WO1998001894A1 - Method of manufacturing semiconductor integrated circuit device - Google Patents
Method of manufacturing semiconductor integrated circuit device Download PDFInfo
- Publication number
- WO1998001894A1 WO1998001894A1 PCT/JP1996/001847 JP9601847W WO9801894A1 WO 1998001894 A1 WO1998001894 A1 WO 1998001894A1 JP 9601847 W JP9601847 W JP 9601847W WO 9801894 A1 WO9801894 A1 WO 9801894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing chamber
- etching
- dry cleaning
- film
- temperature change
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02046—Dry cleaning only
Definitions
- the present invention relates to a method for manufacturing a semiconductor integrated circuit device, and more particularly to a technique for cleaning a processing chamber by removing a deposited film deposited in the processing chamber by a gas etching in a film forming process.
- a semiconductor integrated circuit device (hereinafter, referred to as an IC) is manufactured by forming a thin film on a semiconductor wafer (hereinafter, referred to as a wafer) and forming a circuit pattern on the thin film by a lithographic single-process etching process. .
- a thin film forming method used in a thin film forming process for forming a thin film on a wafer there is a method implemented using a reduced pressure CVD apparatus.
- the processing chamber is sealed after the wafer is carried into the processing chamber of the decompression CVD apparatus.
- the processing chamber is heated to about 500 to 900 by a heater, and is evacuated to about 10 Pa to 2 O O Pa by an evacuation device.
- a source gas required for film formation is supplied to the processing chamber where the processing conditions are maintained, and a thin film is formed on the wafer by a chemical reaction of the source gas caused by thermal energy.
- a reaction product adheres not only on a wafer but also in a processing chamber or a jig.
- the reaction product accumulates in the processing chamber or jig each time the film forming method is repeatedly performed, and forms a film (hereinafter, referred to as a deposited film).
- Deposited film reaches a certain thickness When separated, it becomes dust and adheres to the wafer, which is a work, which causes product (IC) failure.
- the processing chamber or the jig is etched with a hydrofluoric acid aqueous solution to remove the deposited film deposited on the processing chamber or the jig. ing.
- this jet cleaning method requires immersion of the processing chamber and jig in a hydrofluoric acid aqueous solution, and also requires disassembly and reassembly of a low-pressure CVD apparatus, which increases the cleaning operation time, and reduces the pressure. The operating efficiency of the device will be reduced.
- a reactive etching gas such as chlorine trifluoride (C 1 F 3 ) or hydrogen fluoride (HF) is used.
- the dry cleaning method used has been proposed The dry cleaning method is a method in which an etching gas is sent into a processing chamber and the deposited film is removed by etching with an etching gas. Since the work and the reassembly work can be omitted, the time required for the entire cleaning work can be shortened, and the operation efficiency of the low-pressure CVD apparatus can be prevented from being reduced.
- the cleaning method disclosed in this document is a method in which deposits are reacted and removed in a temperature range of 150 to 600 by using a mixed gas composition obtained by adding fluorine to nitrogen trifluoride.
- the deposited film in the processing chamber or the jig of the low-pressure CVD apparatus is removed by the dry cleaning method, it is necessary to appropriately determine a point in time when the cleaning is completed. This is because the point at which cleaning ends is delayed. Otherwise, over-etching (excessive etching) due to the etching gas will damage the processing chamber and jig. Conversely, if the cleaning is terminated too early, the amount of etching by the etching gas will be insufficient, and the deposited film will not be sufficiently removed, resulting in production failure due to separation of the deposited film.
- the first method is to equip the exhaust system of the decompression CVD device with a gas analyzer and detect the end point of cleaning by analyzing the components of the exhaust gas.
- the second method is a method in which the cleaning rate (etching rate) is empirically determined in advance based on experiments and past performance data, and the end point of the cleaning is managed over time.
- the first method for detecting the end point of cleaning by the gas analyzer has the following problems. Gas analyzers are expensive and complex. If the analysis port of the gas analyzer becomes dirty, the sensitivity will drop and maintenance will be troublesome.
- the cleaning In the second method of managing the end point of the cleaning by time, the cleaning must be properly terminated when the cleaning conditions fluctuate due to fluctuations in the thickness of the deposited film and fluctuations in the flow rate of the etching gas. There is a problem that can not be.
- An object of the present invention is to achieve dry cleaning without using a gas analyzer. It is intended to provide a method of manufacturing a semiconductor integrated circuit device which can be surely completed. Disclosure of the invention
- a change in temperature of the processing chamber is directly or indirectly measured, and a point in time when cleaning is completed is determined based on the measurement data. It is characterized by doing.
- FIG. 1 is a block diagram showing a reduced-pressure CVD apparatus used in a method of manufacturing IC, which is one embodiment of the present invention.
- 2A and 2B are a plan sectional view and a front sectional view, respectively.
- 3 (a) to 3 (e) are enlarged partial cross-sectional views showing main steps of an IC manufacturing method.
- FIGS. 4 (a) and 4 (b) are graphs for explaining the action of determining the end point.
- FIG. 5 is a block diagram showing a reduced pressure C VD apparatus used in the method of manufacturing IC according to the second embodiment of the present invention.
- FIG. 6 is a block diagram showing a reduced-pressure CVD apparatus used in the method of manufacturing IC according to the third embodiment of the present invention.
- FIG. 7 is a block diagram showing a reduced-pressure CVD apparatus used in the method of manufacturing IC according to the fourth embodiment of the present invention.
- FIG. 8 shows the reduced pressure C used in the method of manufacturing an IC according to the fifth embodiment of the present invention. It is a block diagram showing a VD device.
- FIG. 9 is a block diagram showing a batch type vertical decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
- FIG. 10 is a block diagram showing a batch type horizontal decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
- FIG. 11 is a block diagram showing a lamp heating type decompression CVD apparatus used in a method for producing IC which is Embodiment 7 of the present invention.
- FIG. 12 is a professional and jig diagram showing a plasma CVD apparatus used in the method of manufacturing IC according to the eighth embodiment of the present invention.
- FIG. 13 is a block diagram showing a dry etching apparatus used in the IC manufacturing method according to the ninth embodiment of the present invention.
- FIG. 14 is a block diagram showing a dry mouth dry etching apparatus used in the method of manufacturing IC according to the tenth embodiment of the present invention.
- a single-wafer decompression CVD device (hereinafter, simply referred to as a CVD device) shown in FIGS. 1 and 2 is used.
- the CVD apparatus includes a process tube 1 made of quartz glass which is an example of a material having heat resistance and capable of preventing heavy metal contamination and the like.
- the process tube 1 is formed in a rectangular tube shape with both ends opened, and is placed horizontally so that the center line is horizontal.
- An inner chamber of the process tube 1 substantially forms a processing chamber 2, and a holding jig 3 is disposed inside the processing chamber 2.
- Holding jig 3 is the same as process tube 1. In this way, it is formed of quartz glass, and is configured to hold the wafer 4 horizontally.
- An opening at one end of the process tube 1 substantially constitutes a furnace for loading and unloading a wafer as an object to be processed, and a furnace hole member 5 is connected to the furnace opening.
- a mouth lock chamber (not shown) is adjacently connected to the furnace member 5 of the process tube 1, and wafers are automatically loaded between the load lock chamber and the processing chamber 2 through the furnace member 5. It is designed to be carried out.
- a cap 6 is attached to the furnace member 5, and the cap 6 is configured to open and close the furnace member 5.
- a plurality of gas supply ports 7 are formed in the upper side wall of the furnace member 5 so as to be arranged in the longitudinal direction, and a gas supply path 8 is connected to a group of the gas supply ports 7.
- the gas supply path 8 is surrounded by a source gas supply device 9.
- the source gas supply device 9 is configured to supply the source gas under the control of the film forming sequence controller 10.
- An etching gas supply device 11 is connected to the gas supply path 8 with a gun.
- the etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas. I have.
- the other end opening of the process tube 1 substantially constitutes a furnace end, and a furnace end member 13 is connected to the furnace end so as to close the opening.
- the furnace end member 13 is provided with a plurality of exhaust ports 14 arranged in the longitudinal direction, and an exhaust path 15 is connected to the group of the exhaust ports 14.
- the evacuation path 15 is connected to a vacuum evacuation device 1.
- the vacuum evacuation device 16 is controlled by a pressure control unit 17 so that the processing chamber 2 can be evacuated to a predetermined degree of vacuum. ing.
- the pressure controller 17 is connected to the film forming sequence controller 10.
- a heater 18 for uniformly heating the inside of the processing chamber 2 throughout the process tube 1 surrounds the process tube 1.
- the facilities are as follows.
- the heater 18 is configured to be controlled by a temperature controller 19.
- the temperature controller 19 is configured to ensure control responsiveness and stability by PDI control.
- thermocouple 20 as a temperature sensor for detecting a cleaning end point is inserted inside the processing chamber 2 of the process tube 1, and the thermocouple 20 is connected to the temperature change monitoring unit 21. As shown in FIG. 2, the five thermocouples 20 are arranged on the bottom wall side of the processing chamber 2 so as to be as uniform as possible over the entire surface.
- thermocouple F the one arranged on the furnace B side of the processing chamber 2 is the front thermocouple F
- the one arranged in the center of the furnace is the central thermocouple C
- the thermocouple placed on the furnace end side is called back thermocouple B
- the thermocouple placed on the left side of the furnace center is called left thermocouple L
- the thermocouple placed on the right side of the furnace center is called right thermocouple R.
- the output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 has an end point table storing a table described later.
- Storage units 23 are connected.
- the output end of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 transmits a determination result by an operation described later to the etching gas control unit 12.
- the thermocouple 20 is housed inside the protective tube 24 and penetrated through the furnace end member 13 to be inserted into the processing chamber 2.
- the protection tube 24 is formed in an elongated tube shape with quartz glass, and one end protrudes from the furnace end member 13 to the outside. Since the thermocouple 20 is protected by the protection tube 24, temperature measurement under reduced pressure can be performed safely and accurately.
- an underlying silicon oxide film 32 for LOCOS is formed on a p-type silicon substrate (hereinafter, referred to as a substrate) 31.
- a silicon nitride (Si 8 N 4 ) film 33 is deposited.
- the silicon nitride film 83 is deposited using a CVD apparatus.
- the silicon nitride film 33 is left in a portion where a transistor is to be formed later by photoetching, and boron (B) is ion-implanted using the photoresist film 34 as a mask.
- wet oxidation using water vapor is performed, and as shown in FIG. 3 (c), the substrate 31 where there is no silicon nitride film 33 is oxidized to form a field oxide silicon film. 37 is formed.
- the boron implanted layer 35 forms a channel stop 36 that electrically separates adjacent elements.
- the wafer 4 as an object to be processed having the underlying silicon oxide film 32 formed on the substrate 31 is carried into the processing chamber 2 and placed on the holding jig 3 as shown in FIG. Is done.
- the inside of the processing chamber 2 is evacuated to a predetermined degree of vacuum (10 to 10 OPa) by the evacuation device 16.
- the inside of the processing chamber 2 is uniformly heated to a predetermined temperature (for example, about 400 * 0) by the heating 18.
- a source gas for forming the silicon nitride film 33 for example, monosilane (SiH 4 ) and ammonia (NH 3 ) are supplied into the processing chamber 2 by the source gas supply device 9. .
- Raw material gas is supplied to processing chamber 2. It flows in from the supply port 7, flows downward while contacting the wafer 4 held by the holding jig 3, and is exhausted from the exhaust port 14.
- the source gas that comes into contact with the wafer 4 is in a state in which a chemical reaction has progressed due to thermal energy, and is thus deposited (deposited) on the wafer 4.
- silicon nitride is deposited and the silicon nitride film 33 is deposited on the wafer 4 by the following reaction formula.
- the source gas supply device 9 stops supplying the source gas under the control of the film forming sequence control unit 10.
- the cap 6 is opened under the control of the film formation sequence controller 10, and the wafer 4 on which the silicon nitride film 33 is applied is picked up from the holding jig 3 by a handling device (not shown) and carried out of the processing chamber 2. Is done. Subsequently, the next wafer 4 is carried into the processing chamber 2 and held by the holding tool 3. Thereafter, the above operation is repeated.
- the reaction product adheres not only on the wafer 4 but also on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3.
- the reaction product is deposited in the processing chamber 2 and the holding jig 3 each time the above-described operation of forming the silicon nitride film 33 by CVD is repeated to form a film (hereinafter, referred to as a deposited film).
- a deposited film When the deposited film reaches a certain thickness, it separates into dust and adheres to the wafer 4 being processed, thereby causing a product defect.
- the deposited film when the deposited film reaches a certain thickness, the deposited film deposited on the processing chamber 2 and the holding jig 3 is removed by dry cleaning over the entire inside of the processing chamber 2. Is done.
- the dry cleaning method will be described.
- the predetermined thickness is a value smaller than the thickness at which the deposited film is easily removed, and is determined in advance by empirical methods such as experiments, simulation tests using a computer, and analysis of past performance data. Is set.
- the thickness is 1 m for a silicon nitride deposited film in a single-wafer CVD apparatus.
- the thickness of the deposited film can be obtained by multiplying the number of treatments by the deposition thickness per time. Further, the thickness of the deposited film may be measured by a film thickness measuring device.
- the mode When the mode is switched to the dry cleaning mode, loading of the wafer 4 into the processing chamber 2 is interrupted.
- the temperature of the processing chamber 2 is maintained by heating the heater 18 under the control of the temperature control unit 19 at the temperature during the film forming operation described above. Further, the pressure inside the processing chamber 2 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the film forming operation.
- the etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12.
- the etching gas flows into the processing chamber 2 from the gas supply port 7, flows downward while contacting the deposited film deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3, and is exhausted by the vacuum exhaust device 16. Exhausted from mouth 14.
- the etching gas that comes into contact with the deposited film is in a depressed state in which a chemical reaction has progressed due to thermal energy, so that the deposited film is etched.
- a fluorine (F 2 ) gas is used as an etching gas
- a silicon nitride deposited film is etched by the following reaction formula.
- the reaction product by the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas.
- Sediment ⁇ is Etchin
- the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 are relatively cleaned.
- the temperature change inside the processing chamber 2 during the dry cleaning is monitored by the temperature change monitoring unit 21 so that the end point of the cleaning is accurately determined.
- FIG. Fig. 4 is a graph showing the temperature change in the processing chamber during dry cleaning.
- the vertical axis shows the temperature difference CC), and the horizontal axis shows the elapsed time (in seconds) since the introduction of the etching gas. I have.
- Fig. 4 shows the temperature difference CC
- curve F is the temperature change detected by the front thermocouple F
- curve C is the temperature change detected by the center thermocouple C
- curve B is the back thermocouple B
- the curve L shows the temperature change detected by the left thermocouple L
- the curve R shows the temperature change detected by the right thermocouple R.
- the peak of each temperature change curve is monitored, and the arrival point of the last peak is determined as the end point by the end point determination unit 22.
- the reason for determining the last peak point as the end point of dry cleaning is that all the etching reactions caused inside the processing chamber 2 have reached their peaks, so that the dry cleaning is performed to a desired extent in all places in the processing chamber 2. This is because it can be estimated that it has been cleaned.
- the peak point of the temperature change can be detected in real time by monitoring the temperature change curve continuously from the temperature change monitoring unit 21.
- the temperature change song If ⁇ is repeatedly inverted due to noise, etc., the temperature change monitoring unit
- the peak point of the temperature change is determined by the data from the temperature change monitoring unit 21. It can be detected in real time.
- the peak point in the curve R by the right thermocouple R is determined to be the end point.
- the reason why the peaks of the curves R and L by the right thermocouple R and the left thermocouple L are later than the others is that the outer frame of the holding jig 3 is provided on the right wall surface and the left wall surface of the processing chamber 2 respectively. It is considered that the closer approach increases the size of the deposited film to be etched.
- a method of increasing the flow rate of the etching gas inside the processing chamber 2 there are a method of increasing the supply amount of the etching gas by the etching gas supply device 11 under the control of the etching gas control unit 12 and a method of exhausting by the vacuum exhaust device 16.
- the deposited film is purposely formed on the inner surface of the processing chamber before the film forming process is restarted. (It is called empty devo.) If there is no deposited film on the inner surface of the processing chamber, the inside of the processing chamber is easily heated by the heater, which is different from the normal processing conditions where the deposited film adheres to the inner surface of the processing chamber. The desired film formation cannot be performed by the film formation sequence control designed based on the loose data and the like.
- the dry cleaning is properly completed in a state where a thin deposited film remains on the inner surface of the processing chamber 2.
- the empty deposition step can be omitted.
- the downtime of the CVD apparatus can be reduced, and the operating efficiency of the CVD apparatus can be improved.
- the thickness of the deposited film left thinly on the inner surface of the processing chamber 2 is 40 nm to 90 nm.
- the end point determination unit 22 determines whether the arrival point of the last peak is determined as the end point by the end point determination unit 22 is etching is in progress, and the deposited film remains thin on the inner surface of the processing chamber 2.
- the distribution of the etching rate in the processing chamber 2 is controlled to be uniform, the deposited film can be thinly and uniformly left on the inner surface of the processing chamber 2.
- the end point is not limited to be determined based on the arrival point of the last peak, but may be determined as follows.
- the end point is the point at which the temperature change peaks.
- the predetermined period is obtained in advance by experiments or past execution data.
- the experiment and past data are stored as a table in the end point table storage unit 23, and the current temperature change data from the temperature change monitoring unit 21 is compared with the table, and the current temperature is compared.
- the point at which the value matches the temperature preset in the table is the end point.
- the temperature change is represented by a function of temperature and time, and as shown in Fig. 4 (b), the end point is point E when the slope changes when the temperature decreases.
- the etching gas supply unit 11 is controlled by the etching gas control unit 12. The supply of the etching gas from is stopped. If necessary, a purge gas such as nitrogen gas is supplied from the etching gas supply device 11 or the source gas supply device 9 into the processing chamber 2. As a result, the etching reaction on the deposited film hardly occurs, and the dry cleaning is completed.
- the CVD processing is restarted by the dry-cleaned CVD apparatus.
- the empty devouring step can be omitted.
- the deposited film in the processing chamber 2 and the holding jig 3 of the CVD apparatus is dry-cleaned to a predetermined thickness, so that the deposited film does not separate from the processing chamber 2 and the holding jig 3. Is to be treated Does not contaminate the wafer 4.
- a gate silicon oxide film 38 is newly formed by dry or hydrochloric acid (HC 1). It is formed by oxidation.
- boron (B) is ion-implanted.
- a doped polysilicon film is deposited by the above-configured CVD apparatus, and a polysilicon gate 39 is formed by a photo-etching process and a dry * etching process as shown in FIG. 3 (e). You.
- the wafer 4 as the object to be processed into which the gate silicon oxide film 38 has been formed and the boron ions have been implanted is carried into the processing chamber 2 and placed on the holding jig 3 as shown in FIG. Is placed.
- the inside of the processing chamber 2 is evacuated to a predetermined degree of vacuum (10 to 10 OPa) by the vacuum exhaust device 16.
- the processing chamber 2 by the heater 1 8 is uniformly heated throughout to a predetermined temperature (e.g., about 4 00 e C).
- a source gas for forming a doped polysilicon film for example, monosilane (SiH 4 ) and phosphine (PH 3 ) are supplied from the source gas supply device 9 into the processing chamber 2.
- the source gas flows into the processing chamber 2 from the gas supply port 7, flows downward while contacting the wafer 4 held by the holding jig 3, and is exhausted from the exhaust port 14.
- the source gas that comes into contact with the wafer 4 is in a state where the chemical reaction has progressed due to the thermal energy, so that the source gas is deposited (deposited) on the wafer 4.
- a doped polysilicon film is deposited by the following reaction equation. S i H 4 + PH 8 - * S i + P + H 2
- the source gas supply device 9 stops supplying the source gas under the control of the film forming sequence control unit 10.
- the cap 6 is opened under the control of the film forming sequence control unit 10, and the wafer 4 coated with the doped polysilicon film is picked up from the holding jig 3 by a handling device (not shown) and unloaded from the processing chamber 2. Is done. Then, the next wafer 4 is carried into the processing chamber 2 and held by the holding jig 3. Thereafter, the above operation is repeated.
- the reaction product adheres not only on the wafer 4 but also on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3.
- the reaction product is deposited in the processing chamber 2 and the holding jig 3 each time the above-described operation of forming the doped polysilicon film by CVD is repeated, thereby forming a film (hereinafter, referred to as a deposited film).
- a deposited film When the thickness of the fertilizer film reaches a certain level, the fertilizer film separates and becomes dust and adheres to the wafer 4 being processed, thereby causing a product defect.
- the film forming sequence controller 10 controls the film forming mode.
- dry cleaning mode For example, in the case of a deposited film of doped polysilicon in a single-wafer CVD apparatus, the dry cleaning film thickness is as follows.
- the mode is switched to the dry cleaning mode, the transfer of the wafer 4 into the processing chamber 2 is interrupted.
- the temperature of the processing chamber 2 is controlled by the temperature during the film forming operation described above. It is maintained by the heating of the heater 18 by the control of 19. Further, the pressure inside the processing chamber 2 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the film forming operation.
- the etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12.
- the etching gas flows into the processing chamber 2 from the gas supply port 7, flows downward while contacting the deposited film deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3, and is exhausted by the vacuum exhaust device 16. Exhausted from mouth 14.
- the etching gas that comes into contact with the deposited film is in a state in which the chemical reaction has progressed due to thermal energy, so that the deposited film is etched.
- chlorine trifluoride (C 1 F s ) gas is used as an etching gas, a deposited film of doped polysilicon is etched by the following reaction formula.
- 0 oxygen in the gate silicon oxide film.
- the reaction product from the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas.
- the deposited film is gradually removed by etching, and the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 are relatively cleaned.
- the end point of the cleaning is accurately determined.
- the peak of each temperature change curve is monitored, and the arrival point of the last peak is determined as the end point by the end point determination unit 22.
- the dry cleaning can be accurately completed by the state where the entrapment film remains thin on the inner surface of the processing chamber 2.
- the end point is determined by the end point determination unit 22, and when an instruction to terminate the dry cleaning is issued to the etching gas control unit 12, the etching gas supply unit is controlled by the etching gas control unit 12. The supply of the etching gas from the device 11 is stopped. If necessary, a purge gas such as a nitrogen gas is supplied from the etching gas supply device 11 or the raw material gas supply device 9 into the processing chamber 2. As a result, the etching reaction on the deposited film is almost eliminated, and the dry cleaning is completed.
- a purge gas such as a nitrogen gas
- the CVD film forming process is restarted by the dry-cleaned CVD apparatus.
- the empty deposition step can be omitted.
- the deposited film in the processing chamber 2 and the holding jig 8 of the CVD apparatus is dry-cleaned to a predetermined thickness, so that the deposited film does not fall off, and the deposited film is a wafer as an object to be processed. No contamination of 4
- thermocouple By detecting the temperature change during dry cleaning with a thermocouple, the dry cleaning can be properly terminated, eliminating the need for expensive and complicated measuring instruments such as gas analyzers. The cost of the entire processing apparatus can be reduced.
- the empty deposition step can be omitted, thereby reducing the downtime of the processing equipment and improving the operating efficiency of the processing equipment. Can be improved.
- FIG. 5 shows the reduced pressure C used in the method of manufacturing IC which is Embodiment 2 of the present invention.
- the second embodiment is different from the first embodiment in that a thermocouple 20 for monitoring a temperature change during dry cleaning is provided outside the processing chamber 2 and in the vicinity of the processing chamber 2. Is a point. Also in the second embodiment, the thermocouples 20 are arranged such that a plurality of thermocouples are as uniform as possible on one plane. According to the second embodiment, since the thermocouple 20 is disposed outside the processing chamber 2, the protection tube 24 can be omitted.
- FIG. 6 shows the reduced pressure C used in the method of manufacturing IC which is Embodiment 3 of the present invention.
- the third embodiment differs from the first embodiment in that a thermocouple 20 for monitoring a temperature change during dry cleaning is installed inside the heater 18. That is the point. Also in this embodiment, the thermocouples 20 are arranged such that a plurality of thermocouples 20 are equally distributed on a plane. According to the third embodiment, since the thermocouple 20 is disposed outside the processing chamber 2, the protective tube 24 can be omitted. In addition, since the heat couple 20 is provided inside the heater 18, it can be used for monitoring the heating temperature of the heater 18 during the film forming process. In other words, the thermocouple 20 can also serve as a thermocouple for monitoring the heating temperature of the heater 18.
- FIG. 7 is a block diagram showing a reduced-pressure CVD apparatus used in the method for producing IC according to the fourth embodiment of the present invention.
- Embodiment 4 is different from Embodiment 1 in that a power supply amount of a temperature control unit 19 for controlling a heater 18 is controlled by a temperature instead of a thermocouple for monitoring a temperature change during dry cleaning.
- the change monitoring unit 21 is configured to monitor a temperature change during dry cleaning.
- the temperature controller 19 controls the power of the heater 18 so that the internal temperature of the processing chamber 2 is always constant.
- heat of reaction that is not generated during the film forming process is generated inside the processing chamber 2 due to a chemical reaction between the etching gas and the fertilizer film.
- the temperature of the processing chamber 2 tends to increase during dry cleaning, and the temperature control unit 19 suppresses the temperature increase of the processing chamber 2 by reducing the amount of power supplied to the heater 18.
- thermocouple for detecting a temperature change during dry etching can be omitted.
- FIG. 8 is a block diagram showing a decompression CVD apparatus used in the method for manufacturing an IC according to the fifth embodiment of the present invention.
- the fifth embodiment differs from the first embodiment in that a thermocouple 20 for monitoring a temperature change during dry cleaning is provided inside the exhaust passage 15. Also in the fifth embodiment, it is desirable to arrange a plurality of thermal couples 20. By measuring the temperature of the exhaust gas at one or more points, the heat of reaction between the etching gas and the deposited film can be measured, so that the end point of the dry cleaning can be accurately detected.
- the protection tube 24 can be omitted.
- FIG. 9 is a block diagram showing a batch type vertical decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
- the fifth embodiment differs from the first embodiment in that a batch type vertical decompression CVD device is used.
- the process tube 1A of the batch type vertical decompression CVD device is a large-diameter cylindrical tube 1a with one end closed and the other end open, and a small-diameter cylindrical inner tube 1 with both ends open.
- the inner tube 1a and the inner tube 1b are installed vertically with the closed side of the outer tube 1a facing upward, with the inner tube 1a and the inner tube 1b being arranged concentrically with each other.
- a holding jig 3A is coaxially arranged inside the inner tube 1b.
- the holding jig 3A is configured to hold 100 to 180 wafers 4 in parallel with each other with their centers substantially aligned.
- the holding jig 3A is carried into the inner tube 1b while being placed on a cabinet 6A provided to be able to advance and retreat at the opening of the inner tube 1b.
- a gas supply port 7 is provided at the lower end of the inner tube 1b, and a gas supply path 8 is connected to the gas supply port 7 through the outer tube la.
- a source gas supply device 9 is connected to the gas supply path 8, and the source gas supply device 9 is controlled by a film formation sequence controller 10 to control the source gas. And is configured to supply An etching gas supply device 11 is connected to the gas supply path 8, and the etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas. I have.
- An exhaust port 14 is opened at the lower end of the tube wall of the outer tube 1a, and an exhaust path 15 is connected to the exhaust port 14.
- a vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device 16 can evacuate the processing chamber 2 of the process tube 1 A to a predetermined degree of vacuum by the pressure controller 17. It is configured as follows.
- the pressure controller 17 is connected to the film forming sequence controller 10. Outside the process tube 1A, a heater 18 for uniformly heating the inside of the processing chamber 2 throughout is provided so as to surround the process tube 1A.
- the heater 18 is configured to be controlled by a temperature controller 19.
- the temperature controller 19 is a PDI system and is configured to ensure control responsiveness and stability.
- thermocouple 20 as a temperature sensor for detecting the end point of cleaning is provided inside the processing chamber 2 of the process tube 1A.
- the thermocouple is inserted between the inner tube 1 a and the inner tube 1 b while being housed in the protective tube 24, and the thermocouple 20 is connected to the temperature change viewing unit 21.
- the plurality of thermal couples 20 are arranged so as to be as evenly distributed as possible in the outer peripheral portion of the processing room 2.
- the output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 is connected to the end point table storage unit 28. ing.
- the output end of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 transmits the determination result to the etching gas control unit 12.
- Batch type vertical low pressure CVD equipment is also formed by the reaction of raw material gas.
- reaction products are deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 to form a film.
- the deposited film reaches a certain thickness, it separates and contaminates the wafer 4 being processed, so cleaning is necessary even in a batch type vertical low pressure CVD apparatus.
- a dry cleaning method of a batch type vertical low pressure CVD apparatus will be described.
- the film forming sequence controller 10 switches from the film forming mode to the dry cleaning mode.
- the predetermined thickness of the deposited film for which dry cleaning is to be started in a batch type low-pressure CVD apparatus is, for example, 1; / m for a deposited film of silicon nitride, and 3 for a doped polysilicon. ju m.
- the loading of the wafer 4 into the processing chamber 2 is interrupted, and the holding jig 3A is loaded into the processing chamber 2 in a state in which the wafer 4 group is not held.
- the temperature of the processing chamber 2 is maintained by heating the heater 18 under the control of the temperature control unit 19 at the time of the film forming operation.
- the pressure inside the processing chamber 2 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the film forming operation.
- the etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12.
- the etching gas flows into the processing chamber 2 from the gas supply port 7, flows while contacting the deposited film deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 A, and is exhausted by the vacuum exhaust device 16. Exhausted from 4. At this time, the etching gas in contact with the deposited film is in a state where a chemical reaction has progressed due to thermal energy, so that the deposited film is etched. The reaction product by the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas. The deposited film is gradually removed by etching. However, the inner surface of the processing chamber 2 and the outer surface of the holding jig 3A are relatively cleaned.
- the internal temperature of the processing chamber 2 starts to rise due to the heat of the etching reaction.
- the peak of each temperature change curve is monitored, and the point of arrival of the last peak is determined by the end point determination unit 22 as the end point.
- the arrival point of the last peak is determined as the end point by the end point determination unit 22, the etching is in progress, and the deposited film remains thin on the inner surface of the processing chamber 2. If the distribution of the etching rate inside the processing chamber 2 is controlled to be uniform, the deposited film can be thinly and uniformly left on the inner surface of the processing chamber 2.
- the thickness of the deposited film left thin on the surface of the processing chamber 2 is 40 nm to 90 nm.
- end point is not limited to be determined based on the arrival point of the last peak, but can be appropriately determined according to conditions, as in the first embodiment.
- the etching gas supply unit is controlled by the etching gas control unit 12.
- the supply of the etching gas from the device 11 is stopped, and a purge gas such as a nitrogen gas is supplied from the etching gas supply device 11 or the source gas supply device 9 into the processing chamber 2 as necessary.
- a purge gas such as a nitrogen gas is supplied from the etching gas supply device 11 or the source gas supply device 9 into the processing chamber 2 as necessary.
- the CVD film formation process is restarted by the dry vertical vacuum type CVD apparatus that has been cleaned.
- the empty devouring step can be omitted.
- the deposited film in the processing chamber 2 and the holding jig 3 of the batch type vertical decompression CVD apparatus is dry-cleaned to a predetermined thickness, and thus is separated from the processing chamber 2 and the holding jig 3. The deposited film does not contaminate the wafer 4 to be processed 0
- FIG. 10 is a block diagram showing a batch type horizontal decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
- Embodiment 6 is different from Embodiment 1 in that a batch type horizontal decompression CVD apparatus is used.
- the configuration and operation of the batch type horizontal depressurized CVD apparatus are the same as those of the batch type vertical depressurized CVD apparatus except that the process tube 1B is placed horizontally, and therefore the description thereof is omitted.
- FIG. 11 is a block diagram showing a lamp heating type decompression CVD apparatus used in a method for producing IC which is Embodiment 7 of the present invention.
- the seventh embodiment differs from the first embodiment in that a ramp-heating type reduced pressure CVD apparatus is used.
- the lamp heating type decompression CVD device 40 has a base 41 formed in a disk shape, and the upper cup 42 and the lower cup 43 formed of quartz glass are processed above and below the base 41. Chambers 4 are arranged to form 4.
- a susceptor 45 as a holding jig for holding the wafer 4 is concentrically arranged in the same plane as the base 41.
- the susceptor 45 is supported by a support shaft 46.
- the support shaft 46 is moved up and down by a vertical movement device (not shown) and rotated by a rotation drive device (not shown). I have.
- a part of the lower cup 43 has an opening 47 for taking in and out a wafer as an object to be processed.
- the loading / unloading chamber (not shown) is adjacently connected to the loading / unloading port 47, and the wafer is transferred between the load lock chamber and the processing chamber 4 through the loading / unloading port 47 through a handling device (not shown). ) Is automatically loaded and unloaded one by one.
- a cap 48 is attached to the entrance 47, and the cap 48 is configured to open and close the entrance 47. .
- a plurality of heating lamps 18A for uniformly heating the entire inside of the processing chamber 44 are provided outside the upper cup 42 and the lower cup 43.
- the heating lamp 18 A is configured to be controlled by the temperature control unit 19.
- the base 41 has a gas supply unit 7, and the gas supply unit 7 is connected to a gas supply line 8.
- a source gas supply device 9 is connected to the gas supply path 8, and the source gas supply device 9 is configured to supply a source gas under the control of a film formation sequence control unit 10.
- An etching gas supply device 11 is connected to the gas supply path 8 by a gun, and the etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas.
- the base 41 has an exhaust port 14, and the exhaust port 14 is connected to an exhaust path 15.
- a vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device gl 6 is controlled by the pressure control unit 17 so as to be able to evacuate the processing chamber 44 to a predetermined degree of vacuum. ing.
- the pressure control section 17 is connected to the film formation sequence control section 10.
- thermocouples 20 as temperature sensors for detecting the end point of cleaning are arranged outside the upper cup 42 and the lower cup 43, respectively, and are disposed in close proximity to the processing chamber 44, and the thermocouple 20 monitors a temperature change. Connected to part 21.
- the thermocouple 20 is arranged so that the temperature distribution of the processing chamber 44 can be measured over the whole.
- a plurality of radiation thermometers 2 OA as temperature sensors for detecting a cleaning end point are provided outside the upper cup 42 and the lower cup 43, and the temperature of the susceptor 45 and the base 41 in the processing room 44 is measured. It is equipped to perform non-contact measurement, and a radiation thermometer 2 OA is also connected to the temperature change monitoring unit 21.
- the radiation thermometer 2OA is also arranged so that the temperature distribution in the processing chamber 44 can be measured throughout.
- the output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 is connected to the end point table storage unit 23. . Further, the output end of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 sends the determination result to the etching gas control unit 12.
- a predetermined thickness of a deposited film to start dry cleaning is, for example, 1 m for a deposited film of silicon nitride. In the case of doped polysilicon, the length is 3 m.
- the processing chamber 4 C When the mode is switched to the dry cleaning mode, the processing chamber 4 C The loading of 4 is suspended.
- the temperature of the processing chamber 44 is maintained by heating the heating lamp 18 A under the control of the temperature control unit 19 while controlling the temperature during the growth operation.
- the pressure inside the processing chamber 44 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the growth operation.
- an etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12.
- the etching gas flows into the processing chamber 2 from the gas supply unit 7, flows while contacting the deposited film deposited on the processing chamber 2 and the sasse pig 45, and is exhausted from the exhaust port 14 by the vacuum exhaust device 16. Is done.
- the etching gas in contact with the deposited film has undergone a chemical reaction due to thermal energy, the deposited film is etched.
- the reaction product from the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas.
- the deposited film is gradually removed by etching, and the processing chamber 2 and the susceptor 45 are gradually cleaned relatively.
- the internal temperature of the processing chamber 44 starts to rise due to the heat of the etching reaction.
- the peak of each temperature change curve is monitored, and the point of arrival of the last peak is determined as the end point by the end point determination unit 22. You. If the end point of the final peak is determined by the end point determination unit 22 as the end point, etching is in progress, and the deposited film remains thin on the inner surface of the processing chamber 44. In particular, when the distribution of the etching rate in the processing chamber 44 is controlled to be uniform, the deposited film can be thinly and uniformly left on the inner surface of the processing chamber 44.
- Processing chamber 4 Leave thin deposited film on inner surface of 4 As a result, it is not necessary to form a deposited film on the inner surface of the processing chamber 44 before the processing is resumed, that is, since the empty deposition step can be omitted, the downtime of the ramp-heating type decompression CVD apparatus can be reduced. The operation efficiency of the lamp heating type decompression CVD apparatus can be improved. Incidentally, the thickness of the deposited film left thinly on the inner surface of the processing chamber 44 is 40 nm to 90 nm.
- the end point is not limited to be determined based on the arrival point of the last peak, but can be appropriately determined according to conditions, as in the first embodiment.
- the end point is determined by the end point determination unit 22, and when a command to end the dry cleaning is issued to the etching gas control unit 12, the etching gas supply unit 1 is controlled by the etching gas control unit 12. The supply of the etching gas from 1 is stopped. If necessary, a purge gas such as a nitrogen gas is supplied from the etching gas supply device 11 or the source gas supply device 9 into the processing chamber 44. As a result, the etching reaction on the deposited film hardly occurs, and the dry cleaning is completed.
- the CVD film forming process is restarted by the dry-heated, low-pressure, lamp-heated CVD apparatus.
- the empty devouring step can be omitted.
- the deposited film in the processing chamber 44 and the susceptor 45 of the lamp heating type decompression CVD apparatus is dry-cleaned to a predetermined thickness. The deposited film does not contaminate the wafer 4 to be processed.
- FIG. 12 is a block diagram showing a plasma CVD apparatus used in the IC manufacturing method according to the eighth embodiment of the present invention.
- Embodiment 8 is different from Embodiment 1 in that the plasma CVD apparatus It is the point used.
- the plasma CVD apparatus 50 includes a base 51 formed in a disk shape. On the base 51, an upper cup 52 and a lower cup 53 formed in a large and small diameter cylindrical shape are disposed in a processing chamber 54. Are arranged to form Inside the processing chamber 54, a lower electrode 55 also serving as a susceptor as a holding jig for holding the wafer 4 is arranged concentrically in the same plane as the base 51. Is configured to generate plasma with the upper electrode 59 disposed facing upward.
- the lower electrode 55 is supported by a support shaft 56, and the support shaft 56 is moved up and down by a vertical movement device (not shown) and rotated by a rotary drive device (not shown). Has become.
- a part of the upper cup 52 and a part of the lower cup 53 is provided with an inlet / outlet 57 for taking in / out a wafer as an object to be processed.
- a load lock chamber (not shown) is instantaneously connected to the loading / unloading port 57, and the wafer passes through the loading / unloading port 57 between the load ⁇ chamber and the processing chamber 5, and a handling device (not shown). ) Automatically loads and unloads one by one.
- a cabinet 58 is attached to the entrance 57, and the cabinet 58 is configured to open and close the entrance 57.
- a quartz glass window 60 is fitted in the center of the base 51, and a heating lamp 18 mm for uniformly heating the entire inside of the processing chamber 54 is provided below the quartz glass window 60. Multiple units are installed.
- the heating lamp 18 A is configured to be controlled by the temperature controller 19.
- a gas supply port 7 is opened in the upper cup 52 so as to face the upper electrode 59, and a gas supply path 8 is connected to the gas supply port 7.
- a source gas supply device 9 is connected to the gas supply path 8, and the source gas supply device g9 is configured to supply a source gas under the control of a film formation sequence control unit 10.
- an etching gas supply device is An etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas.
- An exhaust port 14 is opened in the upper cup 52, and an exhaust path 15 is connected to the exhaust port 14.
- a vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device 16 is controlled by a pressure control unit 17 so that the processing chamber 54 can be evacuated to a predetermined degree of vacuum. It has been done.
- the pressure controller 17 is in contact with the film forming sequence controller 10.
- a plurality of thermocouples 20 as temperature sensors for detecting the end point of cleaning are arranged outside the upper cup 52 and the lower cup 53 in close proximity to the processing chamber 54, and the thermocouple 20 monitors a temperature change. Connected to part 21.
- the thermocouple 20 is arranged so that the temperature distribution of the processing chamber 54 can be measured throughout.
- a plurality of radiation thermometers 2 OA as temperature sensors for detecting a cleaning end point are provided outside the upper cup 52 and the lower cup 53.
- the thermometer 2 OA is also connected to the temperature change monitoring unit 21.
- the radiation thermometer 2OA is also arranged so that the temperature distribution in the processing chamber 54 can be measured throughout.
- the output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point judgment unit 22.
- the other input terminal of the end point judgment unit 22 is connected to the end point table storage unit 23. I have.
- the output terminal of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 transmits the determination result to the etching gas control unit 12.
- a reaction product is deposited on an inner surface of the processing chamber or an outer surface of the substrate as a holding jig to form a film.
- the deposited film reaches a certain thickness, it becomes contaminated and contaminates the wafer being processed. Is necessary.
- the operation is substantially the same as that of the above-described lumped heating type decompression CVD apparatus, so that the description of the dry cleaning method of the plasma CVD apparatus is omitted.
- FIG. 13 is a block diagram showing a dry etching apparatus used in the method of manufacturing IC, which is Embodiment 9 of the present invention.
- Embodiment 9 is different from Embodiment 1 in that a dry etching apparatus is used.
- the dry etching apparatus 61 has a disk-shaped base 62, and a hemispherical dome-shaped cover 63 is formed on the base 62 in cooperation with the base 62. 6 4 are arranged.
- a lower electrode 65 also serving as a susceptor as a holding jig for holding the wafer 4 is arranged concentrically with the base 62, and the lower electrode 65 is an upper electrode facing upward. It is configured to generate plasma between them.
- the lower electrode 65 is supported by a support 66, and the support shaft 66 is moved up and down by a vertical movement device (not shown) and rotated by a rotation drive device (not shown).
- a part of the base 62 is provided with an inlet / outlet 67 for taking in / out a wafer as an object to be processed.
- a load lock chamber (not shown) is adjacently connected to the inlet / outlet 67, and a wafer passes through the inlet / outlet 67 between the inlet / outlet lock chamber and the processing chamber 6 and a handling device (not shown). It is designed to automatically carry in and out one by one.
- a cap 68 is attached to the access port 67, and the cap 68 is configured to open and close the access port 67.
- a gas supply unit 7 connected to a gas supply path 8 is provided to the upper electrode 69 so as to supply gas to the inside of the upper electrode 69, and gas is supplied to the upper electrode 69.
- a large number of outlets 6 9 a that blow out toward 5 I have.
- the gas supply path 8 is connected to a processing gas supply device 9 A for supplying an etching gas (hereinafter referred to as a processing gas) as a processing gas, and the processing gas supply device 9 A is a dry etching as a processing. It is configured to supply a processing gas under the control of a processing sequence controller 10A for controlling the processing.
- a cleaning gas supply device 11 for supplying an etching gas (hereinafter referred to as a cleaning gas) for dry cleaning is connected to the gas supply path 8, and the cleaning gas supply device 11 is a cleaning gas control unit. It is configured to supply a cleaning gas under the control of 12.
- An exhaust port 14 is opened in the base 62, and an exhaust path 15 is connected to the exhaust port 14.
- a vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device 16 is controlled by a pressure control unit 17 so that the processing chamber 64 can be evacuated to a predetermined degree of vacuum. Have been.
- the pressure controller 17 is connected to the processing sequence controller 1OA.
- thermocouples 20 as temperature sensors for detecting the end point of cleaning are arranged in close proximity to the processing chamber 64, respectively.
- the thermocouple 20 has a temperature of ⁇ 2.
- the monitoring unit 21 is in contact with the gun.
- the thermocouple 20 is arranged so that the temperature distribution of the processing chamber 64 can be measured over the whole.
- the thermometer 2 OA is also connected to the temperature change monitoring unit 21.
- the radiation thermometer 2OA is also arranged so as to be able to measure the entire temperature distribution of the processing chamber 64.
- the output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 is connected to the end point table storage unit 23.
- the output of the end point The force end is in contact with the cleaning gas control unit 12, and the end point determination unit 22 sends the determination result to the cleaning gas control unit 12.
- a dry cleaning method for the dry etching apparatus is performed in a case where a polysilicon gate (see FIG. 3) is formed by dry etching in a gate forming step of a method for manufacturing a silicon (Si) gate nMOS transistor. Will be described.
- the wafer 4 as an object to be processed on which a doped silicon film is formed and a mask is formed by a lithography process is carried into a processing chamber 64, and as shown in FIG. It is placed on.
- the inside of the processing chamber 6 is evacuated to a predetermined degree of vacuum (1 to 100 Pa) by the vacuum exhaust device 16. Further, a microwave power is applied between the lower electrode 65 and the upper electrode 69 to generate plasma.
- a processing gas for etching the doped polysilicon film for example, carbon tetrafluoride (CF 4 ) is supplied into the processing chamber 64 by the processing gas supply device 9A.
- the processing gas flows into the gas supply port 7 formed in the upper electrode 69 and is blown out from the outlet 69 a of the upper electrode 69 toward the wafer 4 held by the lower electrode 65.
- the blown processing gas flows downward while contacting the wafer 4, and is exhausted from the exhaust port 14.
- the processing gas that comes into contact with the wafer 4 is chemically activated by the plasma, so that the processing gas becomes a stripe that etches the doped polysilicon film.
- the doped polysilicon film is etched by the following reaction formula. In the following formula, since monosilane is volatile, it is evaporated and evacuated, and a predetermined unmasked region of the doped silicon film is etched.
- processing gas supply device 9A stops supplying the processing gas under the control of the processing sequence control unit 1OA.
- Processing Sequence Control Unit 1 Cap 6 is opened under the control of OA, and a wafer 4 having a predetermined region of the doped polysilicon film dry-etched is picked up from lower electrode 65 by a handling device (not shown) and processed in a processing chamber 64. It is carried out from. Next, the next wafer 4 is carried into the processing chamber 64 and held by the lower electrode 65. Thereafter, the above operation is repeated.
- a substance generated by an etching reaction between an etching gas and a film to be processed is deposited on an inner surface of a processing chamber or an outer surface of an upper electrode or a lower electrode (hereinafter, referred to as a deposited film). If the deposited film reaches a certain thickness, it will be sculpted and adhere to the wafer being processed, causing product defects. Therefore, cleaning is also required in dry etching equipment.
- the deposited film of the doped polysilicon reaches a certain thickness, the deposited film is deposited on the processing chamber 64, the lower electrode 65, and the upper electrode 69 by performing dry cleaning over the entire inside of the processing chamber 64. The deposited film is removed.
- the processing sequence controller 1 OA switches from processing mode to dry cleaning mode.
- the film thickness at which dry cleaning is started is lOj ⁇ m.
- the cleaning gas system When the loading of wafers 4 into processing chamber 64 is interrupted, the cleaning gas system The cleaning gas is supplied from the cleaning gas supply device 11 into the processing chamber 64 through the gas supply path 8 under the control of the control unit 12.
- the cleaning gas flows in from the gas supply port 7 of the upper electrode 69 and blows out from the outlet 69a of the upper lemon 69.
- the blown-out cleaning gas flows downward while contacting the deposition film deposited on the inner surface of the processing chamber 64 and the outer surfaces of the lower electrode 65 and the upper electrode 69, and is exhausted from the exhaust port 14 by the vacuum exhaust device 16 .
- chlorine trifluoride (C 1 F 8 ) gas is used as a cleaning gas, the deposited film of doped polysilicon is etched by the following reaction formula.
- 0 oxygen in the gate silicon oxide film.
- the reaction product of the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess cleaning gas.
- the deposited film is gradually removed by etching, and the inner surface of the processing chamber 64 and the outer surfaces of the lower electrode 65 and the upper electrode 69 are relatively cleaned.
- the end point of the dry cleaning is accurately determined by monitoring the temperature change inside the processing chamber 64 during the dry cleaning by the temperature change monitoring unit 21.
- the peak of each temperature change curve is monitored, and the end point determination unit 22 determines the end point of the last peak.
- the end point is determined by the end point determination unit 22, and a command to end the dry cleaning is issued to the cleaning gas control unit 12.
- the cleaning gas control unit 12 controls the cleaning gas supply unit 11, the The supply of the cleaning gas is stopped. If necessary, purge gas such as nitrogen gas is supplied to the cleaning gas The gas is supplied from the processing gas supply device 9 A into the processing chamber 64. As a result, the etching reaction on the deposited film is almost eliminated, and the dry cleaning is completed.
- the dry etching process is restarted by the dry-etched dry etching apparatus.
- the processing chamber 64, lower electrode 65, and upper electrode of the dry etching equipment are restarted by the dry-etched dry etching apparatus.
- the deposited film 69 Since the deposited film 69 is dry-cleaned to a predetermined thickness, it does not fall off and the deposited film does not contaminate the wafer 4 as an object to be processed.
- FIG. 14 is a block diagram showing a micro mouth dry etching apparatus used in the method of manufacturing IC according to the tenth embodiment of the present invention.
- the tenth embodiment differs from the first embodiment in that a microwave dry etching apparatus is used. Microwave dry etching equipment
- Reference numeral 70 denotes a dry etching apparatus which aims at achieving both high plasma density and a sufficiently long average free process by resonance of a microphone mouth wave and a magnetic field.Since its configuration, operation and effect are the same as those of the dry etching apparatus 61 described above, The description is omitted.
- reference numeral 71 denotes a solenoid coil
- reference numeral 72 denotes a high-frequency power supply
- reference numeral 73 denotes a waveguide connected to a magnetron (not shown) to guide a microphone ⁇ -wave.
- the deposited film to be subjected to dry cleaning is not limited to those formed of silicon nitride and doped polysilicon, but may be formed of metal such as silicon oxide, aluminum, tungsten, titanium, tantalum, molybdenum, or the like. May be available.
- the etching gas used for dry cleaning is not limited to fluorine gas or chlorine trifluoride gas, but is a mixture of hydrogen fluoride (HF) and nitrogen trifluoride (NF 8 ) to which fluorine (F 2 ) is added. It may be gas or the like.
- the present invention is not limited to this, and the epitaxial growth process is not limited thereto. It can also be applied to thin film formation processing such as sputtering, sputtering, and vapor deposition, as well as ion irradiation such as doping and focusing ion beam processing. In short, the present invention can be applied to all processes in which a process is performed in a processing room and a deposited film is formed in a processing room or a jig in the IC manufacturing method.
- the method for manufacturing a semiconductor integrated circuit device according to the present invention can accurately terminate dry cleaning when a deposited film due to a reaction product or the like is dry cleaned. It can be widely used in the whole method of manufacturing the device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
In a method for manufacturing semiconductor integrated circuit devices, a technique for cleaning the inside of a treatment chamber by removing films deposited in the chamber by gas etching. Films deposited in the treatment chamber (2) and on the holding jig (3) of a low pressure CVD device at the time of forming films on the surface of a semiconductor wafer (4) are removed by supplying an etching gas to the chamber (2). During this dry cleaning, the temperature change in the chamber (20) is measured by means of a thermocouple (20) and the measured data are transmitted to a temperature change monitoring section (21). The section (21) decides the timing of the dry cleaning based on the temperature change in the chamber (2). As a result, the inside dry cleaning of the chamber (20) with an etching gas is accurately terminated without using any gas analyzer. After restarting CVD treatment, the films deposited in the chamber (2) and on the jig (3) do not separate from the chamber (2) and jig (3) and do not contaminate the wafer (4), because the films are dry cleaned to a prescribed thickness.
Description
明 細 書 半導体集積回路装置の製造方法 技 術 分 野 Description Manufacturing method of semiconductor integrated circuit device Technical field
本発明は、 半導体集積回路装置の製造方法、 特に、 成膜工程において 処理室内に堆積した堆積膜をガスェッチングによつて除去することによ り、 処理室内をクリーニングする技術に関する。 背 景 技 術 The present invention relates to a method for manufacturing a semiconductor integrated circuit device, and more particularly to a technique for cleaning a processing chamber by removing a deposited film deposited in the processing chamber by a gas etching in a film forming process. Background technology
半導体集積回路装置 (以下、 I Cという。 ) は半導体ウェハ (以下、 ウェハという。 ) の上に薄膜を形成し、 この薄膜に回路パターンをリソ グラフィ一処理ゃェッチング処理によって形成することにより製造され る。 ゥェハ上に薄膜を形成する薄膜形成工程に使用される薄膜形成方法 として、 減圧 C V D装置を使用して実施される方法がある。 減圧 C V D 装置によってウェハの上に薄膜が形成される際には、 滅圧 C V D装置の 処理室にゥェハが搬入された後に処理室が密閉される。 処理室はヒータ によって 5 0 0 〜 9 0 0で程度に加熱されるとともに、 真空排気装置 によって 1 0 P a〜2 O O P a程度に真空排気される。 この処理条件が 維持された処理室には成膜に必要な原料ガスが供給され、 熱エネルギー によって引き起こされる原料ガスの化学反応によってウェハ上に薄膜が 形成される。 2. Description of the Related Art A semiconductor integrated circuit device (hereinafter, referred to as an IC) is manufactured by forming a thin film on a semiconductor wafer (hereinafter, referred to as a wafer) and forming a circuit pattern on the thin film by a lithographic single-process etching process. . As a thin film forming method used in a thin film forming process for forming a thin film on a wafer, there is a method implemented using a reduced pressure CVD apparatus. When a thin film is formed on a wafer by the decompression CVD apparatus, the processing chamber is sealed after the wafer is carried into the processing chamber of the decompression CVD apparatus. The processing chamber is heated to about 500 to 900 by a heater, and is evacuated to about 10 Pa to 2 O O Pa by an evacuation device. A source gas required for film formation is supplied to the processing chamber where the processing conditions are maintained, and a thin film is formed on the wafer by a chemical reaction of the source gas caused by thermal energy.
ところで、 原料ガスの化学反応によって成膜される際には、 ウェハ上 だけでなく処理室や治具にも反応生成物が付着する。 この反応生成物は 成膜方法が繰り返し実施される度に処理室や治具に堆積して行き、 膜 ( 以下、 堆積膜という。 ) を形成する。 堆積膜はある程度の厚みに達する
と、 剝離すること等により塵埃となってワークであるウェハに付着する ため、 製品 ( I C ) 不良の原因になる。 By the way, when a film is formed by a chemical reaction of a source gas, a reaction product adheres not only on a wafer but also in a processing chamber or a jig. The reaction product accumulates in the processing chamber or jig each time the film forming method is repeatedly performed, and forms a film (hereinafter, referred to as a deposited film). Deposited film reaches a certain thickness When separated, it becomes dust and adheres to the wafer, which is a work, which causes product (IC) failure.
そこで、 従来は堆積膜がある程度の厚みに達する度に、 処理室や治具 を弗酸水溶液によってエッチングすることにより、 処理室や治具に堆積 した堆積膜を除去するゥエツ トクリーニング法が実施されている。 ところが、 このゥエツ トクリーニング法においては、 処理室や治具を 弗酸水溶液に浸す必要上、 減圧 C V D装置の分解作業および再組立作業 が必要になるため、 クリーニングの作業時間が長くなり、 減圧 C V D装 置の稼働効率が低下してしまう。 Therefore, conventionally, every time the deposited film reaches a certain thickness, the processing chamber or the jig is etched with a hydrofluoric acid aqueous solution to remove the deposited film deposited on the processing chamber or the jig. ing. However, this jet cleaning method requires immersion of the processing chamber and jig in a hydrofluoric acid aqueous solution, and also requires disassembly and reassembly of a low-pressure CVD apparatus, which increases the cleaning operation time, and reduces the pressure. The operating efficiency of the device will be reduced.
そこで、 減圧 C V D装置の稼働効率の低下を防止するクリーニング方 法として、 三弗化塩素 (C 1 F 3 〉 や弗化水素 (H F ) 等の反応性エツ チングガス (以下、 エッチングガスという。 ) を使用したドライクリー ニング法が提案されている。 ドライクリーニング法はエッチングガスを 処理室に送り込んで、 堆積膜をェッチングガスによってエッチングする ことにより除去する方法である。 ドライクリーニング法は減圧 C V D装 置の分解作業および再組立作業を省略することができるため、 クリ一二 ング作業全体としての時間を短縮することができ、 減圧 C V D装置の稼 働効率の低下を防止することができる。 Therefore, as a cleaning method for preventing a decrease in the operating efficiency of the low-pressure CVD apparatus, a reactive etching gas (hereinafter referred to as an etching gas) such as chlorine trifluoride (C 1 F 3 ) or hydrogen fluoride (HF) is used. The dry cleaning method used has been proposed The dry cleaning method is a method in which an etching gas is sent into a processing chamber and the deposited film is removed by etching with an etching gas. Since the work and the reassembly work can be omitted, the time required for the entire cleaning work can be shortened, and the operation efficiency of the low-pressure CVD apparatus can be prevented from being reduced.
なお、 薄膜形成装置のクリーニング方法を述べてある例としては、 日 本国特許庁公開特許公報特開平 7 - 9 9 1 7 4号、 がある。 この文献に 開示されているクリーニング法は、 三弗化窒素に弗素を添加した混合ガ ス組成物により、 1 5 0〜6 0 0での温度範囲で堆積物を反応除去する 方法である。 An example describing a method of cleaning a thin film forming apparatus is disclosed in Japanese Patent Laid-Open Publication No. Heisei 7-919174. The cleaning method disclosed in this document is a method in which deposits are reacted and removed in a temperature range of 150 to 600 by using a mixed gas composition obtained by adding fluorine to nitrogen trifluoride.
ここで、 ドライクリーニング法によって減圧 C V D装置の処理室や治 具の堆積膜が除去される際には、 クリーニングを終了させる時点を的確 に決める必要がある。 なぜならば、 クリーニングを終了させる時点が遅
いと、 エッチングガスによるオーバーエッチング (エッチング過多) に なるため、 処理室や治具が損傷されてしまう。 逆に、 クリーニングを終 了させる時点が早すぎると、 エツチングガスによるエツチング量が不足 するため、 堆積膜が充分に除去されず、 堆積膜の剝離による製造不良が 発生してしまう。 Here, when the deposited film in the processing chamber or the jig of the low-pressure CVD apparatus is removed by the dry cleaning method, it is necessary to appropriately determine a point in time when the cleaning is completed. This is because the point at which cleaning ends is delayed. Otherwise, over-etching (excessive etching) due to the etching gas will damage the processing chamber and jig. Conversely, if the cleaning is terminated too early, the amount of etching by the etching gas will be insufficient, and the deposited film will not be sufficiently removed, resulting in production failure due to separation of the deposited film.
クリ一二ングを終了させる時点を的確に決める手段として、 次の方法 がある。 第 1の方法は、 減圧 C V D装置の排気系にガス分析装置を装備 し、 排ガスの成分を分析することによりクリ一ニングの終点を検出する 方法である。 第 2の方法は、 クリーニング速度 (エッチングレート) を 実験や過去の実績データに基づいて経験的に予め求めておき、 クリ一二 ングの終点を時間によつて管理する方法である。 There are the following methods to determine exactly when to end cleaning. The first method is to equip the exhaust system of the decompression CVD device with a gas analyzer and detect the end point of cleaning by analyzing the components of the exhaust gas. The second method is a method in which the cleaning rate (etching rate) is empirically determined in advance based on experiments and past performance data, and the end point of the cleaning is managed over time.
しかしながら、 ガス分析装置によってクリーニングの終点を検出する 第 1の方法においては、 次の問題点がある。 ガス分析装置は高価で複雑 である。 ガス分析装置の分析ポートが汚れると感度が低下するため、 メ ンテナンスが面倒である。 However, the first method for detecting the end point of cleaning by the gas analyzer has the following problems. Gas analyzers are expensive and complex. If the analysis port of the gas analyzer becomes dirty, the sensitivity will drop and maintenance will be troublesome.
また、 クリ一ユングの終点を時間によって管理する第 2の方法におい ては、 堆積膜の厚さの変動ゃェッチングガスの流量の変動等によってク リーニング条件が変動した場合にクリーニングを的確に終了させること ができないという問題点がある。 In the second method of managing the end point of the cleaning by time, the cleaning must be properly terminated when the cleaning conditions fluctuate due to fluctuations in the thickness of the deposited film and fluctuations in the flow rate of the etching gas. There is a problem that can not be.
なお、 ドライクリーニングを終了させる時点を的確に決める方法を述 ベてある例としては、 日本国特許庁公開特許公報特開平 5 - 9 7 5 7 9 号、 がある。 この文献には、 クリーニングする反応室の内壁に堆積した 膜の厚さを算出してェッチング時間を決定することにより、 ガス分析装 置等の高価で複雑なェッチング終点検出手段を不要とする技術が開示さ れている。 An example that describes a method for accurately determining the time point at which dry cleaning is completed is described in Japanese Patent Application Laid-Open Publication No. HEI 5-97579. This document describes a technique that eliminates the need for expensive and complicated means for detecting the end point of etching such as a gas analyzer by calculating the thickness of the film deposited on the inner wall of the reaction chamber to be cleaned and determining the etching time. It has been disclosed.
本発明の目的は、 ガス分析装置を使用せずにドライクリ一ニングを的
確に終了させることができる半導体集積回路装置の製造方法を提供する とに る。 発 明 の 開 示 An object of the present invention is to achieve dry cleaning without using a gas analyzer. It is intended to provide a method of manufacturing a semiconductor integrated circuit device which can be surely completed. Disclosure of the invention
本発明は、 処理室の内部がエッチングガスを使用されてクリーニング される際に、 処理室の温度変化を直接的または間接的に測定し、 その測 定データに基づいてクリーニングを終了させる時点を判定することを特 徵とする。 According to the present invention, when the inside of a processing chamber is cleaned using an etching gas, a change in temperature of the processing chamber is directly or indirectly measured, and a point in time when cleaning is completed is determined based on the measurement data. It is characterized by doing.
このことにより、 ガス分析装置を使用せずにエッチングガスによる処 理室内部のドライクリ一二ングを的確に終了させることができる。 図面の簡単な説明 Thus, dry cleaning inside the processing chamber by the etching gas can be accurately terminated without using the gas analyzer. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形憨である I Cの製造方法に使用される減圧 C VD装置を示すプロック図である。 FIG. 1 is a block diagram showing a reduced-pressure CVD apparatus used in a method of manufacturing IC, which is one embodiment of the present invention.
図 2 (a)、 (b) はその平面断面図および正面断面図である。 図 3 (a)〜(e) は I Cの製造方法の主要工程を示す各拡大部分断 面図である。 2A and 2B are a plan sectional view and a front sectional view, respectively. 3 (a) to 3 (e) are enlarged partial cross-sectional views showing main steps of an IC manufacturing method.
図 4 (a) 、 (b) は終点の判定作用を説明するための各グラフであ る。 FIGS. 4 (a) and 4 (b) are graphs for explaining the action of determining the end point.
図 5は本発明の実施形態 2である I Cの製造方法に使用される減圧 C VD装置を示すブ σック図である。 FIG. 5 is a block diagram showing a reduced pressure C VD apparatus used in the method of manufacturing IC according to the second embodiment of the present invention.
図 6は本発明の実施形態 3である I Cの製造方法に使用される減圧 CV D装置を示すプロック図である。 FIG. 6 is a block diagram showing a reduced-pressure CVD apparatus used in the method of manufacturing IC according to the third embodiment of the present invention.
図 7は本発明の実施形態 4である I Cの製造方法に使用される減圧 C VD装置を示すプロック図である。 FIG. 7 is a block diagram showing a reduced-pressure CVD apparatus used in the method of manufacturing IC according to the fourth embodiment of the present invention.
図 8は本発明の実施形態 5である I Cの製造方法に使用される減圧 C
V D装置を示すプロック図である。 FIG. 8 shows the reduced pressure C used in the method of manufacturing an IC according to the fifth embodiment of the present invention. It is a block diagram showing a VD device.
図 9は本発明の実施形態 6である I Cの製造方法に使用されるバッチ 式縱型減圧 C V D装置を示すブロック図である。 FIG. 9 is a block diagram showing a batch type vertical decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
図 1 0は本発明の実施形態 6である I Cの製造方法に使用されるバッ チ式横型減圧 C V D装置を示すブロック図である。 FIG. 10 is a block diagram showing a batch type horizontal decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
図 1 1は本発明の実施形態 7である I Cの製造方法に使用されるラン プ加熱式減圧 C V D装置を示すプロック図である。 FIG. 11 is a block diagram showing a lamp heating type decompression CVD apparatus used in a method for producing IC which is Embodiment 7 of the present invention.
図 1 2は本発明の実施形態 8である I Cの製造方法に使用されるブラ ズマ C V D装置を示すプロ、ジク図である。 FIG. 12 is a professional and jig diagram showing a plasma CVD apparatus used in the method of manufacturing IC according to the eighth embodiment of the present invention.
図 1 3は本発明の実施形態 9である I Cの製造方法に使用されるドラ ィエッチング装置を示すブロック図である。 FIG. 13 is a block diagram showing a dry etching apparatus used in the IC manufacturing method according to the ninth embodiment of the present invention.
図 1 4は本発明の実施形態 1 0である I Cの製造方法に使用されるマ イク口波ドライエッチング装置を示すプロック図である。 発明を実施するための最良の形態 FIG. 14 is a block diagram showing a dry mouth dry etching apparatus used in the method of manufacturing IC according to the tenth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説明するために以下添付図面に従つてこれを説明 する。 The present invention will be described below with reference to the accompanying drawings in order to explain the present invention in more detail.
本実施形態に係る半導体集積回路装置の製造方法における薄膜形成ェ 程においては、 図 1および図 2に示されている枚葉式減圧 C V D装置 ( 以下、 単に C V D装置という。 ) が使用される。 In the thin film forming step in the method for manufacturing a semiconductor integrated circuit device according to the present embodiment, a single-wafer decompression CVD device (hereinafter, simply referred to as a CVD device) shown in FIGS. 1 and 2 is used.
本実施形態に係る C V D装置は耐熱性が有り重金属汚染等を防止可能 な材料の一例である石英ガラスによって形成されたプロセスチューブ 1 を備えている。 プロセスチューブ 1は両端が開口した角筒形状に形成さ れており、 中心線が水平になるように横置きされている。 プロセスチュ —ブ 1の内部室は処理室 2を実質的に形成しており、 処理室 2の内部に は保持治具 3が配置されている。 保持治具 3はプロセスチューブ 1と同
様に石英ガラスによって形成されており、 ウェハ 4を水平に保持するよ うに構成されている。 The CVD apparatus according to the present embodiment includes a process tube 1 made of quartz glass which is an example of a material having heat resistance and capable of preventing heavy metal contamination and the like. The process tube 1 is formed in a rectangular tube shape with both ends opened, and is placed horizontally so that the center line is horizontal. An inner chamber of the process tube 1 substantially forms a processing chamber 2, and a holding jig 3 is disposed inside the processing chamber 2. Holding jig 3 is the same as process tube 1. In this way, it is formed of quartz glass, and is configured to hold the wafer 4 horizontally.
ブ αセスチューブ 1の一端開口は被処理物としてのウェハを出し入れ するための炉ロを実質的に構成しており、 炉口には炉ロ部材 5が連結さ れている。 プロセスチューブ 1の炉ロ部材 5には口一ドロック室 (図示 せず) が隣接して連結されており、 ウェハはロードロック室と処理室 2 との間を炉ロ部材 5を通じて自動的に搬入搬出されるようになっている 。 炉ロ部材 5にはキャップ 6が装着されており、 キャップ 6は炉ロ部材 5を開閉するように構成されている。 An opening at one end of the process tube 1 substantially constitutes a furnace for loading and unloading a wafer as an object to be processed, and a furnace hole member 5 is connected to the furnace opening. A mouth lock chamber (not shown) is adjacently connected to the furnace member 5 of the process tube 1, and wafers are automatically loaded between the load lock chamber and the processing chamber 2 through the furnace member 5. It is designed to be carried out. A cap 6 is attached to the furnace member 5, and the cap 6 is configured to open and close the furnace member 5.
炉ロ部材 5の上側壁には複数個のガス供給口 7が長手方向に並べられ て開設されており、 ガス供給口 7群にはガス供給路 8が接鐃されている 。 ガス供給路 8には原料ガス供耠装置 9が接繞されており、 原料ガス供 耠装置 9は成膜シーケンス制御部 1 0によって制御されて原料ガスを供 給するように構成されている。 また、 ガス供給路 8にはエッチングガス 供給装置 1 1が接銃されており、 エッチングガス供給装置 1 1はエッチ ングガス制御部 1 2によつて制御されてエツチングガスを供給するよう に構成されている。 A plurality of gas supply ports 7 are formed in the upper side wall of the furnace member 5 so as to be arranged in the longitudinal direction, and a gas supply path 8 is connected to a group of the gas supply ports 7. The gas supply path 8 is surrounded by a source gas supply device 9. The source gas supply device 9 is configured to supply the source gas under the control of the film forming sequence controller 10. An etching gas supply device 11 is connected to the gas supply path 8 with a gun. The etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas. I have.
プロセスチューブ 1の他端開口は炉端を実質的に構成しており、 炉端 には炉端部材 1 3が開口を塞ぐように連結されている。 炉端部材 1 3に は複数個の排気口 1 4が長手方向に並べられて開設されており、 排気口 1 4群には排気路 1 5が接銃されている。 排気路 1 5には真空排気装置 1€が接続されており、 真空排気装置 1 6は圧力制御部 1 7によって制 御されて処理室 2を所定の真空度に真空排気し得るように構成されてい る。 圧力制御部 1 7は成膜シーケンス制御部 1 0に接続されている。 The other end opening of the process tube 1 substantially constitutes a furnace end, and a furnace end member 13 is connected to the furnace end so as to close the opening. The furnace end member 13 is provided with a plurality of exhaust ports 14 arranged in the longitudinal direction, and an exhaust path 15 is connected to the group of the exhaust ports 14. The evacuation path 15 is connected to a vacuum evacuation device 1. The vacuum evacuation device 16 is controlled by a pressure control unit 17 so that the processing chamber 2 can be evacuated to a predetermined degree of vacuum. ing. The pressure controller 17 is connected to the film forming sequence controller 10.
プロセスチューブ 1の外部には処理室 2の内部を全体にわたつて均一 に加熱するためのヒータ 1 8が、 プロセスチューブ 1の周囲を包囲する
ように設備されている。 ヒータ 1 8は温度制御部 1 9によって制御され るように構成されている。 温度制御部 1 9は P D I制御によって制御の 応答性および安定性を確保するように構成されている。 Outside the process tube 1, a heater 18 for uniformly heating the inside of the processing chamber 2 throughout the process tube 1 surrounds the process tube 1. The facilities are as follows. The heater 18 is configured to be controlled by a temperature controller 19. The temperature controller 19 is configured to ensure control responsiveness and stability by PDI control.
プロセスチューブ 1の処理室 2の内部にはクリーニング終点検出用温 度センサとしての熱電対 2 0が揷入されており、 熱電対 2 0は温度変化 監視部 2 1に接続されている。 図 2に示されているように、 熱電対 2 0 は 5本が処理室 2の底壁側において全面にわたって可及的に均等になる ように配置されている。 以下、 5本の熱電対 2 0を区別する必要がある 場合には、 処理室 2の炉ロ側に配置されたものは前側熱電対 F、 炉中央 に配置されたものは中央熱電対 C、 炉端側に配置されたものは後ろ側熱 電対 B、 炉中央左側に配置されたものは左側熱電対 L、 炉中央右側に配 置されたものは右側熱電対 Rとそれぞれ言う。 温度変化監視部 2 1の出 力端は終点判定部 2 2の一方の入力端に接続されており、 終点判定部 2 2の他方の入力端には後述するテーブルを記億している終点テーブル記 憶部 2 3が接続されている。 また、 終点判定部 2 2の出力端はエツチン グガス制御部 1 2に接続されており、 終点判定部 2 2は後述する作用に よる判定結果をェッチングガス制御部 1 2に送信するようになっている 図 2に示されているように、 熱電対 2 0は保護管 2 4の内部に収容さ れた状態で、 炉端部材 1 3を貫通して処理室 2の内部に揷人されている 。 保護管 2 4は石英ガラスによって細長い管形状に形成されており、 一 端部は炉端部材 1 3から外部に突き出されている。 熱電対 2 0は保護管 2 4によって保護されているため、 減圧下での温度測定を安全かつ精密 に実施することができる。 A thermocouple 20 as a temperature sensor for detecting a cleaning end point is inserted inside the processing chamber 2 of the process tube 1, and the thermocouple 20 is connected to the temperature change monitoring unit 21. As shown in FIG. 2, the five thermocouples 20 are arranged on the bottom wall side of the processing chamber 2 so as to be as uniform as possible over the entire surface. In the following, when it is necessary to distinguish the five thermocouples 20, the one arranged on the furnace B side of the processing chamber 2 is the front thermocouple F, the one arranged in the center of the furnace is the central thermocouple C, The thermocouple placed on the furnace end side is called back thermocouple B, the thermocouple placed on the left side of the furnace center is called left thermocouple L, and the thermocouple placed on the right side of the furnace center is called right thermocouple R. The output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 has an end point table storing a table described later. Storage units 23 are connected. Further, the output end of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 transmits a determination result by an operation described later to the etching gas control unit 12. As shown in FIG. 2, the thermocouple 20 is housed inside the protective tube 24 and penetrated through the furnace end member 13 to be inserted into the processing chamber 2. The protection tube 24 is formed in an elongated tube shape with quartz glass, and one end protrudes from the furnace end member 13 to the outside. Since the thermocouple 20 is protected by the protection tube 24, temperature measurement under reduced pressure can be performed safely and accurately.
次に、 前記構成に係る C V D装置に対するドライクリーニング法を、 シリコン (S i ) ゲート n M O S トランジスタの製造方法のフィールド
酸化シリコン (S i 02 ) 膜形成工程およびゲート形成工程について、 図 3を参照して説明する。 Next, a dry cleaning method for the CVD apparatus according to the above configuration is described in the field of the method for manufacturing a silicon (Si) gate nMOS transistor. For silicon oxide (S i 0 2) film forming step and the gate forming step will be described with reference to FIG.
図 3 (a) に示されているように、 フィールド酸化シリコン膜形成ェ 程においては、 まず、 p型シリコン基板 (以下、 サブストレートという 。 ) 31の上に LOCOS用に下敷き酸化シリコン膜 32と窒化シリコ ン (S i 8 N4 )膜 33とが被着される。 後述するように、 窒化シリコ ン膜 83は CVD装置が使用されて被着される。 次いで、 図 3 (b) に 示きれているように、 ホトエッチングによって後にトランジスタを形成 する部分に窒化シリコン膜 33が残され、 ホトレジスト膜 34をマスク としてボロン (B)がイオン打ち込みされる。 その後、 水蒸気が使用さ れた湿式酸化が実施され、 図 3 (c) に示されているように、 窒化シリ コン膜 33の無い部分のサブストレ一卜 31が酸化されてフィールド酸 化シリ コン膜 37が形成される。 ボロン打ち込み層 35によって隣接す る素子間を電気的に分離するチャネル ·ストツバ 36が形成されること になる。 As shown in FIG. 3 (a), in the field silicon oxide film formation process, first, an underlying silicon oxide film 32 for LOCOS is formed on a p-type silicon substrate (hereinafter, referred to as a substrate) 31. A silicon nitride (Si 8 N 4 ) film 33 is deposited. As described later, the silicon nitride film 83 is deposited using a CVD apparatus. Then, as shown in FIG. 3 (b), the silicon nitride film 33 is left in a portion where a transistor is to be formed later by photoetching, and boron (B) is ion-implanted using the photoresist film 34 as a mask. After that, wet oxidation using water vapor is performed, and as shown in FIG. 3 (c), the substrate 31 where there is no silicon nitride film 33 is oxidized to form a field oxide silicon film. 37 is formed. The boron implanted layer 35 forms a channel stop 36 that electrically separates adjacent elements.
ここで、 前記構成に係る CVD装置による前記窒化シリコン膜 33の CVD法およびそれに続く ドライクリーニング法を説明する。 Here, the CVD method of the silicon nitride film 33 by the CVD apparatus having the above configuration and the dry cleaning method following the CVD method will be described.
サブストレート 31の上に下敷き酸化シリコン膜 32を形成された被 処理物としてのウェハ 4は処理室 2に搬入されて、 図 2に示されている ように、 保持治具 3の上に載置される。 真空排気装置 16によって処理 室 2の内部が所定の真空度 (1 0〜10 OPa) に真空排気される。 か つ、 ヒ一夕 18によって処理室 2の内部が所定の温度(例えば、 約 40 0*0 に全体にわたって均一に加熱される。 The wafer 4 as an object to be processed having the underlying silicon oxide film 32 formed on the substrate 31 is carried into the processing chamber 2 and placed on the holding jig 3 as shown in FIG. Is done. The inside of the processing chamber 2 is evacuated to a predetermined degree of vacuum (10 to 10 OPa) by the evacuation device 16. In addition, the inside of the processing chamber 2 is uniformly heated to a predetermined temperature (for example, about 400 * 0) by the heating 18.
次いで、 窒化シリ コン膜 33を形成するための原料ガスとして、 例え ば、 モノシラン (S i H4 ) とアンモニア (NH3 ) が処理室 2の内部 に原料ガス供耠装置 9により供耠される。 原料ガスは処理室 2にガス供
給口 7から流入し、 保持治具 3に保持されたウェハ 4に接触しながら下 方へ流れて行き、 排気口 1 4から排気される。 この際、 ウェハ 4に接触 する原料ガスは熱エネルギーによって化学反応が進んだ状態になってい るため、 ウェハ 4に堆積 (デポジション) する状態になる。 ここでは、 次の反応式によって、 窒化シリコンが堆積し、 ウェハ 4に窒化シリコン 膜 3 3が被着されることになる。 Next, as a source gas for forming the silicon nitride film 33, for example, monosilane (SiH 4 ) and ammonia (NH 3 ) are supplied into the processing chamber 2 by the source gas supply device 9. . Raw material gas is supplied to processing chamber 2. It flows in from the supply port 7, flows downward while contacting the wafer 4 held by the holding jig 3, and is exhausted from the exhaust port 14. At this time, the source gas that comes into contact with the wafer 4 is in a state in which a chemical reaction has progressed due to thermal energy, and is thus deposited (deposited) on the wafer 4. Here, silicon nitride is deposited and the silicon nitride film 33 is deposited on the wafer 4 by the following reaction formula.
S i H 4 + N H S →S i 3 N 4 + H 2 S i H 4 + NH S → S i 3 N 4 + H 2
所定の時間が経過すると、 成膜シーケンス制御部 1 0の制御によって 原料ガス供給装置 9は原料ガスの供給を停止する。 成膜シーゲンス制御 部 1 0の制御によってキャップ 6が開放され、 窒化シリコン膜 3 3を被 着されたウェハ 4がハンドリング装置 (図示せず) によって保持治具 3 からピックアップされて処理室 2から搬出される。 続いて、 次のウェハ 4が処理室 2に搬入されて保持洽具 3に保持される。 以降、 前記作業が 繰り返される。 When a predetermined time has elapsed, the source gas supply device 9 stops supplying the source gas under the control of the film forming sequence control unit 10. The cap 6 is opened under the control of the film formation sequence controller 10, and the wafer 4 on which the silicon nitride film 33 is applied is picked up from the holding jig 3 by a handling device (not shown) and carried out of the processing chamber 2. Is done. Subsequently, the next wafer 4 is carried into the processing chamber 2 and held by the holding tool 3. Thereafter, the above operation is repeated.
ところで、 原料ガスの反応によって成膜される際には、 ウェハ 4の上 だけでなく、 処理室 2の内面や保持治具 3の外面にも反応生成物が付着 する。 この反応生成物は前述した C V Dによる窒化シリコン膜 3 3の形 成作業が繰り返される度に処理室 2や保持治具 3に堆積して行き、 膜 ( 以下、 堆積膜という。 ) を形成する。 堆積膜はある程度の厚みに達する と、 剝離すること等により塵埃となって処理中のウェハ 4に付着するた め、 製品不良の原因になる。 そこで、 本実施形態においては、 堆積膜が ある程度の厚みに達すると、 処理室 2の内部全体にわたつてドライクリ —ニングすることにより、 処理室 2や保持治具 3に堆積した堆積膜が除 去される。 以下、 ドライクリーニング法について説明する。 By the way, when a film is formed by the reaction of the source gas, the reaction product adheres not only on the wafer 4 but also on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3. The reaction product is deposited in the processing chamber 2 and the holding jig 3 each time the above-described operation of forming the silicon nitride film 33 by CVD is repeated to form a film (hereinafter, referred to as a deposited film). When the deposited film reaches a certain thickness, it separates into dust and adheres to the wafer 4 being processed, thereby causing a product defect. Therefore, in the present embodiment, when the deposited film reaches a certain thickness, the deposited film deposited on the processing chamber 2 and the holding jig 3 is removed by dry cleaning over the entire inside of the processing chamber 2. Is done. Hereinafter, the dry cleaning method will be described.
処理室 2の内面や保持治具 3の外面に堆積した窒化シリコンの堆積膜 (図示せず) の厚さが、 予め設定された所定の厚さに達すると、 成膜シ
一ケンス制御部 1 0によって成膜モ一ドからドライクリーニングモード に切り換えられる。 ここで、 所定の厚さは、 堆積膜が剝嬢し易くなる厚 みよりも小さい値であり、 実験やコンピュータによる模擬試联および過 去の実績データの解析等の経験的手法によつて予め設定される。 例えば 、 枚菜式 C V D装置で窒化シリコンの堆積膜の場合、 1 mである。 ち なみに、 堆積膜の厚さは、 一回当たりの堆積厚さに処理回数を乗ずるこ とにより求めることができる。 また、 堆積膜の厚さは、 膜厚測定装置に よって測定してもよい。 When the thickness of the silicon nitride deposited film (not shown) deposited on the inner surface of the processing chamber 2 or the outer surface of the holding jig 3 reaches a predetermined thickness, the film is formed. Switching from the film formation mode to the dry cleaning mode is performed by the can control unit 10. Here, the predetermined thickness is a value smaller than the thickness at which the deposited film is easily removed, and is determined in advance by empirical methods such as experiments, simulation tests using a computer, and analysis of past performance data. Is set. For example, the thickness is 1 m for a silicon nitride deposited film in a single-wafer CVD apparatus. Incidentally, the thickness of the deposited film can be obtained by multiplying the number of treatments by the deposition thickness per time. Further, the thickness of the deposited film may be measured by a film thickness measuring device.
ドライクリーニングモードに切り換えられると、 ウェハ 4の処理室 2 への搬入が中断される。 処理室 2の温度は前述した成膜作業時の温度を 温度制御部 1 9の制御によるヒータ 1 8の加熱によって維持される。 ま た、 処理室 2の内部の圧力は成膜作業時の圧力を圧力制御部 1 7の制御 による真空排気装置 1 6の真空排気によって維持される。 When the mode is switched to the dry cleaning mode, loading of the wafer 4 into the processing chamber 2 is interrupted. The temperature of the processing chamber 2 is maintained by heating the heater 18 under the control of the temperature control unit 19 at the temperature during the film forming operation described above. Further, the pressure inside the processing chamber 2 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the film forming operation.
ウェハ 4の処理室 2への搬入が中断されると、 エツチングガス制御部 1 2の制御によってエッチングガス供給装置 1 1からエッチングガスが 処理室 2の内部にガス供給路 8を通じて供給される。 エツチングガスは 処理室 2にガス供給口 7から流入し、 処理室 2の内面および保持治具 3 の外面に堆積した堆積膜に接触しながら下方へ流れて行き、 真空排気装 置 1 6によって排気口 1 4から排気される。 この際、 堆積膜に接触する エツチングガスは熱エネルギーによつて化学反応が進んだ伏態になって いるため、 堆積膜をエッチングする。 例えば、 エッチングガスとして、 弗素 (F 2 ) ガスが使用された場合、 次の反応式によって、 窒化シリコ ンの堆積膜がエッチングされる。 When the loading of the wafer 4 into the processing chamber 2 is interrupted, the etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12. The etching gas flows into the processing chamber 2 from the gas supply port 7, flows downward while contacting the deposited film deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3, and is exhausted by the vacuum exhaust device 16. Exhausted from mouth 14. At this time, the etching gas that comes into contact with the deposited film is in a depressed state in which a chemical reaction has progressed due to thermal energy, so that the deposited film is etched. For example, when a fluorine (F 2 ) gas is used as an etching gas, a silicon nitride deposited film is etched by the following reaction formula.
S i 8 N 4 + 6 F 2 →3 S i F 4 + 2 N 2 S i 8 N 4 + 6 F 2 → 3 S i F 4 + 2 N 2
エッチングによる反応生成物は余分のエッチングガスと共に、 真空排 気装置 1 6によって排気口 1 4から排気されて行く。 堆積腠はエツチン
グによつて次第に除去されて行き、 相対的に処理室 2の内面および保持 治具 3の外面がクリ一ニングされて行く。 The reaction product by the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas. Sediment 腠 is Etchin The inner surface of the processing chamber 2 and the outer surface of the holding jig 3 are relatively cleaned.
前述した通り、 エッチングガスによるドライクリーニング法において は、 クリーニングを的確に終了させる必要がある。 本実施形態において は、 ドライクリーニング中における処理室 2の内部の温度変化を温度変 化監視部 2 1によって監視することにより、 クリーニングの終点が的確 に判定される。 As described above, in the dry cleaning method using an etching gas, it is necessary to appropriately terminate the cleaning. In the present embodiment, the temperature change inside the processing chamber 2 during the dry cleaning is monitored by the temperature change monitoring unit 21 so that the end point of the cleaning is accurately determined.
まず、 エッチングガスによる堆積膜のエッチングが始まると、 エッチ ング反応熱によつて処理室 2の内部温度は上昇し始める。 この温度変化 は熱電対 2 0によって図 4に示されているように検出される。 図 4はド ライクリ一二ング中の処理室内の温度変化を示すグラフであり、 縦軸に 温度差 CC) が取られ、 横軸にエッチングガス導入時からの経過時間 ( 秒) が取られている。 図 4 ( a ) において、 曲線 Fは前側熱電対 Fによ つて検出された温度変化、 曲線 Cは中央熱電対 Cによつて検出された温 度変化、 曲線 Bは後ろ側熱電対 Bによって検出された温度変化、 曲線 L は左側熱電対 Lによつて検出された温度変化、 曲線 Rは右側熱電対 Rに よって検出された温度変化、 をそれぞれ示している。 First, when the etching of the deposited film by the etching gas starts, the internal temperature of the processing chamber 2 starts to rise due to the heat of the etching reaction. This temperature change is detected by the thermocouple 20 as shown in FIG. Fig. 4 is a graph showing the temperature change in the processing chamber during dry cleaning. The vertical axis shows the temperature difference CC), and the horizontal axis shows the elapsed time (in seconds) since the introduction of the etching gas. I have. In Fig. 4 (a), curve F is the temperature change detected by the front thermocouple F, curve C is the temperature change detected by the center thermocouple C, and curve B is the back thermocouple B The curve L shows the temperature change detected by the left thermocouple L, and the curve R shows the temperature change detected by the right thermocouple R.
処理室 2の内部温度変化を複数の場所で検出される本実施形憨におい ては、 各温度変化曲線のピークが監視され最後のピークの到達時点が終 点判定部 2 2によって終点と判定される。 最後のピーク時点をドライク リーニングの終点と判定する理由は、 処理室 2の内部で引き起こされた エツチング反応が全てピークを迎えたことになるため、 処理室 2の全て の場所において所望の程度だけドライクリーニングされたものと推定す ることができるからである。 ちなみに、 温度変化のピーク時点は温度変 化曲線の傾きを常時監視することにより、 温度変化監視部 2 1からのデ 一夕によってリアルタイムで検出することができる。 なお、 温度変化曲
锒がノイズ等によつて何度も反転を揉り返す場合には、 温度変化監視部In this embodiment, in which the internal temperature change of the processing chamber 2 is detected at a plurality of locations, the peak of each temperature change curve is monitored, and the arrival point of the last peak is determined as the end point by the end point determination unit 22. You. The reason for determining the last peak point as the end point of dry cleaning is that all the etching reactions caused inside the processing chamber 2 have reached their peaks, so that the dry cleaning is performed to a desired extent in all places in the processing chamber 2. This is because it can be estimated that it has been cleaned. By the way, the peak point of the temperature change can be detected in real time by monitoring the temperature change curve continuously from the temperature change monitoring unit 21. The temperature change song If 锒 is repeatedly inverted due to noise, etc., the temperature change monitoring unit
2 1の実際のデータを終点テーブル記憶部 2 3に予め記 ¾された過去の 実接データと照合して補正することにより、 温度変化のピーク時点は温 度変化監視部 2 1からのデータによってリアルタイムで検出することが できる。 By comparing the actual data of 21 with the past actual data previously stored in the end point table storage unit 23 and correcting it, the peak point of the temperature change is determined by the data from the temperature change monitoring unit 21. It can be detected in real time.
例えば、 図 4 ( a ) においては、 右側熱電対 Rによる曲線 Rにおける ピーク時点が終点と判定される。 なお、 右側熱電対 Rおよび左側熱電対 Lによる曲線 Rおよび曲線 Lのピークが他よりも遅れる理由は、 処理室 2の内部における右側壁面および左側壁面に保持治具 3の外枠がそれぞ れ接近することにより、 エッチングすべき堆積膜の离が大きくなつてい るためと考えられる。 For example, in FIG. 4A, the peak point in the curve R by the right thermocouple R is determined to be the end point. Note that the reason why the peaks of the curves R and L by the right thermocouple R and the left thermocouple L are later than the others is that the outer frame of the holding jig 3 is provided on the right wall surface and the left wall surface of the processing chamber 2 respectively. It is considered that the closer approach increases the size of the deposited film to be etched.
ここで、 処理室 2の内部におけるエッチングレートの分布にばらつき があると、 ドライクリーニングされる処理室 2の内部においてクリ一二 ング過多の場所ゃクリ一二ング不足の場所が局所的に発生し易くなるた め、 処理室 2の内部におけるエッチングレートの分布のばらつきは可及 的に低減することが望ましい。 処理室 2の内部におけるエッチングレー トの分布のばらつきは、 処理室 2の内部におけるエッチングガスの流速 を早くすることにより、 処理室 2の内部におけるエッチングガスの消費 が均一になるため、 低減させることができる。 処理室 2の内部における エッチングガスの流速を早くする方法としては、 エッチングガス制御部 1 2の制御によってエッチングガス供給装置 1 1によるエッチングガス 供給量を増加する方法や、 真空排気装置 1 6による排気速度を早くする 方法がある。 処理室 2の内部におけるエッチングレートの分布が均一に なると、 ドライクリーニングの進行度が均一になるため、 オーバーエツ チングによる処理室 2の内面および保持治具 3の外面の損傷を防止して 寿命を延ばすことができ、 しかも、 処理室 2の内部の堆積膜を全体的に
均一にクリーニングすることができる。 Here, if there is a variation in the distribution of the etching rate inside the processing chamber 2, a place where the cleaning is excessive ゃ a place where the cleaning is insufficient locally occurs in the processing chamber 2 to be dry-cleaned. For this reason, it is desirable to reduce the variation in the distribution of the etching rate inside the processing chamber 2 as much as possible. Variations in the distribution of the etching rate inside the processing chamber 2 should be reduced by increasing the flow rate of the etching gas inside the processing chamber 2 so that the consumption of the etching gas inside the processing chamber 2 becomes uniform. Can be. As a method of increasing the flow rate of the etching gas inside the processing chamber 2, there are a method of increasing the supply amount of the etching gas by the etching gas supply device 11 under the control of the etching gas control unit 12 and a method of exhausting by the vacuum exhaust device 16. There are ways to increase speed. If the distribution of the etching rate in the processing chamber 2 becomes uniform, the progress of the dry cleaning becomes uniform, so that the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 are prevented from being damaged by over-etching, and the life is shortened. It can be extended, and the deposited film inside the processing chamber 2 is totally Cleaning can be performed uniformly.
ところで、 C V D装置に対する従来のゥエツ トクリーニング法におい ては、 処理室の内面に付着した堆積膜が全て除去されてしまうため、 成 膜処理再開前に、 処理室の内面に堆積膜をわざわざ形成させること (空 デボと呼称されている。 ) が実施されている。 処理室の内面に堆積膜が 全く無いと、 処理室の内部はヒータによって加熱され易くなるため、 処 理室の内面に堆積膜が付着している通常時の処理条件と相違し、 過去の 実緩データ等によって設計された成膜シーケンス制御によっては所望の 成膜を実施することができない。 By the way, in the conventional jet cleaning method for the CVD apparatus, since all the deposited film adhered to the inner surface of the processing chamber is removed, the deposited film is purposely formed on the inner surface of the processing chamber before the film forming process is restarted. (It is called empty devo.) If there is no deposited film on the inner surface of the processing chamber, the inside of the processing chamber is easily heated by the heater, which is different from the normal processing conditions where the deposited film adheres to the inner surface of the processing chamber. The desired film formation cannot be performed by the film formation sequence control designed based on the loose data and the like.
本実施形態においては、 処理室 2の内面に堆積膜が薄く残った状態で ドライクリーニングが的確に終了される。 処理室 2の内面に堆積膜を薄 く残すことにより、 処理再開前に処理室 2の内面に堆積膜をわざわざ形 成しなくて済むため、 すなわち、 空デポ工程を省略することができるた め、 C V D装置の休止時間を短縮することができ、 C V D装置の稼動効 率を向上させることができる。 ちなみに、 処理室 2の内面に薄く残す堆 積膜の厚さは、 4 0 n m〜9 0 n mである。 In the present embodiment, the dry cleaning is properly completed in a state where a thin deposited film remains on the inner surface of the processing chamber 2. By leaving the deposited film thinly on the inner surface of the processing chamber 2, it is not necessary to form the deposited film on the inner surface of the processing chamber 2 before restarting the processing, that is, the empty deposition step can be omitted. In addition, the downtime of the CVD apparatus can be reduced, and the operating efficiency of the CVD apparatus can be improved. Incidentally, the thickness of the deposited film left thinly on the inner surface of the processing chamber 2 is 40 nm to 90 nm.
前述したように、 最後のピークの到達時点が終点判定部 2 2によって 終点と判定される場合にはェッチングは進行中であるため、 堆積膜は処 理室 2の内面に薄く残ることになる。 殊に、 処理室 2の内部におけるェ ッチングレートの分布が均一になるように制御された場合には、 処理室 2の内面に堆積膜を薄くかつ均一に残すことができる。 As described above, when the arrival point of the last peak is determined as the end point by the end point determination unit 22, etching is in progress, and the deposited film remains thin on the inner surface of the processing chamber 2. In particular, when the distribution of the etching rate in the processing chamber 2 is controlled to be uniform, the deposited film can be thinly and uniformly left on the inner surface of the processing chamber 2.
なお、 終点は最後のピークの到達時点を基準に決定するに限らず、 次 のように決定することもできる。 The end point is not limited to be determined based on the arrival point of the last peak, but may be determined as follows.
( 1 ) 温度検出場所が一箇所である場合には、 温度変化のピークとな つた時点を終点とする。 (1) If there is only one temperature detection location, the end point is the point at which the temperature change peaks.
( 2 ) 温度変化のピークとなつた時点から所定の期間経過した時点を
終点とする。 所定の期間は実験や過去の実縝データによって予め求めて おく。 (2) The time when a predetermined period has elapsed since the peak of the temperature change End point. The predetermined period is obtained in advance by experiments or past execution data.
( 8 ) 実験や過去の実綫デ一タをテーブルとして終点テーブル記億部 23に記憶しておき、 温度変化監視部 21からの現在の温度変化データ とテーブルとを照合し行き、 現在の温度がテーブルに予め設定した温度 に一致した時点を終点とする。 (8) The experiment and past data are stored as a table in the end point table storage unit 23, and the current temperature change data from the temperature change monitoring unit 21 is compared with the table, and the current temperature is compared. The point at which the value matches the temperature preset in the table is the end point.
(4) 温度変化を温度と時間の関数によって表し、 図 4 (b) に示さ れているように、 温度の下降時に傾きが変化した時点 Eを終点とする。 すなわち、 温度変化を T、 経過時間を tとすると、 温度変化の閼数は、 T=i (t)、 であるから、 この閩数の一回微分と、 二回微分とが次の 式を満足する時点を終点とする。 (4) The temperature change is represented by a function of temperature and time, and as shown in Fig. 4 (b), the end point is point E when the slope changes when the temperature decreases. In other words, assuming that the temperature change is T and the elapsed time is t, the curve number of the temperature change is T = i (t). The point of satisfaction is the end point.
T' (t) < 0 T '(t) <0
かつ、 T〃 (0 =0 And T〃 (0 = 0
以上のようにして終点判定部 22によって終点が判定されて、 ドライ クリーニングを終了させる指令がエッチングガス制御部 1 2に指令され ると、 エッチングガス制御部 12の制御によってエッチングガス供給装 置 1 1からのエッチングガスの供給が停止される。 必要に応じて、 窒素 ガス等のパージガスがエッチングガス供給装置 1 1または原料ガス供給 装置 9から処理室 2の内部に供給される。 これにより、 堆積膜に対する エッチング反応が殆ど無くなるため、 ドライクリーニングが終了された 状態になる。 As described above, when the end point is determined by the end point determining unit 22 and a command to end the dry cleaning is issued to the etching gas control unit 12, the etching gas supply unit 11 is controlled by the etching gas control unit 12. The supply of the etching gas from is stopped. If necessary, a purge gas such as nitrogen gas is supplied from the etching gas supply device 11 or the source gas supply device 9 into the processing chamber 2. As a result, the etching reaction on the deposited film hardly occurs, and the dry cleaning is completed.
その後、 ドライクリーニングされた CVD装置によって CVD処理が 再開される。 この際、 前述した通り、 空デボ工程は省略することができ る。 CVD処理再開後において、 CVD装置の処理室 2および保持治具 3の堆積膜は所定の厚さにドライクリーニングされているため、 処理室 2および保持治具 3から剝離することはなく、 堆積膜が被処理物として
のウェハ 4を汚染することは無い。 Thereafter, the CVD processing is restarted by the dry-cleaned CVD apparatus. In this case, as described above, the empty devouring step can be omitted. After the restart of the CVD process, the deposited film in the processing chamber 2 and the holding jig 3 of the CVD apparatus is dry-cleaned to a predetermined thickness, so that the deposited film does not separate from the processing chamber 2 and the holding jig 3. Is to be treated Does not contaminate the wafer 4.
翻って、 ゲート形成工程について、 図 3を参照して説明する。 In turn, the gate forming process will be described with reference to FIG.
LOCOSに用いた窒化シリコン膜 3 3および下敷き酸化シリコン膜 32が除去された後に、 図 3 (d) に示されているように、 ゲート酸化 シリコン膜 3 8が新たに乾式または塩酸 (HC 1 ) 酸化によって形成さ れる。 次いで、 ボロン (B) がイオン打ち込みされる。 その後、 ド一プ ドポリシリコン膜が前記構成に係る CVD装置によって被着され、 図 3 (e) に示されているように、 ポリシリコンゲート 39がホトエツチン グ処理とドライ *エッチング処理によって形成される。 After the silicon nitride film 33 used for LOCOS and the underlying silicon oxide film 32 are removed, as shown in FIG. 3 (d), a gate silicon oxide film 38 is newly formed by dry or hydrochloric acid (HC 1). It is formed by oxidation. Next, boron (B) is ion-implanted. Thereafter, a doped polysilicon film is deposited by the above-configured CVD apparatus, and a polysilicon gate 39 is formed by a photo-etching process and a dry * etching process as shown in FIG. 3 (e). You.
ここで、 前記構成に係る CVD装置による前記ドープドボリシリコン 膜の CVD法およびそれに続く ドライクリーニング法を説明する。 ゲート酸化シリコン膜 38が形成されボ αンがイオン打ち込みされた 被処理物としてのウェハ 4は処理室 2に搬入されて、 図 2に示されてい るように、 保持治具 3の上に載置される。 真空排気装置 1 6によって処 理室 2の内部が所定の真空度 ( 1 0〜1 0 O P a) に真空排気される。 かつまた、 ヒータ 1 8によって処理室 2の内部が所定の温度 (例えば、 約 4 00eC) に全体にわたって均一に加熱される。 Here, a CVD method of the doped polysilicon film by the CVD apparatus having the above-described configuration and a dry cleaning method subsequent thereto will be described. The wafer 4 as the object to be processed into which the gate silicon oxide film 38 has been formed and the boron ions have been implanted is carried into the processing chamber 2 and placed on the holding jig 3 as shown in FIG. Is placed. The inside of the processing chamber 2 is evacuated to a predetermined degree of vacuum (10 to 10 OPa) by the vacuum exhaust device 16. And also, the processing chamber 2 by the heater 1 8 is uniformly heated throughout to a predetermined temperature (e.g., about 4 00 e C).
次いで、 ド一プドポリシリコン膜を形成するための原料ガスとして、 例えば、 モノシラン (S i H4 ) とホスフィン (PH3 ) が処理室 2の 内部に原料ガス供給装置 9により供給される。 原料ガスは処理室 2にガ ス供給口 7から流入し、 保持治具 3に保持されたウェハ 4に接触しなが ら下方へ流れて行き、 排気口 1 4から排気される。 この際、 ウェハ 4に 接触する原料ガスは熱ェネルギ一によつて化学反応が進んだ状態になつ ているため、 ウェハ 4に堆積 (デポジション) する状態になる。 ここで は、 次の反応式によって、 ドープドポリシリコン膜が被着されることに なる。
S i H 4 + P H 8 -* S i + P + H 2 Next, as a source gas for forming a doped polysilicon film, for example, monosilane (SiH 4 ) and phosphine (PH 3 ) are supplied from the source gas supply device 9 into the processing chamber 2. The source gas flows into the processing chamber 2 from the gas supply port 7, flows downward while contacting the wafer 4 held by the holding jig 3, and is exhausted from the exhaust port 14. At this time, the source gas that comes into contact with the wafer 4 is in a state where the chemical reaction has progressed due to the thermal energy, so that the source gas is deposited (deposited) on the wafer 4. Here, a doped polysilicon film is deposited by the following reaction equation. S i H 4 + PH 8 - * S i + P + H 2
所定の時間が経過すると、 成膜シーケンス制御部 1 0の制御によって 原料ガス供給装置 9は原料ガスの供給を停止する。 成膜シーケンス制御 部 1 0の制御によってキャップ 6が開放され、 ドープドボリシリコン膜 を被着されたウェハ 4がハンドリング装置 (図示せず) によって保持治 具 3からピックアップされて処理室 2から搬出される。 銃いて、 次のゥ ェハ 4が処理室 2に搬入されて保持治具 3に保持される。 以降、 前記作 業が操り返される。 When a predetermined time has elapsed, the source gas supply device 9 stops supplying the source gas under the control of the film forming sequence control unit 10. The cap 6 is opened under the control of the film forming sequence control unit 10, and the wafer 4 coated with the doped polysilicon film is picked up from the holding jig 3 by a handling device (not shown) and unloaded from the processing chamber 2. Is done. Then, the next wafer 4 is carried into the processing chamber 2 and held by the holding jig 3. Thereafter, the above operation is repeated.
ところで、 原料ガスの反応によって成膜される際には、 ウェハ 4の上 だけでなく、 処理室 2の内面や保持治具 3の外面にも反応生成物が付着 する。 この反応生成物は前述した C V Dによるドープドボリシリコン膜 の形成作業が繰り返される度に処理室 2や保持治具 3に堆積して行き、 膜 (以下、 堆積膜という。 ) を形成する。 堆穣膜はある程度の厚みに達 すると、 剝離すること等により塵埃となって処理中のウェハ 4に付着す るため、 製品不良の原因になる。 そこで、 本実施形態においては、 前述 した窒化シリコン膜と同様に、 ドーブドボリシリコンの堆積膜がある程 度の厚みに達すると、 処理室 2の内部全体にわたってドライクリーニン グすることにより、 処理室 2や保持治具 3に堆積した堆積膜が除去され 。 By the way, when a film is formed by the reaction of the source gas, the reaction product adheres not only on the wafer 4 but also on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3. The reaction product is deposited in the processing chamber 2 and the holding jig 3 each time the above-described operation of forming the doped polysilicon film by CVD is repeated, thereby forming a film (hereinafter, referred to as a deposited film). When the thickness of the fertilizer film reaches a certain level, the fertilizer film separates and becomes dust and adheres to the wafer 4 being processed, thereby causing a product defect. Therefore, in the present embodiment, as in the case of the silicon nitride film described above, when the deposited film of doped silicon reaches a certain thickness, dry cleaning is performed over the entire interior of the processing chamber 2 to form the processing chamber. The deposited film deposited on 2 and the holding jig 3 is removed.
処理室 2の内面や保持治具 3の外面に堆積したドープドボリシリコン の堆積膜の厚さが、 予め設定された所定の値に達すると、 成膜シーゲン ス制御部 1 0によって成膜モードからドライクリーニングモードに切り 換えられる。 例えば、 枚葉式 C V D装置でド一プドポリシリコンの堆積 膜の場合、 ドライクリーニングする膜厚は、 である。 ドライク リーニングモードに切り換えられると、 ウェハ 4の処理室 2への搬入が 中断される。 処理室 2の温度は前述した成膜作業時の温度を温度制御部
1 9の制御によるヒータ 1 8の加熱によって維持される。 また、 処理室 2の内部の圧力は成膜作業時の圧力を圧力制御部 1 7の制御による真空 排気装置 1 6の真空排気によって維持される。 When the thickness of the doped polysilicon film deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 reaches a predetermined value, the film forming sequence controller 10 controls the film forming mode. To dry cleaning mode. For example, in the case of a deposited film of doped polysilicon in a single-wafer CVD apparatus, the dry cleaning film thickness is as follows. When the mode is switched to the dry cleaning mode, the transfer of the wafer 4 into the processing chamber 2 is interrupted. The temperature of the processing chamber 2 is controlled by the temperature during the film forming operation described above. It is maintained by the heating of the heater 18 by the control of 19. Further, the pressure inside the processing chamber 2 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the film forming operation.
ウェハ 4の処理室 2への搬入が中断されると、 エツチングガス制御部 12の制御によってエッチングガス供耠装置 1 1からエッチングガスが 処理室 2の内部にガス供給路 8を通じて供給される。 エツチングガスは 処理室 2にガス供給口 7から流入し、 処理室 2の内面および保持治具 3 の外面に堆積した堆積膜に接触しながら下方へ流れて行き、 真空排気装 置 1 6によって排気口 1 4から排気される。 この際、 堆積膜に接触する エツチングガスは熱エネルギーによって化学反応が進んだ伏態になって いるため、 堆積膜をエッチングする。 例えば、 エッチングガスとして、 三弗化塩素 (C 1 Fs ) ガスが使用された場合、 次の反応式によって、 ド一プドポリシリコンの堆積膜がエッチングされる。 When the transfer of the wafer 4 into the processing chamber 2 is interrupted, the etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12. The etching gas flows into the processing chamber 2 from the gas supply port 7, flows downward while contacting the deposited film deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3, and is exhausted by the vacuum exhaust device 16. Exhausted from mouth 14. At this time, the etching gas that comes into contact with the deposited film is in a state in which the chemical reaction has progressed due to thermal energy, so that the deposited film is etched. For example, when chlorine trifluoride (C 1 F s ) gas is used as an etching gas, a deposited film of doped polysilicon is etched by the following reaction formula.
2S i +4 C 1 F3 →S i F4 +S i C 14 +2 F2 +C " 2S i +4 C 1 F 3 → S i F 4 + S i C 1 4 +2 F 2 + C "
2P2 06 + 2C l F3 →2PF3 + 502 +C 12 2P 2 0 6 + 2C l F 3 → 2PF 3 + 50 2 + C 1 2
なお、 式中、 0はゲート酸化シリコン膜の酸素である。 Note that in the formula, 0 is oxygen in the gate silicon oxide film.
エツチングによる反応生成物は余分のェッチングガスと共に、 真空排 気装置 1 6によって排気口 14から排気されて行く。 堆積膜はエツチン グによって次第に除去されて行き、 相対的に処理室 2の内面および保持 治具 3の外面がクリ一ニングされて行く。 The reaction product from the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas. The deposited film is gradually removed by etching, and the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 are relatively cleaned.
前述したように、 ドライクリーニング中における処理室 2の内部の温 度変化を温度変化監視部 21によって監視することにより、 クリーニン グの終点が的確に判定される。 処理室 2の内部温度変化を複数の場所で 検出される本実施形態においては、 各温度変化曲線のピークが監視され て、 最後のピークの到達時点が終点判定部 22によって終点と判定され
本実施形態においては、 処理室 2の内面に堆猜膜が薄く残った状憩で ドライクリーニングが的確に終了きれる。 処理室 2の内面に堆積膜を薄 く残すことにより、 処理再開前に処理室 2の内面に堆穣胰をわざわざ形 成しなくて済むため、 すなわち、 空デボ工程を省略することができるた め、 C V D装置の休止時間を短縮することができ、 C V D装置の稼動効 率を向上させることができる。 ちなみに、 処理室 2の内面に薄く残す堆 積膜の厚さは、 4 0 n m〜9 0 n mである。 As described above, by monitoring the temperature change inside the processing chamber 2 during the dry cleaning by the temperature change monitoring unit 21, the end point of the cleaning is accurately determined. In the present embodiment in which a change in the internal temperature of the processing chamber 2 is detected at a plurality of locations, the peak of each temperature change curve is monitored, and the arrival point of the last peak is determined as the end point by the end point determination unit 22. In the present embodiment, the dry cleaning can be accurately completed by the state where the entrapment film remains thin on the inner surface of the processing chamber 2. By leaving the deposited film thinly on the inner surface of the processing chamber 2, it is not necessary to form the fertilizer on the inner surface of the processing chamber 2 before the processing is restarted, that is, the empty devouring process can be omitted. Therefore, the downtime of the CVD apparatus can be reduced, and the operating efficiency of the CVD apparatus can be improved. Incidentally, the thickness of the deposited film left thinly on the inner surface of the processing chamber 2 is 40 nm to 90 nm.
以上のようにして終点判定部 2 2によって終点が判定されて、 ドライ クリーニングを終了させる措令がエッチングガス制御部 1 2に指令され ると、 エッチングガス制御部 1 2の制御によってエッチングガス供耠装 置 1 1からのエッチングガスの供給が停止される。 必要に応じて、 窒素 ガス等のパージガスがエッチングガス供給装置 1 1または原料ガス供辁 装置 9から処理室 2の内部に供給される。 これにより、 堆積膜に対する エツチング反応が殆ど無くなるため、 ドライクリ一ニングが終了された 状態になる。 As described above, the end point is determined by the end point determination unit 22, and when an instruction to terminate the dry cleaning is issued to the etching gas control unit 12, the etching gas supply unit is controlled by the etching gas control unit 12. The supply of the etching gas from the device 11 is stopped. If necessary, a purge gas such as a nitrogen gas is supplied from the etching gas supply device 11 or the raw material gas supply device 9 into the processing chamber 2. As a result, the etching reaction on the deposited film is almost eliminated, and the dry cleaning is completed.
その後、 ドライクリ一ニングされた C V D装置によって C V D成膜処 理が再開される。 この際、 前述した通り、 空デポ工程は省略することが できる。 C V D成膜処理再開後において、 C V D装置の処理室 2および 保持治具 8の堆積膜は所定の厚さにドライクリーニングされているため 、 脱落することはなく、 堆積膜が被処理物としてのウェハ 4を汚染する ことは無い。 Thereafter, the CVD film forming process is restarted by the dry-cleaned CVD apparatus. At this time, as described above, the empty deposition step can be omitted. After the restart of the CVD film forming process, the deposited film in the processing chamber 2 and the holding jig 8 of the CVD apparatus is dry-cleaned to a predetermined thickness, so that the deposited film does not fall off, and the deposited film is a wafer as an object to be processed. No contamination of 4
以上説明したように、 本発明によれば次のような効果が得られる。 As described above, according to the present invention, the following effects can be obtained.
( 1 ) 処理室の内部に堆積した堆積膜がエッチングガスによってドラ イクリ一二ングされる際に、 ドライクリ一二ングを的確に終了させるこ とができるため、 ドライクリーニングの過度および不足を防止すること ができる。
( 2 ) 過度のドライクリーニングを防止することにより、 処理室や保 持治具のオーバーェツチングによる損傷を防止することができるため、 処理室や保持治具の寿命を延ばすことができる。 (1) When the deposited film deposited inside the processing chamber is dry-cleaned by the etching gas, the dry cleaning can be properly terminated, thereby preventing excessive and insufficient dry cleaning. be able to. (2) By preventing excessive dry cleaning, the processing chamber and the holding jig can be prevented from being damaged by over-etching, so that the life of the processing chamber and the holding jig can be extended.
( 3 ) ドライクリーニング不足を防止することにより、 堆積膜の脱落 を防止することができるため、 処理の品質を高め、 ひいては処理製品の 品質および信頼性を高めることができる。 (3) By preventing shortage of dry cleaning, it is possible to prevent the deposited film from falling off, so that the quality of processing can be improved, and the quality and reliability of processed products can be improved.
( 4 ) ドライクリ一二ング中の温度変化を熱電対で検出することによ り、 ドライクリーニングを的確に終了させることができるため、 ガス分 析装置等の高価で複雑な測定器を使用しなくて済み、 処理装置全体とし てのコストを低減することができる。 (4) By detecting the temperature change during dry cleaning with a thermocouple, the dry cleaning can be properly terminated, eliminating the need for expensive and complicated measuring instruments such as gas analyzers. The cost of the entire processing apparatus can be reduced.
( 5 ) ドライクリーニングを堆積膜が薄く残った状態で的確に終了さ せることにより、 空デポ工程を省略することができるため、 処理装置の 休止期間を短縮することができ、 処理装置の稼動効率を向上することが できる。 (5) By properly terminating the dry cleaning with a thin deposited film remaining, the empty deposition step can be omitted, thereby reducing the downtime of the processing equipment and improving the operating efficiency of the processing equipment. Can be improved.
図 5は本発明の実施形態 2である I Cの製造方法に使用される減圧 C FIG. 5 shows the reduced pressure C used in the method of manufacturing IC which is Embodiment 2 of the present invention.
V D装置を示すプロック図である。 It is a block diagram which shows a VD apparatus.
本実施形態 2が前記実施形態 1と異なる点は、 ドライクリーニング中 の温度変化を監視するための熱電対 2 0が処理室 2の外部で、 かつ、 処 理室 2の近傍に設置されている点である。 本実施形態 2においても、 熱 電対 2 0は複数本が一平面において可及的に均等になるようにそれぞれ 配置されている。 本実施形態 2によれば、 熱電対 2 0は処理室 2の外部 に配置されるため、 保護管 2 4を省略することができる。 The second embodiment is different from the first embodiment in that a thermocouple 20 for monitoring a temperature change during dry cleaning is provided outside the processing chamber 2 and in the vicinity of the processing chamber 2. Is a point. Also in the second embodiment, the thermocouples 20 are arranged such that a plurality of thermocouples are as uniform as possible on one plane. According to the second embodiment, since the thermocouple 20 is disposed outside the processing chamber 2, the protection tube 24 can be omitted.
図 6は本発明の実施形態 3である I Cの製造方法に使用される減圧 C FIG. 6 shows the reduced pressure C used in the method of manufacturing IC which is Embodiment 3 of the present invention.
V D装置を示すブロック図である。 It is a block diagram showing a VD device.
本実施形態 3が前記実施形態 1と異なる点は、 ドライクリーニング中 の温度変化を監視するための熱電対 2 0がヒータ 1 8の内部に設置され
ている点である。 本実施形筋 3においても、 熱電対 2 0は複数本が一平 面において可及的に等分布になるようにそれぞれ配置されている。 本実 施形態 3によれば、 熱電対 2 0は処理室 2の外部に配置されるため、 保 護管 2 4を省略することができる。 また、 熱 ¾対 2 0がヒータ 1 8の内 部に設置されているため、 成膜処理時にはヒータ 1 8の加熱温度の監視 にも使用することができる。 言い換えると、 熱電対 2 0はヒータ 1 8の 加熱温度監視用の熱電対を兼用することができる。 The third embodiment differs from the first embodiment in that a thermocouple 20 for monitoring a temperature change during dry cleaning is installed inside the heater 18. That is the point. Also in this embodiment, the thermocouples 20 are arranged such that a plurality of thermocouples 20 are equally distributed on a plane. According to the third embodiment, since the thermocouple 20 is disposed outside the processing chamber 2, the protective tube 24 can be omitted. In addition, since the heat couple 20 is provided inside the heater 18, it can be used for monitoring the heating temperature of the heater 18 during the film forming process. In other words, the thermocouple 20 can also serve as a thermocouple for monitoring the heating temperature of the heater 18.
図 7は本発明の実施形態 4である I Cの製造方法に使用される減圧 C V D装置を示すプロツク図である。 FIG. 7 is a block diagram showing a reduced-pressure CVD apparatus used in the method for producing IC according to the fourth embodiment of the present invention.
本実施形態 4が前記実施形想 1と異なる点は、 ドライクリーニング中 の温度変化を監視するための熱電対の代わりに、 ヒータ 1 8を制御する 温度制御部 1 9の電力供辁量を温度変化監視部 2 1によって監視するこ とにより、 ドライクリーニング中の温度変化を監視するように構成され ている点である。 温度制御部 1 9は処理室 2の内部温度が常時一定にな るようにヒータ 1 8の電力を制御している。 ドライクリーニング中はェ ッチングガスと堆穣膜との化学反応によって成膜処理中では発生しない 反応熱が処理室 2の内部において発生する。 その結果、 ドライクリー二 ング中には処理室 2の温度が上昇しょうとするため、 温度制御部 1 9は ヒータ 1 8への電力供給量を低減することにより、 処理室 2の温度上昇 を抑制する。 したがって、 温度制御部 1 9の電力供給量を温度変化監視 部 2 1によって監視することにより、 ドライクリーニング中の処理室 2 の温度変化を間接的に監視することができる。 本実施形態 4によれば、 ドライエッチング中の温度変化を検出するための熱電対を省略すること ができる。 Embodiment 4 is different from Embodiment 1 in that a power supply amount of a temperature control unit 19 for controlling a heater 18 is controlled by a temperature instead of a thermocouple for monitoring a temperature change during dry cleaning. The change monitoring unit 21 is configured to monitor a temperature change during dry cleaning. The temperature controller 19 controls the power of the heater 18 so that the internal temperature of the processing chamber 2 is always constant. During dry cleaning, heat of reaction that is not generated during the film forming process is generated inside the processing chamber 2 due to a chemical reaction between the etching gas and the fertilizer film. As a result, the temperature of the processing chamber 2 tends to increase during dry cleaning, and the temperature control unit 19 suppresses the temperature increase of the processing chamber 2 by reducing the amount of power supplied to the heater 18. I do. Therefore, by monitoring the power supply amount of the temperature control unit 19 by the temperature change monitoring unit 21, it is possible to indirectly monitor the temperature change of the processing chamber 2 during the dry cleaning. According to the fourth embodiment, a thermocouple for detecting a temperature change during dry etching can be omitted.
図 8は本発明の実施形態 5である I Cの製造方法に使用される滅圧 C V D装置を示すプロック図である。
本実施形態 5が前記実施形態 1と異なる点は、 ドライクリーニング中 の温度変化を監視するための熱電対 2 0が排気路 1 5の内部に設置され ている点である。 本実施形態 5においても、 熱鼋対 2 0は複数本を配置 することが望ましい。 排気ガスの温度を 1ボイントまたは複数ボイント において測定することにより、 エッチングガスと堆積膜との反応熱を測 定することができるため、 ドライクリーニングの終点を的確に検出する ことができる。 本実施形態 5によれば、 熱電対 2 0は処理室 2の外部に 配置されるため、 保護管 2 4を省略することができる。 FIG. 8 is a block diagram showing a decompression CVD apparatus used in the method for manufacturing an IC according to the fifth embodiment of the present invention. The fifth embodiment differs from the first embodiment in that a thermocouple 20 for monitoring a temperature change during dry cleaning is provided inside the exhaust passage 15. Also in the fifth embodiment, it is desirable to arrange a plurality of thermal couples 20. By measuring the temperature of the exhaust gas at one or more points, the heat of reaction between the etching gas and the deposited film can be measured, so that the end point of the dry cleaning can be accurately detected. According to the fifth embodiment, since the thermocouple 20 is disposed outside the processing chamber 2, the protection tube 24 can be omitted.
図 9は本発明の実施形態 6である I Cの製造方法に使用されるバッチ 式縱型減圧 C V D装置を示すブロック図である。 FIG. 9 is a block diagram showing a batch type vertical decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
本実施形態 5が前記実施形態 1と異なる点は、 バッチ式縱型減圧 C V D装置が使用される点である。 バッチ式縦型減圧 C V D装置のプロセス チューブ 1 Aは一端が閉じられ他端が開口された大径の円筒形状のァゥ 夕チューブ 1 aと、 両端が開口された小径の円筒形状のインナチューブ 1 bとから搆成されており、 ァゥ夕チューブ 1 aとインナチューブ 1 b とは互いに同心円に配置された状態で、 ァウタチューブ 1 aの閉じられ た側を上向きにされて垂直に設置されている。 インナチューブ 1 bの内 部には保持治具 3 Aが同軸的に配置されている。 保持治具 3 Aは 1 0 0 〜 1 8 0枚のウェハ 4をその中心を実質的に揃えた状態で互いに平行に 並べて保持するように構成されている。 保持治具 3 Aはインナチューブ 1 bの開口に進退自在に設けられたキヤッブ 6 Aの上に載せられた状態 で、 インナチューブ 1 bの内部に搬入される。 The fifth embodiment differs from the first embodiment in that a batch type vertical decompression CVD device is used. The process tube 1A of the batch type vertical decompression CVD device is a large-diameter cylindrical tube 1a with one end closed and the other end open, and a small-diameter cylindrical inner tube 1 with both ends open. b, the inner tube 1a and the inner tube 1b are installed vertically with the closed side of the outer tube 1a facing upward, with the inner tube 1a and the inner tube 1b being arranged concentrically with each other. . A holding jig 3A is coaxially arranged inside the inner tube 1b. The holding jig 3A is configured to hold 100 to 180 wafers 4 in parallel with each other with their centers substantially aligned. The holding jig 3A is carried into the inner tube 1b while being placed on a cabinet 6A provided to be able to advance and retreat at the opening of the inner tube 1b.
インナチューブ 1 bの下端部にはガス供給口 7が開設されており、 ガ ス供給口 7にはガス供給路 8がァウタチューブ l aを貫通して接続され ている。 ガス供給路 8には原料ガス供給装置 9が接続されており、 原料 ガス供給装置 9は成膜シーゲンス制御部 1 0によつて制御されて原料ガ
スを供給するように構成されている。 また、 ガス供給路 8にはエツチン グガス供給装置 1 1が接続されており、 エッチングガス供給装置 1 1は エツチングガス制御部 1 2によつて制御されてエツチングガスを供給す るように構成されている。 A gas supply port 7 is provided at the lower end of the inner tube 1b, and a gas supply path 8 is connected to the gas supply port 7 through the outer tube la. A source gas supply device 9 is connected to the gas supply path 8, and the source gas supply device 9 is controlled by a film formation sequence controller 10 to control the source gas. And is configured to supply An etching gas supply device 11 is connected to the gas supply path 8, and the etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas. I have.
ァウタチューブ 1 aの筒壁下端部には排気口 1 4が開設されており、 排気口 1 4には排気路 1 5が接続されている。 排気路 1 5には真空排気 装置 1 6が接続されており、 真空排気装置 1 6は圧力制御部 1 7によつ てプロセスチューブ 1 Aの処理室 2を所定の真空度に真空排気し得るよ うに構成されている。 圧力制御部 1 7は成膜シーケンス制御部 1 0に接 続されている。 プロセスチューブ 1 Aの外部には処理室 2の内部を全体 にわたつて均一に加熱するためのヒ一夕 1 8が、 プロセスチューブ 1 A の周囲を包囲するように設備されている。 ヒータ 1 8は温度制御部 1 9 によって制御されるように構成されている。 温度制御部 1 9は P D I制 こよつて制御の応答性および安定性を確保するように構成されている プロセスチューブ 1 Aの処理室 2の内部にはクリーニング終点検出用 温度センサとしての熱電対 2 0が保護管 2 4に収容された状態で、 ァゥ 夕チューブ 1 aとインナチューブ 1 bとの間に挿入されており、 熱電対 2 0は温度変化 視部 2 1に接続されている。 熱 ¾対 2 0は複数本が処 理室 2における外周辺部におレ、て可及的に等分布になるように配置され ている。 温度変化監視部 2 1の出力端は終点判定部 2 2の一方の入力端 が接銃されており、 終点判定部 2 2の他方の入力端には終点テーブル記 憶部 2 8が接銃されている。 また、 終点判定部 2 2の出力端はエツチン グガス制御部 1 2に接続されており、 終点判定部 2 2は判定結果をエツ チングガス制御部 1 2に送信するようになっている。 An exhaust port 14 is opened at the lower end of the tube wall of the outer tube 1a, and an exhaust path 15 is connected to the exhaust port 14. A vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device 16 can evacuate the processing chamber 2 of the process tube 1 A to a predetermined degree of vacuum by the pressure controller 17. It is configured as follows. The pressure controller 17 is connected to the film forming sequence controller 10. Outside the process tube 1A, a heater 18 for uniformly heating the inside of the processing chamber 2 throughout is provided so as to surround the process tube 1A. The heater 18 is configured to be controlled by a temperature controller 19. The temperature controller 19 is a PDI system and is configured to ensure control responsiveness and stability. Inside the processing chamber 2 of the process tube 1A, a thermocouple 20 as a temperature sensor for detecting the end point of cleaning is provided. The thermocouple is inserted between the inner tube 1 a and the inner tube 1 b while being housed in the protective tube 24, and the thermocouple 20 is connected to the temperature change viewing unit 21. The plurality of thermal couples 20 are arranged so as to be as evenly distributed as possible in the outer peripheral portion of the processing room 2. The output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 is connected to the end point table storage unit 28. ing. The output end of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 transmits the determination result to the etching gas control unit 12.
バッチ式縱型減圧 C V D装置においても、 原料ガスの反応によって成
膜される際には処理室 2の内面や保持治具 3の外面に反応生成物が堆積 して膜を形成する。 堆積膜はある程度の厚みに達すると、 剝離して処理 中のウェハ 4を汚染するため、 バッチ式縱型減圧 C V D装置においても クリーニングが必要である。 次に、 バッチ式縱型減圧 C V D装置のドラ ィクリーニング法を説明する。 Batch type vertical low pressure CVD equipment is also formed by the reaction of raw material gas. When the film is formed, reaction products are deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 to form a film. When the deposited film reaches a certain thickness, it separates and contaminates the wafer 4 being processed, so cleaning is necessary even in a batch type vertical low pressure CVD apparatus. Next, a dry cleaning method of a batch type vertical low pressure CVD apparatus will be described.
処理室 2の内面や保持治具 3の外面に堆積した堆積膜が予め設定され た所定の厚さに達すると、 成膜シーケンス制御部 1 0によって成膜モー ドからドライクリーニングモードに切り換えられる。 ここで、 バッチ式 減圧 C V D装置においてドライクリーニングを開始すべき堆積膜の所定 の厚さは、 例えば、 窒化シリコンの堆積膜の場合には 1;/ mであり、 ド —プドボリシリコンの場合には 3 ju mである。 When the deposited film deposited on the inner surface of the processing chamber 2 or the outer surface of the holding jig 3 reaches a predetermined thickness, the film forming sequence controller 10 switches from the film forming mode to the dry cleaning mode. Here, the predetermined thickness of the deposited film for which dry cleaning is to be started in a batch type low-pressure CVD apparatus is, for example, 1; / m for a deposited film of silicon nitride, and 3 for a doped polysilicon. ju m.
ドライクリ一二ングモードに切り換えられると、 ウェハ 4の処理室 2 への搬入が中断され、 ウェハ 4群を保持しない伏態で保持治具 3 Aが処 理室 2へ搬入される。 処理室 2の温度は成膜作業時の温度を温度制御部 1 9の制御によるヒータ 1 8の加熱によって維持される。 また、 処理室 2の内部の圧力は成膜作業時の圧力を圧力制御部 1 7の制御による真空 排気装置 1 6の真空排気によって維持される。 次いで、 エッチングガス 制御部 1 2の制御によってエッチングガス供給装置 1 1からエッチング ガスが処理室 2の内部にガス供耠路 8を通じて供給される。 エッチング ガスは処理室 2にガス供給口 7から流入し、 処理室 2の内面および保持 治具 3 Aの外面に堆積した堆積膜に接触しながら流れて行き、 真空排気 装置 1 6によって排気口 1 4から排気される。 この際、 堆積膜に接触す るエツチングガスは熱エネルギーによつて化学反応が進んだ状態になつ ているため、 堆積膜をエッチングする。 エッチングによる反応生成物は 余分のエッチングガスと共に、 真空排気装置 1 6によって排気口 1 4か ら排気されて行く。 堆積膜はェッチングによつて次第に除去されて行き
、 相対的に処理室 2の内面および保持治具 3 Aの外面がクリ一ニングさ れて行く。 When the mode is switched to the dry cleaning mode, the loading of the wafer 4 into the processing chamber 2 is interrupted, and the holding jig 3A is loaded into the processing chamber 2 in a state in which the wafer 4 group is not held. The temperature of the processing chamber 2 is maintained by heating the heater 18 under the control of the temperature control unit 19 at the time of the film forming operation. Further, the pressure inside the processing chamber 2 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the film forming operation. Next, the etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12. The etching gas flows into the processing chamber 2 from the gas supply port 7, flows while contacting the deposited film deposited on the inner surface of the processing chamber 2 and the outer surface of the holding jig 3 A, and is exhausted by the vacuum exhaust device 16. Exhausted from 4. At this time, the etching gas in contact with the deposited film is in a state where a chemical reaction has progressed due to thermal energy, so that the deposited film is etched. The reaction product by the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas. The deposited film is gradually removed by etching. However, the inner surface of the processing chamber 2 and the outer surface of the holding jig 3A are relatively cleaned.
エツチングガスによる堆積膜のェッチングが始まると、 エッチング反 応熱によって処理室 2の内部温度は上昇し始める。 処理室 2の内部温度 変化を複数の場所で検出される本実施形態においては、 各温度変化曲線 のピークが監視され最後のピークの到達時点が終点判定部 2 2によって 終点と判定される。 最後のピークの到達時点が終点判定部 2 2によって 終点と判定される場合にはエッチングは進行中であるため、 堆積膜は処 理室 2の内面に薄く残ることになる。 珠に、 処理室 2の内部におけるェ ッチングレートの分布が均一になるように制御された場合には、 処理室 2の内面に堆積膜を薄くかつ均一に残すことができる。 When the etching of the deposited film by the etching gas starts, the internal temperature of the processing chamber 2 starts to rise due to the heat of the etching reaction. In the present embodiment in which a change in the internal temperature of the processing chamber 2 is detected at a plurality of locations, the peak of each temperature change curve is monitored, and the point of arrival of the last peak is determined by the end point determination unit 22 as the end point. When the arrival point of the last peak is determined as the end point by the end point determination unit 22, the etching is in progress, and the deposited film remains thin on the inner surface of the processing chamber 2. If the distribution of the etching rate inside the processing chamber 2 is controlled to be uniform, the deposited film can be thinly and uniformly left on the inner surface of the processing chamber 2.
したがって、 処理室 2の内面に堆積膜が薄く残った状態でドライクリ 一ニングが的確に終了される。 処理室 2の内面に堆積膜を簿く残すこと により、 処理再開前に処理室 2の内面に堆積膜をわざわざ形成しなくて 済むため、 すなわち、 空デボ工程を省略することができるため、 バッチ 式縦型 C V D装置の休止時間を短縮することができ、 バッチ式縱型 C V D装置の稼動効率を向上させることができる。 ちなみに、 処理室 2の內 面に薄く残す堆積膜の厚さは、 4 0 n m〜9 0 n mである。 Therefore, dry cleaning is properly terminated with a thin deposited film remaining on the inner surface of the processing chamber 2. By leaving the deposited film on the inner surface of the processing chamber 2, it is not necessary to form the deposited film on the inner surface of the processing chamber 2 before resuming the processing. The downtime of the vertical CVD system can be reduced, and the operating efficiency of the vertical CVD system can be improved. Incidentally, the thickness of the deposited film left thin on the surface of the processing chamber 2 is 40 nm to 90 nm.
なお、 終点は最後のピークの到達時点を基準に決定するに限らず、 条 件に応じて適宜決定できることは、 前記実施形態 1と同様である。 Note that the end point is not limited to be determined based on the arrival point of the last peak, but can be appropriately determined according to conditions, as in the first embodiment.
£ (上のようにして終点判定部 2 2によって終点が判定されて、 ドライ クリーニングを終了させる指令がェッチングガス制御部 1 2に指令され ると、 エッチングガス制御部 1 2の制御によってエッチングガス供給装 置 1 1からのエッチングガスの供給が停止される。 必要に応じて、 窒素 ガス等のパージガスがエッチングガス供給装置 1 1または原料ガス供辁 装置 9から処理室 2の内部に供給される。 これにより、 堆積膜に対する
エッチング反応が殆ど無くなるため、 ドライクリーニングが終了された 伏態になる。 £ (When the end point is determined by the end point determination unit 22 as described above and a command to end the dry cleaning is issued to the etching gas control unit 12, the etching gas supply unit is controlled by the etching gas control unit 12. The supply of the etching gas from the device 11 is stopped, and a purge gas such as a nitrogen gas is supplied from the etching gas supply device 11 or the source gas supply device 9 into the processing chamber 2 as necessary. To the deposited film Since the etching reaction hardly occurs, the dry cleaning is completed.
その後、 ドライクリーニングされたバッチ式縦型減圧 C V D装置によ つて C V D成膜処理が再開される。 この際、 前述した通り、 空デボ工程 は省略することができる。 C V D処理再開後において、 バッチ式縱型減 圧 C V D装置の処理室 2および保持治具 3の堆積膜は所定の厚さにドラ イクリーニングされているため、 処理室 2および保持治具 3から剝離す ることはなく、 堆積膜が被処理物としてのウェハ 4を汚染することは無 い 0 Thereafter, the CVD film formation process is restarted by the dry vertical vacuum type CVD apparatus that has been cleaned. At this time, as described above, the empty devouring step can be omitted. After the restart of the CVD process, the deposited film in the processing chamber 2 and the holding jig 3 of the batch type vertical decompression CVD apparatus is dry-cleaned to a predetermined thickness, and thus is separated from the processing chamber 2 and the holding jig 3. The deposited film does not contaminate the wafer 4 to be processed 0
図 1 0は本発明の実施形態 6である I Cの製造方法に使用されるバッ チ式横型減圧 C V D装置を示すブロック図である。 FIG. 10 is a block diagram showing a batch type horizontal decompression CVD apparatus used in a method of manufacturing IC according to Embodiment 6 of the present invention.
本実施形態 6が前記実施形態 1と異なる点は、 バッチ式横型減圧 C V D装置が使用される点である。 バッチ式横型減圧 C V D装置の構成およ び作用はプロセスチューブ 1 Bが横置きされている点を除いて、 前記バ ツチ式縦型減圧 C V D装置に準ずるので、 その説明は省略する。 Embodiment 6 is different from Embodiment 1 in that a batch type horizontal decompression CVD apparatus is used. The configuration and operation of the batch type horizontal depressurized CVD apparatus are the same as those of the batch type vertical depressurized CVD apparatus except that the process tube 1B is placed horizontally, and therefore the description thereof is omitted.
図 1 1は本発明の実施形態 7である I Cの製造方法に使用されるラン ブ加熱式減圧 C V D装置を示すブ口ック図である。 FIG. 11 is a block diagram showing a lamp heating type decompression CVD apparatus used in a method for producing IC which is Embodiment 7 of the present invention.
本実施形態 7が前記実施形態 1と異なる点は、 ランブ加熱式減圧 C V D装置が使用される点である。 ランプ加熱式減圧 C V D装置 4 0は円盤 形状に形成されたベース 4 1を備えており、 ベース 4 1の上下にはいず れも石英ガラスによって形成された上カップ 4 2および下カップ 4 3が 処理室 4 4を形成するように配置されている。 処理室 4 4の内部にはゥ ェハ 4を保持する保持治具としてのサセプタ 4 5がベース 4 1と同一平 面内で同心円に配置されている。 サセプタ 4 5は支軸 4 6によって支持 されており、 支軸 4 6は上下動装置 (図示せず) によって上下動される とともに、 回転駆動装置 (図示せず) によって回転されるようになって
いる。 下カップ 4 3の一部には被処理物としてのウェハを出し入れする ための出し入れ口 4 7が開設されている。 出し入れ口 4 7にはロード口 ック室 (図示せず) が隣接して連結されており、 ウェハはロードロック 室と処理室 4 との間を出し入れ口 4 7を通じて、 ハンドリング装置 ( 図示せず) によって一枚ずつ自動的に搬入搬出されるようになっている 0 出し入れ口 4 7にはキャップ 4 8が装着されており、 キャップ 4 8は 出し入れ口 4 7を開閉するように構成されている。 The seventh embodiment differs from the first embodiment in that a ramp-heating type reduced pressure CVD apparatus is used. The lamp heating type decompression CVD device 40 has a base 41 formed in a disk shape, and the upper cup 42 and the lower cup 43 formed of quartz glass are processed above and below the base 41. Chambers 4 are arranged to form 4. In the processing chamber 44, a susceptor 45 as a holding jig for holding the wafer 4 is concentrically arranged in the same plane as the base 41. The susceptor 45 is supported by a support shaft 46. The support shaft 46 is moved up and down by a vertical movement device (not shown) and rotated by a rotation drive device (not shown). I have. A part of the lower cup 43 has an opening 47 for taking in and out a wafer as an object to be processed. The loading / unloading chamber (not shown) is adjacently connected to the loading / unloading port 47, and the wafer is transferred between the load lock chamber and the processing chamber 4 through the loading / unloading port 47 through a handling device (not shown). ) Is automatically loaded and unloaded one by one. 0 A cap 48 is attached to the entrance 47, and the cap 48 is configured to open and close the entrance 47. .
上カップ 4 2および下カップ 4 3の外部には、 処理室 4 4の内部を全 体にわたって均一に加熱するための加熱用ランプ 1 8 Aが複数台設備さ れている。 加熱用ランプ 1 8 Aは温度制御部 1 9によって制御されるよ うに構成されている。 Outside the upper cup 42 and the lower cup 43, a plurality of heating lamps 18A for uniformly heating the entire inside of the processing chamber 44 are provided. The heating lamp 18 A is configured to be controlled by the temperature control unit 19.
ベース 4 1にはガス供耠ロ 7が開設されており、 ガス供耠ロ 7にはガ ス供耠路 8が接続されている。 ガス供給路 8には原料ガス供耠装置 9が 接続されており、 原料ガス供耠装置 9は成膜シーケンス制御部 1 0によ つて制御されて原料ガスを供給するように構成されている。 また、 ガス 供給路 8にはエッチングガス供給装置 1 1が接銃されており、 エツチン グガス供給装置 1 1はエッチングガス制御部 1 2によって制御されてェ ツチングガスを供給するように構成されている。 また、 ベース 4 1には 排気口 1 4が開設されており、 排気口 1 4には排気路 1 5が接挠されて いる。 排気路 1 5には真空排気装置 1 6が接続されており、 真空排気装 g l 6は圧力制御部 1 7によって制御されて処理室 4 4を所定の真空度 に真空排気し得るように構成されている。 圧力制御部 1 7は成膜シ一ケ ンス制御部 1 0に接続されている。 The base 41 has a gas supply unit 7, and the gas supply unit 7 is connected to a gas supply line 8. A source gas supply device 9 is connected to the gas supply path 8, and the source gas supply device 9 is configured to supply a source gas under the control of a film formation sequence control unit 10. An etching gas supply device 11 is connected to the gas supply path 8 by a gun, and the etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas. The base 41 has an exhaust port 14, and the exhaust port 14 is connected to an exhaust path 15. A vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device gl 6 is controlled by the pressure control unit 17 so as to be able to evacuate the processing chamber 44 to a predetermined degree of vacuum. ing. The pressure control section 17 is connected to the film formation sequence control section 10.
上カップ 4 2および下カップ 4 3の外部にはクリーニング終点検出用 温度センサとしての熱電対 2 0が複数、 処理室 4 4に近接してそれぞれ 配置されており、 熱電対 2 0は温度変化監視部 2 1に接続されている。
熱電対 2 0は処理室 4 4の温度分布を全体にわたって測定し得るように 配置されている。 また、 上カップ 4 2および下カップ 4 3の外部にはク リ一ニング終点検出用温度センサとしての放射温度計 2 O Aが複数、 処 理室 4 4におけるサセブタ 4 5やベース 4 1の温度を非接触で測定する ように設備されており、 放射温度計 2 O Aも温度変化監視部 2 1に接続 されている。 放射温度計 2 O Aも処理室 4 4の温度分布を全体にわたつ て測定し得るように配置されている。 温度変化監視部 2 1の出力端は終 点判定部 2 2の一方の入力端に接続されており、 終点判定部 2 2の他方 の入力端には終点テーブル記憶部 2 3が接続されている。 また、 終点判 定部 2 2の出力端はエッチングガス制御部 1 2に接続されており、 終点 判定部 2 2は判定結果をェッチングガス制御部 1 2に送信するようにな つ こしヽる A plurality of thermocouples 20 as temperature sensors for detecting the end point of cleaning are arranged outside the upper cup 42 and the lower cup 43, respectively, and are disposed in close proximity to the processing chamber 44, and the thermocouple 20 monitors a temperature change. Connected to part 21. The thermocouple 20 is arranged so that the temperature distribution of the processing chamber 44 can be measured over the whole. In addition, a plurality of radiation thermometers 2 OA as temperature sensors for detecting a cleaning end point are provided outside the upper cup 42 and the lower cup 43, and the temperature of the susceptor 45 and the base 41 in the processing room 44 is measured. It is equipped to perform non-contact measurement, and a radiation thermometer 2 OA is also connected to the temperature change monitoring unit 21. The radiation thermometer 2OA is also arranged so that the temperature distribution in the processing chamber 44 can be measured throughout. The output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 is connected to the end point table storage unit 23. . Further, the output end of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 sends the determination result to the etching gas control unit 12.
ランプ加熱式減圧 C V D装置においても、 原料ガスの反応によって成 膜される際には処理室の内面や保持治具としてのサセプ夕の外面に反応 生成物が堆積して膜を形成する。 堆積膜はある程度の厚みに達すると、 剁雕して処理中のウェハを汚染するため、 ランプ加熱式減圧 C V D装置 においてもクリーニングが必要である。 次に、 ランプ加熱式減圧 C V D 装置のドライクリ一ニング法を説明する。 Even in a lamp-heated decompression CVD apparatus, when a film is formed by the reaction of a source gas, reaction products are deposited on the inner surface of the processing chamber or the outer surface of a susceptor as a holding jig to form a film. When the deposited film reaches a certain thickness, it condenses and contaminates the wafer being processed, so cleaning is necessary even in a lamp heating type decompression CVD device. Next, a dry cleaning method for a lamp heating type decompression CVD apparatus will be described.
処理室 4 4やサセブ夕 4 5に堆積した堆積膜が予め設定された所定の 厚さに達すると、 成膜シーケンス制御部 1 0によって成膜モードからド ライクリーニングモードに切り換えられる。 ここで、 枚葉式減圧 C V D 装置の一例であるランプ加熱式減圧 C V D装置においてドライクリー二 ングを開始すべき堆積膜の所定の厚さは、 例えば、 窒化シリコンの堆積 膜の場合には 1 mであり、 ド一ブドポリシリコンの場合には 3 mで のる。 When the thickness of the deposited film deposited in the processing chamber 44 or the susceptor 45 reaches a predetermined thickness, the film forming sequence controller 10 switches from the film forming mode to the dry cleaning mode. Here, in a lamp heating type decompression CVD apparatus which is an example of a single wafer type decompression CVD apparatus, a predetermined thickness of a deposited film to start dry cleaning is, for example, 1 m for a deposited film of silicon nitride. In the case of doped polysilicon, the length is 3 m.
ドライクリーニングモードに切り換えられると、 処理室 4 4へのゥェ
ハ 4の搬入が中断される。 処理室 4 4の温度は成胰作業時の温度を温度 制御部 1 9の制御による加熱用ランプ 1 8 Aの加熱によって維持される 。 また、 処理室 4 4の内部の圧力は成胰作業時の圧力を圧力制御部 1 7 の制御による真空排気装置 1 6の真空排気によって維持される。 次に、 エッチングガス制御部 1 2の制御によってエッチングガス供給装置 1 1 からエツチングガスが処理室 2の内部にガス供給路 8を通じて供耠され る。 エッチングガスは処理室 2にガス供耠ロ 7から流入し、 処理室 2お よびサセブタ 4 5に堆積した堆積膜に接触しながら流れて行き、 真空排 気装置 1 6によって排気口 1 4から排気される。 この際、 堆積膜に接触 するエツチングガスは熱ェネルギ一によつて化学反応が進んだ状態にな つているため、 堆積膜をエッチングする。 エッチングによる反応生成物 は余分のエッチングガスと共に、 真空排気装置 1 6によって排気口 1 4 から排気されて行く。 堆積膜はェツチングによつて次第に除去されて行 き、 相対的に処理室 2およびサセプ夕 4 5が次第にクリーニングされて 行く。 When the mode is switched to the dry cleaning mode, the processing chamber 4 C The loading of 4 is suspended. The temperature of the processing chamber 44 is maintained by heating the heating lamp 18 A under the control of the temperature control unit 19 while controlling the temperature during the growth operation. The pressure inside the processing chamber 44 is maintained by evacuation of the evacuation unit 16 under the control of the pressure control unit 17 by controlling the pressure during the growth operation. Next, an etching gas is supplied from the etching gas supply device 11 into the processing chamber 2 through the gas supply path 8 under the control of the etching gas control unit 12. The etching gas flows into the processing chamber 2 from the gas supply unit 7, flows while contacting the deposited film deposited on the processing chamber 2 and the sasse pig 45, and is exhausted from the exhaust port 14 by the vacuum exhaust device 16. Is done. At this time, since the etching gas in contact with the deposited film has undergone a chemical reaction due to thermal energy, the deposited film is etched. The reaction product from the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess etching gas. The deposited film is gradually removed by etching, and the processing chamber 2 and the susceptor 45 are gradually cleaned relatively.
エツチングガスによる堆積膜のェッチングが始まると、 エッチング反 応熱によって処理室 4 4の内部温度は上昇し始める。 処理室 4 4の内部 温度変化を複数の場所で検出される本実施形態においては、 各温度変化 曲線のピークが監視され最後のピークの到達時点が終点判定部 2 2によ つて終点と判定される。 最後のピークの到達時点が終点判定部 2 2によ つて終点と判定される場合にはェッチングは進行中であるため、 堆積膜 は処理室 4 4の内面に薄く残ることになる。 殊に、 処理室 4 4の内部に おけるエッチングレートの分布が均一になるように制御された場合には 、 処理室 4 4の内面に堆積膜を薄くかつ均一に残すことができる。 When the etching of the deposited film by the etching gas starts, the internal temperature of the processing chamber 44 starts to rise due to the heat of the etching reaction. In the present embodiment in which the temperature change inside the processing chamber 44 is detected at a plurality of locations, the peak of each temperature change curve is monitored, and the point of arrival of the last peak is determined as the end point by the end point determination unit 22. You. If the end point of the final peak is determined by the end point determination unit 22 as the end point, etching is in progress, and the deposited film remains thin on the inner surface of the processing chamber 44. In particular, when the distribution of the etching rate in the processing chamber 44 is controlled to be uniform, the deposited film can be thinly and uniformly left on the inner surface of the processing chamber 44.
したがって、 処理室 4 4の内面に堆積膜が薄く残った状態でドライク リーニングが的確に終了される。 処理室 4 4の内面に堆積膜を薄く残す
ことにより、 処理再開前に処理室 4 4の内面に堆積膜をわざわざ形成し なくて済むため、 すなわち、 空デポ工程を省略することができるため、 ランブ加熱式減圧 CVD装置の休止時間を短縮することができ、 ランプ 加熱式減圧 C V D装置の稼動効率を向上させることができる。 ちなみに 、 処理室 4 4の内面に薄く残す堆積膜の厚さは、 4 0 nm〜90 nmで あ 0 Therefore, dry cleaning is properly terminated with a thin deposited film remaining on the inner surface of the processing chamber 44. Processing chamber 4 Leave thin deposited film on inner surface of 4 As a result, it is not necessary to form a deposited film on the inner surface of the processing chamber 44 before the processing is resumed, that is, since the empty deposition step can be omitted, the downtime of the ramp-heating type decompression CVD apparatus can be reduced. The operation efficiency of the lamp heating type decompression CVD apparatus can be improved. Incidentally, the thickness of the deposited film left thinly on the inner surface of the processing chamber 44 is 40 nm to 90 nm.
なお、 終点は最後のピークの到達時点を基準に決定するに限らず、 条 件に応じて適宜決定できることは、 前記実施形態 1と同様である。 以上のようにして終点判定部 22によって終点が判定されて、 ドライ クリーニングを終了させる指令がエッチングガス制御部 1 2に指令され ると、 エッチングガス制御部 1 2の制御によってエッチングガス供給装 置 1 1からのエッチングガスの供給が停止される。 必要に応じて、 窒素 ガス等のパージガスがエッチングガス供給装置 1 1または原料ガス供給 装置 9から処理室 4 4の内部に供給される。 これにより、 堆積膜に対す るエッチング反応が殆ど無くなるため、 ドライクリーニングが終了され た伏態になる。 Note that the end point is not limited to be determined based on the arrival point of the last peak, but can be appropriately determined according to conditions, as in the first embodiment. As described above, the end point is determined by the end point determination unit 22, and when a command to end the dry cleaning is issued to the etching gas control unit 12, the etching gas supply unit 1 is controlled by the etching gas control unit 12. The supply of the etching gas from 1 is stopped. If necessary, a purge gas such as a nitrogen gas is supplied from the etching gas supply device 11 or the source gas supply device 9 into the processing chamber 44. As a result, the etching reaction on the deposited film hardly occurs, and the dry cleaning is completed.
その後、 ドライクリ一ニングされたランプ加熱式減圧 CVD装置によ つて CVD成膜処理が再開される。 この際、 前述した通り、 空デボ工程 は省略することができる。 CVD処理再開後において、 ランプ加熱式減 圧 CVD装置の処理室 4 4およびサセプタ 45の堆積膜は所定の厚さに ドライクリーニングされているため、 処理室 4 4およびサセプタ 4 5か ら剝餱することはなく、堆積膜が被処理物としてのウェハ 4を汚染する ことは無い。 Thereafter, the CVD film forming process is restarted by the dry-heated, low-pressure, lamp-heated CVD apparatus. At this time, as described above, the empty devouring step can be omitted. After the restart of the CVD process, the deposited film in the processing chamber 44 and the susceptor 45 of the lamp heating type decompression CVD apparatus is dry-cleaned to a predetermined thickness. The deposited film does not contaminate the wafer 4 to be processed.
図 1 2は本発明の実施形態 8である I Cの製造方法に使用されるブラ ズマ CVD装置を示すプロック図である。 FIG. 12 is a block diagram showing a plasma CVD apparatus used in the IC manufacturing method according to the eighth embodiment of the present invention.
本実施形態 8が前記実施形態 1と異なる点は、 プラズマ CVD装置が
使用される点である。 プラズマ C V D装置 5 0は円盤形状に形成された ベース 5 1を備えており、 ベース 5 1の上には大小径の円筒形状に形成 された上カップ 5 2および下カップ 5 3が処理室 5 4を形成するように 配置されている。 処理室 5 4の内部にはウェハ 4を保持する保持治具と してのサセプタを兼ねる下部電極 5 5がべ一ス 5 1と同一平面内で同心 円に配置されており、 下部電極 5 5は上方に対向配置された上部電極 5 9との間でプラズマを発生するように構成されている。 下部電極 5 5は 支軸 5 6によって支持されており、 支軸 5 6は上下動装置 (図示せず) によって上下動されるとともに、 回転駆動装置 (図示せず) によって回 転されるようになっている。 上カップ 5 2および下カップ 5 3の一部に は被処理物としてのウェハを出し入れするための出し入れ口 5 7が開設 されている。 出し入れ口 5 7にはロードロック室 (図示せず) が瞬接し て連結されており、 ウェハはロード αツク室と処理室 5 との間を出し 入れ口 5 7を通じて、 ハンドリング装置 (図示せず) によって一枚ずつ 自動的に搬入搬出されるようになっている。 出し入れ口 5 7にはキヤッ ブ 5 8が装着されており、 キヤッブ 5 8は出し入れ口 5 7を開閉するよ うに構成されている。 Embodiment 8 is different from Embodiment 1 in that the plasma CVD apparatus It is the point used. The plasma CVD apparatus 50 includes a base 51 formed in a disk shape. On the base 51, an upper cup 52 and a lower cup 53 formed in a large and small diameter cylindrical shape are disposed in a processing chamber 54. Are arranged to form Inside the processing chamber 54, a lower electrode 55 also serving as a susceptor as a holding jig for holding the wafer 4 is arranged concentrically in the same plane as the base 51. Is configured to generate plasma with the upper electrode 59 disposed facing upward. The lower electrode 55 is supported by a support shaft 56, and the support shaft 56 is moved up and down by a vertical movement device (not shown) and rotated by a rotary drive device (not shown). Has become. A part of the upper cup 52 and a part of the lower cup 53 is provided with an inlet / outlet 57 for taking in / out a wafer as an object to be processed. A load lock chamber (not shown) is instantaneously connected to the loading / unloading port 57, and the wafer passes through the loading / unloading port 57 between the load α chamber and the processing chamber 5, and a handling device (not shown). ) Automatically loads and unloads one by one. A cabinet 58 is attached to the entrance 57, and the cabinet 58 is configured to open and close the entrance 57.
ベース 5 1の中央部には石英ガラス窓 6 0が嵌め込まれており、 石英 ガラス窓 6 0の下方には処理室 5 4の内部を全体にわたって均一に加熱 するための加熱用ランプ 1 8 Αが複数台設備されている。 加熱用ランプ 1 8 Aは温度制御部 1 9によって制御されるように構成されている。 上カップ 5 2にはガス供給口 7が上部電極 5 9に対向するように開設 されており、 ガス供給口 7にはガス供給路 8が接続されている。 ガス供 給路 8には原料ガス供給装置 9が接続されており、 原料ガス供給装 g 9 は成膜シーケンス制御部 1 0によって制御されて原料ガスを供給するよ うに構成されている。 また、 ガス供給路 8にはエッチングガス供給装置
1 1が接銃されており、 エッチングガス供給装置 1 1はエッチングガス 制御部 1 2によつて制御されてエツチングガスを供給するように構成さ れている。 また、 上カップ 5 2には排気口 1 4が開設されており、 排気 口 1 4には排気路 1 5が接銃されている。 排気路 1 5には真空排気装置 1 6が接統されており、 真空排気装置 1 6は圧力制御部 1 7により制御 されて処理室 5 4を所定の真空度に真空排気し得るように構成されてい る。 圧力制御部 1 7は成膜シーケンス制御部 1 0に接銃されている。 上カップ 5 2および下カップ 5 3の外部にはクリーニング終点検出用 温度センサとしての熱電対 2 0が複数、 処理室 5 4に近接してそれぞれ 配置されており、 熱電対 2 0は温度変化監視部 2 1に接続されている。 熱電対 2 0は処理室 5 4の温度分布を全体にわたって測定し得るように 配置されている。 上カップ 5 2および下カップ 5 3の外部にはクリー二 ング終点検出用温度センサとしての放射温度計 2 O Aが複数、 処理室 5 4における下部電極 5 5や上部電極 5 9の温度を非接触で測定するよう に設備されており、 放射温度計 2 O Aも温度変化監視部 2 1に接続され ている。 放射温度計 2 O Aも処理室 5 4の温度分布を全体にわたって測 定し得るように配置されている。 温度変化監視部 2 1の出力端は終点判 定部 2 2の一方の入力端に接続されており、 終点判定部 2 2の他方の入 力端には終点テーブル記憶部 2 3が接続されている。 また、 終点判定部 2 2の出力端はエッチングガス制御部 1 2に接続されており、 終点判定 部 2 2は判定結果をエッチングガス制御部 1 2に送信するようになって いる。 A quartz glass window 60 is fitted in the center of the base 51, and a heating lamp 18 mm for uniformly heating the entire inside of the processing chamber 54 is provided below the quartz glass window 60. Multiple units are installed. The heating lamp 18 A is configured to be controlled by the temperature controller 19. A gas supply port 7 is opened in the upper cup 52 so as to face the upper electrode 59, and a gas supply path 8 is connected to the gas supply port 7. A source gas supply device 9 is connected to the gas supply path 8, and the source gas supply device g9 is configured to supply a source gas under the control of a film formation sequence control unit 10. In addition, an etching gas supply device is An etching gas supply device 11 is controlled by an etching gas control unit 12 to supply an etching gas. An exhaust port 14 is opened in the upper cup 52, and an exhaust path 15 is connected to the exhaust port 14. A vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device 16 is controlled by a pressure control unit 17 so that the processing chamber 54 can be evacuated to a predetermined degree of vacuum. It has been done. The pressure controller 17 is in contact with the film forming sequence controller 10. A plurality of thermocouples 20 as temperature sensors for detecting the end point of cleaning are arranged outside the upper cup 52 and the lower cup 53 in close proximity to the processing chamber 54, and the thermocouple 20 monitors a temperature change. Connected to part 21. The thermocouple 20 is arranged so that the temperature distribution of the processing chamber 54 can be measured throughout. A plurality of radiation thermometers 2 OA as temperature sensors for detecting a cleaning end point are provided outside the upper cup 52 and the lower cup 53. The thermometer 2 OA is also connected to the temperature change monitoring unit 21. The radiation thermometer 2OA is also arranged so that the temperature distribution in the processing chamber 54 can be measured throughout. The output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point judgment unit 22.The other input terminal of the end point judgment unit 22 is connected to the end point table storage unit 23. I have. Further, the output terminal of the end point determination unit 22 is connected to the etching gas control unit 12, and the end point determination unit 22 transmits the determination result to the etching gas control unit 12.
プラズマ C V D装置においても、 原料ガスの反応によって成腠される 際には処理室の内面や保持治具としてのサセブ夕の外面に反応生成物が 堆積して膜を形成する。 堆積膜はある程度の厚みに達すると、 剝雜して 処理中のウェハを汚染するため、 プラズマ C V D装置においてもクリー
ニングが必要である。 Also in the plasma CVD apparatus, when the reaction gas is formed by the reaction of the raw material gas, a reaction product is deposited on an inner surface of the processing chamber or an outer surface of the substrate as a holding jig to form a film. When the deposited film reaches a certain thickness, it becomes contaminated and contaminates the wafer being processed. Is necessary.
なお、 エッチングガスがプラズマによって活性される点を除いて、 前 述したランブ加熱式減圧 C V D装置と作用は実質的に同様であるので、 プラズマ C V D装置のドライクリーニング法の説明は省略する。 Except that the etching gas is activated by the plasma, the operation is substantially the same as that of the above-described lumped heating type decompression CVD apparatus, so that the description of the dry cleaning method of the plasma CVD apparatus is omitted.
図 1 3は本発明の実施形憩 9である I Cの製造方法に使用されるドラ ィエッチング装置を示すブロック図である。 FIG. 13 is a block diagram showing a dry etching apparatus used in the method of manufacturing IC, which is Embodiment 9 of the present invention.
本実施形態 9が前記実施形態 1と異なる点は、 ドライエッチング装置 が使用される点である。 ドライエッチング装置 6 1は円盤形状に形成さ れたベース 6 2を備えており、 ベース 6 2の上には半球のドーム形状に 形成されたカバー 6 3がベース 6 2と協働して処理室 6 4を形成するよ うに配置されている。 処理室 6 4の内部にはウェハ 4を保持する保持治 具としてのサセプタを兼ねる下部電極 6 5がベース 6 2と同心円に配置 されており、 下部電極 6 5は上方に対向配置された上部電極 6 9との間 でプラズマを発生するように構成されている。 下部電極 6 5は支轴 6 6 によって支持されており、 支軸 6 6は上下動装置 (図示せず) によって 上下動されるとともに、 回転駆動装置 (図示せず) によって回転される ようになつている。 ベース 6 2の一部には被処理物としてのウェハを出 し入れするための出し入れ口 6 7が開設されている。 出し入れ口 6 7に はロードロック室 (図示せず) が隣接して連結されており、 ウェハは口 ードロック室と処理室 6 との間を出し入れ口 6 7を通じて、 ハンドリ ング装置 (図示せず) によって一枚ずつ自動的に搬入搬出されるように なっている。 出し入れ口 6 7にはキャップ 6 8が装着されており、 キヤ ップ 6 8は出し入れ口 6 7を開閉するように構成されている。 Embodiment 9 is different from Embodiment 1 in that a dry etching apparatus is used. The dry etching apparatus 61 has a disk-shaped base 62, and a hemispherical dome-shaped cover 63 is formed on the base 62 in cooperation with the base 62. 6 4 are arranged. Inside the processing chamber 64, a lower electrode 65 also serving as a susceptor as a holding jig for holding the wafer 4 is arranged concentrically with the base 62, and the lower electrode 65 is an upper electrode facing upward. It is configured to generate plasma between them. The lower electrode 65 is supported by a support 66, and the support shaft 66 is moved up and down by a vertical movement device (not shown) and rotated by a rotation drive device (not shown). ing. A part of the base 62 is provided with an inlet / outlet 67 for taking in / out a wafer as an object to be processed. A load lock chamber (not shown) is adjacently connected to the inlet / outlet 67, and a wafer passes through the inlet / outlet 67 between the inlet / outlet lock chamber and the processing chamber 6 and a handling device (not shown). It is designed to automatically carry in and out one by one. A cap 68 is attached to the access port 67, and the cap 68 is configured to open and close the access port 67.
上部電極 6 9にはガス供給路 8を接続されたガス供耠ロ 7が上部鼋極 6 9の内部にガスを供給するように開設されており、 上部電極 6 9には ガスを下部電極 6 5に向けて吹き出す吹出口 6 9 aが多数個開設されて
いる。 ガス供給路 8には処理ガスとしてのエッチングガス (以下、 処理 ガスという。 ) を供給するための処理ガス供給装置 9 Aが接続されてお り、 処理ガス供給装置 9 Aは処理としてのドライエツチング処理を制御 するための処理シーケンス制御部 1 0 Aによって制御されて処理ガスを 供給するように構成されている。 また、 ガス供給路 8にはドライクリー ニングのためのエッチングガス (以下、 クリーニングガスという。 ) を 供給するクリーニングガス供給装置 1 1が接続されており、 クリーニン グガス供給装置 1 1はクリーニングガス制御部 1 2によって制御されて クリーニングガスを供給するように構成されている。 ベース 6 2には排 気口 1 4が開設されており、 排気口 1 4には排気路 1 5が接続されてい る。 排気路 1 5には真空排気装置 1 6が接続されており、 真空排気装置 1 6は圧力制御部 1 7により制御されて処理室 6 4を所定の真空度に真 空排気し得るように構成されている。 圧力制御部 1 7は処理シーケンス 制御部 1 O Aに接続されている。 A gas supply unit 7 connected to a gas supply path 8 is provided to the upper electrode 69 so as to supply gas to the inside of the upper electrode 69, and gas is supplied to the upper electrode 69. A large number of outlets 6 9 a that blow out toward 5 I have. The gas supply path 8 is connected to a processing gas supply device 9 A for supplying an etching gas (hereinafter referred to as a processing gas) as a processing gas, and the processing gas supply device 9 A is a dry etching as a processing. It is configured to supply a processing gas under the control of a processing sequence controller 10A for controlling the processing. Further, a cleaning gas supply device 11 for supplying an etching gas (hereinafter referred to as a cleaning gas) for dry cleaning is connected to the gas supply path 8, and the cleaning gas supply device 11 is a cleaning gas control unit. It is configured to supply a cleaning gas under the control of 12. An exhaust port 14 is opened in the base 62, and an exhaust path 15 is connected to the exhaust port 14. A vacuum exhaust device 16 is connected to the exhaust path 15, and the vacuum exhaust device 16 is controlled by a pressure control unit 17 so that the processing chamber 64 can be evacuated to a predetermined degree of vacuum. Have been. The pressure controller 17 is connected to the processing sequence controller 1OA.
ベース 6 2およびカバ一 6 3の外部にはクリーニング終点検出用温度 センサとしての熱電対 2 0が複数、 処理室 6 4に近接してそれぞれ配置 されており、 熱電対 2 0は温度 §2化監視部 2 1に接銃されている。 熱電 対 2 0は処理室 6 4の温度分布を全体にわたって測定し得るように配置 されている。 ベース 6 2およびカバー 6 3の外部にはクリーニング終点 検出用温度センサとしての放射温度計 2 O Aが複数、 処理室 6 4におけ る下部電極 6 5や上部電極 6 9の温度を非接触で測定するように設備さ れており、 放射温度計 2 O Aも温度変化監視部 2 1に接続されている。 放射温度計 2 O Aも処理室 6 4の温度分布を全体にわたって測定し得る ように配置されている。 温度変化監視部 2 1の出力端は終点判定部 2 2 の一方の入力端に接続されており、 終点判定部 2 2の他方の入力端には 終点テーブル記憶部 2 3が接続されている。 また、 終点判定部 2 2の出
力端はクリーニングガス制御部 1 2に接銃されており、 終点判定部 2 2 はその判定結果をクリーニングガス制御部 1 2に送信するようになって いる。 Outside the base 62 and the cover 63, a plurality of thermocouples 20 as temperature sensors for detecting the end point of cleaning are arranged in close proximity to the processing chamber 64, respectively.The thermocouple 20 has a temperature of §2. The monitoring unit 21 is in contact with the gun. The thermocouple 20 is arranged so that the temperature distribution of the processing chamber 64 can be measured over the whole. Outside the base 62 and the cover 63, there are multiple radiation thermometers 2OA as temperature sensors for detecting the cleaning end point, and the temperature of the lower electrode 65 and upper electrode 69 in the processing chamber 64 is measured in a non-contact manner The thermometer 2 OA is also connected to the temperature change monitoring unit 21. The radiation thermometer 2OA is also arranged so as to be able to measure the entire temperature distribution of the processing chamber 64. The output terminal of the temperature change monitoring unit 21 is connected to one input terminal of the end point determination unit 22, and the other input terminal of the end point determination unit 22 is connected to the end point table storage unit 23. In addition, the output of the end point The force end is in contact with the cleaning gas control unit 12, and the end point determination unit 22 sends the determination result to the cleaning gas control unit 12.
次に、 前記構成に係るドライエッチング装置に対するドライクリー二 ング法を、 シリコン (S i ) ゲート n M O Sトランジスタの製造方法の ゲート形成工程におけるボリシリコンゲート (図 3参照) をドライエツ チングによって形成する場合について説明する。 Next, a dry cleaning method for the dry etching apparatus according to the above-described configuration is performed in a case where a polysilicon gate (see FIG. 3) is formed by dry etching in a gate forming step of a method for manufacturing a silicon (Si) gate nMOS transistor. Will be described.
ドーブドボリシリコン膜が形成されリソグラフィ一処理によってマス クが形成された被処理物としてのウェハ 4は処理室 6 4に搬入されて、 図 1 3に示されているように、 下部電極 6 5の上に載置される。 真空排 気装置 1 6によって処理室 6 の内部が所定の真空度 ( 1〜 1 0 0 P a ) に真空排気される。 また、 下部電極 6 5と上部電極 6 9との間に髙周 波電力が印加されプラズマが発生される。 The wafer 4 as an object to be processed on which a doped silicon film is formed and a mask is formed by a lithography process is carried into a processing chamber 64, and as shown in FIG. It is placed on. The inside of the processing chamber 6 is evacuated to a predetermined degree of vacuum (1 to 100 Pa) by the vacuum exhaust device 16. Further, a microwave power is applied between the lower electrode 65 and the upper electrode 69 to generate plasma.
次いで、 ド一プドポリシリコン膜をエッチングするための処理ガスと して、 例えば、 四弗化炭素 (C F 4 ) が処理室 6 4の内部に処理ガス供 給装置 9 Aにより供給される。 処理ガスは上部 ¾極 6 9に開設されたガ ス供給口 7に流入して、 上部電極 6 9の吹出口 6 9 aから下部電極 6 5 に保持されたウェハ 4に向けて吹き出される。 吹き出された処理ガスは ウェハ 4に接触しながら下方へ流れて行き、 排気口 1 4から排気される 。 この際、 ウェハ 4に接触する処理ガスはプラズマによって化学的に活 性されるため、 ドープドボリシリコン膜をエッチングする状筋になる。 ここでは、 次の反応式によって、 ドーブドポリシリコン膜がエッチング される。 次式において、 モノシランは揮発性のため、 蒸発して真空排気 され、 ド一ブドボリシリコン膜のマスキングされていない所定領域がェ ツチングされることになる。 Next, as a processing gas for etching the doped polysilicon film, for example, carbon tetrafluoride (CF 4 ) is supplied into the processing chamber 64 by the processing gas supply device 9A. The processing gas flows into the gas supply port 7 formed in the upper electrode 69 and is blown out from the outlet 69 a of the upper electrode 69 toward the wafer 4 held by the lower electrode 65. The blown processing gas flows downward while contacting the wafer 4, and is exhausted from the exhaust port 14. At this time, the processing gas that comes into contact with the wafer 4 is chemically activated by the plasma, so that the processing gas becomes a stripe that etches the doped polysilicon film. Here, the doped polysilicon film is etched by the following reaction formula. In the following formula, since monosilane is volatile, it is evaporated and evacuated, and a predetermined unmasked region of the doped silicon film is etched.
S i + F * →S i F 4 †
所定の時間が経過すると、 処理シーケンス制御部 1 O Aの制御によつ て処理ガス供耠装置 9 Aは処理ガスの供給を停止する。 処理シーケンス 制御部 1 O Aの制御によってキャップ 6が開放され、 ドープドボリシリ コン膜の所定の領域をドライエッチングされたウェハ 4がハンドリング 装置 (図示せず) によって下部電極 6 5からピックアップされて処理室 6 4から搬出される。 繞いて、 次のウェハ 4が処理室 6 4に搬入されて 下部電極 6 5に保持される。 以降、 前記作業が繰り返される。 S i + F * → S i F 4 † When the predetermined time has elapsed, the processing gas supply device 9A stops supplying the processing gas under the control of the processing sequence control unit 1OA. Processing Sequence Control Unit 1 Cap 6 is opened under the control of OA, and a wafer 4 having a predetermined region of the doped polysilicon film dry-etched is picked up from lower electrode 65 by a handling device (not shown) and processed in a processing chamber 64. It is carried out from. Next, the next wafer 4 is carried into the processing chamber 64 and held by the lower electrode 65. Thereafter, the above operation is repeated.
ところで、 ドライエツチング装置においてはェッチングガスと被処理 膜とのエツチング反応によつて生成された物質が処理室の内面や上部電 極、 下部電極の外面に堆積して膜 (以下、 堆積膜という。 〉 を形成する 。 堆積膜はある程度の厚みに達すると、 剝雕して処理中のウェハに付着 して製品不良の原因になるため、 ドライエッチング装置においてもクリ —ニングが必要である。 そこで、 本実施形態においては、 ドーブドポリ シリコンの堆積膜がある程度の厚みに達すると、 処理室 6 4の内部全体 にわたつてドライクリーニングすることにより、 処理室 6 4や下部電極 6 5および上部電極 6 9に堆積した堆積膜が除去される。 By the way, in a dry etching apparatus, a substance generated by an etching reaction between an etching gas and a film to be processed is deposited on an inner surface of a processing chamber or an outer surface of an upper electrode or a lower electrode (hereinafter, referred to as a deposited film). If the deposited film reaches a certain thickness, it will be sculpted and adhere to the wafer being processed, causing product defects. Therefore, cleaning is also required in dry etching equipment. In the embodiment, when the deposited film of the doped polysilicon reaches a certain thickness, the deposited film is deposited on the processing chamber 64, the lower electrode 65, and the upper electrode 69 by performing dry cleaning over the entire inside of the processing chamber 64. The deposited film is removed.
処理室 6 4の内面や下部電極 6 5および上部電極 6 9の外面に堆積し たドープドポリシリコンの堆積膜の厚さが、 予め設定された所定の値に 達すると、 処理シーケンス制御部 1 O Aによって処理モードからドライ クリーニングモードに切り換えられる。 例えば、 枚葉式ドライエツチン グ装置でドープドポリシリコンの堆積膜の場合、 ドライクリーニングを 開始する膜厚は、 l O j^ mである。 ドライクリーニングモードに切り換 えられると、 ウェハ 4の処理室 6 4への搬入が中断され、 処理室 6 4の 内部の圧力は処理作業時の圧力を圧力制御部 1 7の制御による真空排気 装置 1 6の真空排気によって維持される。 When the thickness of the deposited film of doped polysilicon deposited on the inner surface of the processing chamber 64 and the outer surfaces of the lower electrode 65 and the upper electrode 69 reaches a predetermined value, the processing sequence controller 1 OA switches from processing mode to dry cleaning mode. For example, in the case of a deposited film of doped polysilicon in a single-wafer dry etching apparatus, the film thickness at which dry cleaning is started is lOj ^ m. When the mode is switched to the dry cleaning mode, the loading of the wafer 4 into the processing chamber 64 is interrupted, and the pressure inside the processing chamber 64 is reduced by the pressure in the processing operation to a vacuum exhaust unit controlled by the pressure control unit 17. Maintained by evacuation of 16.
ウェハ 4の処理室 6 4への搬入が中断されると、 クリーニングガス制
御部 12の制御によってクリーニングガス供給装置 1 1からクリーニン グガスが処理室 64の内部にガス供給路 8を通じて供耠される。 クリー ニングガスは上部 極 69のガス供給口 7から流入し、 上部 S檬 69の 吹出口 69 aから吹き出す。 吹き出したクリーニングガスは処理室 64 の内面や下部電極 65および上部電極 69の外面に堆積した堆積膜に接 触しながら下方へ流れて行き、 真空排気装置 1 6によって排気口 14か ら排気される。 クリーニングガスとして、 三弗化塩素 (C 1 F8 ) ガス が使用された場合、 次の反応式によって、 ドープドボリシリコンの堆積 膜がエッチングされる。 When the loading of wafers 4 into processing chamber 64 is interrupted, the cleaning gas system The cleaning gas is supplied from the cleaning gas supply device 11 into the processing chamber 64 through the gas supply path 8 under the control of the control unit 12. The cleaning gas flows in from the gas supply port 7 of the upper electrode 69 and blows out from the outlet 69a of the upper lemon 69. The blown-out cleaning gas flows downward while contacting the deposition film deposited on the inner surface of the processing chamber 64 and the outer surfaces of the lower electrode 65 and the upper electrode 69, and is exhausted from the exhaust port 14 by the vacuum exhaust device 16 . When chlorine trifluoride (C 1 F 8 ) gas is used as a cleaning gas, the deposited film of doped polysilicon is etched by the following reaction formula.
2S i +4C 1 Fs →S i F4 +S i Cし +2 F2 +C 12 2 P2 06 + 2C l Fs →2PFs + 502 +C 12 2S i + 4C 1 F s → S i F 4 + S i C +2 F 2 + C 1 2 2 P 2 0 6 + 2C l F s → 2PFs +50 2 + C 1 2
なお、 式中、 0はゲート酸化シリコン膜の酸素である。 Note that in the formula, 0 is oxygen in the gate silicon oxide film.
エッチングによる反応生成物は余分のクリーニングガスと共に、 真空 排気装置 1 6によって排気口 1 4から排気されて行く。 堆積膜はエッチ ングによって次第に除去されて行き、 相対的に処理室 64の内面や下部 電極 65および上部電極 69の外面がクリーニングされて行く。 The reaction product of the etching is exhausted from the exhaust port 14 by the vacuum exhaust device 16 together with the excess cleaning gas. The deposited film is gradually removed by etching, and the inner surface of the processing chamber 64 and the outer surfaces of the lower electrode 65 and the upper electrode 69 are relatively cleaned.
ドライクリーニングの終点は、 ドライクリーニング中における処理室 64の内部の温度変化を温度変化監視部 21によって監視することによ り、 的確に判定される。 処理室 64の内部温度変化を複数の場所で検出 される本実施形態においては、 各温度変化曲線のピークが監視され最後 のピークの到達時点が終点判定部 22によって終点と判定される。 以上のようにして終点判定部 22によって終点が判定されて、 ドライ クリーニングを終了させる指令がクリーニングガス制御部 12に指令さ れると、 クリーニングガス制御部 12の制御によってクリーニングガス 供給装置 1 1からのクリーニングガスの供給が停止される。 必要に応じ て、 窒素ガス等のパージガスがクリーニングガス供給装置 1 1または処
理ガス供給装置 9 Aから処理室 6 4の内部に供給される。 これにより、 堆積膜に対するエツチング反応が殆ど無くなるため、 ドライクリーニン グが終了された状態になる。 The end point of the dry cleaning is accurately determined by monitoring the temperature change inside the processing chamber 64 during the dry cleaning by the temperature change monitoring unit 21. In the present embodiment in which a change in the internal temperature of the processing chamber 64 is detected at a plurality of locations, the peak of each temperature change curve is monitored, and the end point determination unit 22 determines the end point of the last peak. As described above, the end point is determined by the end point determination unit 22, and a command to end the dry cleaning is issued to the cleaning gas control unit 12. When the cleaning gas control unit 12 controls the cleaning gas supply unit 11, the The supply of the cleaning gas is stopped. If necessary, purge gas such as nitrogen gas is supplied to the cleaning gas The gas is supplied from the processing gas supply device 9 A into the processing chamber 64. As a result, the etching reaction on the deposited film is almost eliminated, and the dry cleaning is completed.
その後、 ドライクリーニングされたドライエッチング装置によってド ライエッチング処理が再開される。 ドライエッチング処理再開後におい て、 ドライエッチング装置の処理室 6 4や下部電極 6 5および上部電極 Thereafter, the dry etching process is restarted by the dry-etched dry etching apparatus. After restarting the dry etching process, the processing chamber 64, lower electrode 65, and upper electrode of the dry etching equipment
6 9の堆積膜は所定の厚さにドライクリーニングされているため、 脱落 することはなく、 堆積膜が被処理物としてのウェハ 4を汚染することは 無い。 Since the deposited film 69 is dry-cleaned to a predetermined thickness, it does not fall off and the deposited film does not contaminate the wafer 4 as an object to be processed.
図 1 4は本発明の実施形態 1 0である I Cの製造方法に使用されるマ イク口波ドライエッチング装置を示すブロック図である。 FIG. 14 is a block diagram showing a micro mouth dry etching apparatus used in the method of manufacturing IC according to the tenth embodiment of the present invention.
本実施形態 1 0が前記実施形態 1と異なる点は、 マイクロ波ドライエ ツチング装置が使用される点である。 マイクロ波ドライエッチング装置 The tenth embodiment differs from the first embodiment in that a microwave dry etching apparatus is used. Microwave dry etching equipment
7 0はマイク口波と磁場の共鳴により高プラズマ密度と充分長い平均自 由工程の両立を狙ったドライエッチング装置であり、 その構成、 作用お よび効果は前記したドライエッチング装置 6 1に準ずるので、 その説明 は省略する。 なお、 図 1 4中、 7 1はソレノイドコイル、 7 2は髙周波 電源、 7 3はマグネトロン (図示せず) に接铙されてマイク α波を導く 導波管である。 Reference numeral 70 denotes a dry etching apparatus which aims at achieving both high plasma density and a sufficiently long average free process by resonance of a microphone mouth wave and a magnetic field.Since its configuration, operation and effect are the same as those of the dry etching apparatus 61 described above, The description is omitted. In FIG. 14, reference numeral 71 denotes a solenoid coil, reference numeral 72 denotes a high-frequency power supply, and reference numeral 73 denotes a waveguide connected to a magnetron (not shown) to guide a microphone α-wave.
以上本発明者によってなされた発明を実施形態に基づき具体的に説明 したが、 本発明は前記実施形態に限定されるものではなく、 その要旨を 逸脱しない範囲で種々変更可能であることはいうまでもない。 Although the invention made by the inventor has been specifically described based on the embodiment, the present invention is not limited to the embodiment, and it is needless to say that various modifications can be made without departing from the gist of the invention. Nor.
例えば、 ドライクリーニングの対象となる堆積膜は、 窒化シリコンお よびドープドポリシリコンによって形成されているものに限らず、 酸化 シリコンやアルミニウム、 タングステン、 チタン、 タンタル、 モリブデ ン等の金属によって形成されているものであってもよい。
また、 ドライクリーニングに使用されるエッチングガスは、 弗素ガス や三弗化塩素ガスに限らず、 弗化水素 (H F) や、 三弗化窒素 (N F 8 ) に弗素 (F 2 ) を添加した混合ガス等であってもよい。 For example, the deposited film to be subjected to dry cleaning is not limited to those formed of silicon nitride and doped polysilicon, but may be formed of metal such as silicon oxide, aluminum, tungsten, titanium, tantalum, molybdenum, or the like. May be available. The etching gas used for dry cleaning is not limited to fluorine gas or chlorine trifluoride gas, but is a mixture of hydrogen fluoride (HF) and nitrogen trifluoride (NF 8 ) to which fluorine (F 2 ) is added. It may be gas or the like.
以上の説明では主として本発明者によってなされた発明をその背景と なつた利用分野である C V D処理およびドライエツチング処理に適用し た場合について説明したが、 それに限定されるものではなく、 ェピタキ シャル成長処理やスパッタリング処理、 蒸着処理等の薄膜形成処理、 並 びに、 ド一ピング処理や集束ィォンビ一ム処理等のィォン照射処理にも 適用することができる。 要するに、 本発明は I Cの製造方法において処 理室で処理が実施されて処理室や治具に堆積膜が形成される処理全般に 適用することができる。 In the above description, the case where the invention made by the present inventor is mainly applied to the CVD and dry etching processes, which are the fields of application that are the background, has been described. However, the present invention is not limited to this, and the epitaxial growth process is not limited thereto. It can also be applied to thin film formation processing such as sputtering, sputtering, and vapor deposition, as well as ion irradiation such as doping and focusing ion beam processing. In short, the present invention can be applied to all processes in which a process is performed in a processing room and a deposited film is formed in a processing room or a jig in the IC manufacturing method.
産業上の利用可能性 Industrial applicability
以上のように、 本発明に係る半導体集積回路装置の製造方法は、 反応 生成物等による堆積膜がドライクリ一ニングされる際にドライクリ一二 ングを的確に終了させることができるため、 半導体集積回路装置の製造 方法全般に広く利用することができる。
As described above, the method for manufacturing a semiconductor integrated circuit device according to the present invention can accurately terminate dry cleaning when a deposited film due to a reaction product or the like is dry cleaned. It can be widely used in the whole method of manufacturing the device.
Claims
1 . 半導体ウェハに対する処理が処理室の内部において繰り返し実施さ れる処理工程と、 前記処理室の内部に前記処理によつて堆積した堆積膜 がエッチングガスによって除去されることにより前記処理室の内部がド ライクリーニングされるドライクリーニング工程とを備えている半導体 集積回路装置の製造方法において、 1. A processing step in which processing on a semiconductor wafer is repeatedly performed inside the processing chamber, and the inside of the processing chamber is removed by removing a deposition film deposited by the processing inside the processing chamber with an etching gas. A method for manufacturing a semiconductor integrated circuit device, comprising:
前記ドライクリ一二ング中に前記処理室の温度変化が直接的または間 接的に測定され、 その測定データに基づいて前記ドライクリ一ニングを 終了させる時点が決められることを特徵とする半導体集積回路装置の製 造方法。 A semiconductor integrated circuit device, wherein a temperature change in the processing chamber is measured directly or indirectly during the dry cleaning, and a time point at which the dry cleaning is terminated is determined based on the measured data. Manufacturing method.
2 . 前記ドライクリーニングを終了させる時点は、 前記堆積膜が前記処 理室の内面において薄く残るように設定されることを特徵とする請求の 範囲第 1項記載の半導体集積回路装置の製造方法。 2. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the time point at which the dry cleaning is completed is set so that the deposited film remains thin on the inner surface of the processing chamber.
3 . 前記温度変化のピークとなった時点が、 前記ドライクリーニングを 終了させる時点と決められることを特徴とする請求の範囲第 1項記載の 半導体集積回路装置の製造方法。 3. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein a time point at which the temperature change reaches a peak is determined as a time point at which the dry cleaning is completed.
4 . 前記処理室の温度変化が複数の場所で測定され、 複数の場所で測定 された温度変化のうち最後のピーク時点がドライクリーニングを終了さ せる時点とされることを特徴とする請求の範囲第 1項記載の半導体集積 回路装置の製造方法。 4. The temperature change in the processing chamber is measured at a plurality of locations, and the last peak time of the temperature changes measured at the plurality of locations is a time when the dry cleaning is completed. 2. The method for manufacturing a semiconductor integrated circuit device according to claim 1.
5 . 前記温度変化のピークとなった時点から所定の期間経過した時点が 、 前記ドライクリ一ニングを終了させる時点と決められることを特徵と する請求の範囲第 1項記載の半導体集積回路装置の製造方法。 5. The manufacturing of the semiconductor integrated circuit device according to claim 1, wherein a point in time when a predetermined period has elapsed from a point in time when the temperature change reaches a peak is determined as a point in time when the dry cleaning is ended. Method.
6 . 実験や過去の実縝デ一夕から得たテ—ブルと、 前記温度変化の現在 のデータとが照合されて、 前記ドライクリーニングを終了させる時点が
決められることを特徵とする請求の範囲第 1項記載の半導体集積回路装 置の製造方法。 6. A table obtained from an experiment or a past run is compared with the current data of the temperature change, and the time at which the dry cleaning is completed is determined. 2. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the method is determined.
7 . 前記温度変化を関数で表し温度の下降時に傾きが変化した時点が、 前記ドライクリ一二ングを終了させる時点と決められることを特徵とす る請求の範囲第 1項記載の半導体集積回路装置の製造方法。 7. The semiconductor integrated circuit device according to claim 1, wherein the temperature change is represented by a function, and a point in time at which the inclination changes when the temperature decreases is determined as a point in time when the dry cleaning ends. Manufacturing method.
8 . 前記処理室に前記半導体ウェハを保持する保持治具が収容された状 態で前記ドライクリーニングが実施されることにより、 前記保持治具が 同時にドライクリ一二ングされることを特徴とする請求の範囲第 1項記 載の半導体集積回路装置の製造方法。 8. The dry cleaning is performed in a state where the holding jig for holding the semiconductor wafer is accommodated in the processing chamber, whereby the holding jig is simultaneously dry-cleaned. 3. The method for manufacturing a semiconductor integrated circuit device according to item 1.
9 . 前記処理工程が、 前記半導体ウェハに薄膜が形成される薄膜形成ェ 程であることを特徵とする請求の範囲第 1項記載の半導体集積回路装置 の製造方法。 9. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the processing step is a thin film forming step of forming a thin film on the semiconductor wafer.
1 0 . 前記処理工程が、 前記半導体ウェハに形成された薄膜の所定の領 域をドライエッチングするドライエッチング工程であることを特徴とす る請求の範囲第 1項記載の半導体集積回路装置の製造方法。
10. The manufacturing of a semiconductor integrated circuit device according to claim 1, wherein said processing step is a dry etching step of dry etching a predetermined area of a thin film formed on said semiconductor wafer. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1996/001847 WO1998001894A1 (en) | 1996-07-03 | 1996-07-03 | Method of manufacturing semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1996/001847 WO1998001894A1 (en) | 1996-07-03 | 1996-07-03 | Method of manufacturing semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998001894A1 true WO1998001894A1 (en) | 1998-01-15 |
Family
ID=14153498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1996/001847 WO1998001894A1 (en) | 1996-07-03 | 1996-07-03 | Method of manufacturing semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1998001894A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003007674A (en) * | 2001-06-19 | 2003-01-10 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor device |
JP2013051350A (en) * | 2011-08-31 | 2013-03-14 | Nuflare Technology Inc | Vapor phase growth method, and vapor-phase growth apparatus |
JP2015037139A (en) * | 2013-08-14 | 2015-02-23 | 株式会社ディスコ | Plasma etching device |
JP2017168781A (en) * | 2016-03-18 | 2017-09-21 | 信越半導体株式会社 | Vapor etching method and manufacturing method for epitaxial substrate |
WO2021185915A1 (en) * | 2020-03-18 | 2021-09-23 | Aixtron Se | Method for ascertaining the end of a cleaning process for a process chamber of a mocvd reactor |
CN116487298A (en) * | 2023-05-17 | 2023-07-25 | 东莞奥美特科技有限公司 | Drying, cleaning and etching integrated equipment for lead frame etching production line |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244739A (en) * | 1987-03-31 | 1988-10-12 | Toshiba Corp | Detection of cleaning end point in semiconductor manufacturing equipment |
JPH01306582A (en) * | 1988-06-06 | 1989-12-11 | Canon Inc | Method for cleaning deposited film forming device |
-
1996
- 1996-07-03 WO PCT/JP1996/001847 patent/WO1998001894A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244739A (en) * | 1987-03-31 | 1988-10-12 | Toshiba Corp | Detection of cleaning end point in semiconductor manufacturing equipment |
JPH01306582A (en) * | 1988-06-06 | 1989-12-11 | Canon Inc | Method for cleaning deposited film forming device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003007674A (en) * | 2001-06-19 | 2003-01-10 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor device |
JP2013051350A (en) * | 2011-08-31 | 2013-03-14 | Nuflare Technology Inc | Vapor phase growth method, and vapor-phase growth apparatus |
JP2015037139A (en) * | 2013-08-14 | 2015-02-23 | 株式会社ディスコ | Plasma etching device |
JP2017168781A (en) * | 2016-03-18 | 2017-09-21 | 信越半導体株式会社 | Vapor etching method and manufacturing method for epitaxial substrate |
WO2021185915A1 (en) * | 2020-03-18 | 2021-09-23 | Aixtron Se | Method for ascertaining the end of a cleaning process for a process chamber of a mocvd reactor |
CN115298349A (en) * | 2020-03-18 | 2022-11-04 | 艾克斯特朗欧洲公司 | Method for determining the end of a cleaning process of a process chamber of a MOCVD reactor |
CN116487298A (en) * | 2023-05-17 | 2023-07-25 | 东莞奥美特科技有限公司 | Drying, cleaning and etching integrated equipment for lead frame etching production line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101057877B1 (en) | Plasma cleaning method and plasma CD method | |
US7691208B2 (en) | Cleaning method | |
US20040262254A1 (en) | Processed object processing apparatus, processed object processing method, pressure control method, processed object transfer method, and transfer apparatus | |
US6358327B1 (en) | Method for endpoint detection using throttle valve position | |
KR101149097B1 (en) | Film formation apparatus for semiconductor process and method for using same | |
JP4490704B2 (en) | Plasma processing method | |
JPH1174258A (en) | Method and device for obtaining final point in plasma cleaning process | |
US7107115B2 (en) | Method for controlling semiconductor processing apparatus | |
KR19990022602A (en) | Plasma Sputter Etching Equipment with Reduced Contamination Particles | |
JP2007531269A (en) | Method and apparatus for plasma enhanced screening of components of apparatus | |
TW200849321A (en) | Plasma processing apparatus and plasma processing method | |
WO2005102545A2 (en) | System and method of removing chamber residues from a plasma processing system in a dry cleaning process | |
US7981780B2 (en) | Method and apparatus for processing semiconductor wafer after impurity implantation | |
JPH11345778A (en) | Method for cleaning film preparing apparatus and mechanism for cleaning the apparatus | |
US6170492B1 (en) | Cleaning process end point determination using throttle valve position | |
JP2006210948A (en) | Plasma processing apparatus | |
JP2008199023A (en) | Method for determining substrate position and, method and device for processing substrate | |
WO1998001894A1 (en) | Method of manufacturing semiconductor integrated circuit device | |
WO2001020652A1 (en) | Method and apparatus for cleaning film deposition device | |
JP3103228B2 (en) | Gas treatment equipment | |
JP2004172409A (en) | Method for cleaning reaction vessel and film formation device | |
US20050284572A1 (en) | Heating system for load-lock chamber | |
JP2022053930A (en) | Method for manufacturing semiconductor device, substrate processing apparatus, and program | |
JP3548634B2 (en) | Film forming apparatus and method for removing deposited film in the apparatus | |
US20080233754A1 (en) | Substrate peripheral film-removing apparatus and substrate peripheral film-removing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |