WO1998023322A1 - Atraumatic anchoring and disengagement mechanism for permanent implant device - Google Patents
Atraumatic anchoring and disengagement mechanism for permanent implant device Download PDFInfo
- Publication number
- WO1998023322A1 WO1998023322A1 PCT/US1997/022163 US9722163W WO9823322A1 WO 1998023322 A1 WO1998023322 A1 WO 1998023322A1 US 9722163 W US9722163 W US 9722163W WO 9823322 A1 WO9823322 A1 WO 9823322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- shaped
- holding
- thrombosis
- struts
- Prior art date
Links
- 0 C=*1CCCC1 Chemical compound C=*1CCCC1 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/011—Instruments for their placement or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/0105—Open ended, i.e. legs gathered only at one side
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/016—Filters implantable into blood vessels made from wire-like elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8486—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs provided on at least one of the ends
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/005—Rosette-shaped, e.g. star-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0067—Three-dimensional shapes conical
Definitions
- the present invention relates to improved thrombosis filters. More particularly, the invention relates to a thrombosis filter that can be percutaneously installed in a selected body lumen at a selected location in the vascular system and is adapted for trapping thrombosis materials or blood clots. Still more particularly, the invention relates to a thrombosis filter that can be percutaneously removed from the vascular system from a single direction.
- Pulmonary embolism is a recognized medical emergency, and may be caused by venous thrombosis.
- the venous thrombosis may be caused by blood flow retention, venous intima damage, or coagulation abnormalities.
- Recognized treatments include administration of anticoagulant medication therapy, thrombolytic therapy, thrombectomy, and inferior vena cava thrombosis filtering procedures.
- an inferior vena cava thrombosis filtering procedure When an inferior vena cava thrombosis filtering procedure is selected, it can be accomplished using either a laparotomy procedure under general anesthesia, or percutaneously inserting a thrombosis filter under local anesthetic.
- a laparotomy procedure is a surgical procedure done under general anesthesia, and is susceptible to thrombosis formation due to discontinuance of anti-coagulant therapy prior to such surgery.
- a recognized option is to intravenously insert a thrombosis filter in the vascular system, and in particular into the inferior vena cava, which requires only a local anesthetic.
- Percutaneous filter insertion has been recognized as an effecateous procedure since only a local anesthetic is required; however, such thrombosis filters have been recognized to become affixed to the inner vena cava wall or vein wall by neointimal hyperplasia within a relatively short time after implantation. This process can occur within two or three weeks, and in prior art filter arrangements renders the filter unremovable by a single percutaneous process without incurring significant vessel trauma.
- thrombosis filters which have been developed with the intent of allowing percutaneous removal.
- Those prior art thrombosis filters that include substantially linear struts tend to distribute forces along the longitudinal axis of the struts. With the struts deployed outwardly to engage the walls of the lumen, asymmetrical compression of the lumen can cause the struts to be forced together in a manner that causes the struts to do damage to the lumen wall.
- U.S. Patent No. 4,990,156 to J. Lefebvre describes a filter that may be percutaneously inserted for temporary use in determining whether or not a more permanent filtering treatment is necessary.
- the device describes a non-aggressive contact of the filter elements with the vessel and describes a number of elements that each have sharpened and roughened portions contacting the vessel wall and holding the filter in position.
- a sheath is provided to allow removal should the filter not be required for permanent usage. Once deployed, the filter is positioned for definitive use and may not thereafter be readily removed.
- U.S. Patent No. 5,324,304 issued to Erik Rasmussen describes another form of implantable filter that is self-expandable and can be inserted through use of a catheter which encloses the structure .
- the anchoring legs are designed to have hooks at the ends for engaging the wall of the vein once deployed.
- the anchoring elements form part of the filtering structure, and once placed would tend to hook firmly into the vein walls . No structure or method is described for percutaneous removal .
- U.S. Patent No. 5,370,657 to Toshiyuki Irie describes a recoverable thrombosis filter having a structure wherein the holding mechanism and the filtering mechanism is comprised of a number of opposed elements that are held in place by an intermediate tension member. It recognizes that removal may be desirable, and has described a series of shaped end portions that cooperate with the wall of the vessel, without piercing it deeply. For removal, it is necessary that dual percutaneous procedures be worked from opposite ends of the filter. A pair of hooking devices are engaged from the opposite ends, and the two halves of the filter are stretched apart until the connecting tension member breaks.
- the present invention was developed to provide an improved recoverable thrombosis filter that can be removed through a percutaneous procedure even after having been in place for such time as to have had neointimal hyperplasia to have fully developed.
- the filter is structured such that the holding portion can be collapsed from one end through external manipulation and the entire filter drawn within an enclosing structure for removal.
- the present invention comprises a recoverable thrombosis filter that is recoverable by a single recovery procedure. It includes a plurality of thrombosis filtering elements that are shaped in a predetermined manner and which are joined at one end and are deployed about a longitudinal axis to form a generally conical structure.
- the filtering elements include shaped ends for engaging an inner lumen wall .
- a plurality of positioning struts are joined at one end and are deployed in an opposite direction around the longitudinal axis.
- the positioning struts include wall engaging ends that include projections for engaging the inner wall of the lumen to prevent motion of the filter structure in the direction of deployment of the positioning struts.
- the anchoring device of the present application can be used with other devices such as stents, stent grafts, vaso-occlusive particles, vascular closure devices, filters and the like.
- a recovery mechanism including retracting structure is percutaneously inserted to the vicinity of the filter.
- the recovery mechanism includes an extensible gripping device, an actuating device, and an outer shield capable of enclosing the filter.
- the gripping device is manipulated to engage a portion of the retracting structure so that the filter can be held in position.
- the activating device of the recovery mechanism operates to collapse the plurality of positioning struts to a position where they can be withdrawn by the gripping device into the outer shield. While the outer shield is held firmly in position, the gripping device is further withdrawn and the plurality of thrombosis filtering structures are withdrawn into the shield.
- a retracting mechanism in combination with the recovery mechanism, causes the plurality of positioning struts to be withdrawn from contact with the inner lumen wall and to be deflected into a substantially parallel relationship with the struts arranged longitudinally in the direction of their original deployment.
- the recovery mechanism engages the removable thrombosis filter and holds it in place while the plurality of positioning struts are moved in the direction opposite of their original deployment and are forced into a generally parallel alignment along the longitudinal axis directed toward the direction of deployment of the filtering elements. Once deflected, the outer shield is held in place and the filter is drawn within the outer shield.
- Fig. 1 is a fragmentary section through a human body from left to right and illustrates a medical procedure of installing the thrombosis filter in the inferior vena cava and removal of the filter by percutaneously entering the venous system at the jugular vein and withdrawing the filter;
- Fig. 2 is a side cutaway view of a filter in a relaxed position;
- Fig. 3 is a partial perspective view of the vein engaging end of a filter leg member
- Fig. 4 is a side view of a ribbon wire leg member
- Fig. 5 is a cross-sectional view taken at line 5-5 in Fig. 4;
- Fig. 6 is a side view of a round leg member
- Fig. 7 is a cross-sectional view taken at line 7-7 in Fig. 6
- Fig. 8 is a plan view of a serpentine shaped leg member
- Fig. 9 is a plan view of a spiral shaped leg member
- Fig. 10 is a partial perspective view taken at line 10-10 in Fig. 9;
- Fig. 11 is a side cutaway view of a filter positioned in a lumen about to be engaged for removal;
- Fig. 12 is a side cutaway view of a filter positioned in a lumen having a positioning portion collapsed for removal;
- Fig. 13 is a side cutaway view of a filter positioned in a lumen having the positioning portion enclosed within a recovery mechanism;
- Fig. 14 is a side cutaway view of a filter positioned within a lumen having the entire filter enclosed within a recovery mechanism and ready for removal;
- Fig. 15 is a side cutaway view of another embodiment of a filter in a relaxed position
- Fig. 16 is an end view of a joining member taken at line 16-16 in Fig. 15
- Fig. 17 is an end view of a joining member taken at line 17-17 in Fig. 15;
- Fig. 18 is a side cutaway view of yet another embodiment of a filter in a relaxed position
- Fig. 19 is a side cutaway of the filter of Fig. 18 positioned in a lumen;
- Fig. 20 is a side cutaway of the filter of Fig. 18 engaged for removal;
- Fig. 21 is a side cutaway of the filter of Fig. 18 with the positioning portion enclosed within a recovery mechanism;
- Figs. 22A-22E illustrate the deflection and retraction of a flexible anchor member of the type used with the filter of Fig. 18;
- Fig. 23 is side view of yet another embodiment of the recoverable filter in accordance with the present invention.
- Fig. 24 is a detailed view of the distal end of an anchoring strut of the filter of Fig. 23;
- Fig. 25 is a side view of the recoverable filter of Fig. 23 disposed in a vessel lumen;
- Fig. 26 is a detailed view of the distal end of an anchoring strut as shown in Fig. 25;
- Fig. 27 is a side view of a recoverable filter of Fig. 23 shown in a vessel lumen during the process of removing the filter from the vessel lumen;
- Fig. 28 is a detailed view of the distal end of an anchoring strut shown in Fig. 27;
- Fig. 29 is a side view of yet another embodiment of a recoverable filter in accordance with the present invention
- Fig. 30 is an end view of the filter of Fig. 29
- Fig. 31 is a view of the filter of Fig. 29 and a removal catheter;
- Fig. 32 is a view of the filter of Fig. 29 in an early stage of the removal process
- Fig. 33 is a view of the filter of Fig. 29 in a stage of the removal process subsequent to that shown in Fig. 32;
- Fig. 34 is a view of the filter of Fig. 29 in a stage of the removal process subsequent to that shown in Fig. 33;
- Fig. 35 is a view of the filter of Fig. 29 shown withdrawn into the removal catheter.
- Fig. 1 is a fragmentary section through a human body from left to right and illustrates a medical procedure of installing the thrombosis filter in the inferior vena cava and removal of the filter by percutaneously entering the venous system at the jugular vein and withdrawing the filter.
- This illustrates the body 10 with a cutaway portion 12 that exposes a portion of the vascular system.
- the femoral vein 14 leads to the external iliac vein 16.
- the common iliac vein 18 leads to the inferior vena cava 20.
- a filter 24 is dispersed within the inferior vena cava and is held in place by the structure that will be described.
- a catheter tube is inserted at incision 28 into the venous system. As it extends toward heart 30, it reaches the inferior vena cava 20 and the filter 24 is deployed. The distal end 32 of the catheter structure 26 is shown after deployment of the filter 24.
- a recovery mechanism (36) is inserted in the jugular vein 38 at incision 40 and passes through an atrium of heart 30 until its distal end 42 enters the inferior vena cava 20. The recovery mechanism is not shown in detail in this figure, but will be described in detail below.
- Fig. 2 is a side cutaway view of a filter in a relaxed position.
- the filter 44 has a plurality of shaped filtering elements 46, each having a mounting end 48 and a wall engaging end 50. Projections 52 have a length sufficient to engage an associated vein wall (not shown) while being short enough so the vein will not be pierced.
- Connecting structure 54 has a frustum shaped end 56 that fixedly attaches the mounting ends 48.
- Structure 54 defines a longitudinal cavity 58 within which mounting member 60 is slidably retained.
- a plurality of flexible anchoring struts 62 are mounted on mounting member 60 and project outwardly to wall engaging surfaces 64. Projections 66 function to position and hold the filter 44 in position when engaged to an inner vein wall.
- a hooking element 68 is affixed to mandrel 70. An end 72 of mandrel 70 is affixed within the connecting structure 56.
- a tubular member 74 has one end affixed to a pushing structure 76 and a second end 78 mounted in the mounting member 60. Tubing 74 surrounds a mandrel 70 and is coaxially aligned therewith.
- the length LI from projection 52 to projection 66 is in the order of 2.0 inches.
- the length L2 of the joining member 54 is about 0.4 inch.
- the tip-to-tip length L3 is in the order of 1.25 inches, and the projection-to-projection distance L4 is in the order of 1.2 inches.
- Various configurations and geometries will be described below, it being understood that when deployed, the filtering portion shown at dashed line 78 will function to restrict the flow of blood clots or thrombosis when blood is flowing in the direction of arrows 80. At the same time, positioning and holding portion 82 will restrict longitudinal and transverse movement of the filter 44 within the associated lumen or vein. Holding portion 82 preferably centers the device within the lumen.
- Fig. 3 is a partial perspective view of the vein engaging end of a filter leg member.
- the end member 50 has a generally curved structure and is flattened to a desired dimension such that the under surface 84 will slidably engage an associated vein wall. The thickness is selected for the desired flexibility.
- An outward projection 52 is arranged for engaging the vein wall. A similar configuration is utilized for the anchoring elements.
- Fig. 4 is a side view of a ribbon wire leg member.
- the filter member 46 has the mounting end 48 positioned at a predetermined angle to the longitudinal arrangement of the member 46. At its other end, the curved portion 84 deflects in the opposite direction and has projection 52.
- Fig. 5 is a cross-sectional view taken at line 5-5 in Fig. 4.
- the flat wire has a thickness Tl of about 0.006 inch and a width Wl of about 0.026 inch. It is, of course, understood that differences in thickness relative to width will effect the flexibility of the element.
- Fig. 6 is a side view of a round leg member. Again, the leg member has a deflection 48' and has an upper thickness T2 that can be in the order of 0.016 inch. The lower portion has a reduced cross section with a thickness T3 in the order of about 0.006 inch.
- Fig. 7 is a cross-sectional view taken at line 7-7 in Fig. 6. It illustrates the extent of deflection of portion 48' .
- Fig. 8 is a plan view of a serpentine shaped leg member. As illustrated, serpentine section 86 is provided to yield an improved filtering function when used in combination with other filter members.
- Fig. 9 is a plan view of a spiral shaped leg member.
- a spiral portion 88 is utilized to enhance the filtering operation.
- Fig. 10 is a partial perspective view taken at line 10-10 in Fig. 9. It illustrates the spiral portion 88.
- the design of serpentine portion 86 or spiral portion 88 will be selected in accordance with the number of the filter elements used, the overall size of the filter 44, the attributes of the lumen in which it will be installed, and the flow of blood being filtered.
- Fig. 11 is a side cutaway view of a filter positioned in a lumen about to be engaged for removal.
- the positioning portion 82 and the filtering portion 78 have their respective members deflected within the confines of vein 90. As deflected, the curved engaging portions 50 are brought in contact with the inner wall 90, as are contact portions 64 of the positioning portion 82. This arrangement provides for the vein walls 90 to provide adequate tension on the positioning portion 82 and the filtering portion 78 to cause the projections 52 and 66 to engage the inner wall without piercing the inner wall .
- a filter recovery mechanism 92 is inserted in the direction of arrow 94 until a grasping mechanism 96 is brought in proximity to hooking element 68.
- Snare 96 is a looped cord or wire that can be externally manipulated to engage mandrel 70 behind the hooking element 68.
- the hooking element 68 and the grasping mechanism 96 can be constructed of materials that can be tracked fluoroscopically.
- Fig. 12 is a side cutaway view of a filter positioned in a lumen having the positioning portion collapsed for removal .
- extensible gripping device 96 engages members 68, it can be utilized to hold member 68 in a relatively fixed longitudinal position.
- actuating device 98 is moved in the direction of arrow 100 to engage element 76 to thereby force tube 74 to move along mandrel 70 and cause the positioning portion 82 to collapse.
- Mounting element 60 is moved within cavity 58 to effect the collapse, and cause the positioning elements to be substantially parallel aligned along the longitudinal axis.
- Fig. 13 is a side cutaway view of a filter positioned in a lumen having the positioning portion enclosed within a recovery mechanism. Once the positioning portion 82 has been collapsed, outer shield 102 is moved in the direction of arrow 104 while the gripping device is held steady. When thus positioned, the outer shield 102 is positioned at end 106 to engage the filtering elements 78.
- Fig. 14 is a side cutaway view of a filter positioned within a lumen having the entire filter enclosed within a recovery mechanism and ready for removal. Once the positioning portion 82 is enclosed within outer shield 102, pressure can be applied to the gripping member 96 for moving the gripping member in the direction of arrow 108.
- the outer shield 102 When thus moved, the outer shield 102 is held firm and end 106 functions to collapse filtering portion 78 such that it can be withdrawn within the confines of outer shield 102.
- the relatively stiff portion of the recovery mechanism 92 When fully withdrawn within the recovery mechanism 92, the relatively stiff portion of the recovery mechanism 92 has a length L5 of about 2.77 inches .
- Fig. 15 is a side cutaway view of another embodiment of a filter in a relaxed position. Elements having similar functions will have a similar reference numeral designation.
- filtering portion 78 is mounted in mounting structure 110 enjoining member 54. This configuration eliminates the frustum element 56 and provides additional strength at this structure.
- a hook 112 replaces the button element 68.
- Pushing element 76 of Fig. 2 is replaced by a pushing frustum element 114.
- This frustum configuration provides an improved blood flow and minimizes turbulence. Further, it gives a larger dimension along mandrel 70 such that there is minimization of the tendency to tilt as it is being moved forward as previously described.
- dimensions L2, L3 , and L4 are similar to those described with regard to Fig. 2.
- the projection-to-projection length L6 is in the order of 2.1 inches, while the tip- to-tip length L7 is in the order of about 2.22 inches.
- the over-all relaxed length of the filter is designated L8, and is about 2.68 inches.
- Fig. 16 is an end view of a joining member taken at line 16-16 in Fig. 15. It illustrates the housing 54 mounting positioning elements 62, which number four in this configuration, surrounding mandrel 70 which passes therethrough. This figure is expanded and is not in scale.
- Fig. 17 is an end view of a joining member taken at line 17-17 in Fig. 15. It illustrates the mounting member 110 which is mounted in the connecting housing 54, and shows six mounting ends 48 of the filtering members.
- Mandrel 70 is affixed in the mounting member 110. Again, this figure is in a different scale to that of Fig. 15.
- Fig. 18 is a side cutaway view of yet another embodiment of a filter in a relaxed position.
- the mounting element 60 is fixedly mounted within channel 58 substantially adjacent to mounting member 110.
- the mounting ends 78 of positioning struts 62 are restrained by the outer limits of housing 54.
- a hook 112 is fixedly mounted to mandrel 70 which in turn is secured in mounting element 110.
- housing 54 is shorter than the embodiment illustrated in Fig. 2, and has a length L9 of about 0.265 inch.
- the overall length L10 from a projection-to-projection is in the order of 1.85 inches, and the length Lll from the end of mounting member 110 to the filtering portion 78 projections is in the order of 1.27 inches.
- the relaxed spacing of the filtering portion L12 is in the order of 1.2 inches.
- Fig. 19 is a side cutaway of the filter of Fig. 18 positioned in a lumen. As shown, positioning portion 82 engages the inner vein wall 90, as does the filtering portion 78. When thus contained, the diameter of the lumen or vein L13 is in the order of 0.866 inch. When installed, the overall length L14 is in the order of 2.25 inches, while the tip projection-to-projection length L15 is in the order of 2.11 inches.
- Fig. 20 is a side cutaway of the filter of Fig. 18 engaged for removal. In this embodiment, a recovery mechanism 120 has a gripping device 122 for engaging hook 112.
- the gripping device When thus engaged, the gripping device can be held firmly externally, and the outer shield 124 extended in the direction of arrow 126 to engage the legs 62 of positioning portion 82.
- Outer shield 24 can include a funnel shaped end to assist in directing the filter into the recovery mechanism 120.
- Fig. 21 is a side cutaway of the filter of Fig. 18 with the positioning portion enclosed within a recovery mechanism.
- the recovery mechanism 120 has had the outer shield 124 moved farther in the direction of arrow 126 such that positioning struts 62 have been bent back upon themselves and are within outer shield 124.
- struts 62 are substantially parallel to each other and aligned along the longitudinal axis of the filter and the recovery mechanism 120.
- Figs. 22A-22E illustrate the deflection and retraction of a flexible anchor member of the type used with the filter of Fig. 18.
- a flexible anchor member 62 is in a holding position on the inner wall of vein 90.
- the tip 64 and the protrusion 66 are started in a direction to be released from the inner wall 90.
- the force has been applied at arrow 130 to start deflection of flexible anchor member 62.
- the protrusion 66 has been removed from inner wall 90 and the tip 64 has started to slide along the inner wall.
- Anchor member 62 can have a predetermined region of greater flexibility to control the location of the deflection caused by the force supplied at arrow 130.
- FIG. 22C the force applied at arrow 130 has deflected flexible anchor member 62 such that the end 64 is merely moving along the inner wall surface 90.
- FIG. 22D there is an illustration that the force applied in the direction of arrow 130 has proceeded to a point where flexible anchor member 62 has started to bend back upon itself, and the tip 64 is out of contact with the inner wall of vein 90.
- Fig. 22E it is shown that force applied in the direction of arrow 130 by the outer shield 124 as bent flexible anchor member 62 back upon itself, such that the outer shield can pass over it.
- Fig. 23 is a side view of yet another embodiment of a retrievable filter in accordance with the present invention. The filter as shown in Fig.
- the filter of Fig. 23 is in a relaxed, uncompressed state.
- the filter of Fig. 23 is substantially similar to that of Figs. 15-22, except as the description below may vary from that of the embodiment of Fig. 15 described above.
- the filter of Fig. 23 includes a plurality of filtering elements 146 having wall engaging ends 150. Wall engaging ends 150 as shown in this embodiment are curved to present a rounded convex face to a vessel wall.
- Collectively filtering elements 146 form a filter portion or array 178.
- Disposed distally of filter array 178 are a plurality of legs or anchoring struts 162.
- Anchoring struts 162 have proximal and distal ends. A typical distal end is shown in Fig. 24 in detail.
- the filter also includes a hook 212 to aid in removal of the filter from a vessel.
- An enjoining member 154 joins filter array 178, struts 162 proximate their proximal ends and hook 212 together.
- Struts 162 preferably are formed in a ribbon shape, wherein the thickness of the ribbon is shown in Fig. 23 and the width is perpendicular to the thickness, i.e., directly into the paper.
- Fig. 24 is a detailed view of the distal end of a strut 162.
- the distal end includes a sharpened portion 166 and a pad portion 164 extending distally beyond sharpened portion 164.
- Sharpened portion 164 is sufficiently sharp to penetrate a vessel wall.
- Pad portion 164 similarly to strut 162, preferably has a ribbon shape wherein the thickness is shown in Fig. 24 and the width is perpendicular to the thickness, i.e., directly into the paper.
- the thickness of pad portion 164 decreases distally.
- the decrease in pad thickness 164 can create an increase in flexibility of pad portion 164 distally.
- a similar increase in flexibility distally along pad portion 164 can be created by varying the material characteristics of pad 164.
- Pad portion 164 is preferably flexible enough not to puncture the vessel wall, i.e., the pad portion 164 is preferably atraumatic.
- the length of sharp portion 164 is between about 2 to 6 millimeters and the length of pad portion 162 is between about 4 to 20 millimeters.
- pad portion 164 is more than twice as long as sharp portion 164.
- Figs. 25 and 26 show the filter of Fig. 23 disposed in a vessel A during normal use.
- the direction of blood flow is shown by arrows B.
- the removal of the filter would be in the direction indicated by arrow C by way of hook 212.
- Filter elements 146 are shown moderately compressed in comparison to their relaxed state shown in Fig. 23.
- sharp portion 166 is penetrating the wall of the vessel A and pad portion 164 is generally parallel to the wall of vessel A.
- Figs. 27 and 28 show the filter of Fig. 23 in the process of being removed from vessel A in the direction indicated by arrow C.
- struts 162 will deform generally as shown in Figs. 22A- 22E.
- Strut 162 as shown in Fig. 27 is in the approximate position of strut 62 in Fig. 22B.
- strut 162 will assume generally the position shown in Fig. 22E. The ultimate removal of the filter will be accomplished as described with respect to the filter of Fig. 15 above.
- Fig. 28 is a detailed view of the distal end of strut 162 as shown in Fig. 27.
- the configuration of strut 162 in Fig. 27 is similar to that of strut 62 in Fig. 22B, it can be appreciated that the length of pad portion 164 relative to sharpened portion 166 is substantially greater than element 64 is to element 66 of Fig. 22B, respectively.
- the increased length and increasing flexibility of pad portion 164 distally provides an effective cantilever for retracting sharp portion 166 from the wall of vessel A.
- Fig. 29 is a side view of yet another embodiment of filter 200 in accordance with the present invention disposed within a vessel A.
- Filter 200 has a longitudinal axis D. Blood or fluid flow in vessel A is shown in the direction indicated by arrows B.
- Filter 200 includes flexible struts 202 generally extending in the first direction along axis D from a hub 204, while diverging from axis D. A first end of strut 202 is coupled to hub 204. Second end 206 of strut 202 is preferably sharpened and barbed to engage with the wall of vessel A.
- Filter 200 also includes a strut retraction member 208.
- Strut retraction member 208 includes a plurality of retraction loops 210 extending from retraction member hub 212 generally in the second direction along axis D. Each of loops 210 preferably loops around a strut 202.
- a tether connector 214 extends from hub 212 in the first direction along axis D.
- a telescoping connector 216 connects hub 204 and retraction member hub 212.
- struts 202 or loops 210 may be formed from nitinol, stainless steel or other biocompatible materials.
- struts 202 or loops 210 may be formed from nitinol, stainless steel or other biocompatible materials.
- materials described above with respect to the other filter embodiments could advantageously be applied to construct the embodiment 200 as well.
- Fig. 30 is an end view of filter 200 shown within vessel A.
- filter 200 there are six struts 202 and loops 210.
- Fig. 31 is a side view of the filter of Fig. 29 to which a tether 218 having a loop 220 is attached to tether connector 214.
- Tether 218 is disposed within a catheter 222 having an outer tubular member 224 and an inner tubular member 226.
- catheter 222 may be advanced to the filter from a femoral vein access point.
- Outer tube 224 and inner tube 226 are preferably formed from biocompatible materials including polymers known to those skilled in the art. The materials must be of sufficient strength and rigidity or flexibility to accomplish the procedure described below.
- Fig. 32 is a side view of the filter of Fig. 29 wherein the retraction member 208 is being pulled in the first direction such that loops 210 are advancing along and engaging struts 202.
- Fig. 33 is a side view of filter 200 of Fig. 29 wherein inner tube 226 of catheter 222 has been brought into engagement with loops 210. In dashed lines, inner tube 226 is shown being advanced in a second direction over loops 210 such that struts 202 are brought from a first position engaging the walls of vessel A to a second position adjacent axis D of filter 200.
- Fig. 34 is a side view of filter 200 shown in Fig. 29.
- struts 202 are shown disposed in the second position. Second ends 206 of struts 202 have been brought into contact with the distal end of inner tube 226.
- Fig. 35 is a side view of filter 200 of Fig. 29 in which filter 200 has been withdrawn into outer tube 224 of catheter 222. Filter 200 could now be removed from the patient through outer tube 224, or filter 200 and catheter 222 could be simultaneously removed from the patient .
- the various components of the filter can be constructed of a class of elastic materials including nitinol, stainless steel, platinum, tungsten, titanium, and chromium alloys .
- the shaping and bonding structures are those available in the construction of thrombosis filters of the class described.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52491098A JP2002514102A (en) | 1996-11-27 | 1997-11-26 | Mechanism of atraumatic placement and removal of permanent implants |
DE0942767T DE942767T1 (en) | 1996-11-27 | 1997-11-26 | MECHANISM FOR ANCHORING AND RELEASING A PERMANENT IMPLANT |
CA002256458A CA2256458C (en) | 1996-11-27 | 1997-11-26 | Atraumatic anchoring and disengagement mechanism for permanent implant device |
EP97949740A EP0942767B1 (en) | 1996-11-27 | 1997-11-26 | Atraumatic anchoring and disengagement mechanism for permanent implant device |
DE69735109T DE69735109T2 (en) | 1996-11-27 | 1997-11-26 | MECHANISM FOR ANCHORING AND SOLVING A PERMANENT PLANT |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75782796A | 1996-11-27 | 1996-11-27 | |
US757,827 | 1996-11-27 | ||
US94253197A | 1997-10-02 | 1997-10-02 | |
US942,531 | 1997-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998023322A1 true WO1998023322A1 (en) | 1998-06-04 |
Family
ID=27116456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/022163 WO1998023322A1 (en) | 1996-11-27 | 1997-11-26 | Atraumatic anchoring and disengagement mechanism for permanent implant device |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE942767T1 (en) |
WO (1) | WO1998023322A1 (en) |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1000590A1 (en) * | 1998-11-09 | 2000-05-17 | Cordis Corporation | An improved stent which is easly recaptured and repositioned within the body |
US6129739A (en) * | 1999-07-30 | 2000-10-10 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US6179861B1 (en) | 1999-07-30 | 2001-01-30 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
WO2001015630A1 (en) * | 1999-09-02 | 2001-03-08 | Boston Scientific Limited | Intravascular filter retrieval device and method |
US6203561B1 (en) | 1999-07-30 | 2001-03-20 | Incept Llc | Integrated vascular device having thrombectomy element and vascular filter and methods of use |
US6214026B1 (en) | 1999-07-30 | 2001-04-10 | Incept Llc | Delivery system for a vascular device with articulation region |
WO2001054616A1 (en) * | 2000-01-26 | 2001-08-02 | Boston Scientific Limited | Thrombus filter with break-away anchor members |
WO2001054617A1 (en) * | 2000-01-26 | 2001-08-02 | Boston Scientific Limited | Device and method for selectively removing a thrombus filter |
EP1123126A1 (en) * | 1998-09-24 | 2001-08-16 | Scimed Life Systems, Inc. | Retrieval devices for vena cava filter |
EP1123125A1 (en) * | 1998-09-25 | 2001-08-16 | NMT Medical | Removable embolus blood clot filter |
WO2003008030A2 (en) * | 2001-07-18 | 2003-01-30 | Atritech, Inc. | Implantation catheter with tether system |
JP2003505215A (en) * | 1999-07-30 | 2003-02-12 | インセプト エルエルシー | Vascular filter with joint area and method of use in ascending aorta |
JP2003505216A (en) * | 1999-07-30 | 2003-02-12 | インセプト エルエルシー | Vascular device for removing emboli, thrombus and foreign matter and method of use |
WO2003073961A1 (en) * | 2002-03-05 | 2003-09-12 | Salviac Limited | System with embolic filter and retracting snare |
EP1346703A1 (en) * | 2002-01-07 | 2003-09-24 | Cordis Corporation | Releasable and retrievable vascular filter system |
US6638293B1 (en) | 1996-02-02 | 2003-10-28 | Transvascular, Inc. | Methods and apparatus for blocking flow through blood vessels |
WO2004064679A1 (en) * | 2003-01-14 | 2004-08-05 | Boston Scientific Limited | Snare retrievable embolic protection filter with guidewire stopper |
WO2004066873A1 (en) * | 2003-01-28 | 2004-08-12 | Boston Scientific Limited | An embolic protection filter having an improved filter frame |
WO2004082531A1 (en) * | 2003-03-18 | 2004-09-30 | Boston Scientific Limited | Intravascular embolic protection filter |
WO2006124405A2 (en) | 2005-05-12 | 2006-11-23 | C.R. Bard Inc. | Removable embolus blood clot filter |
US7314477B1 (en) | 1998-09-25 | 2008-01-01 | C.R. Bard Inc. | Removable embolus blood clot filter and filter delivery unit |
ES2315070A1 (en) * | 2005-12-27 | 2009-03-16 | Universidad De Zaragoza Y En Su Nombre Y Representacion - Jesus Arauzo Perez Director De La O.T.R.I | Instrument to quantify the force of unlocking and removal of removable filters from the vena cava (Machine-translation by Google Translate, not legally binding) |
JP2009131715A (en) * | 1999-06-14 | 2009-06-18 | Aln | Kit for removing blood vessel filter |
US7862609B2 (en) | 2000-11-16 | 2011-01-04 | Cordis Corporation | Stent graft having a pleated graft member |
US7896861B2 (en) | 2004-10-21 | 2011-03-01 | Boston Scientific Scimed, Inc. | Catheter with a pre-shaped distal tip |
US7987994B2 (en) | 2003-02-24 | 2011-08-02 | Boston Scientific Scimed, Inc. | Flexible tube for cartridge filter |
US8007510B2 (en) | 2003-02-24 | 2011-08-30 | Boston Scientific Scimed, Inc. | Embolic protection filtering device that can be adapted to be advanced over a guidewire |
US8062327B2 (en) | 2005-08-09 | 2011-11-22 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
EP2382945A3 (en) * | 2010-04-29 | 2011-11-23 | Rex Medical, L.P. | Vein filter |
US8221434B2 (en) | 1999-10-27 | 2012-07-17 | Boston Scientific Scimed, Inc. | Retrieval device made of precursor alloy cable |
US8267956B2 (en) | 2001-10-19 | 2012-09-18 | Incept, Llc | Vascular embolic filter exchange devices and methods of use thereof |
US8292829B2 (en) | 2003-05-01 | 2012-10-23 | Boston Scientific Scimed, Inc. | Medical instrument with controlled torque transmission |
USRE43882E1 (en) | 1999-07-30 | 2012-12-25 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
US8372109B2 (en) | 2004-08-04 | 2013-02-12 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US8444669B2 (en) | 2008-12-15 | 2013-05-21 | Boston Scientific Scimed, Inc. | Embolic filter delivery system and method |
US8460336B2 (en) | 2001-01-16 | 2013-06-11 | Incept Llc | Systems and methods for vascular filter retrieval |
US8480629B2 (en) | 2005-01-28 | 2013-07-09 | Boston Scientific Scimed, Inc. | Universal utility board for use with medical devices and methods of use |
US8579957B2 (en) | 2001-11-09 | 2013-11-12 | Boston Scientific Scimed, Inc. | Stent delivery device with embolic protection |
US8613754B2 (en) | 2005-05-12 | 2013-12-24 | C. R. Bard, Inc. | Tubular filter |
US8663273B2 (en) | 1999-11-08 | 2014-03-04 | Atritech, Inc. | Method of implanting an adjustable occlusion device |
US8821478B2 (en) | 2011-03-04 | 2014-09-02 | Boston Scientific Scimed, Inc. | Catheter with variable stiffness |
US9107733B2 (en) | 2006-01-13 | 2015-08-18 | W. L. Gore & Associates, Inc. | Removable blood conduit filter |
US9119706B2 (en) | 1999-02-24 | 2015-09-01 | Boston Scientific Scimed Inc. | Intravascular filter and method |
US9132000B2 (en) | 1999-10-27 | 2015-09-15 | Atritech Inc. | Filter apparatus for ostium of left atrial appendage |
US9131999B2 (en) | 2005-11-18 | 2015-09-15 | C.R. Bard Inc. | Vena cava filter with filament |
US9204956B2 (en) | 2002-02-20 | 2015-12-08 | C. R. Bard, Inc. | IVC filter with translating hooks |
US9301829B2 (en) | 2003-07-30 | 2016-04-05 | Boston Scientific Scimed, Inc. | Embolic protection aspirator |
US9314249B2 (en) | 2004-05-04 | 2016-04-19 | Covidien Lp | System and method for delivering a left atrial appendage containment device |
US9326842B2 (en) | 2006-06-05 | 2016-05-03 | C. R . Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US9421004B2 (en) | 1999-09-20 | 2016-08-23 | Atritech Inc. | Method of closing an opening in a wall of the heart |
US9445895B2 (en) | 2005-09-16 | 2016-09-20 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US9474516B2 (en) | 2011-11-08 | 2016-10-25 | Boston Scientific Scimed, Inc. | Handle assembly for a left atrial appendage occlusion device |
US9730701B2 (en) | 2014-01-16 | 2017-08-15 | Boston Scientific Scimed, Inc. | Retrieval wire centering device |
EP2298195B1 (en) * | 1999-03-23 | 2017-08-16 | C.R. Bard, Inc. | Gripping device for implanting, repositioning or extracting an object within a body vessel |
US9883936B2 (en) | 2002-01-25 | 2018-02-06 | Boston Scientific Scimed, Inc | Atrial appendage blood filtration systems |
CN108992202A (en) * | 2018-08-14 | 2018-12-14 | 内蒙古工业大学 | A kind of not damaged retrievable vena cava filter |
US10188496B2 (en) | 2006-05-02 | 2019-01-29 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
US10667896B2 (en) | 2015-11-13 | 2020-06-02 | Cardiac Pacemakers, Inc. | Bioabsorbable left atrial appendage closure with endothelialization promoting surface |
US10952741B2 (en) | 2017-12-18 | 2021-03-23 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
US11123079B2 (en) | 2018-06-08 | 2021-09-21 | Boston Scientific Scimed, Inc. | Occlusive device with actuatable fixation members |
US11241239B2 (en) | 2018-05-15 | 2022-02-08 | Boston Scientific Scimed, Inc. | Occlusive medical device with charged polymer coating |
US11331104B2 (en) | 2018-05-02 | 2022-05-17 | Boston Scientific Scimed, Inc. | Occlusive sealing sensor system |
US11382635B2 (en) | 2018-07-06 | 2022-07-12 | Boston Scientific Scimed, Inc. | Occlusive medical device |
CN114795574A (en) * | 2022-04-06 | 2022-07-29 | 山东维心医疗器械有限公司 | Double-layer vena cava filter and processing method thereof |
US11413048B2 (en) | 2018-01-19 | 2022-08-16 | Boston Scientific Scimed, Inc. | Occlusive medical device with delivery system |
US11432809B2 (en) | 2017-04-27 | 2022-09-06 | Boston Scientific Scimed, Inc. | Occlusive medical device with fabric retention barb |
US11540838B2 (en) | 2019-08-30 | 2023-01-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with sealing disk |
US11596533B2 (en) | 2018-08-21 | 2023-03-07 | Boston Scientific Scimed, Inc. | Projecting member with barb for cardiovascular devices |
US11672541B2 (en) | 2018-06-08 | 2023-06-13 | Boston Scientific Scimed, Inc. | Medical device with occlusive member |
US11903589B2 (en) | 2020-03-24 | 2024-02-20 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
US11944314B2 (en) | 2019-07-17 | 2024-04-02 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
US12023036B2 (en) | 2020-12-18 | 2024-07-02 | Boston Scientific Scimed, Inc. | Occlusive medical device having sensing capabilities |
US12115057B2 (en) | 2005-05-12 | 2024-10-15 | C.R. Bard, Inc. | Tubular filter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4425980A (en) * | 1981-12-14 | 1984-01-17 | The Boeing Company | Beam dampers for damping the vibrations of the skin of reinforced structures |
US4990156A (en) * | 1988-06-21 | 1991-02-05 | Lefebvre Jean Marie | Filter for medical use |
US5370657A (en) * | 1993-03-26 | 1994-12-06 | Scimed Life Systems, Inc. | Recoverable thrombosis filter |
US5634942A (en) * | 1994-04-21 | 1997-06-03 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and a device for implanting it |
-
1997
- 1997-11-26 WO PCT/US1997/022163 patent/WO1998023322A1/en active IP Right Grant
- 1997-11-26 DE DE0942767T patent/DE942767T1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4425980A (en) * | 1981-12-14 | 1984-01-17 | The Boeing Company | Beam dampers for damping the vibrations of the skin of reinforced structures |
US4990156A (en) * | 1988-06-21 | 1991-02-05 | Lefebvre Jean Marie | Filter for medical use |
US5370657A (en) * | 1993-03-26 | 1994-12-06 | Scimed Life Systems, Inc. | Recoverable thrombosis filter |
US5634942A (en) * | 1994-04-21 | 1997-06-03 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and a device for implanting it |
Non-Patent Citations (1)
Title |
---|
See also references of EP0942767A4 * |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7303571B2 (en) | 1996-02-02 | 2007-12-04 | Medtronic Vascular, Inc. | Methods and apparatus for blocking flow through blood vessels |
US6638293B1 (en) | 1996-02-02 | 2003-10-28 | Transvascular, Inc. | Methods and apparatus for blocking flow through blood vessels |
EP1123126A1 (en) * | 1998-09-24 | 2001-08-16 | Scimed Life Systems, Inc. | Retrieval devices for vena cava filter |
JP2008119536A (en) * | 1998-09-24 | 2008-05-29 | Boston Scientific Ltd | Retrieval device for vena cava filter |
EP1123126A4 (en) * | 1998-09-24 | 2009-11-25 | Boston Scient Ltd | Retrieval devices for vena cava filter |
US8690906B2 (en) | 1998-09-25 | 2014-04-08 | C.R. Bard, Inc. | Removeable embolus blood clot filter and filter delivery unit |
US9351821B2 (en) | 1998-09-25 | 2016-05-31 | C. R. Bard, Inc. | Removable embolus blood clot filter and filter delivery unit |
US9615909B2 (en) | 1998-09-25 | 2017-04-11 | C.R. Bard, Inc. | Removable embolus blood clot filter and filter delivery unit |
US7314477B1 (en) | 1998-09-25 | 2008-01-01 | C.R. Bard Inc. | Removable embolus blood clot filter and filter delivery unit |
US8133251B2 (en) | 1998-09-25 | 2012-03-13 | C.R. Bard, Inc. | Removeable embolus blood clot filter and filter delivery unit |
EP1123125A4 (en) * | 1998-09-25 | 2003-05-02 | Nmt Medical | Removable embolus blood clot filter |
EP1123125A1 (en) * | 1998-09-25 | 2001-08-16 | NMT Medical | Removable embolus blood clot filter |
EP2260789A3 (en) * | 1998-09-25 | 2013-04-24 | C.R. Bard, Inc. | Removable embolus blood clot filter |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
EP1000590A1 (en) * | 1998-11-09 | 2000-05-17 | Cordis Corporation | An improved stent which is easly recaptured and repositioned within the body |
US9119706B2 (en) | 1999-02-24 | 2015-09-01 | Boston Scientific Scimed Inc. | Intravascular filter and method |
EP2298195B1 (en) * | 1999-03-23 | 2017-08-16 | C.R. Bard, Inc. | Gripping device for implanting, repositioning or extracting an object within a body vessel |
JP2009131715A (en) * | 1999-06-14 | 2009-06-18 | Aln | Kit for removing blood vessel filter |
EP1187578B2 (en) † | 1999-06-14 | 2016-09-07 | Aln | Kit for removing a blood vessel filter |
JP2012161697A (en) * | 1999-06-14 | 2012-08-30 | Aln | Kit for drawing vascular filter |
JP2003505216A (en) * | 1999-07-30 | 2003-02-12 | インセプト エルエルシー | Vascular device for removing emboli, thrombus and foreign matter and method of use |
JP2003505215A (en) * | 1999-07-30 | 2003-02-12 | インセプト エルエルシー | Vascular filter with joint area and method of use in ascending aorta |
US6129739A (en) * | 1999-07-30 | 2000-10-10 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US8617201B2 (en) | 1999-07-30 | 2013-12-31 | Incept Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
US6179861B1 (en) | 1999-07-30 | 2001-01-30 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US9283066B2 (en) | 1999-07-30 | 2016-03-15 | Incept Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
US6203561B1 (en) | 1999-07-30 | 2001-03-20 | Incept Llc | Integrated vascular device having thrombectomy element and vascular filter and methods of use |
US6214026B1 (en) | 1999-07-30 | 2001-04-10 | Incept Llc | Delivery system for a vascular device with articulation region |
USRE43902E1 (en) | 1999-07-30 | 2013-01-01 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
USRE43882E1 (en) | 1999-07-30 | 2012-12-25 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
WO2001015630A1 (en) * | 1999-09-02 | 2001-03-08 | Boston Scientific Limited | Intravascular filter retrieval device and method |
US6251122B1 (en) | 1999-09-02 | 2001-06-26 | Scimed Life Systems, Inc. | Intravascular filter retrieval device and method |
US9421004B2 (en) | 1999-09-20 | 2016-08-23 | Atritech Inc. | Method of closing an opening in a wall of the heart |
US10893926B2 (en) | 1999-10-27 | 2021-01-19 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
US9132000B2 (en) | 1999-10-27 | 2015-09-15 | Atritech Inc. | Filter apparatus for ostium of left atrial appendage |
US8221434B2 (en) | 1999-10-27 | 2012-07-17 | Boston Scientific Scimed, Inc. | Retrieval device made of precursor alloy cable |
US9943299B2 (en) | 1999-11-08 | 2018-04-17 | Atritech, Inc. | Method of implanting an adjustable occlusion device |
US8663273B2 (en) | 1999-11-08 | 2014-03-04 | Atritech, Inc. | Method of implanting an adjustable occlusion device |
US6620183B2 (en) | 2000-01-26 | 2003-09-16 | Scimed Life Systems, Inc. | Thrombus filter with break-away anchor members |
US6342063B1 (en) | 2000-01-26 | 2002-01-29 | Scimed Life Systems, Inc. | Device and method for selectively removing a thrombus filter |
WO2001054617A1 (en) * | 2000-01-26 | 2001-08-02 | Boston Scientific Limited | Device and method for selectively removing a thrombus filter |
WO2001054616A1 (en) * | 2000-01-26 | 2001-08-02 | Boston Scientific Limited | Thrombus filter with break-away anchor members |
US8273099B2 (en) | 2000-01-26 | 2012-09-25 | Boston Scientific Scimed, Inc. | Thrombus filter with break-away anchor members |
US7862609B2 (en) | 2000-11-16 | 2011-01-04 | Cordis Corporation | Stent graft having a pleated graft member |
US8460336B2 (en) | 2001-01-16 | 2013-06-11 | Incept Llc | Systems and methods for vascular filter retrieval |
WO2003008030A2 (en) * | 2001-07-18 | 2003-01-30 | Atritech, Inc. | Implantation catheter with tether system |
WO2003008030A3 (en) * | 2001-07-18 | 2003-04-03 | Atritech Inc | Implantation catheter with tether system |
US8267956B2 (en) | 2001-10-19 | 2012-09-18 | Incept, Llc | Vascular embolic filter exchange devices and methods of use thereof |
US8579957B2 (en) | 2001-11-09 | 2013-11-12 | Boston Scientific Scimed, Inc. | Stent delivery device with embolic protection |
AU2002320662B2 (en) * | 2002-01-07 | 2008-02-14 | Cardinal Health 529, Llc | Releasable and retrievable vascular filter system |
EP1346703A1 (en) * | 2002-01-07 | 2003-09-24 | Cordis Corporation | Releasable and retrievable vascular filter system |
US10751158B2 (en) | 2002-01-25 | 2020-08-25 | Atritech, Inc. | Atrial appendage blood filtration systems |
US9883936B2 (en) | 2002-01-25 | 2018-02-06 | Boston Scientific Scimed, Inc | Atrial appendage blood filtration systems |
US9204956B2 (en) | 2002-02-20 | 2015-12-08 | C. R. Bard, Inc. | IVC filter with translating hooks |
WO2003073961A1 (en) * | 2002-03-05 | 2003-09-12 | Salviac Limited | System with embolic filter and retracting snare |
WO2004064679A1 (en) * | 2003-01-14 | 2004-08-05 | Boston Scientific Limited | Snare retrievable embolic protection filter with guidewire stopper |
WO2004066873A1 (en) * | 2003-01-28 | 2004-08-12 | Boston Scientific Limited | An embolic protection filter having an improved filter frame |
US8287564B2 (en) | 2003-02-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Embolic protection filtering device that can be adapted to be advanced over a guidewire |
US8007510B2 (en) | 2003-02-24 | 2011-08-30 | Boston Scientific Scimed, Inc. | Embolic protection filtering device that can be adapted to be advanced over a guidewire |
US7987994B2 (en) | 2003-02-24 | 2011-08-02 | Boston Scientific Scimed, Inc. | Flexible tube for cartridge filter |
WO2004082531A1 (en) * | 2003-03-18 | 2004-09-30 | Boston Scientific Limited | Intravascular embolic protection filter |
US8845552B2 (en) | 2003-05-01 | 2014-09-30 | Boston Scientific Scimed, Inc. | Medical instrument with controlled torque transmission |
US8292829B2 (en) | 2003-05-01 | 2012-10-23 | Boston Scientific Scimed, Inc. | Medical instrument with controlled torque transmission |
US9301829B2 (en) | 2003-07-30 | 2016-04-05 | Boston Scientific Scimed, Inc. | Embolic protection aspirator |
US9314249B2 (en) | 2004-05-04 | 2016-04-19 | Covidien Lp | System and method for delivering a left atrial appendage containment device |
US8628556B2 (en) | 2004-08-04 | 2014-01-14 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US8372109B2 (en) | 2004-08-04 | 2013-02-12 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US11103339B2 (en) | 2004-08-04 | 2021-08-31 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US9144484B2 (en) | 2004-08-04 | 2015-09-29 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US7896861B2 (en) | 2004-10-21 | 2011-03-01 | Boston Scientific Scimed, Inc. | Catheter with a pre-shaped distal tip |
US8403912B2 (en) | 2004-10-21 | 2013-03-26 | Boston Scientific Scimed, Inc. | Catheter with a pre-shaped distal tip |
US8480629B2 (en) | 2005-01-28 | 2013-07-09 | Boston Scientific Scimed, Inc. | Universal utility board for use with medical devices and methods of use |
US10813738B2 (en) | 2005-05-12 | 2020-10-27 | C.R. Bard, Inc. | Tubular filter |
WO2006124405A2 (en) | 2005-05-12 | 2006-11-23 | C.R. Bard Inc. | Removable embolus blood clot filter |
US8574261B2 (en) | 2005-05-12 | 2013-11-05 | C. R. Bard, Inc. | Removable embolus blood clot filter |
US10729527B2 (en) | 2005-05-12 | 2020-08-04 | C.R. Bard, Inc. | Removable embolus blood clot filter |
US11554006B2 (en) | 2005-05-12 | 2023-01-17 | C. R. Bard Inc. | Removable embolus blood clot filter |
US11730583B2 (en) | 2005-05-12 | 2023-08-22 | C.R. Band. Inc. | Tubular filter |
US8613754B2 (en) | 2005-05-12 | 2013-12-24 | C. R. Bard, Inc. | Tubular filter |
EP1880313A4 (en) * | 2005-05-12 | 2015-08-05 | Bard Inc C R | Removable embolus blood clot filter |
US9017367B2 (en) | 2005-05-12 | 2015-04-28 | C. R. Bard, Inc. | Tubular filter |
US12115057B2 (en) | 2005-05-12 | 2024-10-15 | C.R. Bard, Inc. | Tubular filter |
US9498318B2 (en) | 2005-05-12 | 2016-11-22 | C.R. Bard, Inc. | Removable embolus blood clot filter |
US10492898B2 (en) | 2005-08-09 | 2019-12-03 | C.R. Bard, Inc. | Embolus blood clot filter and delivery system |
US8062327B2 (en) | 2005-08-09 | 2011-11-22 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
US9387063B2 (en) | 2005-08-09 | 2016-07-12 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
US11517415B2 (en) | 2005-08-09 | 2022-12-06 | C.R. Bard, Inc. | Embolus blood clot filter and delivery system |
US8430903B2 (en) | 2005-08-09 | 2013-04-30 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
US9445895B2 (en) | 2005-09-16 | 2016-09-20 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US10143458B2 (en) | 2005-09-16 | 2018-12-04 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US10842608B2 (en) | 2005-11-18 | 2020-11-24 | C.R. Bard, Inc. | Vena cava filter with filament |
US9131999B2 (en) | 2005-11-18 | 2015-09-15 | C.R. Bard Inc. | Vena cava filter with filament |
ES2315070A1 (en) * | 2005-12-27 | 2009-03-16 | Universidad De Zaragoza Y En Su Nombre Y Representacion - Jesus Arauzo Perez Director De La O.T.R.I | Instrument to quantify the force of unlocking and removal of removable filters from the vena cava (Machine-translation by Google Translate, not legally binding) |
US9107733B2 (en) | 2006-01-13 | 2015-08-18 | W. L. Gore & Associates, Inc. | Removable blood conduit filter |
US10188496B2 (en) | 2006-05-02 | 2019-01-29 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
US10980626B2 (en) | 2006-05-02 | 2021-04-20 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
US11141257B2 (en) | 2006-06-05 | 2021-10-12 | C. R. Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US9326842B2 (en) | 2006-06-05 | 2016-05-03 | C. R . Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US8444669B2 (en) | 2008-12-15 | 2013-05-21 | Boston Scientific Scimed, Inc. | Embolic filter delivery system and method |
EP2382945A3 (en) * | 2010-04-29 | 2011-11-23 | Rex Medical, L.P. | Vein filter |
US8821478B2 (en) | 2011-03-04 | 2014-09-02 | Boston Scientific Scimed, Inc. | Catheter with variable stiffness |
US9474516B2 (en) | 2011-11-08 | 2016-10-25 | Boston Scientific Scimed, Inc. | Handle assembly for a left atrial appendage occlusion device |
US10463377B2 (en) | 2014-01-16 | 2019-11-05 | Boston Scientific Scimed, Inc. | Retrieval wire centering device |
US9730701B2 (en) | 2014-01-16 | 2017-08-15 | Boston Scientific Scimed, Inc. | Retrieval wire centering device |
US11413047B2 (en) | 2014-01-16 | 2022-08-16 | Cardiac Pacemakers, Inc. | Occlusive medical implant |
US10667896B2 (en) | 2015-11-13 | 2020-06-02 | Cardiac Pacemakers, Inc. | Bioabsorbable left atrial appendage closure with endothelialization promoting surface |
US11432809B2 (en) | 2017-04-27 | 2022-09-06 | Boston Scientific Scimed, Inc. | Occlusive medical device with fabric retention barb |
US12082797B2 (en) | 2017-04-27 | 2024-09-10 | Boston Scientific Scimed, Inc. | Occlusive medical device with fabric retention barb |
US11925356B2 (en) | 2017-12-18 | 2024-03-12 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
US10952741B2 (en) | 2017-12-18 | 2021-03-23 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
US11413048B2 (en) | 2018-01-19 | 2022-08-16 | Boston Scientific Scimed, Inc. | Occlusive medical device with delivery system |
US11331104B2 (en) | 2018-05-02 | 2022-05-17 | Boston Scientific Scimed, Inc. | Occlusive sealing sensor system |
US11241239B2 (en) | 2018-05-15 | 2022-02-08 | Boston Scientific Scimed, Inc. | Occlusive medical device with charged polymer coating |
US11123079B2 (en) | 2018-06-08 | 2021-09-21 | Boston Scientific Scimed, Inc. | Occlusive device with actuatable fixation members |
US11672541B2 (en) | 2018-06-08 | 2023-06-13 | Boston Scientific Scimed, Inc. | Medical device with occlusive member |
US11890018B2 (en) | 2018-06-08 | 2024-02-06 | Boston Scientific Scimed, Inc. | Occlusive device with actuatable fixation members |
US11382635B2 (en) | 2018-07-06 | 2022-07-12 | Boston Scientific Scimed, Inc. | Occlusive medical device |
CN108992202A (en) * | 2018-08-14 | 2018-12-14 | 内蒙古工业大学 | A kind of not damaged retrievable vena cava filter |
US11596533B2 (en) | 2018-08-21 | 2023-03-07 | Boston Scientific Scimed, Inc. | Projecting member with barb for cardiovascular devices |
US11944314B2 (en) | 2019-07-17 | 2024-04-02 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
US11540838B2 (en) | 2019-08-30 | 2023-01-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with sealing disk |
US11903589B2 (en) | 2020-03-24 | 2024-02-20 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
US12023036B2 (en) | 2020-12-18 | 2024-07-02 | Boston Scientific Scimed, Inc. | Occlusive medical device having sensing capabilities |
CN114795574A (en) * | 2022-04-06 | 2022-07-29 | 山东维心医疗器械有限公司 | Double-layer vena cava filter and processing method thereof |
Also Published As
Publication number | Publication date |
---|---|
DE942767T1 (en) | 2000-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6447530B1 (en) | Atraumatic anchoring and disengagement mechanism for permanent implant device | |
WO1998023322A1 (en) | Atraumatic anchoring and disengagement mechanism for permanent implant device | |
US10512531B2 (en) | Filter delivery system | |
US10098723B2 (en) | Non-entangling vena cava filter | |
EP2252236B1 (en) | Vein filter | |
US5941896A (en) | Filter and method for trapping emboli during endovascular procedures | |
US9107733B2 (en) | Removable blood conduit filter | |
US8715313B2 (en) | Vessel filter | |
US20020022858A1 (en) | Vascular device for emboli removal having suspension strut and methods of use | |
US9962252B2 (en) | Aortic great vessel protection | |
JPH11318910A (en) | Atraumatic anchoring and disengagement mechanism for permanent implanting device | |
US9510929B2 (en) | Vein filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2256458 Country of ref document: CA Ref country code: CA Ref document number: 2256458 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997949740 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997949740 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997949740 Country of ref document: EP |