Nothing Special   »   [go: up one dir, main page]

WO1998005916A1 - Echangeur de chaleur spirale - Google Patents

Echangeur de chaleur spirale Download PDF

Info

Publication number
WO1998005916A1
WO1998005916A1 PCT/BE1997/000088 BE9700088W WO9805916A1 WO 1998005916 A1 WO1998005916 A1 WO 1998005916A1 BE 9700088 W BE9700088 W BE 9700088W WO 9805916 A1 WO9805916 A1 WO 9805916A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheets
heat exchanger
winding
wrinkles
exchanger
Prior art date
Application number
PCT/BE1997/000088
Other languages
English (en)
Inventor
Hubert Antoine
Original Assignee
Hubert Antoine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubert Antoine filed Critical Hubert Antoine
Priority to US09/308,647 priority Critical patent/US6263961B1/en
Priority to AU39348/97A priority patent/AU3934897A/en
Publication of WO1998005916A1 publication Critical patent/WO1998005916A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • F28D9/0018Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/398Spirally bent heat exchange plate

Definitions

  • the invention relates to a heat exchanger wound in a spiral, where the fluids arrive, circulate and open in countercurrent, in the direction of the winding axis.
  • recuperators for gas turbines Indeed, they must be compact, high efficiency, inexpensive and reliable. Efficiency and compactness can be obtained by using the concept of primary surface, with channels of small hydraulic diameter and by circulating the two counter-current fluids.
  • the cost price will be low if the exchanger consists of the assembly of a small number of printed elements and continuously wound to form a roll.
  • the pressure drops will be reduced if the passage sections offered to the two fluids are sufficient: this is obtained by circulating the fluids axially and not tangentially in a spiral exchanger.
  • the exchangers are subjected to high thermal loads and thermal shocks resulting from transient variations in the operation of the turbine. Reliability is linked to resistance to thermal shock.
  • Heat exchangers consisting of a winding of a pair of sheets, between which the fluids pass countercurrently, in the axial direction of the roll thus formed, are known: see for example a recent patent (1995) from the company Rolls- Royce, where the flux is distributed by cutouts made in the sheet and welded in pairs at the time of winding.
  • the invention as defined in claim 1 relates to a heat exchanger formed by winding a pair of sheets in which the fluids circulate in opposite directions in the direction of the axis of the winding and arrive and open on the faces opposite of the cylindrical roller formed by the winding of the sheets.
  • This avoids creating distribution cutouts inside the exchanger, which eliminates both stress concentrations, welding problems, inspection and repair of these flanges embedded in the mass of the exchanger. This results in greater freedom in the choice of dimensions and shapes of the distributor-collectors, since they are external to the exchanger itself.
  • Figure 1 is a perspective view of the exchanger showing the flow of fluids (air and gas) entering and leaving the exchanger.
  • FIG. 2 is a partial view of the air and gas distribution openings on one of the faces of the exchanger.
  • Figure 3 shows an air supply sector capped with its distribution scoop, in exploded view.
  • Figure 4 shows one of the two sheets, before winding, in partial plan view.
  • Figure 5 shows the other sheet, before winding, in partial plan view.
  • FIG. 6 represents a pair of sheets placed side by side in the exchanger, in radial section.
  • FIG. 7 shows the path of air and gas, between a pair of sheets, from one side of the exchanger to the other, in partial view.
  • the exchanger consists of a core 1 to which are attached scoops 8 for supplying and discharging air 2, FIGS. 1 and 3.
  • the air penetrates by angular sectors 5 regularly spaced and alternating with angular sectors 6 for the outlet of the gases.
  • the core consists of a winding of a pair of sheets a and b around a z axis, figure 1
  • the sheet a is wrinkled longitudinally. that is to say along the winding axis z, while the sheet b is transversely, that is to say along the tangential winding direction ( Figures 4 and 5).
  • the sheet a has three axial zones of wrinkles: zones II and IV near the edges and zone III central (figure 4).
  • the sheet b is wrinkled on these same three zones and also comprises, on the zones I and V of entry-exit, flanges 7 offset alternately to form the openings of arrival-exit of the fluids (FIGS. 5 and 2) .
  • the offset edges of b come against the edge of a and vice versa, during winding. They are definitively brazed together, once the core has been wound up ( Figure 2). The alternative offset of the edges of b must be done during winding and in synchronization with it. It is indeed necessary that the gills thus formed are of increasing length at each winding turn and in angular phase to form very regular angular sectors.
  • the scoops 8 are then brazed on the faces of the core 1, with their edges 9 brazed on the edges 10 of the angular sectors, as indicated in FIG. 3.
  • the sum of the heights of the wrinkles of a and b is constant over all the zones; it is worth the offset of b on the zones I and V and allows the winding without radial deformation of the pair ab, because it is of constant thickness equivalent to the sum of the heights of the wrinkles of a and b, as illustrated by the figure 6.
  • zones II and IV. the wrinkles of a and b have comparable heights: being perpendicular and in contact with their crests, they allow the passage of air and gas in both directions, axial and tangential: these zones are zones of distribution of the flow from the entrance sectors towards zone III; these are cross-flow zones, as indicated in FIG. 7
  • zone III the flows are essentially parallel and opposite; that is to say against the current (Figure 7), because the tangential wrinkles of b are minimal and those of a, axial, are large ( Figure 6).
  • This type of exchanger can also be produced by replacing the wrinkles printed in relief by fins of the same height, filling with flat sheets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Un échangeur de chaleur (1) est formé d'une paire de feuilles imprimées de reliefs et enroulées pour former un rouleau. Les fluides arrivent et débouchent sur les faces opposées du rouleau par des secteurs angulaires alternés (3, 4, 5, 6). Ces secteurs sont obtenus par le déport du bord d'une feuille sur l'autre à intervalles angulaires réguliers.

Description

FCHANGEUR DE CHALEUR SPIRALE
L'invention concerne un échan eur de chaieur enroulé en spirale, où les fluides arrivent, circulent et débouchent à contrecourant, dans la direction de l'axe d'enroulement. Dans le vaste champ d'application des échangeurs de chaleur, une des applications les plus exigeantes est celle des récupérateurs pour turbines à gaz. En effet, ils doivent être compacts, de haute efficacité, peu chers et fiables. L'efficacité et la compacité peuvent s'obtenir en utilisant le concept de surface primaire, avec des canaux de petit diamètre hydraulique et en faisant circuler les deux fluides à contrecourant.
Le prix de revient sera peu élevé si l'échangeur est constitué par l'assemblage d'un petit nombre d'éléments imprimés et enroulés en continu pour former un rouleau.
Les pertes de charge seront réduites si les sections de passage offertes aux deux fluides sont suffisantes : ceci s'obtient en faisant circuler les fluides axiale- ment et non tangeπαellement dans un échangeur spirale. Les échangeurs sont soumis à de fortes charges thermiques et aux chocs thermiques résultant des variations transitoires de fonctionnement de la turbine. La fiabilité est liée à la résistance aux chocs thermiques.
Des échangeurs de chaleur constitués d'un enroulement d'une paire de feuillets, entre lesquels les fluides passent à contrecourant, dans le sens axial du rouleau ainsi formé, sont connus : voir pour exemple un brevet récent (1995) de la société Rolls-Royce, où le flux est distribué par des découpes pratiquées dans la feuille et soudées par paires au moment de l'enroulement.
On retrouve, dans les brevets DE 1121090 et DE 3234878, le concept d'échan- geur spirale, à flux axial, où les flux entrants et sortants le font par des secteurs angulaires alternés. Dans DE 112 090, ces secteurs sont formés en découpant des ouïes régulièrement espacées dans les rebords de fermeture des côtés d'une paire de feuilles enroulées pour former l'échangeur. Dans DE 3234878, par contre, les secteurs sont formés par collage de segments d'obturation sur les deux faces de l'échangeur enroulé. Une autre variante, FR-A-2319 868, consiste à fermer les bords par soudage direct des tôles adjacentes. Une difficulté intéressante dans la conception des échangeurs de chaleur est la distribution du flux entrant dans les multiples petits canaux sièges de l'échange de chaieur et ensuite, la collecte de ces nombreux flux en un seul flux sortant. Ce processus doit avoir lieu sai.s peπes de charge excessives, ni création de contraintes mécaniques excessives dues aux gradients thermiques. La distribution et la collecte des flux s'effectuent dans les échangeurs à plaques empilées par des découpes pratiquées dans les plaques. Les rebords de ces découpes sont brasées ou soudées lors de l'empilement [ voir brevet US 4 073340 ] ou garnis d'un joint d'étanchéité, comme dans les échangeurs à plaque de la société Alfa-Laval bien connus.
D'autres échangeurs à plaques empilées n'ont pas ces découpes [ voir SAE 851254 : Development. Fabrication and application of a Primary Surface Gas Turbine Recuperator, E.L.Parsons], mais les côtés des plaques sont alors garnies de barrettes de fermeture.
L'invention telle que définie dans la revendication 1 se rapporte à un échangeur de chaleur formé par enroulement d'une paire de feuilles où les fluides circulent à contrecourant dans le sens de l'axe de l'enroulement et arrivent et débouchent sur les faces opposées du rouleau cylindrique constitué par l'enroulement des feuilles. On évite ainsi de créer des découpes de distribution à l'intérieur de l'échangeur, ce qui élimine à la fois les concentrations de contraintes, les problèmes de soudage, d'inspection et de réparation de ces rebords noyés dans la masse de l'échangeur. Il en résulte une plus grande liberté dans le choix des dimensions et des formes des distributeurs-collecteurs, car ils sont extérieurs à l'échangeur proprement dit.
Le concept d'échangeur enroulé permet de se passer des barrettes de fermeture, puisqu'il n'y a plus de bord à fermer. La formation des ouïes d'arrivée-sortie des fluides se fait très simplement lors de l'enroulement des feuilles. L'invention est décrite ci-après à l'aide d'un exemple avec référence aux dessins joints, dans lesquels :
La figure 1 est une vue en perspective de l'échangeur montrant les flux des fluides (air et gaz), entrant et sortant de l'échangeur.
La figure 2 est une vue partielle des ouïes de distribution d'air et de gaz sur une des faces de l'échangeur.
La figure 3 montre un secteur d'amenée d'air coiffé de son écope de distribution, en vue éclatée.
La figure 4 montre un des deux feuillets, avant enroulement, en vue partielle plane.
La figure 5 montre l'autre feuillet, avant enroulement, en vue partielle plane.
La figure 6 représente une paire de feuillets accolés dans l'échangeur, en section radiale.
La figure 7 fait apparaître le trajet de l'air et du gaz, entre une paire de feuillets, d'une face de l'échangeur à l'autre, en vue partielle. L'échangeur est constitué d'un noyau 1 auquel sont fixés des écopes 8 d'amenée et d'évacuation d'air 2, figures 1 et 3.
Sur une face du noyau l'air pénètre par des secteurs angulaires 5 régulière- ment espacés et alternant avec des secteurs angulaires 6 de sortie des gaz.
Sur la face opposée du noyau, l'air sort par des secteurs angulaires 3 régulièrement espacés et alternant avec des secteurs angulaires 4 d'entrée des gaz (figure 1). Le noyau est constitué d'un enroulement d'une paire de feuillets a et b autour d'un axe z, figure 1
Le feuillet a est ridé longitudinalement. c'est-à-dire selon l'axe d'enroulement z, tandis que le feuillet b l'est transversalement, c'est-à-dire selon la direction tan- gentielle d'enroulement (figures 4 et 5).
Le feuillet a possède trois zones axiales de rides : les zones II et IV près des bords et la zone III centrale (figure 4).
Le feuillet b est ridé sur ces mêmes trois zones et comporte également, sur les zones I et V d'entrée-sortie, des rebords 7 déportés alternativement pour for- mer les ouïes d'arrivée-sortie des fluides (figures 5 et 2).
Les rebords déportés de b viennent contre le rebord de a et vice versa, lors de l'enroulement. Ils sont définitivement brasés ensemble, une fois l'enroulement du noyau terminé (figure 2). Le déport alternatif des rebords de b doit se faire lors de l'enroulement et en synchronisation avec celui-ci. Il faut en effet que les ouïes ainsi formées soient de longueur croissante à chaque tour d'enroulement et en phase angulaire pour former des secteurs angulaires bien réguliers. Les écopes 8 sont ensuite brasées sur les faces du noyau 1, avec leurs bords 9 brasés sur les bords 10 des secteurs angulaires, comme indiqué figure 3.
La somme des hauteurs des rides de a et de b est constante sur toutes les zones ; elle vaut le déport de b sur les zones I et V et permet l'enroulement sans déformation radiale de la paire ab, car elle est d'épaisseur constante équivalant à la somme des hauteurs des rides de a et de b, comme illustré par la figure 6.
Ceci permet aussi de joindre, par brasage par exemple, les feuilles a et b aux points de contact 11 des lignes de crête des rides. Ces points forment un quadrillage, intersection des lignes de crête des rides. En ne brasant ainsi entre elles que les paires de feuilles entre lesquelles circule le fluide de pression supérieure à l'autre, on assure ainsi une rétention locale de la surpression de ce fluide, sans avoir besoin d'une enceinte de pressurisation. Les paires de feuilles ainsi jointes sont rigides en flexion, tout en étant souples en cisaillement, ce qui réduit les contraintes dues aux inévitables gradients thermiques.
Dans les zones II et IV. les rides de a et de b ont des hauteurs comparables : étant perpendiculaires et en contact par leurs crêtes, elles permettent le passage de l'air et du gaz dans les deux directions, axiale et tangentielle : ces zones sont des zones de distribution du flux à partir des secteurs d'entrée vers la zone III ; ce sont des zones à flux croisés, comme indiqué sur la figure 7 Dans la zone III, les flux sont essentiellement parallèles et opposés ; c'est-à-dire à contrecourant (figure 7), car les rides tangentielles de b sont minimes et celles de a, axiales, sont grandes (figure 6).
Ce type d'échangeur peut aussi être réalisé en remplaçant les rides imprimées en relief par des ailettes de même hauteur, garnissant des feuilles planes.

Claims

Revendications
1. Echangeur de chaleur cylindrique obtenu par l'enroulement d'une paire de feuilles, les deux fluides circulant à contrecourant dans le sens axial de l'enroulement entre les paires adjacentes de feuilles, arrivant et débouchant sur les faces opposées de l'enroulement, par des secteurs angulaires régulièrement espacés, caractérisé en ce que les secteurs angulaires consécutifs sont formés par la juxtaposition d'ouïes obtenues par le déport alternatif du rebord d'une des feuilles sur l'autre.
2. Echangeur de chaleur selon la revendication 1. caractérisé en ce que l'une des feuilles est imprimée en relief d'un motif de rides longitudinales et l'autre feuille d'un motif de rides transversales, de sorte que. d'une face de l'échangeur à l'autre, la somme des hauteurs des rides des deux feuilles soit constante et égale au déport formant les ouïes sur les deux faces.
3. Echangeur de chaleur selon la revendication 2, caractérisé en ce que les paires de feuilles sont brasées ou jointes deux par deux aux points de contact des lignes de crête des rides.
4. Echangeur de chaleur selon la revendication 1, caractérisé en ce que l'une des feuilles est garnie d'ailettes longitudinales, l'autre d'ailettes transversales.
5. Echangeur de chaleur selon la revendication 4, caractérisé en ce que les paires de feuilles sont brasées ou jointes deux par deux aux points de contact des lignes de crête des ailettes.
PCT/BE1997/000088 1996-08-05 1997-07-28 Echangeur de chaleur spirale WO1998005916A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/308,647 US6263961B1 (en) 1996-08-05 1997-07-28 Spiral heat exchanger
AU39348/97A AU3934897A (en) 1996-08-05 1997-07-28 Spiral heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96202200A EP0798527B1 (fr) 1996-08-05 1996-08-05 Echangeur de chaleur spirale
EP96202200.0 1996-08-05

Publications (1)

Publication Number Publication Date
WO1998005916A1 true WO1998005916A1 (fr) 1998-02-12

Family

ID=8224260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1997/000088 WO1998005916A1 (fr) 1996-08-05 1997-07-28 Echangeur de chaleur spirale

Country Status (7)

Country Link
US (1) US6263961B1 (fr)
EP (1) EP0798527B1 (fr)
AT (1) ATE159097T1 (fr)
AU (1) AU3934897A (fr)
DE (1) DE69600073T2 (fr)
ES (1) ES2111410T3 (fr)
WO (1) WO1998005916A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289978B1 (en) 1999-11-09 2001-09-18 Ateliers De Construction De Thermo-Echangeurs Sa Coiled heat exchanger and a method for making a coiled heat exchanger
CN111197937A (zh) * 2018-11-16 2020-05-26 中国科学院工程热物理研究所 一种换热器及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1011595A3 (nl) * 1997-12-09 1999-11-09 Ewa Nova Bvba Besloten Vennoot Verbeterde warmtewisselaar en werkwijze voor het verwezenlijken van zulke warmtewisselaar.
FR2785666A1 (fr) * 1998-11-09 2000-05-12 Victor Sorokine Transformateur de l'energie rotatoire du gaz en energie thermique ordinaire
JP3090915B1 (ja) * 1999-04-16 2000-09-25 株式会社カンキョー 熱交換器、その製造方法及びそれを含む除湿機
KR100804103B1 (ko) * 2000-08-10 2008-02-18 가부시키가이샤 칸쿄 열교환기, 그 제조방법 및 그것을 포함하는 제습기
GB2372559B (en) 2001-02-21 2005-01-05 Rolls Royce Plc A heat exchanger
GB0318838D0 (en) 2003-08-12 2003-09-10 Rolls Royce Plc A heat exchanger and a method of manufacturing a heat exchanger
US11486649B2 (en) * 2014-12-18 2022-11-01 Maico Elektroapparate-Fabrik Gmbh Cylindrical air to air heat exchanger
CA3027050C (fr) * 2016-06-09 2021-08-17 Fluid Handling Llc Echangeur de chaleur en spirale 3d
BE1026824B1 (fr) 2018-12-03 2020-07-07 Luc Prieels Corps d’échange thermique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1121090B (de) 1956-03-27 1962-01-04 Parsons C A & Co Ltd Waermeaustauschelement sowie aus diesem aufgebauter Waermeaustauscher
FR2319868A1 (fr) 1975-08-01 1977-02-25 Linde Ag Echangeur de chaleur du type a spirales en tole
US4073340A (en) 1973-04-16 1978-02-14 The Garrett Corporation Formed plate type heat exchanger
DE3234878A1 (de) 1982-09-21 1984-03-22 Rudolf 6101 Gross-Bieberau Peschke Gegenstrom-waermetauscher mit spiralfoermigen flaechen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB291593A (en) * 1927-05-13 1928-06-07 Martyn Clissold Macpherson Improvements in or relating to radiators for effecting heat transference to or from fluids
US2663549A (en) * 1950-07-14 1953-12-22 Griscom Russell Co Spiral heat exchanger
FR1058090A (fr) * 1952-06-06 1954-03-12 Yacco S A Perfectionnements apportés aux échangeurs, notamment aux échangeurs d'huile pour moteurs
US3854530A (en) 1969-12-29 1974-12-17 E Jouet Heat exchanger
FR2313650A1 (fr) * 1975-06-05 1976-12-31 Bertin & Cie Echangeur de chaleur compact pour fluides
DE3404374A1 (de) * 1984-02-08 1985-08-14 W. Schmidt GmbH & Co KG, 7518 Bretten Spiralwaermetauscher
DE4221528A1 (de) * 1992-07-01 1994-01-05 Hans Dr Viesmann Nachschaltwärmetauscher für den Einbau in Heizkesselgehäuse und Verfahren zu dessen Herstellung
US5273106A (en) 1992-07-21 1993-12-28 Mechanical Technology Inc. Self-defrosting recuperative air-to-air heat exchanger
EP0753712B1 (fr) 1995-07-12 2000-10-11 ROLLS-ROYCE plc Echangeur de chaleur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1121090B (de) 1956-03-27 1962-01-04 Parsons C A & Co Ltd Waermeaustauschelement sowie aus diesem aufgebauter Waermeaustauscher
US4073340A (en) 1973-04-16 1978-02-14 The Garrett Corporation Formed plate type heat exchanger
FR2319868A1 (fr) 1975-08-01 1977-02-25 Linde Ag Echangeur de chaleur du type a spirales en tole
DE3234878A1 (de) 1982-09-21 1984-03-22 Rudolf 6101 Gross-Bieberau Peschke Gegenstrom-waermetauscher mit spiralfoermigen flaechen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E.L. PARSONS: "Development, FAbrication and application of a Primary Surface", SAE 851254

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289978B1 (en) 1999-11-09 2001-09-18 Ateliers De Construction De Thermo-Echangeurs Sa Coiled heat exchanger and a method for making a coiled heat exchanger
CN111197937A (zh) * 2018-11-16 2020-05-26 中国科学院工程热物理研究所 一种换热器及其制造方法

Also Published As

Publication number Publication date
EP0798527B1 (fr) 1997-10-08
ATE159097T1 (de) 1997-10-15
DE69600073T2 (de) 1998-04-16
US6263961B1 (en) 2001-07-24
DE69600073D1 (de) 1997-12-11
EP0798527A1 (fr) 1997-10-01
ES2111410T3 (es) 1998-03-01
AU3934897A (en) 1998-02-25

Similar Documents

Publication Publication Date Title
EP0186592B1 (fr) Echangeur à plaques
EP0798527B1 (fr) Echangeur de chaleur spirale
EP1012522B1 (fr) Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant
EP1395787B1 (fr) Ailette a persiennes pour echangeur de chaleur
EP0740949A1 (fr) Echangeur thermique à plaques
CH634141A5 (fr) Echangeur de chaleur a plaques.
EP2376860A1 (fr) Échangeur thermique a plaques soudées
WO2010133791A1 (fr) Procede de fabrication d'un faisceau de plaques pour un echangeur thermique
FR3020868A1 (fr) Echangeur de chaleur en spirale et procede de fabrication correspondant
EP0571263A1 (fr) Faisceau de plaques pour échangeur thermique et procédé d'assemblage d'un tel faisceau de plaques
WO2007048888A1 (fr) Echangeur de chaleur à tubes plats déformés par torsion
EP1426722B1 (fr) Plaque d'un échangeur thermique et échangeur thermique à plaques
WO2011033243A1 (fr) Machine thermodynamique à cycle de stirling
FR2711236A1 (fr) Echangeur de chaleur à deux rangées de tubes, en particulier pour véhicule automobile.
FR2684437A1 (fr) Echangeur de chaleur, notamment pour reacteurs hypersoniques, comportant un entretoisement pour les tubes de sa matrice.
EP2171386B1 (fr) Echangeur de chaleur pour gaz, en particulier pour les gaz d'echappement d'un moteur
WO2020069880A1 (fr) Plaque pour un échangeur de chaleur à plaques
WO2003081159A1 (fr) Echangeur de chaleur, notamment pour un vehicule automobile, constitue d'elements tubulaires empiles
EP0553340B1 (fr) Echangeur a plaques
FR2880106A1 (fr) Dispositif d'echange de chaleur entre deux fluides comportant des couches de mousse metallique
FR2866699A1 (fr) Echangeur thermique a plaques nervurees soudees
FR2886392A1 (fr) Echangeur de chaleur a tubes en forme de spirale helicoidale
EP0851998A1 (fr) Faisceau de plaques pour un echangeur thermique et echangeur thermique comportant un tel faisceau de plaques
BE1026824B1 (fr) Corps d’échange thermique
WO2000028270A1 (fr) Echangeur thermique a plaques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SE SG SI SK SL TJ TM TR TT UA US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 98507402

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

WWE Wipo information: entry into national phase

Ref document number: 09308647

Country of ref document: US