Nothing Special   »   [go: up one dir, main page]

WO1999002819A1 - Computer controlled injection wells - Google Patents

Computer controlled injection wells Download PDF

Info

Publication number
WO1999002819A1
WO1999002819A1 PCT/US1998/014230 US9814230W WO9902819A1 WO 1999002819 A1 WO1999002819 A1 WO 1999002819A1 US 9814230 W US9814230 W US 9814230W WO 9902819 A1 WO9902819 A1 WO 9902819A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fluid
zone
production
sensor
Prior art date
Application number
PCT/US1998/014230
Other languages
French (fr)
Inventor
Terry R. Bussear
Kevin R. Jones
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Priority to GB0000475A priority Critical patent/GB2343695B/en
Priority to AU84798/98A priority patent/AU749714B2/en
Priority to CA002296054A priority patent/CA2296054C/en
Publication of WO1999002819A1 publication Critical patent/WO1999002819A1/en
Priority to NO20000113A priority patent/NO20000113L/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/06Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting, e.g. eliminating, the deposition of paraffins or like substances
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0035Apparatus or methods for multilateral well technology, e.g. for the completion of or workover on wells with one or more lateral branches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/02Equipment or details not covered by groups E21B15/00 - E21B40/00 in situ inhibition of corrosion in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting

Definitions

  • the invention is related to enhanced oil production. More particularly, the invention relates to a method and apparatus for controlling injection wells to optimize production from associated production wells.
  • Injection wells have, of course, been employed for many years in order to flush residual oil in a formation toward a production well and increase yield from the area.
  • a common injection scenario is to pump steam down an injection well and into the formation which functions both to heat the oil in the formation and force its movement through the practice of steam flooding. In some cases, heating is not necessary as the residual oil is in a flowable form, however in some situations the oil is in such a viscous form that it requires heating in order to flow.
  • steam one accomplishes both objectives of the injection well: 1) to force residual oil toward the production well and 2) to heat any highly viscous oil deposits in order mobilize such oil to flow ahead of the flood front toward the production well.
  • Breakthrough occurs when a portion of the flood front reaches the production well. As happens the flood water remaining in the reservoir will generally tend to travel the path of least resistance and will follow the breakthrough channel to the production well. At this point, movement of the viscous oil ends. Precisely when and where the breakthrough will occur depends upon water/oil mobility ratio, the lithology, the porosity and permeability of the formation as well as the depth thereof. Moreover, other geologic conditions such as faults and unconformities also affect the in-situ sweep efficiency.
  • the above-discussed and other drawbacks and deficiencies of the prior art are overcome or alleviated by the electronically controlled injection well system of the invention.
  • the invention provides significantly more information to well operators thus enhancing oil recovery to a degree not heretofore known. This is accomplished by providing real time information about the formation itself and the flood front as well as the produced fluid by providing permanent downhole sensors capable of sensing changes in the swept and unswept formation and/or the progression of the flood front and/or changes in the produced fluid (e.g. temperature). Preferably, a plurality of sensors would be employed to provide information about discrete portions of strata surrounding the injection well. This provides a more detailed data set regarding the well(s) and surrounding conditions.
  • the sensors are, preferably, connected to a processor either downhole or at the surface for processing of information. Moreover, in a preferred embodiment the sensors are connected to computer processors which are also connected to sensors in a production well (which are similar to those disclosed in U.S. Patent No. 5,597,042 which is fully incorporated herein by reference) to allow the production well to "talk" directly to the related injection well(s) to provide an extremely efficient real time automatic operation. Sensors employed will be to sense temperature, pressure, flow rate, electrical and acoustic conductivity, density, strain and to detect various light transmission and reflection phenomena. All of these sensor types are available commercially in various ranges and sensitivities which are selectable by one of ordinary skill in the art depending upon particular conditions known to exist in a particular well operation.
  • Specific pressure measurements will also include pressure(s) at the exit valve(s) down the injection well or injection zone in a single well and at the pump which may be located downhole or at the surface. Measuring said pressure at key locations such as at the outlet, upstream of the valve(s) near the pump, etc., will provide information about the speed, volume, direction, etc. at/in which the waterflood front (or other fluid) is moving. Large differences in the pressure from higher to lower over a short period of time could indicate a breakthrough. Conversely, pressure from lower to higher over short periods of time could indicate that the flood front had hit a barrier. Similarly, a rapid temperature rise in the produced fluid in one zone of the production well can indicate imminent breakthrough.
  • the present invention uses fluid densities to monitor the flood front from the trailing end.
  • the interface between the flood front and the hydrocarbon fluid provides an acoustic barrier upon which a signal can be bounced.
  • the profile of the front is generated in 4D i.e., three dimensions over time.
  • FIGURE 1 is a schematic representation of an injection well illustrating a plurality of sensors mounted therein;
  • FIGURE 2 is a schematic representation illustrating both an injection well and a production well having sensors and a flood front running between the wells;
  • FIGURE 3 is a schematic representation similar to FIGURE 2 but illustrating fluid loss through unintended fracturing; and FIGURE 4 is a schematic representation of an injection production well system where the wells are located on either side of a fault.
  • FIGURE 1 one of ordinary skill in the art will appreciate a schematic representation of an injection well 10. Also recognizable will be the representation of a flood front 20 which emanates from the injection well and is intended to progress toward a production well. This is additionally well represented in FIGURE 2 of the present application.
  • a plurality of sensors 12 are located permanently installed in the injection well and which are connected via the electrical wire cabling or fiber optic cabling to a processor which may either be a permanent downhole processor or a surface processor.
  • the system provides immediate real time information regarding the condition of the fluid front having been injected into the formation by the injection well or injection zone.
  • the sensors contemplated herein may be in the injection well or in both the injection well and the production well. They are employed in several different methods to obtain information such as that indicated above. Control is further heightened in the invention by providing a link between downhole sensors in the production well to the downhole sensors in the injection well as well as a connection to the flow control tools in both wells. By providing the operable connections to all of these parts of the system, the well can actually run itself and provide the most efficient oil recovery based upon the creation and maintenance of a uniform flood front.
  • the flood front can be regulated from both sides of FIGURE 2, i.e., the injection well and the production well, by opening production well valves in areas where the flood front is lagging while closing valves in areas where the flood front is advancing.
  • the fluid injection valves e.g., sliding or rotating sleeves, etc. would be choked or closed where the flood front is advancing quickly and opened more where the flood front is advancing slowly.
  • This seemingly complex set of circumstances is easily controlled by the system of the invention and rapidly remedies any abnormalities in the intended flood profile thus avoiding breakthrough of the injected fluid to the production well. Sweep efficiency of the steam or other fluid front is greatly enhanced by the system of the invention.
  • All of the sensors contemplated in the production well and the injection well are, preferably, permanently installed downhole sensors which are connected to processors and/to one another by electrical cabling or fiber optic cabling.
  • downhole sensors measure strain induced in the formation by the injected fluid.
  • Strain is an important parameter for avoiding exceeding the formation parting pressure or fracture pressure with the injected fluid.
  • This information is important in the regulation of pressure of the fluid to avoid such activity is that when pressure opens fractures or new fractures are created there is a path of much less resistance for the injected fluid to run through.
  • the injection fluid since the injection fluid will follow the path of least resistance, it would generally run in the fractures and around areas of the reservoir that need to be swept. Clearly, this substantially reduces the sweep efficiency of the injected fluid.
  • FIGURE 3 schematically illustrates the embodiment and the condition set forth above by illustrating an injection well 50 and a production well 60.
  • Fluid 52 is illustrated escaping via the unintended fracture from the formation 54 into the overlying gas cap level 56 and the underlying water table 61 and it is evident to one of ordinary skill in the art that the fluid is being lost in this location.
  • the condition is avoided by the invention by using pressure sensors to limit the injection fluid pressure as described above.
  • the rest of the fluid 52 is progressing as it is intended to through the formation 54.
  • acoustic sensors 56 are located in the injection well 50 at various points therein. Acoustic sensors which are well suited to the task to which they will be put in the present invention are commercially available from
  • the acoustic sensors pick up sounds generated by stress in the formation which propagate through the reservoir fluids or reservoir matrix to the injection well. In general, higher sound levels would indicate severe stress in the formation and should generate a reduction in pressure of the injected fluid whether by automatic control or by technician control.
  • a data acquisition system 58 is preferable to render the system extremely reliable and system 58 may be at the surface where it is illustrated in the schematic drawing or may be downhole. Based upon acoustic signals received, the system of the invention, preferably automatically (although manually is workable), reduces pressure of the injected fluid by reducing pump pressure. Maximum sweep efficiency is, thus, obtained.
  • acoustic generators and receivers are employed to determine whether a formation which is bifurcated by a fault is sealed along the fault or is permeable along the fault. It is known by one of ordinary skill in the art that different strata within a formation bifurcated by a fault may have some zones that flow and some zones that are sealed; this is the illustration of FIGURE 4.
  • injection well 70 employs a plurality of sensors 72 and acoustic generators 74 which, most preferably, alternate with increasing depth in the wellbore. In production well 80, a similar arrangement of sensors 72 and acoustic generators 74 are positioned.
  • the sensors and generators are preferably connected to processors which are either downhole or on the surface and preferably also connect to the associated production or injection well.
  • the sensors 72 can receive acoustic signals that are naturally generated in the formation, generated by virtue of the fluid flowing through the formation from the injection well and to the production well and also can receive signals which are generated by signal generators 74. Where signal generators 74 generate signals, the reflected signals that are received by sensors 72 over a period of time can indicate the distance and acoustic volume through which the acoustic signals have traveled. This is illustrated in area A of FIGURE 4 in that the fault line 75 is sealed between area A and area B on the figure. This is illustrated for purposes of clarity only by providing circles 76 along fault line 75.
  • the areas of fault line 75 which are permeable are indicated by hash marks 77 through fault line 75. Since the acoustic signal represented by arrows and semi-curves and indicated by numeral 78 cannot propagate through the area C of the drawing which bifurcates area A from area B on the left side of the drawing, that signal will bounce and it then can be picked up by sensor 72.
  • the time delay, number and intensity of reflections and mathematical interpretation which is common in the art provides an indication of the lack of pressure transmissivity between those two zones. Additionally this pressure transmissivity can be confirmed by the detection by said acoustic signals by sensors 72 in the production well 80.
  • area E is permeable to area B through fault 75 because the region D in that area is permeable and will allow flow of the flood front from the injection well 70 through fault line 75 to the production well 80.
  • Acoustic sensors and generators can be employed here as well since the acoustic signal will travel through the area D and, therefore, reflection intensity to the receivers 72 will decrease. Time delay will increase. Since the sensors and generators are connected to a central processing unit and to one another it is a simple operation to determine that the signal, in fact, traveled from one well to the other and indicates permeability throughout a particular zone.
  • the acoustic generators and sensors can provide the injection and production wells can run automatically by determining where fluids can flow and thus opening and closing valves at relevant locations on the injection well and production well in order to flush production fluid in a direction advantageous to run through a zone of permeability along the fault.
  • sensors 72 are clearly capable of receiving not only the generated acoustic signals but naturally occurring acoustic waveforms arising from both the flow of the injected fluids as the injection well and from those arising within the reservoirs in result of both fluid injection operations and simultaneous drainage of the reservoir in resulting production operations.
  • the preferred permanent deployment status of the sensors and generators of the invention permit and see to the measurements simultaneously with ongoing injection flooding and production operations. Advancements in both acoustic measurement capabilities and signal processing while operating the flooding of the reservoir represents a significant, technological advance in that the prior art requires cessation of the injection/ production operations in order to monitor acoustic parameters downhole.
  • the flood front is monitored from the "back" employing sensors installed in the injection well.
  • the sensors which are adequately illustrated in FIGURES 1 and 2 provide acoustic signals which reflect from the water/oil interface thus providing an accurate picture in a moment in time of the three-dimensional flood front. Taking pictures in 4-D i.e., three dimensions over real time provides an accurate format of the density profile of the formation due to the advancing flood front. Thus, a particular profile and the relative advancement of the front can be accurately determined by the density profile changes.
  • sensors and acoustic generators it is certainly possible to limit the sensors and acoustic generators to the injection well for such a system, however it is even more preferable to also introduce sensors and acoustic generators in the production well toward which the front is moving thus allowing an immediate double check of the fluid front profile. That is, acoustic generators on the production well will reflect a signal off the oil/water interface and will provide an equally accurate three-dimensional fluid front indicator. The indicators from both sides of the front should agree and thus provides an extremely reliable indication of location and profile.
  • the invention is also directed to a single wellbore having at least a production zone and an injection zone. This may occur in a single primary bore or may occur in a multilateral well where the injection zone is in one of the laterals and the production zone in another of the laterals.
  • An example of this latter type system is where a lateral and generally horizontal bore is above a formation and another is below the formation and where injected steam is employed to heat very viscous oil in the formation allowing it to gravity feed to the production zone thereunder.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pipeline Systems (AREA)

Abstract

Methods and apparatus are disclosed for controlling and monitoring injection zone and production zone parameters in order to control the injected fluid front to avoid breakthrough of the injected fluid to the production zone and thus optimized hydrocarbon recovery.

Description

COMPUTER CONTROLLED INJECTION WELLS
This application claims the benefit of an earlier filing date from U.S. Serial Number 60/052,042, filed July 9, 1997, the entire contents of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION Field of the Invention
The invention is related to enhanced oil production. More particularly, the invention relates to a method and apparatus for controlling injection wells to optimize production from associated production wells.
Prior Art
Injection wells have, of course, been employed for many years in order to flush residual oil in a formation toward a production well and increase yield from the area. A common injection scenario is to pump steam down an injection well and into the formation which functions both to heat the oil in the formation and force its movement through the practice of steam flooding. In some cases, heating is not necessary as the residual oil is in a flowable form, however in some situations the oil is in such a viscous form that it requires heating in order to flow. Thus, by using steam one accomplishes both objectives of the injection well: 1) to force residual oil toward the production well and 2) to heat any highly viscous oil deposits in order mobilize such oil to flow ahead of the flood front toward the production well.
As is well known to the art, one of the most common drawbacks of employing the method above noted with respect to injection wells is an occurrence commonly identified as "breakthrough". Breakthrough occurs when a portion of the flood front reaches the production well. As happens the flood water remaining in the reservoir will generally tend to travel the path of least resistance and will follow the breakthrough channel to the production well. At this point, movement of the viscous oil ends. Precisely when and where the breakthrough will occur depends upon water/oil mobility ratio, the lithology, the porosity and permeability of the formation as well as the depth thereof. Moreover, other geologic conditions such as faults and unconformities also affect the in-situ sweep efficiency.
While careful examination of the formation by skilled geologists can yield a reasonable understanding of the characteristics thereof and therefore deduce a plausible scenario of the way the flood front will move, it has not heretofore been known to monitor precisely the location of the flood front as a whole or as individual sections thereof. By so monitoring the flood front, it is possible to direct greater or lesser flow to different areas in the reservoir, as desired, by adjustment of the volume and location of both injection and production, hence controlling overall sweep efficiency.. By careful control of the flood front, it can be maintained in a controlled, non fingered profile. By avoiding premature breakthrough the flooding operation is effective for more of the total formation volume, and thus efficiency in the production of oil is improved. SUMMARY OF THE INVENTION
The above-discussed and other drawbacks and deficiencies of the prior art are overcome or alleviated by the electronically controlled injection well system of the invention. The invention provides significantly more information to well operators thus enhancing oil recovery to a degree not heretofore known. This is accomplished by providing real time information about the formation itself and the flood front as well as the produced fluid by providing permanent downhole sensors capable of sensing changes in the swept and unswept formation and/or the progression of the flood front and/or changes in the produced fluid (e.g. temperature). Preferably, a plurality of sensors would be employed to provide information about discrete portions of strata surrounding the injection well. This provides a more detailed data set regarding the well(s) and surrounding conditions. The sensors are, preferably, connected to a processor either downhole or at the surface for processing of information. Moreover, in a preferred embodiment the sensors are connected to computer processors which are also connected to sensors in a production well (which are similar to those disclosed in U.S. Patent No. 5,597,042 which is fully incorporated herein by reference) to allow the production well to "talk" directly to the related injection well(s) to provide an extremely efficient real time automatic operation. Sensors employed will be to sense temperature, pressure, flow rate, electrical and acoustic conductivity, density, strain and to detect various light transmission and reflection phenomena. All of these sensor types are available commercially in various ranges and sensitivities which are selectable by one of ordinary skill in the art depending upon particular conditions known to exist in a particular well operation. Specific pressure measurements will also include pressure(s) at the exit valve(s) down the injection well or injection zone in a single well and at the pump which may be located downhole or at the surface. Measuring said pressure at key locations such as at the outlet, upstream of the valve(s) near the pump, etc., will provide information about the speed, volume, direction, etc. at/in which the waterflood front (or other fluid) is moving. Large differences in the pressure from higher to lower over a short period of time could indicate a breakthrough. Conversely, pressure from lower to higher over short periods of time could indicate that the flood front had hit a barrier. Similarly, a rapid temperature rise in the produced fluid in one zone of the production well can indicate imminent breakthrough. These conditions are, of course, familiar to one of skill in the art but heretofore far less would have been known since no workable system for measuring the parameters existed. Therefore, the present invention, since it increases knowledge, and automation, it increases productivity. Referring now to the measurement of density as noted above, the present invention uses fluid densities to monitor the flood front from the trailing end. As will be appreciated from the detailed discussion herein, the interface between the flood front and the hydrocarbon fluid provides an acoustic barrier upon which a signal can be bounced. Thus, by generating acoustic signals and mapping the reflection, the profile of the front is generated in 4D i.e., three dimensions over time. The above-discussed and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:
FIGURE 1 is a schematic representation of an injection well illustrating a plurality of sensors mounted therein;
FIGURE 2 is a schematic representation illustrating both an injection well and a production well having sensors and a flood front running between the wells;
FIGURE 3 is a schematic representation similar to FIGURE 2 but illustrating fluid loss through unintended fracturing; and FIGURE 4 is a schematic representation of an injection production well system where the wells are located on either side of a fault.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to FIGURE 1, one of ordinary skill in the art will appreciate a schematic representation of an injection well 10. Also recognizable will be the representation of a flood front 20 which emanates from the injection well and is intended to progress toward a production well. This is additionally well represented in FIGURE 2 of the present application. In the present invention at least one and, preferably, a plurality of sensors 12 are located permanently installed in the injection well and which are connected via the electrical wire cabling or fiber optic cabling to a processor which may either be a permanent downhole processor or a surface processor. The system provides immediate real time information regarding the condition of the fluid front having been injected into the formation by the injection well or injection zone. By carefully monitoring parameters such as conductivity, fluid density, pressure at the injection ports 14 or at the pump 16 (which while represented at the surface can be positioned downhole as well), acoustics and fluorescence for biological activity, one can ascertain significant information about the progress of the flood front such as whether the front has hit a barrier or whether the front may have "fingered" resulting in a likely premature breakthrough. This information is extremely valuable to the operator and processor in order to allow remedial measures to occur to prevent occurrences that would be detrimental to the efficiency of the flooding operation. Remedial actions include the opening or closing of chokes or other valves in increments or completely in order to slow down particular areas of injection or increase the speed of particular areas of injection in order to provide the most uniform flood front based upon the sensed parameters. These remedial measures can be taken either by personnel at the surface directing such activity or preferably automatically upon command by the surface controller/processor on downhole processing unit 18. The sensors contemplated herein may be in the injection well or in both the injection well and the production well. They are employed in several different methods to obtain information such as that indicated above. Control is further heightened in the invention by providing a link between downhole sensors in the production well to the downhole sensors in the injection well as well as a connection to the flow control tools in both wells. By providing the operable connections to all of these parts of the system, the well can actually run itself and provide the most efficient oil recovery based upon the creation and maintenance of a uniform flood front. It will be understandable at this point to one of ordinary skill in the art that the flood front can be regulated from both sides of FIGURE 2, i.e., the injection well and the production well, by opening production well valves in areas where the flood front is lagging while closing valves in areas where the flood front is advancing. Complementarily to this, the fluid injection valves e.g., sliding or rotating sleeves, etc. would be choked or closed where the flood front is advancing quickly and opened more where the flood front is advancing slowly. This seemingly complex set of circumstances is easily controlled by the system of the invention and rapidly remedies any abnormalities in the intended flood profile thus avoiding breakthrough of the injected fluid to the production well. Sweep efficiency of the steam or other fluid front is greatly enhanced by the system of the invention. All of the sensors contemplated in the production well and the injection well are, preferably, permanently installed downhole sensors which are connected to processors and/to one another by electrical cabling or fiber optic cabling.
In another embodiment of the invention, illustrated schematically in FIGURE 3, downhole sensors measure strain induced in the formation by the injected fluid. Strain is an important parameter for avoiding exceeding the formation parting pressure or fracture pressure with the injected fluid. By avoiding the opening of or widening of natural preexisting fractures large unswept areas of the reservoir can be avoided. The reason this information is important in the regulation of pressure of the fluid to avoid such activity is that when pressure opens fractures or new fractures are created there is a path of much less resistance for the injected fluid to run through. Thus, as stated above, since the injection fluid will follow the path of least resistance, it would generally run in the fractures and around areas of the reservoir that need to be swept. Clearly, this substantially reduces the sweep efficiency of the injected fluid. The situation is generally referred to in the art as an "artificially high permeability channel." Another detriment to such a condition is the uncontrolled loss of injected fluids. This is clearly a loss of oil due to the reduced efficiency of the sweep and additionally may function as an economic drain due to the loss of expensive injection fluids.
FIGURE 3 schematically illustrates the embodiment and the condition set forth above by illustrating an injection well 50 and a production well 60. Fluid 52 is illustrated escaping via the unintended fracture from the formation 54 into the overlying gas cap level 56 and the underlying water table 61 and it is evident to one of ordinary skill in the art that the fluid is being lost in this location. The condition is avoided by the invention by using pressure sensors to limit the injection fluid pressure as described above. The rest of the fluid 52 is progressing as it is intended to through the formation 54. In order to easily and reliably determine what the stress is in the formation 54, acoustic sensors 56 are located in the injection well 50 at various points therein. Acoustic sensors which are well suited to the task to which they will be put in the present invention are commercially available from
Systems Innovations, Inc., Spectris Corporation and Falmouth Scientific, Inc. The acoustic sensors pick up sounds generated by stress in the formation which propagate through the reservoir fluids or reservoir matrix to the injection well. In general, higher sound levels would indicate severe stress in the formation and should generate a reduction in pressure of the injected fluid whether by automatic control or by technician control. A data acquisition system 58 is preferable to render the system extremely reliable and system 58 may be at the surface where it is illustrated in the schematic drawing or may be downhole. Based upon acoustic signals received, the system of the invention, preferably automatically (although manually is workable), reduces pressure of the injected fluid by reducing pump pressure. Maximum sweep efficiency is, thus, obtained.
In yet another embodiment of the invention, as schematically illustrated in FIGURE 4, acoustic generators and receivers are employed to determine whether a formation which is bifurcated by a fault is sealed along the fault or is permeable along the fault. It is known by one of ordinary skill in the art that different strata within a formation bifurcated by a fault may have some zones that flow and some zones that are sealed; this is the illustration of FIGURE 4. Referring directly to FIGURE 4, injection well 70 employs a plurality of sensors 72 and acoustic generators 74 which, most preferably, alternate with increasing depth in the wellbore. In production well 80, a similar arrangement of sensors 72 and acoustic generators 74 are positioned. The sensors and generators are preferably connected to processors which are either downhole or on the surface and preferably also connect to the associated production or injection well. The sensors 72 can receive acoustic signals that are naturally generated in the formation, generated by virtue of the fluid flowing through the formation from the injection well and to the production well and also can receive signals which are generated by signal generators 74. Where signal generators 74 generate signals, the reflected signals that are received by sensors 72 over a period of time can indicate the distance and acoustic volume through which the acoustic signals have traveled. This is illustrated in area A of FIGURE 4 in that the fault line 75 is sealed between area A and area B on the figure. This is illustrated for purposes of clarity only by providing circles 76 along fault line 75. Incidentally, the areas of fault line 75 which are permeable are indicated by hash marks 77 through fault line 75. Since the acoustic signal represented by arrows and semi-curves and indicated by numeral 78 cannot propagate through the area C of the drawing which bifurcates area A from area B on the left side of the drawing, that signal will bounce and it then can be picked up by sensor 72. The time delay, number and intensity of reflections and mathematical interpretation which is common in the art provides an indication of the lack of pressure transmissivity between those two zones. Additionally this pressure transmissivity can be confirmed by the detection by said acoustic signals by sensors 72 in the production well 80. In the drawing the area directly beneath area A is indicated as area E is permeable to area B through fault 75 because the region D in that area is permeable and will allow flow of the flood front from the injection well 70 through fault line 75 to the production well 80. Acoustic sensors and generators can be employed here as well since the acoustic signal will travel through the area D and, therefore, reflection intensity to the receivers 72 will decrease. Time delay will increase. Since the sensors and generators are connected to a central processing unit and to one another it is a simple operation to determine that the signal, in fact, traveled from one well to the other and indicates permeability throughout a particular zone. By processing the information that the acoustic generators and sensors can provide the injection and production wells can run automatically by determining where fluids can flow and thus opening and closing valves at relevant locations on the injection well and production well in order to flush production fluid in a direction advantageous to run through a zone of permeability along the fault.
Other information can also be generated by this alternate system of the invention since the sensors 72 are clearly capable of receiving not only the generated acoustic signals but naturally occurring acoustic waveforms arising from both the flow of the injected fluids as the injection well and from those arising within the reservoirs in result of both fluid injection operations and simultaneous drainage of the reservoir in resulting production operations. The preferred permanent deployment status of the sensors and generators of the invention permit and see to the measurements simultaneously with ongoing injection flooding and production operations. Advancements in both acoustic measurement capabilities and signal processing while operating the flooding of the reservoir represents a significant, technological advance in that the prior art requires cessation of the injection/ production operations in order to monitor acoustic parameters downhole. As one of ordinary skill in the art will recognize the cessation of injection results in natural redistribution of the active flood profile due primarily to gravity segregation of fluids and entropic phenomena that are not present during active flooding operations. This clearly also enhances the possibility of premature breakthrough, as oil migrates to the relative top of the formation and the injected fluid, usually water, migrates to the relative bottom of the formation, there is a significant possibility that the water will actually reach the production well and thus further pumping of steam or water will merely run underneath the layer of oil at the top of the formation and the sweep of that region would be extremely difficult thereafter. In yet another embodiment of the invention fiber optics are employed (similar to those disclosed in U.S. Application Serial No. 60/048,989, filed on June 9, 1997 entitled CHEMICAL INJECTION WELL CONTROL AND MONITORING SYSTEM now U.S.
Serial No. filed May 20, 1998, under attorney docket numbers 97-1554 and 97-1842, respectively all of which are fully incorporated herein by reference) to determine the amount of and/or presence of biofouling within the reservoir by providing a culture chamber within the injection or production well, wherein light of a predetermined wavelength may be injected by a fiber optical cable, irradiating a sample determining the degree to which biofouling may have occurred. As one of ordinary skill in the art will recognize, various biofouling organisms will have the ability to fluoresce at a given wavelength, that wavelength once determined, is useful for the purpose above stated.
In another embodiment of the invention, the flood front is monitored from the "back" employing sensors installed in the injection well. The sensors which are adequately illustrated in FIGURES 1 and 2 provide acoustic signals which reflect from the water/oil interface thus providing an accurate picture in a moment in time of the three-dimensional flood front. Taking pictures in 4-D i.e., three dimensions over real time provides an accurate format of the density profile of the formation due to the advancing flood front. Thus, a particular profile and the relative advancement of the front can be accurately determined by the density profile changes. It is certainly possible to limit the sensors and acoustic generators to the injection well for such a system, however it is even more preferable to also introduce sensors and acoustic generators in the production well toward which the front is moving thus allowing an immediate double check of the fluid front profile. That is, acoustic generators on the production well will reflect a signal off the oil/water interface and will provide an equally accurate three-dimensional fluid front indicator. The indicators from both sides of the front should agree and thus provides an extremely reliable indication of location and profile.
Although the drawings herein illustrate independent injection and production wells the invention is also directed to a single wellbore having at least a production zone and an injection zone. This may occur in a single primary bore or may occur in a multilateral well where the injection zone is in one of the laterals and the production zone in another of the laterals. An example of this latter type system is where a lateral and generally horizontal bore is above a formation and another is below the formation and where injected steam is employed to heat very viscous oil in the formation allowing it to gravity feed to the production zone thereunder.
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.

Claims

CLAIMS:
CLAIM 1. An automated enhanced oil recovery well system for recovering oil from an oilfield reservoir comprising: at least one subterranean production zone in said system producing a hydrocarbon fluid and having at least one production sensor associated therewith; at least one subterranean injection zone in said system for receiving an injection fluid under pressure and having at least one injection sensor associated therewith; a microprocessor-based controller operably connected to said at least one injection sensor and said at least one production sensor, said microprocessor-based controller receiving data from said sensors and controlling an injection parameter of the injected fluid and/or production rate of the produced fluids to control migration of injected fluid toward the at least one production zone so as to prevent breakthrough of said injected fluid to said at least one production zone.
CLAIM 2. An automated enhanced oil recovery well system as claimed in CLAIM 1 wherein said well system is a single well.
CLAIM 3. An automated enhanced oil recovery well system as claimed in CLAIM 1 wherein said well system includes a plurality of wells.
CLAIM 4. An automated enhanced oil recovery well system as claimed in CLAIM 3 wherein said hydrocarbon fluid is produced from said reservoir through one of said plurality of wells and said injection fluid is injected from another of said plurality of wells into said reservoir.
CLAIM 5. An automated enhanced oil recovery system as claimed in CLAIM 1 wherein at least one of said sensors senses a parameter of at least one of said fluids.
CLAIM 6. An automated enhanced oil recovery system as claimed in CLAIM 5 wherein said parameter is temperature.
CLAIM 7. An automated enhanced oil recovery system as claimed in CLAIM 5 wherein said parameter is pressure.
CLAIM 8. An automated enhanced oil recovery system as claimed in CLAIM 5 wherein said parameter is flow rate.
CLAIM 9. An automated enhanced oil recovery system as claimed in CLAIM 1 wherein at least one of said sensors senses at least one parameter of the downhole formation between said at least one injection zone and said at least one production zone.
CLAIM 10. An automated enhanced oil recovery system as claimed in CLAIM 9 wherein said at least one parameter of said formation is selected from the group consisting of acoustic conductivity, electrical conductivity, resistivity, density and strain.
CLAIM 11. A method for automating operation of an enhanced oil recovery system to recover oil from a hydrocarbon containing subterranean formation wherein at least one production zone producing hydrocarbon fluids is located proximate said formation and wherein at least one injection zone receiving injected fluid under pressure is located spaced from said at least one production zone with at least a portion of said formation between said at least one production zone and said at least one injection zone, said method comprising: installing at least one sensor sensing at least one parameter of at least one of an injection fluid and a produced fluid, said sensor communicating with at least one microprocessor-based controller; controlling at least one of a parameter of the injection fluid from said at least one injection zone into said formation and a parameter of the produced fluid to control migration of injected fluid toward the production zone so as to avoid a breakthrough of said injected fluid to said at least one production zone.
CLAIM 12. A method as claimed in CLAIM 11 wherein said installing comprises installing at least one sensor associated with the injection zone and at least one sensor associated with the production zone.
CLAIM 13. A method as claimed in CLAIM 11 wherein said controlling includes selectively controlling flow of injected fluid from a plurality of injection zones into the formation to prevent breakthrough of injection fluid to said at least one production zone.
CLAIM 14. A method as claimed in CLAIM 11 further comprising a plurality of injection zones, each having a fluid flow control device operable in response to a control signal from the controller, and controlling said device in response to data received by at least one of said at least one injection zone sensor and said at least one production zone sensor.
CLAIM 15. A method as claimed in CLAIM 11 further comprising a plurality of production zones, each having a fluid flow control device operable in response to a control signal from the controller, and controlling said device in response to data received by at least one of said at least one injection zone sensor and said at least one production zone sensor.
CLAIM 16. A method as claimed in CLAIM 11 installing a further sensor sensing at least one parameter of the formation between said at least one injection zone and said at least one production zone, selecting the sensor from the group consisting of acoustic conductivity, electrical conductivity, resistivity, density and strain.
PCT/US1998/014230 1997-07-09 1998-07-09 Computer controlled injection wells WO1999002819A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0000475A GB2343695B (en) 1997-07-09 1998-07-09 Computer controlled injection wells
AU84798/98A AU749714B2 (en) 1997-07-09 1998-07-09 Computer controlled injection wells
CA002296054A CA2296054C (en) 1997-07-09 1998-07-09 Computer controlled injection wells
NO20000113A NO20000113L (en) 1997-07-09 2000-01-10 Computerized injection wells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5204297P 1997-07-09 1997-07-09
US60/052,042 1997-07-09

Publications (1)

Publication Number Publication Date
WO1999002819A1 true WO1999002819A1 (en) 1999-01-21

Family

ID=21975064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/014230 WO1999002819A1 (en) 1997-07-09 1998-07-09 Computer controlled injection wells

Country Status (5)

Country Link
AU (1) AU749714B2 (en)
CA (1) CA2296054C (en)
GB (1) GB2343695B (en)
NO (1) NO20000113L (en)
WO (1) WO1999002819A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011189A3 (en) * 1999-08-05 2001-11-15 Cidra Corp Apparatus for optimizing production of multi-phase fluid
FR2826449A1 (en) * 2001-06-26 2002-12-27 Schlumberger Services Petrol METHOD AND INSTALLATION FOR DETERMINING THE POSITION OF THE FRONT FORMED AT THE INTERFACE BETWEEN TWO FLUIDS CONTAINED IN A RESERVOIR
US6538576B1 (en) 1999-04-23 2003-03-25 Halliburton Energy Services, Inc. Self-contained downhole sensor and method of placing and interrogating same
WO2003040517A1 (en) * 2001-11-05 2003-05-15 Weatherford/Lamb, Inc. Docking station assembly and methods for its use in a wellbore
GB2398810A (en) * 2003-02-26 2004-09-01 Schlumberger Holdings Downhole fluid measuring system
US20080308272A1 (en) * 2007-06-12 2008-12-18 Thomeer Hubertus V Real Time Closed Loop Interpretation of Tubing Treatment Systems and Methods
WO2009009437A2 (en) 2007-07-06 2009-01-15 Halliburton Energy Services, Inc. Detecting acoustic signals from a well system
CN103328762A (en) * 2010-10-20 2013-09-25 卡姆肯石油有限公司 Fluid injection device
US8902078B2 (en) 2010-12-08 2014-12-02 Halliburton Energy Services, Inc. Systems and methods for well monitoring
WO2015073032A1 (en) * 2013-11-15 2015-05-21 Landmark Graphics Corporation Optimizing flow control device properties on a producer well in coupled injector-producer liquid flooding systems
WO2015073031A1 (en) * 2013-11-15 2015-05-21 Landmark Graphics Corporation Optimizing flow control device properties for accumulated liquid injection
WO2018141841A3 (en) * 2017-02-01 2019-10-17 Wfs Technologies Ltd Flow monitoring system
RU2720848C1 (en) * 2020-01-20 2020-05-13 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Method for development of oil deposit with inter-formation flows

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415864B1 (en) * 2000-11-30 2002-07-09 Schlumberger Technology Corporation System and method for separately producing water and oil from a reservoir

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892270A (en) * 1974-06-06 1975-07-01 Chevron Res Production of hydrocarbons from underground formations
US4368781A (en) * 1980-10-20 1983-01-18 Chevron Research Company Method of recovering viscous petroleum employing heated subsurface perforated casing containing a movable diverter
US4488598A (en) * 1983-03-18 1984-12-18 Chevron Research Company Steam, noncondensable gas and foam for steam and distillation drive _in subsurface petroleum production
US4676313A (en) * 1985-10-30 1987-06-30 Rinaldi Roger E Controlled reservoir production
US5131471A (en) * 1989-08-16 1992-07-21 Chevron Research And Technology Company Single well injection and production system
WO1996024747A1 (en) * 1995-02-09 1996-08-15 Baker Hughes Incorporated Downhole production well control system and method
US5597043A (en) 1995-03-17 1997-01-28 Cross Timbers Oil Method of completing wellbores to control fracturing screenout caused by multiple near-wellbore fractures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892270A (en) * 1974-06-06 1975-07-01 Chevron Res Production of hydrocarbons from underground formations
US4368781A (en) * 1980-10-20 1983-01-18 Chevron Research Company Method of recovering viscous petroleum employing heated subsurface perforated casing containing a movable diverter
US4488598A (en) * 1983-03-18 1984-12-18 Chevron Research Company Steam, noncondensable gas and foam for steam and distillation drive _in subsurface petroleum production
US4676313A (en) * 1985-10-30 1987-06-30 Rinaldi Roger E Controlled reservoir production
US5131471A (en) * 1989-08-16 1992-07-21 Chevron Research And Technology Company Single well injection and production system
WO1996024747A1 (en) * 1995-02-09 1996-08-15 Baker Hughes Incorporated Downhole production well control system and method
US5597043A (en) 1995-03-17 1997-01-28 Cross Timbers Oil Method of completing wellbores to control fracturing screenout caused by multiple near-wellbore fractures

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538576B1 (en) 1999-04-23 2003-03-25 Halliburton Energy Services, Inc. Self-contained downhole sensor and method of placing and interrogating same
WO2001011189A3 (en) * 1999-08-05 2001-11-15 Cidra Corp Apparatus for optimizing production of multi-phase fluid
GB2393257B (en) * 2001-06-26 2004-12-01 Schlumberger Holdings Method and installation for locating the position of the boundary formed at the interface between two fluids contained in a reservoir
WO2003002951A3 (en) * 2001-06-26 2003-02-20 Schlumberger Services Petrol Method and installation for locating the position of the boundary formed at the interface between two fluids contained in a reservoir
WO2003002951A2 (en) * 2001-06-26 2003-01-09 Services Petroliers Schlumberger Method and installation for locating the position of the boundary formed at the interface between two fluids contained in a reservoir
GB2393257A (en) * 2001-06-26 2004-03-24 Schlumberger Holdings Method and installation for locating the position of the boundary formed at the interface between two fluids contained in a reservoir
FR2826449A1 (en) * 2001-06-26 2002-12-27 Schlumberger Services Petrol METHOD AND INSTALLATION FOR DETERMINING THE POSITION OF THE FRONT FORMED AT THE INTERFACE BETWEEN TWO FLUIDS CONTAINED IN A RESERVOIR
WO2003040517A1 (en) * 2001-11-05 2003-05-15 Weatherford/Lamb, Inc. Docking station assembly and methods for its use in a wellbore
US7063143B2 (en) 2001-11-05 2006-06-20 Weatherford/Lamb. Inc. Docking station assembly and methods for use in a wellbore
GB2398810B (en) * 2003-02-26 2005-05-11 Schlumberger Holdings Well treatment method and system
US7040402B2 (en) 2003-02-26 2006-05-09 Schlumberger Technology Corp. Instrumented packer
GB2398810A (en) * 2003-02-26 2004-09-01 Schlumberger Holdings Downhole fluid measuring system
WO2008152599A3 (en) * 2007-06-12 2009-11-12 Schlumberger Canada Limited Real time closed loop interpretation of tubing treatment systems and methods
US20080308272A1 (en) * 2007-06-12 2008-12-18 Thomeer Hubertus V Real Time Closed Loop Interpretation of Tubing Treatment Systems and Methods
WO2008152599A2 (en) * 2007-06-12 2008-12-18 Schlumberger Canada Limited Real time closed loop interpretation of tubing treatment systems and methods
EA022992B1 (en) * 2007-06-12 2016-04-29 Шлюмбергер Текнолоджи Б.В. Systems and methods for treatment of subterranean formation with real time closed loop data interpretation
RU2446279C2 (en) * 2007-07-06 2012-03-27 Халлибертон Энерджи Сервисез, Инк. System (versions) and detection method of acoustic signals supplied from well
WO2009009437A2 (en) 2007-07-06 2009-01-15 Halliburton Energy Services, Inc. Detecting acoustic signals from a well system
WO2009009437A3 (en) * 2007-07-06 2009-03-12 Halliburton Energy Serv Inc Detecting acoustic signals from a well system
CN101796262B (en) * 2007-07-06 2013-10-30 哈利伯顿能源服务公司 Well system and method for detecting and analyzing acoustic signals
CN101796262A (en) * 2007-07-06 2010-08-04 哈利伯顿能源服务公司 Detect the voice signal of artesian well system
CN103328762A (en) * 2010-10-20 2013-09-25 卡姆肯石油有限公司 Fluid injection device
US9453389B2 (en) 2010-10-20 2016-09-27 Camcon Oil Limited Fluid injection device
US8902078B2 (en) 2010-12-08 2014-12-02 Halliburton Energy Services, Inc. Systems and methods for well monitoring
WO2015073032A1 (en) * 2013-11-15 2015-05-21 Landmark Graphics Corporation Optimizing flow control device properties on a producer well in coupled injector-producer liquid flooding systems
US10392905B2 (en) 2013-11-15 2019-08-27 Landmark Graphics Corporation Optimizing flow control device properties for accumulated liquid injection
GB2534778A (en) * 2013-11-15 2016-08-03 Landmark Graphics Corp Optimizing flow control device properties for accumulated liquid injection
WO2015073031A1 (en) * 2013-11-15 2015-05-21 Landmark Graphics Corporation Optimizing flow control device properties for accumulated liquid injection
GB2537267A (en) * 2013-11-15 2016-10-12 Landmark Graphics Corp Optimizing flow control device properties on a producer well in coupled injector-producer liquid flooding systems
AU2013405167B2 (en) * 2013-11-15 2017-06-29 Landmark Graphics Corporation Optimizing flow control device properties for accumulated liquid injection
AU2013405168B2 (en) * 2013-11-15 2017-07-13 Landmark Graphics Corporation Optimizing flow control device properties on a producer well in coupled injector-producer liquid flooding systems
CN105765160A (en) * 2013-11-15 2016-07-13 兰德马克绘图国际公司 Optimizing flow control device properties for accumulated liquid injection
GB2534778B (en) * 2013-11-15 2021-02-10 Landmark Graphics Corp Optimizing flow control device properties for accumulated liquid injection
US10520925B2 (en) 2013-11-15 2019-12-31 Landmark Graphics Corporation Optimizing flow control device properties on a producer well in coupled injector-producer liquid flooding systems
GB2537267B (en) * 2013-11-15 2020-11-04 Landmark Graphics Corp Optimizing flow control device properties on a producer well in coupled injector-producer liquid flooding systems
WO2018141841A3 (en) * 2017-02-01 2019-10-17 Wfs Technologies Ltd Flow monitoring system
US11125062B2 (en) 2017-02-01 2021-09-21 CSignum Ltd. Flow monitoring system
RU2720848C1 (en) * 2020-01-20 2020-05-13 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Method for development of oil deposit with inter-formation flows

Also Published As

Publication number Publication date
CA2296054C (en) 2007-12-04
GB2343695A (en) 2000-05-17
AU749714B2 (en) 2002-07-04
GB2343695B (en) 2002-03-20
NO20000113L (en) 2000-03-08
CA2296054A1 (en) 1999-01-21
NO20000113D0 (en) 2000-01-10
AU8479898A (en) 1999-02-08
GB0000475D0 (en) 2000-03-01

Similar Documents

Publication Publication Date Title
US6615917B2 (en) Computer controlled injection wells
AU753252B2 (en) Wellbores utilizing fiber optic-based sensors and operating devices
US7040390B2 (en) Wellbores utilizing fiber optic-based sensors and operating devices
US6977367B2 (en) Providing a light cell in a wellbore
CA2683994C (en) System and method for water breakthrough detection and intervention in a production well
AU749714B2 (en) Computer controlled injection wells
AU781203B2 (en) Wellbores utilizing fiber optic-based sensors and operating devices
AU2004201979B2 (en) Light-activated system and method for wellbores

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

ENP Entry into the national phase

Ref document number: 2296054

Country of ref document: CA

Ref country code: CA

Ref document number: 2296054

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: GB

Ref document number: 200000475

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 84798/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09462334

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 84798/98

Country of ref document: AU