WO1998013554A1 - Bearing capacity enhancement for piling applications - Google Patents
Bearing capacity enhancement for piling applications Download PDFInfo
- Publication number
- WO1998013554A1 WO1998013554A1 PCT/GB1997/002558 GB9702558W WO9813554A1 WO 1998013554 A1 WO1998013554 A1 WO 1998013554A1 GB 9702558 W GB9702558 W GB 9702558W WO 9813554 A1 WO9813554 A1 WO 9813554A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- auger
- retractable element
- flight
- flights
- concrete
- Prior art date
Links
- 239000011800 void material Substances 0.000 claims abstract description 17
- 239000002689 soil Substances 0.000 claims abstract description 14
- 230000010006 flight Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 244000273618 Sphenoclea zeylanica Species 0.000 claims description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000004927 clay Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/34—Concrete or concrete-like piles cast in position ; Apparatus for making same
- E02D5/36—Concrete or concrete-like piles cast in position ; Apparatus for making same making without use of mouldpipes or other moulds
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/26—Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
- E21B10/32—Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/34—Concrete or concrete-like piles cast in position ; Apparatus for making same
- E02D5/38—Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
- E02D5/44—Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with enlarged footing or enlargements at the bottom of the pile
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/44—Bits with helical conveying portion, e.g. screw type bits; Augers with leading portion or with detachable parts
Definitions
- the present invention relates to a tool for enhancing the bearing capacity of a pile, in particular but not exclusively the bearing capacity of a rotary- bored pile and/or a pile formed by a continuous flight auger .
- a continuous flight piling auger wherein the auger includes at least one retractable element which may be extended so as to project beyond the circumference of the flight or flights of the auger, characterised in that the at least one retractable element is located in a circumferential part of the auger flight or flights .
- a method of installing a pile using a continuous flight auger wherein: i) the auger is rotated and allowed to penetrate the ground to a predetermined depth so as to define a bore hole ; ii) a retractable element located on a circumferential part of the auger flight or flights is extended so as to project beyond the circumference of the flight or flights of the auger and thereby to cut or displace a region of soil surrounding the rotating auger so as to form a void; and iii) the auger is withdrawn while concrete is supplied to the tip of the auger so as to fill the bore hole and the void.
- the continuous flight auger of the present invention can be used in the conventional manner to form a bore hole in cohesive or non-cohesive material.
- the at least one retractable element when the at least one retractable element is in its retracted position, it offers little or no resistance during penetration of the auger.
- the at least one retractable element may be extended beyond the circumference of the auger flight or flights so as to cut into or displace a portion of the material surrounding the auger as the auger continues to rotate.
- the at least one retractable element may then be returned to a position within the circumference of the auger flight or flights.
- material which has been cut by the at least one element may be drawn onto the auger flight or flights for removal.
- the auger may then be withdrawn from the ground while concrete or the like is pumped into the bore hole, e.g. through the centre of the auger, so as to form a pile.
- an additional concrete delivery system may be associated with the at least one retractable element so as to supply concrete directly to the void left by the cut or displaced material. This can help to avoid swelling or collapse of the void, and is particularly useful when a number of cuts or displacements are made during penetration of the auger .
- the auger may be rotated during withdrawal and the at least one retractable element may be operated at so as make cuts or displacements at predetermined positions, the voids being filled with concrete by means of the main concrete supply.
- the at least one retractable element is located on the circumference of the auger flight or flights, may extend across two or more flights, and may be located at any point along the length of the auger.
- a single retractable element which is shaped so as to displace material when it is in its extended position.
- the element is advantageously located at the bottom of the auger, but may be located at other positions if it has an associated additional concrete delivery system.
- the element is kept in a retracted position during penetration of the auger. Upon withdrawal, the element is extended and the auger rotated. As the auger is withdrawn and concrete is pumped to the tip of the auger so as to form a pile in the bore hole, the element will form a helical void in the surrounding material and the void, as well as the main shaft of the bore hole, will be filled with concrete.
- a conventional pile of 600mm diameter and 27m in length will have a shaft friction in a cohesive clay soil of 4165kN and an end bearing of 787kN, giving a total capacity of 4952kN.
- a similar pile 20m in length will have a shaft friction of 2360kN and an end bearing of 606kN, giving a total capacity of 2966kN.
- a 20m pile of normal diameter 600mm but with an enhanced diameter of 1200mm in a region 2m above its base will theoretically have a shaft friction of 2360kN and an end bearing of 1661kN plus 606kN, giving a total bearing capacity of 4627kN. It has been found in practice that the shaft friction is 3225kN and the end bearing 1820kN, giving a total of 5045kN.
- FIGURE 1 shows a piling rig fitted with a continuous flight auger
- FIGURE 2 shows a detail of an auger flight.
- FIGURE 3 shows the profile of the bottom of a pile installed by one embodiment of the present invention.
- FIGURE 4 shows the profile of the bottom of a pile installed by another embodiment of the present invention.
- Figure 1 shows a piling rig 1 upon which a continuous flight auger 2 is mounted. Concrete can be supplied to the tip 3 of the auger 2 by way of a pipeline 4.
- the auger 2 includes a flight 5 which, as well as helping the auger 2 to penetrate the ground, also serves to remove soil from the bore hole which is to be formed.
- a retractable element 6, shown in more detail in Figure 2 is provided at the edge of the flight 5 near the bottom of the auger 2. This retractable element 6 is movable between its retracted position and an extended position, indicated by way of broken lines in Figure 2, in which position it projects beyond the circumference of the flight 5 of the auger 2.
- the auger 2 is rotated and allowed to penetrate the ground to a predetermined depth. Normally, the rate of rotation and the rate of penetration are controlled so that there is some degree of shearing between the soil on the auger flight 5 and the soil 11 surrounding the auger 2.
- the retractable element 6 is moved to its extended position (shown by broken lines in Figure 2) and the auger is rotated. In some embodiments, the soil 11 surrounding the auger 2 at this point is thereby displaced so as to create a generally annular void.
- the retractable element 6 may be shaped and positioned to as to cut into the soil upon extension, the cut soil then being carried away up the auger flight 5 when the element 6 is retracted.
- the element 6 is retracted and the auger 2 is withdrawn from the ground.
- concrete is pumped to the tip 3 of the auger 2 by way of pipeline 4 and the hollow stem 14 of the auger 2.
- This concrete fills up the bore hole, including the void, so as to form a pile 7, the bottom part of which is shown in profile in Figure 3.
- concrete may be delivered directly to the void by way of an opening 15 located on the retractable element 6 and communicating with the hollow stem 14 of the auger 2. This can help to avoid premature collapse of the void.
- the shape of the pile 7 in the region 8 of enhanced diameter is dependent upon the particular retractable element used. Either or both the lower surface 12 as and the upper surface 13 may be straight, concave or convex, or any other shape. In the particular embodiment shown, the region 8 is 2m from the base of the pile 7.
- FIG. 4 An alternative pile 9 is shown in profile in Figure 4.
- This pile 9 has a projection 10 which describes a helix about the axis of the pile, and acts as a region of enhanced diameter.
- the projection 10 is formed by progressing the auger 2 to the required depth, moving the element 6 into its extended position, and rotating the auger 2 as it is withdrawn. Concrete is pumped to the tip 3 of the auger during withdrawal so as to fill the bore hole and also to fill the surrounding helical void as it is being created by way of the displacement of soil by the element 6.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Earth Drilling (AREA)
- Piles And Underground Anchors (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU43119/97A AU4311997A (en) | 1996-09-26 | 1997-09-22 | Bearing capacity enhancement for piling applications |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9620251.0A GB9620251D0 (en) | 1996-09-26 | 1996-09-26 | Bearing capacity enhancement for piling applications |
GB9620251.0 | 1996-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998013554A1 true WO1998013554A1 (en) | 1998-04-02 |
Family
ID=10800641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/002558 WO1998013554A1 (en) | 1996-09-26 | 1997-09-22 | Bearing capacity enhancement for piling applications |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU4311997A (en) |
GB (2) | GB9620251D0 (en) |
TW (1) | TW353689B (en) |
WO (1) | WO1998013554A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061877A1 (en) | 1999-04-09 | 2000-10-19 | Cementation Foundations Skanska Limited | Bearing capacity enhancement for piling applications |
US7226246B2 (en) | 2000-06-15 | 2007-06-05 | Geotechnical Reinforcement, Inc. | Apparatus and method for building support piers from one or successive lifts formed in a soil matrix |
US9169611B2 (en) | 2000-06-15 | 2015-10-27 | Geopier Foundation Company, Inc. | Method and apparatus for building support piers from one or more successive lifts formed in a soil matrix |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2377235A (en) * | 2001-07-17 | 2003-01-08 | Cie Du Sol | Drilling tool |
GB2400869B (en) * | 2003-04-22 | 2006-11-15 | Cie Du Sol | Threading equipment |
WO2004101897A1 (en) * | 2003-05-15 | 2004-11-25 | Pass, Jonathan, Charles | A method of constructing a pile |
FR2889241B1 (en) * | 2005-07-28 | 2013-05-17 | Cie Du Sol | TARIERE A MOBILE ERGOT |
EP1748108B1 (en) * | 2005-07-28 | 2010-09-08 | Soletanche Freyssinet | Auger for piling |
GB2440939B (en) * | 2006-04-18 | 2009-08-05 | Cie Du Sol | Cutting head provided with threading means |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1391110A (en) * | 1972-09-11 | 1975-04-16 | Turzillo L A | Methods and means for producing pile or like structural columns in situ |
AU586947B2 (en) * | 1987-03-09 | 1989-07-27 | Catawa Pty Ltd | Improvements in piles and ground drills |
JPH01295913A (en) * | 1988-05-24 | 1989-11-29 | Tousen Asano Paul Kk | Constructing method for enlarged bulb of large caliber pile, and its apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938344A (en) * | 1974-04-29 | 1976-02-17 | Kabushiki Kaisha Takechi Koumusho | Earth auger and method for driving piles and the like by means of said earth auger |
DE2709030C2 (en) * | 1977-03-02 | 1985-05-15 | Stahl- Und Apparatebau Hans Leffer Gmbh, 6602 Dudweiler | Rotary drill bit with swivel blades |
AU634150B2 (en) * | 1988-08-29 | 1993-02-18 | Catawa Pty Ltd | Drills for piles and soil stabilization |
ZA935287B (en) * | 1992-07-24 | 1994-04-26 | Wagstaff Piling Pty Ltd | Apparatus and method for forming piles |
-
1996
- 1996-09-26 GB GBGB9620251.0A patent/GB9620251D0/en active Pending
-
1997
- 1997-09-22 GB GB9720142A patent/GB2316700B/en not_active Expired - Fee Related
- 1997-09-22 WO PCT/GB1997/002558 patent/WO1998013554A1/en active Application Filing
- 1997-09-22 AU AU43119/97A patent/AU4311997A/en not_active Abandoned
- 1997-09-25 TW TW086114018A patent/TW353689B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1391110A (en) * | 1972-09-11 | 1975-04-16 | Turzillo L A | Methods and means for producing pile or like structural columns in situ |
AU586947B2 (en) * | 1987-03-09 | 1989-07-27 | Catawa Pty Ltd | Improvements in piles and ground drills |
JPH01295913A (en) * | 1988-05-24 | 1989-11-29 | Tousen Asano Paul Kk | Constructing method for enlarged bulb of large caliber pile, and its apparatus |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 14, no. 81 (M - 0935) 15 February 1990 (1990-02-15) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061877A1 (en) | 1999-04-09 | 2000-10-19 | Cementation Foundations Skanska Limited | Bearing capacity enhancement for piling applications |
US7226246B2 (en) | 2000-06-15 | 2007-06-05 | Geotechnical Reinforcement, Inc. | Apparatus and method for building support piers from one or successive lifts formed in a soil matrix |
US9169611B2 (en) | 2000-06-15 | 2015-10-27 | Geopier Foundation Company, Inc. | Method and apparatus for building support piers from one or more successive lifts formed in a soil matrix |
Also Published As
Publication number | Publication date |
---|---|
GB9720142D0 (en) | 1997-11-26 |
TW353689B (en) | 1999-03-01 |
GB2316700B (en) | 1998-07-22 |
GB9620251D0 (en) | 1996-11-13 |
GB2316700A (en) | 1998-03-04 |
AU4311997A (en) | 1998-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3864923A (en) | Impacted casing method for installing anchor piles or tiebacks in situ | |
US6402432B1 (en) | Method for installing load bearing piles utilizing a tool with blade means | |
US3422629A (en) | Construction support system and methods and apparatus for construction thereof | |
US20060013656A1 (en) | Full-displacement pressure grouted pile system and method | |
US4180350A (en) | Method for forming foundation piers | |
US4595059A (en) | Method of providing a conductor pipe to an opening portion of a well | |
EP0125490B1 (en) | Method for making a concrete or similar pile on site | |
WO1994002687A1 (en) | Apparatus and method for forming piles | |
WO1998013554A1 (en) | Bearing capacity enhancement for piling applications | |
US6120214A (en) | Process for constructing reinforced subterranean columns | |
EP0556642B1 (en) | Reinforcing block for excavation work and method of construction thereof | |
JP3904274B2 (en) | Construction method for building foundation | |
JP2673677B2 (en) | Pile method | |
JPH0444706Y2 (en) | ||
JP3760343B2 (en) | Drilling bottom stabilization method and construction method of underground building | |
JPS60159216A (en) | Method of driving pile | |
GB2356659A (en) | Pile formation | |
JPH02213515A (en) | Device for applying base pile | |
EP1169519B1 (en) | Bearing capacity enhancement for piling applications | |
JP7567718B2 (en) | Pile installation method and method for calculating supply amount of lubricant used in said pile installation method | |
JP2020016062A (en) | Excavation head | |
JP2018109308A (en) | Foundation structure, method for constructing foundation structure, and consolidation support member | |
GB2345715A (en) | Composite auger piling with enlarged base footing | |
KR900005913B1 (en) | Base stake inflated in bump state at lower end there of and its construction | |
JPH0643217Y2 (en) | Ground improvement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998515372 Format of ref document f/p: F |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
122 | Ep: pct application non-entry in european phase |