 特に 3 200 A〜 3800 Aの範囲が好ましく、 約 3 5 0 0 Aとすれば膜色 を寒色系にできる。 The thickness of the silicon oxide film as the first layer is 1 OA or more, the thickness of the tin oxide film as the second layer is 200 to 500 A, and the thickness of the silicon oxide film as the third layer is The thickness is 200 to 500 persons, and the thickness of the tin oxide film as the fourth layer is preferably 250 OA or more, particularly preferably in the range of 3200 A to 3800 A, and if it is about 350 A, The film color can be changed to a cool color.
第 1層としての酸化珪素膜の膜厚を 1 OA以上とするのは、 1 O A未満で はアル力リバリヤーとしての機能が十分に発揮されないからであり、 第 2層 としての酸化錫膜の膜厚を 200〜50 OAとし第 3層としての酸化珪素 膜の膜厚を 2 0 0〜 5 00 Aとするのは薄膜の千渉反射色を低減するため であり、 第 4層としての酸化錫 (+F) 膜の膜厚を 2 5 0 0 A以上、 好まし くは 3200人〜 3 80 0Aとするのは J I S R 3 2 0 9 「複層ガラス」 の断熱複層ガラスで規定する 「垂直放射率(ε )<0.15」 を満足させるためで ある。 図面の簡単な説明 The reason why the thickness of the silicon oxide film as the first layer is set to 1 OA or more is that the function as an AL force barrier is not sufficiently exhibited if the thickness is less than 1 OA, and the film of the tin oxide film as the second layer is formed. The thickness is set to 200 to 50 OA and the thickness of the silicon oxide film as the third layer is set to 200 to 500 A in order to reduce the interference reflection color of the thin film, and tin oxide as the fourth layer (+ F) The thickness of the film is more than 250 A, preferably between 3200 and 380 A. The vertical thickness specified in JISR 3209 “Insulated double glass” This is to satisfy the emissivity (ε) <0.15 ”. BRIEF DESCRIPTION OF THE FIGURES
【図 1】 【Figure 1】
本発明に係る低放射率ガラスの製造方法の一例としてのオンライン C V
Dを説明した図 Online CV as an example of a method for producing a low emissivity glass according to the present invention Diagram explaining D
【図 2】 【Figure 2】
本発明に係る低放射率ガラスの拡大断面図 Enlarged cross-sectional view of the low-emissivity glass according to the present invention
【図 3】 [Figure 3]
従来の低放射率ガラスの拡大断面図 発明を実施するための最良の形態 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred Embodiment of the Invention
以下に本発明の実施の形態を添付図面に基づいて説明する。 ここで、 図 1 は本発明に係る低放射率ガラスの製造方法の一例としてのオンライン C V Dを説明した図であり、 溶融ガラスを保持する溶融窯 1、 錫等の溶融金属を 満たしたフロートバス 2、 フロートバス 2から帯状にガラスを引き上げるリ フトァゥトロール 3、 この下流側に配置される徐冷部 4及びフロートバス 2 上に配置される噴霧装置 5 , 6 , 7 , 8から主要部が構成されている。 Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a diagram illustrating on-line CVD as an example of a method for producing a low-emissivity glass according to the present invention. The main part is composed of a lift roll 3, which lifts the glass in a strip form from the float bath 2, a slow cooling unit 4 arranged downstream of the float bath 2, and a spray device 5, 6, 7, 8 arranged on the float bath 2. Have been.
溶融窯 1からフロートバス 2の上に溶融ガラスを連続的に流し込む。 する と、 溶融ガラスは錫浴 2 a表面に一様に広がり、 一定幅のリボン状ガラス 9 となってフロートバス 2上を徐々に冷却されながらフロートバス 2の出口 へ向かう。 そしてこの間 (ガラス温度が 6 0 0 ° (:〜 7 5 0 °C ) に熱分解 C V Dにて成膜がなされる。 The molten glass is continuously poured from the melting furnace 1 onto the float bath 2. Then, the molten glass spreads uniformly on the surface of the tin bath 2 a, forms a ribbon-shaped glass 9 having a constant width, and flows toward the outlet of the float bath 2 while being gradually cooled on the float bath 2. During this time (with a glass temperature of 600 ° C. (: 750 ° C.)), a film is formed by thermal decomposition CVD.
即ち、 フロートバス 2上に配置された噴霧装置 5から、 第 1層としての酸 化珪素膜を形成する S i原料含有ガスとして、 窒素で希釈されたモノシラン、 エチレン、 酸素の混合ガスを噴出し、 噴霧装置 6から第 2層としての酸化錫 膜を形成する S n原料含有ガスとして、 窒素で希釈されたジメチル錫ジクロ ライ ド (蒸気) 、 酸素、 水の混合ガスを噴出し、 噴霧装置 7から第 3層とし ての酸化珪素膜を形成する前記と同じ S i原料含有ガスを噴出し、 噴霧装置 8から第 4層としての酸化錫膜を形成する S n原料含有ガスとして、 ジメチ ル錫ジクロライ ド (蒸気) 、 酸素、 窒素及びフッ化水素 (蒸気) からなる混
合ガスを噴出する。 That is, a mixed gas of monosilane, ethylene, and oxygen diluted with nitrogen is ejected from a spray device 5 disposed on the float bath 2 as a Si raw material-containing gas for forming a silicon oxide film as the first layer. A gas mixture containing dimethyltin dichloride (steam), oxygen and water diluted with nitrogen is spouted from the spraying device 6 as a Sn material-containing gas for forming a tin oxide film as the second layer, and the spraying device 7 The same Si material-containing gas as described above, which forms a silicon oxide film as the third layer, is ejected from the spraying device 8, and the spray material 8 forms a Sn oxide film as the fourth layer. A mixture of dichloride (steam), oxygen, nitrogen and hydrogen fluoride (steam) Eject gas.
前記噴霧装置 5, 6 , 7 , 8は昇降自在とされ、 ガラスの板厚或いは目的 とする被膜の厚さに自由に応じることが可能とされている。 The spraying devices 5, 6, 7, 8 can be moved up and down freely so as to be able to freely adjust to the thickness of the glass or the thickness of the target coating.
フロートバス 2の出口付近では、 ガラスはロールに載せても変形しない 6 0 0 °C程度に冷やされている。 そして、 フロートバス 2を出た帯状ガラスは リフトアウトロール 3を経由して徐冷部 4内に送られる。 In the vicinity of the outlet of the float bath 2, the glass is cooled to about 600 ° C., which is not deformed even when placed on a roll. Then, the strip glass exiting the float bath 2 is sent into the slow cooling unit 4 via the lift-out roll 3.
酸化珪素膜を成膜する際の珪素原料としては、 前記のモノシランの他に、 ジシラン、 トリシラン、 モノクロロシラン、 1 , 2—ジメチルシラン、 1 , 1 , 2— トリメチルジシラン、 1, 1 , 2, 2—テトラメチルジシラン等のシラン系化合物 や、 テトラメチルオルソシリゲート、 テトラエチルオルソシリケート等を使 用することができ、 また酸化原料としては酸素、 水蒸気、 乾燥空気、 二酸化 炭素、 一酸化炭素、 二酸化窒素、 オゾン等を使用することができる。 As the silicon raw material for forming the silicon oxide film, in addition to the above-mentioned monosilane, disilane, trisilane, monochlorosilane, 1,2-dimethylsilane, 1,1,2-trimethyldisilane, 1,1,2, A silane compound such as 2-tetramethyldisilane, tetramethylorthosilicate, tetraethylorthosilicate, or the like can be used. Oxidizing raw materials include oxygen, steam, dry air, carbon dioxide, carbon monoxide, and carbon dioxide. Nitrogen, ozone, etc. can be used.
尚、 上記珪素原料としてシラン系化合物を使用する場合は、 該シラン系化 合物がガラス基板の表面に到達するまで該シラン系化合物の反応を抑止し、 かつ酸化珪素膜の屈折率を制御するために、 エチレン、 アセチレン或いはト ルェンなどの不飽和炭化水素を適宜添加するのも好ましい。 When a silane compound is used as the silicon raw material, the reaction of the silane compound is suppressed until the silane compound reaches the surface of the glass substrate, and the refractive index of the silicon oxide film is controlled. For this purpose, it is also preferable to appropriately add an unsaturated hydrocarbon such as ethylene, acetylene or toluene.
また、 酸化錫膜を成膜する際の錫原料としては、 前記のジメチル錫ジクロ ライ ドの他に、 導電性を上げる観点から、 モノブチル錫トリクロライ ド、 四 塩化錫、 ジブチル錫ジクロライ ド、 ジォクチル錫ジクロライ ド等の塩素を含 有した錫化合物が好ましい。 また酸化原料としては酸素、 水蒸気、 乾燥空気 等を使用することができる。 In addition to the above-mentioned dimethyltin dichloride, from the viewpoint of increasing the conductivity, the tin raw material for forming the tin oxide film may be monobutyltin trichloride, tin tetrachloride, dibutyltin dichloride, or dioctyltin. A tin compound containing chlorine, such as dichloride, is preferred. Oxygen, water vapor, dry air and the like can be used as the oxidizing material.
尚、 導電膜にフッ素を添加する場合のフッ素原料としてはフッ化水素、 ト リフルォロ酢酸、 ブロモトリフルォロメタン、 クロロジフルォロメタン等が 挙げられる。 When fluorine is added to the conductive film, examples of the fluorine raw material include hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, and chlorodifluoromethane.
金属酸化物系薄膜をガラス基板上に成膜する方法としては、 真空蒸着法、 スパッタリング法或いは塗布方法等を適用して行うことも可能であるが、 薄
膜の生産性や耐久性 (耐剥離性) 等を考慮し、 CVD法、 又は溶融スプレー 法、 分散液スプレー法、 粉末スプレー法等のスプレー法を使用するのが好ま しい。 As a method of forming a metal oxide thin film on a glass substrate, a vacuum evaporation method, a sputtering method, a coating method, or the like can be applied. In consideration of the productivity and durability (peeling resistance) of the film, it is preferable to use a spray method such as a CVD method, a melt spray method, a dispersion liquid spray method, and a powder spray method.
尚、 実施例のオンライン CVD装置としては、 フロートバス上で原料ガス をガラス表面に吹き付けるようにしたが、 フロートバスの下流側、 つまり徐 冷部を設けた箇所に CVD装置を配置してもよい。 In the embodiment, the raw material gas is sprayed on the glass surface on the float bath in the on-line CVD apparatus, but the CVD apparatus may be arranged on the downstream side of the float bath, that is, at a location where the cooling section is provided. .
図 2は上記のオンライン CVDにて得られた低放射率ガラスの拡大断面 図であり、 実施例 1にあっては、 ガラス基板の上に、 第 1層としての酸化珪 素膜が 1 0 OAの厚さで形成され、 この上に第 2層としての酸化錫膜が 2 5 O Aの厚さで形成され、 この上に第 3層としての酸化珪素膜が 2 5 OAの厚 さで形成され、 この上に第 4層としての酸化錫膜が 3 5 00 Aの厚さで形成 されている。 FIG. 2 is an enlarged cross-sectional view of the low-emissivity glass obtained by the above-mentioned on-line CVD. In Example 1, a silicon oxide film as a first layer was formed on a glass substrate by 10 OA. A tin oxide film as a second layer is formed thereon with a thickness of 25 OA, and a silicon oxide film as a third layer is formed thereon with a thickness of 25 OA. On this, a tin oxide film as a fourth layer is formed with a thickness of 3500 A.
実施例 2にあっては、 第 1層としての酸化珪素膜の厚さを 5 OAとし、 第 2層、 第 3層及び第 4層については実施例 1と同一にしたものを作製し、 実 施例 3にあっては、第 1層としての酸化珪素膜の厚さを 1 0 Aとし、第 2層、 第 3層及び第 4層については実施例 1と同一にしたものを作製した。 一方、 第 1層の酸化珪素膜を形成しないものを比較例として作製した。 In Example 2, the thickness of the silicon oxide film as the first layer was set to 5 OA, and the second layer, the third layer, and the fourth layer were manufactured in the same manner as in Example 1. In Example 3, the thickness of the silicon oxide film as the first layer was set to 10 A, and the second layer, the third layer, and the fourth layer were manufactured in the same manner as in Example 1. On the other hand, a device without the silicon oxide film of the first layer was manufactured as a comparative example.
以上の各実施例および比較例について、 ヘイズ率を積分球式光線透過率測 定装置 (スガ試験機 (株) 製: 1101^[— 20 ?) を用いて測定した。 また、 濁りについて目視で確認した。 ヘイズ率と第 1層の酸化珪素膜の膜厚との関 係を以下の (表) に示す。 実施例 1 実施例 2 実施例 3 比較例 第 1層酸化珪素膜の厚さ (A) 1 00 5 0 1 0 0 Low-E膜のヘイズ率 (%) 0.4 0.4 1. 0 1. 5
第 1層の酸化珪素膜は、 1 OA以上でアルカリバリヤ一機能が十分に発揮 されるようになり、 ヘイズ率が 1.0 %以下となる。 ヘイズ率が 1.0 %以下 になれば、 白曇り (白濁) が確実に抑えることができる。 このことから、 例 えば冷凍ショーケースゃショーウィンドーなど外観を重視される用途にも、 この低放射率ガラスが利用できるようになる。 For each of the above Examples and Comparative Examples, the haze ratio was measured using an integrating sphere light transmittance measuring device (1101 ^ [-20?] Manufactured by Suga Test Instruments Co., Ltd.). In addition, turbidity was visually observed. The relationship between the haze ratio and the thickness of the first silicon oxide film is shown in the following (Table). Example 1 Example 2 Example 3 Comparative Example Thickness of First Layer Silicon Oxide Film (A) 100 00 501 0 0 Haze Ratio of Low-E Film (%) 0.4 0.4 1. 0 1.5 When the silicon oxide film of the first layer is 1 OA or more, the alkali barrier function is sufficiently exhibited, and the haze ratio is 1.0% or less. When the haze ratio becomes 1.0% or less, cloudiness (white turbidity) can be surely suppressed. For this reason, this low-emissivity glass can be used in applications where appearance is important, such as frozen showcases and show windows.
また、 第 1層の酸化珪素膜は、 50 A程度でそのアルカリバリヤ一機能が 頭打ちとなるため、 あまり厚く成膜しても不経済になるだけである。 したが つて、 第 1層の酸化珪素膜の膜厚は、 1 0〜 1 0 0 Aが好ましく、 5 0〜 1 00 Aが好適である。 In addition, the first layer of the silicon oxide film has its alkali barrier function at 50 A at about 50 A, so even if it is formed too thick, it is only uneconomical. Therefore, the thickness of the first silicon oxide film is preferably from 10 to 100 A, and more preferably from 50 to 100 A.
実施例 1および 2のガラス基板はヘイズ率が 0. 4 %で、 濁りの外観不良 もなく断熱性能にも優れた特性を発揮した。 一方、 比較例のガラス基板は、 ヘイズ率 (曇価) が 1. 5 %で濁りが認められた。 ヘイズ率が 1 %を超える と、 通常のガラスと比較してやや白曇った外観を呈するようになるため、 ガ ラスが汚れたように見受けられるようになる。 更にヘイズ率が上昇して 2 % 程度になると窓ガラスとしては商品価値がなくなると考えられている。 The glass substrates of Examples 1 and 2 had a haze ratio of 0.4%, exhibited no turbid appearance, and exhibited excellent heat insulating properties. On the other hand, the glass substrate of the comparative example had a haze ratio (haze value) of 1.5% and was turbid. If the haze exceeds 1%, the glass will appear to be dirty because it has a slightly cloudy appearance compared to regular glass. Further, it is considered that the commercial value of the window glass is lost when the haze ratio rises to about 2%.
尚、 ヘイズ率は積分球式光線透過率測定装置 (スガ試験機 (株) 製: HG M— 2 DP) を用いて測定した。 濁りについては目視で確認した。 The haze ratio was measured using an integrating sphere light transmittance measuring device (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.). Turbidity was confirmed visually.
本発明に係る低放射率ガラスの用途は、 建築物の窓ガラスやディスプレイ 用に限定されず自動車用窓ガラス、 冷凍ショーケース等の一般産業用等にも 適用でき、 また更に Agや I TOなどの透明導電膜や熱線放射膜を介在せし めることで高性能化を実現することも可能である。 産業上の利用可能性 The use of the low-emissivity glass according to the present invention is not limited to windows for buildings and displays, but can also be applied to general industrial applications such as window glasses for automobiles, frozen showcases, and the like. It is also possible to achieve higher performance by interposing a transparent conductive film or a heat radiation film. Industrial applicability
以上に説明したように本発明によれば、 ガラス基板の表面に第 1層として 酸化珪素膜を形成したので、 ガラスから拡散してくる Na (アルカリ) を阻 止でき、 オンライン CVDを利用しても導電膜中に NaClの発生のないヘイ
ズ率の低い外観の良好な低放射率ガラスを得ることができる。 As described above, according to the present invention, since the silicon oxide film is formed as the first layer on the surface of the glass substrate, it is possible to prevent Na (alkali) from diffusing from the glass, and to use online CVD. Also, no NaCl is generated in the conductive film. A low-emissivity glass having a low appearance rate and a good appearance can be obtained.
オンライン C V Dにて成膜する際に、 ガラス基板の温度をコントロールす る必要がないので、 クーラ一等の設備的な付加が軽減されコストダウンが図 れ、 また、 ガラスの生産スピードを変化しても高ヘイズ率にならず、 オンラ イン C V Dを利用できるので、 放射色低減の目的で積層している 2層目以降 の膜設計が容易になる。 Since it is not necessary to control the temperature of the glass substrate when forming a film by online CVD, it is possible to reduce the cost of equipment by adding equipment such as a cooler, and to change the production speed of the glass. Does not have a high haze ratio and can use online CVD, which facilitates the design of the second and subsequent layers that are stacked for the purpose of reducing the emission color.
更に、 ガラス基板と直接接触する第 1層が酸化珪素であるので、 ガラス基 板と屈折率差が殆どなくなり、 第 2層、 第 3層による反射色の低減効果が活 かされて、 光学的に極めて優れた低放射率ガラスを得ることができる。
Furthermore, since the first layer that is in direct contact with the glass substrate is made of silicon oxide, there is almost no difference in the refractive index from the glass substrate, and the effect of reducing the reflection color by the second and third layers is utilized to achieve optical A very low emissivity glass can be obtained.
Claims
1 . アルカリを含有するガラス基板の表面に、第 1層として酸化珪素膜を、 第 2層として酸化錫膜を、 第 3層として酸化珪素膜を、 第 4層として酸化錫 膜を順次形成したことを特徴とする低放射率ガラス。 1. A silicon oxide film was formed as a first layer, a tin oxide film was formed as a second layer, a silicon oxide film was formed as a third layer, and a tin oxide film was formed as a fourth layer on the surface of an alkali-containing glass substrate. A low-emissivity glass characterized in that:
2 . 請求の範囲 1に記載の低放射率ガラスにおいて、 前記第 4層の酸化錫 膜は F (フッ素) を含有することを特徴とする低放射率ガラス。 2. The low-emissivity glass according to claim 1, wherein the tin oxide film of the fourth layer contains F (fluorine).
3 . 請求の範囲 1または請求の範囲 2に記載の低放射率ガラスにおいて、 前記第 1層としての酸化珪素膜の膜厚は 1 O A以上、 第 2層としての酸化錫 膜の膜厚は 2 0 0〜 5 0 0 A、 第 3層としての酸化珪素膜の膜厚は 2 0 0〜 5 0 0 A、 第 4層としての酸化錫膜の膜厚は 2 5 0 O A以上であることを特 徴とする低放射率ガラス。
3. In the low-emissivity glass according to claim 1 or 2, the thickness of the silicon oxide film as the first layer is 1 OA or more, and the thickness of the tin oxide film as the second layer is 2 OA. The thickness of the silicon oxide film as the third layer is from 200 to 500 A, and the thickness of the tin oxide film as the fourth layer is at least 250 OA. Low emissivity glass that is the feature.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000015925 | 2000-01-25 | ||
JP2000-15925 | 2000-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001055043A1 true WO2001055043A1 (en) | 2001-08-02 |
Family
ID=18543147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/000442 WO2001055043A1 (en) | 2000-01-25 | 2001-01-24 | Low emissivity glass |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001055043A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7597938B2 (en) * | 2004-11-29 | 2009-10-06 | Guardian Industries Corp. | Method of making coated article with color suppression coating including flame pyrolysis deposited layer(s) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5466914A (en) * | 1977-11-08 | 1979-05-29 | Asahi Glass Co Ltd | Method of making metal oxide coated glass |
US4377613A (en) * | 1981-09-14 | 1983-03-22 | Gordon Roy G | Non-iridescent glass structures |
US5395698A (en) * | 1993-06-04 | 1995-03-07 | Ppg Industries, Inc. | Neutral, low emissivity coated glass articles and method for making |
JPH0948641A (en) * | 1995-08-02 | 1997-02-18 | Matsushita Electric Ind Co Ltd | Microwave oven, glass for window of the microwave oven and its production |
-
2001
- 2001-01-24 WO PCT/JP2001/000442 patent/WO2001055043A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5466914A (en) * | 1977-11-08 | 1979-05-29 | Asahi Glass Co Ltd | Method of making metal oxide coated glass |
US4377613A (en) * | 1981-09-14 | 1983-03-22 | Gordon Roy G | Non-iridescent glass structures |
US5395698A (en) * | 1993-06-04 | 1995-03-07 | Ppg Industries, Inc. | Neutral, low emissivity coated glass articles and method for making |
JPH0948641A (en) * | 1995-08-02 | 1997-02-18 | Matsushita Electric Ind Co Ltd | Microwave oven, glass for window of the microwave oven and its production |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7597938B2 (en) * | 2004-11-29 | 2009-10-06 | Guardian Industries Corp. | Method of making coated article with color suppression coating including flame pyrolysis deposited layer(s) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7622186B2 (en) | Glazing panel having solar screening properties | |
JP5972359B2 (en) | Transparent glass substrate with continuous layer coating | |
EP1877350B1 (en) | Coated substrate and process for the production of a coated substrate | |
WO2000014021A1 (en) | Light-colored glass of high transmittance and method for production thereof, glass plate with electrically conductive film and method for production thereof, and glass article | |
US6447921B1 (en) | Low emissivity glass and glass articles made of low emissivity glass | |
GB2302102A (en) | Glazing panel having solar screening properties | |
JP4430402B2 (en) | Glass substrate and manufacturing method thereof | |
JP2001114534A (en) | Glass plate with metal oxide film, method for producing the glass plate and multi-layer glass using the glass plate | |
JP4441741B2 (en) | Coated substrate with high reflectivity | |
EP1608793A1 (en) | Titania coatings | |
JP2007121786A (en) | Method of manufacturing coating liquid, and method of manufacturing antireflection film using the coating liquid | |
JP2001002449A (en) | Low-emissivity glass and glass article using the same | |
JP2003060217A (en) | Glass plate with conductive film | |
CA2178033C (en) | Glazing panel having solar screening properties and a process for making such a panel | |
JP4460108B2 (en) | Method for manufacturing substrate for photoelectric conversion device | |
JPWO2003010104A1 (en) | Low emissivity glass and method for producing the same | |
WO2022255205A1 (en) | Substrate with film | |
WO2001055043A1 (en) | Low emissivity glass | |
JPH0217496B2 (en) | ||
JP2002316837A (en) | Glass sheet and solar battery using the same | |
WO2001016041A1 (en) | Transparent heat shading glass sheet and multiple-glazing unit using the same | |
JP7283529B1 (en) | Substrate with laminated film | |
JP2005029463A (en) | Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate | |
WO2022114038A1 (en) | Heat insulation glass | |
JP2000340815A (en) | Optoelectronic transducer element substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |