Nothing Special   »   [go: up one dir, main page]

WO2001048509A2 - Automotive radar system - Google Patents

Automotive radar system Download PDF

Info

Publication number
WO2001048509A2
WO2001048509A2 PCT/DE2000/003760 DE0003760W WO0148509A2 WO 2001048509 A2 WO2001048509 A2 WO 2001048509A2 DE 0003760 W DE0003760 W DE 0003760W WO 0148509 A2 WO0148509 A2 WO 0148509A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrical conductor
conductor tracks
radar system
motor vehicle
sensor radiation
Prior art date
Application number
PCT/DE2000/003760
Other languages
German (de)
French (fr)
Other versions
WO2001048509A3 (en
Inventor
Ewald Schmidt
Klaus Voigtlaender
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2001549104A priority Critical patent/JP4813726B2/en
Priority to EP00984859A priority patent/EP1248954B1/en
Priority to DE50004996T priority patent/DE50004996D1/en
Publication of WO2001048509A2 publication Critical patent/WO2001048509A2/en
Publication of WO2001048509A3 publication Critical patent/WO2001048509A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control

Definitions

  • the present invention relates to a motor vehicle radar system according to the preamble of the independent claims.
  • Such motor vehicle radar systems are used for example in the context of an automatic speed control of a vehicle for the detection of vehicles in front.
  • a generic system is also referred to as adaptive cruise control (ACC).
  • ACC adaptive cruise control
  • a body is usually located in the beam path of the electromagnetic waves in order to influence the electromagnetic waves used and sometimes also to protect the radar system from the weather. This body is often part of a housing that surrounds such a motor vehicle radar system.
  • DE 196 44 164 C2 describes a motor vehicle radar system with at least one transmitting / receiving element for transmitting and / or receiving electromagnetic waves, a lens-shaped dielectric body in the beam path of the at least one transmitting / receiving element for focusing or scattering the electromagnetic waves is known.
  • the lenticular dielectric body which also precedes the transmitting / receiving element
  • Protects weather influences has an arrangement of electrically conductive tracks, the width of which is a maximum of lambda tenths and whose distances from one another are at least lambda quarters, where lambda denotes the free space wavelength of the electromagnetic waves.
  • the electrically conductive tracks are predominantly arranged perpendicular to the direction of polarization of the electromagnetic waves.
  • the arrangement of electrically conductive tracks can, depending on the desired application, be arranged on the inside of the dielectric body, ie on the side facing the transmitting / receiving elements, on the outside or also inside the dielectric body. If a heating current flows through the electrically conductive arrangement, deposits such as ice, snow or slush can be removed from the dielectric body in this way.
  • the dielectric body can likewise be dried or kept dry with the aid of a heating current. It is further disclosed that it is possible to subdivide the electrically conductive arrangement into at least two separate parts. If, in this constellation, the arrangement of electrically conductive tracks is on the outside of the dielectric body, a so-called loss angle tan ⁇ of the covering material can be inferred from the measurement of the capacitance between the two separate parts of the arrangement. In other words, contamination of the dielectric body can be determined. A heating current that flows through the electrically conductive arrangement can be switched on as a function of this ascertained contamination or a ascertained dirt deposit.
  • the heat output can be varied by dividing it into at least two areas, for example for rapid heating of an ice-covered lens a high heat output and then keeping the lens clear with a reduced heat output.
  • DE 196 44 164 C2 it is also known that the electrical conductor tracks are applied to a ceramic body using known thick-film technology, whereas known, inexpensive methods for printing the electrical conductor tracks can also be used in plastic bodies.
  • a heatable antenna lens made of a dielectric body is described, which has an arrangement of electrical conductor tracks therein.
  • the arrangement of electrically conductive tracks is located as close as possible to the outer surface of the lens to be heated, which results in a reduction in the heating power due to the introduction of energy just below the surface to be heated. This also results in an accelerated heating behavior. It is further described that easy adaptability of the heating power can be achieved by using wires with a desired resistance behavior. This can be a resistance wire, for example.
  • Both DE 196 44 164 C2 and DE 197 24 320 AI have the problem that undesired energy, especially at low frequencies, is emitted or radiated through the antenna lens.
  • undesired energies in particular energies in frequency ranges that do not belong to the useful frequency range of the motor vehicle radar system.
  • This object is achieved in that in a motor vehicle radar system with at least one sensor radiation-permeable body for focusing the sensor radiation and / or at least one radome without intentional focussing in the beam path, with at least one arrangement in the sensor steel permeable body and / or in the radome electrical conductor tracks is inserted, which consists of a ferromagnetic material.
  • the great advantage of using an arrangement of electrical conductor tracks which are made of a ferromagnetic material is that there is good shielding against electrical and magnetic fields. Low-frequency magnetic fields in particular can be reliably shielded in this way.
  • the arrangement of electrical conductor tracks is advantageously not used exclusively for shielding, but is also used at least for heating the body which is permeable to sensor radiation and / or the radome, for which purpose electrical power can be supplied to the electrical conductor tracks.
  • the arrangement of electrical conductor tracks can simultaneously be used to shield electrical and magnetic fields and to heat the body which is permeable to sensor radiation and / or the radome.
  • the preferred embodiment of the motor vehicle radar system provides that the sensor radiation-permeable body is designed as a dielectric lens.
  • the electrical conductor tracks are advantageously inserted in a meandering and / or lattice shape in the sensor radiation-permeable body and / or in the radome.
  • conductor tracks are dimensioned such that they are at a distance of at least lambda quarters from one another and have a maximum width of lambda tenths, lambda being the free wavelength of the sensor radiation, so this structure from the electrical conductor tracks has an almost transparent effect for the useful sensor radiation.
  • the introduction of lattice-shaped, ferromagnetic electrical conductor tracks according to the invention represents a particularly good suppression of low-frequency radiation by the so-called cutoff frequency.
  • a particularly advantageous embodiment of the motor vehicle radar system according to the invention provides that Resistherm is used as the material for the electrical conductor tracks. Resistherm has the advantage that, in addition to its ferromagnetic properties in terms of electrical resistivity, it has a positive temperature coefficient and is also available as a flexible wire-shaped material.
  • FIG. 1 shows a cross section through a motor vehicle radar system according to the invention
  • Figure 2 shows a first embodiment of an arrangement of the electrical conductor tracks
  • FIG. 1 shows a cross section through a motor vehicle radar system according to the invention.
  • the motor vehicle radar system is not shown in all details in this illustration.
  • the illustration according to FIG. 1 was reduced to the components essential for the invention.
  • the motor vehicle radar system consists of a lower housing part 1, which is connected to an upper housing part 2 by a tongue and groove connection 3.
  • the tongue and groove connection 3 ensures an airtight connection between the lower housing part 1 and the upper housing part 2, while clips 4 ensure a good mechanical connection between the upper housing part 2 and the lower housing part 1.
  • a base plate 6 is placed on bases 5 in the lower housing part 1.
  • On the base plate there is an electrical circuit board, not shown here, on which radiator elements 7 and circuit units 8 are arranged.
  • 3 emitter elements 7 are shown, which are suitable both for transmitting and for receiving the sensor radiation.
  • any number of radiator elements 7 is conceivable, whereby these radiator elements can be suitable both for transmitting and for receiving, and also only for transmitting or only for receiving. In the latter case, an arrangement in two separate housings can also make sense.
  • a dielectric lens 9 is inserted into the upper housing part 2, into which electrically conductive tracks 10 made of a ferromagnetic material are inserted.
  • the electrically conductive tracks 10 are arranged on the surface of the dielectric lens 9 and are covered by a thin layer of the upper housing part 2.
  • the electrically conductive traces 10 may be on, inside or below the dielectric lens.
  • the invention is also not based on the arrangement shown in FIG electrical conductor tracks 10 limited, so that an arrangement of electrically conductive tracks 10, for example, can be realized in one plane.
  • the motor vehicle radar system shown in this exemplary embodiment is preferably used in the context of an adaptive cruise control (eg Adaptive Cruise Control, ACC).
  • the motor vehicle radar system can work, for example, according to the FMCW method or can also be designed as a pulse radar.
  • a dielectric lens with inserted electrical conductor tracks itself forms the outer layer to the surroundings, so that the dielectric lens is not covered by a layer of the upper housing part 2 as shown in FIG.
  • the contacting of the electrically conductive tracks was dispensed with.
  • the corresponding power is supplied to the electrically conductive tracks via such a contact.
  • the "control may be taken for example from that shown in Figure 1 the control unit 8 and the switching unit 8 in this case.
  • the necessary contacting of the entire vehicular radar system with the rest of the motor vehicle can be placed anywhere The selection of a corresponding contact point is left to the person skilled in the art.
  • FIG. 2 shows a possible arrangement of electrical conductor tracks within a lens body.
  • An electrical conductor track is inserted in a meandering shape in the lens body 21, which is shown here in the top view.
  • the The beginning and the end of the electrical conductor track 22 each lead to a bushing 23 inside the lens body 21.
  • These bushings 23 serve to ensure the electrical contacting on the back of the lens body 21.
  • other forms of contacting are also possible here, for example contacting extending over the edge of the lens body 21.
  • the electrical conductor tracks 22 shown in FIG. 2 it is assumed that the electrical conductor tracks are at a distance of at least lambda quarters, where lambda is the free space wavelength of the sensor radiation.
  • a ferromagnetic material is chosen as material for the electric conductor tracks. "In this embodiment, this was the ferromagnetic material Resistherm, which is marketed by the Isabelle cabins selected. Resistherm, the 0.6% aluminum, 0.3% Made of chrome, 30% iron, 0.5% manganese and a small residual nickel, is a ferromagnetic material with a permeability number that is much larger than 1.
  • a magnetic field hits the electrically conductive tracks This induces voltages that also result in currents, which in turn generate a magnetic field that opposes and largely compensates for the external magnetic field, which is the basis for the shielding effect of the electrically conductive tracks, which are made of a ferromagnetic material
  • This effect occurs in particular in this exemplary embodiment low-frequency fields that cannot be shielded by an equivalent design of the electrical conductor tracks, for example made of copper.
  • the Resistherm material also has a positive temperature coefficient, which increases the electrical resistance of the electrical conductor tracks as the temperature rises. To a certain extent, this leads to self-protection of the electrically conductive tracks and the dielectric body 21, since an excessively high temperature of the dielectric body 21 can lead to its destruction.
  • the main task of the electrical conductor tracks is to heat the body which is permeable to sensor radiation and / or the radome, for which purpose electrical power is supplied to the electrical conductor tracks.
  • the electrical conductor tracks can have further functionalities. This can be, for example, the design as a transit time line in order to carry out a self-test of the motor vehicle radar system or the detection of documents on the surface of the motor vehicle radar system by measuring capacitances between two interleaved electrical conductor tracks.
  • the electrical conductor tracks are inserted in a dielectric body or in a dielectric lens.
  • the electrical conductor tracks can be inserted into any sensor-radiation-permeable body and / or a radome.
  • the conductor tracks can, for example, be designed such that they are not inserted into the dielectric body 9, but rather are located in a radome located above or in this case the cover layer of the upper housing part 2. This design offers the advantage that the lens body 9, which has a significant influence on the beam path of the sensor radiation, can be produced particularly precisely and inexpensively, since the complex operation of inserting the electrically conductive tracks into the dielectric body is eliminated.
  • a generic motor vehicle radar system that works according to the FMCW principle is designed, for example, for an operating frequency of 77 gigahertz. In this frequency range, a diameter of the electrically conductive traces of 0.2 mm and a distance of the electrical conductor traces from one another of 9 mm have proven to be particularly practical and advantageous in relation to both the functionality of the heating and the functionality of the shielding.
  • FIG. 3 shows a further embodiment of the arrangement of the electrical conductor tracks.
  • electrical conductor tracks 32 are inserted in a lattice shape in a lens body 31.
  • bushings 33 are also present here, which are used to contact the electrically conductive tracks.
  • Such an arrangement as a grid network has a particularly good shielding effect with respect to low frequencies due to the so-called cutoff frequency.
  • the arrangement 32 is to serve exclusively as a shield, it is necessary that the contacts 33 be connected to the mass of the motor vehicle radar system or the mass of the motor vehicle.
  • Such a grid as shown in FIG.
  • FIG. 3 can be inserted individually into a lens body, but also in combination with a meandering electrical conductor track, as shown in FIG. 2.
  • a meandering electrical conductor track is particularly well suited for heating purposes, while the lattice-shaped structure of the electrical conductor tracks is particularly well suited for shielding.
  • the shielding effect of both the electrical conductor tracks according to FIG. 2 and of the lattice structure according to FIG. 3 relates both to interference radiation which penetrates into the motor vehicle radar system from the outside and to interference radiation which would escape into the environment from the motor vehicle radar system. This last point is particularly important with regard to legal provisions on the subject of electrosmog.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

The invention relates to an automotive radar system that comprises at least one element transparent for a sensor radiation for focusing the sensor radiation and/or at least one radome which is not prefocused in the beam path. At least one system of electric strip conductors is inserted in the element transparent for a sensor radiation and/or into the radome, the system of electric strip conductors consisting of a ferromagnetic material.

Description

Kraftfahrzeug-RadarsystemAutomotive radar system
Die vorliegende Erfindung betrifft ein Kraftfahrzeug- Radarsystem nach den Oberbegriff der nebengeordneten Ansprüche. Solche Kraftfahrzeug-Radarsysteme werden beispielsweise im Rahmen einer automatischen Geschwindigkeitsregelung eines Fahrzeugs zur Detektion vorausfahrender Fahrzeuge eingesetzt. Ein gattungsgemäßes System wird auch als Adaptive Cruise Control (ACC) bezeichnet. Zur Beeinflussung der verwendeten elektromagnetischen Wellen und mitunter auch zum Schutz des Radarsystems vor Witterungseinflüssen befindet sich üblicherweise ein Körper im Strahlengang der elektromagnetischen Wellen. Häufig ist dieser Körper Bestandteil eines Gehäuses, das ein solches Kraftfahrzeug- Radarsystem umgibt.The present invention relates to a motor vehicle radar system according to the preamble of the independent claims. Such motor vehicle radar systems are used for example in the context of an automatic speed control of a vehicle for the detection of vehicles in front. A generic system is also referred to as adaptive cruise control (ACC). A body is usually located in the beam path of the electromagnetic waves in order to influence the electromagnetic waves used and sometimes also to protect the radar system from the weather. This body is often part of a housing that surrounds such a motor vehicle radar system.
Stand der TechnikState of the art
Aus der DE 196 44 164 C2 ist ein Kraftfahrzeug-Radarsystem mit mindestens einem Sende-/Empfangselement zum Senden und/oder Empfangen elektromagnetischer Wellen, wobei sich zur Fokussierung oder Streuung der elektromagnetischen Wellen ein linsenförmiger dielektrischer Körper im Strahlengang des mindestens einen Sende-/Empfangselements befindet, bekannt. Der linsenförmige dielektrische Körper, der zudem das Sende-/Empfangselement vorDE 196 44 164 C2 describes a motor vehicle radar system with at least one transmitting / receiving element for transmitting and / or receiving electromagnetic waves, a lens-shaped dielectric body in the beam path of the at least one transmitting / receiving element for focusing or scattering the electromagnetic waves is known. The lenticular dielectric body, which also precedes the transmitting / receiving element
Witterungseinflüssen schützt, besitzt eine Anordnung aus elektrisch leitfähigen Bahnen, deren Breite maximal Lambda- Zehntel beträgt und deren Abstände voneinander mindestens Lambda-Viertel betragen, wobei Lambda die Freiraumwellenlänge der elektromagnetischen Wellen bezeichnet. Die elektrisch leitfähigen Bahnen sind dabei überwiegend senkrecht zur Polarisationsrichtung der elektromagnetischen Wellen angeordnet. Die Anordnung aus elektrisch leitfähigen Bahnen kann je nach gewünschter Anwendung auf der Innenseite des dielektrischen Körpers, d.h. der Seite, die den Sende-/Empfangselementen zugewandt ist, der Außenseite oder auch innerhalb des dielektrischen Körpers angeordnet sein. Wenn die elektrisch leitfähige Anordnung von einem Heizstrom durchflössen wird, kann auf diese Weise der dielektrische Körper von Belägen wie Eis, Schnee oder Schneematsch befreit werden. Ebenso kann mit Hilfe eines Heizstroms der dielektrische Körper getrocknet oder trocken gehalten werden. Es wird weiterhin offenbart, daß die Möglichkeit besteht, die elektrisch leitfähige Anordnung in mindestens zwei voneinander getrennte Anteile zu unterteilen. Wenn sich bei dieser Konstellation die Anordnung aus elektrisch leitfähigen Bahnen auf der Außenseite des dielektrischen Körpers befindet, kann über die Messung der Kapazität zwischen den beiden getrennten Anteilen der Anordnung auf einen sogenannten Verlustwinkel tan δ des Belagsmaterials geschlossen werden. Mit anderen Worten, es kann eine Verschmutzung des dielektrischen Körpers festgestellt werden. In Abhängigkeit von dieser festgestellten Verschmutzung bzw. eines festgestellten Schmutzbelags, kann ein Heizstrom, der die elektrisch leitfähige Anordnung durchfließt, eingeschaltet werden. Andererseits kann durch die Aufteilung in mindestens zwei Bereichen die Heizleistung variiert werden, beispielsweise für ein schnelles Aufheizen einer eisbedeckten Linse mit einer hohen Heizleistung und ein anschließendes Freihalten der Linse mit einer reduzierten Heizleistung. Aus der DE 196 44 164 C2 ist es weiterhin bekannt, daß die elektrischen Leiterbahnen bei einem Körper aus Keramik in bekannter Dickschichttechnologie aufgebracht werden, wo hingegen bei Körpern aus Kunststoff ebenfalls bekannte, kostengünstige Verfahren zum Aufdruck der elektrischen Leiterbahnen verwendet werden können.Protects weather influences, has an arrangement of electrically conductive tracks, the width of which is a maximum of lambda tenths and whose distances from one another are at least lambda quarters, where lambda denotes the free space wavelength of the electromagnetic waves. The electrically conductive tracks are predominantly arranged perpendicular to the direction of polarization of the electromagnetic waves. The arrangement of electrically conductive tracks can, depending on the desired application, be arranged on the inside of the dielectric body, ie on the side facing the transmitting / receiving elements, on the outside or also inside the dielectric body. If a heating current flows through the electrically conductive arrangement, deposits such as ice, snow or slush can be removed from the dielectric body in this way. The dielectric body can likewise be dried or kept dry with the aid of a heating current. It is further disclosed that it is possible to subdivide the electrically conductive arrangement into at least two separate parts. If, in this constellation, the arrangement of electrically conductive tracks is on the outside of the dielectric body, a so-called loss angle tan δ of the covering material can be inferred from the measurement of the capacitance between the two separate parts of the arrangement. In other words, contamination of the dielectric body can be determined. A heating current that flows through the electrically conductive arrangement can be switched on as a function of this ascertained contamination or a ascertained dirt deposit. On the other hand, the heat output can be varied by dividing it into at least two areas, for example for rapid heating of an ice-covered lens a high heat output and then keeping the lens clear with a reduced heat output. From DE 196 44 164 C2 it is also known that the electrical conductor tracks are applied to a ceramic body using known thick-film technology, whereas known, inexpensive methods for printing the electrical conductor tracks can also be used in plastic bodies.
Die DE 197 24 320 AI offenbart ein Verfahren zur Herstellung einer heizbaren Antennenlinse. Es wird eine heizbare Antennenlinse aus einem dielektrischen Körper beschrieben, der darin eine Anordnung aus elektrischen Leiterbahnen besitzt. Die Anordnung aus elektrisch leitfähigen Bahnen befindet sich hierbei möglichst nahe an der zu beheizenden Außenfläche der Linse, wodurch sich eine Verringerung der Heizleistung durch Einbringung der Energie dicht unterhalb der zu beheizenden Fläche ergibt. Ferner folgt daraus ein beschleunigtes Aufheizverhalten. Es wird weiterhin beschrieben, daß eine leichte Anpaßbarkeit der Heizleistung dadurch erreicht werden kann, daß Drähte mit einem gewünschten Widerstandsverhalten verwendet werden. Dies kann beispielsweise ein Widerstandsdraht sein.DE 197 24 320 AI discloses a method for producing a heatable antenna lens. A heatable antenna lens made of a dielectric body is described, which has an arrangement of electrical conductor tracks therein. The arrangement of electrically conductive tracks is located as close as possible to the outer surface of the lens to be heated, which results in a reduction in the heating power due to the introduction of energy just below the surface to be heated. This also results in an accelerated heating behavior. It is further described that easy adaptability of the heating power can be achieved by using wires with a desired resistance behavior. This can be a resistance wire, for example.
Sowohl die DE 196 44 164 C2 als auch die DE 197 24 320 AI weisen das Problem auf, daß unerwünschte Energie, besonders bei tiefen Frequenzen durch die Antennenlinse ausgestrahlt bzw. eingestrahlt wird.Both DE 196 44 164 C2 and DE 197 24 320 AI have the problem that undesired energy, especially at low frequencies, is emitted or radiated through the antenna lens.
Aufgabe, Vorteile und LösungTask, advantages and solution
Es ist die Aufgabe der vorliegenden Erfindung, ein Kraftfahrzeug-Radarsystem anzugeben, das in Bezug auf die Abschirmwirkung von unerwünschten Energien gegenüber dem Stand der Technik verbessert ist. Hierbei sind mit unerwünschten Energien insbesondere Energien in Frequenzbereichen gemeint, die nicht zum Nutzfrequenzbereich des Kraftfahrzeug-Radarsystems gehören. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß bei einem Kraf fahrzeug- Radarsystem mit wenigstens einem sensorstrahlungsdurchlässigen Körper zur Fokusierung der Sensorstrahlung und/oder wenigstens einem Radom ohne gewollte Foukusierung im Strahlengang, wobei in den sensorstahlungsdurchlässigen Körper und/oder in das Radom wenigstens eine Anordnung aus elektrischen Leiterbahnen eingelegt ist, die aus einem ferromagnetischen Material besteht. Der große Vorteil der Verwendung einer Anordnung aus elektrischen Leiterbahnen, die aus einem ferromagnetisehen Material bestehen, liegt darin, daß eine gute Abschirmung gegenüber elektrischen und magnetischen Feldern vorhanden ist . Insbesondere niederfrequente Magnetfelder lassen sich auf diese Art und Weise zuverlässig abschirmen. Vorteilhafterweise wird die Anordnung aus elektrischen Leiterbahnen nicht ausschließlich zur Abschirmung verwendet, sondern wird weiterhin wenigstens zum Heizen des sensorstrahlungsdurchlässigen Körpers und/oder des Radoms verwendet, wozu den elektrischen Leiterbahnen eine elektrische Leistung zuführbar ist. Durch diesen erfindungsgemäßen Zusatznutzen läßt sich die Anordnung aus elektrischen Leiterbahnen gleichzeitig zur Abschirmung von elektrischen und magnetischen Feldern und zum Heizen des sensorstrahlungsdurchlässigen Körpers und/oder des Radoms verwenden. Die bevorzugte Ausgestaltung des erfindungsgemäßen Kraf fahrzeugradarsystems sieht vor, daß der sensorstrahlungsdurchlässige Körper als dielektrische Linse ausgebildet ist . Vorteilhafterweise werden die elektrischen Leiterbahnen mäanderförmig und/oder gitterförmig in den sensorstrahlungsdurchlässigen Körper und/oder in das Radom eingelegt . Werden die elektrischen Leiterbahnen hierbei erfindungsgemäß derart dimensioniert, daß sie einen Abstand von wenigstens Lambda-Viertel zueinander aufweisen und eine Breite von maximal Lambda- Zehntel aufweisen, wobei Lambda die Freiraumwellenlänge der Sensorstrahlung ist, so wirkt diese Struktur aus den elektrischen Leiterbahnen für die Nutzsensorstrahlung nahezu transparent. Insbesondere die erfindungsgemäße Einbringung von gitterförmigen, ferromagnetischen elektrischen Leiterbahnen stellt eine besonders gute Unterdrückung tieferfrequenter Strahlung durch die sogenannte Cutoff- Frequenz dar. Eine besonders vorteilhafte Ausgestaltung des erfindungsgemäßen Kraftfahrzeugradarsystems sieht vor, daß als Material für die elektrischen Leiterbahnen Resistherm verwendet wird. Resistherm hat den Vorteil, daß es neben seinen ferromagnetischen Eigenschafen in Bezug auf den elektrischen spezifischen Widerstand einen positiven Temperaturkoeffizienten aufweist und darüberhinaus als flexibles drahtförmiges Material erhältlich ist.It is the object of the present invention to provide a motor vehicle radar system which is improved over the prior art with regard to the shielding effect of unwanted energies. Here are with undesired energies, in particular energies in frequency ranges that do not belong to the useful frequency range of the motor vehicle radar system. This object is achieved in that in a motor vehicle radar system with at least one sensor radiation-permeable body for focusing the sensor radiation and / or at least one radome without intentional focussing in the beam path, with at least one arrangement in the sensor steel permeable body and / or in the radome electrical conductor tracks is inserted, which consists of a ferromagnetic material. The great advantage of using an arrangement of electrical conductor tracks which are made of a ferromagnetic material is that there is good shielding against electrical and magnetic fields. Low-frequency magnetic fields in particular can be reliably shielded in this way. The arrangement of electrical conductor tracks is advantageously not used exclusively for shielding, but is also used at least for heating the body which is permeable to sensor radiation and / or the radome, for which purpose electrical power can be supplied to the electrical conductor tracks. As a result of this additional benefit according to the invention, the arrangement of electrical conductor tracks can simultaneously be used to shield electrical and magnetic fields and to heat the body which is permeable to sensor radiation and / or the radome. The preferred embodiment of the motor vehicle radar system according to the invention provides that the sensor radiation-permeable body is designed as a dielectric lens. The electrical conductor tracks are advantageously inserted in a meandering and / or lattice shape in the sensor radiation-permeable body and / or in the radome. Will the electrical According to the invention, conductor tracks are dimensioned such that they are at a distance of at least lambda quarters from one another and have a maximum width of lambda tenths, lambda being the free wavelength of the sensor radiation, so this structure from the electrical conductor tracks has an almost transparent effect for the useful sensor radiation. In particular, the introduction of lattice-shaped, ferromagnetic electrical conductor tracks according to the invention represents a particularly good suppression of low-frequency radiation by the so-called cutoff frequency. A particularly advantageous embodiment of the motor vehicle radar system according to the invention provides that Resistherm is used as the material for the electrical conductor tracks. Resistherm has the advantage that, in addition to its ferromagnetic properties in terms of electrical resistivity, it has a positive temperature coefficient and is also available as a flexible wire-shaped material.
Beschreibung von AusführungsbeispielenDescription of exemplary embodiments
Im folgenden werden Ausführungsbeispiele des erfindungsgemäßen Kraftfahrzeugradarsystems anhand von Zeichnungen erläutert. Es zeigen:Exemplary embodiments of the motor vehicle radar system according to the invention are explained below with reference to drawings. Show it:
Figur 1 einen Querschnitt durch ein erfindungsgemäßes Kraftfahrzeugradarsystem,FIG. 1 shows a cross section through a motor vehicle radar system according to the invention,
Figur 2 eine erste Ausführungsform einer erfindungsgemäßen Anordnung der elektrischen Leiterbahnen undFigure 2 shows a first embodiment of an arrangement of the electrical conductor tracks and
Figur 3 eine zweite Ausführungsform einer Anordnung der elektrischen Leiterbahnen. Figur 1 zeigt einen Querschnitt durch einen erfindungsgemäßes Kraftfahrzeugradarsystem. Das Kraftfahrzeugradarsystem, ist in dieser Darstellung nicht in allen Einzelheiten gezeigt. Die Darstellung nach Figur 1 wurde auf die für die Erfindung wesentlichen Komponenten reduziert. Das Kraftfahrzeugradarsystem besteht aus einem Gehäuseunterteil 1, das mit einem Gehäuseoberteil 2 durch eine Nut- und Federverbindung 3 verbunden ist. Die Nut- und Federverbindung 3 sorgt für eine luftdichte Verbindung zwischen dem Gehäuseunterteil 1 und dem Gehäuseoberteil 2 während Klipse 4 für eine gute mechanische Verbindung zwischen dem Gehäuseoberteil 2 und dem Gehäuseunterteil 1 sorgen. In dem Gehäuseunterteil 1 ist auf Sockeln 5 eine Basisplatte 6 eingebracht. Auf der Basisplatte befindet sich eine hier nicht dargestellte elektrische Leiterplatte, auf der Strahlerelemente 7 und Schaltungseinheiten 8 angeordnet sind. In diesem Ausführungsbeispiel sind 3 Strahlerelemente 7 dargestellt, die sowohl zum Senden als auch zum Empfang der Sensorstrahlung geeignet sind. Allgemein ist dabei eine beliebige Anzahl von Strahlerelementen 7 denkbar, wobei diese Strahlerelemente sowohl zum Senden als auch zum Empfangen als auch nur zum Senden oder nur zum Empfangen geeignet sein können. Im letztgenannten Fall kann auch eine Anordnung in zwei getrennten Gehäusen sinnvoll sein. In Hauptstrahlrichtung der Sensorstrahlung ist in das Gehäuseoberteil 2 eine dielektrische Linse 9 eingesetzt, in die elektrisch leitfähige Bahnen 10 aus einem ferromagnetischen Material eingelegt sind. In diesem Ausführungsbeispiel sind die elektrisch leitfähigen Bahnen 10 an der Oberfläche der dielektrischen Linse 9 angeordnet und sind von einer dünnen Schicht des Gehäuseoberteils 2 überzogen. Im allgemeinen ist es möglich, daß sich die elektrisch leitfähigen Bahnen 10 auf, innerhalb oder unterhalb der dielektrischen Linse befinden. Auch ist die Erfindung nicht auf die in Figur 1 gezeigte Anordnung der elektrischen Leiterbahnen 10 beschränkt, so daß auch eine Anordnung aus elektrisch leitfähigen Bahnen 10 beispielsweise in einer Ebene realisierbar ist.Figure 3 shows a second embodiment of an arrangement of the electrical conductor tracks. FIG. 1 shows a cross section through a motor vehicle radar system according to the invention. The motor vehicle radar system is not shown in all details in this illustration. The illustration according to FIG. 1 was reduced to the components essential for the invention. The motor vehicle radar system consists of a lower housing part 1, which is connected to an upper housing part 2 by a tongue and groove connection 3. The tongue and groove connection 3 ensures an airtight connection between the lower housing part 1 and the upper housing part 2, while clips 4 ensure a good mechanical connection between the upper housing part 2 and the lower housing part 1. A base plate 6 is placed on bases 5 in the lower housing part 1. On the base plate there is an electrical circuit board, not shown here, on which radiator elements 7 and circuit units 8 are arranged. In this exemplary embodiment, 3 emitter elements 7 are shown, which are suitable both for transmitting and for receiving the sensor radiation. In general, any number of radiator elements 7 is conceivable, whereby these radiator elements can be suitable both for transmitting and for receiving, and also only for transmitting or only for receiving. In the latter case, an arrangement in two separate housings can also make sense. In the main beam direction of the sensor radiation, a dielectric lens 9 is inserted into the upper housing part 2, into which electrically conductive tracks 10 made of a ferromagnetic material are inserted. In this exemplary embodiment, the electrically conductive tracks 10 are arranged on the surface of the dielectric lens 9 and are covered by a thin layer of the upper housing part 2. In general, it is possible for the electrically conductive traces 10 to be on, inside or below the dielectric lens. The invention is also not based on the arrangement shown in FIG electrical conductor tracks 10 limited, so that an arrangement of electrically conductive tracks 10, for example, can be realized in one plane.
Das in diesem Ausführungsbeispiel dargestellte Kraftfahrzeugradarsystem wird vorzugsweise im Rahmen einer adaptiven Fahrgeschwindigkeitsregelung (z. B. Adaptive Cruise Control , ACC) eingesetzt. Hierbei kann das Kraftfahrzeugradarsystem beispielsweise nach dem FMCW- Verfahren arbeiten oder auch als Pulsradar ausgeführt sein.The motor vehicle radar system shown in this exemplary embodiment is preferably used in the context of an adaptive cruise control (eg Adaptive Cruise Control, ACC). Here, the motor vehicle radar system can work, for example, according to the FMCW method or can also be designed as a pulse radar.
Es liegt ebenfalls im Rahmen des erfindungsgemäßen Kraftfahrzeugradarsystems, daß eine dielektrische Linse mit eingelegten elektrischen Leiterbahnen selbst die äußere Schicht zur Umgebung bildet, so daß die dielektrische Linse nicht wie in Figur 1 gezeigt von einer Schicht des Gehäuseoberteils 2 überzogen ist. Im Rahmen des beschriebenen Ausführungsbeispiels wurde darauf verzichtet, die Kontaktierung der elektrisch leitfähigen Bahnen darzustellen. Über eine solche Kontaktierung wird den elektrisch leitfähigen Bahnen die entsprechende Leistung zugeführt. Die" Steuerung kann hierbei beispielsweise von dem in Figur 1 dargestellten Steuergerät 8 bzw. der Schaltungseinheit 8 übernommen werden. Ebenfalls in diesem Ausführungsbeispiel nicht dargestellt ist die notwendige Kontaktierung des gesamten Kraftfahrzeugradarsystems zum übrigen Kraftfahrzeug. Eine solche Kontaktierung zum Rest des Kraftfahrzeugs kann an beliebiger Stelle des Kraftfahrzeugradarsystems angeordnet sein. Die Auswahl einer entsprechenden Kontaktstelle wird dem Fachmann überlassen.It is also within the scope of the motor vehicle radar system according to the invention that a dielectric lens with inserted electrical conductor tracks itself forms the outer layer to the surroundings, so that the dielectric lens is not covered by a layer of the upper housing part 2 as shown in FIG. In the exemplary embodiment described, the contacting of the electrically conductive tracks was dispensed with. The corresponding power is supplied to the electrically conductive tracks via such a contact. The "control may be taken for example from that shown in Figure 1 the control unit 8 and the switching unit 8 in this case. It is also not shown in this embodiment, the necessary contacting of the entire vehicular radar system with the rest of the motor vehicle. Such a contact to the rest of the motor vehicle can be placed anywhere The selection of a corresponding contact point is left to the person skilled in the art.
Figur 2 zeigt eine mögliche Anordnung elektrischer Leiterbahnen innerhalb eines Linsenkörpers . In den Linsenkörper 21, der hier in der Draufsicht dargestellt ist, ist eine elektrische Leiterbahn maanderförmig eingelegt. Der Beginn und das Ende der elektrischen Leiterbahn 22 führen jeweils zu einer Durchführung 23 innerhalb des Linsenkörpers 21. Diese Durchführungen 23 dienen dazu, die elektrische Kontaktierung auf der Rückseite des Linsenkörpers 21 sicherzustellen. Hierbei sind selbstverständlich auch andere Formen der Kontaktierung möglich, beispielsweise eine über den Rand des Linsenkörpers 21 hinweggeführte Kontaktierung. Bei der in Figur 2 dargestellten Auslegung der elektrischen Leiterbahnen 22 wird vorausgesetzt, daß die elektrischen Leiterbahnen einen Abstand von wenigstens Lambda-Viertel aufweisen, wobei Lambda die Freiraumwellenlänge der Sensorstrahlung ist. Weiterhin ist es erforderlich, daß die elektrischen Leiterbahnen eine Breite von maximal Lambda- Zehntel aufweisen. Durch diese beiden Auslegungskriterien wird gewährleistet, daß die maanderförmig verlegte elektrische Leiterbahn für die Sensorstrahlung nahezu transparent erscheint und diese in ihrem Ausbreitungsverhalten nahezu nicht behindert. Erfindungsgemäß ist als Material für die elektrischen Leiterbahnen ein ferromagnetisches Material gewählt worden". In diesem Ausführungsbeispiel wurde hierzu das ferromagnetische Material Resistherm, das von den Isabellenhütten vertrieben wird, gewählt. Resistherm, das zu 0,6% aus Aluminium, zu 0,3% aus Chrom, zu 30% aus Eisen, zu 0,5% aus Mangan und aus einem geringen Restanteil Nickel besteht, ist ein ferromagnetischer Werkstoff, mit einer Permeabilitätszahl die viel viel größer ist, als 1. Trifft nun ein Magnetfeld auf die elektrisch leitfähigen Bahnen auf, so werden Spannungen induziert, die auch Ströme zur Folge haben. Diese Ströme erzeugen wiederum ein Magnetfeld, das dem äußeren Magnetfeld entgegengerichtet ist und dieses zum Großteil kompensiert. Auf diesem Effekt basiert die abschirmende Wirkung der elektrisch leitfähigen Bahnen, die aus einem ferromagnetischen Werkstoff bestehen. Dieser Effekt tritt in diesem Ausführungsbeispiel insbesondere bei niederfrequenten Feldern auf, die durch eine äquivalente Auslegung der elektrischen Leiterbahnen beispielsweise aus Kupfer nicht abschirmbar sind. Das verwendete Material Resistherm weist zudem ein positiven Temperaturkoeffizienten auf, wodurch sich bei steigenden Temperaturen der elektrische Widerstand der elektrischen Leiterbahnen erhöht. Dies führt in einem gewissen Rahmen zu einem Selbstschutz der elektrisch leitfähigen Bahnen und des dielektrischen Körpers 21, da eine zu hohe Temperatur des dielektrischen Körpers 21 zu dessen Zerstörung führen kann. Wenn sich nun durch eine Erwärmung der elektrischen Leiterbahnen und des dielektrischen Körpers der ohmsche Widerstand der elektrischen Leiterbahnen erhöht, nimmt automatisch der Stromfluß und somit die elektrische Leistung durch die elektrische Leiterbahnen ab. Durch diesen Selbstregeleffekt wird also in einem gewissen Rahmen die dielektrische Linse automatisch vor Überhitzung geschützt.FIG. 2 shows a possible arrangement of electrical conductor tracks within a lens body. An electrical conductor track is inserted in a meandering shape in the lens body 21, which is shown here in the top view. The The beginning and the end of the electrical conductor track 22 each lead to a bushing 23 inside the lens body 21. These bushings 23 serve to ensure the electrical contacting on the back of the lens body 21. Of course, other forms of contacting are also possible here, for example contacting extending over the edge of the lens body 21. In the configuration of the electrical conductor tracks 22 shown in FIG. 2, it is assumed that the electrical conductor tracks are at a distance of at least lambda quarters, where lambda is the free space wavelength of the sensor radiation. Furthermore, it is necessary that the electrical conductor tracks have a maximum width of lambda tenths. These two design criteria ensure that the meandering electrical conductor track appears almost transparent to the sensor radiation and that it almost does not hinder its propagation behavior. According to the invention, a ferromagnetic material is chosen as material for the electric conductor tracks. "In this embodiment, this was the ferromagnetic material Resistherm, which is marketed by the Isabelle cabins selected. Resistherm, the 0.6% aluminum, 0.3% Made of chrome, 30% iron, 0.5% manganese and a small residual nickel, is a ferromagnetic material with a permeability number that is much larger than 1. Now a magnetic field hits the electrically conductive tracks This induces voltages that also result in currents, which in turn generate a magnetic field that opposes and largely compensates for the external magnetic field, which is the basis for the shielding effect of the electrically conductive tracks, which are made of a ferromagnetic material This effect occurs in particular in this exemplary embodiment low-frequency fields that cannot be shielded by an equivalent design of the electrical conductor tracks, for example made of copper. The Resistherm material also has a positive temperature coefficient, which increases the electrical resistance of the electrical conductor tracks as the temperature rises. To a certain extent, this leads to self-protection of the electrically conductive tracks and the dielectric body 21, since an excessively high temperature of the dielectric body 21 can lead to its destruction. If heating of the electrical conductor tracks and the dielectric body increases the ohmic resistance of the electrical conductor tracks, the current flow and thus the electrical power through the electrical conductor tracks automatically decrease. This self-regulating effect automatically protects the dielectric lens from overheating to a certain extent.
Erfindungsgemäß ist die hauptsächliche Aufgabe der elektrischen Leiterbahnen neben der Abschirmung das Heizen des sensorstrahlungsdurchlässigen Körpers und/oder des Radoms, wozu den elektrischen Leiterbahnen eine elektrische Leistung zugeführt wird. Neben diesen beiden Hauptfunktionen der Abschirmung und der Heizung können die elektrischen Leiterbahnen weitere Funktionalitäten aufweisen. Dies kann beispielsweise die Auslegung als Laufzeitleitung sein, um einen Selbsttest des Kraftfahrzeugradarsystems durchzuführen oder auch die Detektion von Belegen auf der Oberfläche des Kraftfahrzeugradarsystems durch Messung von Kapazitäten zwischen zwei ineinander verschachtelten elektrischen Leiterbahnen .According to the invention, in addition to shielding, the main task of the electrical conductor tracks is to heat the body which is permeable to sensor radiation and / or the radome, for which purpose electrical power is supplied to the electrical conductor tracks. In addition to these two main functions of shielding and heating, the electrical conductor tracks can have further functionalities. This can be, for example, the design as a transit time line in order to carry out a self-test of the motor vehicle radar system or the detection of documents on the surface of the motor vehicle radar system by measuring capacitances between two interleaved electrical conductor tracks.
In diesem Ausführungsbeispiel sind die elektrischen Leiterbahnen in einem dielektrischen Körper bzw. in eine dielektrische Linse eingelegt. Im allgemeinen können die elektrischen Leiterbahnen jedoch in einen beliebigen sensorstrahlungsdurchlässigen Körper und/oder ein Radom eingelegt werden. In Bezugnahme auf die Darstellung nach Figur 1 können die Leiterbahnen beispielsweise derart ausgelegt werden, daß sie nicht in den dielektrischen Körper 9 eingelegt sind, sondern sich in einem darüber befindlichen Radom oder in diesem Fall der Deckschicht des oberen Gehäuseteils 2 befinden. Diese Auslegung bietet den Vorteil, daß der Linsenkörper 9, der den Strahlengang der Sensorstrahlung maßgeblich beeinflußt, besonders exakt und kostengünstig hergestellt werden kann, da der aufwendige Arbeitsgang des Einlegens der elektrisch leitfähigen Bahnen in den dielektrischen Körper entfällt.In this exemplary embodiment, the electrical conductor tracks are inserted in a dielectric body or in a dielectric lens. In general, the electrical conductor tracks, however, can be inserted into any sensor-radiation-permeable body and / or a radome. With reference to the illustration according to FIG. 1, the conductor tracks can, for example, be designed such that they are not inserted into the dielectric body 9, but rather are located in a radome located above or in this case the cover layer of the upper housing part 2. This design offers the advantage that the lens body 9, which has a significant influence on the beam path of the sensor radiation, can be produced particularly precisely and inexpensively, since the complex operation of inserting the electrically conductive tracks into the dielectric body is eliminated.
Ein gattungsgemäßes Kraftfahrzeugradarsystem, das nach dem FMCW-Prinzip arbeitet, ist beispielsweise für eine Betriebsfrequenz von 77 Gigaherz ausgelegt. In diesem Frequenzbereich hat sich ein Durchmesser der elektrisch leitfähigen Bahnen von 0,2 mm und ein Abstand der elektrischen Leiterbahnen zueinander von 9 mm im Bezug sowohl auf die Funktionalität der Heizung als auch die Funktionalität der Abschirmung als besonders praktikabel und vorteilhaft herausgestellt.A generic motor vehicle radar system that works according to the FMCW principle is designed, for example, for an operating frequency of 77 gigahertz. In this frequency range, a diameter of the electrically conductive traces of 0.2 mm and a distance of the electrical conductor traces from one another of 9 mm have proven to be particularly practical and advantageous in relation to both the functionality of the heating and the functionality of the shielding.
Figur 3 zeigt eine weitere Ausgestaltungsform der Anordnung der elektrischen Leiterbahnen. In dem Ausführungsbeispiel nach Figur 3 sind in einem Linsenkörper 31 elektrische Leiterbahnen 32 gitterförmig eingelegt. Auch hier sind analog zur Darstellung nach Figur 2 Durchführungen 33 vorhanden, die zur Kontaktierung der elektrisch leitfähigen Bahnen dienen. Eine solche Anordnung als Gitternetz besitzt durch die sogenannte Cutoff-Frequenz eine besonders gute Abschirmwirkung im Bezug auf niedrige Frequenzen. Für den Fall, daß die Anordnung 32 ausschließlich als Abschirmung dienen soll, ist es notwendig, daß die Kontaktierungen 33 mit der Masse des Kraftfahrzeugradarsystems bzw. der Masse des Kraftfahrzeugs verbunden werden. Ein solches Gitter, wie es in Figur 3 dargestellt ist, kann einzeln in einen Linsenkörper eingelegt sein, aber auch in Kombination mit einer maanderförmig eingelegten elektrischen Leiterbahn, wie sie in Figur 2 dargestellt ist. Eine solche kombinierte Anwendung hat den Vorteil, daß die mäanderförmige Leiterbahn zu Heizzwecken besonders gut geeignet ist, während die gitterförmige Struktur der elektrischen Leiterbahnen besonders gut zur Abschirmung geeignet ist. Die abschirmende Wirkung der Gitterstruktur der elektrischen Leiterbahnen 32 in Figur 3 stellt für sich betrachtet durch die Cutoff- Frequenz schon eine gute Abschirmung gegen niedrige Frequenzen dar. Wenn zusätzlich zu der gitterförmigen Struktur der elektrischen Leiterbahnen 32 ein ferromagnetisches Material wie beispielsweise Resistherm verwendet wird, wird die abschirmende Wirkung der Gitterstruktur gegenüber tieferfrequenter Strahlung noch einmal deutlich erhöht.FIG. 3 shows a further embodiment of the arrangement of the electrical conductor tracks. In the exemplary embodiment according to FIG. 3, electrical conductor tracks 32 are inserted in a lattice shape in a lens body 31. Analogous to the illustration according to FIG. 2, bushings 33 are also present here, which are used to contact the electrically conductive tracks. Such an arrangement as a grid network has a particularly good shielding effect with respect to low frequencies due to the so-called cutoff frequency. In the event that the arrangement 32 is to serve exclusively as a shield, it is necessary that the contacts 33 be connected to the mass of the motor vehicle radar system or the mass of the motor vehicle. Such a grid, as shown in FIG. 3, can be inserted individually into a lens body, but also in combination with a meandering electrical conductor track, as shown in FIG. 2. Such a combined application has the advantage that the meandering conductor track is particularly well suited for heating purposes, while the lattice-shaped structure of the electrical conductor tracks is particularly well suited for shielding. The shielding effect of the lattice structure of the electrical conductor tracks 32 in FIG. 3, when viewed in its own right, represents a good shield against low frequencies due to the cutoff frequency. If, in addition to the lattice-shaped structure of the electrical conductor tracks 32, a ferromagnetic material such as, for example, Resistherm is used the shielding effect of the lattice structure against low-frequency radiation is again significantly increased.
Die abschirmende Wirkung sowohl der elektrischen Leiterbahnen nach Figur 2 als auch der Gitterstruktur nach Figur 3 bezieht sich sowohl -auf Störstrahlung, die von außen in das Kraftfahrzeugradarsystem eindringt, als auch auf Störstrahlung, die aus dem Kraftfahrzeugradarsystem in die Umwelt austreten würde. Dieser letztgenannte Punkt ist insbesondere mit Blick auf rechtliche Bestimmungen zum Thema Elektrosmog von besonderer Bedeutung. The shielding effect of both the electrical conductor tracks according to FIG. 2 and of the lattice structure according to FIG. 3 relates both to interference radiation which penetrates into the motor vehicle radar system from the outside and to interference radiation which would escape into the environment from the motor vehicle radar system. This last point is particularly important with regard to legal provisions on the subject of electrosmog.

Claims

Ansprüche Expectations
1. Kraftfahrzeug-Radarsystem mit wenigstens einem sensorstrahlungsdurchlässigen Körper zur Fokussierung der Sensorstrahlung und/oder wenigstens einem Radom ohne gewollte Fokussierung im Strahlengang, wobei in den sensorstrahlungsdurchlässigen Körper und/oder in das Radom wenigstens eine Anordnung aus elektrischen Leiterbahnen eingelegt ist, dadurch gekennzeichnet, daß die Anordnung aus elektrischen Leiterbahnen aus einem ferromagnetischen Material besteht.1. Motor vehicle radar system with at least one sensor radiation-permeable body for focusing the sensor radiation and / or at least one radome without intentional focusing in the beam path, wherein at least one arrangement of electrical conductor tracks is inserted in the sensor radiation-permeable body and / or in the radome, characterized in that the arrangement of electrical conductor tracks consists of a ferromagnetic material.
2. Kraftfahrzeug-Radarsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Anordnung aus elektrischen Leiterbahnen wenigstens zum Heizen des sensorstrahlungsdurchlässigen Körpers und/oder des Radoms geeignet ist, wozu den elektrischen Leiterbahnen eine elektrische Leistung zuführbar ist.2. Motor vehicle radar system according to claim 1, characterized in that the arrangement of electrical conductor tracks is suitable at least for heating the sensor radiation-permeable body and / or the radome, for which purpose the electrical conductor tracks can be supplied with electrical power.
3. Kraftfahrzeug-Radarsystem nach Anspruch 1, dadurch gekennzeichnet, daß der sensorstrahlungsdurchlässige Körper eine dielektrische Linse ist. 3. Motor vehicle radar system according to claim 1, characterized in that the sensor radiation-permeable body is a dielectric lens.
4. Kraftfahrzeug-Radarsystem nach Anspruch 1, dadurch gekennzeichnet, daß die elektrischen Leiterbahnen maanderförmig in den sensorstrahlungsdurchlässigen Körper und/oder in das Radom eingelegt sind.4. Motor vehicle radar system according to claim 1, characterized in that the electrical conductor tracks are meandering in the sensor radiation-permeable body and / or in the radome.
5. Kraftfahrzeug-Radarsystem nach Anspruch 1, dadurch gekennzeichnet, daß die elektrischen Leiterbahnen gitterförmig in den sensorstrahlungsdurchlässigen Körper und/oder in das Radom eingelegt sind.5. Motor vehicle radar system according to claim 1, characterized in that the electrical conductor tracks are lattice-shaped in the sensor radiation-permeable body and / or in the radome.
6. Kraftfahrzeug-Radarsystem nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die elektrischen Leiterbahnen einen Abstand von wenigstens Lambda/4 zueinander aufweisen, wobei Lambda die Freiraumwellenlänge der Sensorstrahlung ist.6. Motor vehicle radar system according to claim 4 or 5, characterized in that the electrical conductor tracks are at a distance of at least lambda / 4 from one another, lambda being the free-space wavelength of the sensor radiation.
7. Kraftfahrzeug-Radarsystem nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die elektrischen Leiterbahnen eine Breite von maximal Lambda/10 aufweisen, wobei Lambda die Freiraumwellenlänge der Sensorstrahlung ist.7. Motor vehicle radar system according to claim 4 or 5, characterized in that the electrical conductor tracks have a maximum width of lambda / 10, lambda being the free space wavelength of the sensor radiation.
8. Kraftfahrzeug-Radarsystem nach Anspruch 1, dadurch gekennzeichnet, daß als Material für die elektrischen Leiterbahnen Resistherm verwendet wird. 8. Motor vehicle radar system according to claim 1, characterized in that Resistherm is used as material for the electrical conductor tracks.
Kraftfahrzeug-Radarsystem mit wenigstens einem sensorstrahlungsdurchlässigen Körper zur Fokussierung der Sensorstrahlung und/oder wenigstens einem Radom ohne gewollte Fokussierung im Strahlengang, wobei in den sensorstrahlungsdurchlässigen Körper und/oder in das Radom wenigstens eine Anordnung aus elektrischen Leiterbahnen eingelegt ist, dadurch gekennzeichnet, daß die elektrischen Leiterbahnen gitterförmig in den sensorstrahlungsdurchlässigen Körper und/oder in das Radom eingelegt sind. Motor vehicle radar system with at least one sensor radiation-permeable body for focusing the sensor radiation and / or at least one radome without intentional focusing in the beam path, wherein at least one arrangement of electrical conductor tracks is inserted in the sensor radiation-permeable body and / or in the radome, characterized in that the electrical Conductor tracks are inserted in the form of a grid in the sensor radiation-permeable body and / or in the radome.
PCT/DE2000/003760 1999-12-24 2000-10-25 Automotive radar system WO2001048509A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001549104A JP4813726B2 (en) 1999-12-24 2000-10-25 Automotive radar system
EP00984859A EP1248954B1 (en) 1999-12-24 2000-10-25 Automotive radar system
DE50004996T DE50004996D1 (en) 1999-12-24 2000-10-25 MOTOR VEHICLE RADAR SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963003.8 1999-12-24
DE19963003A DE19963003A1 (en) 1999-12-24 1999-12-24 Vehicle radar system, e.g. for adaptive cruise control, has dielectric focusing lens or radar dome without focusing in beam path with arrangement of ferromagnetic electrical conductor tracks

Publications (2)

Publication Number Publication Date
WO2001048509A2 true WO2001048509A2 (en) 2001-07-05
WO2001048509A3 WO2001048509A3 (en) 2002-05-16

Family

ID=7934498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003760 WO2001048509A2 (en) 1999-12-24 2000-10-25 Automotive radar system

Country Status (4)

Country Link
EP (1) EP1248954B1 (en)
JP (1) JP4813726B2 (en)
DE (2) DE19963003A1 (en)
WO (1) WO2001048509A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828036B2 (en) 2015-11-24 2017-11-28 Srg Global Inc. Active grille shutter system with integrated radar
CN109955829A (en) * 2017-12-25 2019-07-02 宝马股份公司 Clean method and device, mobile lidar sensing system and the vehicle of laser radar sensor

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963004A1 (en) * 1999-12-24 2001-06-28 Bosch Gmbh Robert Vehicle radar system, e.g. for adaptive cruise control has dielectric body in beam path heated by directly contacting electrically-conducting tracks of material with positive temperature coefficient
JP3659951B2 (en) * 2002-10-21 2005-06-15 三菱電機株式会社 In-vehicle radar system
DE102004049148A1 (en) * 2004-10-07 2006-04-13 Rehau Ag + Co Heating element on a polymeric inner surface of a front module / bumper of a motor vehicle in operative connection with a Radarsende- and - receiving unit
DE102005035814A1 (en) 2005-07-30 2007-02-01 Hella Kgaa Hueck & Co. Manufacture of radome for radar system of vehicle using dielectric lens
DE102005042986A1 (en) 2005-09-09 2007-07-05 Hella Kgaa Hueck & Co. Radar device for a motor vehicle and method for producing a radar device
EP1772748A1 (en) 2005-10-05 2007-04-11 Sony Deutschland GmbH Microwave alignment apparatus
DE102007042173B4 (en) 2007-09-05 2019-03-14 HELLA GmbH & Co. KGaA radar sensor
EP2755044A1 (en) * 2013-01-15 2014-07-16 Autoliv Development AB FMCW radar self-test
DE102014105455A1 (en) * 2014-04-16 2015-10-22 Thyssenkrupp Ag Device for wavelength-selective shielding of an antenna arranged on a ship
DE102014114363A1 (en) * 2014-10-02 2016-04-07 Valeo Schalter Und Sensoren Gmbh Window cap for the housing of a scanning optoelectronic measuring device and housing with such
DE102015015034B4 (en) 2015-11-23 2023-04-27 Baumer Electric Ag sensor arrangement
EP3226027B8 (en) 2016-03-30 2019-01-09 Aptiv Technologies Limited Radar with defrost beam being absorbed in the radome
WO2019065165A1 (en) * 2017-09-28 2019-04-04 豊田合成株式会社 Decorative component for vehicle
JP2019128255A (en) * 2018-01-24 2019-08-01 株式会社ファルテック Radar cover, and radar cover manufacturing method
JP6911803B2 (en) * 2018-03-23 2021-07-28 豊田合成株式会社 Near infrared sensor cover
JP7094911B2 (en) * 2019-03-07 2022-07-04 三恵技研工業株式会社 Radome for in-vehicle radar equipment
JP7312608B2 (en) 2019-05-23 2023-07-21 豊田合成株式会社 Decorative parts for vehicles
DE102019118029A1 (en) * 2019-07-04 2021-01-07 Valeo Schalter Und Sensoren Gmbh Optical measuring device for determining object information from objects in at least one monitoring area
DE102019122221A1 (en) * 2019-08-19 2021-02-25 Webasto SE Sensor module for arrangement on a motor vehicle
JPWO2023008157A1 (en) * 2021-07-30 2023-02-02
DE102022133991A1 (en) * 2022-12-20 2024-06-20 Amazonen-Werke H. Dreyer SE & Co. KG Method for spreading grit with an agricultural spreader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551366A1 (en) * 1975-11-15 1977-05-26 Licentia Gmbh Radome for arctic conditions - has heating elements embedded in laminated material with inductive compensation for its capacitance
DE3137816A1 (en) * 1981-09-23 1983-04-14 Peter Prof. Dr.-Ing. Edenhofer Microwave antenna arrangement
DE19644164A1 (en) * 1996-10-24 1998-04-30 Bosch Gmbh Robert Automobile radar system for automatic velocity regulation
DE19724320A1 (en) * 1997-06-10 1998-12-17 Bosch Gmbh Robert Vehicle radar antenna housing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606318U (en) * 1983-06-23 1985-01-17 日本電信電話株式会社 Radome with heater
JPS60173084U (en) * 1984-04-25 1985-11-16 富士通テン株式会社 Automotive radar
JPS6359413U (en) * 1986-10-03 1988-04-20
JPH01150398A (en) * 1987-12-08 1989-06-13 Ohbayashi Corp Magnetic shielding room
JPH04150302A (en) * 1990-10-15 1992-05-22 Hazeltine Corp Radome with heating/impedance matching element
JPH0613785A (en) * 1991-10-17 1994-01-21 Inter Metallics Kk Electromagnetic shielding film
SE504815C2 (en) * 1995-08-17 1997-04-28 Ericsson Telefon Ab L M Protection for one or more electromagnetic sensors
JPH1047994A (en) * 1996-08-07 1998-02-20 Matsushita Electric Ind Co Ltd Rotational position detector
JP3556403B2 (en) * 1996-08-09 2004-08-18 日野自動車株式会社 Automotive radar equipment
JPH10259641A (en) * 1997-03-18 1998-09-29 Ichinomiya Orimono:Kk Electromagnetic shielding material
JPH10273609A (en) * 1997-03-31 1998-10-13 I & P Kk Electromagnetic shielding coating material paint
JP3650953B2 (en) * 1998-06-29 2005-05-25 株式会社村田製作所 Dielectric lens antenna and radio apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551366A1 (en) * 1975-11-15 1977-05-26 Licentia Gmbh Radome for arctic conditions - has heating elements embedded in laminated material with inductive compensation for its capacitance
DE3137816A1 (en) * 1981-09-23 1983-04-14 Peter Prof. Dr.-Ing. Edenhofer Microwave antenna arrangement
DE19644164A1 (en) * 1996-10-24 1998-04-30 Bosch Gmbh Robert Automobile radar system for automatic velocity regulation
DE19724320A1 (en) * 1997-06-10 1998-12-17 Bosch Gmbh Robert Vehicle radar antenna housing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828036B2 (en) 2015-11-24 2017-11-28 Srg Global Inc. Active grille shutter system with integrated radar
US10137938B2 (en) 2015-11-24 2018-11-27 Srg Global Inc. Active grille shutter system with integrated radar
CN109955829A (en) * 2017-12-25 2019-07-02 宝马股份公司 Clean method and device, mobile lidar sensing system and the vehicle of laser radar sensor
CN109955829B (en) * 2017-12-25 2023-12-05 宝马股份公司 Method and device for cleaning laser radar sensor

Also Published As

Publication number Publication date
EP1248954A2 (en) 2002-10-16
JP2003518633A (en) 2003-06-10
WO2001048509A3 (en) 2002-05-16
DE19963003A1 (en) 2001-06-28
DE50004996D1 (en) 2004-02-12
EP1248954B1 (en) 2004-01-07
JP4813726B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
EP1248954B1 (en) Automotive radar system
EP0594809B1 (en) Radio antenna arrangement located next to vehicle window panes
DE19724320B4 (en) Method for producing a heatable antenna lens
DE102008036012B4 (en) Radome for a radar sensor in a motor vehicle
WO2001018902A2 (en) Housing or part thereof for distance sensor
DE3586942T2 (en) VEHICLE ANTENNA SYSTEM.
EP0514380B1 (en) Antenna combination
DE19963004A1 (en) Vehicle radar system, e.g. for adaptive cruise control has dielectric body in beam path heated by directly contacting electrically-conducting tracks of material with positive temperature coefficient
DE102014213502A1 (en) Protective element for a radar sensor in a motor vehicle
DE19513263A1 (en) Antenna arrangement on a window with high heat transmission loss
EP3664046B1 (en) Vehicle door handle with sensor device and wireless communication device
DE4125898C2 (en) Vehicle antenna in the form of a slot antenna
DE102016007386A1 (en) Radar system for environment detection for a vehicle, in particular for a motor vehicle
EP0710403B1 (en) Aerial arrangement
DE3586938T2 (en) VEHICLE ANTENNA SYSTEM.
DE102021206859A1 (en) RADAR DEVICE
DE19736089C1 (en) Metal plate lens for focussing or diverging electromagnetic waves
DE19923833A1 (en) Antenna device for automobile e.g. for reception of GPS signals
EP3330733B1 (en) Radar sensor for a vehicle and method for assembling a radar sensor
EP0406564B1 (en) Rod antenna for two frequency ranges
DE29811147U1 (en) Antennas made of flat elements
DE20009412U1 (en) Device, in particular for a motor vehicle, for emitting and / or receiving electromagnetic waves
DE202013100490U1 (en) Glazing and system to shield against interference from electrically driven vehicles
DE102020132745A1 (en) HORN ANTENNA
DE102016001617A1 (en) Shielding device for an antenna arrangement of a vehicle toll collection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000984859

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 549104

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002119556

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000984859

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000984859

Country of ref document: EP