WO2001053794A1 - Chargement d'echantillons en parallele et dispositif d'injection utilises pour des dispositifs a microfluides a plusieurs canaux - Google Patents
Chargement d'echantillons en parallele et dispositif d'injection utilises pour des dispositifs a microfluides a plusieurs canaux Download PDFInfo
- Publication number
- WO2001053794A1 WO2001053794A1 PCT/US2001/001705 US0101705W WO0153794A1 WO 2001053794 A1 WO2001053794 A1 WO 2001053794A1 US 0101705 W US0101705 W US 0101705W WO 0153794 A1 WO0153794 A1 WO 0153794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- channel
- introduction
- channels
- injection device
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44743—Introducing samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44791—Microapparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/026—Fluid interfacing between devices or objects, e.g. connectors, inlet details
- B01L2200/027—Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
- B01L2400/049—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5025—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N2035/1027—General features of the devices
- G01N2035/1034—Transferring microquantities of liquid
- G01N2035/1037—Using surface tension, e.g. pins or wires
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1065—Multiple transfer devices
Definitions
- Microfluidic devices have been successfully demonstrated as useful for a wide variety of separation techniques as well as for sample pretreatment and/or manipulation methods.
- Complete chemical processing systems e.g., reaction chambers, separation capillaries and their associated electrode reservoirs, as well as certain types of detectors, can be consolidated on a microfluidic device or microchip.
- Such "labs-on-a-chip, " in principle, permit effective utilization and manipulation of minute quantities of material.
- the invention is directed to a universal interface and sample load and injection device, and to method for its use, for the parallel introduction and simultaneous or subsequent injection of liquid samples into channels of a multichannel microfluidic device.
- the sample load and injection device can be integral with a multichannel microfluidic device or can be a separately attachable entity.
- the sample load and injection device of the invention comprises a sample introduction capillary (and, preferably, multiple sample introduction capillaries) , each said introduction capillary having an inlet end and an outlet end, the inlet end of each said individual capillary being external to said sample load and injection device and capable of being placed in alignment with one of multiple samples in a sample holder, e.g., one well in a 96-well microtiter plate, and the outlet end of each said introduction capillary opening to an introduction channel in said sample load and injection device, each introduction channel an end within the device.
- a sample introduction capillary and, preferably, multiple sample introduction capillaries
- the sample load device further comprises a sample channel originating at each said introduction channel, an auxiliary channel originating at each said sample channel and ending at an auxiliary channel end within said sample load and injection device, a connecting channel connecting said introduction channel ends and a connecting channel connecting said auxiliary channel ends.
- the connecting channel for said introduction channel ends and the connecting channel for said auxiliary channel ends each terminates at a surface of said sample load device, and each said connecting channel is configured for connection to a source of positive or negative pressure or to a source for applying an electric field across any channel segment.
- the sample channels and the auxiliary channels are preferably smaller in internal diameter than the introduction channels. - ⁇ -
- the connecting channels reside in a cover plate that is separable from the sample load and injection device body and at least one of the sample channels is configured for separation of a loaded sample. Separation can be of any kind, e.g., chromatographic (LC, CEC) or electrophoretic (CZE, IEF, MEKCC) . Channels configured for separation can be equipped, e.g., for absorbance (UV, Vis), fluorescence, conductivity, electrochemical detection or for sample collection or transfer to external devices such as MALDI/TOF.
- the sample load and injection device can include an electrospray interface chamber coupled to the outlet end of one of the sample introduction channels.
- the sample load and injection device of the invention is suitable for moving small quantities of samples from, e.g., the wells of a 96-well microtiter plate (or any other sample plate size) , onto a microfluidic device or directly to an analytical device, without either evaporation or dilution, and for, e.g., sample preconcentration, entrapment or preseparation prior to further manipulation on the microdevice.
- the sample introduction (or loading) capillaries can be packed with any suitable material (e.g., chromatographic beads or polymeric monolith, affinity material, immobilized enzyme material, etc.) or coated with any kind of coating so that, e.g., most of the components of the sample (or only selected components) can be trapped or digested inside the loading capillaries.
- the sample constituents can be eluted into the channels inside the microdevice with the use of a suitable eluent. Selective stepwise or gradient elution can be applied to elute only certain sample components at a time.
- Individual sample loading capillaries can contain different packing materials and have different internal volumes so that different sample volumes can be handled in individual channels of the accompanying microfluidic device.
- the sizes of the channels inside the microfluidic device can be optimized so that different flow rates are generated upon application of a pressure or electric field. This flexibility is useful to increase the dynamic range of an analysis carried out using the device of the invention.
- the packing inside individual sample loading capillaries is not functionalized, it can, at least, serve as a particle filter to prevent clogging of channels internal to the device.
- the sample loading capillaries can be designed either as integral parts of the device (e.g., pulled from the device) or as separately attachable entities. They can be reusable or disposable.
- a sample loading and injection device can be made of any etchable or moldable material.
- the material is a transparent plastic or glass (e.g., silicon) .
- Various metals are useful for certain applications .
- the samples may be transfered using the sample loading and injection device of the invention for electrospray-mass spectrometry analysis (ESI/MS) , for atmospheric pressure-chemical ionization mass spectrometry analysis (APCI/MS) , for matrix assisted laser desorption ionization mass spectrometry (MALDI/MS), for nuclear magnetic resonance analysis (NMR) , for pneumatically or ultrasonically assisted spray sample handling, for transfer to an off-chip detection system, such as electrochemistry, conductivity or laser induced fluorescence, or for collection of specific fractions, e.g., in collection capillaries or on collection membranes .
- ESI/MS electrospray-mass spectrometry analysis
- APCI/MS atmospheric pressure-chemical ionization mass spectrometry analysis
- MALDI/MS matrix assisted laser desorption ionization mass spectrometry
- NMR nuclear magnetic resonance analysis
- pneumatically or ultrasonically assisted spray sample handling for transfer to an off-chip detection system, such as electrochemistry
- each channel may include electrical contacts, so that an electric circuit path can be established along the channel.
- one electrical contact can be on the entrance side of a channel and another electrical contact can be on the exit side.
- an electric circuit can be completed by an external contact, beyond the exit end of the channel.
- the exit port of a channel is used as an electrospray source for a mass spectrometer, the mass spectrometer sampling orifice can serve as the counter electrode. Samples can be transferred off chip for subsequent analysis by switching the electric current sequentially to each channel on the chip.
- Samples can be introduced into a channel on a microfluidic device by the sample loading and injection device of the invention by a variety of methods, e.g., by pressure, electrokinetic injection, or other technique, and an electrical current and/or pressure drop can then be applied to cause the sample components to migrate along the channel.
- the channels may function only for fluid transfer, e.g., to a mass spectrometer, or the channels can serve as environments for various types of sample manipulations, e.g., for micropreparative or analytical operations, such as capillary electrophoresis (CE) , chromatography or the polymerase chain reaction (PCR) , or for carrying out any type of sample chemistry.
- CE capillary electrophoresis
- PCR polymerase chain reaction
- the channels may be filled with membrane or packing material to effectuate preconcentration or enrichment of samples or for other treatment steps, such as desalting.
- membrane or packing material to effectuate preconcentration or enrichment of samples or for other treatment steps, such as desalting.
- Other modification of sample components e.g., by enzymes that are covalently bound to the walls of a channel or are free in a channel, are possible.
- Packing material may be bound to the walls of the channels or may include other components, such as magnetic particles, so that when a magnetic field is applied, the magnetic particles retain the packing material in place.
- the magnetic particles can also be used for efficient mixing of fluids inside the channels, using an external magnetic field.
- a micromachined filter or other stationary structure may also be employed to hold packing material in place.
- stationary structures can be micromachined, cast or otherwise formed in the surface of a channel to provide a high surface area which can substitute for packing material.
- a sample can be introduced into a channel in a short starting zone or can fill the whole channel completely. Filling only a small part of the channel with the sample is preferable when an on-chip separation of sample components is to be carried out, such as electrophoresis or chromatography. Filling the whole channel with the sample may be advantageous in cases when off-chip analysis requires extended sample outflow, such as sample introduction/electrospray ionization for structure analysis by mass spectrometry.
- a liquid flow may be required to transport the analytes in a sample into a specific channel, or along the length of the channel, or out of the channel via an exit port. Therefore, to assist in the required fluid transfer, a pumping device may be incorporated into or associated with the microscale device of the invention.
- a heating element can be used to cause thermal expansion, which will effectuate sample liquid movement, or a heating element can be used to generate a micro bubble, the expansion of which causes the sample to travel in the channel.
- Other options may include pumping by the pressure of a gas or gases generated by on-chip electrolysis. Flow can be also generated by application of a pressure drop along a channel or by electroosmosis inside a channel.
- samples move to the end of a channel, they can be subjected to detection or analysis at a site external to the microscale device of the invention by a variety of techniques, including mass spectroscopy, nuclear magnetic resonance, laser induced fluorescence, ultraviolet detection, electrochemical detection, or the like.
- the end of each channel may include a tip configured to facilitate transfer of the sample volume.
- Different sized channels may be employed on the same accompanying microfluidic device. For example, larger channels may be used for cleanup operations, and smaller channels may be used for processing operations. Moreover, other operations can be performed in other regions of the device, such as chemical processing, separation, isolation or detection of a sample or a component of the sample, prior to sample loading in a channel. Thus, it is possible to carry out sample chemistries or to conduct micropreparative and analytical operations on both a starting sample and its separated components within the device of the invention, prior to transfer of the sample or its components off chip for further analysis or collection.
- detection of a sample may be carried out on the microfluidic device itself, e.g., by a fiber optic detection system, which can provide complementary control information for off- chip analysis and detection, or by any other suitable detector such as laser induced fluorescence, conductivity and/or electrochemical detector.
- a fiber optic detection system which can provide complementary control information for off- chip analysis and detection, or by any other suitable detector such as laser induced fluorescence, conductivity and/or electrochemical detector.
- Fig. la is a plan view of a sample load and injection device according to the invention.
- Fig. lb is a section through the sample load and injection device of Fig. la;
- Fig. 2 is an exploded perspective view of a sample load and injection device according to the invention;
- Fig. 3 is an exploded perspective view of another embodiment of a sample load and injection device according to the invention.
- DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION The parallel sample load and injection device of the invention allows for a simple automated way of transferring samples from a standard, e.g., 96-well, microtiter plate into a microfluidic device and for the simultaneous or subsequent injection of samples into multiple channels on the device.
- a sample load and injection device 10 includes parallel sample introduction capillaries (11) that are attached to a microfluidic device (12) into which the sample load and injection device of the invention is integrated.
- the spacing between these capillaries is compatible with the spacing of the wells in standard microtiter plates (14).
- individual sample introduction capillaries (11) may contain packing material (15) for sample pretreatment.
- Sample solutions in individual wells (16) are transferred through introduction capillaries (11) into introduction channels (18) in the sample load and injection device.
- Each of the sample introduction channels (18) is connected to the appropriate sample separation channel (20), at connection point (21) .
- an auxiliary channel (22) which aids in sample injection as will be described below, originates at connection point (23) .
- the distance between these two connection points determines the length of the sample injection "plug.”
- All sample introduction channels are connected through introduction channel ends (24) to a connecting channel (26) made in associated cover plate (28) , which is attachable to device (12) .
- Channel (26) is used for applying negative pressure (a vacuum) simultaneously to all sample introduction channels (18).
- a similar connection is made among associated auxiliary channel ends (30), using connecting channel (32).
- Sample separation channels (20) and auxiliary channels (22), are preferably smaller in internal diameter than introduction channels (18), which are generally 20-100 ⁇ L (and preferably 50 ⁇ L) in internal diameter.
- sample loading and injection can be carried out in the following manner: the channels of the microfluidic device are first flushed with background electrolyte, and then the device is positioned in front of a microtiter plate so that the sample introduction capillaries (11) are immersed into individual sample wells. A vacuum is applied to connection channel (26), which connects introduction channel ends (24) . The different samples simultaneously fill the sample introduction channels (18), but due to hydrodynamic resistance, do not enter the smaller sample separation channels (20) . This is the loading step. Subsequently, in a similar manner, connection channel (32) is used for application of a vacuum to all auxiliary channels so that the samples are pulled through a portion of the separation channels into the auxiliary channels; this is the injection step.
- the microtiter plate is replaced by a reservoir containing background electrolyte.
- a vacuum is then again applied to the sample introduction channels (18), via connecting channel (26), so that the content of these channels is exchanged for background electrolyte.
- sample also remains in auxiliary channels (22).
- an electrical potential is applied across the separation channels.
- the method of the invention can also be carried out in a manner that combines the loading and injection
- connection channel (32) a vacuum is applied first to connection channel (32) so that the individual samples are pulled directly through a portion of loading channels (18) and separation channels (20) and into auxiliary channels (22).
- the separation and auxiliary channels need not be smaller in internal diameter than the loading channels.
- Sequential loading and injection steps are useful when it is desirable to carry out, e.g., sample preconcentration, entrapment or preseparation in the loading capillaries prior to sample injection.
- the disclosed sample introduction and injection procedure will be useful for any device designed for handling and analysis of small amounts of samples, especially in genomics and proteomics.
- the parallel sample load and injection device and method of the invention allow for a simple automated way for the transfer of samples from a standard microtiter plate into a microfluidic device and simultaneous injection into multiple channels on the device.
- the method of the invention has been described for hydrodynamic sample injection followed by electrophoretic separation. However, the method of the invention can be also used for electrokinetic injection and for any other kind of separation or manipulation technique.
- the sample load mechanism of the invention permits more efficient use of powerful analytical devices, such as the mass spectrometer, than is currently possible.
- the system of the invention can be manufactured as a disposable device that is suitable for cost effective automation of the analysis of a large number of samples. Using this micromachined approach, high throughput analysis by mass spectrometry would be possible. In addition, handling of small volumes and quantities of samples would be facilitated, and consumption of valuable samples and reagents would be reduced.
- Applications include any laboratory analysis methods, especially where high throughput and minimization of cross-contamination are desirable, such as screening and diagnostic methods, and such other analytic methods as pharmacokinetics where fresh columns are required for each run.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/181,503 US6939452B2 (en) | 2000-01-18 | 2001-01-18 | Parallel sample loading and injection device for multichannel microfluidic devices |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17618300P | 2000-01-18 | 2000-01-18 | |
US60/176,813 | 2000-01-18 | ||
USPCT/US00/09480 | 2000-04-10 | ||
PCT/US2000/009480 WO2000062039A1 (fr) | 1999-04-09 | 2000-04-10 | Systeme et procede d'analyse en spectrometrie de masse a haut debit |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001053794A1 true WO2001053794A1 (fr) | 2001-07-26 |
WO2001053794A8 WO2001053794A8 (fr) | 2008-02-21 |
Family
ID=26680190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/001705 WO2001053794A1 (fr) | 2000-01-18 | 2001-01-18 | Chargement d'echantillons en parallele et dispositif d'injection utilises pour des dispositifs a microfluides a plusieurs canaux |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001053794A1 (fr) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001095367A2 (fr) * | 2000-06-05 | 2001-12-13 | Pharmacia & Upjohn Company | Ionisation a electronebulisation a sources multiples pour la spectrometrie de masse |
EP1210590A1 (fr) * | 1999-07-08 | 2002-06-05 | Shaorong Liu | Injecteur microfabrique et ensemble reseau capillaire utiles pour effecteur des separations a haute resolution et a rendement eleve |
WO2004050247A1 (fr) * | 2002-12-02 | 2004-06-17 | Gyros Ab | Traitement parallele de dispositifs microfluidiques |
EP1611954A1 (fr) * | 2004-07-03 | 2006-01-04 | Roche Diagnostics GmbH | Raccord entre réservoir liquide |
EP1614464A1 (fr) * | 2004-07-03 | 2006-01-11 | Roche Diagnostics GmbH | Raccord entre réservoir liquide |
EP1797955A3 (fr) * | 2005-11-28 | 2007-12-26 | Seiko Epson Corporation | Système microfluidique, dispositif d'analyse d'échantillon et procédé de mesure de substance cible |
US7820023B2 (en) | 2004-07-03 | 2010-10-26 | Roche Diagnostics Operations, Inc. | Preconcentration interface coupling liquid chromatography to capillary electrophoresis |
US7833708B2 (en) | 2001-04-06 | 2010-11-16 | California Institute Of Technology | Nucleic acid amplification using microfluidic devices |
US7964139B2 (en) | 2003-08-11 | 2011-06-21 | California Institute Of Technology | Microfluidic rotary flow reactor matrix |
US8440093B1 (en) | 2001-10-26 | 2013-05-14 | Fuidigm Corporation | Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels |
US8658418B2 (en) | 2002-04-01 | 2014-02-25 | Fluidigm Corporation | Microfluidic particle-analysis systems |
US8871446B2 (en) | 2002-10-02 | 2014-10-28 | California Institute Of Technology | Microfluidic nucleic acid analysis |
US9714443B2 (en) | 2002-09-25 | 2017-07-25 | California Institute Of Technology | Microfabricated structure having parallel and orthogonal flow channels controlled by row and column multiplexors |
CN109030844A (zh) * | 2018-07-05 | 2018-12-18 | 领航基因科技(杭州)有限公司 | 应用于生物系统微流体的自动生成装置和方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5872010A (en) * | 1995-07-21 | 1999-02-16 | Northeastern University | Microscale fluid handling system |
US5885430A (en) * | 1996-10-04 | 1999-03-23 | Spectrumedix Corporation | Capillary tube holder for an electrophoretic apparatus |
US6086825A (en) * | 1997-06-06 | 2000-07-11 | Caliper Technologies Corporation | Microfabricated structures for facilitating fluid introduction into microfluidic devices |
US6110332A (en) * | 1998-10-26 | 2000-08-29 | The Regents Of The University Of California | T-load microchannel array and fabrication method |
US6149787A (en) * | 1998-10-14 | 2000-11-21 | Caliper Technologies Corp. | External material accession systems and methods |
US6165417A (en) * | 1998-10-26 | 2000-12-26 | The Regents Of The University Of California | Integrated titer plate-injector head for microdrop array preparation, storage and transfer |
US6207031B1 (en) * | 1997-09-15 | 2001-03-27 | Whitehead Institute For Biomedical Research | Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device |
-
2001
- 2001-01-18 WO PCT/US2001/001705 patent/WO2001053794A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5872010A (en) * | 1995-07-21 | 1999-02-16 | Northeastern University | Microscale fluid handling system |
US5885430A (en) * | 1996-10-04 | 1999-03-23 | Spectrumedix Corporation | Capillary tube holder for an electrophoretic apparatus |
US6086825A (en) * | 1997-06-06 | 2000-07-11 | Caliper Technologies Corporation | Microfabricated structures for facilitating fluid introduction into microfluidic devices |
US6207031B1 (en) * | 1997-09-15 | 2001-03-27 | Whitehead Institute For Biomedical Research | Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device |
US6149787A (en) * | 1998-10-14 | 2000-11-21 | Caliper Technologies Corp. | External material accession systems and methods |
US6110332A (en) * | 1998-10-26 | 2000-08-29 | The Regents Of The University Of California | T-load microchannel array and fabrication method |
US6165417A (en) * | 1998-10-26 | 2000-12-26 | The Regents Of The University Of California | Integrated titer plate-injector head for microdrop array preparation, storage and transfer |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1210590A1 (fr) * | 1999-07-08 | 2002-06-05 | Shaorong Liu | Injecteur microfabrique et ensemble reseau capillaire utiles pour effecteur des separations a haute resolution et a rendement eleve |
EP1210590A4 (fr) * | 1999-07-08 | 2002-09-04 | Shaorong Liu | Injecteur microfabrique et ensemble reseau capillaire utiles pour effecteur des separations a haute resolution et a rendement eleve |
WO2001095367A3 (fr) * | 2000-06-05 | 2003-01-16 | Upjohn Co | Ionisation a electronebulisation a sources multiples pour la spectrometrie de masse |
WO2001095367A2 (fr) * | 2000-06-05 | 2001-12-13 | Pharmacia & Upjohn Company | Ionisation a electronebulisation a sources multiples pour la spectrometrie de masse |
US9926521B2 (en) | 2000-06-27 | 2018-03-27 | Fluidigm Corporation | Microfluidic particle-analysis systems |
US7833708B2 (en) | 2001-04-06 | 2010-11-16 | California Institute Of Technology | Nucleic acid amplification using microfluidic devices |
US8936764B2 (en) | 2001-04-06 | 2015-01-20 | California Institute Of Technology | Nucleic acid amplification using microfluidic devices |
US8486636B2 (en) | 2001-04-06 | 2013-07-16 | California Institute Of Technology | Nucleic acid amplification using microfluidic devices |
US9103761B2 (en) | 2001-10-26 | 2015-08-11 | Fluidigm Corporation | Methods and devices for electronic sensing |
US8440093B1 (en) | 2001-10-26 | 2013-05-14 | Fuidigm Corporation | Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels |
US8845914B2 (en) | 2001-10-26 | 2014-09-30 | Fluidigm Corporation | Methods and devices for electronic sensing |
US8658418B2 (en) | 2002-04-01 | 2014-02-25 | Fluidigm Corporation | Microfluidic particle-analysis systems |
US9714443B2 (en) | 2002-09-25 | 2017-07-25 | California Institute Of Technology | Microfabricated structure having parallel and orthogonal flow channels controlled by row and column multiplexors |
US9579650B2 (en) | 2002-10-02 | 2017-02-28 | California Institute Of Technology | Microfluidic nucleic acid analysis |
US10940473B2 (en) | 2002-10-02 | 2021-03-09 | California Institute Of Technology | Microfluidic nucleic acid analysis |
US10328428B2 (en) | 2002-10-02 | 2019-06-25 | California Institute Of Technology | Apparatus for preparing cDNA libraries from single cells |
US8871446B2 (en) | 2002-10-02 | 2014-10-28 | California Institute Of Technology | Microfluidic nucleic acid analysis |
WO2004050247A1 (fr) * | 2002-12-02 | 2004-06-17 | Gyros Ab | Traitement parallele de dispositifs microfluidiques |
US7964139B2 (en) | 2003-08-11 | 2011-06-21 | California Institute Of Technology | Microfluidic rotary flow reactor matrix |
EP1614464A1 (fr) * | 2004-07-03 | 2006-01-11 | Roche Diagnostics GmbH | Raccord entre réservoir liquide |
EP1611954A1 (fr) * | 2004-07-03 | 2006-01-04 | Roche Diagnostics GmbH | Raccord entre réservoir liquide |
US7820023B2 (en) | 2004-07-03 | 2010-10-26 | Roche Diagnostics Operations, Inc. | Preconcentration interface coupling liquid chromatography to capillary electrophoresis |
EP1797955A3 (fr) * | 2005-11-28 | 2007-12-26 | Seiko Epson Corporation | Système microfluidique, dispositif d'analyse d'échantillon et procédé de mesure de substance cible |
US7863054B2 (en) | 2005-11-28 | 2011-01-04 | Seiko Epson Corporation | Microfluidic system, sample analysis device, and target substance detection/measurement method |
CN109030844A (zh) * | 2018-07-05 | 2018-12-18 | 领航基因科技(杭州)有限公司 | 应用于生物系统微流体的自动生成装置和方法 |
CN109030844B (zh) * | 2018-07-05 | 2022-08-05 | 领航基因科技(杭州)有限公司 | 应用于生物系统微流体的自动生成装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2001053794A8 (fr) | 2008-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6939452B2 (en) | Parallel sample loading and injection device for multichannel microfluidic devices | |
EP1404448B1 (fr) | Dispositif et procede de dosage chimique microfluidique | |
US5872010A (en) | Microscale fluid handling system | |
US5770029A (en) | Integrated electrophoretic microdevices | |
US6406604B1 (en) | Multi-dimensional electrophoresis apparatus | |
US5705813A (en) | Integrated planar liquid handling system for maldi-TOF MS | |
EP3140663B1 (fr) | Transfert de fluide à partir d'un dispositif microfluidique numérique | |
AU2002329526A1 (en) | Microfluidic chemical assay apparatus and method | |
WO1997004297A9 (fr) | Systeme permettant des transferts de micro-quantites de fluide | |
WO2008024835A2 (fr) | dispositifs microfluidiqueS et procédés facilitant un débit élevé, techniques de détection et de séparation sur puce | |
WO2001053794A1 (fr) | Chargement d'echantillons en parallele et dispositif d'injection utilises pour des dispositifs a microfluides a plusieurs canaux | |
US8012434B2 (en) | Anti-clogging device and method for in-gel digestion applications | |
WO2000062039A9 (fr) | Systeme et procede d'analyse en spectrometrie de masse a haut debit | |
US8061187B2 (en) | Lossless droplet transfer of droplet-based microfluidic analysis | |
US20050070010A1 (en) | Dockable processing module | |
EP1398614A2 (fr) | Appareil et méthode pour la preparation d'echantillons et le spotting direct d'éluant sur cibles maldi-tof | |
Figeys et al. | Lab-on-a-chip: A twentieth-century dream, a twenty-first-century reality | |
Dutta | Micro-and Nanofluidic Systems for Trace Analysis of Biological Samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: C1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
WR | Later publication of a revised version of an international search report | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10181503 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |