Nothing Special   »   [go: up one dir, main page]

WO2001053505A2 - Herpes virus strains for gene therapy - Google Patents

Herpes virus strains for gene therapy Download PDF

Info

Publication number
WO2001053505A2
WO2001053505A2 PCT/GB2001/000225 GB0100225W WO0153505A2 WO 2001053505 A2 WO2001053505 A2 WO 2001053505A2 GB 0100225 W GB0100225 W GB 0100225W WO 0153505 A2 WO0153505 A2 WO 0153505A2
Authority
WO
WIPO (PCT)
Prior art keywords
strain
virus
gene
virus according
tumour
Prior art date
Application number
PCT/GB2001/000225
Other languages
French (fr)
Other versions
WO2001053505A3 (en
Inventor
Robert Stuart Coffin
Original Assignee
Biovex Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27447756&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001053505(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB0001475A external-priority patent/GB0001475D0/en
Priority claimed from GB0002854A external-priority patent/GB0002854D0/en
Priority claimed from GB0100288A external-priority patent/GB0100288D0/en
Priority claimed from GB0100430A external-priority patent/GB0100430D0/en
Priority to BRPI0107737A priority Critical patent/BRPI0107737B8/en
Priority to KR1020027009412A priority patent/KR100768408B1/en
Priority to AT01901288T priority patent/ATE282708T1/en
Priority to IL15067801A priority patent/IL150678A0/en
Priority to EP01901288A priority patent/EP1252322B2/en
Priority to DE60107203T priority patent/DE60107203T3/en
Priority to DK01901288T priority patent/DK1252322T4/en
Priority to US10/181,697 priority patent/US7223593B2/en
Priority to JP2001553367A priority patent/JP4810042B2/en
Priority to AU26947/01A priority patent/AU782659C/en
Priority to CA2398335A priority patent/CA2398335C/en
Application filed by Biovex Limited filed Critical Biovex Limited
Priority to GB0219033A priority patent/GB2374873C/en
Publication of WO2001053505A2 publication Critical patent/WO2001053505A2/en
Publication of WO2001053505A3 publication Critical patent/WO2001053505A3/en
Priority to IL150678A priority patent/IL150678A/en
Priority to HK02108740.4A priority patent/HK1047297B/en
Priority to US11/738,807 priority patent/US8277818B2/en
Priority to US13/600,711 priority patent/US8680068B2/en
Priority to US14/174,521 priority patent/US20140154215A1/en
Priority to US14/700,036 priority patent/US20150232812A1/en
Priority to LU93100C priority patent/LU93100I2/en
Priority to BE2016C033C priority patent/BE2016C033I2/fr
Priority to NL300820C priority patent/NL300820I2/nl
Priority to FR16C0026C priority patent/FR16C0026I2/en
Priority to CY2016020C priority patent/CY2016020I1/en
Priority to US16/376,089 priority patent/US20200032219A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/763Herpes virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/869Herpesviral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16632Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector
    • C12N2710/16643Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to herpes virus strains with improved anti- tumour activity as compared to previously known strains.
  • viruses have been shown to have utility in a variety of applications in biotechnology and medicine on many occasions. Each is due to the unique ability of viruses to enter cells at high efficiency. This is followed in such applications by either virus gene expression and replication and/or expression of an inserted heterologous gene.
  • viruses can either deliver and express genes in cells (either viral or other genes) which may be useful in for example gene therapy or the development of vaccines, or they may be useful in selectively killing cells by lytic replication or the action of a delivered gene in for example cancer.
  • Herpes simplex virus has been suggested to be of use for the oncolytic treatment of cancer.
  • the virus must however be disabled such that it is no longer pathogenic, i.e. does not replicate in and kill non-tumor cells, but such that it can still enter and kill tumor cells.
  • HSV Herpes simplex virus
  • a number of mutations to HSV have been identified which still allow the virus to replicate in culture or in actively dividing cells in vivo (e.g. in tumors), but which prevent significant replication in normal tissue.
  • Such mutations include disruption of the genes encoding ICP34.5, ICP6, and thymidine kinase.
  • viruses with mutations to ICP34.5, or ICP34.5 together with mutation of e.g. ICP6 have so far shown the most favourable safety profile.
  • Viruses deleted for only ICP34.5 have been shown to replicate in many tumor cell types in vitro and to selectively replicate in artificially induced brain tumors in mice while sparing surrounding tissue. Early stage clinical trials have also shown their safety in man.
  • promise has been shown for various viruses including HSV for the oncolytic treatment of cancer the majority of this work has used virus strains which do not carry a heterologous gene which may enhance the anti-tumor effect.
  • HSV granulocyte macrophage colony stimulating factor
  • an imrnunomodulatory protein such as granulocyte macrophage colony stimulating factor (GM-CSF) encoded in the disabled virus genome
  • GM-CSF granulocyte macrophage colony stimulating factor
  • the HSV ICP47 protein specifically inhibits antigen presentation in HSV infected cells (Hill et al 1995), and the product of the UL43 gene and the vhs protein reduce the immune-stimulating abilities of dendritic cells infected with HSV.
  • ICP47 and/or dendritic cell-inactivating genes might therefore usefully be deleted from an oncolytic HSV mutant virus used for the treatment of cancer, particularly if immune effects are to be enhanced through the use of GM-CSF or other immuno stimulatory cytokine or chemokine.
  • GM-CSF has recently been shown to give an enhanced anti-tumor immune effect if expressed from within a tumor cell rather than administered systemically (Shi et al 1999).
  • an oncolytic HSV mutant would be inoculated into a primary or secondary tumor where replication and oncolytic destruction of the tumor would occur. Immune responses would also be stimulated against the HSV infected cells, and also to tumor cells elsewhere which had spread from the primary tumor site.
  • the present invention provides viruses with improved capabilities for the lytic destruction of tumor cells in vivo.
  • herpes simplex virus strains are constructed using a strain of HSV 1 or HSV2 in which the genes encoding ICP34.5 and ICP47 have been inactivated such that a functional ICP34.5 or ICP47 protein cannot be expressed and which also carries a gene encoding an imrnunomodulatory protein.
  • the virus may also be mutated for any additional gene(s) which may be involved in inhibiting the function of dendritic cells including the UL43 gene and/or the gene encoding vhs.
  • the present invention therefore provides viruses capable of the oncolytic destruction of tumor cells and in which anti-tumor immune effects will have been maximised.
  • the invention provides: a herpes virus which comprises a gene encoding an imrnunomodulatory protein and which lacks functional ICP34.5 and ICP47 encoding genes.
  • a herpes virus of the invention for use in a method of treatment of the human or animal body by therapy.
  • a pharmaceutical composition comprising as active ingredient a virus according to the invention and a pharmaceutically acceptable carrier or diluent.
  • diagrams show: laboratory HSV1 strain 17+, , clinical HSV1 strain JS1. strain 17+/ICP34.5-, strain JS1/ICP34.5-. strain JS 1/ICP34.5-/ICP47-/ hGMCSF, strain JS1/ICP34.5-/ICP47-/ mGMCSF.
  • a herpes virus of the invention is capable of efficiently infecting target tumor cells and the genes encoding ICP34.5 and ICP47 are inactivated in the virus. Mutation of ICP34.5 allows selective oncolytic activity. Such mutations are described in Chou et al 1990 and Maclean et al 1991, although any mutation in which ICP34.5 is non-functional may be used.
  • the genes encoding ICP6 and/or thyrnidine kinase may additionally be inactivated, as may other genes if such inactivation does significantly reduce the oncolytic effect, or if such deletion enhances oncolytic or other desirable properties of the virus.
  • ICP47 usually functions to block antigen presentation in HSV-infected cells so its disruption leads to a virus that does not confer on infected tumour cells properties that might protect them from the host's immune system when infected with HSV.
  • Viruses of the invention additionally encode an immunomodulatory protein, preferably GM-CSF, but may also encode other cytokines, chemokines such as RANTES, or other immune- modulatory proteins such as B7.1. B7.2 or CD40L. Genes encoding immunomodulatory proteins may be included individually or in combination.
  • Viral regions altered for the purposes described above may be either eliminated (completely or partly), or made non-functional, or substituted by other sequences, in particular by a gene for an immunomodulatory protein such as GM- CSF.
  • the virus of the invention may be derived from a HSV 1 or HSV2 strain, or from a derivative thereof, preferably HSVl .
  • Derivatives include inter-type recombinants containing DNA from HSVl and HSV2 strains. Such inter-type recombinants are described in the art, for example in Thompson et al, 1998 and Meignier et al, 1988.
  • Derivatives preferably have at least 70% sequence homology to either the HSVl or HSV2 genomes, more preferably at least 80%. even more preferably at least 90 or 95%. More preferably, a derivative has at least 70% sequence identity to either the HSVl or HSV2 genome, more preferably at least 80% identity, even more preferably at least 90%>, 95% or 98% identity.
  • the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux et al. (1984) Nucleic Acids Research 12, p387-395).
  • the PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul (1993) J. Mol. Evol. 36:290-300; Altschul et al. (1990) J. Mol. Biol. 215:403-10.
  • HSPs high scoring sequence pair
  • Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
  • the BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5787.
  • One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance.
  • P(N) the smallest sum probability
  • a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01 , and most preferably less than about 0.001.
  • a derivative may have the sequence of a HSVl or HSV2 genome modified by nucleotide substitutions, for example from 1 , 2 or 3 to 10, 25, 50 or 100 substitutions.
  • the HSVl or HSV2 genome may alternatively or additionally be modified by one or more insertions and/or deletions and/or by an extension at either or both ends.
  • Virus strains of the invention may be "'non-laboratory" strains. These can also be referred to as “clinical” strains. A person of skill in the art will readily be able to distinguish between a laboratory strain and a non-laboratory, or clinical, strain. Further guidance on the properties likely to be exhibited by virus strains is given below.
  • the key distinction between a laboratory and non-laboratory strain is that laboratory strains currently in common use have been maintained for long periods, many years in some cases, in culture.
  • the culture of viruses such as HSV involves a technique known as serial passage. To grow and maintain viruses, suitable cells are infected with the virus, the virus replicates within the cell and the virus is then harvested; fresh cells are then re-infected, this process constitutes one cycle of serial passage.
  • Each such cycle may take, for example, a few days in the case of HSV.
  • serial passaging may lead to changes in the properties of the virus strain, in that selection takes places for properties that favour growth in culture (e.g. rapid replication), as opposed to properties useful for practical applications, e.g. maintenance of the capacity to travel along axons in the case of HSV or to infect human cells.
  • Virus strains of the invention are may be non-laboratory strains in that they are derived from strains recently isolated from infected individuals. Strains of the invention are modified compared to the original clinical isolates, and may have spent a time in culture, but any time spent in culture will be comparatively short. Strains of the invention are prepared in such a manner as to retain substantially the desirable properties of the original clinical isolates from which they are derived.
  • a virus strain of the invention is derived from a parental virus strain if the parental virus strain is mutated to produce the virus.
  • a virus of the invention may be derived from the clinical isolate JSI.
  • the parental strain of such a JSI-derived virus may be JSI or another HSVl strain derived from JSI.
  • a virus of the invention may be a JSI virus comprising a gene encoding an immunomodulatory protein and which lacks a functional ICP34.5 encoding gene and a functional ICP47 encoding gene.
  • such a virus may contain any other mutation as mentioned herein.
  • a virus of the invention is capable of efficiently infecting target human cancer cells.
  • a virus When such a virus is a non-laboratory or clinical strain it will have been recently isolated from an HSV infected individual and then screened for the desired ability of enhanced replication, infection or killing of tumour and/or other cells in vitro and/or in vivo in comparison to standard laboratory strains.
  • Such viruses of the invention with improved properties as compared to laboratory virus strains are then engineered such that they lack functional ICP34.5 and ICP47 genes and encode a gene(s) for an immunomodulatory protein(s) such as GM-CSF under the control of a suitable promoter(s).
  • Other genes encoding proteins which interfere with the function of dendritic cells such as UL43 and or vhs may also be inactivated.
  • a non-laboratory virus strain of the invention has undergone three years or less in culture since isolation of its unmodified clinical precursor strain from its host. More preferably, the strain has undergone one year or less in culture, for example nine months or less, six months or less, three months or less, or two months or less, one month or less, two weeks or less, or one week or less.
  • time in culture is meant time actually spent in culture.
  • it is a common practice to freeze virus strains in order to preserve them.
  • preserving by freezing or in an equivalent manner does not qualify as maintaining the strain in culture.
  • time spent frozen or otherwise preserved is not included in the above definitions of time spent in culture.
  • Time spent in culture is typically time actually spent undergoing serial passage, i.e. time during which selection for undesirable characteristics can occur.
  • a non-laboratory virus strain has undergone 1 ,000 or less cycles or serial passage since isolation of its unmodified clinical precursor strain from its host.
  • it has undergone 500 or less, 100 or less, 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, 20 or less, or 10 or less such cycles.
  • a non-laboratory virus has a greater ability, as measured by standard statistical tests, than a reference laboratory strain with the equivalent modifications to perform certain functions useful in the application at hand.
  • a non-laboratory virus strain of the invention will preferably have a greater ability than a reference laboratory strain with equivalent modifications to infect or replicate in tumour cells, to kill tumour cells or to spread between cells in tissue. More preferably, such greater ability is a statistically significantly greater ability.
  • a non- laboratory strain of the invention may have up to 1.1 fold, 1.2 fold, 1.5 fold, 2 fold, 5 fold, 10 fold, 20 fold, 50 fold, or 100 fold the capacity of the reference strain in respect of the property being tested.
  • Viruses of the invention infect and replicate in tumour cells, subsequently killing the tumour cells.
  • viruses are replication competent.
  • they are selectively replication competent in tumour cells. This means that either they replicate in tumour cells and not in non-tumour cells, or that they replicate more effectively in tumour cells than in non-tumour cells.
  • Cells in which the virus is able to replicate are permissive cells.
  • Measurement of selective replication competence can be carried out by the tests described herein for measurement of replication and tumour cell-killing capacity, and also analysed by the statistical techniques mentioned herein if desired.
  • a virus of the invention preferably has a greater ability than an unmodified parent strain to infect or replicate in a tumour cell, to kill tumour cells or to spread between cells in tissues. Preferably this ability is a statistically significant greater ability.
  • a virus according to the invention may have up to 1.1 fold, 1.2 fold, 1.5 fold, 2 fold, 5 fold, 10 fold, 20 fold, 50 fold or 100 fold the capacity of the unmodified parent strain in respect of the property being tested.
  • the properties of the virus strain in respect of tumour cells can be measured in any manner known in the art.
  • the capacity of a virus to infect a tumour cell can be quantified by measuring the dose of virus required to measure a given percentage of cells, for example 50% or 80%) of cells.
  • the capacity to replicate in a tumour cell can be measured by growth measurements such as those carried out in the Examples, e.g. by measuring virus growth in cells over a period of 6, 12, 24, 36, 48 or 72 hours or longer.
  • tumour cells The ability of a virus to kill tumour cells can be roughly quantitated by eye or more exactly quantitated by counting the number of live cells that remain over time for a given time point and MOI for given cell type. For example, comparisons may be made over 24, 48 or 72 hours and using any known tumour cell type.
  • HT29 colorectal adenocarcinoma, LNCaP.FGC prostate adenocarcinoma, MDA-MB-231 breast adenocarcinoma, SK-MEL-28 malignant melanoma or U-87 MG glioblastoma astrocytoma cells can be used. Any one of these cell types or any combination of these cell types can be used, as may other tumour cell types.
  • tumour cell types it may be desirable to construct a standard panel of tumour cell types for this purpose.
  • the number of trypan blue-excluding cells i.e. live cells
  • Quantitation may also be carried out by fluorescence activated cell sorting (FACS) or MTT assay.
  • FACS fluorescence activated cell sorting
  • MTT assay MTT assay.
  • Tumour cell- killing ability may also be measured in vivo, e.g. by measuring the reduction in tumour volume engendered by a particular virus.
  • a standard laboratory reference strain for comparison. Any suitable standard laboratory reference strain may be used.
  • HSV it is preferred to use one or more of HSVl strain 17+, HSVl strain F or HSVl strain KOS.
  • the reference strain will typically have equivalent modifications to the strain of the invention being tested.
  • the reference strain will typically have equivalent modifications gene deletions and, such as heterologous gene insertions.
  • ICP34.5 and ICP47-encoding genes have been rendered non-functional, then they will also have been rendered nonfunctional in the reference strain.
  • the modifications made to the reference strain may be identical to those made to the strain of the invention.
  • the gene disruptions in the reference strain will be in exactly equivalent positions to those in the strain of the invention, e.g. deletions will be of the same size and in the same place.
  • heterologous genes will be inserted in the same place, driven by the same promoter, etc.
  • the various genes referred to may be rendered functionally inactive by several techniques well known in the art. For example, they may be rendered functionally inactive by deletion(s), substitution(s) or insertion(s), preferably by deletion. Deletions may remove one or more portions of the gene or the entire gene. For example, deletion of only one nucleotide may be made, resulting in a frame shift. However, preferably a larger deletion() is made, for example at least 25 %, more preferably at least 50% of the total coding and non-coding sequence (or alternatively, in absolute terms, at least 10 nucleotides, more preferably at least 100 nucleotides, most preferably, at least 1000 nucleotides).
  • HSV genomic DNA is transfected together with a vector, preferably a plasmid vector, comprising the mutated sequence flanked by homologous HSV sequences.
  • the mutated sequence may comprise a deletion(s), insertion(s) or substitution(s), all of which may be constructed by routine techniques.
  • Insertions may include selectable marker genes, for example lacZ or green fluorescent protein (GFP), for screening recombinant viruses, for example, ⁇ -galactosidase activity or fluorescence.
  • GFP green fluorescent protein
  • the viruses of the invention may be modified to carry a heterologous gene encoding an immunomodulatory protein.
  • the immunomodulatory protein will enhance the anti-tumour activity of the virus. More preferably the protein is GM-CSF or another cytokine, a chemokine such as RANTES, or another immunomodulatory molecule such as B7.1, B7.2 or CD40L. Most preferably the immunomodulatory molecule is GM-CSF.
  • the immunomodulatory gene may be any allelic variant of a wild-type gene, or it may be a mutant gene.
  • the immunomodulatory gene will be derived from a mammal, preferably a rodent or primate, more preferably a human.
  • the immunomodulatory gene is preferably operably linked to a control sequence permitting expression of said gene in a cell in vivo.
  • Viruses of the invention may thus be used to deliver the immunomodulatory gene (or genes) to a cell in vivo where it will be expressed.
  • the immunomodulatory gene may be inserted into the viral genome by any suitable technique such as homologous recombination of HSV strains with, for example, plasmid vectors carrying the gene flanked by HSV sequences.
  • the GM- CSF gene, or other immunomodulatory gene may be introduced into a suitable plasmid vector comprising herpes viral sequences using cloning techniques well- known in the art.
  • the gene may be inserted into the viral genome at any location provided that oncolytic properties are still retained.
  • Immunomodulatory genes may be inserted at multiple sites within the virus genome. For example, from 2 to 5 genes may be inserted into the genome.
  • the transcribed sequence of the immunomodulatory gene is preferably operably linked to a control sequence permitting expression of the gene in a tumour cell.
  • the term "Operably linked” refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner.
  • a control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequence.
  • the control sequence comprises a promoter allowing expression of the immunomodulatory gene and a signal for termination of transcription.
  • the promoter is selected from promoters which are functional in mammalian, preferably human tumour cells.
  • the promoter may be derived from promoter sequences of eukaryotic genes.
  • the promoter may be derived from the genome of a cell in which expression of the heterologous gene is to occur, preferably a mammalian, preferably a human tumour cell.
  • eukaryotic promoters they may be promoters that function in a ubiquitous manner (such as promoters of ⁇ -actin, tubulin) or, alternatively, in a tumour-specific manner.
  • Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR) promoter or other retroviral promoters, the human or mouse cytomegalovirus (CMV) IE promoter, or promoters of herpes virus genes including those driving expression of the latency associated transcripts.
  • MMLV LTR Moloney murine leukaemia virus long terminal repeat
  • CMV human or mouse cytomegalovirus
  • Expression cassettes and other suitable constructs comprising the immunomodulatory gene and control sequences can be made using routine cloning techniques known to persons skilled in the art (see, for example, Sambrook et al, 1989, Molecular Cloning - A laboratory manual; Cold Spring Harbor Press).
  • a virus of the invention may further comprise a hererologous gene encoding the tet repressor VP 16 transcriptional activator fusion protein under the control of a strong promoter (e.g. the CMV IE promoter) and the immunomodulatory gene may be under the control of a promoter responsive to the tet repressor VP16 transcriptional activator fusion protein previously reported (Gossen and Bujard, 1992, Gossen et al, 1995).
  • a strong promoter e.g. the CMV IE promoter
  • expression of the immunomodulatory gene would depend on the presence or absence of tetracycline.
  • a virus of the invention may comprise two or more immunomodulatory genes, for example from 2 to 3, 4 or 5 immunomodulatory genes. More than one gene and associated control sequences could be introduced into a particular HSV strain either at a single site or at multiple sites in the virus genome. Alternatively pairs of promoters (the same or different promoters) facing in opposite orientations away from each other, each driving the expression of an immunomodulatory gene may be used.
  • viruses of the invention may be used in methods of cancer therapy of the human or animal body.
  • viruses of the invention may be used in the oncolytic treatment of cancer, either with or without additional pro-drug therapy or stimulation of an anti-tumour immune response.
  • Viruses of the invention may be used in the therapeutic treatment of any solid tumour in a mammal, preferably in a human.
  • viruses of the invention may be administered to a subject with prostate, breast, lung, liver, endometrial, bladder, colon or cervical carcinoma; adenocarcinoma; melanoma; lymphoma; glioma; or sarcomas such as soft tissue and bone sarcomas.
  • the viruses of the invention may be used in a patient, preferably a human patient, in need of treatment.
  • a patient in need of treatment is an individual suffering from cancer, preferably an individual with a solid tumour.
  • the aim of therapeutic treatment is to improve the condition of a patient.
  • therapeutic treatment using a virus of the invention allieviates the symptoms of the cancer.
  • a method of treatment of cancer according to the invention comprises administering a therapeutically effective amount of a virus of the invention to a patient suffering from cancer.
  • Administration of an oncolytic virus of the invention to an individual suffering from a tumour will typically kill the cells of the tumour thus decreasing the size of the tumour and/or preventing spread of malignant cells from the tumour.
  • One method of administering therapy involves combining the virus with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition.
  • Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline.
  • Therapeutic treatment may be carried out following direct injection of the virus composition into target tissue which may be the tumour or a blood vessel supplying the tumour.
  • the amount of virus administered is in the case of HSV in the range of from 10 4 to 10 pfu, preferably from lO 3 to 10 8 pfu, more preferably about 10 6 to 10 8 pfu.
  • up to 500 ⁇ l typically from 1 to 200 ⁇ l preferably from 1 to lO ⁇ l of a pharmaceutical composition consisting essentially of the virus and a pharmaceutically acceptable suitable carrier or diluent would be used for injection.
  • larger volumes up to 10ml may also be used, depending on the tumour and the inoculation site.
  • the routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage.
  • the dosage may be determined according to various parameters, especially according to the location of the tumour, the size of the tumour, the age, weight and condition of the patient to be treated and the route of administration.
  • the virus is administered by direct injection into the tumour.
  • the virus may also be administered systemically or by injection into a blood vessel supplying the tumour.
  • the optimum route of administration will depend on the location and size of the tumour. The following Examples illustrates the invention.
  • Herpes simplex type-1 virus in which the neurovirulence factor ICP34.5 is inactivated has previously been shown to direct tumour specific cell lysis in tumour models both in vitro and in vivo. Such viruses have also been shown to be safe in Phase I clinical trials by direct intra-cerebral injection in late stage glioma patients.
  • the viruses used were either based on HSVl strain 17+ (a standard laboratory strain) or a clinical isolate derived from cold sores from a frequent re- activator of HSVl .
  • This clinical, or '"non-laboratory strain is named JSI .
  • ICP34.5 was completely deleted from strain 17+ and JS 1 together with the insertion of a CMV-GFP cassette.
  • JSI was then also further engineered by the insertion of human GM-CSF (hGM-CSF) or mouse GM-CSF (mGM-CSF) so as to replace the ICP34.5 gene and by the deletion of ICP47.
  • hGM-CSF human GM-CSF
  • mGM-CSF mouse GM-CSF
  • Lytic (cell killing) capabilities were enhanced with the JS 1 -derived non- laboratory strains derived virus in all tumour cell lines tested as compared with the 17+ derived strains. More particularly, the JS 1/34.5- virus, i.e. JSI with ICP34.5 removed by deletion, showed enhanced lytic capabilities in HT29 colorectal adenocarcinoma, LNCaP.FGC prostate adenocarcinoma, MDA-MB-231 breast adenocarcinoma, SK-MEL-28 malignant melanoma and U-87 MG glioblastoma astrocytoma cells. Thus, to provide increased oncolytic activity, the use of recent clinical virus strains is likely to enhance the anti-tumour capabilities of such viruses when used in human patients for cancer treatment.
  • viruses are then used to deliver genes with anti-tumour activity.
  • genes include those encoding pro-drug activators or immunostimulatory proteins.
  • HSVl strain JSI has been deposited at the European Collection of Cell Cultures (ECACC), CAMR, Salisbury, Wiltshire SP4 OJG, United Kingdom, on 2 January 2001 under provisional accession number 01010209. References

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides a herpes virus with improved oncolytic properties which comprises a gene encoding an immunomodulatory cytokine and which lacks a functional ICP34.5 gene and a functional ICP47 encoding gene.

Description

HERPES VIRUS STRAINS
Field of the Invention
The present invention relates to herpes virus strains with improved anti- tumour activity as compared to previously known strains.
Background to the Invention
Viruses have been shown to have utility in a variety of applications in biotechnology and medicine on many occasions. Each is due to the unique ability of viruses to enter cells at high efficiency. This is followed in such applications by either virus gene expression and replication and/or expression of an inserted heterologous gene. Thus viruses can either deliver and express genes in cells (either viral or other genes) which may be useful in for example gene therapy or the development of vaccines, or they may be useful in selectively killing cells by lytic replication or the action of a delivered gene in for example cancer.
Herpes simplex virus (HSV) has been suggested to be of use for the oncolytic treatment of cancer. Here the virus must however be disabled such that it is no longer pathogenic, i.e. does not replicate in and kill non-tumor cells, but such that it can still enter and kill tumor cells. For the oncolytic treatment of cancer, which may also include the delivery of gene(s) enhancing the therapeutic effect, a number of mutations to HSV have been identified which still allow the virus to replicate in culture or in actively dividing cells in vivo (e.g. in tumors), but which prevent significant replication in normal tissue. Such mutations include disruption of the genes encoding ICP34.5, ICP6, and thymidine kinase. Of these, viruses with mutations to ICP34.5, or ICP34.5 together with mutation of e.g. ICP6 have so far shown the most favourable safety profile. Viruses deleted for only ICP34.5 have been shown to replicate in many tumor cell types in vitro and to selectively replicate in artificially induced brain tumors in mice while sparing surrounding tissue. Early stage clinical trials have also shown their safety in man. However, while promise has been shown for various viruses including HSV for the oncolytic treatment of cancer, the majority of this work has used virus strains which do not carry a heterologous gene which may enhance the anti-tumor effect. We propose that the combined use of HSV with an inactivating mutation in the gene encoding ICP34.5 together with the delivery of the gene encoding an imrnunomodulatory protein such as granulocyte macrophage colony stimulating factor (GM-CSF) encoded in the disabled virus genome may have optimal immune stimulating properties against the tumor to be treated, particularly if functions in the virus which usually reduce immune responses to HSV infected cells have also been inactivated. For example the HSV ICP47 protein specifically inhibits antigen presentation in HSV infected cells (Hill et al 1995), and the product of the UL43 gene and the vhs protein reduce the immune-stimulating abilities of dendritic cells infected with HSV. ICP47 and/or dendritic cell-inactivating genes might therefore usefully be deleted from an oncolytic HSV mutant virus used for the treatment of cancer, particularly if immune effects are to be enhanced through the use of GM-CSF or other immuno stimulatory cytokine or chemokine. GM-CSF has recently been shown to give an enhanced anti-tumor immune effect if expressed from within a tumor cell rather than administered systemically (Shi et al 1999). Thus in such use an oncolytic HSV mutant would be inoculated into a primary or secondary tumor where replication and oncolytic destruction of the tumor would occur. Immune responses would also be stimulated against the HSV infected cells, and also to tumor cells elsewhere which had spread from the primary tumor site.
Summarv of the Invention
The present invention provides viruses with improved capabilities for the lytic destruction of tumor cells in vivo. Here herpes simplex virus strains are constructed using a strain of HSV 1 or HSV2 in which the genes encoding ICP34.5 and ICP47 have been inactivated such that a functional ICP34.5 or ICP47 protein cannot be expressed and which also carries a gene encoding an imrnunomodulatory protein. The virus may also be mutated for any additional gene(s) which may be involved in inhibiting the function of dendritic cells including the UL43 gene and/or the gene encoding vhs. The present invention therefore provides viruses capable of the oncolytic destruction of tumor cells and in which anti-tumor immune effects will have been maximised.
Accordingly the invention provides: a herpes virus which comprises a gene encoding an imrnunomodulatory protein and which lacks functional ICP34.5 and ICP47 encoding genes. a herpes virus of the invention for use in a method of treatment of the human or animal body by therapy. use of a virus of the invention in the manufacture of a medicament for the treatment of cancer. a pharmaceutical composition comprising as active ingredient a virus according to the invention and a pharmaceutically acceptable carrier or diluent. - a method of treating a tumour in an individual in need thereof by administering to said individual an effective amount of a virus according to the invention.
Brief Description of the Drawings
Fig 1. Viruses
From top to bottom, diagrams show: laboratory HSV1 strain 17+, , clinical HSV1 strain JS1. strain 17+/ICP34.5-, strain JS1/ICP34.5-. strain JS 1/ICP34.5-/ICP47-/ hGMCSF, strain JS1/ICP34.5-/ICP47-/ mGMCSF.
Detailed Description of the Invention
A. Viruses
A herpes virus of the invention is capable of efficiently infecting target tumor cells and the genes encoding ICP34.5 and ICP47 are inactivated in the virus. Mutation of ICP34.5 allows selective oncolytic activity. Such mutations are described in Chou et al 1990 and Maclean et al 1991, although any mutation in which ICP34.5 is non-functional may be used. The genes encoding ICP6 and/or thyrnidine kinase may additionally be inactivated, as may other genes if such inactivation does significantly reduce the oncolytic effect, or if such deletion enhances oncolytic or other desirable properties of the virus. ICP47 usually functions to block antigen presentation in HSV-infected cells so its disruption leads to a virus that does not confer on infected tumour cells properties that might protect them from the host's immune system when infected with HSV. Viruses of the invention additionally encode an immunomodulatory protein, preferably GM-CSF, but may also encode other cytokines, chemokines such as RANTES, or other immune- modulatory proteins such as B7.1. B7.2 or CD40L. Genes encoding immunomodulatory proteins may be included individually or in combination.
Viral regions altered for the purposes described above may be either eliminated (completely or partly), or made non-functional, or substituted by other sequences, in particular by a gene for an immunomodulatory protein such as GM- CSF.
The virus of the invention may be derived from a HSV 1 or HSV2 strain, or from a derivative thereof, preferably HSVl . Derivatives include inter-type recombinants containing DNA from HSVl and HSV2 strains. Such inter-type recombinants are described in the art, for example in Thompson et al, 1998 and Meignier et al, 1988. Derivatives preferably have at least 70% sequence homology to either the HSVl or HSV2 genomes, more preferably at least 80%. even more preferably at least 90 or 95%. More preferably, a derivative has at least 70% sequence identity to either the HSVl or HSV2 genome, more preferably at least 80% identity, even more preferably at least 90%>, 95% or 98% identity.
For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux et al. (1984) Nucleic Acids Research 12, p387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul (1993) J. Mol. Evol. 36:290-300; Altschul et al. (1990) J. Mol. Biol. 215:403-10.
Software for performing BLAST analyses is publicly available through the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold (Altschul et al, 1990). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 1 1, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1992) Proc. Natl. Acad Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N= , and a comparison of both strands.
The BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01 , and most preferably less than about 0.001.
A derivative may have the sequence of a HSVl or HSV2 genome modified by nucleotide substitutions, for example from 1 , 2 or 3 to 10, 25, 50 or 100 substitutions. The HSVl or HSV2 genome may alternatively or additionally be modified by one or more insertions and/or deletions and/or by an extension at either or both ends.
Virus strains of the invention may be "'non-laboratory" strains. These can also be referred to as "clinical" strains. A person of skill in the art will readily be able to distinguish between a laboratory strain and a non-laboratory, or clinical, strain. Further guidance on the properties likely to be exhibited by virus strains is given below. The key distinction between a laboratory and non-laboratory strain is that laboratory strains currently in common use have been maintained for long periods, many years in some cases, in culture. The culture of viruses such as HSV involves a technique known as serial passage. To grow and maintain viruses, suitable cells are infected with the virus, the virus replicates within the cell and the virus is then harvested; fresh cells are then re-infected, this process constitutes one cycle of serial passage. Each such cycle may take, for example, a few days in the case of HSV. As discussed above, such serial passaging may lead to changes in the properties of the virus strain, in that selection takes places for properties that favour growth in culture (e.g. rapid replication), as opposed to properties useful for practical applications, e.g. maintenance of the capacity to travel along axons in the case of HSV or to infect human cells.
Virus strains of the invention are may be non-laboratory strains in that they are derived from strains recently isolated from infected individuals. Strains of the invention are modified compared to the original clinical isolates, and may have spent a time in culture, but any time spent in culture will be comparatively short. Strains of the invention are prepared in such a manner as to retain substantially the desirable properties of the original clinical isolates from which they are derived.
A virus strain of the invention is derived from a parental virus strain if the parental virus strain is mutated to produce the virus. For example, a virus of the invention may be derived from the clinical isolate JSI. The parental strain of such a JSI-derived virus may be JSI or another HSVl strain derived from JSI. Thus a virus of the invention may be a JSI virus comprising a gene encoding an immunomodulatory protein and which lacks a functional ICP34.5 encoding gene and a functional ICP47 encoding gene. In addition, such a virus may contain any other mutation as mentioned herein.
A virus of the invention is capable of efficiently infecting target human cancer cells. When such a virus is a non-laboratory or clinical strain it will have been recently isolated from an HSV infected individual and then screened for the desired ability of enhanced replication, infection or killing of tumour and/or other cells in vitro and/or in vivo in comparison to standard laboratory strains. Such viruses of the invention with improved properties as compared to laboratory virus strains are then engineered such that they lack functional ICP34.5 and ICP47 genes and encode a gene(s) for an immunomodulatory protein(s) such as GM-CSF under the control of a suitable promoter(s). Other genes encoding proteins which interfere with the function of dendritic cells such as UL43 and or vhs may also be inactivated. Preferably, a non-laboratory virus strain of the invention has undergone three years or less in culture since isolation of its unmodified clinical precursor strain from its host. More preferably, the strain has undergone one year or less in culture, for example nine months or less, six months or less, three months or less, or two months or less, one month or less, two weeks or less, or one week or less. By these definitions of time in culture, is meant time actually spent in culture. Thus, for example, it is a common practice to freeze virus strains in order to preserve them. Evidently, preserving by freezing or in an equivalent manner does not qualify as maintaining the strain in culture. Thus, time spent frozen or otherwise preserved is not included in the above definitions of time spent in culture. Time spent in culture is typically time actually spent undergoing serial passage, i.e. time during which selection for undesirable characteristics can occur.
Preferably, a non-laboratory virus strain has undergone 1 ,000 or less cycles or serial passage since isolation of its unmodified clinical precursor strain from its host.
More preferably, it has undergone 500 or less, 100 or less, 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, 20 or less, or 10 or less such cycles.
Preferably, a non-laboratory virus has a greater ability, as measured by standard statistical tests, than a reference laboratory strain with the equivalent modifications to perform certain functions useful in the application at hand. In the case of an oncolytic virus for tumour treatment, a non-laboratory virus strain of the invention will preferably have a greater ability than a reference laboratory strain with equivalent modifications to infect or replicate in tumour cells, to kill tumour cells or to spread between cells in tissue. More preferably, such greater ability is a statistically significantly greater ability. For example, according to the invention, a non- laboratory strain of the invention may have up to 1.1 fold, 1.2 fold, 1.5 fold, 2 fold, 5 fold, 10 fold, 20 fold, 50 fold, or 100 fold the capacity of the reference strain in respect of the property being tested. Statistical analysis of the properties described herein may be carried out by standard tests, for example, t-tests, ANOVA. or Chi squared tests. Typically, statistical significance will be measured to a level of p = 0.05 (5%), more preferably p = O.Olp, p = 0.001 , p = 0.0001, p = 0.000001. Viruses of the invention infect and replicate in tumour cells, subsequently killing the tumour cells. Thus, such viruses are replication competent. Preferably, they are selectively replication competent in tumour cells. This means that either they replicate in tumour cells and not in non-tumour cells, or that they replicate more effectively in tumour cells than in non-tumour cells. Cells in which the virus is able to replicate are permissive cells. Measurement of selective replication competence can be carried out by the tests described herein for measurement of replication and tumour cell-killing capacity, and also analysed by the statistical techniques mentioned herein if desired.
A virus of the invention preferably has a greater ability than an unmodified parent strain to infect or replicate in a tumour cell, to kill tumour cells or to spread between cells in tissues. Preferably this ability is a statistically significant greater ability. For example, a virus according to the invention may have up to 1.1 fold, 1.2 fold, 1.5 fold, 2 fold, 5 fold, 10 fold, 20 fold, 50 fold or 100 fold the capacity of the unmodified parent strain in respect of the property being tested. The properties of the virus strain in respect of tumour cells can be measured in any manner known in the art. For example, the capacity of a virus to infect a tumour cell can be quantified by measuring the dose of virus required to measure a given percentage of cells, for example 50% or 80%) of cells. The capacity to replicate in a tumour cell can be measured by growth measurements such as those carried out in the Examples, e.g. by measuring virus growth in cells over a period of 6, 12, 24, 36, 48 or 72 hours or longer.
The ability of a virus to kill tumour cells can be roughly quantitated by eye or more exactly quantitated by counting the number of live cells that remain over time for a given time point and MOI for given cell type. For example, comparisons may be made over 24, 48 or 72 hours and using any known tumour cell type. In particular, HT29 colorectal adenocarcinoma, LNCaP.FGC prostate adenocarcinoma, MDA-MB-231 breast adenocarcinoma, SK-MEL-28 malignant melanoma or U-87 MG glioblastoma astrocytoma cells can be used. Any one of these cell types or any combination of these cell types can be used, as may other tumour cell types. It may be desirable to construct a standard panel of tumour cell types for this purpose. To count the number of live cells remaining at a given time point, the number of trypan blue-excluding cells (i.e. live cells) can be counted. Quantitation may also be carried out by fluorescence activated cell sorting (FACS) or MTT assay. Tumour cell- killing ability may also be measured in vivo, e.g. by measuring the reduction in tumour volume engendered by a particular virus.
In order to determine the properties of viruses of the invention, it will generally be desirable to use a standard laboratory reference strain for comparison. Any suitable standard laboratory reference strain may be used. In the case of HSV, it is preferred to use one or more of HSVl strain 17+, HSVl strain F or HSVl strain KOS. The reference strain will typically have equivalent modifications to the strain of the invention being tested. Thus, the reference strain will typically have equivalent modifications gene deletions and, such as heterologous gene insertions. In the case of a virus of the invention, where the ICP34.5 and ICP47-encoding genes have been rendered non-functional, then they will also have been rendered nonfunctional in the reference strain. The modifications made to the reference strain may be identical to those made to the strain of the invention. By this, it is meant that the gene disruptions in the reference strain will be in exactly equivalent positions to those in the strain of the invention, e.g. deletions will be of the same size and in the same place. Similarly, in these embodiments, heterologous genes will be inserted in the same place, driven by the same promoter, etc. However, it is not essential that identical modifications be made. What is important is that the reference gene has functionally equivalent modifications, e.g. that the same genes are rendered nonfunctional and/or the same heterologous gene or genes is inserted.
B. Methods of mutation The various genes referred to may be rendered functionally inactive by several techniques well known in the art. For example, they may be rendered functionally inactive by deletion(s), substitution(s) or insertion(s), preferably by deletion. Deletions may remove one or more portions of the gene or the entire gene. For example, deletion of only one nucleotide may be made, resulting in a frame shift. However, preferably a larger deletion() is made, for example at least 25 %, more preferably at least 50% of the total coding and non-coding sequence (or alternatively, in absolute terms, at least 10 nucleotides, more preferably at least 100 nucleotides, most preferably, at least 1000 nucleotides). It is particularly preferred to remove the entire gene and some of the flanking sequences. Where two or more copies of the gene are present in the viral genome it is preferred that both copies of the gene are rendered functionally inactive. Mutations are made in the herpes viruses by homologous recombination methods well known to those skilled in the art. For example, HSV genomic DNA is transfected together with a vector, preferably a plasmid vector, comprising the mutated sequence flanked by homologous HSV sequences. The mutated sequence may comprise a deletion(s), insertion(s) or substitution(s), all of which may be constructed by routine techniques. Insertions may include selectable marker genes, for example lacZ or green fluorescent protein (GFP), for screening recombinant viruses, for example, β-galactosidase activity or fluorescence.
C. Heterologous genes and promoters The viruses of the invention may be modified to carry a heterologous gene encoding an immunomodulatory protein. Preferably the immunomodulatory protein will enhance the anti-tumour activity of the virus. More preferably the protein is GM-CSF or another cytokine, a chemokine such as RANTES, or another immunomodulatory molecule such as B7.1, B7.2 or CD40L. Most preferably the immunomodulatory molecule is GM-CSF. The immunomodulatory gene may be any allelic variant of a wild-type gene, or it may be a mutant gene. The immunomodulatory gene will be derived from a mammal, preferably a rodent or primate, more preferably a human. The immunomodulatory gene is preferably operably linked to a control sequence permitting expression of said gene in a cell in vivo. Viruses of the invention may thus be used to deliver the immunomodulatory gene (or genes) to a cell in vivo where it will be expressed. The immunomodulatory gene may be inserted into the viral genome by any suitable technique such as homologous recombination of HSV strains with, for example, plasmid vectors carrying the gene flanked by HSV sequences. The GM- CSF gene, or other immunomodulatory gene, may be introduced into a suitable plasmid vector comprising herpes viral sequences using cloning techniques well- known in the art. The gene may be inserted into the viral genome at any location provided that oncolytic properties are still retained. Immunomodulatory genes may be inserted at multiple sites within the virus genome. For example, from 2 to 5 genes may be inserted into the genome. The transcribed sequence of the immunomodulatory gene is preferably operably linked to a control sequence permitting expression of the gene in a tumour cell. The term "Operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequence.
The control sequence comprises a promoter allowing expression of the immunomodulatory gene and a signal for termination of transcription. The promoter is selected from promoters which are functional in mammalian, preferably human tumour cells. The promoter may be derived from promoter sequences of eukaryotic genes. For example, the promoter may be derived from the genome of a cell in which expression of the heterologous gene is to occur, preferably a mammalian, preferably a human tumour cell. With respect to eukaryotic promoters, they may be promoters that function in a ubiquitous manner (such as promoters of β-actin, tubulin) or, alternatively, in a tumour-specific manner. They may also be promoters that respond to specific stimuli, for example promoters that bind steroid hormone receptors. Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR) promoter or other retroviral promoters, the human or mouse cytomegalovirus (CMV) IE promoter, or promoters of herpes virus genes including those driving expression of the latency associated transcripts. Expression cassettes and other suitable constructs comprising the immunomodulatory gene and control sequences can be made using routine cloning techniques known to persons skilled in the art (see, for example, Sambrook et al, 1989, Molecular Cloning - A laboratory manual; Cold Spring Harbor Press). It may also be advantageous for the promoters to be inducible so that the levels of expression of the immunomodulatory gene(s) can be regulated during the life-time of the tumour cell. Inducible means that the levels of expression obtained using the promoter can be regulated. For example, a virus of the invention may further comprise a hererologous gene encoding the tet repressor VP 16 transcriptional activator fusion protein under the control of a strong promoter (e.g. the CMV IE promoter) and the immunomodulatory gene may be under the control of a promoter responsive to the tet repressor VP16 transcriptional activator fusion protein previously reported (Gossen and Bujard, 1992, Gossen et al, 1995). Thus, in this example, expression of the immunomodulatory gene would depend on the presence or absence of tetracycline.
Multiple heterologous genes can be accommodated in the herpes virus genome. Therefore, a virus of the invention may comprise two or more immunomodulatory genes, for example from 2 to 3, 4 or 5 immunomodulatory genes. More than one gene and associated control sequences could be introduced into a particular HSV strain either at a single site or at multiple sites in the virus genome. Alternatively pairs of promoters (the same or different promoters) facing in opposite orientations away from each other, each driving the expression of an immunomodulatory gene may be used.
D. Therapeutic uses
Viruses of the invention may be used in methods of cancer therapy of the human or animal body. In particular, viruses of the invention may be used in the oncolytic treatment of cancer, either with or without additional pro-drug therapy or stimulation of an anti-tumour immune response. Viruses of the invention may be used in the therapeutic treatment of any solid tumour in a mammal, preferably in a human. For example viruses of the invention may be administered to a subject with prostate, breast, lung, liver, endometrial, bladder, colon or cervical carcinoma; adenocarcinoma; melanoma; lymphoma; glioma; or sarcomas such as soft tissue and bone sarcomas.
E. Administration The viruses of the invention may be used in a patient, preferably a human patient, in need of treatment. A patient in need of treatment is an individual suffering from cancer, preferably an individual with a solid tumour. The aim of therapeutic treatment is to improve the condition of a patient. Typically therapeutic treatment using a virus of the invention allieviates the symptoms of the cancer. A method of treatment of cancer according to the invention comprises administering a therapeutically effective amount of a virus of the invention to a patient suffering from cancer. Administration of an oncolytic virus of the invention to an individual suffering from a tumour will typically kill the cells of the tumour thus decreasing the size of the tumour and/or preventing spread of malignant cells from the tumour. One method of administering therapy involves combining the virus with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition. Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline.
Therapeutic treatment may be carried out following direct injection of the virus composition into target tissue which may be the tumour or a blood vessel supplying the tumour. The amount of virus administered is in the case of HSV in the range of from 104 to 10 pfu, preferably from lO3 to 108 pfu, more preferably about 106 to 108 pfu. Typically up to 500μl, typically from 1 to 200μl preferably from 1 to lOμl of a pharmaceutical composition consisting essentially of the virus and a pharmaceutically acceptable suitable carrier or diluent would be used for injection. However for some oncolytic therapy applications larger volumes up to 10ml may also be used, depending on the tumour and the inoculation site.
The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage. The dosage may be determined according to various parameters, especially according to the location of the tumour, the size of the tumour, the age, weight and condition of the patient to be treated and the route of administration. Preferably the virus is administered by direct injection into the tumour. The virus may also be administered systemically or by injection into a blood vessel supplying the tumour. The optimum route of administration will depend on the location and size of the tumour. The following Examples illustrates the invention.
Herpes simplex type-1 virus (HSVl) in which the neurovirulence factor ICP34.5 is inactivated has previously been shown to direct tumour specific cell lysis in tumour models both in vitro and in vivo. Such viruses have also been shown to be safe in Phase I clinical trials by direct intra-cerebral injection in late stage glioma patients.
Previous work has used serially passaged laboratory isolates of HSVl (viruses derived from HSVl strain 17+ or HSVl strain F) which might be anticipated to be attenuated in their lytic capability in human tumour cells as compared to more recent clinical isolates.
In work aimed at producing ICP34.5 deleted HSV with enhanced oncolytic and anti-tumour potential, we have deleted ICP47 and ICP34.5 from HSVl strain JSI and have inserted the immunomodulatory gene for GM-CSF.
Virus Construction (see Fig 1)
The viruses used were either based on HSVl strain 17+ (a standard laboratory strain) or a clinical isolate derived from cold sores from a frequent re- activator of HSVl . This clinical, or '"non-laboratory", strain is named JSI . ICP34.5 was completely deleted from strain 17+ and JS 1 together with the insertion of a CMV-GFP cassette. JSI was then also further engineered by the insertion of human GM-CSF (hGM-CSF) or mouse GM-CSF (mGM-CSF) so as to replace the ICP34.5 gene and by the deletion of ICP47. The derivatives of JSI discussed herein are also non-laboratory strains, i.e. modified non-laboratory strains of the invention. Lytic Capabilities of Viruses
Lytic (cell killing) capabilities were enhanced with the JS 1 -derived non- laboratory strains derived virus in all tumour cell lines tested as compared with the 17+ derived strains. More particularly, the JS 1/34.5- virus, i.e. JSI with ICP34.5 removed by deletion, showed enhanced lytic capabilities in HT29 colorectal adenocarcinoma, LNCaP.FGC prostate adenocarcinoma, MDA-MB-231 breast adenocarcinoma, SK-MEL-28 malignant melanoma and U-87 MG glioblastoma astrocytoma cells. Thus, to provide increased oncolytic activity, the use of recent clinical virus strains is likely to enhance the anti-tumour capabilities of such viruses when used in human patients for cancer treatment.
Further Enhanced Anti-Tumour Activitv
Further enhanced activity may also be anticipated if these viruses are then used to deliver genes with anti-tumour activity. Such genes include those encoding pro-drug activators or immunostimulatory proteins.
An ICP34.5 deleted clinical isolated of HSVl which expresses human or mouse GM-CSF was produced from JS 1. GM-CSF is a potent immune stimulator. These virus are designed to enhance anti-tumour immune responses following intra- tumoral injection. These viruses were demonstrated to express human or mouse GM- CSF using ELISA assay kits (Biotrak, Amersham) when the viruses are produced in BHK cells in culture. Individual wells of a six well plate produced 0.56 or 0.54 microgrammes of human or mouse GM-CSF respectively 24 hrs after infection of confluent BHK cells at MOI = 0.5.
Deposit Information
HSVl strain JSI has been deposited at the European Collection of Cell Cultures (ECACC), CAMR, Salisbury, Wiltshire SP4 OJG, United Kingdom, on 2 January 2001 under provisional accession number 01010209. References
Hill et al. 1995, Nature 375; 411-415 Shi et al. 1999, Cancer-Gene-Ther 6: 81-88 C ou et al. 1990, Science 250: 1262-1266 Maclean et al. 1991, J. Gen. Virol. 72: 631-639 Gossen M & Bujard H, 1992, PNAS 89: 5547-5551 Gossen M et al. 1995, Science 268: 1766-1769 Thompson et al. 1998, Virus Genes 1(3); 275-286 Meignier et al. 1988, Infect. Dis. 159; 602-614

Claims

1. A herpes virus which comprises a gene encoding an immunomodulatory protein and which lacks a functional ICP34.5 encoding gene and a functional ICP47 encoding gene.
2. A virus according to claim 1 wherein said immunomodulatory gene is a cytokine, a chemokine or a protein capable of regulating T cell proliferation.
3. A virus according to claim 2 wherein said cytokine is GM-CSF, said chemokine is RANTES or said protein is B7.1, B7.2 or CD40L.
4. A virus according to any one of the preceding claims which encodes two or more immunomodulatory proteins
5. A virus according to any one of the preceding claims which further lacks a functional gene encoding ICP6, glycoprotein H or thymidine kinase.
6. A virus according to any one of the preceding claims which further lacks a gene encoding functional copy of a protein capable of inhibiting dendritic cell function.
7. A virus according to claim 6 in which said protein capable of inhibiting dendritic cell function is UL43 or vhs
8. A virus according to any one of the preceding claims which is a strain of herpes simplex virus 1 or 2.
9. A virus according to any one of the preceding claims which is a non- laboratory virus strain.
10. A virus according to claim 9 wherein said non-laboratory strain:
(a) has undergone one year or less in culture since isolation of its unmodified precursor strain from its host, or
(b) has undergone 100 or less cycles of serial passage since isolation of unmodified precursor strain from its host, or
(c) has a greater ability than a reference laboratory strain with equivalent modifications to infect or replicate in a tumour cell, to kill tumour cells, or to spread between cells in tissue, or
(d) has substantially the ability of its unmodified precursor strain in respect of one or more of the properties defined in (c).
1 1. A virus according to claim 10 wherein, in (c), said greater ability in a statistically significant greater ability; or wherein, in (d), substantially the same ability is the same ability or at an ability not statistically different.
12. A virus according to claim 10 or 1 1 wherein the non-laboratory strain 5 is an HSV strain and the reference strain as defined in claim 8 is HSVl strain 17+,
HSVl strain F as HSVl strain KOS with equivalent modifications to the non- laboratory strain.
13. A virus according to any one of the preceding claims which is derived from HSV 1 JSI as deposited at the European collection of cell cultures (ECAAC) l o under provisional accession number 01010209.
14. A virus according to any one of the preceding claims for use in a method of treatment of the human or animal body by therapy.
15. Use of a virus according to any one of the preceding claims in the manufacture of a medicament for the treatment of cancer.
15 16. Use according to claim 15 wherein said medicament is for direct intra- tumoral inoculation.
17. A pharmaceutical composition comprising as active ingredient a virus according to any one of claims 1 to 13 and a pharmaceutically acceptable carrier or diluent. 20
18. A method of treating a tumour in an individual in need thereof by administering to said individual an effective amount of a virus according to any one of claims 1 to 13.
19. An agent for treating cancer comprising a herpes virus which comprises a gene encoding an immunomodulatory cytokine and which lacks a
25 functional ICP34.5-encoding gene and a functional ICP47 encoding gene.
20. HSVl strain JSI as deposited as the European Collection of Cell Cultures (ECACC) under provisional accession number 01010209, or an HSVl strain derived therefrom.
PCT/GB2001/000225 2000-01-21 2001-01-22 Herpes virus strains for gene therapy WO2001053505A2 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
JP2001553367A JP4810042B2 (en) 2000-01-21 2001-01-22 Herpesvirus strain
AU26947/01A AU782659C (en) 2000-01-21 2001-01-22 Herpes virus strains for gene therapy
CA2398335A CA2398335C (en) 2000-01-21 2001-01-22 Herpes virus strains
KR1020027009412A KR100768408B1 (en) 2000-01-21 2001-01-22 Herpes Virus Ltd
GB0219033A GB2374873C (en) 2000-01-21 2001-01-22 Herpes virus strains
DE60107203T DE60107203T3 (en) 2000-01-21 2001-01-22 HERPES VIRUSES FOR GENE THERAPY
AT01901288T ATE282708T1 (en) 2000-01-21 2001-01-22 HERPES VIRUS STRAINS FOR GENE THERAPY
IL15067801A IL150678A0 (en) 2000-01-21 2001-01-22 Herpes virus strains
EP01901288A EP1252322B2 (en) 2000-01-21 2001-01-22 Herpes virus strains for gene therapy
BRPI0107737A BRPI0107737B8 (en) 2000-01-21 2001-01-22 herpes simplex virus 1 (hsv1), use of hsv1, and pharmaceutical composition
DK01901288T DK1252322T4 (en) 2000-01-21 2001-01-22 Herpesvirus strain for gene therapy
US10/181,697 US7223593B2 (en) 2000-01-21 2001-01-22 Herpes virus strains for gene therapy
IL150678A IL150678A (en) 2000-01-21 2002-07-10 Herpes virus strains
HK02108740.4A HK1047297B (en) 2000-01-21 2002-11-30 Herpes virus strains
US11/738,807 US8277818B2 (en) 2000-01-21 2007-04-23 Herpes virus strains for gene therapy
US13/600,711 US8680068B2 (en) 2000-01-21 2012-08-31 Herpes virus strains
US14/174,521 US20140154215A1 (en) 2000-01-21 2014-02-06 Herpes virus strains
US14/700,036 US20150232812A1 (en) 2000-01-21 2015-04-29 Herpes virus strains
LU93100C LU93100I2 (en) 2000-01-21 2016-06-08 TALIMOGENE LAHERPAREPVEC AND ITS PHARMACEUTICALLY ACCEPTABLE DERIVATIVES (IMLYGIC)
NL300820C NL300820I2 (en) 2000-01-21 2016-06-14
BE2016C033C BE2016C033I2 (en) 2000-01-21 2016-06-14
CY2016020C CY2016020I1 (en) 2000-01-21 2016-06-15 HERPES VIRUS STRAIN FOR GENE THERAPY
FR16C0026C FR16C0026I2 (en) 2000-01-21 2016-06-15 HERPETIC VIRUS STRAINS FOR GENE THERAPY
US16/376,089 US20200032219A1 (en) 2000-01-21 2019-04-05 Herpes virus strains

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB0001475A GB0001475D0 (en) 2000-01-21 2000-01-21 Virus strains
GB0001475.3 2000-01-21
GB0002854A GB0002854D0 (en) 2000-02-08 2000-02-08 Virus strains
GB0002854.8 2000-02-08
GB0100288.0 2001-01-05
GB0100288A GB0100288D0 (en) 2001-01-05 2001-01-05 Virus strains
GB0100430A GB0100430D0 (en) 2001-01-06 2001-01-06 Virus strains
GB0100430.8 2001-01-06

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/181,697 A-371-Of-International US7223593B2 (en) 2000-01-21 2001-01-22 Herpes virus strains for gene therapy
US10181697 A-371-Of-International 2001-01-22
US11/738,807 Continuation US8277818B2 (en) 2000-01-21 2007-04-23 Herpes virus strains for gene therapy

Publications (2)

Publication Number Publication Date
WO2001053505A2 true WO2001053505A2 (en) 2001-07-26
WO2001053505A3 WO2001053505A3 (en) 2001-12-27

Family

ID=27447756

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/GB2001/000229 WO2001053506A2 (en) 2000-01-21 2001-01-22 Virus strains for the oncolytic treatment of cancer
PCT/GB2001/000225 WO2001053505A2 (en) 2000-01-21 2001-01-22 Herpes virus strains for gene therapy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/000229 WO2001053506A2 (en) 2000-01-21 2001-01-22 Virus strains for the oncolytic treatment of cancer

Country Status (22)

Country Link
US (12) US7063835B2 (en)
EP (4) EP1252323B1 (en)
JP (6) JP4921669B2 (en)
KR (2) KR100768408B1 (en)
CN (2) CN1418255A (en)
AT (2) ATE282708T1 (en)
AU (2) AU2001226951B8 (en)
BE (1) BE2016C033I2 (en)
BR (3) BRPI0107737B8 (en)
CA (2) CA2398343A1 (en)
CY (2) CY2016021I2 (en)
DE (2) DE60107203T3 (en)
DK (2) DK1252323T3 (en)
ES (2) ES2254359T3 (en)
FR (1) FR16C0026I2 (en)
GB (2) GB2375113B (en)
HK (2) HK1047451B (en)
IL (4) IL150677A0 (en)
LU (2) LU93101I2 (en)
NL (2) NL300821I2 (en)
PT (1) PT1252322E (en)
WO (2) WO2001053506A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092708A1 (en) * 2002-05-02 2003-11-13 Institute Of Gene And Brain Science Antitumor agents with the use of hsv
EP1381280A1 (en) * 2001-03-27 2004-01-21 MediGene, Inc. Viral vectors and their use in therapeutic methods
US7063835B2 (en) 2000-01-21 2006-06-20 Biovex Limited Virus strains
US7981669B2 (en) 2003-07-25 2011-07-19 Biovex Limited Viral vectors
CN109554395A (en) * 2018-08-09 2019-04-02 湖北科技学院 A kind of the novel oncolytic virus and its construction method of selectively killing prostate gland cancer cell
US10570377B2 (en) * 2016-01-08 2020-02-25 Replimune Limited Oncolytic virus strain
WO2020109389A1 (en) 2018-11-28 2020-06-04 Innovative Molecules Gmbh Helicase primase inhibitors for treating cancer in a combination therapy with oncolytic viruses
EP3640327A4 (en) * 2017-06-15 2020-08-12 Beijing Wellgene Company Ltd. Recombinant herpes simplex virus, preparation method therefor, and application thereof
CN115707781A (en) * 2021-08-20 2023-02-21 广东东阳光药业有限公司 HSV (herpes simplex virus) vector and application thereof
US12059444B2 (en) 2017-01-09 2024-08-13 Replimune Limited Altered virus

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ425699A0 (en) 1999-11-25 1999-12-23 University Of Newcastle Research Associates Limited, The A method of treating a malignancy in a subject and a pharmaceutical composition for use in same
GB0203285D0 (en) * 2002-02-12 2002-03-27 Brown Susanne M An herpes simplex virus complex
AU2002953436A0 (en) 2002-12-18 2003-01-09 The University Of Newcastle Research Associates Limited A method of treating a malignancy in a subject via direct picornaviral-mediated oncolysis
US7897146B2 (en) 2003-11-17 2011-03-01 Crusade Laboratories Limited Treatment using herpes simplex virus
GB0326798D0 (en) * 2003-11-17 2003-12-24 Crusade Lab Ltd Methods for generating mutant virus
WO2005049846A2 (en) * 2003-11-17 2005-06-02 Crusade Laboratories Limited Mutant herpes simplex virus and use thereof in the treatment of squamous cell cancer
AU2005228788B2 (en) * 2004-03-31 2010-12-02 Tomoki Todo Anticancer activity enhancer of viral therapy and method of cancer prevention or treatment
JP4903689B2 (en) * 2004-04-08 2012-03-28 サンガモ バイオサイエンシズ インコーポレイテッド Methods and compositions for treating neuropathy and neurodegenerative symptoms
US9273326B2 (en) 2004-04-30 2016-03-01 The Brigham And Women's Hospital, Inc. Tetracycline-regulated gene expression in HSV-1 vectors
EP3002330A1 (en) * 2005-05-27 2016-04-06 Ospedale San Raffaele S.r.l. Gene vector
US20080008686A1 (en) * 2006-07-10 2008-01-10 The Brigham And Women's Hospital, Inc. Tetracycline repressor regulated oncolytic viruses
US8450106B2 (en) * 2007-10-17 2013-05-28 The Ohio State University Research Foundation Oncolytic virus
US8313896B2 (en) * 2008-04-04 2012-11-20 The General Hospital Corporation Oncolytic herpes simplex virus immunotherapy in the treatment of brain cancer
CA2689707A1 (en) 2009-11-16 2011-05-16 Jean-Simon Diallo Identification of the novel small molecule viral sensitizer vse1 using high-throughput screening
EP2516629B1 (en) 2009-12-21 2016-04-13 The Brigham and Women's Hospital, Inc. Herpes simplex virus vaccines
CN102146418B (en) * 2010-02-09 2014-01-15 武汉滨会生物科技有限公司 Recombinant II type herpes simplex virus vector, preparation method of recombinant II type herpes simplex virus vector, recombinant virus, medicinal composition and application
JPWO2011101912A1 (en) * 2010-02-19 2013-06-17 国立大学法人 東京大学 Recombinant herpes virus and pharmaceutical composition comprising recombinant herpes virus
EP2550298B1 (en) * 2010-03-23 2015-07-15 The Regents of The University of California Compositions and methods for self-adjuvanting vaccines against microbes and tumors
WO2011119925A2 (en) * 2010-03-25 2011-09-29 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Synthetic herpes simplex viruses for treatment of cancers
EP2670426B1 (en) 2011-01-31 2017-05-10 The General Hospital Corporation Multimodal trail molecules and uses in cellular therapies
LT2753355T (en) * 2011-09-08 2019-01-25 New York University Oncolytic herpes simplex virus and therapeutic uses thereof
US8859256B2 (en) 2011-10-05 2014-10-14 Genelux Corporation Method for detecting replication or colonization of a biological therapeutic
WO2013138522A2 (en) 2012-03-16 2013-09-19 Genelux Corporation Methods for assessing effectiveness and monitoring oncolytic virus treatment
US20130280170A1 (en) 2012-04-20 2013-10-24 Aladar A. Szalay Imaging methods for oncolytic virus therapy
US9862932B2 (en) 2012-07-24 2018-01-09 The General Hospital Corporation Oncolytic virus therapy for resistant tumors
EP3381942B1 (en) * 2012-08-30 2021-04-14 Amgen Inc. A method for treating melanoma using a herpes simplex virus and an immune checkpoint inhibitor
EP2890720B1 (en) 2012-08-30 2019-07-17 The General Hospital Corporation Compositions and methods for treating cancer
US20140140959A1 (en) 2012-10-05 2014-05-22 Aladar A. Szalay Energy Absorbing-Based Diagnostic and Therapeutic Methods Employing Nucleic Acid Molecules Encoding Chromophore-Producing Enzymes
KR102382295B1 (en) * 2013-07-17 2022-04-04 유니버시티 오브 피츠버그-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 Non-toxic HSV vectors for efficient gene delivery applications and complementing cells for their production
CA2926110C (en) 2013-10-24 2023-05-23 Amgen Inc. Drug delivery system with temperature-sensitive control
EP3789064B1 (en) 2013-10-24 2024-11-27 Amgen Inc. Injector and method of assembly
MY175614A (en) 2013-10-25 2020-07-01 Akamis Bio Ltd Oncolytic adenoviruses armed with heterologous genes
WO2015089280A1 (en) 2013-12-11 2015-06-18 The General Hospital Corporation Stem cell delivered oncolytic herpes simplex virus and methods for treating brain tumors
US10238700B2 (en) 2014-01-02 2019-03-26 Genelux Corporation Oncolytic virus adjunct therapy with agents that increase virus infectivity
WO2015119906A1 (en) 2014-02-05 2015-08-13 Amgen Inc. Drug delivery system with electromagnetic field generator
MA39818A (en) 2014-03-30 2017-02-08 Benevir Biopharm Inc Exogenous tap inhibitor "armed" oncolytic viruses and therapeutic uses thereof
CA3193070A1 (en) 2014-05-07 2015-11-12 Amgen Inc. Autoinjector with shock reducing elements
JP6742248B2 (en) 2014-06-03 2020-08-19 アムジエン・インコーポレーテツド Device and method for assisting a user of a drug delivery device
NZ730563A (en) 2014-10-14 2019-05-31 Halozyme Inc Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
MX2017004836A (en) 2014-10-14 2017-07-20 Amgen Inc Drug injection device with visual and audio indicators.
US10799630B2 (en) 2014-12-19 2020-10-13 Amgen Inc. Drug delivery device with proximity sensor
WO2016100055A1 (en) 2014-12-19 2016-06-23 Amgen Inc. Drug delivery device with live button or user interface field
CA2969786A1 (en) 2015-01-26 2016-08-04 Ottawa Hospital Research Institute Compositions and methods for enhancing oncolytic virus efficacy
US10583245B2 (en) 2015-02-17 2020-03-10 Amgen Inc. Drug delivery device with vacuum assisted securement and/or feedback
EP3981450A1 (en) 2015-02-27 2022-04-13 Amgen, Inc Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement
GB201505860D0 (en) 2015-04-07 2015-05-20 Agalimmune Ltd Therapeutic compositions and methods of use for treating cancer
US20180112006A1 (en) 2015-04-17 2018-04-26 The General Hospital Corporation Agents, systems and methods for treating cancer
KR102643574B1 (en) 2015-04-30 2024-03-06 싸이오서스 테라퓨틱스 엘티디. Oncolytic adenovirus encoding the B7 protein
EP3307330B1 (en) 2015-06-15 2021-03-10 New York University Method of treatment using oncolytic viruses
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
CN105219738A (en) * 2015-09-21 2016-01-06 北京神源德生物科技有限公司 Recombinant herpes simplex virus and its infect and prepare its host cell and their application
WO2017079746A2 (en) 2015-11-07 2017-05-11 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer
ES2755717T3 (en) 2015-12-09 2020-04-23 Amgen Inc Autoinjector with signaling cap
DK3389682T3 (en) 2015-12-17 2022-01-24 Psioxus Therapeutics Ltd GROUP B ADENOVIRUS CODING AN ANTI-TCR COMPLEX ANTIBODY OR FRAGMENT
US11154661B2 (en) 2016-01-06 2021-10-26 Amgen Inc. Auto-injector with signaling electronics
WO2017143308A1 (en) 2016-02-19 2017-08-24 Virogin Biotech Canada Ltd Compositions and methods of using stat1/3 inhibitors with oncolytic herpes virus
WO2017160799A1 (en) 2016-03-15 2017-09-21 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
WO2017165813A1 (en) 2016-03-25 2017-09-28 Periphagen, Inc. High-transducing hsv vectors
CA3019202A1 (en) 2016-04-15 2017-10-19 Alpine Immune Sciences, Inc. Cd80 variant immunomodulatory proteins and uses thereof
IL262365B2 (en) 2016-04-15 2024-11-01 Alpine Immune Sciences Inc Icos ligand variant immunomodulatory proteins and uses thereof
EP3426272A4 (en) * 2016-04-26 2020-03-04 Salk Institute for Biological Studies HSV-1 ONCOLYTIC VIRUS THERAPIES THAT TARGET ALT-DEPENDENT CANCERS
WO2017189089A1 (en) 2016-04-29 2017-11-02 Amgen Inc. Drug delivery device with messaging label
CN115960966A (en) 2016-04-29 2023-04-14 复诺健生物科技加拿大有限公司 HSV vectors with enhanced replication in cancer cells
WO2017192287A1 (en) 2016-05-02 2017-11-09 Amgen Inc. Syringe adapter and guide for filling an on-body injector
ES2959783T3 (en) 2016-05-13 2024-02-28 Amgen Inc Vial Protective Cover Assembly
US11238150B2 (en) 2016-05-16 2022-02-01 Amgen Inc. Data encryption in medical devices with limited computational capability
WO2017209899A1 (en) 2016-06-03 2017-12-07 Amgen Inc. Impact testing apparatuses and methods for drug delivery devices
EP3478342A1 (en) 2016-07-01 2019-05-08 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
WO2018022946A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
WO2018026872A1 (en) 2016-08-01 2018-02-08 Virogin Biotech Canada Ltd Oncolytic herpes simplex virus vectors expressing immune system-stimulatory molecules
US20190328965A1 (en) 2016-08-17 2019-10-31 Amgen Inc. Drug delivery device with placement detection
IL303187A (en) 2016-08-29 2023-07-01 Akamis Bio Ltd Adenovirus with bispecific T cell activator
GB201713765D0 (en) 2017-08-28 2017-10-11 Psioxus Therapeutics Ltd Modified adenovirus
FI3518948T3 (en) 2016-10-03 2023-07-18 Ottawa Hospital Res Inst Compositions and methods for enhancing growth, spread, and oncolytic and immunotherapeutic efficacy of oncolytic rna viruses
WO2018075447A1 (en) 2016-10-19 2018-04-26 The Trustees Of Columbia University In The City Of New York Combination of braf inhibitor, talimogene laherparepvec, and immune checkpoint inhibitor for use in the treatment cancer (melanoma)
AU2017345764A1 (en) 2016-10-20 2019-05-02 Alpine Immune Sciences, Inc. Secretable variant immunomodulatory proteins and engineered cell therapy
WO2018081234A1 (en) 2016-10-25 2018-05-03 Amgen Inc. On-body injector
US20200009203A1 (en) 2016-12-12 2020-01-09 Multivir Inc. Methods and compositions comprising viral gene therapy and an immune checkpoint inhibitor for treatment and prevention of cancer and infectious diseases
CN110650745A (en) 2016-12-21 2020-01-03 曼珍有限责任公司 Armed replicative oncolytic adenoviruses
US11298420B2 (en) 2016-12-21 2022-04-12 Memgen, Llc Armed oncolytic viruses
CA3049780A1 (en) 2017-01-17 2018-07-26 Amgen Inc. Injection devices and related methods of use and assembly
CA3052473A1 (en) 2017-02-09 2018-08-16 Indapta Therapeutics, Inc. Engineered natural killer (nk) cells and compositions and methods thereof
JP7280189B2 (en) 2017-02-17 2023-05-23 アムジエン・インコーポレーテツド Insertion mechanism for drug delivery device
MX2019009625A (en) 2017-02-17 2019-10-09 Amgen Inc Drug delivery device with sterile fluid flowpath and related method of assembly.
JP2020508803A (en) 2017-03-06 2020-03-26 アムジエン・インコーポレーテツド Drug delivery device with anti-actuation feature
US11571511B2 (en) 2017-03-07 2023-02-07 Amgen Inc. Insertion mechanism and method of inserting a needle of a drug delivery device
WO2018165499A1 (en) 2017-03-09 2018-09-13 Amgen Inc. Insertion mechanism for drug delivery device
MA51630A (en) 2017-03-15 2020-01-22 Amgen Inc USE OF ONCOLYTIC VIRUSES, ALONE OR IN COMBINATION WITH AN IMMUNE CHECKPOINT INHIBITOR, FOR THE TREATMENT OF CANCER
HUE064136T2 (en) 2017-03-16 2024-02-28 Alpine Immune Sciences Inc Pd-l1 variant immunomodulatory proteins and uses thereof
AU2018235835A1 (en) 2017-03-16 2019-09-05 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
WO2018170026A2 (en) 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Cd80 variant immunomodulatory proteins and uses thereof
EA202190785A1 (en) 2017-03-28 2021-10-29 Эмджен Инк. SYSTEM AND METHOD FOR ASSEMBLING PISTON ROD AND SYRINGE
BR112019022488A2 (en) 2017-04-28 2020-06-16 Merck Sharp & Dohme Corp. BIOMARCHERS FOR CANCER THERAPEUTICS
CN106974942A (en) * 2017-05-03 2017-07-25 武汉滨会生物科技股份有限公司 Application of the recombination oncolytic II herpes simplex virus types in anti-lymphadenoma, cancer of the esophagus, breast cancer, pancreatic cancer drug is prepared
WO2018226565A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Torque driven drug delivery device
CA3061982A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Syringe assembly for a drug delivery device and method of assembly
CA3063920A1 (en) 2017-06-22 2018-12-27 Amgen Inc. Device activation impact/shock reduction
MX2019015479A (en) 2017-06-23 2020-02-20 Amgen Inc Electronic drug delivery device comprising a cap activated by a switch assembly.
WO2019014014A1 (en) 2017-07-14 2019-01-17 Amgen Inc. Needle insertion-retraction system having dual torsion spring system
MA49626A (en) 2017-07-21 2020-05-27 Amgen Inc GAS PERMEABLE SEALING ELEMENT FOR DRUG CONTAINER AND ASSEMBLY PROCEDURES
MA49677A (en) 2017-07-25 2021-04-21 Amgen Inc DRUG DELIVERY DEVICE WITH GEAR MODULE AND ASSOCIATED ASSEMBLY PROCESS
US11484648B2 (en) 2017-07-25 2022-11-01 Amgen Inc. Drug delivery device with container access system and related method of assembly
UY37829A (en) 2017-08-03 2019-01-31 Amgen Inc INTERLEUCINE MUTEINS 21 AND TREATMENT METHODS
CN111246883A (en) 2017-08-07 2020-06-05 美国安进公司 Treatment of triple negative breast cancer or colorectal cancer with anti-PD-L1 antibody and oncolytic virus with liver metastasis
US20200164155A1 (en) 2017-08-09 2020-05-28 Amgen Inc. Hydraulic-pneumatic pressurized chamber drug delivery system
MA49897A (en) 2017-08-18 2020-06-24 Amgen Inc ON-BODY INJECTOR WITH STERILE ADHESIVE PATCH
US11103636B2 (en) 2017-08-22 2021-08-31 Amgen Inc. Needle insertion mechanism for drug delivery device
CA3075046A1 (en) 2017-09-08 2019-03-14 Amgen Inc. Inhibitors of kras g12c and methods of using the same
US20200308550A1 (en) 2017-09-11 2020-10-01 Imba - Institut Für Molekulare Biotechnologie Gmbh Tumor organoid model
EP3691717B1 (en) 2017-10-04 2023-02-08 Amgen Inc. Flow adapter for drug delivery device
US11813426B2 (en) 2017-10-06 2023-11-14 Amgen Inc. Drug delivery device including seal member for needle of syringe
EP3694578A1 (en) 2017-10-09 2020-08-19 Amgen Inc. Drug delivery device with drive assembly and related method of assembly
US11753458B2 (en) 2017-10-10 2023-09-12 Alpine Immune Sciences, Inc. CTLA-4 variant immunomodulatory proteins and uses thereof
SG11202003078VA (en) 2017-10-18 2020-05-28 Alpine Immune Sciences Inc Variant icos ligand immunomodulatory proteins and related compositions and methods
MX2020003388A (en) 2017-10-27 2020-08-03 Merck Sharp & Dohme Compositions and methods for treating liver cancer.
IL273663B1 (en) 2017-11-03 2025-01-01 Amgen Inc System and approaches for sterilizing a drug delivery device
MA50569A (en) 2017-11-06 2020-09-16 Amgen Inc FILLING-FINISHING UNITS AND ASSOCIATED PROCESSES
CA3079197A1 (en) 2017-11-06 2019-05-09 Amgen Inc. Drug delivery device with placement and flow sensing
CA3079665A1 (en) 2017-11-10 2019-05-16 Amgen Inc. Plungers for drug delivery devices
CN111278487B (en) 2017-11-16 2022-06-24 安进公司 Door latch mechanism for a drug delivery device
SG11202003842UA (en) 2017-11-24 2020-06-29 Ottawa Hospital Res Inst Compositions and methods for enhancing production, growth, spread, or oncolytic and immunotherapeutic efficacy of interferon-sensitive viruses
AU2019205273B2 (en) 2018-01-03 2024-04-04 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
BR112020014121A2 (en) 2018-01-12 2020-12-01 Amgen Inc. anti-pd-1 antibodies and treatment methods
US11390650B2 (en) 2018-02-05 2022-07-19 The Brigham And Women's Hospital, Inc. Recombinant Herpes Simplex Virus-2 expressing glycoprotein B and D antigens
CA3094329A1 (en) 2018-03-19 2020-02-20 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and cd122/cd132 agonists for the treatment of cancer
US11897924B2 (en) * 2018-03-28 2024-02-13 Bioxodes Anticoagulant fusion proteins and uses thereof
AU2019262056A1 (en) * 2018-05-01 2020-10-29 Albert Einstein College Of Medicine HSV-2-delta-gD vaccines and methods for their production and use
US10835685B2 (en) 2018-05-30 2020-11-17 Amgen Inc. Thermal spring release mechanism for a drug delivery device
US11083840B2 (en) 2018-06-01 2021-08-10 Amgen Inc. Modular fluid path assemblies for drug delivery devices
US11505782B2 (en) 2018-06-04 2022-11-22 Calidi Biotherapeutics, Inc. Cell-based vehicles for potentiation of viral therapy
CA3177467A1 (en) 2018-06-04 2019-12-12 Calidi Biotherapeutics, Inc. Cell-based vehicles for potentiation of viral therapy
WO2019236931A1 (en) 2018-06-08 2019-12-12 The Board Of Trustees Of University Of Illinois Recombinant herpes simplex virus for cancer immunotherapy
US12054526B2 (en) * 2018-06-15 2024-08-06 Children's Hospital Medical Center Polypeptides, nucleic acid molecules, compositions, and related methods
US12065476B2 (en) 2018-06-15 2024-08-20 Alpine Immune Sciences, Inc. PD-1 variant immunomodulatory proteins and uses thereof
WO2020023336A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with grip portion
MX2021000748A (en) 2018-07-24 2021-03-26 Amgen Inc Delivery devices for administering drugs.
WO2020023220A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation
MA53375A (en) 2018-07-24 2021-06-02 Amgen Inc ADMINISTRATION DEVICES FOR THE ADMINISTRATION OF MEDICINES
WO2020028009A1 (en) 2018-07-31 2020-02-06 Amgen Inc. Fluid path assembly for a drug delivery device
WO2020047161A2 (en) 2018-08-28 2020-03-05 Actym Therapeutics, Inc. Engineered immunostimulatory bacterial strains and uses thereof
CA3106452A1 (en) 2018-09-24 2020-04-02 Amgen Inc. Interventional dosing systems and methods
IL281469B2 (en) 2018-09-28 2024-08-01 Amgen Inc Assembling a memory alloy ejector activation assembly for a drug delivery device
IL281712B1 (en) 2018-10-02 2024-11-01 Amgen Inc Injection systems for drug administration with internal power transmission
CA3112214A1 (en) 2018-10-05 2020-04-09 Amgen Inc. Drug delivery device having dose indicator
CN112789073B (en) 2018-10-15 2023-09-15 安进公司 Drug delivery device with damping mechanism
EA202191038A1 (en) 2018-10-15 2021-07-06 Эмджен Инк. METHOD OF PLATFORM ASSEMBLY FOR MEDICINE DELIVERY DEVICE
TWI831847B (en) 2018-11-01 2024-02-11 美商安進公司 Drug delivery devices with partial needle retraction and methods for operating the same
WO2020091956A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
CA3113076A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
CN113271955A (en) 2018-11-06 2021-08-17 卡利迪生物治疗有限公司 Enhanced systems for cell-mediated oncolytic viral therapy
KR20210123289A (en) 2018-11-21 2021-10-13 인답타 세라뷰틱스 인코포레이티드 Methods and related compositions and methods for propagation of natural killer cell subsets
KR20210135987A (en) 2018-11-30 2021-11-16 알파인 이뮨 사이언시즈, 인코포레이티드 CD86 variant immunomodulatory protein and uses thereof
AR117547A1 (en) 2018-12-27 2021-08-11 Amgen Inc LYOPHILIZED VIRUS FORMULATIONS
US12024709B2 (en) 2019-02-27 2024-07-02 Actym Therapeutics, Inc. Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment
WO2020176809A1 (en) 2019-02-27 2020-09-03 Actym Therapeutics, Inc. Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment
AU2020232264A1 (en) * 2019-03-05 2021-08-26 Amgen Inc. Use of oncolytic viruses for the treatment of cancer
JP2022526094A (en) * 2019-03-14 2022-05-23 マサチューセッツ インスティテュート オブ テクノロジー Manipulated herpes simplex virus-1 (HSV-1) vector and its use
TW202102543A (en) 2019-03-29 2021-01-16 美商安進公司 Use of oncolytic viruses in the neoadjuvant therapy of cancer
AU2020263289A1 (en) 2019-04-24 2021-09-16 Amgen Inc. Syringe sterilization verification assemblies and methods
JP7608439B2 (en) 2019-08-23 2025-01-06 アムジエン・インコーポレーテツド Drug delivery devices with configurable needle shield engagement components and associated methods - Patents.com
WO2021113644A1 (en) 2019-12-05 2021-06-10 Multivir Inc. Combinations comprising a cd8+ t cell enhancer, an immune checkpoint inhibitor and radiotherapy for targeted and abscopal effects for the treatment of cancer
WO2021127524A1 (en) * 2019-12-20 2021-06-24 Krystal Biotech, Inc. Compositions and methods for gene delivery to the airways and/or lungs
KR20230088306A (en) 2020-04-22 2023-06-19 인답타 세라뷰틱스 인코포레이티드 Natural Killer (NK) Cell Compositions and Methods of Producing The Same
US20220016191A1 (en) * 2020-07-16 2022-01-20 Massachusetts Institute Of Technology Simultaneous delivery of cancer treatment programs to tumor and immune cells
WO2022147480A1 (en) 2020-12-30 2022-07-07 Ansun Biopharma, Inc. Oncolytic virus encoding sialidase and multispecific immune cell engager
US20240299540A1 (en) 2021-02-05 2024-09-12 Iovance Biotherapeutics, Inc. Adjuvant therapy for cancer
AU2022279223A1 (en) 2021-05-21 2023-10-19 Amgen Inc. Method of optimizing a filling recipe for a drug container
WO2024251286A1 (en) * 2023-06-08 2024-12-12 上海药明生物医药有限公司 Oncolytic hsv-1 clinical isolate, directed evolution strain, infectious clone and use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328688A (en) * 1990-09-10 1994-07-12 Arch Development Corporation Recombinant herpes simplex viruses vaccines and methods
WO1996016164A1 (en) * 1994-11-23 1996-05-30 Cantab Pharmaceuticals Research Limited Viral preparations, immunogens, and vaccines
WO1998004726A1 (en) * 1996-07-26 1998-02-05 Medical Research Council Hsv strain lacking functional icp27 and icp34.5 genes
WO1998042855A1 (en) * 1997-03-21 1998-10-01 Sloan-Kettering Institute For Cancer Research Rapid production of autologous tumor vaccines by using hsv amplicon vectors
WO1998051809A1 (en) * 1997-05-12 1998-11-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education Multigene vectors derived from hsv
WO2000008191A2 (en) * 1998-07-31 2000-02-17 Biovex Limited Herpes virus vectors for dendritic cells

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163949A (en) * 1990-03-02 1992-11-17 Bonutti Peter M Fluid operated retractors
US6610287B1 (en) 1990-04-16 2003-08-26 The General Hospital Corporation Transfer and expression of gene sequences into nervous system cells using herpes simplex virus mutants with deletions in genes for viral replication
GB9102126D0 (en) 1991-01-31 1991-03-13 Smithkline Beecham Biolog Novel vaccine
GB9202933D0 (en) 1992-02-12 1992-03-25 Smithkline Beecham Biolog Vaccines
ES2183811T3 (en) 1992-03-31 2003-04-01 Arch Dev Corp TUMORIGENE DISEASE TREATMENT WITH A MODIFIED HSV.
GB9325496D0 (en) 1993-12-14 1994-02-16 Smithkline Beecham Biolog Vaccines
US5728379A (en) 1994-06-23 1998-03-17 Georgetown University Tumor- or cell-specific herpes simplex virus replication
US5585096A (en) 1994-06-23 1996-12-17 Georgetown University Replication-competent herpes simplex virus mediates destruction of neoplastic cells
NL9500216A (en) * 1995-02-06 1996-09-02 Bio Pharma Sciences Bv Pharmaceutical composition for the treatment of herpes.
EP1683858A3 (en) * 1995-02-21 2006-08-02 Cantab Pharmaceuticals Research Limited Viral preparations, vectors, immunogens, and vaccines
ZA966287B (en) 1995-07-27 1998-03-09 American Cyanamid Co Avirulent herpetic viruses useful as tumoricidal agents and vaccines.
US6344445B1 (en) * 1995-10-19 2002-02-05 Cantab Pharmaceutical Research Limited Herpes virus vectors and their uses
GB9524973D0 (en) * 1995-12-06 1996-02-07 Lynxvale Ltd Viral vectors
EP0895476B1 (en) 1996-01-25 2003-06-04 The University Court Of The University Of Glasgow Hsv mutant 1716 for the treatment of mesotheliomas
US5824318A (en) 1996-07-24 1998-10-20 American Cyanamid Company Avirulent herpetic viruses useful as tumoricidal agents and vaccines
US5876923A (en) 1996-07-26 1999-03-02 Arch Development Corporation Herpes simplex virus ICP4 as an inhibitor of apoptosis
GB2322130B (en) 1997-02-13 2000-12-20 Secr Defence A vaccine against Simian Herpes B virus
GB9704046D0 (en) * 1997-02-27 1997-04-16 Univ Leeds Arrestable therapeutic
US6379674B1 (en) * 1997-08-12 2002-04-30 Georgetown University Use of herpes vectors for tumor therapy
US20030044384A1 (en) * 1997-10-09 2003-03-06 Pro-Virus, Inc. Treatment of neoplasms with viruses
GB9801930D0 (en) 1998-01-29 1998-03-25 Univ London Mutant herpes simplex viruses and uses thereof
EP1061806A4 (en) 1998-03-12 2001-09-12 Univ Pennsylvania PRODUCTIVE CELLS FOR REPLICATION-SELECTIVE VIRUSES FOR TREATING Vicious DISEASES
GB9810904D0 (en) 1998-05-20 1998-07-22 Univ London Mutant herpes simplex viruses and uses thereof
US6713067B2 (en) * 1998-07-31 2004-03-30 Biovex Limited Herpes viruses for immune modulation
EP2272859B1 (en) 1998-08-07 2014-10-22 University of Washington Immunological herpes simplex virus antigens and methods for use thereof
CA2356937A1 (en) * 1998-12-31 2000-07-13 Richard J. Whitley Recombinant herpes simplex virus useful for treating neoplastic disease
US6428968B1 (en) * 1999-03-15 2002-08-06 The Trustees Of The University Of Pennsylvania Combined therapy with a chemotherapeutic agent and an oncolytic virus for killing tumor cells in a subject
US6764675B1 (en) * 1999-06-08 2004-07-20 The Uab Research Foundation Herpes simplex virus expressing foreign genes and method for treating cancers therewith
WO2000075292A1 (en) 1999-06-08 2000-12-14 Uab Research Foundation Herpes simplex virus expressing foreign genes and method for treating cancers therewith
IL131212A0 (en) * 1999-08-03 2001-01-28 Yissum Res Dev Co Recombinant virus and live-virus vaccines
GB9930418D0 (en) 1999-12-22 2000-02-16 Neurovex Ltd Replication incompetent herpes virus vectors
GB9930419D0 (en) 1999-12-22 2000-02-16 Neurovex Ltd Replication incompetent herpes virus vectors
WO2001053506A2 (en) * 2000-01-21 2001-07-26 Biovex Limited Virus strains for the oncolytic treatment of cancer
GB0001476D0 (en) 2000-01-21 2000-03-15 Neurovex Ltd Herpes virus strains
US7063851B2 (en) * 2000-04-12 2006-06-20 Biovex Limited Herpes viruses for immune modulation
GB0317511D0 (en) * 2003-07-25 2003-08-27 Biovex Ltd Viral vectors
US10626377B2 (en) * 2016-01-08 2020-04-21 Replimune Limited Use of an oncolytic virus for the treatment of cancer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328688A (en) * 1990-09-10 1994-07-12 Arch Development Corporation Recombinant herpes simplex viruses vaccines and methods
WO1996016164A1 (en) * 1994-11-23 1996-05-30 Cantab Pharmaceuticals Research Limited Viral preparations, immunogens, and vaccines
WO1998004726A1 (en) * 1996-07-26 1998-02-05 Medical Research Council Hsv strain lacking functional icp27 and icp34.5 genes
WO1998042855A1 (en) * 1997-03-21 1998-10-01 Sloan-Kettering Institute For Cancer Research Rapid production of autologous tumor vaccines by using hsv amplicon vectors
WO1998051809A1 (en) * 1997-05-12 1998-11-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education Multigene vectors derived from hsv
WO2000008191A2 (en) * 1998-07-31 2000-02-17 Biovex Limited Herpes virus vectors for dendritic cells

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537924B2 (en) 2000-01-21 2009-05-26 Biovex Limited Virus strains
US10301600B2 (en) 2000-01-21 2019-05-28 Biovex Limited Virus strains
US8680068B2 (en) 2000-01-21 2014-03-25 Biovex Limited Herpes virus strains
US7063835B2 (en) 2000-01-21 2006-06-20 Biovex Limited Virus strains
US8871193B2 (en) 2001-03-27 2014-10-28 Catherex, Inc. Viral vectors and their use in therapeutic methods
EP1381280A1 (en) * 2001-03-27 2004-01-21 MediGene, Inc. Viral vectors and their use in therapeutic methods
AU2002306919B2 (en) * 2001-03-27 2007-11-22 Tomoki Todo Viral vectors and their use in therapeutic methods
US7749745B2 (en) 2001-03-27 2010-07-06 Georgetown University Viral vectors and their use in therapeutic methods
US10532095B2 (en) 2001-03-27 2020-01-14 Catherex, Inc. Viral vectors and their use in therapeutic methods
US8470577B2 (en) 2001-03-27 2013-06-25 Catherex, Inc. Viral vectors and their use in therapeutic methods
EP1381280A4 (en) * 2001-03-27 2006-06-14 Medigene Inc VIRUS VECTORS AND THEIR USE IN THERAPEUTIC METHODS
US9555072B2 (en) 2001-03-27 2017-01-31 The General Hospital Corporation Viral vectors and their use in therapeutic methods
WO2003092708A1 (en) * 2002-05-02 2003-11-13 Institute Of Gene And Brain Science Antitumor agents with the use of hsv
US7384627B2 (en) 2002-05-02 2008-06-10 Institute Of Gene And Brain Science Antitumor agents with the use of HSV
US7981669B2 (en) 2003-07-25 2011-07-19 Biovex Limited Viral vectors
US8679830B2 (en) 2003-07-25 2014-03-25 Biovex Limited Viral vectors
US12049647B2 (en) 2016-01-08 2024-07-30 Replimune Limited Engineered virus
US10570377B2 (en) * 2016-01-08 2020-02-25 Replimune Limited Oncolytic virus strain
US10626377B2 (en) 2016-01-08 2020-04-21 Replimune Limited Use of an oncolytic virus for the treatment of cancer
US10612005B2 (en) 2016-01-08 2020-04-07 Replimune Limited Modified oncolytic virus
EP3400291B2 (en) 2016-01-08 2024-02-28 Replimune Limited Engineered virus
EP3400291B1 (en) 2016-01-08 2020-11-04 Replimune Limited Engineered virus
US10947513B2 (en) 2016-01-08 2021-03-16 Replimune Limited Engineered virus
US11427810B2 (en) 2016-01-08 2022-08-30 Replimune Limited Modified oncolytic virus
US11473063B2 (en) 2016-01-08 2022-10-18 Replimune Limited Oncolytic virus strain
US12024724B2 (en) 2016-01-08 2024-07-02 Replimune Limited Oncolytic virus strain
US12059444B2 (en) 2017-01-09 2024-08-13 Replimune Limited Altered virus
EP3640327A4 (en) * 2017-06-15 2020-08-12 Beijing Wellgene Company Ltd. Recombinant herpes simplex virus, preparation method therefor, and application thereof
CN109554395A (en) * 2018-08-09 2019-04-02 湖北科技学院 A kind of the novel oncolytic virus and its construction method of selectively killing prostate gland cancer cell
WO2020109389A1 (en) 2018-11-28 2020-06-04 Innovative Molecules Gmbh Helicase primase inhibitors for treating cancer in a combination therapy with oncolytic viruses
CN115707781A (en) * 2021-08-20 2023-02-21 广东东阳光药业有限公司 HSV (herpes simplex virus) vector and application thereof

Also Published As

Publication number Publication date
JP2017132779A (en) 2017-08-03
CA2398343A1 (en) 2001-07-26
CN1250732C (en) 2006-04-12
JP4921669B2 (en) 2012-04-25
PT1252322E (en) 2005-03-31
DK1252322T4 (en) 2009-06-08
BRPI0107736B1 (en) 2019-12-17
IL150677A0 (en) 2003-02-12
EP1252322B1 (en) 2004-11-17
US20030091537A1 (en) 2003-05-15
US10301600B2 (en) 2019-05-28
BRPI0107736B8 (en) 2021-05-25
HK1047297B (en) 2004-10-21
AU782659B2 (en) 2005-08-18
GB2374873A (en) 2002-10-30
DE60107203T3 (en) 2009-07-23
HK1047451A1 (en) 2003-02-21
NL300820I2 (en) 2016-11-17
BR0107737A (en) 2002-11-19
EP1252323A2 (en) 2002-10-30
KR100768408B1 (en) 2007-10-18
CY2016020I2 (en) 2016-12-14
JP2019048864A (en) 2019-03-28
DE60115600D1 (en) 2006-01-12
ES2254359T3 (en) 2006-06-16
CY2016021I1 (en) 2016-12-14
ES2233600T5 (en) 2009-06-22
US7537924B2 (en) 2009-05-26
BE2016C033I2 (en) 2020-05-20
AU2695101A (en) 2001-07-31
EP1252322A2 (en) 2002-10-30
DE60107203D1 (en) 2004-12-23
DE60115600T2 (en) 2006-07-20
GB0219030D0 (en) 2002-09-25
ATE312189T1 (en) 2005-12-15
US8277818B2 (en) 2012-10-02
EP2177619A1 (en) 2010-04-21
US20200032218A1 (en) 2020-01-30
JP2003520044A (en) 2003-07-02
DE60107203T2 (en) 2005-12-01
GB2375113B (en) 2004-10-20
JP4810042B2 (en) 2011-11-09
US20150232812A1 (en) 2015-08-20
JP2003520789A (en) 2003-07-08
IL150678A0 (en) 2003-02-12
US20070003571A1 (en) 2007-01-04
JP6644378B2 (en) 2020-02-12
CA2398335A1 (en) 2001-07-26
AU2001226951B2 (en) 2006-10-05
GB2375113A (en) 2002-11-06
EP1252323B1 (en) 2005-12-07
GB0219033D0 (en) 2002-09-25
AU2694701A (en) 2001-07-31
WO2001053506A2 (en) 2001-07-26
WO2001053506A3 (en) 2002-05-23
US7063835B2 (en) 2006-06-20
CN1418255A (en) 2003-05-14
BRPI0107737B8 (en) 2021-05-25
IL150677A (en) 2008-12-29
US20030113348A1 (en) 2003-06-19
US20120321599A1 (en) 2012-12-20
GB2374873B (en) 2004-05-26
FR16C0026I2 (en) 2018-04-27
IL150678A (en) 2008-12-29
US20140154216A1 (en) 2014-06-05
US20070264282A1 (en) 2007-11-15
DK1252323T3 (en) 2006-04-03
ATE282708T1 (en) 2004-12-15
US20120164108A1 (en) 2012-06-28
KR20020080383A (en) 2002-10-23
US7223593B2 (en) 2007-05-29
JP2015221813A (en) 2015-12-10
FR16C0026I1 (en) 2016-07-22
CY2016021I2 (en) 2016-12-14
ES2233600T3 (en) 2005-06-16
CY2016020I1 (en) 2016-12-14
EP1568779A1 (en) 2005-08-31
NL300821I2 (en) 2016-10-27
BR0107736A (en) 2002-11-19
GB2374873C (en) 2011-07-27
CA2398335C (en) 2010-12-07
JP6424145B2 (en) 2018-11-14
EP1252322B2 (en) 2009-03-04
US20140154215A1 (en) 2014-06-05
DK1252322T3 (en) 2005-03-14
HK1047297A1 (en) 2003-02-14
US8680068B2 (en) 2014-03-25
KR20030032913A (en) 2003-04-26
KR100802403B1 (en) 2008-02-13
BRPI0107737B1 (en) 2016-11-16
LU93101I2 (en) 2016-08-08
US20200032219A1 (en) 2020-01-30
JP2012072156A (en) 2012-04-12
AU2001226951B8 (en) 2006-10-26
HK1047451B (en) 2005-03-18
US20090220460A1 (en) 2009-09-03
LU93100I2 (en) 2016-08-08
WO2001053505A3 (en) 2001-12-27
CN1425073A (en) 2003-06-18

Similar Documents

Publication Publication Date Title
US20200032219A1 (en) Herpes virus strains
CA2533338C (en) Viral vectors
AU2001226951A1 (en) Virus strains for the oncolytic treatment of cancer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 150678

Country of ref document: IL

Ref document number: IN/PCT/2002/00683/DE

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2001 553367

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/007061

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2398335

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027009412

Country of ref document: KR

Ref document number: 1020027009408

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 26947/01

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 200219033

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001901288

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018067433

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10181697

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1020027009408

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001901288

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020027009412

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001901288

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 26947/01

Country of ref document: AU