WO2000008712A1 - Multiband antenna - Google Patents
Multiband antenna Download PDFInfo
- Publication number
- WO2000008712A1 WO2000008712A1 PCT/DE1999/002404 DE9902404W WO0008712A1 WO 2000008712 A1 WO2000008712 A1 WO 2000008712A1 DE 9902404 W DE9902404 W DE 9902404W WO 0008712 A1 WO0008712 A1 WO 0008712A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- elements
- frequency
- antenna element
- antenna elements
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q11/00—Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
- H01Q11/02—Non-resonant antennas, e.g. travelling-wave antenna
- H01Q11/08—Helical antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/362—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/50—Feeding or matching arrangements for broad-band or multi-band operation
Definitions
- the present invention relates to an antenna for transmitting or receiving signals, with at least a first antenna element for lower frequencies and a second antenna element for higher frequencies, both antenna elements being spiral-shaped and capacitively coupled to a high-frequency counterweight.
- Such antennas are suitable, for example, as antennas of communication devices in dual and mult band applications.
- FIG. 11 shows an antenna 13 in which the antenna comprises a first antenna element 14 for lower frequencies and a second antenna element 15 for higher frequencies, which are connected in series and coupled to a high-frequency counterweight 16.
- the two antenna elements 14 and 15 connected in series are coupled to the high-frequency counterweight 16 via a common feed point 17, which is connected to a corresponding feed line 18.
- the high-frequency counterweight usually consists of a dielectric coated with metal.
- the antenna shown in FIG. 11 is designed as a dual-band antenna, since two antenna elements 14 and 15, namely one for a lower frequency and the other for a higher frequency, are provided.
- the antenna element 15 for higher frequencies is closer to the high-frequency counterweight 16 than the antenna element 14 for lower frequencies.
- FIGS. 12, 13 and 14 show the return loss, the foot impedance and the standing wave factor SWR of the antenna 13 shown in FIG. 11 with serial antenna elements for the two frequency bands from 880 to 900 MHz and 1.71 to 1.86 GHz.
- FIG. 12 shows the return flow diagram
- FIG. 13 the foot impedance
- FIG. 14 the standing wave factor SWR of the antenna 13 shown in FIG. 11.
- the antenna 13 has a foot impedance of approximately 100 ohms, so that there is poor coupling to the normally 50 ohm impedance of the feed line system. It can be seen from FIG. 14 that the 3dB bandwidth of the two antenna elements 14, 15 of the antenna 13 turns out to be smaller than the marked signal bandwidth, which results in an easy detuning of the antenna 13 by capacitive influences from the environment, such as that caused by the human body.
- FIG. 15 shows another antenna 19 known from the prior art with antenna elements 20 and 21 connected in series.
- the two antenna elements 20, 21 are folded.
- the antenna element 21 for higher frequencies is arranged closer to the common feed point 23 than the antenna element 20 for lower frequencies.
- Both antenna elements 20, 21 of the antenna 19 are spiral-shaped and coupled to a high-frequency counterweight 22.
- the common feed point '23 is connected to corresponding feed lines 24.
- FIGS. 16, 17 and 18 show the return loss, the foot impedance and the standing wave factor SWR of the antenna 19 shown in FIG. 15 with folded serial antenna elements 20, 21 for the two frequency bands from 880 to 960 MHz and from 1.71 to 1 , 88 GHz. It can be recognized NEN that the antenna 19 also has the same disadvantages as the antenna 13.
- the foot impedance shown in FIG. 17 is approximately 100 ohms, so that there is poor coupling to the usual impedance of the feed line system of approximately 50 ohms.
- the standing wave factor SWR of the antenna 19 shown in FIG. 18 shows that the antenna 19 has a 3 dB bandwidth which is less than the marked signal bandwidth, so that the antenna 19 can easily be detuned by capacitive influences from the environment. As a result, there is a more complicated and expensive construction of the high-frequency part of the respective communication device, in which the antenna is used.
- the object of the present invention is therefore to provide an antenna for transmitting or receiving signals which has at least a first antenna element for lower frequencies and a second antenna element for higher frequencies, which has a better coupling to the respective feed line system and / or greater sensitivity to external capacitive influences guaranteed.
- an antenna for transmitting or receiving signals according to claim 1, which has at least a first antenna element for low frequencies and a second antenna element for higher frequencies, both antenna elements being spiral and coupled to a high-frequency counterweight , characterized in that the antenna elements are connected in parallel.
- the parallel connection of the two spiral antenna elements according to the present invention enables a better coupling or adaptation of the foot impedance of the antenna according to the invention to the respective feed line system. Furthermore, the influence by external capacitive influences can be greatly reduced by the configuration according to the invention. The result is that communication devices, which the antenna according to the invention is installed, are simpler and can be constructed less complex.
- the antenna according to the invention is suitable for applications in the dual-band and multi-band range. A corresponding further antenna element is necessary for each additional frequency range.
- the antenna elements are advantageously coupled to the high-frequency counterweight by capacitive coupling elements.
- the antenna elements can be capacitively decoupled in order to ensure current decoupling of the two antenna elements at the feed point.
- the capacitive coupling elements advantageously consist of conductor areas printed on the high-frequency counterweight.
- the first antenna element can be connected to a first conductor surface at which there is a feed point and which is electrically conductively connected to a second conductor printed on an opposite side of the high-frequency counterweight, one next to the first conductor surface and one opposite the second conductor surface third Le ter flat is printed, with which the second antenna element is connected.
- the printed conductor areas represent capacities which, on the one hand, guarantee a radiation decoupling of the two antenna elements by the opposite configuration and, on the other hand, enable electrical coupling of the low-frequency antenna element to the high-frequency counterweight.
- This enables a broadband 50 ohm adaptation at the feed point of the antenna, which also has an effect in a higher 3dB bandwidth in both or all frequency ranges.
- the 3dB bandwidth of the antenna according to the invention is about 30-50% higher than the signal bandwidth required in each case, as a result of which the antenna becomes significantly less sensitive to external capacitive influences.
- the antenna elements are radiation-decoupled. For this purpose, if the antenna elements comprise spirals, these spirals can have different directions of rotation.
- FIG. 1 shows a front view of an antenna according to the invention
- FIG. 2 shows a rear view of the antenna according to the invention shown in FIG. 1,
- FIG. 3 shows an electrical equivalent circuit diagram of the antenna according to the invention shown in FIGS. 1 and 2,
- FIG. 4 shows a return flow diagram of the antenna according to the invention shown in FIGS. 1 and 2,
- FIG. 5 shows a foot impedance diagram of the antenna according to the invention shown in FIGS. 1 and 2,
- FIG. 6 e standing wave factor diagram of the antenna according to the invention shown in FIGS. 1 and 2,
- FIGS. 7-10 measurement results of the antenna directional characteristic of an antenna according to the invention at different frequencies
- FIG. 11 shows a schematic illustration of a known antenna
- FIG. 12 shows a return flow diagram of the known antenna shown in FIG. 11,
- FIG. 13 shows the foot impedance diagram of the known antenna shown in FIG. 11,
- FIG. 14 shows a standing wave factor diagram of the known antenna shown in FIG. 11,
- FIG. 15 shows a schematic illustration of a further known antenna
- FIG. 16 shows a return flow diagram of the known antenna shown in FIG. 15,
- FIG. 17 a foot impedance diagram of the known antenna shown in FIG. 15, and
- FIG. 18 shows a standing wave factor diagram of the known antenna shown in FIG. 15.
- FIG. 1 shows the front view of an antenna 1 according to the invention.
- the antenna 1 comprises a first antenna element 2 for lower frequencies and a second antenna element 3 for higher frequencies. Both antenna elements 2 and 3 are formed spirally and consist for example of metal.
- the two antenna elements 2 and 3 are coupled in parallel to a high-frequency counterweight 4.
- the high-frequency counterweight 4 consists, for example, of a dielectric and has the shape of a flat rectangle with a length Li of approximately ⁇ / 4 and a width L b of approximately ⁇ / 8.
- ⁇ is the wavelength of the average frequency of the frequency band to which the second antenna element 3 emits or receives signals for higher frequencies.
- the two antenna elements 2 and 3 are connected to the high-frequency counterweight 4 by means of printed conductor surfaces 5, 6, 7 coupled.
- the conductor surfaces 5, 6, 7 are thin metal layers which are printed on the side surfaces of a corner of the high-frequency counterweight 4.
- the first antenna element 2 for lower frequencies is connected to a first conductor element 5, at which the supply point 8 for the feed line 9 for feeding or forwarding signals is also located.
- the first antenna element 2 extends with the central axis of its spiral m away from the plane of the high-frequency counterweight 4.
- a third conductor surface 6 is printed on the same side of the high-frequency counterweight 4.
- the first conductor surface 5 and the third conductor surface 6 are arranged in such a way that they are electrically insulated from one another.
- the second antenna element 3 for higher frequencies is connected to this third conductor surface 6.
- the central axis of the spiral of the second antenna element 3 extends parallel to the central axis of the spiral of the first antenna element 2.
- FIG. 2 shows the rear of the antenna 1 shown in FIG. 1. It can be seen that, opposite the first conductor surface 5 and the third conductor surface 6, a second conductor surface 7 is printed on the opposite side of the high-frequency counterweight 4, the surface of which is approximately the added surfaces of the first and third conductor surfaces 5 and 6 corresponds.
- the second conductor surface 7 is electrically connected to the first conductor surface 5 by means of a via 10 passing through the high-frequency counterweight 4.
- FIG. 3 shows an electrical equivalent circuit diagram of the antenna 1 according to the invention shown in FIGS. 1 and 2.
- the first antenna element 2 for lower frequencies which is connected to the first and second conductor surfaces 5 and 7, is connected to the feed line 9 via the common feed point 8.
- the first and the second ladder flat 5 and 7 are coupled to the high-frequency counterweight via capacitive coupling elements 12.
- the second antenna element 3 for higher frequencies is connected to the third conductor surface 6.
- the third conductor surface 6 is also coupled to the high-frequency counterweight 4 via a capacitive coupling element 12.
- the first and second conductor surfaces 5 and 7 are decoupled from the third conductor surface 6 via a capacitive element 11, so that the currents of the antenna element 3 for higher frequencies are decoupled from the currents of the antenna element 2 for lower frequencies.
- the capacitive coupling elements 12 are realized by the printed conductors 5, 6 and 7 printed on the high-frequency counterweight, which carry out an electrical coupling of the two antenna elements 2 and 3 to the high-frequency counterweight 4 and thus a broadband 50 ohm adaptation at the feed point 8 or Ensure the base point of the antenna 1 to the impedance of the feed line 9, which is usually 50 ohms.
- Capacitive decoupling of the currents of the antenna element 3 from the currents of the antenna element 2 is implemented by the conductor surfaces 5, 6 and 7 printed on the high-frequency counterweight 4 in this way and the correspondingly connected antenna elements 2 and 3.
- the arrangement of the first circuit board 5 and the third conductor surface 6 on one side and the second conductor surface 7 on the other side of the high-frequency counterweight 4 represents a capacitive high-pass filter for the current-based decoupling of the two antenna elements 2 and 3.
- a radiation decoupling of the two antenna elements 2 and 3 can be achieved by a different direction of rotation of the respective spirals.
- FIGS. 4, 5 and 6 show the return flow damping, the foot impedance and the standing wave factor SWR of the antenna 1 shown in FIGS. 1 and 2 for the two frequency bands between 880 and 960 MHz and 1.71 and 1.88 GHz.
- the return flow diagram shown in FIG. 4 also includes the high-pass curve of the adaptation of the antenna element 3 is shown for higher frequencies.
- the attenuation of the 880 MHz band is approximately 6 dB, which enables a closer arrangement of the two antenna elements 2 and 3 at the feed point 8, so that the volume required for the antenna 1 is reduced and corresponds approximately to an emband rod antenna.
- the foot impedance diagram shown in FIG. 5 shows an approximately equivalent adaptation of the two antenna elements 2 and 3 to 50 ohms, so that a very good adaptation to the impedance of the feed line 9, which is usually around 50 ohms, is ensured.
- the resulting 3dB bandwidth for both frequency ranges is approximately 30-50% larger than the signal bandwidth required in each case, which can be seen from the standing wave factor diagram shown in FIG.
- the antenna 1 according to the invention is thus considerably less sensitive to external capacitive influences than the known antennas, as are shown, for example, in FIGS. 11 and 15.
- the antenna 1 according to the invention has excellent radiation properties, as can be seen from the measured antenna directional characteristics of FIGS. 7-10.
- the antenna directional characteristics shown in FIGS. 7-10 were measured with an antenna according to the invention, which was installed in a base plate with the minimum dimensions of a mobile telephone.
- FIG. 7 shows the antenna directional characteristic for a frequency of 882 MHz
- FIG. 8 shows the antenna directional characteristic for a frequency of 960 MHz
- FIG. 9 shows the antenna directional characteristic for a frequency of 1710 MHz
- FIG. 10 shows the antenna directional characteristic for a frequency of 1880 MHz.
- FIGS. 7 and 8 thus represent the antenna directional characteristics of the two edge frequencies of the lower frequency range, while FIGS.
- the gain of the antenna 1 according to the invention for the vertical polarization of the electrical vector in the main lobe is 3-4 dBi in the two frequency bands.
- the antenna according to the invention thus enables the production of dual, trial and multi-band antennas for mobile, compact and stationary communication technology devices at minimal manufacturing costs and with a very small space requirement.
- the construction of the antenna 1 according to the invention guarantees optimal electrical properties for every frequency range, such as. B. a large frequency bandwidth, a good 50 ohm adaptation at the feed point and an omnidirectional toroidal radiation characteristic of the vertical electrical vector.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
The present invention relates to an antenna (1) for transmitting or receiving signals, comprising at least one first antenna element (2) for low frequencies and a second antenna element (3) for high frequencies. Both antennae are shaped like a spiral and are capacitively coupled to a high-frequency counter-weight (4). The antenna elements (2,3) are mounted in a parallel position. The inventive antenna (1) offers a large bandwidth, good 50 ohm adaptation of both antenna elements to the infeed point and good vertical electrical vector radiation characteristics. The invention (1) also enables highly compact dual band, trial band and multiband antennas for mobile, compact and stationary communication devices to be produced at minimum cost.
Description
Beschreibungdescription
Multiband-AntenneMultiband antenna
Die vorliegende Erfindung betrifft eine Antenne zum Senden bzw. Empfangen von Signalen, mit zumindest einem ersten Antennenelement für niedrigere Frequenzen und einem zweiten Antennenelement für höhere Frequenzen, wobei beide Antennenelemente spiralförmig ausgebildet und an ein Hochfrequenz-Gegen- gewicht kapazitiv angekoppelt sind. Derartige Antennen sind beispielsweise als Antennen von Kommunikationseinrichtungen bei Dual- und Mult bandanwendungen geeignet.The present invention relates to an antenna for transmitting or receiving signals, with at least a first antenna element for lower frequencies and a second antenna element for higher frequencies, both antenna elements being spiral-shaped and capacitively coupled to a high-frequency counterweight. Such antennas are suitable, for example, as antennas of communication devices in dual and mult band applications.
Derartige aus dem Stand der Technik bekannte Antennen sind beispielsweise schematisch m den Figuren 11 und 15 dargestellt. In Figur 11 ist eine Antenne 13 dargestellt, bei der die Antenne ein erstes Antennenelement 14 für niedrigere Frequenzen und ein zweites Antennenelement 15 für höhere Frequenzen umfaßt, die m Serie geschaltet und an ein Hochfre- quenz-Gegengewicht 16 angekoppelt sind. Die beiden in Serie geschalteten Antennenelemente 14 und 15 sind über einen gemeinsamen Einspeisepunkt 17, der mit einer entsprechenden Speiseleitung 18 verbunden ist, mit dem Hochfrequenz-Gegengewicht 16 gekoppelt. Das Hochfrequenz-Gegengewicht besteht ub- licherweise aus einem mit Metall beschichteten Dielektrikum. Die m Figur 11 gezeigte Antenne ist als Dualband-Antenne ausgestaltet, da zwei Antennenelemente 14 und 15, nämlich eines für eine niedrigere Frequenz und das andere für eine höhere Frequenz vorgesehen sind. Üblicherweise befindet sich, wie m Figur 11 dargestellt ist, das Antennenelement 15 für höhere Frequenzen naher am Hochfrequenz-Gegengewicht 16 als das Antennenelement 14 für niedrigere Frequenzen.Such antennas known from the prior art are shown schematically, for example, in FIGS. 11 and 15. FIG. 11 shows an antenna 13 in which the antenna comprises a first antenna element 14 for lower frequencies and a second antenna element 15 for higher frequencies, which are connected in series and coupled to a high-frequency counterweight 16. The two antenna elements 14 and 15 connected in series are coupled to the high-frequency counterweight 16 via a common feed point 17, which is connected to a corresponding feed line 18. The high-frequency counterweight usually consists of a dielectric coated with metal. The antenna shown in FIG. 11 is designed as a dual-band antenna, since two antenna elements 14 and 15, namely one for a lower frequency and the other for a higher frequency, are provided. Usually, as shown in FIG. 11, the antenna element 15 for higher frequencies is closer to the high-frequency counterweight 16 than the antenna element 14 for lower frequencies.
Der Nachteil der m Figur 11 dargestellten und aus dem Stand der Technik bekannten Antenne besteht m einer schlechten An- kopplung des Antennenelementes 14 für niedrigere Frequenzen an das Hochfrequenz-Gegengewicht 16. Der Grund dafür ist, daß
das Antennenelement 14 für niedrigere Frequenzen weiter vom gemeinsamen Einspeisepunkt 17 entfernt liegt, als das Anten¬ nenelement 15 für höhere Frequenzen. In den Figuren 12, 13 und 14 sind die Rückflußdämpfung, die Fußimpedanz und der Stehwellenfaktor SWR der in Figur 11 gezeigten Antenne 13 mit seriellen Antennenelementen für die beiden Frequenzbänder von 880 bis 900 MHz und 1,71 bis 1,86 GHz gezeigt. Figur 12 zeigt dabei das Rückflußdiagramm, Figur 13 die FußImpedanz und Figur 14 den Stehwellenfaktor SWR der in Figur 11 gezeigten Antenne 13. Wie aus dem in Figur 13 gezeigten Fußimpedanzbild zu erkennen ist, weist die Antenne 13 eine Fußimpedanz von etwa 100 Ohm auf, so daß eine schlechte Ankopplung an die normalerweise 50 Ohm betragende Impedanz des Speiseleitungssystems gegeben ist. Aus Figur 14 ist zu erkennen, daß die 3dB-Bandbreite der beiden Antennenelemente 14, 15 der Antenne 13 geringer als die markierte Signalbandbreite ausfällt, was eine leichte Verstimmbarkeit der Antenne 13 durch kapazitive Einflüsse aus der Umgebung zur Folge hat, wie sie beispielsweise durch den menschlichen Körper hervorgerufen werden.The disadvantage of the antenna shown in FIG. 11 and known from the prior art is that the antenna element 14 is coupled poorly to the high-frequency counterweight 16 for lower frequencies. The reason for this is that the antenna element 14 is for lower frequencies farther from the common feed 17 is removed, as the transformants ¬ nenelement 15 for higher frequencies. FIGS. 12, 13 and 14 show the return loss, the foot impedance and the standing wave factor SWR of the antenna 13 shown in FIG. 11 with serial antenna elements for the two frequency bands from 880 to 900 MHz and 1.71 to 1.86 GHz. FIG. 12 shows the return flow diagram, FIG. 13 the foot impedance and FIG. 14 the standing wave factor SWR of the antenna 13 shown in FIG. 11. As can be seen from the foot impedance image shown in FIG. 13, the antenna 13 has a foot impedance of approximately 100 ohms, so that there is poor coupling to the normally 50 ohm impedance of the feed line system. It can be seen from FIG. 14 that the 3dB bandwidth of the two antenna elements 14, 15 of the antenna 13 turns out to be smaller than the marked signal bandwidth, which results in an easy detuning of the antenna 13 by capacitive influences from the environment, such as that caused by the human body.
In Figur 15 ist eine weitere aus dem Stand der Technik bekannte Antenne 19 mit seriell geschalteten Antennenelementen 20 und 21 dargestellt. Bei der in Figur 15 dargestellten Antenne 19 sind die beiden Antennenelemente 20, 21 gefaltet. Wie auch bei der in Figur 11 gezeigten Antenne 13 ist das Antennenelement 21 für höhere Frequenzen näher am gemeinsamen Einspeisepunkt 23 angeordnet als das Antennenelement 20 für niedrigere Frequenzen. Beide Antennenelemente 20, 21 der Antenne 19 sind spiralförmig ausgebildet und an ein Hochfre- quenz-Gegengewicht 22 angekoppelt. Der gemeinsame Einspeisepunkt' 23 ist mit entsprechenden Speiseleitungen 24 verbunden.FIG. 15 shows another antenna 19 known from the prior art with antenna elements 20 and 21 connected in series. In the antenna 19 shown in FIG. 15, the two antenna elements 20, 21 are folded. As with the antenna 13 shown in FIG. 11, the antenna element 21 for higher frequencies is arranged closer to the common feed point 23 than the antenna element 20 for lower frequencies. Both antenna elements 20, 21 of the antenna 19 are spiral-shaped and coupled to a high-frequency counterweight 22. The common feed point '23 is connected to corresponding feed lines 24.
In den Figuren 16, 17 und 18 sind die Rückflußdämpfung, die Fußimpedanz und der Stehwellenfaktor SWR der in Figur 15 dar- gestellten Antenne 19 mit gefalteten seriellen Antennenelementen 20, 21 für die beiden Frequenzbänder von 880 bis 960 MHz und von 1,71 bis 1,88 GHz dargestellt. Es ist zu erken-
nen, daß auch die Antenne 19 die gleichen Nachteile aufweist wie die Antenne 13. Die m Figur 17 dargestellte Fußimpedanz betragt etwa 100 Ohm, so daß eine schlechte Ankopplung an die übliche Impedanz des Speiseleitungssystems von etwa 50 Ohm gegeben ist. Dem m Figur 18 dargestellten Stehwellenfaktor SWR der Antenne 19 ist zu entnehmen, daß die Antenne 19 eine 3dB-Bandbreιte aufweist, die geringer als die markierte Sig- nalbandbreite ist, so daß die Antenne 19 durch kapazitive Einflüsse aus der Umgebung leicht verstimmt werden kann. Als Folge ergibt sich eine kompliziertere und aufwendige Bauweise des Hochfrequenzte les der jeweiligen Kommunikationseinrichtung, m der die Antenne verwendet wird.FIGS. 16, 17 and 18 show the return loss, the foot impedance and the standing wave factor SWR of the antenna 19 shown in FIG. 15 with folded serial antenna elements 20, 21 for the two frequency bands from 880 to 960 MHz and from 1.71 to 1 , 88 GHz. It can be recognized NEN that the antenna 19 also has the same disadvantages as the antenna 13. The foot impedance shown in FIG. 17 is approximately 100 ohms, so that there is poor coupling to the usual impedance of the feed line system of approximately 50 ohms. The standing wave factor SWR of the antenna 19 shown in FIG. 18 shows that the antenna 19 has a 3 dB bandwidth which is less than the marked signal bandwidth, so that the antenna 19 can easily be detuned by capacitive influences from the environment. As a result, there is a more complicated and expensive construction of the high-frequency part of the respective communication device, in which the antenna is used.
Die Aufgabe der vorliegenden Erfindung ist somit, eine An- tenne zum Senden bzw. Empfangen von Signalen bereitzustellen, die zumindest ein erstes Antennenelement für niedrigere Frequenzen und ein zweites Antennenelement für höhere Frequenzen aufweist, die eine bessere Ankopplung an das jeweilige Speiseleitungssystem und/oder eine größere Une pfmdlichkeit ge- genuber externen kapazitiven Beeinflussungen gewahrleistet.The object of the present invention is therefore to provide an antenna for transmitting or receiving signals which has at least a first antenna element for lower frequencies and a second antenna element for higher frequencies, which has a better coupling to the respective feed line system and / or greater sensitivity to external capacitive influences guaranteed.
Diese Aufgabe wird durch eine Antenne zum Senden bzw. Empfangen von Signalen gemäß Anspruch 1 gelost, die zumindest ein erstes Antennenelement für niedrige Frequenzen und ein zwei- tes Antennenelement für höhere Frequenzen aufweist, wobei beide Antennenelemente spiralförmig ausgebildet und an ein Hochfrequenz-Gegengewicht angekoppelt sind, dadurch gekennzeichnet, daß die Antennenelemente parallel geschaltet sind.This object is achieved by an antenna for transmitting or receiving signals according to claim 1, which has at least a first antenna element for low frequencies and a second antenna element for higher frequencies, both antenna elements being spiral and coupled to a high-frequency counterweight , characterized in that the antenna elements are connected in parallel.
Das Parallelschalten der beiden spiralförmigen Antennenelemente gemäß der vorliegenden Erfindung ermöglicht eine bessere Ankopplung bzw. Anpassung der Fußimpedanz der erfm- dungsgemaßen Antenne an das jeweilige Speiseleitungssystem. Weiterhin kann durch die erfmdungsgemaße Ausgestaltung die Beeinflussung durch äußere kapazitive Einflüsse stark verringert werden. Die Folge ist, daß Kommunikationseinrichtungen, m die die erfmdungsgemaße Antenne eingebaut wird, einfacher
und weniger aufwendig aufgebaut sein können. Die erfmdungsgemaße Antenne ist für Anwendungen im Dualband- und Multi- bandbere ch geeignet. Für jeden zusätzlichen Frequenzbereich ist dabei ein entsprechendes weiteres Antennenelement notwen dig.The parallel connection of the two spiral antenna elements according to the present invention enables a better coupling or adaptation of the foot impedance of the antenna according to the invention to the respective feed line system. Furthermore, the influence by external capacitive influences can be greatly reduced by the configuration according to the invention. The result is that communication devices, which the antenna according to the invention is installed, are simpler and can be constructed less complex. The antenna according to the invention is suitable for applications in the dual-band and multi-band range. A corresponding further antenna element is necessary for each additional frequency range.
Vorteilhafterweise sind die Antennenelemente durch kapazitiv Koppelelemente an das Hochfrequenz-Gegengewicht angekoppelt. Die Antennenelemente können dabei kapazitiv entkoppelt sein, um eine strommaßige Entkopplung der beiden Antennenelemente am Emspeisepunkt zu gewährleisten. Vorteilhafterwelse beste hen die kapazitiven Koppelelemente aus auf das Hochfrequenz- Gegengewicht aufgedruckten Leiterflachen. Dabei kann das erste Antennenelement mit einer ersten Leiterflache verbunde sein, an der sich ein Emspeisepunkt befindet und die elektrisch leitend mit einer auf einer gegenüberliegenden Seite des Hochfrequenz-Gegengewichtes aufgedruckten zweiten Leiter flache verbunden st, wobei neben der ersten Leiterflache un der zweiten Leiterflache gegenüberliegend eine dritte Le ter flache aufgedruckt ist, mit der das zweite Antennenelement verbunden ist.The antenna elements are advantageously coupled to the high-frequency counterweight by capacitive coupling elements. The antenna elements can be capacitively decoupled in order to ensure current decoupling of the two antenna elements at the feed point. The capacitive coupling elements advantageously consist of conductor areas printed on the high-frequency counterweight. The first antenna element can be connected to a first conductor surface at which there is a feed point and which is electrically conductively connected to a second conductor printed on an opposite side of the high-frequency counterweight, one next to the first conductor surface and one opposite the second conductor surface third Le ter flat is printed, with which the second antenna element is connected.
Die aufgedruckten Leiterflachen stellen dabei Kapazitäten dar, die einerseits durch die entgegengesetzte Ausgestaltung eine strahlungsmaßige Entkopplung der beiden Antennenelement gewährleisten und andererseits eine elektrische Kopplung des niederfrequenten Antennenelementes an das Hochfrequenz-Gegen gewicht ermöglichen. Hierdurch wird eine breitbandige 50 Ohm Anpassung am Emspeisepunkt der Antenne möglich gemacht, was sich auch m einer höheren 3dB-Bandbreιte m beiden bzw. allen Frequenzbereichen auswirkt. Die 3dB-Bandbreιte der er- fmdungsgemäßen Antenne liegt dabei um etwa 30-50% hoher als die jeweils benotigte Signalbandbreite, wodurch die Antenne wesentlich unempfindlicher gegenüber externen kapazitiven Einflüssen wird.
Weiterhin ist es von Vorteil, wenn die Antennenelemente strahlungsentkoppelt sind. Zu diesem Zweck können, falls die Antennenelemente Spiralen umfassen, diese Spiralen unterschiedliche Drehrichtungen aufweisen.The printed conductor areas represent capacities which, on the one hand, guarantee a radiation decoupling of the two antenna elements by the opposite configuration and, on the other hand, enable electrical coupling of the low-frequency antenna element to the high-frequency counterweight. This enables a broadband 50 ohm adaptation at the feed point of the antenna, which also has an effect in a higher 3dB bandwidth in both or all frequency ranges. The 3dB bandwidth of the antenna according to the invention is about 30-50% higher than the signal bandwidth required in each case, as a result of which the antenna becomes significantly less sensitive to external capacitive influences. It is also advantageous if the antenna elements are radiation-decoupled. For this purpose, if the antenna elements comprise spirals, these spirals can have different directions of rotation.
Im folgenden wird die Antenne gemäß der vorliegenden Erfindung anhand eines bevorzugten Ausfuhrungsbeispiels unter Bezug auf die beigefugten Zeichnungen naher erläutert, denen zeigenIn the following the antenna according to the present invention is explained in more detail using a preferred exemplary embodiment with reference to the attached drawings, which show
Figur 1 eine Vorderansicht einer erf dungsgemaßen Antenne,FIG. 1 shows a front view of an antenna according to the invention,
Figur 2 eine Ruckansicht der m Figur 1 gezeigten erfm- dungsgemaßen Antenne,FIG. 2 shows a rear view of the antenna according to the invention shown in FIG. 1,
Figur 3 em elektrisches Ersatzschaltbild der m den Figuren 1 und 2 gezeigten erf dungsgemaßen Antenne,FIG. 3 shows an electrical equivalent circuit diagram of the antenna according to the invention shown in FIGS. 1 and 2,
Figur 4 em Ruckflußdiagramm der m den Figuren 1 und 2 gezeigten erfmdungsgemaßen Antenne,FIG. 4 shows a return flow diagram of the antenna according to the invention shown in FIGS. 1 and 2,
Figur 5 em Fußimpedanzdiagramm der m den Figuren 1 und 2 gezeigten erfmdungsgemaßen Antenne,FIG. 5 shows a foot impedance diagram of the antenna according to the invention shown in FIGS. 1 and 2,
Figur 6 e Stehwellenfaktor-Diagramm der den Figuren 1 und 2 gezeigten erfmdungsgemaßen Antenne,FIG. 6 e standing wave factor diagram of the antenna according to the invention shown in FIGS. 1 and 2,
Figuren 7-10 Meßergebnisse der Antennen-Richtcharakteristik einer erfmdungsgemaßen Antenne bei verschiedenen Frequenzen,FIGS. 7-10 measurement results of the antenna directional characteristic of an antenna according to the invention at different frequencies,
Figur 11 eine schematische Darstellung einer bekannten Antenne,
Figur 12 em Ruckflußdiagramm der m Figur 11 gezeigten bekannten Antenne,FIG. 11 shows a schematic illustration of a known antenna, FIG. 12 shows a return flow diagram of the known antenna shown in FIG. 11,
Figur 13 em FußImpedanzdlagramm der m Figur 11 gezeig- ten bekannten Antenne,FIG. 13 shows the foot impedance diagram of the known antenna shown in FIG. 11,
Figur 14 em Stehwellenfaktor-Diagramm der in Figur 11 gezeigten bekannten Antenne,FIG. 14 shows a standing wave factor diagram of the known antenna shown in FIG. 11,
Figur 15 eine schematische Darstellung einer weiteren bekannten Antenne,FIG. 15 shows a schematic illustration of a further known antenna,
Figur 16 em Ruckflußdiagramm der m Figur 15 gezeigten bekannten Antenne,FIG. 16 shows a return flow diagram of the known antenna shown in FIG. 15,
Figur 17 em Fußimpedanzdiagramm der m Figur 15 gezeigten bekannten Antenne, undFIG. 17 a foot impedance diagram of the known antenna shown in FIG. 15, and
Figur 18 em Stehwellenfaktor-Diagramm der m Figur 15 gezeigten bekannten Antenne.18 shows a standing wave factor diagram of the known antenna shown in FIG. 15.
Figur 1 zeigt die Vorderansicht einer erfmdungsgemaßen Antenne 1. Die Antenne 1 umfaßt em erstes Antennenelement 2 für niedrigere Frequenzen und e zweites Antennenelement 3 für höhere Frequenzen. Beide Antennenelemente 2 und 3 sind spiralförmig ausgebildet und bestehen beispielsweise aus Metall. Die beiden Antennenelemente 2 und 3 sind parallel an em Hochfrequenz-Gegengewicht 4 angekoppelt. Das Hochfrequenz-Gegengewicht 4 besteht beispielsweise aus einem Die- lektrikum und hat die Form eines flachen Rechteckes mit einer Lange Li von ca. λ/4 und einer Breite Lb von etwa λ/8. λ ist die Wellenlange der mittleren Frequenz des Frequenzbandes, dem das zweite Antennenelement 3 für höhere Frequenzen Signale ausstrahlt bzw. empfangt.FIG. 1 shows the front view of an antenna 1 according to the invention. The antenna 1 comprises a first antenna element 2 for lower frequencies and a second antenna element 3 for higher frequencies. Both antenna elements 2 and 3 are formed spirally and consist for example of metal. The two antenna elements 2 and 3 are coupled in parallel to a high-frequency counterweight 4. The high-frequency counterweight 4 consists, for example, of a dielectric and has the shape of a flat rectangle with a length Li of approximately λ / 4 and a width L b of approximately λ / 8. λ is the wavelength of the average frequency of the frequency band to which the second antenna element 3 emits or receives signals for higher frequencies.
Die beiden Antennenelemente 2 und 3 sind mittels aufgedruckter Leiterflachen 5, 6, 7 an das Hochfrequenz-Gegengewicht 4
gekoppelt. Die Leiterflachen 5, 6, 7 sind dabei dünne Metall- schichten, die auf die Seitenflächen einer Ecke des Hochfrequenz-Gegengewichtes 4 aufgedruckt sind. Das erste Antennenelement 2 für niedrigere Frequenzen ist an einem ersten Leiterelement 5 angeschlossen, an dem s ch ebenfalls der Emspeisepunkt 8 für die Speiseleitung 9 zum Zufuhren bzw. Weiterleiten von Signalen befindet. Das erste Antennenelement 2 erstreckt sich mit der Mittelachse seiner Spirale m der Ebene des Hochfrequenz-Gegengewichtes 4 von diesem weg.The two antenna elements 2 and 3 are connected to the high-frequency counterweight 4 by means of printed conductor surfaces 5, 6, 7 coupled. The conductor surfaces 5, 6, 7 are thin metal layers which are printed on the side surfaces of a corner of the high-frequency counterweight 4. The first antenna element 2 for lower frequencies is connected to a first conductor element 5, at which the supply point 8 for the feed line 9 for feeding or forwarding signals is also located. The first antenna element 2 extends with the central axis of its spiral m away from the plane of the high-frequency counterweight 4.
Neben der ersten Leiterflache 5 ist eine dritte Leiterflache 6 auf die gleiche Seite des Hochfrequenz-Gegengewichtes 4 aufgedruckt. Die erste Leiterflache 5 und die dritte Leiterflache 6 sind dergestalt angeordnet, daß sie voneinander elektrisch isoliert sind. Das zweite Antennenelement 3 für höhere Frequenzen ist mit dieser dritten Leiterflache 6 verbunden. Die Mittelachse der Spirale des zweiten Antennenelementes 3 erstreckt sich parallel zur Mittelachse der Spirale des ersten Antennenelementes 2.In addition to the first conductor surface 5, a third conductor surface 6 is printed on the same side of the high-frequency counterweight 4. The first conductor surface 5 and the third conductor surface 6 are arranged in such a way that they are electrically insulated from one another. The second antenna element 3 for higher frequencies is connected to this third conductor surface 6. The central axis of the spiral of the second antenna element 3 extends parallel to the central axis of the spiral of the first antenna element 2.
In Figur 2 ist die Ruckseite der m Figur 1 gezeigten Antenne 1 dargestellt. Es ist zu erkennen, daß gegenüber der ersten Leiterflache 5 und der dritten Leiterflache 6 e ne zweite Leiterflache 7 auf die gegenüberliegende Seite des Hochfre- quenz-Gegengewichtes 4 aufgedruckt ist, deren Flache etwa den addierten Flachen der ersten und der dritten Leiterflache 5 bzw. 6 entspricht. Die zweite Leiterflache 7 ist mittels einer durch das Hochfrequenz-Gegengewicht 4 hindurchgehenden Durchkontaktierung 10 elektrisch mit der ersten Leiterflache 5 verbunden.FIG. 2 shows the rear of the antenna 1 shown in FIG. 1. It can be seen that, opposite the first conductor surface 5 and the third conductor surface 6, a second conductor surface 7 is printed on the opposite side of the high-frequency counterweight 4, the surface of which is approximately the added surfaces of the first and third conductor surfaces 5 and 6 corresponds. The second conductor surface 7 is electrically connected to the first conductor surface 5 by means of a via 10 passing through the high-frequency counterweight 4.
In Figur 3 ist em elektrisches Ersatzschaltbild der m den Figuren 1 und 2 gezeigten erfmdungsgemaßen Antenne 1 dargestellt. Das mit der ersten und der zweiten Leiterflache 5 bzw. 7 verbundene erste Antennenelement 2 für niedrigere Frequenzen ist über den gemeinsamen Emspeisepunkt 8 mit der Speiseleitung 9 verbunden. Die erste und die zweite Leiter-
flache 5 bzw. 7 sind über kapazitive Koppelelemente 12 an das Hochfrequenz-Gegengewicht angekoppelt. Das zweite Antennenelement 3 für höhere Frequenzen ist mit der dritten Leiterflache 6 verbunden. Die dritte Leiterflache 6 ist eben- falls über em kapazitives Koppelelement 12 mit dem Hochfrequenz-Gegengewicht 4 gekoppelt. Die erste und zweite Leiterflache 5 und 7 sind über em kapazitives Element 11 von der dritten Leiterflache 6 entkoppelt, so daß die Strome des Antennenelementes 3 für höhere Frequenzen von den Strömen des Antennenelementes 2 für niedrigere Frequenzen entkoppelt sind.FIG. 3 shows an electrical equivalent circuit diagram of the antenna 1 according to the invention shown in FIGS. 1 and 2. The first antenna element 2 for lower frequencies, which is connected to the first and second conductor surfaces 5 and 7, is connected to the feed line 9 via the common feed point 8. The first and the second ladder flat 5 and 7 are coupled to the high-frequency counterweight via capacitive coupling elements 12. The second antenna element 3 for higher frequencies is connected to the third conductor surface 6. The third conductor surface 6 is also coupled to the high-frequency counterweight 4 via a capacitive coupling element 12. The first and second conductor surfaces 5 and 7 are decoupled from the third conductor surface 6 via a capacitive element 11, so that the currents of the antenna element 3 for higher frequencies are decoupled from the currents of the antenna element 2 for lower frequencies.
Die kapazitiven Koppelelemente 12 sind durch die auf das Hochfrequenz-Gegengewicht aufgedruckten Leiterflachen 5, 6 und 7 realisiert, die eine elektrische Kopplung der beiden Antennenelemente 2 und 3 an das Hochfrequenz-Gegengewicht 4 durchfuhren und damit eine breitbandigere 50 Ohm-Anpassung am Emspeisepunkt 8 bzw. Fußpunkt der Antenne 1 an die üblicherweise 50 Ohm betragende Impedanz der Speiseleitung 9 gewahr- leisten. Durch die derart auf das Hochfrequenz-Gegengewicht 4 aufgedruckten Leiterflachen 5, 6 und 7 und die entsprechend verbundenen Antennenelemente 2 und 3 wird eine kapazitive Entkopplung der Strome des Antennenelementes 3 von den Strömen des Antennenelementes 2 implementiert. Die Anordnung der ersten Leiterplatte 5 und der dritten Leiterflache 6 auf der einen Seite und der zweiten Leiterflache 7 auf der anderen Seite des Hochfrequenz-Gegengewichtes 4 stellt em kapazitives Hochpaßfllter für die strommaßige Entkopplung der beiden Antennenelemente 2 und 3 dar. Eine Strahlungsentkopplung der beiden Antennenelemente 2 und 3 kann durch eine unterschiedliche Drehrichtung der jeweiligen Spiralen erreicht werden.The capacitive coupling elements 12 are realized by the printed conductors 5, 6 and 7 printed on the high-frequency counterweight, which carry out an electrical coupling of the two antenna elements 2 and 3 to the high-frequency counterweight 4 and thus a broadband 50 ohm adaptation at the feed point 8 or Ensure the base point of the antenna 1 to the impedance of the feed line 9, which is usually 50 ohms. Capacitive decoupling of the currents of the antenna element 3 from the currents of the antenna element 2 is implemented by the conductor surfaces 5, 6 and 7 printed on the high-frequency counterweight 4 in this way and the correspondingly connected antenna elements 2 and 3. The arrangement of the first circuit board 5 and the third conductor surface 6 on one side and the second conductor surface 7 on the other side of the high-frequency counterweight 4 represents a capacitive high-pass filter for the current-based decoupling of the two antenna elements 2 and 3. A radiation decoupling of the two antenna elements 2 and 3 can be achieved by a different direction of rotation of the respective spirals.
In den Figuren 4, 5 und 6 sind die Ruckflußdampfung, die Fußimpedanz und der Stehwellenfaktor SWR der den Figuren 1 und 2 gezeigten Antenne 1 für die beiden Frequenzbander zwischen 880 und 960 MHz und 1,71 und 1,88 GHz dargestellt. Im m der Figur 4 dargestellten Ruckflußdiagramm ist dabei auch
die Hochpaßkurve der Anpassung des Antennenelementes 3 für höhere Frequenzen dargestellt. Die Abschwachung des 880 MHz- Bandes betragt etwa 6dB, was eine engere Anordnung der beiden Antennenelemente 2 und 3 am Emspeisepunkt 8 ermöglicht, so daß das für die Antenne 1 benotigte Volumen verringert ist und etwa einer Emband-Stabantenne entspricht.FIGS. 4, 5 and 6 show the return flow damping, the foot impedance and the standing wave factor SWR of the antenna 1 shown in FIGS. 1 and 2 for the two frequency bands between 880 and 960 MHz and 1.71 and 1.88 GHz. The return flow diagram shown in FIG. 4 also includes the high-pass curve of the adaptation of the antenna element 3 is shown for higher frequencies. The attenuation of the 880 MHz band is approximately 6 dB, which enables a closer arrangement of the two antenna elements 2 and 3 at the feed point 8, so that the volume required for the antenna 1 is reduced and corresponds approximately to an emband rod antenna.
Das Figur 5 gezeigte FußImpedanzdiagramm zeigt eine etwa gleichwertige Anpassung der beiden Antennenelemente 2 und 3 an 50 Ohm, so daß eine sehr gute Anpassung an die üblicherweise etwa 50 Ohm betragende Impedanz der Speiseleitung 9 gewährleistet ist. Die daraus resultierende 3dB-Bandbreιte für beide Frequenzbereiche ist um ca. 30-50% großer als die jeweils benotigte Signalbandbreite, was aus dem Figur 6 ge- zeigten Stehwellenfaktor-Diagramm zu erkennen ist.The foot impedance diagram shown in FIG. 5 shows an approximately equivalent adaptation of the two antenna elements 2 and 3 to 50 ohms, so that a very good adaptation to the impedance of the feed line 9, which is usually around 50 ohms, is ensured. The resulting 3dB bandwidth for both frequency ranges is approximately 30-50% larger than the signal bandwidth required in each case, which can be seen from the standing wave factor diagram shown in FIG.
Damit ist die erfmdungsgemaße Antenne 1 wesentlich unempfindlicher gegenüber externen kapazitiven Beeinflussungen als die bekannten Antennen, wie sie beispielsweise m den Figuren 11 und 15 dargestellt sind.The antenna 1 according to the invention is thus considerably less sensitive to external capacitive influences than the known antennas, as are shown, for example, in FIGS. 11 and 15.
Weiterhin hat die erfmdungsgemaße Antenne 1 mit parallel angeschlossenen spiralförmigen Antennenelementen 2 und 3 exzellente Strahlungseigenschaften, wie aus den gemessenen Anten- nen-Richtcharakteristiken der Figuren 7-10 zu entnehmen ist. Die m den Figuren 7-10 dargestellten Antennen-Richtcharakteristiken wurden mit einer erfmdungsgemaßen Antenne gemessen, die m eine Grundplatte mit den minimalen Abmessungen eines Mobiltelefons installiert war. Figur 7 zeigt dabei die Anten- nen-Richtcharakteristik für eine Frequenz von 882 MHz, Figur 8 die Antennen-Richtcharakteristik für eine Frequenz von 960 MHz, Figur 9 die Antennen-Richtcharakteristik für eine Frequenz von 1710 MHz und Figur 10 die Antennen-Richtcharakteristik für eine Frequenz von 1880 MHz. Die Figuren 7 und 8 stellen damit die Antennen-Richtcharakteristiken der beiden Randfrequenzen des niedrigeren Frequenzbereiches dar, wahrend die Figuren 9 und 10 die beiden Antennen-Richtcharakteristi-
ken der beiden Randfrequenzen des höheren Frequenzbereiches zeigen. Wie aus den Diagrammen zu erkennen ist, beträgt der Gewinn der erfindungsgemäßen Antenne 1 für die vertikale Polarisation des elektrischen Vektors in der Hauptkeule 3-4 dBi in den beiden Frequenzbändern.Furthermore, the antenna 1 according to the invention, with spiral antenna elements 2 and 3 connected in parallel, has excellent radiation properties, as can be seen from the measured antenna directional characteristics of FIGS. 7-10. The antenna directional characteristics shown in FIGS. 7-10 were measured with an antenna according to the invention, which was installed in a base plate with the minimum dimensions of a mobile telephone. FIG. 7 shows the antenna directional characteristic for a frequency of 882 MHz, FIG. 8 shows the antenna directional characteristic for a frequency of 960 MHz, FIG. 9 shows the antenna directional characteristic for a frequency of 1710 MHz and FIG. 10 shows the antenna directional characteristic for a frequency of 1880 MHz. FIGS. 7 and 8 thus represent the antenna directional characteristics of the two edge frequencies of the lower frequency range, while FIGS. 9 and 10 show the two antenna directional characteristics. show ken of the two fringe frequencies of the higher frequency range. As can be seen from the diagrams, the gain of the antenna 1 according to the invention for the vertical polarization of the electrical vector in the main lobe is 3-4 dBi in the two frequency bands.
Die erfindungsgemäße Antenne ermöglicht somit die Herstellung von Dual-, Trial- und Multibandantennen für mobile, kompakte und stationäre Geräte der Kommunikationstechnik zu minimalen Herstellungskosten und mit einem sehr geringen Platzbedarf. Die Konstruktion der erfindungsgemäßen Antenne 1 garantiert optimale elektrische Eigenschaften für jeden Frequenzbereich, wie z. B. eine große Frequenzbandbreite, eine gute 50 Ohm-Anpassung am Einspeisepunkt und eine omnidirektionale toroidale Strahlungscharakteristik des vertikalen elektrischen Vektors.
The antenna according to the invention thus enables the production of dual, trial and multi-band antennas for mobile, compact and stationary communication technology devices at minimal manufacturing costs and with a very small space requirement. The construction of the antenna 1 according to the invention guarantees optimal electrical properties for every frequency range, such as. B. a large frequency bandwidth, a good 50 ohm adaptation at the feed point and an omnidirectional toroidal radiation characteristic of the vertical electrical vector.
Claims
1. Antenne (1) zum Senden bzw. Empfangen von Signalen, mit zumindest einem ersten Antennenelement (2) für niedrigere Frequenzen und einem zweiten Antennenelement (3) für höhere Frequenzen, wobei beide Antennenelemente (2, 3) spiralförmig ausgebildet und an em Hochfrequenz-Gegengewicht (4) kapazitiv angekoppelt sind, d a d u r c h g e k e n n z e i c h n e t , daß die Antennenelemente (2, 3) parallel geschaltet sind.1. Antenna (1) for transmitting or receiving signals, with at least a first antenna element (2) for lower frequencies and a second antenna element (3) for higher frequencies, both antenna elements (2, 3) being spiral and em high frequency Counterweight (4) are capacitively coupled, characterized in that the antenna elements (2, 3) are connected in parallel.
2. Antenne gemäß Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Antennenelemente (2, 3) durch kapazitive Koppelele- mente an das Hochfrequenz- Gegengewicht (4) angekoppelt sind.2. Antenna according to claim 1, so that the antenna elements (2, 3) are coupled to the high-frequency counterweight (4) by capacitive coupling elements.
3. Antenne gemäß Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die Antennenelemente (2, 3) kapazitiv entkoppelt sind.3. Antenna according to claim 2, d a d u r c h g e k e n n z e i c h n e t that the antenna elements (2, 3) are capacitively decoupled.
4. Antenne gemäß Anspruch 2 oder 3 d a d u r c h g e k e n n z e i c h n e t , daß die kapazitiven Koppelelemente aus auf das Hochfrequenz- Gegengewicht (4) aufgedruckten Leiterflachen (5, 6, 7) beste- hen.4. Antenna according to claim 2 or 3, so that the capacitive coupling elements consist of printed conductors (5, 6, 7) printed on the high-frequency counterweight (4).
5. Antenne gemäß Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß das erste Antennenelement (2) mit einer ersten Leiter- flache (5) verbunden ist, an der sich em Emspeisepunkt (8) befindet und d e elektrisch leitend mit einer auf einer gegenüberliegenden Seite des Hochfrequenz-Gegengewichtes (4) aufgedruckten zweiten Leiterflache (7) verbunden ist, wobei neben der ersten Leiterflache (5) und der zweiten Leiter- flache (7) gegenüberliegend eine dritte Leiterflache (6) aufgedruckt ist, mit der das zweite Antennenelement (3) verbun
5. Antenna according to claim 4, characterized in that the first antenna element (2) with a first conductor flat (5) is connected, at which em feeding point (8) is located and de electrically conductive with one on an opposite side of the radio frequency Counterweight (4) printed second conductor surface (7) is connected, in addition to the first conductor surface (5) and the second conductor surface (7) opposite a third conductor surface (6) is printed, with which the second antenna element (3) connected
6. Antenne gemäß einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Antennenelemente (2, 3) Strahlungsentkoppelt sind.6. Antenna according to one of the preceding claims, that the antenna elements (2, 3) are radiation decoupled.
7. Antenne gemäß einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Antennenelemente (2, 3) Spiralen umfassen.7. Antenna according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the antenna elements (2, 3) comprise spirals.
8. Antenne gemäß Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die Spiralen zur Strahlungsentkopplung unterschiedliche8. Antenna according to claim 7, d a d u r c h g e k e n n z e i c h n e t that the spirals for radiation decoupling different
Drehrichtungen aufweisen.Have directions of rotation.
9. Antenne gemäß einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß sie als Multibandantenne mit mehreren Antennenelementen ausgebildet ist.
9. Antenna according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that it is designed as a multi-band antenna with several antenna elements.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19835879 | 1998-08-07 | ||
DE19835879.2 | 1998-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000008712A1 true WO2000008712A1 (en) | 2000-02-17 |
Family
ID=7876871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1999/002404 WO2000008712A1 (en) | 1998-08-07 | 1999-08-02 | Multiband antenna |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2000008712A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009132091A3 (en) * | 2008-04-23 | 2010-07-22 | Enteromedics, Inc. | Antenna arrangements for implantable therapy device |
US8738103B2 (en) | 2006-07-18 | 2014-05-27 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US8941541B2 (en) | 1999-09-20 | 2015-01-27 | Fractus, S.A. | Multilevel antennae |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4205084A1 (en) * | 1992-02-17 | 1993-09-02 | Karl Harms Handels Gmbh & Co K | Electromagnetic radiation receiver e.g. for antitheft security systems - consists of adjacent pairs of conductors in common planes, each pair wound into octagonal coils with equal numbers of turns and density |
-
1999
- 1999-08-02 WO PCT/DE1999/002404 patent/WO2000008712A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4205084A1 (en) * | 1992-02-17 | 1993-09-02 | Karl Harms Handels Gmbh & Co K | Electromagnetic radiation receiver e.g. for antitheft security systems - consists of adjacent pairs of conductors in common planes, each pair wound into octagonal coils with equal numbers of turns and density |
Non-Patent Citations (3)
Title |
---|
ERAETUULI P ET AL: "DUAL FREQUENCY WIRE ANTENNAS", ELECTRONICS LETTERS,GB,IEE STEVENAGE, vol. 32, no. 12, pages 1051-1052, XP000620670, ISSN: 0013-5194 * |
HAAPALA P ET AL: "DUAL FREQUENCY HELICAL ANTENNAS FOR HANDSETS", IEEE VEHICULAR TECHNOLOGY CONFERENCE,US,NEW YORK, IEEE, vol. CONF. 46, pages 336-338, XP000594306, ISBN: 0-7803-3158-3 * |
NAKANO H ET AL: "REALIZATION OF DUAL-FREQUENCY AND WIDE-BAND VSWR PERFORMANCES USINGNORMAL-MODE HELICAL AND INVERTED-F ANTENNAS", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,US,IEEE INC. NEW YORK, vol. 46, no. 6, pages 788-793, XP000766088, ISSN: 0018-926X * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9362617B2 (en) | 1999-09-20 | 2016-06-07 | Fractus, S.A. | Multilevel antennae |
US9000985B2 (en) | 1999-09-20 | 2015-04-07 | Fractus, S.A. | Multilevel antennae |
US10056682B2 (en) | 1999-09-20 | 2018-08-21 | Fractus, S.A. | Multilevel antennae |
US8976069B2 (en) | 1999-09-20 | 2015-03-10 | Fractus, S.A. | Multilevel antennae |
US9761934B2 (en) | 1999-09-20 | 2017-09-12 | Fractus, S.A. | Multilevel antennae |
US9054421B2 (en) | 1999-09-20 | 2015-06-09 | Fractus, S.A. | Multilevel antennae |
US9240632B2 (en) | 1999-09-20 | 2016-01-19 | Fractus, S.A. | Multilevel antennae |
US8941541B2 (en) | 1999-09-20 | 2015-01-27 | Fractus, S.A. | Multilevel antennae |
US9899727B2 (en) | 2006-07-18 | 2018-02-20 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US8738103B2 (en) | 2006-07-18 | 2014-05-27 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US9099773B2 (en) | 2006-07-18 | 2015-08-04 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US10644380B2 (en) | 2006-07-18 | 2020-05-05 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US11031677B2 (en) | 2006-07-18 | 2021-06-08 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US11349200B2 (en) | 2006-07-18 | 2022-05-31 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US11735810B2 (en) | 2006-07-18 | 2023-08-22 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US12095149B2 (en) | 2006-07-18 | 2024-09-17 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
WO2009132091A3 (en) * | 2008-04-23 | 2010-07-22 | Enteromedics, Inc. | Antenna arrangements for implantable therapy device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69624300T2 (en) | antenna | |
EP0952625B1 (en) | Antenna for several radio communications services | |
DE69732975T2 (en) | SMALL ANTENNA FOR PORTABLE RADIO | |
DE69924104T2 (en) | Asymmetric dipole antenna arrangement | |
EP1195845B1 (en) | Miniaturised microwave antenna | |
DE102005060648B4 (en) | Antenna device with radiation characteristics suitable for ultra wide band communication | |
DE60109608T2 (en) | ANTENNA AND RADIO UNIT WITH ANY SUCH ANTENNA | |
DE102005008063B4 (en) | antenna | |
DE69723093T2 (en) | RADIO COMMUNICATION DEVICE | |
DE69608779T2 (en) | PRINTED ANTENNA | |
DE60211316T2 (en) | ANTENNA ARRANGEMENT | |
EP0965152B1 (en) | Resonant antenna | |
DE102005047418B4 (en) | Multi-band antenna device, wireless data transmission device and radio frequency chip | |
DE10205358A1 (en) | Meandering dual band antenna | |
DE102005015561A1 (en) | Broadband internal antenna for mobile communication terminal, has radiator with conductive stripline through which current flows to form current paths in different directions to set certain broadband using electromagnetic coupling | |
EP3382795B1 (en) | Antenna for receiving circular polarised satellite radio signals for satellite navigation on a vehicle | |
EP0616734A1 (en) | Aerial arrangement, especially for communications terminals. | |
DE60128700T2 (en) | WIRELESS RADIO | |
EP1955406B1 (en) | Multiband omnidirectional antenna | |
EP3244483A1 (en) | Screened casing for use in hf applications | |
EP3108535B1 (en) | Multi-range antenna for a receiver and/or transmitter device for mobile use | |
DE10292326T5 (en) | Antenna device and wireless device using them | |
DE102004045707A1 (en) | antenna | |
DE60033140T2 (en) | Multi-frequency band antenna | |
WO2000008712A1 (en) | Multiband antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |