Nothing Special   »   [go: up one dir, main page]

WO2000053654A1 - Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same - Google Patents

Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same Download PDF

Info

Publication number
WO2000053654A1
WO2000053654A1 PCT/JP2000/001462 JP0001462W WO0053654A1 WO 2000053654 A1 WO2000053654 A1 WO 2000053654A1 JP 0001462 W JP0001462 W JP 0001462W WO 0053654 A1 WO0053654 A1 WO 0053654A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
viscosity
amine compound
composition according
Prior art date
Application number
PCT/JP2000/001462
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiya Kamae
Hiroki Oosedo
Shunsaku Noda
Shinji Kouchi
Ryuji Sawaoka
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to US09/700,180 priority Critical patent/US6410127B1/en
Priority to AU29411/00A priority patent/AU2941100A/en
Priority to JP2000604089A priority patent/JP4719976B2/en
Priority to DE60013527T priority patent/DE60013527T2/en
Priority to EP00907993A priority patent/EP1094087B1/en
Publication of WO2000053654A1 publication Critical patent/WO2000053654A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines

Definitions

  • the present invention relates to an epoxy resin composition, an epoxy resin composition for a fiber-reinforced composite material, and a fiber-reinforced composite material having the same. More specifically, the fiber reinforced composite material obtained after curing has low viscosity and easy handling at the time of impregnation into the reinforcing fiber, and has excellent mechanical properties such as heat resistance and compressive strength.
  • the present invention relates to an epoxy resin composition for a composite material and a fiber-reinforced composite material obtained therefrom.
  • Fiber reinforced composite materials composed of reinforced fibers and a matrix resin are lightweight and have excellent mechanical properties, and are therefore widely used in aerospace, sports, and general industrial fields. .
  • Thermosetting resin is mainly used as the matrix resin of the fiber-reinforced composite material.
  • epoxy resins having excellent heat resistance, elastic modulus, chemical resistance and small curing shrinkage are most often used.
  • the RTM method is a method in which a preform made of reinforcing fibers is placed in a mold, a resin is injected into the mold to impregnate the preform, and then the resin is cured to obtain a molded product.
  • Resins for the RTM method must have low viscosity to facilitate impregnation into preforms. It is necessary. If the viscosity of the resin is high, it takes a long time to inject, and the productivity may be low, or an unimpregnated portion may be formed in the obtained fiber-reinforced composite material.
  • a method of lowering the viscosity of the resin by raising the temperature of the resin can also be adopted.However, in this case, it is necessary to heat the entire mold, especially when molding a large member, which requires equipment and equipment. There is a significant disadvantage in terms of energy requirements. In addition, the curing reaction may progress due to heat during the injection, and the viscosity of the resin may increase. Therefore, a resin that does not require heating and has a sufficiently low viscosity near room temperature is strongly desired.
  • Epoxy resin is frequently used as the thermosetting resin used in the RTM method.
  • an unsaturated polyester resin, a burester resin, a fuanol resin, or the like is used as a thermosetting resin.
  • Many of these unsaturated polyester resins, butyl ester resins, and fu ⁇ ol resins have low viscosity at around room temperature, and have excellent workability of resin injection at around room temperature, but the resulting fiber-reinforced composite material has heat resistance and mechanical properties. It is desirable to use an epoxy resin from the viewpoints of achieving excellent heat resistance and reducing polymerization shrinkage during the curing reaction.
  • the epoxy resin obtained is a fiber-reinforced composite material that is excellent in heat resistance and mechanical properties but has high viscosity, so that the resin injection workability at room temperature is poor, or the viscosity at room temperature is low. Low heat resistance and excellent pouring workability, but the resulting fiber reinforced composite material lacks heat resistance or mechanical properties or only one of them, and molded products require excellent heat resistance and mechanical properties In applications, the epoxy resin had to be heated and used for the RTM method.
  • Japanese Patent Application Laid-Open No. Hei 6-32 9763 discloses an epoxy resin composition in which epoxy resin is blended with getyl toluenediamine as a curing agent.
  • an epoxy resin composition of the present invention has the following constitution. That is, an aromatic epoxy resin having two or more functional groups, an aromatic amine compound, and Is an epoxy resin composition containing an alicyclic amine compound, which comprises at 25 ° C. a main agent composed of the epoxy resin and the aromatic amine compound and / or the alicyclic amine compound. 5 minutes after mixing with the curing agent, the viscosity at 25 ° C is 1 to: L 500 mPa ⁇ s, and T c, tc satisfying the following formula (1) An epoxy resin composition characterized in that Tg is present.
  • T c Maximum temperature in the curing process (° C) (60 ⁇ T c ⁇ 200)
  • An epoxy resin composition in which an aromatic amine compound and / or an alicyclic amine compound is blended with an epoxy resin can provide an epoxy resin composition at a temperature near room temperature, that is, the present invention.
  • an epoxy resin composition in which an aromatic amine compound and / or an alicyclic amine compound is blended with an epoxy resin
  • the present invention can provide an epoxy resin composition at a temperature near room temperature, that is, the present invention.
  • the workability of resin injection at around 25 ° C and the impregnation into the reinforcing fibers have been greatly improved, and the resulting fiber-reinforced composite material has both excellent heat resistance and mechanical properties. It has been found that the present invention has been made.
  • the epoxy resin composition of the present invention comprises an aromatic epoxy resin having two or more functionalities.
  • “functional” in the bifunctional means an epoxy group.
  • monomers or oligomers before undergoing a polymerization or curing reaction are also referred to as “epoxy resins”.
  • an epoxy resin composition in which elements required for polymerization or curing reaction are mixed is referred to as an “epoxy resin composition”, and a polymerized or cured reaction is referred to as “epoxy resin cured product” (or “resin Cured product "or” cured product "or cured product of epoxy resin composition).
  • aromatic epoxy resin means an epoxy resin having an aromatic ring in a molecule.
  • the main agent and the curing agent have a viscosity at 25 ° C of 1 to 300 m, respectively, from the viewpoint of improving the injection workability, the impregnation property, and the mixing property between the main agent and the curing agent. It is good to be in the range of Pa ⁇ s, preferably:! 2200 mPa as, more preferably l l100 mPa ⁇ s.
  • the viscosity of the main agent at 25 ° C. when the viscosity of the main agent at 25 ° C. is in the range of 2000 to 300 mPas, the viscosity of the curing agent at 25 ° C. is 1 to 500 m It is preferably in the range of Pa ⁇ s.
  • the viscosity of the main agent at 25 ° C. is in the range of 100 to 200 mPa ⁇ s
  • the viscosity of the curing agent at 25 ° C. is 1 to: 100 ° m It is preferably in the range of P a ⁇ s.
  • the viscosity of the main agent at 25 C is in the range of 1 to 100 mPas
  • the viscosity of the curing agent at 25 ° C is in the range of 1 to 3 OOOmPas. Preferably it is.
  • step cure method After the temperature reaches (° C), the temperature is kept constant for t c (minutes), and then the temperature is lowered, so-called step cure method.
  • the maximum temperature Tc is in the range of 60 to 200 ° C. in the process of curing the epoxy resin composition.
  • the time tc for keeping the maximum temperature constant is in the range of 1 to 120 minutes.
  • the glass transition temperature Tg of the cured product of the epoxy resin composition is measured from the temperature of Tc (° C.) to room temperature and then measured by the method described in Examples.
  • the heat resistance of the composite material is affected by the glass transition temperature Tg of the cured product of the epoxy resin composition, which is a matrix resin.
  • the glass transition temperature Tg is generally determined by the maximum temperature Tc (° C ) And the time to keep the maximum temperature constant tc (minutes).
  • the glass transition temperature Tg of the resin composition as the matrix resin is higher than the maximum temperature Tc. It must be higher than 20 ° C. That is, it is necessary that T c, t c, and T g satisfy the following equation (1).
  • T g T c + 20 (1) Also, when the maximum temperature T c is in the high temperature range of 90 ° C or more and 200 ° C or less, T c that satisfies the following equation (1 '): tc and Tg need to be present.
  • the tensile modulus E of the material plate is preferably in the range of 3.2 to 5 GPa, and more preferably in the range of 3.4 to 4.8 GPa. If it is less than 3.2 GPa, the compressive strength of the composite material may be insufficient, and if it exceeds 5 GPa, the toughness of the composite material may be insufficient.
  • the main agent and a curing agent to be described later it is preferable to mix the main agent and a curing agent to be described later to form an epoxy resin composition before use, and then inject the composition to produce a molded article such as a composite material. is there.
  • the epoxy resin composition of the present invention is obtained by mixing the main agent and the curing agent, and then viscosity of the epoxy resin composition at 25 ° C after 5 minutes at 25 ° C (hereinafter abbreviated as 5 ).
  • 5 The epoxy resin composition of the present invention is obtained by mixing the main agent and the curing agent, and then viscosity of the epoxy resin composition at 25 ° C after 5 minutes at 25 ° C (hereinafter abbreviated as 5 ).
  • 5 should be in the range of 1-1500 mPas, preferably 1 1100 mPa as, more preferably 100 7700 mPa ⁇ s.
  • the epoxy resin composition according to the present invention is obtained by mixing the main agent and the curing agent, and then mixing the epoxy resin composition at 25 ° C. at 25 ° C. at 25 ° C. in a temperature environment of 25 ° C. Viscosity in s units (hereinafter abbreviated as r? 6 ) Force It is preferable to satisfy the following expression (2).
  • the viscosity of the epoxy resin composition at 25 ° C. (hereinafter, abbreviated as 12 ) at 125 ° C. in a temperature environment of 25 ° C. is 1 to 150 mP. a 'in the range of S, particularly preferably under 2 5 ° C temperature environment, the viscosity of the epoxy resin composition of 2 5 ° C at the time of elapse 2 4 0 minutes (hereinafter, eta 24. hereinafter), 1 11500 mPa ⁇ s.
  • the viscosity of the epoxy resin composition at 25 ° C. at the time when 240 minutes have passed in a temperature environment of 25 ° C. 24 . Is preferably in the range of l to 100 mPa ⁇ s, and more preferably in the range of 100 to 700 mPa ⁇ s.
  • the epoxy resin composition according to the present invention comprises: What? 77 6 divided by 7. [7] preferably satisfies the following expression (3), and more preferably 12 . Divide by 5 or 12 7) 5 is in the range of 1 to 3, and particularly preferably 7) 24 . Divided by ⁇ 5 r; 24 . / ⁇ 5 is in the range of 1-3. If the ratio is out of this range, the workability of injecting the resin and the impregnation into the reinforcing fibers may be reduced.
  • the bifunctional or higher aromatic epoxy resin used in the present invention is an epoxy resin having an aromatic ring and having two or more epoxy groups in one molecule. Examples of the aromatic epoxy resin having two epoxy groups include the following.
  • bisphenol ⁇ ⁇ ⁇ type epoxy resin obtained from bisphenol ⁇ bisphenol F type epoxy resin obtained from bisphenol F
  • bisphenol S type epoxy resin obtained from bisphenol S bisphenol S
  • Bisphenol type epoxy resin such as tetrabromobisphenol A type epoxy resin.
  • bisphenol F-type epoxy resins include Epicote 806 (epoxy equivalent of 160 to 170), Epikote 807 (epoxy equivalent of 160 to 175), and Epicoat E4 0 2 P (epoxy equivalent 6 10), epicoat E 4 0 3 P (epoxy equivalent 8 0 0), epi coat E 4 0 4 P (epoxy equivalent 9 3 0), epicoat E 4 0 0 7 P (epoxy equivalent 2 060), epicoat E 4 0 9 P (epoxy equivalent 3 0 3 0), epicoat E 4 0 10 P (epoxy equivalent 44.0) ( Epiclon 8330 (registered trademark, epoxy equivalent 170-190, manufactured by Dainippon Ink and Chemicals, Inc.), Epototo YD F-20 0 1 (Epoxy equivalent of 450 to 500), report YD F—200 4 (Epoxy equivalent of 900 to 100) 0) (Registered trademark, manufactured by Toto Kasei Co., Ltd.).
  • bisphenol S-type epoxy resin examples include Denacol EX-251 (registered trademark, manufactured by Nagase Kasei Kogyo, epoxy equivalent: 189). Is a commercial product of Te trub Romo bisphenol A type epoxy resin, Epiko preparative 5 0 5 0 (registered trademark, produced by Yuka Shell Epoxy Ltd., epoxy equivalent 3 8 0-4 1 0), Epikuro down 1 5 2 ( Epoxy equivalent of 340 to 380, manufactured by Dainippon Ink and Chemicals, SMIE POXY ESB—400 T (manufactured by Sumitomo Chemical, epoxy equivalent of 380 to 420), potato YBD—36 0 (manufactured by Toto Kasei, epoxy equivalent: 350 to 370).
  • resorcin diglycidyl ether Denacol EX-201 (registered trademark, manufactured by Nagase Kasei Kogyo Co., Ltd., epoxy equivalent 118)
  • hydroquinone diglycidyl ether Denacol EX-203 (registered trademark, Epoxy equivalent 1-12), manufactured by Nagase Kasei Kogyo Co., Ltd., Epiclone HP—4032H
  • a diglycidyl ether of 1,6-dihydroxynaphthalene registered trademark, manufactured by Dainippon Ink and Chemicals, epoxy equivalent 2) 50
  • 9,9-bis (4-hydroxyphenyl) fluorene diglycidyl ether Ebon HPT Resin 107 (registered trademark, manufactured by Shell Co., epoxy equivalent 250-260), etc. Can be mentioned.
  • diglycidyl dilinyl GAN registered trademark, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 115 to 135
  • glycidyl ester phthalic acid diglycidyl ester terephthalic acid diglycidyl ester And the like.
  • the amount of trifunctional or more aromatic epoxy resins in the total epoxy resin good Mashiku 5 0-1 0 0 wt% (more preferably 6 0-1 0 0 wt. / 0, rather more preferably 7 0: 1 0 0 weight 0/0).
  • a trifunctional aromatic epoxy resin represented by the chemical structural formula (I) is preferably compounded.
  • the epoxy resin represented by the chemical structural formula (I) may be used alone or in combination of two or more.
  • a tetrafunctional aromatic epoxy resin represented by the chemical structural formula ( ⁇ ) can be blended.
  • R 2 is a hydrogen atom or an alkyl group having about 1 to 4 carbon atoms.
  • Commercially available epoxy resins include TE TRAD-X (registered trademark, manufactured by Mitsubishi Gas Chemical Company, Inc.) , N, N ', ⁇ '-tetraglycidyl-m-xylylenediamine, viscosity at 25 ° C temperature environment: 160 to 250 mPas can be used. .
  • the epoxy resin represented by the chemical formula (II) may be used alone or may be mixed with the epoxy resin represented by the chemical formula (I).
  • the viscosity at 25 ° C. of the trifunctional or higher-functional aromatic epoxy resin is preferably in the range of 1 to 300 mPas, more preferably 1 to 200 mPas, Especially preferably, it is in the range of 1 to LOO OmPa's. If the viscosity exceeds 300 mPa ⁇ s, the viscosity of the epoxy resin composition increases, and the impregnating property of the reinforcing fibers is reduced.
  • the upper limit of the functional number of the aromatic epoxy resin is not particularly limited, but the matrix resin in the composite material becomes brittle because the cross-linking density is too high. Lack of toughness can be undesirable.
  • the weight average value of the functional number of the aromatic epoxy resin is preferably 2 to 6 (more preferably 2 to 5, and further preferably 2 to 4).
  • the present invention as another method for obtaining more excellent heat resistance and mechanical properties by using a composite material, it is conceivable to connect the cross-linking points of the matrix resin with a rigid skeleton.
  • a low molecular weight (preferably 100 to 500) epoxy resin is used.
  • the low molecular weight epoxy resin having a rigid skeleton include biphenyl type epoxy resins.
  • Epicort YX400 registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., 4,4, dihydroxy 3,3 ', 5,5'-tetramethylbiphenyldiglycidyl ether
  • Epikoto YX400H registered trademark, manufactured by Yuka Shell Epoxy Co., 4,4'-dihydroxy 3,3 ', 5,5, -tetramethylbiphenyldiglycidyl ether
  • a low-viscosity epoxy resin may be blended in addition to the bifunctional or higher aromatic epoxy resin.
  • a bi- or higher-functional daricidyl ether type aliphatic epoxy resin can be used.
  • the bifunctional or higher functional glycidyl ether type aliphatic epoxy resin preferably satisfies the following formula (4) in order to enhance mechanical properties such as heat resistance and compressive strength of the composite material. It is more preferable to satisfy (4 ′).
  • the bicyclic or higher functional dalicidyl ether-type aliphatic epoxy resin forms a ring in the molecular chain that connects any two of the dalicidyloxy groups in the molecule. Indicates the number of atoms in the molecular chain where the number of atoms that do not belong is the largest.
  • is an index of the flexibility of the molecular chain. As ⁇ increases, the molecular chains become more flexible, and the network structure of the matrix resin in the composite material becomes more flexible, resulting in a lack of mechanical properties such as heat resistance and compressive strength of the composite material. There is. The method for obtaining the molecular weight from the molecular structure of the epoxy resin will be described in detail below.
  • the ⁇ is determined using, as an example, a bifunctional or higher-functional dalicydyl ether-type aliphatic epoxy resin represented by the following chemical structural formula.
  • is 2. Further, ⁇ is determined using a glycidyl ether type aliphatic epoxy resin having two or more functional groups represented by the following chemical structural formula as an example.
  • the number of atoms that do not belong to the ring is two, and in the third case, the number of atoms that do not belong to the ring is three. Therefore, ⁇ is 3.
  • bifunctional or higher-functional daricidyl ether type aliphatic epoxy resins may be used alone or in combination of two or more.
  • the compounding amount of the bifunctional or higher-functional daricidyl ether-type aliphatic epoxy resin is preferably 1 to 50% by weight based on 100% by weight of the total epoxy resin. (More preferably 1 to 30 and still more preferably 1 to 10). If it exceeds 50% by weight, mechanical properties such as heat resistance and compressive strength of the composite material may be insufficient.
  • the bifunctional or higher glycidyl ether type aliphatic epoxy resin is generally described above. It has a low viscosity as compared with such an aromatic epoxy resin.
  • the bifunctional or higher-functional daricidyl ether type aliphatic epoxy resin has a viscosity in a temperature environment of 25 ° C. of preferably 1 to 500 mPas, and preferably 1 to 300 mP. a ⁇ s, more preferably in the range of l to 100 mPas ⁇ s. If the viscosity exceeds 500 mPa ⁇ s, the viscosity of the epoxy resin composition may increase, and the impregnating property of the reinforcing fibers may decrease.
  • the upper limit of the functional number of the bifunctional or higher-functional daricidyl ether-type aliphatic epoxy resin is not particularly limited, but the matrix resin in the composite material has an excessively high crosslinking density. It may become brittle, resulting in a lack of toughness in the composite material, which may be undesirable.
  • the weight average value of the functional number of the glycidyl ether type aliphatic epoxy resin is preferably 2 to 6 (more preferably 2 to 5, and further preferably 2 to 4).
  • the epoxy resin composition of the present invention comprises an aromatic amine compound and / or an alicyclic amine compound. These amine compounds are curing agents, and react by mixing with an epoxy resin as described above to give a cured product.
  • the aromatic amine compound is a primary, secondary or tertiary amine having an aromatic ring, preferably a primary diamine having 6 to 25 (more preferably 6 to 17) carbon atoms. It is a family.
  • the alicyclic amide compound is a primary, secondary or tertiary amide having an alicyclic ring, preferably having 6 to 25 (more preferably 6 to 15) carbon atoms. Primary diamine.
  • the aromatic amine compound When the aromatic amine compound is blended, the aromatic amine compound preferably has a viscosity in a temperature environment of 25 ° C. in the range of 1 to 300 mPas, more preferably. Ha :! 2200 mPa ⁇ s, particularly preferably l l100 mPa ⁇ s. If the viscosity exceeds 300 mPa ⁇ s, the viscosity of the epoxy resin composition becomes high, and the impregnation into the reinforcing fibers may be reduced.
  • aromatic amine compounds include Epicure W (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., 2,4_Jetyl-6-Methyl-1m-phenylenediamine and 4,6-Jetyl-2-methyl-m —Mixed with phenylenediamine, viscosity at 25 ° C.
  • the alicyclic amide compound When an alicyclic amine compound is blended, the alicyclic amide compound preferably has a viscosity in a temperature environment of 25 ° C. in the range of 1 to 500 mPas, and is preferably used. Is preferably in the range of 1 to 300 mPa ⁇ s. When the viscosity exceeds 500 mPa ⁇ s, the viscosity of the epoxy resin composition increases, and the impregnating property to the reinforcing fibers may decrease. Further, the alicyclic amine compound preferably satisfies the following formula (5), and preferably satisfies the following formula (5 '), in order to enhance the mechanical properties such as heat resistance and compressive strength of the composite material. Is more preferred.
  • ; 3 is the number of atoms not belonging to a ring in the molecular chain formed by connecting any two of the amino groups in the molecule of the alicyclic amine compound, and Represents a number.
  • i3 is an index of the flexibility of the molecular chain.
  • the total / 3 value is calculated by the molar average.
  • an amino group in the molecule of the alicyclic amine compound is bonded to a secondary carbon or a tertiary carbon.
  • a secondary carbon or a tertiary carbon is bonded to a secondary carbon or a tertiary carbon.
  • the number of amino groups bonded to the secondary or tertiary carbon is preferably at least 50% of the number of amino groups of the total alicyclic amine compound, more preferably Is more than 70%, more preferable Or 90% or more.
  • an amine compound other than the aromatic amine compound and the alicyclic amine compound may be blended as a curing agent.
  • the active hydrogen of the amine compound contained in the epoxy resin composition (active hydrogen is a highly reactive hydrogen atom that is bonded to nitrogen, oxygen, sulfur, etc. in an organic compound, and has a large cross-linking effect.
  • active hydrogen is a highly reactive hydrogen atom that is bonded to nitrogen, oxygen, sulfur, etc. in an organic compound, and has a large cross-linking effect.
  • Preferably plays a role of 4 to 24. More preferably, it is 4 to 16, more preferably 4 to 8. If the value falls below the lower limit of the above numerical range, the crosslink density of the matrix resin in the composite material decreases, so that the heat resistance and the elastic modulus decrease, and further, the heat resistance, compressive strength, etc. of the composite material Tends to decrease mechanical properties.
  • the matrix resin in the composite material becomes brittle because the crosslink density is too high, and as a result, the toughness of the composite material tends to be insufficient.
  • the active hydrogen number is calculated by weight average. Put out.
  • the amine compound having an active hydrogen number of 4 or more preferably accounts for 50 to 100% of all amine compounds.
  • the content of the aromatic amine compound and the Z or alicyclic amine compound in the total amine compound is 50 to 100% by weight.
  • the main agent and the agent are mixed at a mixing ratio determined so as to satisfy the following formula (6).
  • R represents the weight ratio of the curing agent to the main agent
  • Re represents the ratio of the number of moles of epoxy groups per g of the main agent to the number of moles of active hydrogen per g of the curing agent.
  • an appropriate curing accelerator can be blended for the purpose of lowering the maximum temperature Tc (° C) and shortening the maximum temperature holding time tc (minute).
  • Known curing accelerators can be used. Specifically, sulfonic acid esters as disclosed in U.S. Pat. No. 5,888,877, and sulfonium salts as disclosed in U.S. Pat. No. 4,554,432 are preferably used.
  • a coloring agent, a surfactant, a flame retardant, and the like can be appropriately blended according to various purposes. However, it is preferable that the ratio of the epoxy resin (including the curing agent) occupied in the resin matrix (excluding reinforcing fibers, granular, and short-fiber filters) is 80% by weight or more.
  • the epoxy resin composition according to the present invention is suitably used for producing a composite material using the RTM method.
  • VARTM Vacuum-Assisted RTM
  • VIMP Very Infusion Molding Process
  • TERTM Thermal-Expansion RTM
  • RARTM Rapider-Assisted RTM
  • RIRM Resin Injection Recirculation Molding
  • CRTM Continuous RTM
  • CI RTM Co-Injection Resin
  • SCR IMP Seeman's Composite Resin Infusion Molding Process
  • It can also be suitably used for a molding method similar to the method.
  • Preforms used in the RTM method include carbon fiber, glass fiber, and aramide fiber. Any reinforcing fibers processed into mats, wovens, knits, braids, unidirectional sheets, etc. are used. Particularly, in order to obtain a lightweight and high-strength member, carbon fiber is preferably used.
  • the fiber weight% of the reinforcing fibers is preferably from 30 to 85.
  • the epoxy resin composition according to the present invention can be suitably used for a method of impregnating a reinforcing fiber with a liquid epoxy resin at around room temperature, specifically, a handle, up method, a filament binding method, a pultrusion method and the like. it can.
  • a handle, up method, a filament binding method, a pultrusion method and the like can be suitably used for a method of impregnating a reinforcing fiber with a liquid epoxy resin at around room temperature, specifically, a handle, up method, a filament binding method, a pultrusion method and the like. it can.
  • the measurement was performed for each of the main agent and the curing agent under a temperature environment of 25 ° C.
  • 100 g of the epoxy resin composition obtained by mixing the main agent and the curing agent (by confirming that they are uniformly dispersed by visual observation, stirring with a spatula until a while has passed, and for a total of about 3 minutes).
  • E-type viscometer ELD type
  • EHD type E-type viscometer
  • the rotor of the E-type viscometer had an angle of 1 ° 34 ′ and a radius of 24 mm.
  • the epoxy resin composition obtained by mixing the epoxy resin and the curing agent is poured into a mold having a plate-shaped cavity with a thickness of 2 mm, and cured using an oven under the prescribed curing conditions. Then, a resin cured product plate having a thickness of 2 mm was obtained.
  • the glass transition temperature Tg of the cured resin sheet obtained by the above method B was measured by the DMA method in accordance with S ACMA S RM 18 R-94. Here, the measurement was performed at a heating rate of 50 111 in and a measurement frequency of 1 Hz using a dynamic analyzer RDAII type manufactured by Rheometrics. D. Tensile modulus E
  • the resin cured product plate obtained by the method B above is compact in accordance with JIS K 7 13
  • a No. 1 (1 2) test piece was prepared and measured with a Tensilon at a temperature of 23 ° C to obtain a stress-strain curve.
  • Composite materials were prepared by RTM method.
  • the mold used was an upper mold and a lower mold having cavities of 200 mm in length, 200 mm in width, and 2.0 mm in height.
  • the pre-form, vertical 1 9 0 mm, lateral 1 9 0 mm carbon fiber fabric (Toray Industries Co., Ltd., model number: C07 3 7 3, 1 9 3 g / m 2) and the fiber direction in the same direction A stack of 10 sheets was used.
  • the 0 ° compressive strength of the flat composite material obtained by the method E was measured according to the method A in JIS K7706.
  • the mixing ratio (the ratio of the weight of the main agent and the weight of the curing agent, hereinafter abbreviated as mixing ratio R) was set to 0.464.
  • a resin cured product plate was prepared by the following procedure.
  • the 'laser transition temperature T g and the tensile modulus E were measured.
  • a resin cured product plate was prepared by the following procedure.
  • the glass transition temperature T g and the tensile modulus E were measured.
  • the mixing ratio R was 0.384.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • Example 4 A mixture of 70 parts by weight of Epicote 630 and 30 parts by weight of Heroxy 107 as an epoxy resin and Epicure W as a curing agent were used, and their viscosities and viscosity of the resin composition after mixing were 5 When, . , ⁇ ) r 24 . Was measured. Here, the mixing ratio R was 0.409.
  • a cured resin plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • the mixing ratio R was 0.448.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • a resin cured product plate was prepared in the same procedure as in Example 2.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • the mixing ratio R was 0.592.
  • a resin cured product plate was prepared by the following procedure.
  • the glass transition temperature T g and the tensile modulus E were measured.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • a mixture of 70 parts by weight of epoxy 630 and 30 parts by weight of GAN as an epoxy resin and epicure W as a curing agent were used, and the respective viscosities and viscosities of the resin composition after mixing were 7? 5, 7? 6. , ⁇ 24 . Was measured.
  • the mixing ratio R was 0.433.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • the mixing ratio R was 0.572.
  • a resin cured product plate was prepared in the same procedure as in Example 2.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • a mixture of 70 parts by weight of Epicote 630 and 30 parts by weight of Denacol EX 721 as epoxy resin, using Epicure W as a curing agent, the respective viscosities, and the resin composition after mixing And the viscosity of the 77! 77. was measured. here, The mixing ratio R was 0.412.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • a mixture of 90 parts by weight of Epoxy 828 and 10 parts by weight of Heroxy 68 as an epoxy resin, and isophorone diamine as a curing agent were used, and the respective viscosities and the viscosity of the resin composition after mixing were 5 ,. , ⁇ . Was measured.
  • the mixing ratio R was 0.232.
  • a resin cured product plate was prepared in the same procedure as in Example 7.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • the viscosities used were the viscosities of the resin composition after mixing 75 and 6, respectively . , 12 . , 77 24 . Was measured.
  • the mixing ratio R was 0.358.
  • a resin cured product plate was prepared in the same procedure as in Example 7.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • Example 15 Using the same epoxy resin composition as in Example 6, a composite material was prepared in the following procedure.
  • Epoxy resin 630 as an epoxy resin
  • the mixing ratio R was 0.621.
  • a resin cured product plate was prepared in the same procedure as in Example 2.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • Epiko preparative 8 2 8 using Epikyua W as a curing agent, a viscosity 7? 5 of the respective viscosity, the resin composition after mixing, 77, 24. was measured.
  • the mixing ratio R was 0.283.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • Example 4 a resin cured product plate was prepared in the same procedure as in Example 2. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured. (Comparative Example 4)
  • Epoxy resin as epoxy resin As epoxy resin, Jeffamine D23 as curing agent
  • the mixing ratio R was 0.379.
  • a resin cured product plate was prepared in the same procedure as in Example 2.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • the mixing ratio R was 0.412.
  • a resin cured product plate was prepared in the same procedure as in Example 1.
  • the glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
  • the obtained composite material had a portion not impregnated with the resin at the end, and the quality was poor.
  • Example 10 Glass transition point T g (° C) 227 230 203 192 210 Tensile modulus E (GP a) 3.6 3.6 3.3 3.5 3.5 Table 2 Example 6 Example 7 Example 8 Example 9 Example 10
  • the epoxy resin composition according to the present invention has a low viscosity near room temperature and has excellent impregnation into reinforcing fibers. Further, thereby, a composite material having excellent mechanical properties such as heat resistance and compressive strength can be produced.
  • Composite materials obtained from the epoxy resin composition according to the present invention include aircraft members, satellite members, automobile members, bicycle members, railway vehicle members, ship members, building members, flywheels, pressure vessels, windmill blades, oil risers, It can be suitably used for sports equipment. Particularly, it can be suitably used for aircraft members and artificial satellite members requiring heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

An epoxy resin composition which has a low viscosity and is excellent in infiltration into reinforcing fibers; and a composite having excellent mechanical properties. The composition comprises a polyfunctional aromatic epoxy resin and, compounded therewith, an aromatic amine compound and/or an alicyclic amine compound. It is characterized by having a viscosity at 25°C of 1 to 1,500 mPa. s as measured at 5 minutes after a main ingredient comprising the epoxy resin is mixed at 25°C with a hardener comprising the amine compound(s) and by satisfying the following equation (1): Tg ≥Tc + 20 - k x (Tc - 90) wherein k is 0 when 60≤Tc∫90, and is 0.35 when 90≤Tc≤200; Tc is the maximum temperature (°C) during curing (60≤Tc≤200); tc is the retention time (min) at the maximum temperature (1≤tc≤120); and Tg is the glass transition temperature of the epoxy resin composition at the time when the period tc (min) has passed at Tc (°C).

Description

明細書 エポキシ樹脂組成物及び繊維強化複合材料用エポキシ樹脂組成物並びにそれを有 してなる繊維強化複合材料 技術分野 本発明はエポキシ樹脂組成物に関するものである。 さらに詳しくは、 粘度が低 く強化繊維への含浸時の取り扱い性が容易であるとともに、 硬化後に得られる繊 維強化複合材料が、 優れた耐熱性と圧縮強度などの機械物性を有する繊維強化複 合材料用エポキシ樹脂組成物、 および、 これから得た繊維強化複合材料に関する ものである。 背景技術 強化繊維とマ ト リ ックス樹脂とからなる繊維強化複合材料は、 軽量かつ機械物 性に優れるため、 航空宇宙分野をはじめ、 スポーツ、 一般産業分野などに広く用 途が桩大されている。  Technical Field The present invention relates to an epoxy resin composition, an epoxy resin composition for a fiber-reinforced composite material, and a fiber-reinforced composite material having the same. More specifically, the fiber reinforced composite material obtained after curing has low viscosity and easy handling at the time of impregnation into the reinforcing fiber, and has excellent mechanical properties such as heat resistance and compressive strength. The present invention relates to an epoxy resin composition for a composite material and a fiber-reinforced composite material obtained therefrom. BACKGROUND ART Fiber reinforced composite materials composed of reinforced fibers and a matrix resin are lightweight and have excellent mechanical properties, and are therefore widely used in aerospace, sports, and general industrial fields. .
繊維強化複合材料のマ トリ ックス樹脂には、 主に熱硬化性樹脂が用いられる。 中でも優れた耐熱性、 弾性率、 耐薬品性を有し、 かつ硬化収縮が小さいエポキシ 樹脂が最もよく用いられる。  Thermosetting resin is mainly used as the matrix resin of the fiber-reinforced composite material. Among them, epoxy resins having excellent heat resistance, elastic modulus, chemical resistance and small curing shrinkage are most often used.
繊維強化複合材料の製造には、 プリプレダ法、 ハンドレイアップ法、 フィラメ ントワインデイ ング法、 プルトルージョン法、 R T M法 (レジン ' トランスファ 一 . モールディング法) などの各種の方式が適用される。  Various methods such as prepredder method, hand lay-up method, filament winding method, pultrusion method, RTM method (resin transfer molding method) are applied to the production of fiber-reinforced composite materials.
この内、 R T M法は、 強化繊維からなるプリ フォームを型内に入れ、 型内に樹 脂を注入してプリ フォームに含浸させ、 その後に樹脂を硬化させて成形品を得る 方法であり、 複雑な形状を有する大型の部材を短時間で成形できるという大きな 利点がある。  Of these, the RTM method is a method in which a preform made of reinforcing fibers is placed in a mold, a resin is injected into the mold to impregnate the preform, and then the resin is cured to obtain a molded product. There is a great advantage that large members having various shapes can be molded in a short time.
R T M法用の樹脂は、 プリ フォームへの含浸を容易にするため低粘度である必 要がある。 樹脂の粘度が高いと、 注入に時間を要し、 生産性が低くなつたり、 得 られる繊維強化複合材料に未含浸部が生じることがある。 R T M法においては、 樹脂の温度を上げることにより樹脂の粘度を低下させる方法も採用できるが、 こ の場合、 特に大型部材の成形においては型全体を加温する必要があり、 設備的な 面や所要エネルギーの点で大きく不利になる。 さらには注入中に熱によ り硬化反 応が進行し、 樹脂の粘度が上昇することがある。 したがって、 加温が不要で室温 付近で十分に低粘度な樹脂が強く望まれている。 Resins for the RTM method must have low viscosity to facilitate impregnation into preforms. It is necessary. If the viscosity of the resin is high, it takes a long time to inject, and the productivity may be low, or an unimpregnated portion may be formed in the obtained fiber-reinforced composite material. In the RTM method, a method of lowering the viscosity of the resin by raising the temperature of the resin can also be adopted.However, in this case, it is necessary to heat the entire mold, especially when molding a large member, which requires equipment and equipment. There is a significant disadvantage in terms of energy requirements. In addition, the curing reaction may progress due to heat during the injection, and the viscosity of the resin may increase. Therefore, a resin that does not require heating and has a sufficiently low viscosity near room temperature is strongly desired.
R T M法に用いられる熱硬化性樹脂としては、 エポキシ樹脂が繁用される。 そ の他、 R T M法には、 熱硬化性樹脂として、 不飽和ポリエステル樹脂、 ビュルェ ステル樹脂、 フユノール樹脂などが用いられる。 これら不飽和ポリエステル樹脂、 ビュルエステル樹脂、 フユノール樹脂は、 室温付近で低粘度のものが多く、 室温 付近での樹脂の注入作業性は優れるが、 得られる繊維強化複合材料を耐熱性と機 械物性に優れたものとし、 かつ硬化反応時の重合収縮を小さくする観点からはェ ポキシ樹脂を使用するのが望ましい。  Epoxy resin is frequently used as the thermosetting resin used in the RTM method. In addition, in the RTM method, an unsaturated polyester resin, a burester resin, a fuanol resin, or the like is used as a thermosetting resin. Many of these unsaturated polyester resins, butyl ester resins, and fuñol resins have low viscosity at around room temperature, and have excellent workability of resin injection at around room temperature, but the resulting fiber-reinforced composite material has heat resistance and mechanical properties. It is desirable to use an epoxy resin from the viewpoints of achieving excellent heat resistance and reducing polymerization shrinkage during the curing reaction.
しかしながら、 エポキシ樹脂は、 得られる繊維強化複合材料が、 耐熱性や機械 物性には優れるが粘度が高いために室温付近での樹脂の注入作業性が悪いもので あるか、 又は、 室温付近で粘度が低く、 注入作業性には優れるが、 得られる繊維 強化複合材料の耐熱性や機械物性が不足するか、 いずれか一方のものしかなく、 成形品に優れた耐熱性と機械物性が要求される用途では、 エポキシ樹脂を加熱し て R T M法に用いざるを得なかった。 特開平 6— 3 2 9 7 6 3号公報にはェポキ シ榭脂に、 硬化剤と してジェチルトルエンジァミンを配合したエポキシ樹脂組成 物が開示されているが、 これによれば、 依然として樹脂の粘度が高く、 室温付近 において、 樹脂の注入作業性が劣り、 さらに得られる繊維強化複合材料に樹脂の 未含浸部が生じ、 必要な機械物性が得られないといった問題があった。 発明の開示 かかる課題を解決するために、 本発明のエポキシ樹脂組成物は、 次の構成を有 する。 即ち、 2官能以上の芳香族エポキシ樹脂と、 芳香族ァミン化合物及び 又 は脂環式ァミン化合物が配合されてなるエポキシ樹脂組成物であって、 2 5°Cに おいて、 該エポキシ樹脂からなる主剤と該芳香族ァミン化合物及び 又は脂環式 ァミン化合物を含んでなる硬化剤とを混合後、 5分経過した時点での 2 5°Cにお ける粘度が 1〜: L 50 0 mP a · sの範囲にあり、 次式 ( 1 ) を満足する T c、 t c、 T gが存在することを特徴とするエポキシ樹脂組成物。 However, the epoxy resin obtained is a fiber-reinforced composite material that is excellent in heat resistance and mechanical properties but has high viscosity, so that the resin injection workability at room temperature is poor, or the viscosity at room temperature is low. Low heat resistance and excellent pouring workability, but the resulting fiber reinforced composite material lacks heat resistance or mechanical properties or only one of them, and molded products require excellent heat resistance and mechanical properties In applications, the epoxy resin had to be heated and used for the RTM method. Japanese Patent Application Laid-Open No. Hei 6-32 9763 discloses an epoxy resin composition in which epoxy resin is blended with getyl toluenediamine as a curing agent. There is still a problem that the viscosity of the resin is still high, and at around room temperature, the workability of injecting the resin is inferior, and the obtained fiber-reinforced composite material has a non-impregnated portion of the resin, thereby failing to obtain required mechanical properties. DISCLOSURE OF THE INVENTION In order to solve such a problem, an epoxy resin composition of the present invention has the following constitution. That is, an aromatic epoxy resin having two or more functional groups, an aromatic amine compound, and Is an epoxy resin composition containing an alicyclic amine compound, which comprises at 25 ° C. a main agent composed of the epoxy resin and the aromatic amine compound and / or the alicyclic amine compound. 5 minutes after mixing with the curing agent, the viscosity at 25 ° C is 1 to: L 500 mPa · s, and T c, tc satisfying the following formula (1) An epoxy resin composition characterized in that Tg is present.
T g≥T c + 2 0 - k X (T c - 9 0 ) ( 1 )  T g≥T c + 20-k X (T c-90) (1)
6 0≤T c < 9 0のとき、 k = 0、  When 6 0 ≤ T c <90, k = 0,
90≤T c≤ 2 0 0のとき、 k = 0. 3 5  When 90≤T c≤2 0 0, k = 0.35
T c : 硬化過程における最高温度 (°C) (6 0≤T c ≤ 2 0 0)  T c: Maximum temperature in the curing process (° C) (60 ≤ T c ≤ 200)
t c : 最高温度の保持時間 (分) ( 1 ≤ t c ≤ 1 2 0 )  t c: Maximum temperature holding time (min) (1 ≤ t c ≤ 1 2 0)
T g : T c (°C) において、 t c (分) 経過した時点でのエポキシ樹脂組 成物のガラス転移温度 発明を実施するための最良の形態 本発明者らは、 2官能以上の芳香族エポキシ樹脂に、 芳香族ァミン化合物及び /又は脂環式ァミン化合物が配合されてなるエポキシ樹脂組成物 (以下、 単にェ ポキシ樹脂組成物と略記) によって、 従来より も、 室温付近、 即ち、 本発明にお いては 2 5°C付近での樹脂の注入作業性と強化繊維への含浸性が大きく改善され、 得られる繊維強化複合材料についても、 優れた耐熱性と機械物性を兼ね備えたも のとなることを見出し、 本発明に至った。  T g: Tc (° C), glass transition temperature of the epoxy resin composition after elapse of tc (minutes) Best mode for carrying out the present invention An epoxy resin composition in which an aromatic amine compound and / or an alicyclic amine compound is blended with an epoxy resin (hereinafter simply referred to as an epoxy resin composition) can provide an epoxy resin composition at a temperature near room temperature, that is, the present invention. In this case, the workability of resin injection at around 25 ° C and the impregnation into the reinforcing fibers have been greatly improved, and the resulting fiber-reinforced composite material has both excellent heat resistance and mechanical properties. It has been found that the present invention has been made.
本発明のエポキシ樹脂組成物は、 2官能以上の芳香族エポキシ樹脂が配合され てなるものである。 ここで 2官能における 「官能」 とは、 エポキシ基を意味する。 なお、 本発明においては、 ポリマー化、 硬化反応する以前のモノマー乃至はオリ ゴマーも 「エポキシ樹脂」 と呼称する。 また、 ポリマー化乃至は硬化反応に必要 な要素が混合された状態のものを 「エポキシ樹脂組成物」 、 ポリマー化乃至は硬 化反応がなされたものを 「エポキシ樹脂硬化物」 (又は、 「樹脂硬化物」 、 ある いは、 「硬化物」 、 もしくは、 エポキシ樹脂組成物の硬化物) と呼ぶ。 また、 芳 香族エポキシ樹脂とは、 芳香環を分子内に有するエポキシ樹脂を意味する。 この 2官能以上の芳香族エポキシ樹脂は、 硬化剤と反応して架橋構造を形成し、 繊維 強化複合材料 (以下、 単に複合材料と略記) に優れた耐熱性と機械物性を付与す るために配合するものである。 The epoxy resin composition of the present invention comprises an aromatic epoxy resin having two or more functionalities. Here, “functional” in the bifunctional means an epoxy group. In the present invention, monomers or oligomers before undergoing a polymerization or curing reaction are also referred to as “epoxy resins”. In addition, an epoxy resin composition in which elements required for polymerization or curing reaction are mixed is referred to as an “epoxy resin composition”, and a polymerized or cured reaction is referred to as “epoxy resin cured product” (or “resin Cured product "or" cured product "or cured product of epoxy resin composition). In addition, aromatic epoxy resin means an epoxy resin having an aromatic ring in a molecule. this A bifunctional or higher aromatic epoxy resin reacts with a curing agent to form a crosslinked structure, and is compounded to give fiber-reinforced composite materials (hereinafter simply abbreviated as composite materials) excellent heat resistance and mechanical properties. Is what you do.
強化繊維への含浸性を高めるためには、 室温付近におけるェポキシ樹脂組成物 の粘度が十分低いことが必要である。 しかし粘度が低過ぎると、 得られる複合材 料^形品に未含浸部ゃボイ ドが生じる原因となる。 主剤と硬化剤は、 注入作業性、 含浸性、 及び主剤と硬化剤との混合性を高める観点から、 主剤と硬化剤それぞれ の 2 5 °Cにおける粘度は、 いずれも 1〜 3 0 0 0 m P a · sの範囲にあるのが良 く、 好ましくは:!〜 2 0 0 0 m P a · s、 より好ましくは l〜 1 0 0 0 m P a · sの範囲にあるのが良い。  In order to enhance the impregnation property of the reinforcing fibers, it is necessary that the viscosity of the epoxy resin composition around room temperature is sufficiently low. However, if the viscosity is too low, the resulting composite material may cause voids in the unimpregnated part. The main agent and the curing agent have a viscosity at 25 ° C of 1 to 300 m, respectively, from the viewpoint of improving the injection workability, the impregnation property, and the mixing property between the main agent and the curing agent. It is good to be in the range of Pa · s, preferably:! 2200 mPa as, more preferably l l100 mPa · s.
本発明においては、 主剤の 2 5°Cにおける粘度が 2 0 0 0〜 3 0 0 0 m P a · sの範囲にあるとき、 硬化剤の 2 5 °Cにおける粘度が 1〜 5 0 0 m P a · sの範 囲にあるのが好ましい。 また、 主剤の 2 5 °Cにおける粘度が 1 0 0 0〜 2 0 0 0 m P a · sの範囲にあるとき、 硬化剤の 2 5°Cにおける粘度は、 1〜: 1 0 0 ◦ m P a · sの範囲にあるのが好ましい。 さらに、 主剤の 2 5 Cにおける粘度が 1〜 1 0 0 0 m P a . sの範囲にあるとき、 硬化剤の 2 5 °Cにおける粘度は、 1〜 3 O O O m P a · sの範囲にあるのが好ましい。  In the present invention, when the viscosity of the main agent at 25 ° C. is in the range of 2000 to 300 mPas, the viscosity of the curing agent at 25 ° C. is 1 to 500 m It is preferably in the range of Pa · s. When the viscosity of the main agent at 25 ° C. is in the range of 100 to 200 mPa · s, the viscosity of the curing agent at 25 ° C. is 1 to: 100 ° m It is preferably in the range of P a · s. Furthermore, when the viscosity of the main agent at 25 C is in the range of 1 to 100 mPas, the viscosity of the curing agent at 25 ° C is in the range of 1 to 3 OOOmPas. Preferably it is.
主剤と硬化剤とを混合した後に得られるェポキシ樹脂組成物を硬化させるに当 たっては、 用途に応じて様々な方法が選択される。 具体的には、 定速で昇温し、 最高温度 T c (°C) に到達後、 t c (分) の間、 その温度を一定に保持した後、 降温する方法が 1例として挙げられる。 また、 定速で昇温し、 ある温度に到達後、 ある時間その温度を一定に保持した後、 再度昇温を開始し、 さらに最高温度 T c In curing the epoxy resin composition obtained after mixing the main agent and the curing agent, various methods are selected depending on the application. Specifically, a method of raising the temperature at a constant speed, reaching the maximum temperature Tc (° C), keeping the temperature constant for tc (minutes), and then lowering the temperature is one example. In addition, after the temperature rises at a constant speed and reaches a certain temperature, the temperature is kept constant for a certain time, then the temperature is started again, and the maximum temperature T c
(°C) に到達後、 t c (分) の間、 その温度を一定に保持した後、 降温する方法、 いわゆるステップキュア法も 1例として挙げられる。 After the temperature reaches (° C), the temperature is kept constant for t c (minutes), and then the temperature is lowered, so-called step cure method.
得られる複合材料に良好な耐熱性を実現するためには、 ェポキシ樹脂組成物を 硬化させる過程において、 最高温度 T cは 6 0〜 2 0 0 °Cの範囲とする。 また、 生産性を高める観点から、 最高温度を一定に保持する時間 t cは 1〜 1 2 0分の 範囲とする。  In order to achieve good heat resistance of the obtained composite material, the maximum temperature Tc is in the range of 60 to 200 ° C. in the process of curing the epoxy resin composition. In addition, from the viewpoint of increasing productivity, the time tc for keeping the maximum temperature constant is in the range of 1 to 120 minutes.
なお、 T c (°C) において、 t c (分) 経過した時点でのエポキシ樹脂組成物 のガラス転移温度 T gは、 得られたエポキシ樹脂組成物の硬化物を T c (°C) か ら室温にまで降温後、 実施例記載の方法で測定されるものである。 In addition, the epoxy resin composition at the time when tc (minute) has elapsed at Tc (° C) The glass transition temperature Tg of the cured product of the epoxy resin composition is measured from the temperature of Tc (° C.) to room temperature and then measured by the method described in Examples.
複合材料の耐熱性は、 マトリ ックス樹脂であるエポキシ樹脂組成物の硬化物の ガラス転移温度 T gに影響を受けるが、 このガラス転移温度 T gは、 一般に硬化 過程における最高温度 T c (°C) と最高温度を一定に保持する時間 t c (分) に 依存して変化する。  The heat resistance of the composite material is affected by the glass transition temperature Tg of the cured product of the epoxy resin composition, which is a matrix resin.The glass transition temperature Tg is generally determined by the maximum temperature Tc (° C ) And the time to keep the maximum temperature constant tc (minutes).
本発明においては、 最高温度 T cが 6 0 °C以上、 9 0 °C未満の低温域にあると きは、 マトリ ックス樹脂である樹脂組成物のガラス転移温度 T gが最高温度 T c より 2 0°C以上高いことが必要である。 すなわち、 次式 ( 1 ) を満足する T c、 t c、 T gが存在することが必要である。  In the present invention, when the maximum temperature Tc is in a low temperature range of 60 ° C or more and less than 90 ° C, the glass transition temperature Tg of the resin composition as the matrix resin is higher than the maximum temperature Tc. It must be higher than 20 ° C. That is, it is necessary that T c, t c, and T g satisfy the following equation (1).
T g≥T c + 2 0 ( 1 ) また、 最高温度 T cが 9 0°C以上、 2 0 0°C以下の高温域にあるときは、 次式 ( 1 ' ) を満足する T c、 t c、 T gが存在することが必要である。  T g ≥ T c + 20 (1) Also, when the maximum temperature T c is in the high temperature range of 90 ° C or more and 200 ° C or less, T c that satisfies the following equation (1 '): tc and Tg need to be present.
T g≥T c + 2 0 - 0. 3 5 X (T c - 9 0 ) ( 1 ' ) 本発明においては、 上式 (1 ) 又は ( 1 ' ) を満足する最高温度 T c (°C) と その保持時間 t c (分) が製造条件として採用され、 最高温度 T c (°C) を時間 t c (分) の間一定に保持して複合材料が製造される。  T g ≥ T c + 20-0.35 X (T c-90) (1 ') In the present invention, the maximum temperature T c (° C which satisfies the above expression (1) or (1') ) And its holding time tc (min) are adopted as manufacturing conditions, and the maximum temperature Tc (° C) is kept constant for the time tc (min) to produce a composite material.
エポキシ樹脂組成物を硬化して得られる樹脂硬化物の弾性率は、 複合材料の機 械物性、 特に圧縮強度に影響を与えることから、 本発明においては、 後述する方 法により測定される樹脂硬化物板の引張弾性率 Eは、 3. 2〜 5 G P aの範囲に あるのが良く、 好ましくは 3. 4〜4. 8 G P aの範囲にあるのが良い。 3. 2 G P a未満であると複合材料の圧縮強度が不足することがあり、 5 G P aを越え ると複合材料の靭性が不足することがある。  Since the elastic modulus of the cured resin obtained by curing the epoxy resin composition affects the mechanical properties of the composite material, particularly the compressive strength, in the present invention, the resin curing measured by the method described below is used. The tensile modulus E of the material plate is preferably in the range of 3.2 to 5 GPa, and more preferably in the range of 3.4 to 4.8 GPa. If it is less than 3.2 GPa, the compressive strength of the composite material may be insufficient, and if it exceeds 5 GPa, the toughness of the composite material may be insufficient.
本発明においては、 使用前に主剤と後述する硬化剤とを混合してエポキシ樹脂 組成物とした後、 前記組成物の注入作業を行い、 複合材料などの成形品を製造す ることが好適である。  In the present invention, it is preferable to mix the main agent and a curing agent to be described later to form an epoxy resin composition before use, and then inject the composition to produce a molded article such as a composite material. is there.
本発明のエポキシ樹脂組成物は、 主剤と硬化剤とを混合後、 2 5°Cにおいて 5 分経過した時点での 2 5°Cにおけるエポキシ樹脂組成物の粘度 (以下、 5と略 記) カ 、 1〜 1 5 0 0 m P a · sの範囲にあることが必要であり、 好ましくは 1 〜 1 0 0 0 m P a · sの範囲であり、 より好ましくは 1 0〜 7 0 0 m P a · sの 範囲である。 The epoxy resin composition of the present invention is obtained by mixing the main agent and the curing agent, and then viscosity of the epoxy resin composition at 25 ° C after 5 minutes at 25 ° C (hereinafter abbreviated as 5 ). , Must be in the range of 1-1500 mPas, preferably 1 1100 mPa as, more preferably 100 7700 mPa · s.
また、 本発明によるエポキシ樹脂組成物は、 主剤と硬化剤とを混合後、 2 5 °C 温度環境下、 6 0分経過した時点での 2 5°Cにおけるエポキシ樹脂組成物の m P a · s単位の粘度 (以下、 r? 6。と略記) 力 次式 ( 2 ) を満足することが好まし <、 Further, the epoxy resin composition according to the present invention is obtained by mixing the main agent and the curing agent, and then mixing the epoxy resin composition at 25 ° C. at 25 ° C. at 25 ° C. in a temperature environment of 25 ° C. Viscosity in s units (hereinafter abbreviated as r? 6 ) Force It is preferable to satisfy the following expression (2).
1 ≤ 77 6。≤ 1 5 0 0 ( 2 ) 1 ≤ 77 6 . ≤ 1 5 0 0 (2)
よ り好ましくは 2 5°C温度環境下、 1 2 0分経過した時点での 2 5°Cにおけるェ ポキシ樹脂組成物の粘度 (以下、 12。と略記) 、 l〜 1 5 0 0 m P a ' Sの 範囲であり、 特に好ましくは 2 5 °C温度環境下、 2 4 0分経過した時点での 2 5 °Cにおけるエポキシ樹脂組成物の粘度 (以下、 η 24。と略記) 、 1〜 1 5 0 0 m P a · sの範囲である。 More preferably, the viscosity of the epoxy resin composition at 25 ° C. (hereinafter, abbreviated as 12 ) at 125 ° C. in a temperature environment of 25 ° C. is 1 to 150 mP. a 'in the range of S, particularly preferably under 2 5 ° C temperature environment, the viscosity of the epoxy resin composition of 2 5 ° C at the time of elapse 2 4 0 minutes (hereinafter, eta 24. hereinafter), 1 11500 mPa · s.
あるいは、 2 5 °C温度環境下、 2 4 0分経過した時点での 2 5 °Cにおいてのェ ポキシ樹脂組成物の粘度り 24。が、 l〜 1 0 0 0 m P a · sの範囲にあることが 良く、 好ましくは 1 0〜 7 0 0 m P a · sの範囲にあるのが良い。 Alternatively, the viscosity of the epoxy resin composition at 25 ° C. at the time when 240 minutes have passed in a temperature environment of 25 ° C. 24 . Is preferably in the range of l to 100 mPa · s, and more preferably in the range of 100 to 700 mPa · s.
かつ、 本発明によるエポキシ樹脂組成物は、 り 。を?7 で除した 77 6。ノ 7] が、 次式 (3 ) を満足することが好ましく、 よ り好ましくは 12。をり 5で除したり 12。ノ 7) 5が、 1〜 3の範囲であり、 特に好 ましくは 7) 24。を η 5で除した r; 24。/ η 5が、 1〜 3の範囲である。 かかる範囲か ら外れると、 樹脂の注入作業性と、 強化繊維への含浸性が低下することがある。 本発明で使用する 2官能以上の芳香族エポキシ樹脂とは、 芳香環を有し 1分子 中に 2個以上のエポキシ基を有するエポキシ樹脂である。 2個のエポキシ基を有 する芳香族エポキシ樹脂としては、 次のようなものを例示することができる。 まず、 ビスフエノール Αから得られるビスフエノール Α型エポキシ樹脂、 ビス フエノール Fから得られるビスフエノール F型エポキシ樹脂、 ビスフエノ一ル S から得られるビスフエノール S型エポキシ樹脂、 テ トラブロモビスフエノール A から得られるテ トラブロモビスフエノール A型ェポキシ樹脂などのビスフエノー ル型エポキシ樹脂が挙げられる。 ビスフエノール A型エポキシ樹脂の市販品と し ては、 ェピコー ト 8 2 5 (エポキシ当量 1 7 2〜 1 7 8 ) 、 ェピコ一 ト 8 2 8 (エポキシ当量 1 8 4〜 1 9 4) 、 ェピコ一 ト 8 3 4 (エポキシ当量 2 3 0〜 2 7 0) 、 ェピコート 1 0 0 1 (エポキシ当量 4 5 0〜 5 0 0 ) 、 ェピコート 1 0 0 2 (エポキシ当量 6 0 0〜 7 0 0) 、 ェピコ一ト 1 0 0 3 (エポキシ当量 6 7 0〜7 7 0 ) 、 ェピコ一 ト 1 0 04 (エポキシ当量 8 7 5〜 9 7 5) 、 ェピコ一 ト 1 0 0 7 (エポキシ当量 1 7 5 0〜 2 2 0 0 ) 、 ェピコート 1 0 0 9 (ェポキ シ当量 2 4 0 0〜 3 3 0 0 ) 、 ェピコート 1 0 1 0 (エポキシ当量 3 0 0 0〜 5 0 0 0 ) (以上、 登録商標、 油化シェルエポキシ (株) 製) 、 ェポトー ト YD— 1 2 8 (エポキシ当量 1 8 4〜 1 94) ェポトー ト YD— 0 1 1 (エポキシ当量 4 5 0〜 5 0 0) 、 ェポトー ト YD— 0 1 4 (エポキシ当量 9 0 0〜 1 0 0 0 ) 、 ェポトー ト YD— 0 1 7 (エポキシ当量 1 7 5 0〜 2 1 0 0 ) 、 ェポトー ト YD - 0 1 9 (エポキシ当量 2 4 0 0〜 3 0 0 0 ) 、 ェポトー ト YD— 0 2 2 (ェポ キシ当量 4 0 0 0〜 6 0 0 0 ) 、 (以上、 登録商標、 東都化成 (株) 製) 、 ェピ クロン 8 4 0 (エポキシ当量 1 8 0〜 1 9 0 ) 、 ェピクロン 8 5 0 (, エポキシ 当量 1 8 4〜 1 9 4) 、 ェピクロン 1 0 5 0 (エポキシ当量 4 5 0〜 5 0 0 ) 、 ェピクロン 3 0 5 0 (エポキシ当量 7 4 0〜 8 6 0 ) 、 ェピクロン HM— 1 0 1 (エポキシ当量 3 2 0 0〜 3 9 0 0 ) (以上、 登録商標、 大日本ィンキ化学工業 (株) 製) 、 スミエポキシ E L A— 1 2 8 (登録商標、 エポキシ当量 1 8 4〜1 9 4、 住友化学 (株) 製) 、 D E R 3 3 1 (登録商標、 エポキシ当量 1 8 2〜1 9 2、 ダウケミカル社製) 等を挙げることができる。 ビスフエノール F型ェポキ シ樹脂の市販品としては、 ェピコー ト 8 0 6 (エポキシ当量 1 6 0〜 1 7 0) 、 ェピコート 8 0 7 (エポキシ当量 1 6 0〜 1 7 5 ) 、 ェピコー ト E 4 0 0 2 P (エポキシ当量 6 1 0 ) 、 ェピコー ト E 4 0 0 3 P (エポキシ当量 8 0 0 ) 、 ェ ピコ一 ト E 4 0 0 4 P (エポキシ当量 9 3 0 ) 、 ェピコート E 4 0 0 7 P (ェポ キシ当量 2 0 6 0 ) 、 ェピコ一 ト E 4 0 0 9 P (エポキシ当量 3 0 3 0 ) 、 ェピ コー ト E 4 0 1 0 P (エポキシ当量 44 0 0 ) (以上、 登録商標、 油化シェルェ ポキシ (株) 製) 、 ェピクロン 8 3 0 (登録商標、 エポキシ当量 1 7 0〜 1 9 0、 大日本ィンキ化学工業 (株) 製) 、 ェポトート YD F— 2 0 0 1 (エポキシ当量 4 5 0〜 5 0 0 ) 、 ェポトー ト YD F— 2 0 0 4 (エポキシ当量 9 0 0〜 1 0 0 0) (以上、 登録商標、 東都化成 (株) 製) などを挙げることができる。 ビスフ ェノール S型エポキシ樹脂の市販品としては、 デナコール EX— 2 5 1 (登録商 標、 ナガセ化成工業製、 エポキシ当量 1 8 9) を挙げることができる。 テ トラブ ロモビスフエノール A型エポキシ樹脂の市販品と しては、 ェピコー ト 5 0 5 0 (登録商標、 油化シェルエポキシ製、 エポキシ当量 3 8 0〜 4 1 0 ) 、 ェピクロ ン 1 5 2 (大日本インキ化学工業製、 エポキシ当量 3 4 0〜 3 8 0 ) 、 スミーェ ポキシ E S B— 4 0 0 T (住友化学工業製、 エポキシ当量 3 8 0〜 4 2 0 ) 、 ェ ポトー ト Y B D— 3 6 0 (東都化成製、 エポキシ当量 3 5 0〜 3 7 0) を挙げる ことができる。 And, the epoxy resin composition according to the present invention comprises: What? 77 6 divided by 7. [7] preferably satisfies the following expression (3), and more preferably 12 . Divide by 5 or 12 7) 5 is in the range of 1 to 3, and particularly preferably 7) 24 . Divided by η 5 r; 24 . / η 5 is in the range of 1-3. If the ratio is out of this range, the workability of injecting the resin and the impregnation into the reinforcing fibers may be reduced. The bifunctional or higher aromatic epoxy resin used in the present invention is an epoxy resin having an aromatic ring and having two or more epoxy groups in one molecule. Examples of the aromatic epoxy resin having two epoxy groups include the following. First, bisphenol ノ ー ル type epoxy resin obtained from bisphenol 、, bisphenol F type epoxy resin obtained from bisphenol F, bisphenol S type epoxy resin obtained from bisphenol S, and tetrabromobisphenol A Bisphenol type epoxy resin such as tetrabromobisphenol A type epoxy resin. Commercially available bisphenol A type epoxy resin For example, Epicoat 825 (epoxy equivalent of 172-17-178), Epikoto 828 (epoxy equivalent of 184-19-194), Epikop 833 (epoxy equivalent of 230) 2 Epoxy Coat 1001 (Epoxy Equivalent 450-500), Epikote 100 (Epoxy Equivalent 600-700), Epicot 100 3 (Epoxy Equivalent) 670-770), Epikoto 1004 (epoxy equivalent 875-975), Epikoto 100 (epoxy equivalent 175-222), epikote 1 0 9 (epoxy equivalent 2400 to 3300), epicoat 1100 (epoxy equivalent 30000 to 500) (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd.) ), Epototo YD-1 28 (Epoxy equivalent 184-194) Epototo YD-0 1 1 (Epoxy equivalent 450-500), Epotote YD-0 14 (Epoxy equivalent 90 0 to 100), report YD—0 17 (epoxy equivalent 1 750) Epoteto YD-019 (epoxy equivalent 240 000 to 300 000), epoteto YD-222 (epoxy equivalent 400 000 to 600 000), (Registered trademark, manufactured by Toto Kasei Co., Ltd.), Epiclone 840 (epoxy equivalent 180-190), Epiclone 850 (epoxy equivalent 184-194), Epiclone 1 050 (Epoxy equivalent 450-500), Epiclone 305 (Epoxy equivalent 7440-860), Epiclone HM-101 (Epoxy equivalent 320-390) 0) (Registered trademark, manufactured by Dainippon Ink and Chemicals, Inc.), Sumiepoxy ELA-128 (registered trademark, epoxy equivalent: 184-194, manufactured by Sumitomo Chemical Co., Ltd.), DER 33 1 (registered trademark, epoxy equivalent: 182-192, manufactured by Dow Chemical Co., Ltd.). Commercially available bisphenol F-type epoxy resins include Epicote 806 (epoxy equivalent of 160 to 170), Epikote 807 (epoxy equivalent of 160 to 175), and Epicoat E4 0 2 P (epoxy equivalent 6 10), epicoat E 4 0 3 P (epoxy equivalent 8 0 0), epi coat E 4 0 4 P (epoxy equivalent 9 3 0), epicoat E 4 0 0 7 P (epoxy equivalent 2 060), epicoat E 4 0 9 P (epoxy equivalent 3 0 3 0), epicoat E 4 0 10 P (epoxy equivalent 44.0) ( Epiclon 8330 (registered trademark, epoxy equivalent 170-190, manufactured by Dainippon Ink and Chemicals, Inc.), Epototo YD F-20 0 1 (Epoxy equivalent of 450 to 500), report YD F—200 4 (Epoxy equivalent of 900 to 100) 0) (Registered trademark, manufactured by Toto Kasei Co., Ltd.). Commercial products of bisphenol S-type epoxy resin include Denacol EX-251 (registered trademark, manufactured by Nagase Kasei Kogyo, epoxy equivalent: 189). Is a commercial product of Te trub Romo bisphenol A type epoxy resin, Epiko preparative 5 0 5 0 (registered trademark, produced by Yuka Shell Epoxy Ltd., epoxy equivalent 3 8 0-4 1 0), Epikuro down 1 5 2 ( Epoxy equivalent of 340 to 380, manufactured by Dainippon Ink and Chemicals, SMIE POXY ESB—400 T (manufactured by Sumitomo Chemical, epoxy equivalent of 380 to 420), potato YBD—36 0 (manufactured by Toto Kasei, epoxy equivalent: 350 to 370).
その他にも、 レゾルシンジグリシジルエーテルであるデナコール E X— 2 0 1 (登録商標、 ナガセ化成工業製、 エポキシ当量 1 1 8) 、 ヒ ドロキノンジグリ シ ジルェ一テルであるデナコール E X— 2 0 3 (登録商標、 ナガセ化成工業製、 ェ ポキシ当量 1 1 2 ) 、 1 , 6—ジヒ ドロキシナフタ レンのジグリ シジルエーテル であるェピクロン H P— 4 0 3 2 H (登録商標、 大日本インキ化学工業製、 ェポ キシ当量 2 5 0 ) 、 9, 9一ビス (4ーヒ ドロキシフエニル) フルオレンのジグ リシジルエーテルであるエボン H P Tレジン 1 0 7 9 (登録商標、 シェル社製、 エポキシ当量 2 5 0〜 2 6 0 ) 、 などを挙げることができる。  In addition, resorcin diglycidyl ether Denacol EX-201 (registered trademark, manufactured by Nagase Kasei Kogyo Co., Ltd., epoxy equivalent 118), hydroquinone diglycidyl ether Denacol EX-203 (registered trademark, Epoxy equivalent 1-12), manufactured by Nagase Kasei Kogyo Co., Ltd., Epiclone HP—4032H, a diglycidyl ether of 1,6-dihydroxynaphthalene (registered trademark, manufactured by Dainippon Ink and Chemicals, epoxy equivalent 2) 50), 9,9-bis (4-hydroxyphenyl) fluorene diglycidyl ether Ebon HPT Resin 107 (registered trademark, manufactured by Shell Co., epoxy equivalent 250-260), etc. Can be mentioned.
さらに、 ジグリ シジルァ二リ ンである G AN (登録商標、 日本化薬 (株) 製、 エポキシ当量 1 1 5〜 1 3 5 ) 、 グリ シジルエステルであるフタル酸ジグリ シジ ルエステル、 テレフタル酸ジグリシジルエステルなどを挙げることができる。 本発明において、 複合材料に、 より優れた耐熱性と機械物性を与えるための 1 つの方法として、 マ トリ ックス樹脂の架橋密度を大きくすることが考えられる。 かかる目的では 3官能以上の芳香族エポキシ樹脂を配合することが好ましい。 全 エポキシ樹脂中における 3官能以上の芳香族エポキシ樹脂の配合量としては、 好 ましくは 5 0〜 1 0 0重量% (より好ましく は 6 0〜 1 0 0重量。 /0、 更に好まし くは 7 0〜: 1 0 0重量0 /0 ) である。 Further, diglycidyl dilinyl GAN (registered trademark, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 115 to 135), glycidyl ester phthalic acid diglycidyl ester, terephthalic acid diglycidyl ester And the like. In the present invention, it is conceivable to increase the crosslink density of the matrix resin as one method for imparting better heat resistance and mechanical properties to the composite material. For this purpose, it is preferable to blend a trifunctional or higher functional aromatic epoxy resin. The amount of trifunctional or more aromatic epoxy resins in the total epoxy resin, good Mashiku 5 0-1 0 0 wt% (more preferably 6 0-1 0 0 wt. / 0, rather more preferably 7 0: 1 0 0 weight 0/0).
本発明においては、 化学構造式 ( I ) で表されるような 3官能の芳香族ェポキ シ樹脂が好ましく配合される。
Figure imgf000011_0001
In the present invention, a trifunctional aromatic epoxy resin represented by the chemical structural formula (I) is preferably compounded.
Figure imgf000011_0001
(式中、 は水素原子あるいは炭素数 1〜4程度のアルキル基である。 ) かかるエポキシ樹脂の市販品として.は、 ェピコート 6 3 0 (登録商標、 油化シ エルエポキシ社製、 N, N—ジグリ シジルー p—グリシジルォキシァ二リ ン、 2 5 °C温度環境下の粘度 : 6 0 0〜7 0 0 mP a · s ) 、 ァラルダイ ト MY 0 5 1 0 (登録商標、 C i b a社製、 N, N—ジグリシジルー p—グリ シジルォキシァ 二 リ ン、 2 5 °C温度環境下の粘度 : 5 5 0〜8 5 0 mP a · s ) 、 ス ミエポキシ E LM 1 0 0 (登録商標、 住友化学工業 (株) 製、 N, N—ジグリシジル— 4一 グリ シジルォキシ一 2—メチルァニリ ン、 5 0 °C温度環境下の粘度 : 1 0 0 0〜 1 7 0 0 m P a . s ) 、 スミエポキシ E LM 1 2 0 (登録商標、 住友化学工業 (株) 製、 N, N—ジグリ シジルー m—グリシジルォキシァ二リ ン、 5 0。C温度 環境下の粘度 : 1 5 0 0〜3 0 0 0 mP a · s ) などを使用することができる。 中でも、 ェピコ一ト 6 3 0、 ァラルダイ ト MY 0 5 1 0は低粘度であることから、 好ましく使用できる。  (In the formula, is a hydrogen atom or an alkyl group having about 1 to 4 carbon atoms.) As a commercially available product of such an epoxy resin, Epikote 6300 (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., N, N —Diglycidyl-p-glycidyloxydiline, viscosity in a temperature environment of 25 ° C .: 600 to 700 mPa · s), Araldite MY0510 (registered trademark, Ciba) N, N-Diglycidylol p-Glycidyloxylinyl, viscosity at 25 ° C temperature: 550-850 mPas, Sumiepoxy E LM 100 (registered trademark, Sumitomo) N, N-Diglycidyl-41-glycidyloxy-2-methylaniline, manufactured by Chemical Industry Co., Ltd., viscosity at 50 ° C temperature environment: 100 to 170 mPas), Sumiepoxy E LM 120 (registered trademark, manufactured by Sumitomo Chemical Co., Ltd., N, N-diglycidyl-m-glycidyloxyline), 50. C temperature The viscosity under boundary: 1 5 0 0~3 0 0 0 mP a · s) or the like can be used. Above all, Epicote 630 and Araldite MY0510 are preferably used because of their low viscosity.
化学構造式 ( I ) で表されるエポキシ樹脂は、 1種のみ配合しても良いし、 複 数種混合して配合しても良い。  The epoxy resin represented by the chemical structural formula (I) may be used alone or in combination of two or more.
また、 本発明においては、 化学構造式 (Π) で表されるような 4官能の芳香族 エポキシ樹脂を配合することもできる。
Figure imgf000012_0001
Further, in the present invention, a tetrafunctional aromatic epoxy resin represented by the chemical structural formula (Π) can be blended.
Figure imgf000012_0001
(式中、 R2は水素原子あるいは炭素数 1〜4程度のアルキル基である。 ) かかるエポキシ樹脂の市販品としては、 TE TRAD— X (登録商標、 三菱瓦 斯化学 (株) 製、 N, N, N' , Ν' ーテ トラグリ シジルー m—キシリ レンジァ ミン、 2 5 °C温度環境下の粘度 : 1 6 0 0〜2 5 0 0 mP a · s ) などを使用す ることができる。 なお、 化学 造式 (Π) で表されるエポキシ樹脂は、 単体で配 合しても良いし、 化学構造式 ( I ) で表されるエポキシ樹脂と混合して配合して も良い。 (In the formula, R 2 is a hydrogen atom or an alkyl group having about 1 to 4 carbon atoms.) Commercially available epoxy resins include TE TRAD-X (registered trademark, manufactured by Mitsubishi Gas Chemical Company, Inc.) , N, N ', Ν'-tetraglycidyl-m-xylylenediamine, viscosity at 25 ° C temperature environment: 160 to 250 mPas can be used. . The epoxy resin represented by the chemical formula (II) may be used alone or may be mixed with the epoxy resin represented by the chemical formula (I).
3官能以上の芳香族エポキシ樹脂の 2 5°Cにおける粘度は、 1〜 3 0 0 0 mP a · s の範囲にあるのが好ましく、 さらに好ましくは 1〜 2 0 0 0 m P a · s、 特に好ましくは 1〜; L O O OmP a ' sの範囲である。 3 0 0 0 m P a · sを越 えると、 エポキシ樹脂組成物の粘度が高くなり、 強化繊維への含浸性が低下する こと力'ある。  The viscosity at 25 ° C. of the trifunctional or higher-functional aromatic epoxy resin is preferably in the range of 1 to 300 mPas, more preferably 1 to 200 mPas, Especially preferably, it is in the range of 1 to LOO OmPa's. If the viscosity exceeds 300 mPa · s, the viscosity of the epoxy resin composition increases, and the impregnating property of the reinforcing fibers is reduced.
なお、 芳香族エポキシ樹脂の官能数の上限については特に限定されるものでは ないが、 複合材料中のマ ト リ ックス樹脂において、 架橋密度が高すぎるために脆 くなり、 その結果、 複合材料における靱性が不足して、 好ましくないことがあり 得る。 それらも勘案して、 芳香族エポキシ樹脂の官能数の重量平均値は、 好まし くは 2〜6 (より好ましくは 2〜 5、 更に好ましくは 2〜4) である。  The upper limit of the functional number of the aromatic epoxy resin is not particularly limited, but the matrix resin in the composite material becomes brittle because the cross-linking density is too high. Lack of toughness can be undesirable. In consideration of these, the weight average value of the functional number of the aromatic epoxy resin is preferably 2 to 6 (more preferably 2 to 5, and further preferably 2 to 4).
また、 本発明において、 複合材料により優れた耐熱性と機械物性を得るための 別の方法と して、 マ ト リ ックス樹脂の架橋点間を剛直な骨格で結ぶことが考えら れる。 しかしながら、 剛直骨格からなるエポキシ樹脂を配合すると、 分子の内部 自由度が小さいためにエポキシ樹脂組成物の粘度が大きくなる場合がある。 この ような問題を解決するためには低分子量 ( 1 0 0 〜 5 0 0が好ましい) のェポキ シ樹脂を用いる。 剛直骨格を有する低分子量のエポキシ樹脂としては、 ビフエ二 ル型のエポキシ樹脂が挙げられる。 Further, in the present invention, as another method for obtaining more excellent heat resistance and mechanical properties by using a composite material, it is conceivable to connect the cross-linking points of the matrix resin with a rigid skeleton. However, when an epoxy resin having a rigid skeleton is blended, the viscosity of the epoxy resin composition may increase due to a low degree of internal freedom of molecules. this In order to solve such a problem, a low molecular weight (preferably 100 to 500) epoxy resin is used. Examples of the low molecular weight epoxy resin having a rigid skeleton include biphenyl type epoxy resins.
かかるエポキシ樹脂の市販品としては、 ェピコート Y X 4 0 0 0 (登録商標、 油化シェルエポキシ社製、 4 , 4, ージヒ ドロキシー 3 , 3 ' , 5 , 5 ' ーテ ト ラメチルビフエ二ルジグリ シジルエーテル) 、 ェピコ一ト Y X 4 0 0 0 H (登録 商標、 油化シェルエポキシ社製、 4 , 4 ' —ジヒ ドロキシー 3 , 3 ' , 5 , 5 , ーテ トラメチルビフエ二ルジグリシジルエーテル) 、 ェピコー ト Y L 6 1 2 1 L As a commercially available product of such an epoxy resin, Epicort YX400 (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., 4,4, dihydroxy 3,3 ', 5,5'-tetramethylbiphenyldiglycidyl ether) , Epikoto YX400H (registered trademark, manufactured by Yuka Shell Epoxy Co., 4,4'-dihydroxy 3,3 ', 5,5, -tetramethylbiphenyldiglycidyl ether), Epikoto YL6 1 2 1 L
(登録商標、 油化シェルエポキシ社製、 4 , 4 ' ージヒ ドロキシー 3 , 3 ' , 5 , 5 ' ーテトラメチルビフエ二ルジグリ シジルエーテル) などを使用することがで さる。 (Registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., 4,4'-dihydroxy-3,3 ', 5,5'-tetramethylbiphenyldiglycidyl ether) or the like can be used.
本発明においては、 エポキシ樹脂組成物の粘度を最適化するために、 2官能以 上の芳香族エポキシ樹脂以外に、 低粘度のエポキシ樹脂を配合することができる。 かかる低粘度エポキシ樹脂と しては、 2官能以上のダリ シジルエーテル型脂肪 族エポキシ樹脂が使用できる。  In the present invention, in order to optimize the viscosity of the epoxy resin composition, a low-viscosity epoxy resin may be blended in addition to the bifunctional or higher aromatic epoxy resin. As such a low-viscosity epoxy resin, a bi- or higher-functional daricidyl ether type aliphatic epoxy resin can be used.
本発明においては、 複合材料の耐熱性や圧縮強度などの機械物性を高めるため に、 2官能以上のグリシジルエーテル型脂肪族エポキシ樹脂は、 次式 (4 ) を満 足するのが好ましく、 次式 (4 ' ) を満足するのがより好ましい。  In the present invention, the bifunctional or higher functional glycidyl ether type aliphatic epoxy resin preferably satisfies the following formula (4) in order to enhance mechanical properties such as heat resistance and compressive strength of the composite material. It is more preferable to satisfy (4 ′).
0≤ α≤ 4 ( 4 )  0≤ α≤ 4 (4)
0≤ α≤ 3 ( 4 ' ) ここで、 ひは 2官能以上のダリ シジルエーテル型脂肪族エポキシ樹脂が分子内 に有するダリ シジルォキシ基の任意の 2個を結んでなる分子鎖の内、 環に属さな い原子の数が最多となる分子鎖における該原子の数を表わす。  0≤α≤3 (4 ') Here, the bicyclic or higher functional dalicidyl ether-type aliphatic epoxy resin forms a ring in the molecular chain that connects any two of the dalicidyloxy groups in the molecule. Indicates the number of atoms in the molecular chain where the number of atoms that do not belong is the largest.
αは、 分子鎖の柔軟性の指標となるものである。 αが大きい程、 分子鎖が柔軟 性を増し、 ひいては複合材料中のマ トリ ックス樹脂のネッ トワーク構造が柔軟性 に富む構造となり、 複合材料の耐熱性や圧縮強度などの機械物性が不足する傾向 がある。 エポキシ樹脂の分子構造からひを求める方法を以下に詳細に説明する。 次に示す化学構造式で表される 2官能以上のダリ シジルエーテル型脂肪族ェポ キシ樹脂を例にと り、 αを求める。
Figure imgf000014_0001
α is an index of the flexibility of the molecular chain. As α increases, the molecular chains become more flexible, and the network structure of the matrix resin in the composite material becomes more flexible, resulting in a lack of mechanical properties such as heat resistance and compressive strength of the composite material. There is. The method for obtaining the molecular weight from the molecular structure of the epoxy resin will be described in detail below. The α is determined using, as an example, a bifunctional or higher-functional dalicydyl ether-type aliphatic epoxy resin represented by the following chemical structural formula.
Figure imgf000014_0001
2つのダリシジル基を結ぶ分子鎖は次に示すように 2通りある。  There are two types of molecular chains connecting the two dalicidyl groups, as shown below.
1 - 2 - 3 - 4 - 5 - 6  1-2-3-4-5-6
1 - 2 - 7 - 8 - 5 - 6  1-2-7-8-5-6
環に属さない原子の数はいずれの場合も 2個である。 従って αは 2 となる。 さらに、 次に示す化学構造式で表される 2官能以上のグリ シジルエーテル型脂 肪族エポキシ樹脂を例にと り、 αを求める。 The number of atoms that do not belong to the ring is 2 in each case. Therefore, α is 2. Further, α is determined using a glycidyl ether type aliphatic epoxy resin having two or more functional groups represented by the following chemical structural formula as an example.
Figure imgf000014_0002
Figure imgf000014_0002
3つのダリ シジル基を結ぶ分子鎖は次に示すように 3通りある。  There are three types of molecular chains connecting the three dalicidyl groups as shown below.
1 - 2  1-2
2 - 3  twenty three
1 - 2 - 3  one two Three
1番目と 2番目の場合は、 環に属さない原子の数は 2個であり、 3番目の場合 は環に属さない原子の数は 3個である。 従って αは 3 となる。  In the first and second cases, the number of atoms that do not belong to the ring is two, and in the third case, the number of atoms that do not belong to the ring is three. Therefore, α is 3.
かかる 2官能以上のダリ シジルエーテル型脂肪族エポキシ樹脂の市販品として は、 次に示すようなものを使用することができる。  As a commercially available product of such a bifunctional or higher-functional daricidyl ether type aliphatic epoxy resin, the following products can be used.
デナコール E X 8 1 0 (登録商標、 ナガセ化成工業 (株) 製、 2 5 °C温度環境下 の粘度 : 1 5 m P a * s、 α = 2、 次の化学構造式) 、
Figure imgf000015_0001
ロキシ 6 7 (登録商標、 油化シェルエポキシ社製、 2 5°C温度環境下の粘度 3〜 1 8 m P a * s、 α = 4、 次の化学構造式) 、
Denacol EX810 (registered trademark, manufactured by Nagase Kasei Kogyo Co., Ltd., viscosity at 25 ° C temperature environment: 15 mPa * s, α = 2, the following chemical structural formula),
Figure imgf000015_0001
Roxy 67 (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., viscosity in a temperature environment of 25 ° C. 3 to 18 mPa * s, α = 4, the following chemical structural formula),
Figure imgf000015_0002
Figure imgf000015_0002
デナコール E X 9 1 1 (登録商標、 ナガセ化成工業 (株) 製、 2 5 °C温度環境下 の粘度 : 2 0 mP a · s、 α = 2、 次の化学構造式) 、 Denacol EX 911 (registered trademark, manufactured by Nagase Kasei Kogyo Co., Ltd., viscosity at 25 ° C temperature environment: 20 mPa · s, α = 2, the following chemical structural formula),
CH Α2— CH - CH2— 0— CHウー 0 ΓH—30— CH2— CH Λ— CH2 へロキシ 6 8 (登録商標、 油化シュルエポキシ社製、 2 5°C温度環境下の粘度 1 3〜: L 8 m P a ' s、 α = 3、 次の化学構造式) 、 CH Α 2 — CH-CH 2 — 0— CH woo 0 ΓH— 3 0— CH 2 — CH Λ— CH 2 hexoxy 6 8 (registered trademark, manufactured by Yuka-sur-Epoxy Co., Ltd., at a temperature of 25 ° C) Viscosity 13 to: L 8 mPa's, α = 3, the following chemical structural formula),
Figure imgf000015_0003
エボライ ト 8 0 MF (登録商標、 共栄社化学 (株) 製、 2 5°C温度環境下の粘度 : 1 2 0〜 1 8 0 m P a · s、 α = 3、 次のィ匕学構造式) 、
Figure imgf000016_0001
Figure imgf000015_0003
Evolite 80 MF (registered trademark, manufactured by Kyoeisha Chemical Co., Ltd., viscosity at 25 ° C. temperature environment: 120 to 180 mPa · s, α = 3, the following formula ),
Figure imgf000016_0001
へロキシ 1 0 7 (登録商標、 油化シェルエポキシ社製、 2 5。C温度環境下の粘度 : 5 5〜 7 5 mP a · s、 α = 2、 次の化学構造式) 、 Heroxy 107 (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., 25. Viscosity under C temperature environment: 55 to 75 mPas, α = 2, the following chemical structural formula),
Figure imgf000016_0002
デナコール E X313 (登録商標、 ナガセ化成工業 (株) 製、 2 5 °C温度環境下の 粘度 : 1 5 0 m P a ' s、 α = 3、 次の化学構造式) 、
Figure imgf000016_0002
Denacol EX313 (registered trademark, manufactured by Nagase Kasei Kogyo Co., Ltd., viscosity at 25 ° C temperature environment: 150 mPa's, α = 3, the following chemical structural formula),
Figure imgf000016_0003
へロキシ 4 4 (登録商標、 油化シェルエポキシ社製、 2 5 °C温度環境下の粘度 : 2 0 0〜 3 3 0 m P a · s、 α = 3 , 次の化学構造式) 、
Figure imgf000017_0001
ロキシ 4 8 (登録商標、 油化シェルエポキシ社製、 2 5 °C温度環境下の粘度 : 2 5〜2 5 0 m P a · s、 α = 3、 次の化学構造式) 、
Figure imgf000016_0003
Heroxy 4 4 (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., viscosity at 25 ° C. temperature environment: 200 to 330 mPa · s, α = 3, the following chemical structural formula),
Figure imgf000017_0001
Roxy 48 (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., viscosity at 25 ° C. temperature environment: 25 to 250 mPa · s, α = 3, the following chemical structural formula),
Figure imgf000017_0002
Figure imgf000017_0002
Y L6753 (型番、 油化シェルエポキシ社製、 2 5 °C温度環境下の粘度 : 4 0 0 m P a · s、 α = 1 , 次の化学構造式) などを使用することができる。 Y L6753 (model number, manufactured by Yuka Shell Epoxy Co., Ltd., viscosity in a temperature environment of 25 ° C .: 400 mPa · s, α = 1, the following chemical structural formula) can be used.
Figure imgf000017_0003
Figure imgf000017_0003
これら 2官能以上のダリ シジルエーテル型脂肪族エポキシ樹脂は、 単体で配合 しても良いし、 複数種混合して配合しても良い。  These bifunctional or higher-functional daricidyl ether type aliphatic epoxy resins may be used alone or in combination of two or more.
2官能以上のダリシジルエーテル型脂肪族エポキシ樹脂の配合量 (複数種用い る場合はそれらの合計) は、 全エポキシ樹脂 1 0 0重量%に対して 1〜 5 0重量 %であるのが好ましい (より好ましくは 1〜 3 0、 更に好ましくは 1〜 1 0 ) 。 5 0重量%を越えると、 複合材料の耐熱性や圧縮強度などの機械物性が不足する ことがある。  The compounding amount of the bifunctional or higher-functional daricidyl ether-type aliphatic epoxy resin (when a plurality of types are used, the total thereof) is preferably 1 to 50% by weight based on 100% by weight of the total epoxy resin. (More preferably 1 to 30 and still more preferably 1 to 10). If it exceeds 50% by weight, mechanical properties such as heat resistance and compressive strength of the composite material may be insufficient.
2官能以上のグリシジルェ一テル型脂肪族エポキシ樹脂は、 一般に、 前記した ような芳香族エポキシ樹脂と比較すると低粘度である。 2官能以上のダリシジル エーテル型脂肪族エポキシ樹脂は、 2 5 °C温度環境下の粘度が 1〜 5 0 0 m P a . sの範囲にあるのが良く、 好ましくは l〜 3 0 0 m P a · s、 より好ましくは l〜 1 0 0 mP a · sの範囲にあるのが良い。 5 0 0 m P a · sを越えると、 ェ ポキシ樹脂組成物の粘度が高くなり、 強化繊維への含浸性が低下することがある。 なお、 2官能以上のダリ シジルエーテル型脂肪族エポキシ樹脂の官能数の上限 については特に限定されるものではないが、 複合材料中のマ トリ ツクス樹脂にお いて、 架橋密度が高くなりすぎるために脆くなり、 その結果、 複合材料における 靱性が不足して、 好ましくないことがあり得る。 それらも勘案して、 グリ シジル エーテル型脂肪族エポキシ樹脂の官能数の重量平均値は、 好ましくは 2〜 6 (よ り好ましくは 2〜 5、 更に好ましくは、 2〜4 ) である。 The bifunctional or higher glycidyl ether type aliphatic epoxy resin is generally described above. It has a low viscosity as compared with such an aromatic epoxy resin. The bifunctional or higher-functional daricidyl ether type aliphatic epoxy resin has a viscosity in a temperature environment of 25 ° C. of preferably 1 to 500 mPas, and preferably 1 to 300 mP. a · s, more preferably in the range of l to 100 mPas · s. If the viscosity exceeds 500 mPa · s, the viscosity of the epoxy resin composition may increase, and the impregnating property of the reinforcing fibers may decrease. The upper limit of the functional number of the bifunctional or higher-functional daricidyl ether-type aliphatic epoxy resin is not particularly limited, but the matrix resin in the composite material has an excessively high crosslinking density. It may become brittle, resulting in a lack of toughness in the composite material, which may be undesirable. In consideration of these, the weight average value of the functional number of the glycidyl ether type aliphatic epoxy resin is preferably 2 to 6 (more preferably 2 to 5, and further preferably 2 to 4).
本発明のエポキシ樹脂組成物は、 芳香族ァミン化合物及び 又は脂環式ァミン 化合物が配合されてなるものである。 これらァミ ン化合物は、 硬化剤であり、 前 記したよ うなエポキシ樹脂との混合によ り反応して硬化物を与える。  The epoxy resin composition of the present invention comprises an aromatic amine compound and / or an alicyclic amine compound. These amine compounds are curing agents, and react by mixing with an epoxy resin as described above to give a cured product.
ここに芳香族ァミン化合物とは、 芳香環を有する 1級、 2級または 3級のアミ ンであって、 好ましく は炭素数が 6〜 2 5 (より好ましくは 6〜 1 7 ) の 1級ジ ァミ ンである。 また、 脂環式ァミ ン化合物とは、 脂環を有する 1級、 2級または 3級のァミ ンであって、 好ましくは炭素数 6〜 2 5 (より好ましくは 6〜 1 5 ) の 1級ジアミンである。  Here, the aromatic amine compound is a primary, secondary or tertiary amine having an aromatic ring, preferably a primary diamine having 6 to 25 (more preferably 6 to 17) carbon atoms. It is a family. The alicyclic amide compound is a primary, secondary or tertiary amide having an alicyclic ring, preferably having 6 to 25 (more preferably 6 to 15) carbon atoms. Primary diamine.
芳香族ァミ ン化合物を配合する場合、 芳香族ァミ ン化合物は、 2 5°C温度環境 下の粘度が 1〜 3 0 0 0 m P a · sの範囲にあるのが好ましく、 さらに好ましく は:!〜 2 0 0 0 mP a · s、 特に好ましくは l〜 1 0 0 0 mP a · sの範囲であ る。 3 0 0 0 m P a · s を越えると、 エポキシ樹脂組成物の粘度が高くなり、 強 化繊維への含浸性が低下することがある。  When the aromatic amine compound is blended, the aromatic amine compound preferably has a viscosity in a temperature environment of 25 ° C. in the range of 1 to 300 mPas, more preferably. Ha :! 2200 mPa · s, particularly preferably l l100 mPa · s. If the viscosity exceeds 300 mPa · s, the viscosity of the epoxy resin composition becomes high, and the impregnation into the reinforcing fibers may be reduced.
芳香族ァミ ン化合物の市販品としては、 ェピキュア W (登録商標、 油化シェル エポキシ社製、 2 , 4 _ジェチルー 6 —メチル一m—フエ二レンジァミ ンと 4, 6 —ジェチルー 2—メチルー m—フエ二レンジァミンとの混合物、 2 5°C温度環 境下の粘度 : 1 0 0〜4 0 0 m P a · s ) 、 カャハード A _A (登録商標、 日本 化薬 (株) 製、 2 , 2 ' 一ジェチルー 4, 4 ' ーメチレンジァニリ ン、 2 5°C温 度環境下の粘度 : 2 0 0 0〜3 0 0 0 m P a · s ) 、 カャハード A— B (登録商 標、 日本化薬 (株) 製、 2, 2 ' 一ジェチルー 4 , 4 ' ーメチレンジァニリ ンと 4, 4 ' ーメチレンジァニリ ンとの混合物、 2 5 °C温度環境下の粘度 : 1 5 0 0 〜2 5 0 0 m P a · s ) などを使用することができる。 Commercially available aromatic amine compounds include Epicure W (registered trademark, manufactured by Yuka Shell Epoxy Co., Ltd., 2,4_Jetyl-6-Methyl-1m-phenylenediamine and 4,6-Jetyl-2-methyl-m —Mixed with phenylenediamine, viscosity at 25 ° C. temperature environment: 100 to 400 mPa · s), Kyahard A_A (registered trademark, Nippon Kayaku Co., Ltd.), 2, 2'-one-ethyl-4,4'-methylene dianiline, 25 ° C temperature Viscosity under ambient environment: 2000 to 300 mPa · s), Kyahard A-B (registered trademark, manufactured by Nippon Kayaku Co., Ltd.) Use a mixture of methylene dianiline and 4,4'-methylene dianiline, viscosity in a temperature environment of 25 ° C: 150 to 250 mPas Can be.
脂環式ァミ ン化合物を配合する場合、 脂環式ァミ ン化合物は、 2 5 °C温度環境 下の粘度が 1〜 5 0 0 m P a · sの範囲にあるのが良く、 好ましくは 1〜3 0 0 m P a · sの範囲にあるのが良い。 5 0 0 m P a · sを越えると、 エポキシ樹脂 組成物の粘度が高くなり、 強化繊維への含浸性が低下することがある。 さらに、 脂環式アミ ン化合物は、 複合材料の耐熱性と圧縮強度などの機械物性を高めるた めに、 次式 ( 5 ) を満足するのが好ましく、 次式 ( 5 ' ) を満足するのがより好 ましい。  When an alicyclic amine compound is blended, the alicyclic amide compound preferably has a viscosity in a temperature environment of 25 ° C. in the range of 1 to 500 mPas, and is preferably used. Is preferably in the range of 1 to 300 mPa · s. When the viscosity exceeds 500 mPa · s, the viscosity of the epoxy resin composition increases, and the impregnating property to the reinforcing fibers may decrease. Further, the alicyclic amine compound preferably satisfies the following formula (5), and preferably satisfies the following formula (5 '), in order to enhance the mechanical properties such as heat resistance and compressive strength of the composite material. Is more preferred.
0 ≤ β ≤ 4 ( 5 )  0 ≤ β ≤ 4 (5)
0 ≤ β ≤ 3 ( 5 ' )  0 ≤ β ≤ 3 (5 ')
ここで、 ;3は脂環式アミン化合物が分子内に有するアミ ノ基の任意の 2個を結 んでなる分子鎖の内、 環に属さない原子の数が最多となる分子鎖における該原子 の数を表わす。  Here,; 3 is the number of atoms not belonging to a ring in the molecular chain formed by connecting any two of the amino groups in the molecule of the alicyclic amine compound, and Represents a number.
i3は、 分子鎖の柔軟性の指標となるものである。 が大きい程、 分子鎖が柔軟 性を増し、 ひいては複合材料中のマ トリ ックス樹脂のネッ トワーク構造が柔軟性 に富む構造となり、 複合材料の耐熱性や圧縮強度などの機械物性が不足する傾向 力 ある。  i3 is an index of the flexibility of the molecular chain. The larger the molecular weight, the greater the flexibility of the molecular chains and, consequently, the more flexible the network structure of the matrix resin in the composite material, which tends to result in a lack of mechanical properties such as heat resistance and compressive strength of the composite material. is there.
尚、 上記 |3値が異なる脂環式ァミ ン化合物が複数存在する場合は、 モル平均に より全体の /3値を算出するものとする。  In the case where a plurality of alicyclic amide compounds having different | 3 values are present, the total / 3 value is calculated by the molar average.
また、 脂環式ァミ ン化合物は、 エポキシ樹脂組成物の粘度が上昇し過ぎるのを 避けるため、 脂環式ァミン化合物の分子内に有するァミノ基が 2級炭素あるいは 3級炭素と結合していることが好ましい。 これは、 1級炭素に結合しているアミ ンは、 2級炭素や 3級炭素に結合しているァミンより、 通常エポキシ基との反応 速度が大きいことに基づく ものである。 かかる効果が十全に発現されるためには、 2級または 3級炭素に結合しているアミノ基数が全脂環式アミン化合物のアミ ノ 基数の 5 0 %以上であることが好ましく、 より好ましくは 7 0 %以上、 更に好ま しくは 9 0 %以上である。 Further, in the alicyclic amine compound, in order to avoid an excessive increase in the viscosity of the epoxy resin composition, an amino group in the molecule of the alicyclic amine compound is bonded to a secondary carbon or a tertiary carbon. Is preferred. This is based on the fact that amines bonded to primary carbon usually react faster with epoxy groups than amines bonded to secondary or tertiary carbon. In order for this effect to be fully exhibited, the number of amino groups bonded to the secondary or tertiary carbon is preferably at least 50% of the number of amino groups of the total alicyclic amine compound, more preferably Is more than 70%, more preferable Or 90% or more.
さらに、 脂環式ァミン化合物は、 複合材料の耐熱性や圧縮強度などの機械物性 を高めるために、 脂環式ァミン化合物の分子内に有する全てのァミノ基が環構造 を構成する炭素に結合しているのが好ましい。  Furthermore, in order to improve mechanical properties such as heat resistance and compressive strength of the composite material, all amino groups contained in the molecule of the alicyclic amine compound are bonded to carbon constituting the ring structure. Is preferred.
脂環式ァミン化合物の市販品としては、 アミキュア P ACM (登録商標、 エア — ' プロダクツ社製、 4, 4 ' —メチレンビスシクロへキシルァミン、 2 5°C温 度環境下の粘度: 8 0 m P a · s、 i3 = 1 ) 、 アンカミ ン 2 0 4 9 (登録商標、 エアー . プロダクツ社製、 2 , 2 ' —ジメチルー 4, 4 ' —メチレンビスシクロ へキシルァミン、 2 5°C温度環境下の粘度: 1 2 0 m P a ' s、 /3 = 1 ) 、 D C H— 9 9 (品番、 デュポン社製、 1 , 2—シクロへキサンジァミ 、 2 1 °C温度 環境下の粘度 : 7 m P a · s、 β = 0 ) 、 1, 8—メンセンジァミン (シグマ一 アルドリ ツチ社製、 2 5 °C温度環境下の粘度: 8 0 m P a ' S、 i3 = l ) 、 イソ ホロンジァミン (ヒュルス社製、 2 5 °C温度環境下の粘度: 1 3 m P a · s、 β = 1 ) 、 1, 3—ビスアミノメチルシクロへキサン (三菱瓦斯化学 (株) 製、 2 5 °C温度環境下の粘度: 9 m P a ' s、 ]3 = 2) 、 2, 5 ( 6 ) —ビスアミノメ チルノルボルナン (三井化学 (株) 製、 2 5°C温度環境下の粘度 : 1 6 m P a · s、 /3 = 2 ) などを使用することができる。 Commercially available alicyclic amine compounds include Amicure P ACM (registered trademark, Air — '4,4', methylenebiscyclohexylamine, viscosity at 25 ° C temperature environment: 80 m. Pas, i3 = 1), Ankamin 204 (registered trademark, Air Products), 2,2'-dimethyl-4,4'-methylenebiscyclohexylamine, at a temperature of 25 ° C Viscosity: 120 mPa a's, / 3 = 1), DCH-99 (part number, manufactured by Dupont, 1,2-cyclohexanediamine, 21 ° C temperature Viscosity under environment: 7 mP a · s, β = 0) , 1, 8- Mensenjiamin (sigma one Aldori Tutsi Inc., 2 5 ° C temperature environment of viscosity: 8 0 m P a 'S , i3 = l), iso Horonjiamin (Huls Viscosity at 25 ° C temperature environment: 13 mPa · s, β = 1), 1,3-bisaminomethylcyclohexane (Mitsubishi Gas Chemical Co., Ltd. ), Viscosity at 25 ° C temperature environment: 9 mPa's,] 3 = 2), 2,5 (6) -bisaminomethyl norbornane (Mitsui Chemicals, 25 ° C temperature environment) Lower viscosity: 16 mPa · s, / 3 = 2) etc. can be used.
本発明においては、 芳香族ァミン化合物と脂環式ァミン化合物以外のアミン化 合物を硬化剤として配合することもできる。  In the present invention, an amine compound other than the aromatic amine compound and the alicyclic amine compound may be blended as a curing agent.
本発明において、 エポキシ樹脂組成物中に含まれるアミン化合物の活性水素 (活性水素とは、 有機化合物において窒素、 酸素、 硫黄などと結合していて反応 性が高い水素原子であり、 架橋作用に大きな役割を果たすものである) の数は、 4〜 2 4であることが好ましい。 より好ましくは 4〜 1 6、 更に好ましくは 4〜 8である。 前記数値範囲の下限値を下回ると、 複合材料中のマ ト リ ックス樹脂に おいて、 架橋密度が小さくなるために、 耐熱性、 弾性率が低下し、 ひいては複合 材料における耐熱性、 圧縮強度などの機械物性が低下する傾向がある。 上限値を 上回ると、 複合材料中のマトリ ックス樹脂において、 架橋密度が大きくなりすぎ るために脆くなり、 その結果、 複合材料における靭性が不足する傾向がある。 な お、 複数種のアミン化合物が混合されている場合、 活性水素数は重量平均にて算 出する。 あるいは、 活性水素数が 4以上のァミ ン化合物は、 全ァミ ン化合物の 5 0〜 1 00 %が好ましい。 In the present invention, the active hydrogen of the amine compound contained in the epoxy resin composition (active hydrogen is a highly reactive hydrogen atom that is bonded to nitrogen, oxygen, sulfur, etc. in an organic compound, and has a large cross-linking effect. Preferably plays a role of 4 to 24. More preferably, it is 4 to 16, more preferably 4 to 8. If the value falls below the lower limit of the above numerical range, the crosslink density of the matrix resin in the composite material decreases, so that the heat resistance and the elastic modulus decrease, and further, the heat resistance, compressive strength, etc. of the composite material Tends to decrease mechanical properties. Above the upper limit, the matrix resin in the composite material becomes brittle because the crosslink density is too high, and as a result, the toughness of the composite material tends to be insufficient. When multiple types of amine compounds are mixed, the active hydrogen number is calculated by weight average. Put out. Alternatively, the amine compound having an active hydrogen number of 4 or more preferably accounts for 50 to 100% of all amine compounds.
また、 場合により異なるが、 全ァミン化合物における芳香族ァミン化合物及び Z又は脂環式ァミン化合物は 50〜 1 00重量%であることが好ましい。  Further, although different depending on the case, it is preferable that the content of the aromatic amine compound and the Z or alicyclic amine compound in the total amine compound is 50 to 100% by weight.
なお、 主剤と 化剤は、 次式 (6) を満たすように混合比を決定して混合する のが好ましい。  It is preferable that the main agent and the agent are mixed at a mixing ratio determined so as to satisfy the following formula (6).
0. 5≤ R/R e≤ 2 ( 6 )  0.5 ≤ R / R e≤ 2 (6)
ここで、 Rは硬化剤と主剤の重量比を、 R eは主剤 1 g当たりのエポキシ基のモ ル数と硬化剤 1 g当たりの活性水素のモル数との比を表わす。 Here, R represents the weight ratio of the curing agent to the main agent, and Re represents the ratio of the number of moles of epoxy groups per g of the main agent to the number of moles of active hydrogen per g of the curing agent.
さらに本発明においては、 最高温度 T c (°C) の低下や最高温度の保持時間 t c (分) の短縮を目的として、 適当な硬化促進剤を配合することもできる。 硬化 促進剤には公知のものが使用できる。 具体的には、 米国特許第 56 888 7 7号 明細書に開示されているようなスルホン酸エステル、 米国特許第 455434 2 号明細書に開示されているようなスルホニゥム塩などが好ましく用いられる。 ま た、 本発明においては、 各種目的に応じて着色剤、 界面活性剤、 難燃剤などを適 宜配合することもできる。 但し、 樹脂マ ト リ クス (強化繊維や粒状、 短繊維状フ イラ一などを除く) 中に占められるエポキシ樹脂 (硬化剤を含む) の比率は 80 重量%以上であることが好ましい。  Further, in the present invention, an appropriate curing accelerator can be blended for the purpose of lowering the maximum temperature Tc (° C) and shortening the maximum temperature holding time tc (minute). Known curing accelerators can be used. Specifically, sulfonic acid esters as disclosed in U.S. Pat. No. 5,888,877, and sulfonium salts as disclosed in U.S. Pat. No. 4,554,432 are preferably used. Further, in the present invention, a coloring agent, a surfactant, a flame retardant, and the like can be appropriately blended according to various purposes. However, it is preferable that the ratio of the epoxy resin (including the curing agent) occupied in the resin matrix (excluding reinforcing fibers, granular, and short-fiber filters) is 80% by weight or more.
本発明によるエポキシ樹脂組成物は、 RTM法を使用した複合材料の製造に好 適に用いられる。 近年の RTM法一般の技術に関する総説 (SAMPE Journal, Vol. 34, No. 6, pp.7-19) には、 R T M法類似の成形法として、 V A R T M (Vacuum - Assisted RTM)法、 V I M P (Variable Infusion Molding Process)法、 T E RT M (Thermal- Expansion RTM)法、 R A R T M (Rubber-Assisted RTM)法、 R I RM (Resin Injection Recirculation Molding)法、 C R T M (Continuous RTM)法、 C I RTM (Co-Injection Resin Transfer Molding)法、 R L I (Resin Liquid I nfusion)法、 S CR I MP (Seeman' s Composite Resin Infusion Molding Proce ss)法などが紹介されているが、 本発明によるエポキシ樹脂組成物は、 かかる R TM法類似の成形法にも好適に用いることができる。  The epoxy resin composition according to the present invention is suitably used for producing a composite material using the RTM method. A review of recent RTM methods in general (SAMPE Journal, Vol. 34, No. 6, pp. 7-19) states that the VARTM (Vacuum-Assisted RTM) method, VIMP (Variable Infusion Molding Process), TERTM (Thermal-Expansion RTM), RARTM (Rubber-Assisted RTM), RIRM (Resin Injection Recirculation Molding), CRTM (Continuous RTM), CI RTM (Co-Injection Resin) Transfer Molding), RLI (Resin Liquid Infusion), SCR IMP (Seeman's Composite Resin Infusion Molding Process), etc. are introduced. It can also be suitably used for a molding method similar to the method.
RTM法に用いるプリ フォームには、 炭素繊維、 ガラス繊維、 ァラミ ド繊維な どの強化繊維を、 マッ ト、 織物、 ニッ ト、 ブレイ ド、 一方向シートなどに加工し たものが用いられる。 特に、 軽量かつ高強度の部材を得るためには、 炭素繊維が 好ましく用いられる。 強化繊維の繊維重量%は 3 0〜 8 5が好ましい。 Preforms used in the RTM method include carbon fiber, glass fiber, and aramide fiber. Any reinforcing fibers processed into mats, wovens, knits, braids, unidirectional sheets, etc. are used. Particularly, in order to obtain a lightweight and high-strength member, carbon fiber is preferably used. The fiber weight% of the reinforcing fibers is preferably from 30 to 85.
さらに、 本発明によるエポキシ樹脂組成物は、 液状のエポキシ樹脂を室温付近 で強化繊維に含浸させる工法、 具体的にはハンドレ,ィアップ法、 フィラメントヮ ィンディング法、 プルトルージョン法などにも好適に用いることができる。 実施例 以下、 実施例によ り、 本発明をさらに詳細に説明する。 なお、 実施例、 比較例 においては、 各種サンプルの作成、 物性値の測定は次に示すよ うな条件で行った。 これら実施例、 比較例の結果は、 表 1〜 5に纏めて示した。  Further, the epoxy resin composition according to the present invention can be suitably used for a method of impregnating a reinforcing fiber with a liquid epoxy resin at around room temperature, specifically, a handle, up method, a filament binding method, a pultrusion method and the like. it can. Examples Hereinafter, the present invention will be described in more detail with reference to Examples. In Examples and Comparative Examples, preparation of various samples and measurement of physical properties were performed under the following conditions. The results of these examples and comparative examples are summarized in Tables 1 to 5.
A. 粘度 A. Viscosity
J I S Z 8 8 0 3における、 円錐一平板形回転粘度計を使用した粘度の測定 方法に従い、 2 5 °C温度環境下、 主剤と硬化剤それぞれについて測定した。  According to the method of measuring the viscosity using a conical one-plate rotary viscometer in JIS Z8883, the measurement was performed for each of the main agent and the curing agent under a temperature environment of 25 ° C.
また、 主剤と硬化剤とを混合 (視認により均一に分散したことを確認してから 暫く経過するまでスパチュラにて撹拌、 全体で約 3分間) して得たエポキシ樹脂 組成物 1 0 0 gを、 半径 2 5 mmの円形の底と、 内径 5 0 mm、 高さ 7 5 mmの 円筒部分からなるポリエチレン製の力ップに入れ、 2 5 °Cにおいて 5分間経過し た時点での粘度 5と、 2 5 °Cにおいて 6 0分経過した時点での粘度 。、 2 5 °Cにおいて 1 2 0分経過した時点での粘度 η 1 20、 2 5 °Cにおいて 2 4 0分経過 した時点での粘度 7 24。は、 上記の方法に従って測定した。 Also, 100 g of the epoxy resin composition obtained by mixing the main agent and the curing agent (by confirming that they are uniformly dispersed by visual observation, stirring with a spatula until a while has passed, and for a total of about 3 minutes). , a circular bottom having a radius 2 5 mm, an inner diameter of 5 0 mm, placed in a polyethylene-made force-up consisting of cylindrical portion of the height 7 5 mm, the viscosity at the time of after five minutes at 2 5 ° C 5 And viscosity at 60 ° C. at 25 ° C. , 2 5 ° viscosity eta 1 20 at the time of the lapse of one 2 0 min at C, 2 5 ° Viscosity 7 24 at the time of elapse 2 4 0 minutes in C. Was measured according to the method described above.
ここでは、 粘度が 1〜 1 0 0 m P a · sの場合は、 東機産業 (株) 製、 E型粘 度計 (E L Dタイプ) を用い、 粘度が 1 0 0〜 5 0 0 0 0 m P a · sの場合は、 東機産業 (株) 製、 E型粘度計 (E H Dタイプ) を用いた。 E型粘度計のロータ 一は、 角度 1 ° 3 4 ' とし、 半径を 2 4 mmとした。 '  Here, if the viscosity is 1 to 100 mPa · s, use a E-type viscometer (ELD type) manufactured by Toki Sangyo Co., Ltd. In the case of mPas, an E-type viscometer (EHD type) manufactured by Toki Sangyo Co., Ltd. was used. The rotor of the E-type viscometer had an angle of 1 ° 34 ′ and a radius of 24 mm. '
B . 樹脂硬化物板の作成  B. Preparation of cured resin plate
エポキシ樹脂と硬化剤とを混合して得たエポキシ樹脂組成物を厚み 2 mmの板 状キヤビティ一を有する型に注入し、 オーブンを用いて所定の硬化条件で硬化せ しめ、 厚み 2 mm樹脂硬化物板を得た。 The epoxy resin composition obtained by mixing the epoxy resin and the curing agent is poured into a mold having a plate-shaped cavity with a thickness of 2 mm, and cured using an oven under the prescribed curing conditions. Then, a resin cured product plate having a thickness of 2 mm was obtained.
C. ガラス転移温度 T g C. Glass transition temperature T g
上記 Bの方法で得た樹脂硬化物板について、 S ACMA S RM 1 8 R— 9 4 に準拠し、 DMA法によりガラス転移温度 T gを測定した。 ここでは、 レオメ ト リ ックス社製ダイナミ ックアナライザー RDA I I型を用い、 昇温速度 5 0 111 i n、 測定周波数 1 H zで測定した。 D. 引張弾性率 E  The glass transition temperature Tg of the cured resin sheet obtained by the above method B was measured by the DMA method in accordance with S ACMA S RM 18 R-94. Here, the measurement was performed at a heating rate of 50 111 in and a measurement frequency of 1 Hz using a dynamic analyzer RDAII type manufactured by Rheometrics. D. Tensile modulus E
上記 Bの方法で得た樹脂硬化物板について、 J I S K 7 1 1 3に従い、 小型 The resin cured product plate obtained by the method B above is compact in accordance with JIS K 7 13
1 ( 1 2 ) 号形試験片を作成し、 2 3°C温度環境下でテンシロンにより測定し、 応力一歪曲線を得た。 歪みが 0. 0 0 1のときの引張応力 σ。.。01 (G P a ) 、 歪みが 0. 0 0 3のときの引張応力 σ。. 。。3 (G P a ) から、 次式によ り引張弾 性率 Eを求めた。 A No. 1 (1 2) test piece was prepared and measured with a Tensilon at a temperature of 23 ° C to obtain a stress-strain curve. Tensile stress σ when strain is 0.001. .. 01 (GP a), the tensile stress σ when the strain is 0.03. . . From 3 (GP a), the tensile elastic modulus E was determined by the following equation.
E (G P a ) = (σ。.。03— σ。.。01) / (0. 0 0 3 - 0. 0 0 1 ) E (GP a) = (σ ... 03 -σ ... 01 ) / (0. 0 0 3-0. 0 0 1)
Ε. 複合材料の作製 Ε. Preparation of composite materials
RTM法により複合材料を作製した。 金型には、 縦 2 0 0 mm、 横 2 0 0 mm、 高さ 2. 0 mmのキヤビティを有する、 上型と下型からなるものを用いた。 プリ フォームとしては、 縦 1 9 0 mm、 横 1 9 0 mmの炭素繊維織物 (東レ (株) 製、 型番 : C07 3 7 3、 1 9 3 g/m2) を、 繊維方向を同一方向に揃えて 1 0枚 積層したものを用いた。 Composite materials were prepared by RTM method. The mold used was an upper mold and a lower mold having cavities of 200 mm in length, 200 mm in width, and 2.0 mm in height. The pre-form, vertical 1 9 0 mm, lateral 1 9 0 mm carbon fiber fabric (Toray Industries Co., Ltd., model number: C07 3 7 3, 1 9 3 g / m 2) and the fiber direction in the same direction A stack of 10 sheets was used.
先ず、 金型のキヤ ビティにプリ フォームをセッ トし、 金型側面にある吸引口 ( 1箇所) に真空ポンプを接続し、 金型内を 0. 1 mmH g以下に減圧した後、 主剤と硬化剤とを混合後、 3 0分間減圧下に静置して脱泡を行った樹脂組成物を、 上型中央部にある樹脂注入口から注入し、 プリフォームに含浸させた。 樹脂が吸 引口から流出した時点で、 樹脂注入口、 続いて吸引口を閉じ、 オーブンで加熱し、 樹脂組成物を硬化せしめて平板状の複合材料を得た。  First, set the preform in the mold cavity, connect a vacuum pump to the suction port (one location) on the side of the mold, and reduce the pressure inside the mold to 0.1 mmHg or less. After mixing with the curing agent, the resin composition, which had been defoamed by being left under reduced pressure for 30 minutes, was injected from the resin injection port at the center of the upper mold to impregnate the preform. When the resin flowed out of the suction port, the resin injection port and subsequently the suction port were closed, and heated in an oven to cure the resin composition to obtain a flat composite material.
F. 0。 圧縮強度  F. 0. Compressive strength
上記 Eの方法で得た平板状の複合材料について、 J I S K 7 0 7 6における A法に従って 0° 圧縮強度を測定した。  The 0 ° compressive strength of the flat composite material obtained by the method E was measured according to the method A in JIS K7706.
(実施例 1 )  (Example 1)
エポキシ樹脂と して、 ェピコー ト 6 3 0、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合後の粘度り と、 。、 V 7 。を測定した。 ここで は、 混合比 (主剤重量 Z硬化剤重量の比率、 以下、 混合比 Rと略記) は 0. 4 6 4とした。 Epicoate 630 was used as the epoxy resin, and Epicure W was used as the curing agent. Each viscosity, viscosity after mixing, and. , V7. Was measured. Here, the mixing ratio (the ratio of the weight of the main agent and the weight of the curing agent, hereinafter abbreviated as mixing ratio R) was set to 0.464.
さらに、 次の手順で、 樹脂硬化物板を作成した。  In addition, a resin cured product plate was prepared by the following procedure.
( 1 ) 1. 5。Cノ分で 1 8 0°Cまで昇温し、  (1) 1.5. The temperature is raised to 180 ° C by the amount of C,
( 2) 1 8 0°Cに到達後 1 2 0分間保持し、  (2) After reaching 180 ° C, hold for 120 minutes,
(3) 2. 5 °Cノ分で 2 5 °Cまで降温した。  (3) The temperature was lowered to 25 ° C at 2.5 ° C.
得られた樹脂硬化物板について、 'ラス転移温度 T g、 引張弾性率 Eを測定し た。  With respect to the obtained cured resin plate, the 'laser transition temperature T g and the tensile modulus E were measured.
(実施例 2)  (Example 2)
エポキシ樹脂として、 ェピコー ト 6 3 0、 硬化剤として、 アンカミン 2 0 4 9 を用い、 それぞれの粘度、 混合後の樹脂組成物の粘度 7) と、 7} 、 71 77 。を測定した。 ここでは、 混合比 Rは 0. 6 1 3 と した。  Using epoxy resin 630 as an epoxy resin and ancamine 209 as a curing agent, the respective viscosities and the viscosity of the resin composition after mixing 7), 7}, 71 77 are used. Was measured. Here, the mixing ratio R was 0.6 13.
さらに、 次の手順で、 樹脂硬化物板を作成した。  In addition, a resin cured product plate was prepared by the following procedure.
( 1 ) 1. 5°CZ分で 6 0 °Cまで昇温し、  (1) Heat up to 60 ° C in 1.5 ° CZ minutes,
( 2 ) 6 0 °Cで 1 8 0分間保持し、  (2) Hold at 60 ° C for 180 minutes,
(3) 1. 5。じ 分で 1 8 0 °Cまで昇温し、  (3) 1.5. Temperature to 180 ° C in the same minute,
(4) 1 8 0 °Cで 1 2 0分間保持し、  (4) Hold at 180 ° C for 120 minutes,
( 5) 2. 5 °〇ノ分で 2 5 °Cまで降温した。  (5) The temperature was lowered to 25 ° C in 2.5 ° C.
得られた樹脂硬化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定し た。  With respect to the obtained cured resin plate, the glass transition temperature T g and the tensile modulus E were measured.
(実施例 3)  (Example 3)
エポキシ樹脂として、 ェピコー ト 6 3 0の 6 0重量部と、 ェピコート 8 0 7の 4 0重量部との混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混 合後の樹脂組成物の粘度 5と、 6。、 7? 。を測定した。 ここでは、 混 合比 Rは 0. 3 8 4とした。 A mixture of 60 parts by weight of Epicoat 630 and 40 parts by weight of Epicoat 807 as an epoxy resin, and Epicure W as a curing agent, the respective viscosities and the viscosity of the resin composition after mixing are used. 5 and 6 . , 7? Was measured. Here, the mixing ratio R was 0.384.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 4) エポキシ樹脂として、 ェピコート 6 30の 70重量部と、 へロキシ 1 0 7.の 3 0重量部との混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合 後の榭脂組成物の粘度 5と、 。、 τ) り 24。を測定した。 ここでは、 混合 比 Rは 0. 409とした。 (Example 4) A mixture of 70 parts by weight of Epicote 630 and 30 parts by weight of Heroxy 107 as an epoxy resin and Epicure W as a curing agent were used, and their viscosities and viscosity of the resin composition after mixing were 5 When, . , Τ) r 24 . Was measured. Here, the mixing ratio R was 0.409.
さらに、 実施例 1 と同様の手順で、 榭脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。 Further, a cured resin plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 5)  (Example 5)
ェポキシ樹脂として、 ェピコ一ト 6 30の 90重量部と、 へロキシ 68の 1 0 重量部との混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合後 の樹脂組成物の粘度 7? 5と、 り 6。、 7)! 20, η 24。を測定した。 ここでは、 混合比 Rは 0. 448とした。 A mixture of 90 parts by weight of Epoxy 630 and 10 parts by weight of Heroxy 68 as the epoxy resin, and Epicure W as a curing agent, the respective viscosities and the viscosity of the resin composition after mixing 7 to 5 6 , 7)! 20 , η 24 . Was measured. Here, the mixing ratio R was 0.448.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 6)  (Example 6)
エポキシ樹脂と して、 ェピコ一 ト 6 30の 90重量部と、 へロキシ 6 8の 1 0 重量部との混合物、 硬化剤としてアンカミン 204 9を用い、 それぞれの粘度、 混合後の樹脂組成物の粘度り と、 7 。、 77 。を測定した。 ここでは、 混合比 Rは 0. 592と した。  A mixture of 90 parts by weight of Epoxy 630 and 10 parts by weight of Heroxy 68 as an epoxy resin and Ancamine 2049 as a curing agent were used. Viscosity and 7. , 77. Was measured. Here, the mixing ratio R was 0.592.
さらに、 実施例 2と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 2. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 7 )  (Example 7)
エポキシ樹脂として、 ェピコ一ト 6 30の 90重量部と、 へロキシ 6 8の 1 0 重量部との混合物、 硬化剤としてアンカミン 204 9を用い、 それぞれの粘度、 混合後の樹脂組成物の粘度り 5と、 。、 η 1 20 , 77 24。を測定した。 ここでは、 混合比 Rは 0. 592とした。 A mixture of 90 parts by weight of epoxy 630 and 10 parts by weight of heroxy 68 as an epoxy resin, and ancamine 2049 as a curing agent, each having a viscosity and a viscosity of the resin composition after mixing. 5 and. , Η 1 20 , 77 24 . Was measured. Here, the mixing ratio R was 0.592.
さらに、 次の手順で、 樹脂硬化物板を作成した。  In addition, a resin cured product plate was prepared by the following procedure.
( 1 ) 1. 5°CZ分で 60°Cまで昇温し、  (1) Heat up to 60 ° C in 1.5 ° CZ minutes,
(2) 60 °Cで 1 80分間保持し、  (2) Hold at 60 ° C for 180 minutes,
(3) 1. 5°CZ分で 1 30°Cまで昇温し、 (4) 1 3 0 °Cで 1 2 0分間保持し、 (3) Heat up to 130 ° C in 1.5 ° CZ minutes, (4) Hold at 130 ° C for 120 minutes,
( 5) 2. 5°CZ分で 2 5°Cまで降温した。  (5) The temperature was lowered to 25 ° C in 2.5 ° CZ minutes.
得られた樹脂硬化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定し た。 With respect to the obtained cured resin plate, the glass transition temperature T g and the tensile modulus E were measured.
(実施例 8 )  (Example 8)
エポキシ樹脂として、 ェピコー ト 6 3 0の 7 0重量部と、 ェポミ ック R 7 1 0 の 3 0重量部との混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合後の樹脂組成物の粘度?7 5と、 "、 , 77 。を測定した。 ここでは、 混合比 Rは 0. 4 0 2とした。 A mixture of 70 parts by weight of Epicote 63 and 30 parts by weight of Epomic R710 as an epoxy resin, and an epoxy resin W as a curing agent. Viscosity? 7 5 ",, 77. Was measured. Here, the mixing ratio R was set to 0.4 0 2.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 9)  (Example 9)
エポキシ樹脂として、 ェピコ一ト 6 3 0の 7 0重量部と、 G ANの 3 0重量部 との混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合後の樹脂 組成物の粘度 7? 5と、 7? 6。、 η 24。を測定した。 ここでは、 混合比 Rは 0. 4 3 3 とした。 A mixture of 70 parts by weight of epoxy 630 and 30 parts by weight of GAN as an epoxy resin and epicure W as a curing agent were used, and the respective viscosities and viscosities of the resin composition after mixing were 7? 5, 7? 6. , Η 24 . Was measured. Here, the mixing ratio R was 0.433.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 1 0 )  (Example 10)
エポキシ樹脂と して、 ェピコー ト 6 3 0の 7 0重量部と、 G ANの 3 0重量部 との混合物、 硬化剤としてアンカミン 2 0 4 9を用い、 それぞれの粘度、 混合後 の樹脂組成物の粘度 77 5と、 7) 6。、 ?7 り 。を測定した。 ここでは、 混合比 Rは 0. 5 7 2 とした。 A mixture of 70 parts by weight of Epicote 63 and 30 parts by weight of GAN as an epoxy resin, and ancamine 204 as a curing agent, each having a viscosity and a resin composition after mixing The viscosity of 77 5 and 7) 6 . ,? 7 ri. Was measured. Here, the mixing ratio R was 0.572.
さらに、 実施例 2と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 2. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 1 1 )  (Example 11)
エポキシ榭脂と して、 ェピコート 6 3 0の 7 0重量部と、 デナコール E X 7 2 1の 3 0重量部との混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合後の樹脂組成物の粘度 と、 、 77 ! 77 。を測定した。 ここでは、 混合比 Rは 0. 4 1 2とした。 A mixture of 70 parts by weight of Epicote 630 and 30 parts by weight of Denacol EX 721 as epoxy resin, using Epicure W as a curing agent, the respective viscosities, and the resin composition after mixing And the viscosity of the 77! 77. Was measured. here, The mixing ratio R was 0.412.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。 Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 1 2 )  (Example 12)
エポキシ樹脂として、 ェピコ一ト 8 28の 90重量部と、 へロキシ 68の 1 0 重量部との混合物、 硬化剤としてイソホロンジアミンを用い、 それぞれの粘度、 混合後の樹脂組成物の粘度り 5と、 。、 Ό 。を測定した。 ここでは、 混合比 Rは 0. 23 2とした。 A mixture of 90 parts by weight of Epoxy 828 and 10 parts by weight of Heroxy 68 as an epoxy resin, and isophorone diamine as a curing agent were used, and the respective viscosities and the viscosity of the resin composition after mixing were 5 ,. , Ό. Was measured. Here, the mixing ratio R was 0.232.
さらに、 実施例 7と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 7. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 1 3 )  (Example 13)
エポキシ樹脂として、 ェピコート 6 30の 30重量部と、 ェピコー ト 80 7の 70重量部との混合物、 硬化剤としてイソホロンジァミンの 50重量部と、 アン カミン 204 9の 50重量部との混合物を用い、 それぞれの粘度、 混合後の樹脂 組成物の粘度 7 5と、 6。、 12。、 77 24。を測定した。 ここでは、 混合比 Rは 0. 3 58と した。 A mixture of 30 parts by weight of Epikote 630 and 70 parts by weight of Epicoat 807 as an epoxy resin, a mixture of 50 parts by weight of isophorone diamine as a curing agent and 50 parts by weight of ancamine 2049 The viscosities used were the viscosities of the resin composition after mixing 75 and 6, respectively . , 12 . , 77 24 . Was measured. Here, the mixing ratio R was 0.358.
さらに、 実施例 7と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 7. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(実施例 1 4)  (Example 14)
実施例 5と同じエポキシ樹脂組成物を用い、 次の手順で、 複合材料を作成した。 (1 ) 1. 5°CZ分で 60°Cまで昇温し、  Using the same epoxy resin composition as in Example 5, a composite material was prepared in the following procedure. (1) 1.The temperature is raised to 60 ° C in 5 ° CZ minutes,
( 2 ) 90 °Cで 600分間保持し、  (2) Hold at 90 ° C for 600 minutes,
(3) 1. 5°CZ分で 1 80°Cまで昇温し、  (3) Heat up to 180 ° C in 1.5 ° CZ minutes,
(4 ) 1 8 0°Cで 1 20分間保持し、  (4) Hold at 180 ° C for 120 minutes,
( 5 ) 2. 5°CZ分で 2 5°Cまで降温した。  (5) The temperature was lowered to 25 ° C in 2.5 ° CZ minutes.
得られた複合材料の表面及び断面を光学顕微鏡で観察したが、 未含浸部、 ボイ ドは確認できず、 その品位は良好であった。 次にこの複合材料について、 0° 圧 縮強度を測定した。  Observation of the surface and cross section of the obtained composite material with an optical microscope revealed no unimpregnated portions and voids, and the quality was good. Next, the 0 ° compression strength of this composite material was measured.
(実施例 1 5) 実施例 6 と同じエポキシ樹脂組成物を用い、 次の手順で、 複合材料を作成した。(Example 15) Using the same epoxy resin composition as in Example 6, a composite material was prepared in the following procedure.
( 1 ) 1 . 5 °CZ分で 6 0 °Cまで昇温し、 (1) The temperature is raised to 60 ° C in 1.5 ° CZ minutes,
( 2 ) 6 0 °Cで 1 8 0分間保持し、  (2) Hold at 60 ° C for 180 minutes,
( 3 ) 1 . 5 °CZ分で 1 8 0 °Cまで昇温し、  (3) The temperature is raised to 180 ° C in 1.5 ° CZ minutes,
( 4 ) 1 8 0 °Cで 1 2 0分間保持し、  (4) Hold at 180 ° C for 120 minutes,
( 5 ) 2 . 5 °CZ分で 2 5 °Cまで降温した。  (5) The temperature was lowered to 25 ° C in 2.5 ° CZ minutes.
得られた複合材料の表面及び断面を光学顕微鏡で観察したが、 未含浸部、 ボイ ドは確認できず、 その品位は良好であった。 次にこの複合材料について、 0 ° 圧 縮強度を測定した。  Observation of the surface and cross section of the obtained composite material with an optical microscope revealed no unimpregnated portions and voids, and the quality was good. Next, the 0 ° compression strength of this composite material was measured.
(比較例 1 )  (Comparative Example 1)
ェポキシ樹脂として、 ェピコー ト 6 3 0、 硬化剤と してジェファーミン D 2 3 0 (登録商標、 ジエーファーソンケミカル社製、 ポリオキシプロピレンジァミン、 2 5 °C温度環境下の粘度 : 9 m P a · s、 β = 9. 8 ) を用い、 それぞれの粘度、 混合後の樹脂組成物の粘度 7 ^と、 、 η 24。を測定した。 ここでは、 混合比 Rは 0 . 6 2 1 と した。 Epoxy resin 630 as an epoxy resin, Jeffamine D 230 as a curing agent (registered trademark, manufactured by Jefferson Chemical Co., Ltd., polyoxypropylenediamine, viscosity at 25 ° C temperature environment: 9) m Pa · s, β = 9.8) and the respective viscosities, the viscosity of the resin composition after mixing 7 ^, and η 24 . Was measured. Here, the mixing ratio R was 0.621.
さらに、 実施例 2と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 2. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(比較例 2 )  (Comparative Example 2)
エポキシ樹脂として、 ェピコー ト 8 2 8、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合後の樹脂組成物の粘度 7? 5と、 、 77 , 24。を測定 した。 ここでは、 混合比 Rは 0. 2 8 3 とした。 As the epoxy resin, Epiko preparative 8 2 8, using Epikyua W as a curing agent, a viscosity 7? 5 of the respective viscosity, the resin composition after mixing, 77, 24. Was measured. Here, the mixing ratio R was 0.283.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(比較例 3 )  (Comparative Example 3)
エポキシ樹脂として、 ェピコ一 ト 8 2 8、 硬化剤としてアンカミン 2 0 4 9を 用い、 それぞれの粘度、 混合後の樹脂組成物の粘度 7? と、 ?7 。、 77 77 を測定した。 ここでは、 混合比 Rは 0 . 3 7 4 とした。  Using epoxy resin 828 as the epoxy resin and Ancamine 209 as the curing agent, the respective viscosities and the viscosity of the resin composition after mixing are 7? 7. , 77 77 were measured. Here, the mixing ratio R was set to 0.374.
さらに、 実施例 2と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。 (比較例 4) Further, a resin cured product plate was prepared in the same procedure as in Example 2. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured. (Comparative Example 4)
ェポキシ樹脂として、 ェピコー ト 8 2 8、 硬化剤と してジェファーミン D 2 3 Epoxy resin as epoxy resin, Jeffamine D23 as curing agent
0を用い、 それぞれの粘度、 混合後の榭脂組成物の粘度 7? と、 7} 、 77 77Using 0, each viscosity, viscosity of the resin composition after mixing 7 ?, 7}, 77 77
240を測定した。 ここでは、 混合比 Rは 0. 3 7 9とした。 240 was measured. Here, the mixing ratio R was 0.379.
さらに、 実施例 2 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 2. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(比較例 5)  (Comparative Example 5)
ェポキシ樹脂として、 ェピコート 6 3 0の 4 0重量部と、 へロキシ 1 0 7の 6 0重量部との混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合 後の樹脂組成物の粘度?75と T) 。を測定した。 ここでは、 混合比 Rは 0. 3 54 とした。 As a epoxy resin, a mixture of 40 parts by weight of Epicote 630 and 60 parts by weight of Heroxy 107, and using Epicure W as a curing agent, the respective viscosities and the viscosity of the resin composition after mixing? 7 5 and T). Was measured. Here, the mixing ratio R was 0.354.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(比較例 6)  (Comparative Example 6)
エポキシ樹脂として、 ェピコート 6 3 0の 7 0重量部と、 Y E D 2 1 6 (登録 商標、 油化シェルエポキシ社製、 1, 6—へキサンジオールジグリ シジルエーテ ル、 2 5 °C温度環境下の粘度 : 1 5〜 3 5mP a · s、 α = 6 ) の 3 0重量部と の混合物、 硬化剤としてェピキュア Wを用い、 それぞれの粘度、 混合後の樹脂組 成物の粘度 7? と、 ?7 。、 77 。を測定した。 ここでは、 混合比 Rは 0. 4 1 2 と した。  As an epoxy resin, 70 parts by weight of Epikote 63 and YED216 (registered trademark, Yuka Shell Epoxy Co., Ltd., 1,6-hexanediol diglycidyl ether, viscosity at 25 ° C temperature environment) : 30 to 35 parts by weight of 15 to 35 mPa · s, α = 6), using Epicure W as a curing agent, the respective viscosities, and the viscosity of the resin composition after mixing 7? 7. , 77. Was measured. Here, the mixing ratio R was 0.412.
さらに、 実施例 1 と同様の手順で、 樹脂硬化物板を作成した。 得られた樹脂硬 化物板について、 ガラス転移温度 T g、 引張弾性率 Eを測定した。  Further, a resin cured product plate was prepared in the same procedure as in Example 1. The glass transition temperature T g and the tensile modulus E of the obtained cured resin plate were measured.
(比較例 7 )  (Comparative Example 7)
比較例 1 と同じエポキシ樹脂組成物を用い、 実施例 1 5 と同様の手順で、 複合 材料を作成した。  Using the same epoxy resin composition as in Comparative Example 1, a composite material was prepared in the same procedure as in Example 15.
得られた複合材料の表面及び断面を光学顕微鏡で観察したが、 未含浸部、 ボイ ドは確認できず、 その品位は良好であった。 次にこの複合材料について、 0。 圧 縮強度を測定した。  Observation of the surface and cross section of the obtained composite material with an optical microscope revealed no unimpregnated portions and voids, and the quality was good. Then, for this composite material, 0. The compression strength was measured.
(比較例 8) 比較例 2と同じエポキシ樹脂組成物を用い、 実施例 1 4と同様の手順で、 複合 材料を作成した。 (Comparative Example 8) Using the same epoxy resin composition as in Comparative Example 2, a composite material was prepared in the same procedure as in Example 14.
得られた複合材料は、 端部に樹脂の含浸していない部分が存在し、 その品位は 悪いものであった。 The obtained composite material had a portion not impregnated with the resin at the end, and the quality was poor.
表 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 エポキシ樹脂組成物 Table Example 1 Example 2 Example 3 Example 4 Example 5 Epoxy resin composition
(主剤)  (Main agent)
ェビコ一卜 630 [3ArEnl 100 100 60 70 90 ェピコ一ト 807 [2ArEp] 40  Ebikoto 630 [3ArEnl 100 100 60 70 90 Epikoto 807 [2ArEp] 40
へロキシ 107 [2GIFaEp] 30  Heroxy 107 [2GIFaEp] 30
へロキシ 68 [2GIFaEp] 10 Heroxy 68 [2GIFaEp] 10
(硬化剤) (Curing agent)
ェピキュア W [ArAm] 46.4 38.4 40.9 44.8 アンカミン 2049 [FaAm] 61.3 主剤の粘度 (m P a · s) 680 680 1180 278 362 硬化剤の粘度 (m P a ■ s) 187 120 187 187 187 混合比 R 0.464 0.613 0.384 0.409 0.448 η (m a ■ s 670 270 980 344 474 Epicure W [ArAm] 46.4 38.4 40.9 44.8 Ancamine 2049 [FaAm] 61.3 Viscosity of main agent (m Pa · s) 680 680 1180 278 362 Viscosity of curing agent (m Pa ■ s) 187 120 187 187 187 Mixing ratio R 0.464 0.613 0.384 0.409 0.448 η (ma s 670 270 980 344 474
? m P a ■ s 675 292 988 346 477 r/ (m P a ' s) 678 332 995 351 480m Pa ■ s 675 292 988 346 477 r / (m Pa a's) 678 332 995 351 480
7j (m P a ' s) 690 420 1020 360 488 硬化条件 7j (m Pa's) 690 420 1020 360 488 Curing conditions
硬化過程における最高温度 τ < : (°c) 180 180 180 180 180 最高温度の保持時間 t c (分) 120 120 120 120 120 Maximum temperature in the curing process τ <: (° c) 180 180 180 180 180 Maximum temperature holding time t c (min) 120 120 120 120 120
T c +20— k (T c -90) (°C) 169 169 169 169 169 樹脂硬化物性 T c + 20— k (T c -90) (° C) 169 169 169 169 169 Resin cured properties
ガラス転移点 T g (°C) 227 230 203 192 210 引張弾性率 E (G P a) 3.6 3.6 3.3 3.5 3.5 表 2 実施例 6 実施例 7 実施例 8 実施例 9 実施例 10Glass transition point T g (° C) 227 230 203 192 210 Tensile modulus E (GP a) 3.6 3.6 3.3 3.5 3.5 Table 2 Example 6 Example 7 Example 8 Example 9 Example 10
Ε Ε
Q.  Q.
エポキシ樹脂組成物 Epoxy resin composition
(主剤)  (Main agent)
ェヒコ一卜 630 L3ArEpJ 90 90 70 70 70 へロキシ 68 [2GIFaEp] 10 10  Vehicle 630 L3ArEpJ 90 90 70 70 70 Heroxy 68 [2GIFaEp] 10 10
ェポミック R710 [2ArEp] onυ  Epomic R710 [2ArEp] onυ
G A N [ZArEpj 30 30 G A N (ZArEpj 30 30
(硬化剤) (Curing agent)
ェピキュア W [ArAm]  Epicure W [ArAm]
アンカミン 2049 [CyAm] 59.2 59.2 57.2 主剤の粘度 (mP a ■ s) 362 362 1027 439 439 硬化剤の粘度(mP β - s) 120 120 187 187 120 混合比 R 0.592 0.592 0.402 0.433 0.572  Ancamine 2049 [CyAm] 59.2 59.2 57.2 Viscosity of base agent (mP a ■ s) 362 362 1027 439 439 Viscosity of hardener (mP β-s) 120 120 187 187 120 Mixing ratio R 0.592 0.592 0.402 0.433 0.572
211 211 823 501 238 η (m P a ' s) 243 243 829 509 299 。 (m P a ' s) 297 297 835 519 416 rj (m P a ' s) 443 443 850 544 713 硬化条件 211 211 823 501 238 η (mPa's) 243 243 829 509 299. (m P a 's) 297 297 835 519 416 rj (m P a' s) 443 443 850 544 713 Curing conditions
硬化過程における最高温度 T c : (°C) 180 130 180 180 180 最高温度の保持時間 t c (分) 120 120 120 120 120 Maximum temperature in curing process T c: (° C) 180 130 180 180 180 Maximum temperature holding time t c (min) 120 120 120 120 120
T c +20- k (T c -90) (°C) 169 136 169 169 169 樹脂硬化物性 T c + 20- k (T c -90) (° C) 169 136 169 169 169 169
ガラス転移点 T g (°C) 222 171 211 205 211 引張弾性率 E (G P a) 3.7 3.2 3.4 3.9 4.0 表 3 実施例 11 実施例 12 実施例 13 エポキシ樹脂組成物 Glass transition point T g (° C) 222 171 211 205 211 Tensile modulus E (GP a) 3.7 3.2 3.4 3.9 4.0 Table 3 Example 11 Example 12 Example 13 Epoxy resin composition
(主剤)  (Main agent)
ェピコ一ト 630 [3ArEp] 70 30 デナコール E X 721 [2ArEp] 30  Epikoto 630 [3ArEp] 70 30 Denacol EX 721 [2ArEp] 30
ェピコ一ト 828 CD [2ArEp] 90  Epikoto 828 CD [2ArEp] 90
ェピコ一ト 807 [2ArEp] 70 へロキシ 68 [2GIFaEp] 1 I π υ  Epitop 807 [2ArEp] 70 Heroxy 68 [2GIFaEp] 1 I π υ
(硬化剤)  (Curing agent)
ェピキュア W [ArAra] 41.2  Epicure W [ArAra] 41.2
アンカミン 2049 [CyArAm]  Ancamine 2049 [CyArAm]
イソホロンジァミン [GyAr Am] 23.2 17.9 主剤の粘度 (m P a ■ s) 685 3600 1990 硬化剤の粘度 (m P a - s) 187 18 33 混合比 R 0.412 0.232 0.358 (m P a ■ s ) 698 1020 465 Isophorone diamine [GyAr Am] 23.2 17.9 Viscosity of base material (m P a ■ s) 685 3600 1990 Viscosity of hardener (m P a -s) 187 18 33 Mixing ratio R 0.412 0.232 0.358 (m P a ■ s) 698 1020 465
77 (m P a ■ s ) 709 2610 749 (m P a ' s ) 720 17400 1540 rj (m P a ■ s ) 750 測定不可 33600 硬化条件 77 (mPas) 709 2610 749 (mPas) 720 17400 1540 rj (mPas) 750 Unmeasurable 33600 Curing conditions
硬化過程における最高温度 T c (°C) 180 130 130 最高温度の保持時間 t c (分) 120 120 120 Maximum temperature in curing process Tc (° C) 180 130 130 Maximum temperature holding time tc (min) 120 120 120
T c +20- k X (T c -90) (°C) 1β9 136 136 樹脂硬化物性 T c + 20- k X (T c -90) (° C) 1β9 136 136
ガラス転移点 T g (°C) 195 141 137 引張弾性率 E 3.9 3.3 3.4 表 4 比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 エポキシ樹脂組成物 Glass transition point T g (° C) 195 141 137 Tensile modulus E 3.9 3.3 3.4 Table 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Epoxy resin composition
(主剤)  (Base agent)
ェピコ一ト 630 [3ArEp] 100 40 70 ェピコ一ト 828 [2ArEp] 100 100 100  Epitop 630 [3ArEp] 100 40 70 Epitop 828 [2ArEp] 100 100 100
へロキシ 107 [2GIFaEP] 60 Heroxy 107 [2GIFaE P ] 60
Υ Ε D216 [2GIFaEpJ 30 Υ Ε D216 [2GIFaEpJ 30
(硬化剤) (Curing agent)
ェピキュア W [ArAm] 28.3 35.4 41.2 アンカ;; 2049 LCyAmJ 37. t  Epicure W [ArAm] 28.3 35.4 41.2 anchor ;; 2049 LCyAmJ 37. t
ジェファーミン D 230 [FaAm] 62.1 37.9 主剤の粘度 (mP a ■ s) 680 14600 14600 14600 138 52 硬化剤の粘度 (mP a ■ s) 9 187 120 9 187 187 混合比 R 0.621 0.283 0.374 0.379 0.354 0.412 r) (m P a · sノ 73 5100 3410 513 202 209 r? (m P a ■ s 84 5120 5240 1010 203 210 Jeffamine D 230 [FaAm] 62.1 37.9 Viscosity of base agent (mP a ■ s) 680 14600 14600 14600 138 52 Viscosity of hardener (mP a ■ s) 9 187 120 9 187 187 Mixing ratio R 0.621 0.283 0.374 0.379 0.354 0.412 r ) (m P a s s 73 5 100 3410 513 202 209 r? (m P a ■ s 84 5 120 5 240 1010 203 210
T) \ (m P a · s ) 99 5160 9620 1840 203 212 η (m P a ' s) 139 5200 24200 4090 205 214 硬化条件 T) \ (m P aS) 99 5160 9620 1840 203 212 η (m P a 's) 139 5200 24200 4090 205 214 Curing conditions
硬化過程における最高温度 T c (°C) 180 180 180 180 180 180 最高温度の保持時間 t c (分) 120 120 120 120 120 120 、 0r^ヽ 樹脂硬化物性 Maximum temperature during curing process Tc (° C) 180 180 180 180 180 180 Maximum temperature holding time tc (min) 120 120 120 120 120 120, 0 r ^ ヽ
ガラス転移点 T g (°C) 151 197 203 129 128 167 引張弾性率 E (G P a) 3.0 3.1 3.0 2.8 3.1 3.1 表 5 Glass transition point T g (° C) 151 197 203 129 128 167 Tensile modulus E (GP a) 3.0 3.1 3.0 2.8 3.1 3.1 Table 5
Figure imgf000035_0001
Figure imgf000035_0001
(表 5の記号の説明) (Explanation of symbols in Table 5)
[3ArEp] 3官能芳香族エポキシ樹脂  [3ArEp] Trifunctional aromatic epoxy resin
[2ArEp] 2官能芳香族エポキシ樹脂  [2ArEp] Bifunctional aromatic epoxy resin
[2GeFaEp] 2官能グリシジルエーテル型脂肪族エポキシ樹脂 [2GeFaEp] Bifunctional glycidyl ether type aliphatic epoxy resin
[ArAm] 芳香族ァミン化合物 [ArAm] Aromatic amine compounds
[CyAm] 脂環式ァミン化合物  [CyAm] Alicyclic amine compounds
[FaAm] 脂肪族ァミン化合物 [FaAm] Aliphatic amine compounds
産業上の利用可能性 本発明によるエポキシ樹脂組成物は、 室温付近で低粘度かつ強化繊維への含浸 性に優れたものとなる。 さらにこれにより、 優れた耐熱性や圧縮強度などの機械 物性を有する複合材料を製造することができる。 INDUSTRIAL APPLICABILITY The epoxy resin composition according to the present invention has a low viscosity near room temperature and has excellent impregnation into reinforcing fibers. Further, thereby, a composite material having excellent mechanical properties such as heat resistance and compressive strength can be produced.
本発明によるエポキシ樹脂組成物から得られる複合材料は、 航空機部材、 人工 衛星部材、 自動車部材、 自転車部材、 鉄道車両部材、 船舶部材、 建築部材、 フラ ィホイール、 圧力容器、 風車ブレード、 オイルライザ一、 スポーツ用品などに好 適に用いることができる。 特に耐熱性が要求される航空機部材、 人工衛星部材に 好適に用いることができる。  Composite materials obtained from the epoxy resin composition according to the present invention include aircraft members, satellite members, automobile members, bicycle members, railway vehicle members, ship members, building members, flywheels, pressure vessels, windmill blades, oil risers, It can be suitably used for sports equipment. Particularly, it can be suitably used for aircraft members and artificial satellite members requiring heat resistance.

Claims

請求の範囲 The scope of the claims
1. 2官能以上の芳香族エポキシ樹脂と、 芳香族ァミン化合物及び 又は脂環 式ァミン化合物が配合されてなるエポキシ樹脂組成物であって、 2 5°Cにおいて、 該エポキシ樹脂からなる主剤と該芳香族ァミン化合物及びノ又は脂環式ァミン化 合物を含んでなる硬化剤とを混合後、 5分経過した時点での 2 5 °Cにおける粘度 力 S l〜 1 5 0 0 mP a · sの範囲にあり、 次式 ( 1 ) を満足する T c、 t c、 T gが存在することを特徴とするエポキシ樹脂組成物。 1. An epoxy resin composition comprising a bifunctional or more aromatic epoxy resin, an aromatic amine compound and / or an alicyclic amine compound, wherein at 25 ° C., a main agent comprising the epoxy resin and After mixing the aromatic amide compound and the curing agent containing the aromatic or alicyclic amide compound, the viscosity at 25 ° C. after 5 minutes at 25 ° C. Sl to 150 mPas Wherein T c, tc, and T g satisfy the following formula (1):
T g≥T c + 2 0 - k X (T c - 9 0 ) ( 1 )  T g≥T c + 20-k X (T c-90) (1)
6 0≤T c < 9 0のとき、 k = 0、  When 6 0 ≤ T c <90, k = 0,
9 0≤T c ≤ 2 0 0のとき、 k = 0. 3 5  When 9 0 ≤ T c ≤ 2 0 0, k = 0.35
T c :硬化過程における最高温度 (°C) (6 0≤T c ≤ 2 0 0)  T c: Maximum temperature in the curing process (° C) (60 ≤ T c ≤ 200)
t c : 最高温度の保持時間 (分) ( l ≤ t c ≤ 1 2 0)  t c: retention time of maximum temperature (min) (l ≤ t c ≤ 1 2 0)
T g : T c (°C) において、 t c (分) 経過した時点でのエポキシ樹脂組 成物のガラス転移温度  T g: The glass transition temperature of the epoxy resin composition after the elapse of t c (minutes) at T c (° C)
2. 前記芳香族エポキシ樹脂が 3官能以上のエポキシ樹脂である請求項 1に記 載のエポキシ樹脂組成物。  2. The epoxy resin composition according to claim 1, wherein the aromatic epoxy resin is a trifunctional or higher epoxy resin.
3. 前記 3官能以上の芳香族エポキシ樹脂の配合量が、 全エポキシ樹脂 1 0 0 重量%に対して、 5 0〜 1 0 0重量%である請求項 2に記載のエポキシ樹脂組成 物。  3. The epoxy resin composition according to claim 2, wherein the amount of the trifunctional or higher functional aromatic epoxy resin is 50 to 100% by weight based on 100% by weight of the total epoxy resin.
4. 前記 3官能以上の芳香族エポキシ樹脂の 2 5 °Cにおける粘度が、 1〜 3 0 0 0 mP a · sの範囲にある請求項 2又は 3に記載のエポキシ樹脂組成物。  4. The epoxy resin composition according to claim 2, wherein the viscosity of the trifunctional or higher-functional aromatic epoxy resin at 25 ° C. is in the range of 1 to 300 mPa · s.
5. 前記混合後、 5分経過した時点での 2 5°Cにおける粘度が 1〜 1 0 0 0 m P a · sの範囲にある請求項 1〜4のいずれかに記載のエポキシ樹脂組成物。  5. The epoxy resin composition according to any one of claims 1 to 4, wherein the viscosity at 25 ° C after 5 minutes from the mixing is in the range of 1 to 100 mPas. .
6. エポキシ樹脂組成物が硬化されてなる樹脂硬化物の 2 3 °Cにおける引張弾 性率 Eが、 3. 2〜 5 G P aの範囲にある請求項 1〜 5のいずれかに記載のェポ キシ樹脂組成物。  6. The method according to any one of claims 1 to 5, wherein a tensile elastic modulus E at 23 ° C of the cured resin obtained by curing the epoxy resin composition is in a range of 3.2 to 5 GPa. A oxy resin composition.
7. 次式 ( 2) 及び (3 ) を満足する請求項 1〜 6のいずれかに記載のェポキ シ樹脂組成物。 1 ≤ 6。≤ 1 5 0 0 ( 2 )7. The epoxy resin composition according to any one of claims 1 to 6, which satisfies the following formulas (2) and (3). 1 ≤ 6 . ≤ 1 5 0 0 (2)
Figure imgf000038_0001
Figure imgf000038_0001
: 主剤と硬化剤とを混合後、 2 5 °C温度環境下、 5分経過した時点での 2 5 °Cにおけるエポキシ樹脂組成物の粘度 (m P a · s )  : Viscosity of epoxy resin composition at 25 ° C (m P a · s) at 25 ° C at 25 ° C after mixing the main agent and curing agent
7] 6。 : 主剤と硬化剤とを混合後、 2 5°C温度環境下、 6 0分経過した時点での 27] 6 . : After mixing the main agent and the curing agent, 2 minutes after 60 minutes in a 25 ° C temperature environment
5 °Cにおけるエポキシ樹脂組成物の粘度 (m P a · s ) Viscosity of epoxy resin composition at 5 ° C (m P a · s)
8. 次式 ( 2, ) 及び (3, ) を満足する請求項 1〜 6のいずれかに記載のェ ポキシ樹脂組成物。  8. The epoxy resin composition according to any one of claims 1 to 6, which satisfies the following formulas (2,) and (3,).
1 ≤ 4。≤ 1 0 0 0 ( 2 ' ) 1 ≤ 4 . ≤ 1 0 0 0 (2 ')
1 ^ 3 V 3 )  1 ^ 3V3)
?7 5 : 主剤と硬化剤とを混合後、 2 5 °C温度環境下、 5分経過した時点での 2 5 °Cにおけるエポキシ樹脂組成物の粘度 (m P a · s ) ? 7 5: After mixing the base and curing agent, 2 5 ° C temperature environment, the viscosity of the epoxy resin composition of 2 5 ° C at the time five minutes have passed (m P a · s)
24。 : 主剤と硬化剤とを混合後、 2 5 °C温度環境下、 2 4 0分経過した時点で の 2 5 °Cにおけるエポキシ樹脂組成物の粘度 (mP a · s ) Hi 24 . : Viscosity of epoxy resin composition at 25 ° C at 240 ° C in a temperature environment of 25 ° C after mixing the main agent and the curing agent (mP a · s)
9. 2官能以上のダリシジルエーテル型脂肪族エポキシ樹脂がさらに配合され てなる請求項 1〜8のいずれかに記載のエポキシ樹脂組成物。  9. The epoxy resin composition according to any one of claims 1 to 8, further comprising a bifunctional or higher-functional daricidyl ether-type aliphatic epoxy resin.
1 0 . 前記 2官能以上のグリ シジルエーテル型脂肪族エポキシ樹脂が、 次式 (4 ) を満足する請求項 9に記載のエポキシ樹脂組成物。  10. The epoxy resin composition according to claim 9, wherein the bifunctional or higher functional glycidyl ether type aliphatic epoxy resin satisfies the following formula (4).
0 ≤ α ≤ 4 (4 )  0 ≤ α ≤ 4 (4)
α : 2官能以上のグリシジルエーテル型脂肪族エポキシ樹脂が分子内に有するグ リシジルォキシ基の任意の 2個を結んでなる分子鎖の内、 環に属さない原子の数 が最多となる分子鎖における該原子の数  α: in a molecular chain in which the number of atoms that do not belong to a ring is the largest in a molecular chain formed by connecting any two glycidyloxy groups in a molecule of a bifunctional or higher glycidyl ether type aliphatic epoxy resin, Number of atoms
1 1 . 前記 2官能以上のグリシジルエーテル型脂肪族エポキシ榭脂の配合量が、 全エポキシ樹脂 1 0 0重量%に対して、 1〜 5 0重量%である請求項 9又は 1 0 に記載のエポキシ樹脂組成物。 ―  11. The method according to claim 9, wherein the blending amount of the bifunctional or higher-functional glycidyl ether type aliphatic epoxy resin is 1 to 50% by weight based on 100% by weight of the total epoxy resin. Epoxy resin composition. ―
1 2. 芳香族ァミン化合物を含んでなり、 該芳香族ァミ ン化合物の 2 5°Cにお ける粘度が、 l〜 3 0 '0 0 m P a ' sの範囲にある請求項 1〜 1 1 のいずれかに 記載のエポキシ樹脂組成物。  1 2. A composition comprising an aromatic amine compound, wherein the viscosity of the aromatic amine compound at 25 ° C. is in the range of l to 30′0 mPas. 11. The epoxy resin composition according to any one of 1 to 11.
1 3. 脂環式ァミン化合物を含んでなり、 該脂環式ァミン化合物の 2 5 °Cにお ける粘度が、 1〜 5 0 0 m P a · sの範囲にある請求項 1〜 1 2のいずれかに記 載のエポキシ樹脂組成物。 1 3. It comprises an alicyclic amine compound, and the alicyclic amine compound has a temperature of 25 ° C. The epoxy resin composition according to any one of claims 1 to 12, wherein the viscosity of the epoxy resin is in the range of 1 to 500 mPa · s.
1 4 . 脂環式ァミ ン化合物を含んでなり、 該脂環式ァミ ン化合物が次式 (5 ) を満足する請求項 1〜 1 3のいずれかに記載のエポキシ樹脂組成物。  14. The epoxy resin composition according to any one of claims 1 to 13, comprising an alicyclic amine compound, wherein the alicyclic amine compound satisfies the following formula (5).
0 ≤ β ≤ 4 ( 5 ) β : 脂環式ァミン化合物が分子内に有するアミノ基の任意の 2個を結んでなる分 子鎖の内、 環に属さない原子の数が最多となる分子鎖における該原子の数  0 ≤ β ≤ 4 (5) β: The molecular chain in which the number of atoms that do not belong to the ring is the largest among the molecular chains connecting any two amino groups in the alicyclic amine compound. Number of the atoms in
1 5 . 脂環式ァミン化合物を含んでなり、 該脂環式ァミ ン化合物が、 分子内に 2級又は 3級炭素に結合しているアミノ基を有するものである請求項 1〜 1 4の いずれかに記載のエポキシ樹脂組成物。  15. An alicyclic amine compound comprising an alicyclic amine compound, wherein the alicyclic amine compound has an amino group bonded to a secondary or tertiary carbon in the molecule. The epoxy resin composition according to any one of the above.
1 6 . 前記脂環式ァミン化合物が、 分子内に有する全てのァミノ基が 2級又は 3級炭素に結合しているものである請求項 1 5に記載のエポキシ樹脂組成物。 16. The epoxy resin composition according to claim 15, wherein the alicyclic amine compound is one in which all amino groups in the molecule are bonded to secondary or tertiary carbon.
1 7 . 請求項 1〜 1 6のいずれかに記載のエポキシ樹脂組成物よりなる繊維強 化複合材料用エポキシ樹脂組成物。 17. An epoxy resin composition for a fiber-reinforced composite material, comprising the epoxy resin composition according to any one of claims 1 to 16.
1 8 . 請求項 1〜 1 7のいずれかに記載のエポキシ樹脂組成物の硬化物と強化 繊維とを含んでなる繊維強化複合材料。  18. A fiber-reinforced composite material comprising a cured product of the epoxy resin composition according to any one of claims 1 to 17 and reinforcing fibers.
1 9 . 前記強化繊維が炭素繊維である請求項 1 7に記載の繊維強化複合材料。  19. The fiber-reinforced composite material according to claim 17, wherein the reinforcing fibers are carbon fibers.
PCT/JP2000/001462 1999-03-11 2000-03-10 Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same WO2000053654A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/700,180 US6410127B1 (en) 1999-03-11 2000-03-10 Epoxy resin compositions, epoxy resin compositions for fiber-reinforced composite materials, and fiber-reinforced composite materials comprising the same
AU29411/00A AU2941100A (en) 1999-03-11 2000-03-10 Epoxy resin composition, epoxy resin composition for fiber-reinforced composite,and fiber-reinforced composite containing the same
JP2000604089A JP4719976B2 (en) 1999-03-11 2000-03-10 Epoxy resin composition, epoxy resin composition for fiber reinforced composite material, and fiber reinforced composite material having the same
DE60013527T DE60013527T2 (en) 1999-03-11 2000-03-10 EXPOXID RESIN COMPOSITION, EXPOXIDE RESIN COMPOSITION FOR FIBER - REINFORCED COMPOSITES AND FIBER - REINFORCED COMPOUNDS CONTAINING THEM
EP00907993A EP1094087B1 (en) 1999-03-11 2000-03-10 Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1165299 1999-03-11
JP11/65299 1999-03-11

Publications (1)

Publication Number Publication Date
WO2000053654A1 true WO2000053654A1 (en) 2000-09-14

Family

ID=11783904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001462 WO2000053654A1 (en) 1999-03-11 2000-03-10 Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same

Country Status (1)

Country Link
WO (1) WO2000053654A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060833A1 (en) * 2005-11-25 2007-05-31 Toray Industries, Inc. Carbon fiber bundle, prepreg, and carbon fiber reinforced composite material
JP2011148912A (en) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The Resin composition for syntactic foam
JP2013543035A (en) * 2010-11-08 2013-11-28 東レ株式会社 Epoxy resin composition, prepreg, and fiber reinforced composite material for fiber reinforced composite material
JP2015533843A (en) * 2012-10-24 2015-11-26 コンパニー ゼネラール デ エタブリッスマン ミシュラン Sulfur-containing polycyclic aromatic polyamines that can be used in the synthesis of polyureas
WO2016063692A1 (en) * 2014-10-21 2016-04-28 東レ株式会社 Epoxy resin composition and fiber-reinforced composite material
JP2019167429A (en) * 2018-03-22 2019-10-03 帝人株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559607A2 (en) * 1992-02-28 1993-09-08 Ciba-Geigy Ag Epoxy resins based on triglycidyl isocyanurate
JPH05320480A (en) * 1992-05-25 1993-12-03 Toray Ind Inc Epoxy resin composition and epoxy resin composition for resin transfer molding
EP0604909A2 (en) * 1992-12-29 1994-07-06 Hercules Incorporated Epoxy resin compositions with improved storage stability
JPH08225666A (en) * 1995-02-20 1996-09-03 Toray Ind Inc Prepreg and composite material
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559607A2 (en) * 1992-02-28 1993-09-08 Ciba-Geigy Ag Epoxy resins based on triglycidyl isocyanurate
JPH05320480A (en) * 1992-05-25 1993-12-03 Toray Ind Inc Epoxy resin composition and epoxy resin composition for resin transfer molding
EP0604909A2 (en) * 1992-12-29 1994-07-06 Hercules Incorporated Epoxy resin compositions with improved storage stability
JPH08225666A (en) * 1995-02-20 1996-09-03 Toray Ind Inc Prepreg and composite material
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1094087A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060833A1 (en) * 2005-11-25 2007-05-31 Toray Industries, Inc. Carbon fiber bundle, prepreg, and carbon fiber reinforced composite material
JP2011148912A (en) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The Resin composition for syntactic foam
JP2013543035A (en) * 2010-11-08 2013-11-28 東レ株式会社 Epoxy resin composition, prepreg, and fiber reinforced composite material for fiber reinforced composite material
US9957387B2 (en) 2010-11-08 2018-05-01 Toray Industries, Inc. Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
JP2015533843A (en) * 2012-10-24 2015-11-26 コンパニー ゼネラール デ エタブリッスマン ミシュラン Sulfur-containing polycyclic aromatic polyamines that can be used in the synthesis of polyureas
WO2016063692A1 (en) * 2014-10-21 2016-04-28 東レ株式会社 Epoxy resin composition and fiber-reinforced composite material
JPWO2016063692A1 (en) * 2014-10-21 2017-07-27 東レ株式会社 Epoxy resin composition and fiber reinforced composite material
US10253142B2 (en) 2014-10-21 2019-04-09 Toray Industries, Inc. Epoxy resin composition and fiber reinforced composite material
JP2019167429A (en) * 2018-03-22 2019-10-03 帝人株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material and method for producing the same
JP7213620B2 (en) 2018-03-22 2023-01-27 帝人株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4719976B2 (en) Epoxy resin composition, epoxy resin composition for fiber reinforced composite material, and fiber reinforced composite material having the same
EP2794735B1 (en) Improvements in or relating to fibre reinforced composites
JP5454138B2 (en) Epoxy resin composition, fiber-reinforced composite material, and method for producing the same
JP4396274B2 (en) Epoxy resin composition for fiber reinforced composite material, method for producing fiber reinforced composite material, and fiber reinforced composite material
JP5747763B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
EP3102621B1 (en) Amino benzoates or benzamides as curing agents for epoxy resins
JP2010150310A (en) Epoxy resin composition, fiber-reinforced composite material and method for manufacturing the same
JP2014167103A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2014167102A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP7063021B2 (en) Prepreg and carbon fiber reinforced composites
JP4475880B2 (en) Epoxy resin composition
JP4734729B2 (en) Intermediate for molding composite material and fiber reinforced composite material
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2010095557A (en) Prepreg and fiber-reinforced composite material
JP2010150311A (en) Epoxy resin composition, fiber-reinforced composite material and manufacturing method of fiber-reinforced composite material
WO2000053654A1 (en) Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same
JP2004035702A (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material
JP2009227907A (en) Epoxy resin composition and fiber reinforced composite material containing it
JP2011046797A (en) Epoxy resin composition, fiber-reinforced composite material and method for producing fiber-reinforced composite material
US5075356A (en) Bisphenol and neopentyl glycol diglycidyl ethers with glycidyl methacrylate copolymer
JP4352720B2 (en) Epoxy resin composition for fiber reinforced composite material, fiber reinforced composite material and method for producing the same
JP4655329B2 (en) Unidirectional prepreg and fiber reinforced composites
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
WO2023062999A1 (en) Epoxy resin composition, cured product thereof, fiber-reinforced composite material, and high pressure gas container
JPS6236421A (en) Epoxy resin composition for prepreg

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000907993

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000907993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09700180

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000907993

Country of ref document: EP