Nothing Special   »   [go: up one dir, main page]

WO1997025340A1 - Human g-protein chemokine receptor hsatu68 - Google Patents

Human g-protein chemokine receptor hsatu68 Download PDF

Info

Publication number
WO1997025340A1
WO1997025340A1 PCT/US1996/000499 US9600499W WO9725340A1 WO 1997025340 A1 WO1997025340 A1 WO 1997025340A1 US 9600499 W US9600499 W US 9600499W WO 9725340 A1 WO9725340 A1 WO 9725340A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
compound
dna
receptor
Prior art date
Application number
PCT/US1996/000499
Other languages
French (fr)
Inventor
Yi Li
Original Assignee
Human Genome Sciences, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Genome Sciences, Inc. filed Critical Human Genome Sciences, Inc.
Priority to AU48984/96A priority Critical patent/AU4898496A/en
Priority to JP09512227A priority patent/JP2000506365A/en
Priority to PCT/US1996/000499 priority patent/WO1997025340A1/en
Priority to CA002242908A priority patent/CA2242908A1/en
Priority to EP96905151A priority patent/EP0886643A4/en
Publication of WO1997025340A1 publication Critical patent/WO1997025340A1/en
Priority to US10/411,284 priority patent/US7888466B2/en
Priority to US11/017,058 priority patent/US20060014243A1/en
Priority to US13/018,300 priority patent/US8937169B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7158Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for chemokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a human 7- transmembrane receptor which has been putatively identified as a chemokine receptor, sometimes hereinafter referred to as "G-Protein Chemokine Receptor" or "HSATU68" . The invention also relates to inhibiting the action of such polypeptides.
  • proteins participating in signal transduction pathways that involve G-proteins and/or second messengers, e.g., cAMP (Lefkowitz, Nature, 351:353-354 (1991)) .
  • these proteins are referred to as proteins participating in pathways with G-proteins or PPG proteins.
  • Some examples of these proteins include the GPC receptors, such as those for adrenergic agents and dopamine (Kobilka, B.K., et al., PNAS, 84:46-50 (1987); Kobilka, B.K.
  • G-proteins themselves, effector proteins, e.g., phospholipase C, adenyl cyclase, and phosphodiesterase, and actuator proteins, e.g., protein kinase A and protein kinase C (Simon, M.I., et al ., " Science, 252:802-8 (1991)) .
  • effector proteins e.g., phospholipase C, adenyl cyclase, and phosphodiesterase
  • actuator proteins e.g., protein kinase A and protein kinase C (Simon, M.I., et al ., " Science, 252:802-8 (1991)) .
  • the effect of hormone binding is activation of an enzyme, adenylate cyclase, inside the cell.
  • Enzyme activation by hormones is dependent on the presence of the nucleotide GTP, and GTP also influences hormone binding.
  • a G-protein connects the hormone receptors to adenylate cyclase. G- protein was shown to exchange GTP for bound GDP when activated by hormone receptors. The GTP-carrying form then binds to an activated adenylate cyclase. Hydrolysis of GTP to GDP, catalyzed by the G-protein itself, returns the G- protein to its basal, inactive form.
  • the G-protein serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls the duration of the signal.
  • G-protein coupled receptors The membrane protein gene superfamily of G-protein coupled receptors has been characterized as having seven putative transmembrane domains. The domains are believed to represent transmembrane ⁇ -helices connected by extracellular or cytoplasmic loops. G-protein coupled receptors include a wide range of biologically active receptors, such as hormone, viral, growth factor and neuroreceptors.
  • G-protein coupled receptors have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 amino acids, connecting at least eight divergent hydrophilic loops.
  • the G-protein family of coupled receptors includes dopamine receptors which bind to neuroleptic drugs used for treating psychotic and neurological disorders .
  • Other examples of members of this family include calcitonin, adrenergic, endotbelin, cAMP, adenosine, muscarinic, acetylcholine, serotonin, histamine, thrombin, kinin, follicle stimulating hormone, opsins, endothelial differentiation gene-1 receptor and rhodopsins, odorant, cytomegalovirus receptors, etc.
  • G-protein coupled receptors can be intracellularly coupled by heterotrimeric G-proteins to various intracellular enzymes, ion channels and transporters (see, Johnson et al . , Endoc, Rev., 10:317-331 (1989)). Different G-protein ⁇ -subunits preferentially stimulate particular effectors to modulate various biological functions in a cell. Phosphorylation of cytoplasmic residues of G-protein coupled receptors have been identified as an important mechanism for the regulation of G-protein coupling of some G-protein coupled receptors. G- protein coupled receptors are found in numerous sites within a mammalian host.
  • Chemokines also referred to as intercrine cytokines, are a subfamily of structurally and functionally related cytokines. These molecules are 8-10 kd in size. In general, chemokines exhibit 20% to 75% homology at the amino acid level and are characterized by four conserved cysteine residues that form two disulfide bonds. Based on the arrangement of the first two cysteine residues, chemokines have been classified into two subfamilies, alpha and beta. In the alpha subfamily, the first two cysteines are separated by one amino acid and hence are referred to as the "C-X-C" subfamily. In the beta subfamily, the two cysteines are in an adjacent position and are, therefore, referred to as the "C-C” subfamily. Thus far, at least nine different members of this family have been identified in humans.
  • the intercrine cytokines exhibit a wide variety of functions. A hallmark feature is their ability to elicit chemotactic migration of distinct cell types, including monocytes, neutrophils, T lymphocytes, basophils and fibroblasts. Many chemokines have pro-inflammatory activity and are involved in multiple steps during an inflammatory reaction. These activities include stimulation of histamine release, lysosomal enzyme and leukotriene release, increased adherence of target immune cells to endothelial cells, enhanced binding of complement proteins, induced expression of granulocyte adhesion molecules and complement receptors, and respiratory burst. In addition to their involvement in inflammation, certain chemokines have been shown to exhibit other activities.
  • macrophage inflammatory protein 1 is able to suppress hematopoietic stem cell proliferation
  • platelet factor-4 is a potent inhibitor of endothelial cell growth
  • Interleukin-8 IL-8 promotes proliferation of keratinocytes
  • GRO is an autocrine growth factor for melanoma cells.
  • chemokines have been implicated in a number of physiological and disease conditions, including lymphocyte trafficking, wound healing, hematopoietic regulation and immunological disorders such as allergy, asthma and arthritis.
  • novel mature receptor polypeptides as well as biologically active and diagnostically or therapeutically useful fragments, analogs and derivatives thereof .
  • the receptor polypeptides of the present invention are of human origin.
  • nucleic acid molecules encoding the receptor polypeptides of the present invention, including mRNAs, cDNAs, genomic DNA as well as antisense analogs thereof and biologically active and diagnostically or therapeutically useful fragments thereof .
  • an isolated nucleic acid molecule encoding a mature polypeptide expressed by the human cDNA contained in ATCC Deposit No. 97334.
  • processes for producing such receptor polypeptides by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing nucleic acid sequences encoding the receptor polypeptides of the present invention, under conditions promoting expression of said polypeptides and subsequent recovery of said polypeptides.
  • antibodies against such receptor polypeptides comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing nucleic acid sequences encoding the receptor polypeptides of the present invention, under conditions promoting expression of said polypeptides and subsequent recovery of said polypeptides.
  • processes of administering compounds to a host which bind to and activate the receptor polypeptide of the present invention which are useful in stimulating haematopoiesis, wound healing, coagulation, angiogenesis, to treat tumors, chronic infections, leukemia, T-cell mediated auto-immune diseases, parasitic infections, psoriasis, and to stimulate growth factor activity.
  • processes of administering compounds to a host which bind to and inhibit activation of the receptor polypeptides of the present invention which are useful in the prevention and/or treatment of allergy, a herogenesis, anaphylaxis, malignancy, chronic and acute inflammation, hi ⁇ tamine and IgE-mediated allergic reactions, prostaglandin-independent fever, bone marrow failure, silicosis, sarcoidosi ⁇ , rheumatoid arthritis, shock and hyper-eosinophilic syndrome.
  • nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to the polynucleotide sequences of the present invention.
  • diagnostic assays for detecting diseases related to mutations in the nucleic acid sequences encoding such polypeptides and for detecting an altered level of the soluble form of the receptor polypeptides.
  • Figure 1 shows the cDNA sequence and the corresponding deduced amino acid sequence of the G-protein chemokine receptor of the present invention.
  • the standard one-letter abbreviation for amino acids is used. Sequencing was performed using a 373 Automated DNA sequencer (Applied Biosystems, Inc.) .
  • Figure 2 illustrates an amino acid alignment of the G- protein chemokine receptor of the present invention (top) and the human interleukin-8 receptor (bottom) (SEQ ID NO:9)
  • nucleic acid which encodes for the mature polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) .
  • isolated polynucleotides encoding a mature polypeptide expressed by the human cDNA contained in ATCC Deposit No. 97334, deposited with the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, USA, on November 6, 1995.
  • the deposited material is a cDNA insert, encoding a polypeptide of the present invention, cloned into a pBluescript SK(-) vector (Stratagene, La Jolla, CA) , which will confer a picillin resistance upon transformation.
  • the polynucleotide of this invention was discovered in a human genomic library derived from human activated T cells. It is structurally related to the G protein-coupled receptor family. It contains an open reading frame encoding a protein of 415 amino acid residues. The protein exhibits the highest degree of homology at the amino acid level to a human interleukin-8 receptor with 39.31 % identity and 58.405 % similarity.
  • the polynucleotide of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA.
  • the DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand.
  • the coding sequence which encodes the mature polypeptide may be identical to the coding sequence shown in Figure l (SEQ ID NO:l) which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the DNA of Figure 1 (SEQ ID NO:l) .
  • the polynucleotide which encodes for the mature polypeptide of Figure 1 may include: only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide and additional coding sequence such as a transmembrane (TM) or intra-cellular domain; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as introns or non-coding sequence 5' and/or 3' of the coding sequence for the mature polypeptide.
  • the present invention further relates to variants of the hereinabove described polynucleotides which encode for fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figure l (SEQ ID NO:2) .
  • the variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a non-naturally occurring variant of the polynucleotide.
  • the present invention includes polynucleotides encoding the same mature polypeptide as shown in Figure 1 (SEQ ID NO:2) as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptide of Figure 1 (SEQ ID NO:2) .
  • Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.
  • the polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figure l (SEQ ID N0:1) .
  • an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.
  • the polynucleotides may also encode for a soluble form of the G-protein chemokine receptor polypeptide which is the extracellular portion of the polypeptide which has been cleaved from the TM and intracellular domain of the full- length polypeptide of the present invention.
  • the polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptide of the present invention.
  • the marker sequence may be a hexa-histidine tag supplied by a pQE vector (Qiagen) to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used.
  • the HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, I., et al., Cell, 37:767 (1984) ) .
  • gene means the segment of DNA involved in producing a polypeptide chain,- it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons) .
  • Fragments of the full length gene of the present invention may be used as a hybridization probe for a cDNA library to isolate the full length cDNA and to isolate other cDNAs which have a high sequence similarity to the gene or similar biological activity.
  • Probes of this type preferably have at least 15 bases, preferably 30 bases and most preferably, may contain, for example, 50 or more bases.
  • the probe may also be used to identify a cDNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete gene including regulatory and promotor regions, exons, and introns.
  • An example of a screen comprises isolating the coding region of the gene by using the known DNA sequence to synthesize an oligonucleotide probe. Labeled oligonucleotides having a sequence complementary to that of the gene of the present invention are used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
  • the present invention further relates to polynucleotides which hybridize to the hereinabove- described sequences if there is at least 70%, preferably at least 90%, and more preferably at least 95% identity between the sequences.
  • the present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides.
  • stringent conditions means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.
  • polypeptides which either retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figure 1 (SEQ ID NO:l) .
  • the polynucleotide may have at least 15 bases, preferably 30 bases, and more preferably at least 50 bases which hybridize to a polynucleotide of the present invention and which has an identity thereto, as hereinabove described, and which may or may not retain activity.
  • such polynucleotides may be employed as probes for the polynucleotide of SEQ ID NO:l, for example, for recovery of the polynucleotide or as a diagnostic probe or as a PCR primer.
  • the present invention further relates to polynucleotides which hybridize to the hereinabove- described sequences if there is at least 70%, preferably at least 90%, and more preferably at least 95% identity between the sequences.
  • the present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides.
  • stringent conditions means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.
  • polypeptides which either retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figure 1 (SEQ ID NO:l) .
  • the present invention further relates to a G-protein chemokine receptor polypeptide which has the deduced amino acid sequence of Figure l (SEQ ID NO:2) , as well as fragments, analogs and derivatives of such polypeptide.
  • fragment when referring to the polypeptide of Figure 1 (SEQ ID NO:2) , means a polypeptide which either retains substantially the same biological function or activity as such polypeptide, i.e. functions as a G-protein chemokine receptor, or retains the ability to bind the ligand for the receptor, for example, a soluble form of the receptor.
  • An analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.
  • the fragment, derivative or analog of the polypeptide of Figure 1 may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol) , or (iv) one in which the additional amino acids are fused to the mature polypeptide for purification of the polypeptide or (v) one in which a fragment of the polypeptide is soluble, i.e. not membrane bound, yet still binds ligands to the membrane bound receptor.
  • Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the
  • polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
  • the present invention is directed to polynucleotides having at least a 70% identity, preferably at least 90% and more preferably at least a 95% identity to a polynucleotide which encodes the polypeptide of SEQ ID NO:2 and polynucleotides complementary thereto as well as portions thereof, which portions have at least 15 consecutive bases, preferably 30 consecutive bases and more preferably at least 50 consecutive bases and to polypeptides encoded by such polynucleotides.
  • similarity between two polypeptides is determined by comparing the amino acid sequence and conserved amino acid substitutes thereto of the polypeptide to the sequence of a second polypeptide.
  • Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis, therefore, the fragments may be employed as intermediates for producing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.
  • gene means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region “leader and trailer” as well as intervening sequences (introns) between individual coding segments (exons) .
  • isolated means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring) .
  • a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but: the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated.
  • Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.
  • the present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
  • Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector.
  • the vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc.
  • the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention.
  • the culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques.
  • the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide.
  • Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies.
  • any other vector may be used as long as it is replicable and viable in the host.
  • the appropriate DNA sequence may be inserted into the vector by a variety of procedures.
  • the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
  • the DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis.
  • promoter for example, LTR or SV40 promoter, the E. coli. lac or trp, the phage lambda P L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses.
  • the expression vector also contains a ribosome binding site for translation initiation and a transcription terminator.
  • the vector may also include appropriate sequences for amplifying expression.
  • the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracyclnne or ampi- cillin resistance in E. coli.
  • the vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.
  • bacterial cells such as E. coli. Streptomyces, Salmonella typhimurium
  • fungal cells such as yeast
  • insect cells such as Drosophila and Spodoptera Sf9
  • animal cells such as CHO, COS or Bowes melanoma
  • adenovirus plant cells, etc.
  • the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above.
  • the constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation.
  • the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence.
  • a promoter operably linked to the sequence.
  • Bacterial pQE70, pQE60, pQE-9 (Qiagen), pbs, pDIO, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNHl6a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia) .
  • Eukaryotic pWLNEO, pSV2CAT, pOG44, pXTl, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia) .
  • any other plasmid or vector may be used as long as they are replicable and viable in the host.
  • Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers.
  • Two appropriate vectors are PKK232-8 and PCM7.
  • Particular named bacterial promoters include lad, lacZ, T3, T7, gpt, lambda P R , P, and trp.
  • Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTR ⁇ from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
  • the present invention relates to host cells containing the above-described construct ⁇ .
  • the ho ⁇ t cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
  • Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation. (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)) .
  • constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence.
  • the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
  • Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al. , Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.
  • Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
  • recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TR.P1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence.
  • promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK) , c*-factor, acid phosphatase, or heat shock proteins, among others.
  • the heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium.
  • the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.
  • Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter.
  • the vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host.
  • Suitable prokaryotic hosts for transformation include E. coli. Bacillus subtilis, " Salmonella tvohimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.
  • useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017) .
  • cloning vector pBR322 ATCC 37017
  • Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, Wl, USA) .
  • pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expres ⁇ ed.
  • the selected promoter is induced by appropriate means
  • Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
  • Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze- thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
  • mammalian cell culture systems can also be employed to express recombinant protein.
  • mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 (1981) , and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.
  • Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
  • the G-protein chemokine receptor polypeptides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.
  • HPLC high performance liquid chromatography
  • polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture) .
  • a prokaryotic or eukaryotic host for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture
  • the polypeptides of the present invention may be glycosylated or may be non- glycosylated.
  • Polypeptides of the invention may also include an initial methionine amino acid residue.
  • polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and di ⁇ ignostics to human disease.
  • the G-protein chemokine receptors of the present invention may be employed in a proces ⁇ for screening for compounds which activate (agonists) or inhibit activation (antagonists) of the receptor polypeptide of the present invention .
  • such screening procedures involve providing appropriate cells which express the receptor polypeptide of the present invention on the surface thereof.
  • Such cells include cells from mammals, yeast, drosophila or E. Coli .
  • a polynucleotide encoding the receptor of the present invention is employed to transfect cells to thereby express the G-protein chemokine receptor.
  • the expressed receptor is then contacted with a test compound to observe binding, stimulation or inhibition of a functional response.
  • such assay may be employed for screening for a compound which inhibits activation of the receptor polypeptide of the present invention by contacting the melanophore cells which encode the receptor with both the receptor ligand and a compound to be screened. Inhibition of the signal generated by the ligand indicates that a compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.
  • the screen may be employed for determining a compound which activates the receptor by contacting such cells with compounds to be screened and determining whether such compound generates a signal, i.e. , activates the receptor.
  • G-protein chemokine receptor for example, transfected CHO cells
  • compounds may be contacted with a cell which expresses the receptor polypeptide of the present invention and a second messenger response, e.g. signal transduction or pH changes, may be measured to determine whether the potential compound activates or inhibits the receptor.
  • Another such screening technique involves introducing RNA encoding the G-protein chemokine receptor into Xenopus oocytes to transiently express the receptor.
  • the receptor oocytes may then be contacted with the receptor ligand and a compound to be screened, followed by detection of inhibition or activation of a calcium signal in the case of screening for compounds which are thought to inhibit activation of the receptor.
  • Another screening technique involves expressing the G- protein chemokine receptor in which the receptor is linked to a phospholipase C or D.
  • a phospholipase C or D As representative examples of such cells, there may be mentioned endothelial cells, smooth muscle cells, embryonic kidney cells, etc.
  • the screening may be accomplished as hereinabove described by detecting activation of the receptor or inhibition of activation of the receptor from the phospholipase second signal.
  • Another method involves screening for compounds which inhibit activation of the receptor polypeptide of the present invention by determining the inhibition of binding of a labeled ligand to cells which have the receptor on the surface thereof.
  • Such a method comprises transfecting a eukaryotic cell with DNA encoding the G-protein chemokine receptor of the present invention such that the cell expresses the receptor on its surface and contacting the cell with a compound in the presence of a labeled form of a known ligand.
  • the ligand can be labeled, e.g., by radioactivity.
  • the amount of labeled ligand bound to the receptors is measured, e.g., by measuring radioactivity of the receptors. If the compound binds to the receptor as determined by a reduction of labeled ligand which binds to the receptors, the binding of labeled ligand to the receptor is inhibited.
  • An antibody may antagonize a G-protein chemokine receptor of the present invention, or in some cases an oligopeptide, which bind to the G-protein chemokine receptor but does not elicit a second messenger response such that the activity of the G-protein chemokine receptors is prevented.
  • Antibodies include anti-idiotypic antibodies which recognize unique determinants generally associated with the antigen-binding site of an antibody.
  • Potential antagonist compounds also include proteins which are closely related to the ligand of the G-protein chemokine receptors, i.e. a fragment of the ligand, which have lost biological function and when binding to the G-protein chemokine receptor elicit no response.
  • An antisense construct prepared through the use of antisense technology may be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA.
  • the 5' coding portion of the polynucleotide sequence which encodes for the mature polypeptides of the present invention, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length.
  • a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix -see Lee et al., Nucl.
  • the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of mRNA molecules into G-protein coupled receptor (antisense - Okano, J. Neurochem. , 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).
  • the oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of G-protein chemokine receptor.
  • a small molecule which binds to the G-protein chemokine receptor, making it inaccessible to ligands such that normal biological activity is prevented for example small peptides or non-peptide antagonists, may also be used to inhibit activation of the receptor polypeptide of the present invention.
  • a soluble form of the G-protein chemokine receptor e.g. a fragment of the receptors, may be used to inhibit activation of the receptor by binding to the ligand to a polypeptide of the present invention and preventing the ligand from interacting with membrane bound G-protein chemokine receptors.
  • the compounds which bind to and activate the G-protein chemokine receptors of the present invention may be employed to stimulate haematopoiesis, wound healing, coagulation, angiogenesis, to treat tumors, chronic infections, leukemia, T-cell mediated auto-immune diseases, parasitic infections, psoriasis, and to stimulate growth factor activity.
  • the compounds which bind to and inhibit the G-protein chemokine receptors of the present invention may be employed to treat allergy, atherogenesi ⁇ , anaphylaxis, malignancy, chronic and acute inflammation, histamine and IgE-mediated allergic reactions, prostaglandin-independent fever, bone marrow failure, silico ⁇ i ⁇ , sarcoidosis, rheumatoid arthritis, shock and hyper-eosinophilic ⁇ yndrome.
  • compositions comprise a therapeutically effective amount of the compound and a pharmaceutically acceptable carrier or excipient.
  • a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
  • the formulation should suit the mode of administration.
  • the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
  • a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
  • Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • the compounds of the present invention may be employed in conjunction with other therapeutic compounds.
  • the pharmaceutical compositions may be administered in a convenient manner such as by the topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. '
  • the pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication.
  • the pharmaceutical compositions will be administered in an amount of at least about 10 ⁇ g/kg body weight and in most cases they will be administered in an amount not in excess of about 8 mg/Kg body weight per day. In most cases, the dosage is from about 10 ⁇ g/kg to about 1 mg/kg body weight daily, taking into account the routes of administration, symptoms, etc.
  • soluble G-protein chemokine receptor polypeptides and antagonists or agonists which are polypeptides may also be employed in accordance with the present invention by expression of such polypeptides in vivo, which is often referred to as "gene therapy.”
  • cells from a patient may be engineered with a polynucleotide (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide.
  • a polynucleotide DNA or RNA
  • cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.
  • cells may be engineered in vivo for expression of a polypeptide in vivo by, for example, procedures known in the art.
  • a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo.
  • the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle.
  • Retroviruses from which the retroviral plasmid vectors hereinabove mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.
  • the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.
  • the vector includes one or more promoters.
  • Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and the human cytomegalovirus (CMV) promoter described in Miller, et al., Biotechni ⁇ ues, Vol. 7, No. 9, 980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, pol III, and /8-actin promoters) .
  • CMV human cytomegalovirus
  • viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein.
  • Suitable promoters which may be employed include, but are not limited to, adenoviral promoters, such as the adenoviral major late promoter,- or hetorologous promoters, such as the cytomegalovirus (CMV) promoter,- the respiratory syncytial virus (RSV) promoter ; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter,- the ApoAI promoter; human globin promoters,- viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs (including the modified retroviral LTRs hereinabove described) ,- the 3-actin promoter; and human growth hormone promoters.
  • adenoviral promoters such as the adenoviral major late promoter,- or hetorologous promoters, such as the
  • the promoter also may be the native promoter which controls the genes encoding the polypeptides.
  • the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, ⁇ -2 , ⁇ -AM, PA12, T19- 14X, VT-19-17-H2, ⁇ RE , ⁇ RIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, Human Gene Therapy. Vol. 1, pgs. 5-14 (1990), which i ⁇ incorporated herein by reference in its entirety.
  • the vector may transduce the packaging cells through any means known in the art.
  • retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
  • the producer cell line generates infectious retroviral vector particles which include the nucleic acid sequence(s) encoding the polypeptides.
  • retroviral vector particle ⁇ then may be employed, to tran ⁇ duce eukaryotic cell ⁇ , either in vi tro or in vivo.
  • the tran ⁇ duced eukaryotic cell ⁇ will expre ⁇ s the nucleic acid sequence(s) encoding the polypeptide.
  • Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myobla ⁇ t ⁇ , keratinocytes, endothelial cells, and bronchial epithelial cells.
  • the present invention also provides a method for determining whether a ligand not known to be capable of binding to a G-protein chemokine receptor can bind to such receptor which comprises contacting a mammalian cell which expresses a G-protein chemokine receptor with the ligand under conditions permitting binding of ligands to the G- protein chemokine receptor, detecting the presence of a ligand which binds to the receptor and thereby determining whether the ligand binds to the G-protein chemokine receptor.
  • the systems hereinabove described for determining agonists and/or antagonists may also be employed for determining ligands which bind to the receptor.
  • This invention also provides a method of detecting expression of a G-protein chemokine receptor polypeptide of the present invention on the surface of a cell by detecting the presence of mRNA coding for the receptor which comprises obtaining total mRNA from the cell and contacting the mRNA so obtained with a nucleic acid probe comprising a nucleic acid molecule of at least 10 nucleotides capable of specifically hybridizing with a ⁇ equence included within the sequence of a nucleic acid molecule encoding the receptor under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of the receptor by the cell.
  • the present invention also provides a method for identifying receptors related to the receptor polypeptides of the present invention. These related receptors may be identified by homology to a G-protein chemokine receptor polypeptide of the present invention, by low stringency cross hybridization, or by identifying receptors that interact with related natural or synthetic ligands and or elicit similar behaviors after genetic or pharmacological blockade of the chemokine receptor polypeptides of the present invention.
  • the present invention also contemplates the use of the gene of the present invention as a diagnostic, for example, some diseases result from inherited defective genes. These genes can be detected by comparing the sequences of the defective gene with that of a normal one. Subsequently, one can verify that a "mutant" gene is associated with abnormal receptor activity. In addition, one can insert mutant receptor genes into a suitable vector for expression in a functional as ⁇ ay system (e.g., colorimetric assay, expression on MacConkey plates, complementation experiments, in a receptor deficient strain of HEK293 cell ⁇ ) a ⁇ yet another means to verify or identify mutations. Once "mutant" genes have been identified, one can then screen population for carriers of the "mutant" receptor gene.
  • a functional as ⁇ ay system e.g., colorimetric assay, expression on MacConkey plates, complementation experiments, in a receptor deficient strain of HEK293 cell ⁇
  • Nucleic acids used for diagnosis may be obtained from a patient's cells, including but not limited to such as from blood, urine, saliva, tissue biopsy and autopsy material.
  • the genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki, et al. , Nature, 324:163-166 1986) prior to analysis .
  • RNA or cDNA may also be u ⁇ ed for the same purpo ⁇ e.
  • a ⁇ an example, PCR primer ⁇ complimentary to the nucleic acid of the instant invention can be used to identify and analyze mutations in the gene of the present invention.
  • deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype.
  • Point mutations can be identified by hybridizing amplified DNA to radio labeled RNA of the invention or alternatively, radio labeled antisense DNA sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures. Such a diagnostic would be particularly useful for prenatal or even neonatal testing.
  • Sequence differences between the reference gene and "mutants" may be revealed by the direct DNA sequencing method.
  • cloned DNA segments may be used as probes to detect specific DNA segments.
  • the sensitivity of this method is greatly enhanced when combined with PCR.
  • a sequence primer is used with double stranded PCR product or a single stranded template molecule generated by a modified PCR.
  • the sequence determination is performed by conventional procedures with radio labeled nucleotide or by an automatic sequencing procedure with fluorescent-tags.
  • Genetic testing based on DNA sequence differences may be achieved by detection of alterations in the electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Sequences changes at specific locations may also be revealed by nucleus protection assays, such RNase and SI protection or the chemical cleavage method (e.g. Cotton, et al., PNAS. USA. 85:4397- 4401 1985) .
  • genes of the present invention can be used as a reference to identify individuals expressing a decrease of functions associated with receptors of this type.
  • the present invention also relates to a diagnostic as ⁇ ay for detecting altered level ⁇ of soluble form of the G-protein chemokine receptor polypeptides of the present invention in various tissues.
  • Assays used to detect level ⁇ of the soluble receptor polypeptides in a sample derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive-binding a ⁇ ay ⁇ , Western blot analysi ⁇ and preferably as ELISA assay.
  • An ELISA assay initially comprises preparing an antibody specific to antigens of the G-protein chemokine receptor polypeptides, preferably a monoclonal antibody.
  • a reporter antibody is prepared against the monoclonal antibody.
  • a detectable reagent such as radioactivity, fluorescence or in this example a horseradish peroxidase enzyme.
  • a sample is now removed from a host and incubated on a solid support, e.g. a poly ⁇ tyrene di ⁇ h, that bind ⁇ the protein ⁇ in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumin.
  • the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies attach to any G-protein chemokine receptor proteins attached to the polystyrene dish. All unbound monoclonal antibody is washed out with buffer.
  • the reporter antibody linked to horseradi ⁇ h peroxidase is now placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to G-protein chemokine receptor protein ⁇ . Unattached reporter antibody i ⁇ then washed out.
  • Peroxidase sub ⁇ trate ⁇ are then added to the di ⁇ h and the amount of color developed in a given time period i ⁇ a mea ⁇ urement of the amount of G-protein chemokine receptor protein ⁇ pre ⁇ ent in a given volume of patient ⁇ ample when compared against a standard curve.
  • the sequence ⁇ of the present invention are al ⁇ o valuable for chromosome identification.
  • the ⁇ equence is specifically targeted to and can hybridize with a particular location on an individual human chromosome.
  • Few chromo ⁇ ome marking reagents ba ⁇ ed on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location.
  • the mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequence ⁇ with genes associated with disease.
  • sequences can be mapped to chromosome ⁇ by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the cDNA is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.
  • PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome.
  • sublocalization can be achieved with panels of fragment ⁇ from ⁇ pecific chromosomes or pools of large genomic clones in an analogous manner.
  • Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.
  • Fluorescence in si tu hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one ⁇ tep.
  • Thi ⁇ technique can be u ⁇ ed with cDNA as short as 50 or 60 bases.
  • a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This a ⁇ umes 1 megabase mapping resolution and one gene per 20 kb) .
  • the polypeptides, their fragment ⁇ or other derivative ⁇ , or analog ⁇ thereof, or cell ⁇ expres ⁇ ing them can be used a ⁇ an immunogen to produce antibodie ⁇ thereto.
  • These antibodie ⁇ can be, for example, polyclonal or monoclonal antibodie ⁇ .
  • the present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragment ⁇ , or the product of an Fab expression library. Various procedures known in the art may be used or the production of such antibodies and fragments.
  • Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman.
  • the antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tis ⁇ ue expre ⁇ ing that polypeptide.
  • any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, 1975, Nature, 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al. , 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Lis ⁇ , Inc., pp. 77- 96) .
  • the above-described antibodies may be employed to isolate the polypeptide of the present invention by attachment of the antibody to a solid support and performing affinity chromatography by passing the polypeptide desired to be purified over the column and recovering the purified polypeptide.
  • Plasmids are designated by a lower case p preceded and/or followed by capital letters and/or numbers.
  • the starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmid ⁇ in accord with published procedures.
  • equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.
  • “Digestion” of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA.
  • the various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan.
  • For analytical purposes typically 1 ⁇ g of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 ⁇ l of buffer solution.
  • For the purpose of isolating DNA fragments for plasmid construction typically 5 to 50 ⁇ g of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffer ⁇ and ⁇ ub ⁇ trate amounts for particular restriction enzymes are speciEied by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instruction ⁇ . After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.
  • Oligonucleotides refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that ha ⁇ not been dephosphorylated.
  • Ligase refers to the proces ⁇ of forming pho ⁇ phodiester bonds between two double ⁇ tranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unle ⁇ s otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units to T4 DNA ligase ("ligase”) per 0.5 ⁇ g of approximately equimolar amounts of the DNA fragments to be ligated.
  • ligase T4 DNA ligase
  • the DNA sequence encoding for HSATU68, ATCC # 97334 is initially amplified using PCR oligonucleotide primer ⁇ corresponding to the 5' and sequences of the processed HSATU68 protein (minus the signal peptide sequence) and the vector sequences 3' to the HSATU68 gene. Additional nucleotides corresponding to HSATU68 were added to the 5' and 3' sequence ⁇ respectively.
  • the 5' oligonucleotide primer has the sequence 5' CGGGATCCTCCATGGAGTTGAGGAAGTAC 3' (SEQ ID NO:3) contains a BamHI restriction enzyme site followed by 18 nucleotides of HSATU68 coding sequence starting from the presumed terminal amino acid of the protein.
  • the 3' sequence 5' GGCGGATCCCGCTCACAAGCCCGAGTAGGA 3' contains complementary sequences to a BamHI site and is followed by 18 nucleotides of HSATU68 coding sequence.
  • the restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expres ⁇ ion vector pQE-9 (Qiagen, Inc., Chat ⁇ worth, CA, 91311) .
  • pQE-9 encodes antibiotic resistance (Amp r ) , a bacterial origin of replication (ori) , an IPTG-regulatable promoter operator (P/O) , a ribosome binding site (RBS) , a 6-His tag and restriction enzyme sites.
  • pQE-9 was then digested with BamHI.
  • the amplified sequences were ligated into pQE-9 and were inserted in frame with the sequence encoding for the histidine tag and the RBS.
  • the ligation mixture wa ⁇ then used to transform E. coli strain M15/rep 4 (Qiagen, Inc.) by the procedure described in Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989) .
  • M15/rep4 contains multiple copies of the plasmid pREP4, which expresses the lad repressor and also confers kanamycin resistance (Kan r ) .
  • Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies were selected. Plasmid DNA was isolated and confirmed by restriction analysi ⁇ . Clone ⁇ containing the de ⁇ ired con ⁇ truct ⁇ were grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml) . The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells were grown to an optical density 600 (O.D. 600 ) of between 0.4 and 0.6. IPTG (“Isopropyl-B-D-thiogalacto pyrano ⁇ ide”) wa ⁇ then added to a final concentration of 1 mM.
  • O.D. 600 optical density 600
  • IPTG induce ⁇ by inactivating the lad repressor, clearing the P/O leading to increased gene expression.
  • Cells were grown an extra 3 to 4 hour ⁇ . Cell ⁇ were then harve ⁇ ted by centrifugation. The cell pellet was solubilized in the chaotropic agent 6 Molar Guanidine HCI. After clarification, solubilized HSATU68 was purified from this solution by chromatography on a Nickel-Chelate column under conditions that allow for tight binding by proteins containing the 6-His tag (Hochuli, E. et al., J. Chromatography 411:177-184 (1984)) .
  • HSATU68 was eluted from the column in 6 molar guanidine HCI pH 5.0 and for the purpose of renaturation adjusted to 3 molar guanidine HCI, 10OmM sodium phosphate, 10 mmolar glutathione (reduced) and 2 mmolar glutathione (oxidized) . After incubation in this solution for 12 hours the protein was dialyzed to 10 mmolar sodium phosphate.
  • HSATU68 HA The expression of plasmid, HSATU68 HA is derived from a vector pcDNAI/Amp (Invitrogen) containing: 1) SV40 origin of replication, 2) ampicillin resistance gene, 3) E.coli replication origin, 4) CMV promoter followed by a polylinker region, a SV40 intron and polyadenylation site.
  • a DNA fragment encoding the entire HSATU68 precursor and a HA tag fused in frame to its 3' end was cloned into the polylinker region of the vector, therefore, the recombinant protein expression is directed under the CMV promoter.
  • the HA tag correspond to an epitope derived from the influenza hemagglutinin protein as previously described (I. Wilson, H. Niman, R.
  • HA tag to the target protein allow ⁇ ea ⁇ y detection of the recombinant protein with an antibody that recognizes the HA epitope.
  • the plasmid construction strategy is described as follows:
  • AAGCTTGCCACCATGGAGTTGAGGAAGTAC 3' (SEQ ID NO:5) and contains a Hindlll site followed by 18 nucleotides of HSATU68 coding sequence starting from the initiation codon ( under l ined) ; the 3 ' s equence 5 ' CTGC ⁇ CGAGTCAAGCGTAGTCTGGGACGTCGTATGGGTAGCACA AGCCCGAGTAGGA 3' (SEQ ID NO:6) contains complementary sequences to an Xhol site, translation stop codon, HA tag and the last 15 nucleotide ⁇ of the HSATU68 coding sequence (not including the stop codon) .
  • the PCR product contains a Hindlll site HSATU68 coding sequence followed by HA tag fused in frame, a translation termination stop codon next to the HA tag, and an Xhol site.
  • the PCR amplified DNA fragment and the vector, pcDNAI/Amp were digested with Hindlll and Xhol restriction enzyme and ligated.
  • the ligation mixture was transformed into E. coli strain SURE (Stratagene Cloning Systems, La Jolla, CA 92037) the transformed culture was plated on ampicillin media plates and resistant colonies were selected. Plasmid DNA was isolated from transformants and examined by restriction analysis for the presence of the correct fragment.
  • HSATU68 For expression of the recombinant HSATU68, COS cells were transfected with the expression vector by DEAE-DEXTRAN method (J. Sambrook, E. Fritsch, T. Maniati ⁇ , Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989) ) . The expression of the HSATU68 HA protein wa ⁇ detected by radiolabelling and immunoprecipitation method (E. Harlow, D. Lane, Antibodie ⁇ : A Laboratory Manual, Cold Spring Harbor Laboratory Press, (1988)) . Cell ⁇ were labelled for 8 hour ⁇ with 35 S-cy ⁇ teine two day ⁇ po ⁇ t transfection.
  • the 5' primer has the sequence 5' CGGGATCCCTCCC ATGGAGTTGAGGAAGTAC 3' (SEQ ID NO:7) and contains a BamHI restriction enzyme site followed by 5 nucleotides resembling an efficient signal for the initiation of translation in eukaryotic cells (J. Mol. Biol. 1987, 196. 947-950, Kozak, M.) , and just behind the first 6 nucleotides of the HSATU68 gene (the initiation codon for translation is "ATG”) .
  • the 3' primer has the sequence 5' CGGGATCCCGCTCACAAGCCCGAGTAGGA 3' (SEQ ID NO:8) and contains the cleavage site for the restriction endonuclease BamHI and 18 nucleotides complementary to the 3' non- ranslated sequence of the HSATU68 gene.
  • the amplified sequences were isolated from a 1% agarose gel using a commercially available kit ("Geneclean, " BIO 101 Inc., La Jolla, Ca.) . The fragment was then digested with the endonuclease BamHI and purified a ⁇ described above.- Thi ⁇ fragment i ⁇ designated F2.
  • the vector pRGl (modification of pVL941 vector, discussed below) is used for the expression of the HSATU68 protein using the baculovirus expression sy ⁇ tem (for review ⁇ ee: Summer ⁇ , M.D. and Smith, G.E. 1987, A manual of methods for baculoviru ⁇ vector ⁇ and insect cell culture procedures, Texas Agricultural Experimental Station Bulletin No. 1555) .
  • This expres ⁇ ion vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis viru ⁇ (AcMNPV) followed by the recognition sites for the restriction endonuclease BamHI.
  • the polyadenylation site of the simian virus SV40 is u ⁇ ed for efficient polyadenylation.
  • the beta-galactosidase gene from E. coli is inserted in the same orientation as the polyhedrin promoter followed by the polyadenylation signal of the polyhedrin gene.
  • the polyhedrin sequences are flanked at both side ⁇ by viral ⁇ equences for the cell-mediated homologou ⁇ recombination of co-transfected wild-type viral DNA.
  • Many other baculovirus vectors could be used in place of pRGl such as pAc373, pVL941 and pAcIMl (Luckow, V.A. and Summers, M.D., Virology, 170:31-39) .
  • the plasmid was digested with the restriction enzyme BamHI and then depho ⁇ phorylated u ⁇ ing calf intestinal phosphatase by procedures known in the art.
  • Thi ⁇ vector DNA is designated V2.
  • Fragment F2 and the dephosphorylated plasmid V2 were ligated with T4 DNA ligase.
  • E. coli HBlOl cells were then transformed and bacteria identified that contained the plasmid (pBacHSATU68) with the HSATU68 gene using the enzyme BamHI. The sequence of the cloned fragment was confirmed by DNA sequencing.
  • the plate was then incubated for 5 hours at 27°C. After 5 hours the transfection solution was removed from the plate and 1 ml of Grace's insect medium ⁇ upplemented with 10% fetal calf ⁇ erum wa ⁇ added. The plate was put back into an incubator and cultivation continued at 27°C for four day ⁇ .
  • plaque assay performed similar as described by Summers and Smith (supra) .
  • an agarose gel with "Blue Gal” (Life Technologies Inc., Gaithersburg) was used which allow ⁇ an easy isolation of blue stained plaques.
  • a detailed description of a "plaque assay” can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc. , Gaithersburg, page 9-10 .
  • the viruses were added to the cells and blue stained plaques were picked with the tip of an Eppendorf pipette.
  • the agar containing the recombinant viruses was then resuspended in an Eppendorf tube containing 200 ⁇ l of Grace's medium.
  • the agar was removed by a brief centrifugation and the supernatant containing the recombinant baculoviruses wa ⁇ used to infect Sf9 cells seeded in 35 mm dishes.
  • the supernatants of these culture dishe ⁇ were harvested and then stored at 4°C.
  • Sf9 cells were grown in Grace's medium supplemented with 10% heat-inactivated FBS.
  • the cells were infected with the recombinant baculovirus V-HSATU68 at a multiplicity of infection (MOI) of 2-.
  • MOI multiplicity of infection
  • the cells were further incubated for 16 hours before they were harvested by centrifugation and the labelled proteins visualized by SDS-PAGE and autoradiography.
  • Fibroblast ⁇ are obtained from a subject by skin biopsy.
  • the resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tis ⁇ ue are placed on a wet ⁇ urface of a ti ⁇ sue culture flask, approximately ten pieces are placed in each flask.
  • the flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. This is then incubated at 37°C for approximately one week.
  • fresh media e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin
  • pMV-7 (Kir ⁇ chmeier, P.T. et al, DNA, 7:219-25 (1988) flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and Hindlll and sub ⁇ equently treated with calf intestinal pho ⁇ phatase.
  • the cDNA encoding a polypeptide of the present invention is amplified using PCR primers which correspond to the 5' and 3' end sequences respectively.
  • the 5' primer contains an EcoRI site and the 3' primer contains a Hindlll site.
  • Equal quantities of the Moloney murine sarcoma virus linear backbone and the EcoRI and Hindlll fragment are added together, in the presence of T4 DNA ligase.
  • the resulting mixture i ⁇ maintained under condition ⁇ appropriate for ligation of the two fragments.
  • the ligation mixture i ⁇ used to transform bacteria HBlOl, which are then plated onto agar-containing kanamycin for the purpose of confirming that the vector had the gene of interest properly inserted.
  • the amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco' ⁇ Modified Eagle ⁇ Medium (DMEM) with 10% calf serum (CS) , penicillin and streptomycin.
  • DMEM Dulbecco' ⁇ Modified Eagle ⁇ Medium
  • CS calf serum
  • the MSV vector containing the gene i ⁇ then added to the media and the packaging cell ⁇ are tran ⁇ duced with the vector.
  • the packaging cell ⁇ now produce infectiou ⁇ viral particle ⁇ containing the gene (the packaging cell ⁇ are now referred to as producer cells) .
  • Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cell ⁇ .
  • the spent media containing the infectious viral particles, is filtered through a millipore filter to remove detached producer ceLls and this media is then used to infect fibroblast cells.
  • Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his.
  • the engineered fibroblasts are then injected into the host.
  • the fibroblasts now produce the protein product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Human G-protein chemokine receptor polypeptides and DNA (RNA) encoding such polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptides for identifying antagonists and agonists to such polypeptides and methods of using the agonists and antagonists therapeutically to treat conditions related to the underexpression and overexpression of the G-protein chemokine receptor polypeptides, respectively. Also disclosed are diagnostic methods for detecting a mutation in the G-protein chemokine receptor nucleic acid sequences and detecting a level of the soluble form of the receptors in a sample derived from a host.

Description

HUMAN 6-PROTEIN CHEMOKINE RECEPTOR HSATU68
This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a human 7- transmembrane receptor which has been putatively identified as a chemokine receptor, sometimes hereinafter referred to as "G-Protein Chemokine Receptor" or "HSATU68" . The invention also relates to inhibiting the action of such polypeptides.
It is well established that many medically significant biological processes are mediated by proteins participating in signal transduction pathways that involve G-proteins and/or second messengers, e.g., cAMP (Lefkowitz, Nature, 351:353-354 (1991)) . Herein these proteins are referred to as proteins participating in pathways with G-proteins or PPG proteins. Some examples of these proteins include the GPC receptors, such as those for adrenergic agents and dopamine (Kobilka, B.K., et al., PNAS, 84:46-50 (1987); Kobilka, B.K. , et al., Science, 238:650-656 (1987); Bunzow, J.R., et al., Nature, 336:783-787 (1988)), G-proteins themselves, effector proteins, e.g., phospholipase C, adenyl cyclase, and phosphodiesterase, and actuator proteins, e.g., protein kinase A and protein kinase C (Simon, M.I., et al .," Science, 252:802-8 (1991)) .
For example, in one form of signal transduction, the effect of hormone binding is activation of an enzyme, adenylate cyclase, inside the cell. Enzyme activation by hormones is dependent on the presence of the nucleotide GTP, and GTP also influences hormone binding. A G-protein connects the hormone receptors to adenylate cyclase. G- protein was shown to exchange GTP for bound GDP when activated by hormone receptors. The GTP-carrying form then binds to an activated adenylate cyclase. Hydrolysis of GTP to GDP, catalyzed by the G-protein itself, returns the G- protein to its basal, inactive form. Thus, the G-protein serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls the duration of the signal.
The membrane protein gene superfamily of G-protein coupled receptors has been characterized as having seven putative transmembrane domains. The domains are believed to represent transmembrane α-helices connected by extracellular or cytoplasmic loops. G-protein coupled receptors include a wide range of biologically active receptors, such as hormone, viral, growth factor and neuroreceptors.
G-protein coupled receptors have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 amino acids, connecting at least eight divergent hydrophilic loops. The G-protein family of coupled receptors includes dopamine receptors which bind to neuroleptic drugs used for treating psychotic and neurological disorders . Other examples of members of this family include calcitonin, adrenergic, endotbelin, cAMP, adenosine, muscarinic, acetylcholine, serotonin, histamine, thrombin, kinin, follicle stimulating hormone, opsins, endothelial differentiation gene-1 receptor and rhodopsins, odorant, cytomegalovirus receptors, etc.
G-protein coupled receptors can be intracellularly coupled by heterotrimeric G-proteins to various intracellular enzymes, ion channels and transporters (see, Johnson et al . , Endoc, Rev., 10:317-331 (1989)). Different G-protein α-subunits preferentially stimulate particular effectors to modulate various biological functions in a cell. Phosphorylation of cytoplasmic residues of G-protein coupled receptors have been identified as an important mechanism for the regulation of G-protein coupling of some G-protein coupled receptors. G- protein coupled receptors are found in numerous sites within a mammalian host.
Chemokines, also referred to as intercrine cytokines, are a subfamily of structurally and functionally related cytokines. These molecules are 8-10 kd in size. In general, chemokines exhibit 20% to 75% homology at the amino acid level and are characterized by four conserved cysteine residues that form two disulfide bonds. Based on the arrangement of the first two cysteine residues, chemokines have been classified into two subfamilies, alpha and beta. In the alpha subfamily, the first two cysteines are separated by one amino acid and hence are referred to as the "C-X-C" subfamily. In the beta subfamily, the two cysteines are in an adjacent position and are, therefore, referred to as the "C-C" subfamily. Thus far, at least nine different members of this family have been identified in humans.
The intercrine cytokines exhibit a wide variety of functions. A hallmark feature is their ability to elicit chemotactic migration of distinct cell types, including monocytes, neutrophils, T lymphocytes, basophils and fibroblasts. Many chemokines have pro-inflammatory activity and are involved in multiple steps during an inflammatory reaction. These activities include stimulation of histamine release, lysosomal enzyme and leukotriene release, increased adherence of target immune cells to endothelial cells, enhanced binding of complement proteins, induced expression of granulocyte adhesion molecules and complement receptors, and respiratory burst. In addition to their involvement in inflammation, certain chemokines have been shown to exhibit other activities. For example, macrophage inflammatory protein 1 (MIP-1) is able to suppress hematopoietic stem cell proliferation, platelet factor-4 (PF-4) is a potent inhibitor of endothelial cell growth, Interleukin-8 (IL-8) promotes proliferation of keratinocytes, and GRO is an autocrine growth factor for melanoma cells.
In light of the diverse biological activities, it is not surprising that chemokines have been implicated in a number of physiological and disease conditions, including lymphocyte trafficking, wound healing, hematopoietic regulation and immunological disorders such as allergy, asthma and arthritis.
In accordance with one aspect of the present invention, there are provided novel mature receptor polypeptides as well as biologically active and diagnostically or therapeutically useful fragments, analogs and derivatives thereof . The receptor polypeptides of the present invention are of human origin.
In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding the receptor polypeptides of the present invention, including mRNAs, cDNAs, genomic DNA as well as antisense analogs thereof and biologically active and diagnostically or therapeutically useful fragments thereof .
In accordance with another aspect of the present invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressed by the human cDNA contained in ATCC Deposit No. 97334.
In accordance with a further aspect of the present invention, there are provided processes for producing such receptor polypeptides by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing nucleic acid sequences encoding the receptor polypeptides of the present invention, under conditions promoting expression of said polypeptides and subsequent recovery of said polypeptides. In accordance with yet a further aspect of the present invention, there are provided antibodies against such receptor polypeptides.
In accordance with another aspect of the present invention there are provided methods of screening for compounds which bind to and activate or inhibit activation of the receptor polypeptides of the present invention.
In accordance with still another embodiment of the present invention there are provided processes of administering compounds to a host which bind to and activate the receptor polypeptide of the present invention which are useful in stimulating haematopoiesis, wound healing, coagulation, angiogenesis, to treat tumors, chronic infections, leukemia, T-cell mediated auto-immune diseases, parasitic infections, psoriasis, and to stimulate growth factor activity.
In accordance with another aspect of the present invention there is provided a method of administering the receptor polypeptides of the present invention via gene therapy to treat conditions related to underexpression of the polypeptides or underexpression of a ligand for the receptor polypeptide.
In accordance with still another embodiment of the present invention there are provided processes of administering compounds to a host which bind to and inhibit activation of the receptor polypeptides of the present invention which are useful in the prevention and/or treatment of allergy, a herogenesis, anaphylaxis, malignancy, chronic and acute inflammation, hiεtamine and IgE-mediated allergic reactions, prostaglandin-independent fever, bone marrow failure, silicosis, sarcoidosiε, rheumatoid arthritis, shock and hyper-eosinophilic syndrome.
In accordance with yet another aspect of the present invention, there are provided nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to the polynucleotide sequences of the present invention. In accordance with still another aspect of the present invention, there are provided diagnostic assays for detecting diseases related to mutations in the nucleic acid sequences encoding such polypeptides and for detecting an altered level of the soluble form of the receptor polypeptides.
In accordance with yet a further aspect of the present invention, there are provided processes for utilizing such receptor polypeptides, or polynucleotides encoding such polypeptides, for in vitro purposes related to scientific research, synthesis of DNA and manufacture of DNA vectors.
These and other aspects of the present invention should be apparent to those skilled in the art from the teachings herein.
The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
Figure 1 shows the cDNA sequence and the corresponding deduced amino acid sequence of the G-protein chemokine receptor of the present invention. The standard one-letter abbreviation for amino acids is used. Sequencing was performed using a 373 Automated DNA sequencer (Applied Biosystems, Inc.) .
Figure 2 illustrates an amino acid alignment of the G- protein chemokine receptor of the present invention (top) and the human interleukin-8 receptor (bottom) (SEQ ID NO:9)
In accordance with an aspect of the present invention, there is provided an isolated nucleic acid (polynucleotide) which encodes for the mature polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) .
In accordance with another aspect of the present invention there are provided isolated polynucleotides encoding a mature polypeptide expressed by the human cDNA contained in ATCC Deposit No. 97334, deposited with the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, USA, on November 6, 1995. The deposited material is a cDNA insert, encoding a polypeptide of the present invention, cloned into a pBluescript SK(-) vector (Stratagene, La Jolla, CA) , which will confer a picillin resistance upon transformation.
The deposit (s) has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for purposes of Patent Procedure. The strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent . These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112. The sequence of the polynucleotides contained in the deposited materials, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.
The polynucleotide of this invention was discovered in a human genomic library derived from human activated T cells. It is structurally related to the G protein-coupled receptor family. It contains an open reading frame encoding a protein of 415 amino acid residues. The protein exhibits the highest degree of homology at the amino acid level to a human interleukin-8 receptor with 39.31 % identity and 58.405 % similarity.
The polynucleotide of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the mature polypeptide may be identical to the coding sequence shown in Figure l (SEQ ID NO:l) which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the DNA of Figure 1 (SEQ ID NO:l) . The polynucleotide which encodes for the mature polypeptide of Figure 1 (SEQ ID N0:2) may include: only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide and additional coding sequence such as a transmembrane (TM) or intra-cellular domain; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as introns or non-coding sequence 5' and/or 3' of the coding sequence for the mature polypeptide.
The present invention further relates to variants of the hereinabove described polynucleotides which encode for fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figure l (SEQ ID NO:2) . The variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a non-naturally occurring variant of the polynucleotide.
Thus, the present invention includes polynucleotides encoding the same mature polypeptide as shown in Figure 1 (SEQ ID NO:2) as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptide of Figure 1 (SEQ ID NO:2) . Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.
As hereinabove indicated, the polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figure l (SEQ ID N0:1) . As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.
The polynucleotides may also encode for a soluble form of the G-protein chemokine receptor polypeptide which is the extracellular portion of the polypeptide which has been cleaved from the TM and intracellular domain of the full- length polypeptide of the present invention.
The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptide of the present invention. The marker sequence may be a hexa-histidine tag supplied by a pQE vector (Qiagen) to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, I., et al., Cell, 37:767 (1984) ) .
The term "gene" means the segment of DNA involved in producing a polypeptide chain,- it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons) .
Fragments of the full length gene of the present invention may be used as a hybridization probe for a cDNA library to isolate the full length cDNA and to isolate other cDNAs which have a high sequence similarity to the gene or similar biological activity. Probes of this type preferably have at least 15 bases, preferably 30 bases and most preferably, may contain, for example, 50 or more bases. The probe may also be used to identify a cDNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete gene including regulatory and promotor regions, exons, and introns. An example of a screen comprises isolating the coding region of the gene by using the known DNA sequence to synthesize an oligonucleotide probe. Labeled oligonucleotides having a sequence complementary to that of the gene of the present invention are used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
The present invention further relates to polynucleotides which hybridize to the hereinabove- described sequences if there is at least 70%, preferably at least 90%, and more preferably at least 95% identity between the sequences. The present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which either retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figure 1 (SEQ ID NO:l) .
Alternatively, the polynucleotide may have at least 15 bases, preferably 30 bases, and more preferably at least 50 bases which hybridize to a polynucleotide of the present invention and which has an identity thereto, as hereinabove described, and which may or may not retain activity. For example, such polynucleotides may be employed as probes for the polynucleotide of SEQ ID NO:l, for example, for recovery of the polynucleotide or as a diagnostic probe or as a PCR primer.
The present invention further relates to polynucleotides which hybridize to the hereinabove- described sequences if there is at least 70%, preferably at least 90%, and more preferably at least 95% identity between the sequences. The present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which either retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figure 1 (SEQ ID NO:l) .
The present invention further relates to a G-protein chemokine receptor polypeptide which has the deduced amino acid sequence of Figure l (SEQ ID NO:2) , as well as fragments, analogs and derivatives of such polypeptide. The terms "fragment," "derivative" and "analog" when referring to the polypeptide of Figure 1 (SEQ ID NO:2) , means a polypeptide which either retains substantially the same biological function or activity as such polypeptide, i.e. functions as a G-protein chemokine receptor, or retains the ability to bind the ligand for the receptor, for example, a soluble form of the receptor. An analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.
The fragment, derivative or analog of the polypeptide of Figure 1 (SEQ ID NO:2) may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol) , or (iv) one in which the additional amino acids are fused to the mature polypeptide for purification of the polypeptide or (v) one in which a fragment of the polypeptide is soluble, i.e. not membrane bound, yet still binds ligands to the membrane bound receptor. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.
The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
Thus, the present invention is directed to polynucleotides having at least a 70% identity, preferably at least 90% and more preferably at least a 95% identity to a polynucleotide which encodes the polypeptide of SEQ ID NO:2 and polynucleotides complementary thereto as well as portions thereof, which portions have at least 15 consecutive bases, preferably 30 consecutive bases and more preferably at least 50 consecutive bases and to polypeptides encoded by such polynucleotides.
As known in the art "similarity" between two polypeptides is determined by comparing the amino acid sequence and conserved amino acid substitutes thereto of the polypeptide to the sequence of a second polypeptide.
Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis, therefore, the fragments may be employed as intermediates for producing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.
The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region "leader and trailer" as well as intervening sequences (introns) between individual coding segments (exons) .
The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring) . For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but: the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.
The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
The polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.
The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the E. coli. lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.
In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracyclnne or ampi- cillin resistance in E. coli.
The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.
As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli. Streptomyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila and Spodoptera Sf9; animal cells such as CHO, COS or Bowes melanoma; adenovirus; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.
More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitεtble vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pbs, pDIO, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNHl6a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia) . Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXTl, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia) . However, any other plasmid or vector may be used as long as they are replicable and viable in the host.
Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are PKK232-8 and PCM7. Particular named bacterial promoters include lad, lacZ, T3, T7, gpt, lambda PR, P, and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRε from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
In a further embodiment, the present invention relates to host cells containing the above-described constructε. The hoεt cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation. (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)) .
The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al. , Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.
Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TR.P1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK) , c*-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.
Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli. Bacillus subtilis, " Salmonella tvohimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.
As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017) . Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, Wl, USA) . These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expresεed.
Following transformation of a suitable hoεt strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means
(e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze- thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 (1981) , and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
The G-protein chemokine receptor polypeptides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.
The polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture) . Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non- glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.
The polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diεignostics to human disease.
The G-protein chemokine receptors of the present invention may be employed in a procesε for screening for compounds which activate (agonists) or inhibit activation (antagonists) of the receptor polypeptide of the present invention .
In general, such screening procedures involve providing appropriate cells which express the receptor polypeptide of the present invention on the surface thereof. Such cells include cells from mammals, yeast, drosophila or E. Coli . In particular, a polynucleotide encoding the receptor of the present invention is employed to transfect cells to thereby express the G-protein chemokine receptor. The expressed receptor is then contacted with a test compound to observe binding, stimulation or inhibition of a functional response.
One such screening procedure involves the use of melanophores which are transfected to express the G-protein chemokine receptor of the present invention. Such a screening technique is described in PCT WO 92/01810 published February 6, 1992.
Thus, for example, such assay may be employed for screening for a compound which inhibits activation of the receptor polypeptide of the present invention by contacting the melanophore cells which encode the receptor with both the receptor ligand and a compound to be screened. Inhibition of the signal generated by the ligand indicates that a compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.
The screen may be employed for determining a compound which activates the receptor by contacting such cells with compounds to be screened and determining whether such compound generates a signal, i.e. , activates the receptor.
Other screening techniques include the use of cells which express the G-protein chemokine receptor (for example, transfected CHO cells) in a system which measures extracellular pH changes caused by receptor activation, for example, as described in Science, volume 246, pages 181-296 (October 1989) . For example, compounds may be contacted with a cell which expresses the receptor polypeptide of the present invention and a second messenger response, e.g. signal transduction or pH changes, may be measured to determine whether the potential compound activates or inhibits the receptor.
Another such screening technique involves introducing RNA encoding the G-protein chemokine receptor into Xenopus oocytes to transiently express the receptor. The receptor oocytes may then be contacted with the receptor ligand and a compound to be screened, followed by detection of inhibition or activation of a calcium signal in the case of screening for compounds which are thought to inhibit activation of the receptor.
Another screening technique involves expressing the G- protein chemokine receptor in which the receptor is linked to a phospholipase C or D. As representative examples of such cells, there may be mentioned endothelial cells, smooth muscle cells, embryonic kidney cells, etc. The screening may be accomplished as hereinabove described by detecting activation of the receptor or inhibition of activation of the receptor from the phospholipase second signal.
Another method involves screening for compounds which inhibit activation of the receptor polypeptide of the present invention by determining the inhibition of binding of a labeled ligand to cells which have the receptor on the surface thereof. Such a method comprises transfecting a eukaryotic cell with DNA encoding the G-protein chemokine receptor of the present invention such that the cell expresses the receptor on its surface and contacting the cell with a compound in the presence of a labeled form of a known ligand. The ligand can be labeled, e.g., by radioactivity. The amount of labeled ligand bound to the receptors is measured, e.g., by measuring radioactivity of the receptors. If the compound binds to the receptor as determined by a reduction of labeled ligand which binds to the receptors, the binding of labeled ligand to the receptor is inhibited.
An antibody may antagonize a G-protein chemokine receptor of the present invention, or in some cases an oligopeptide, which bind to the G-protein chemokine receptor but does not elicit a second messenger response such that the activity of the G-protein chemokine receptors is prevented. Antibodies include anti-idiotypic antibodies which recognize unique determinants generally associated with the antigen-binding site of an antibody. Potential antagonist compounds also include proteins which are closely related to the ligand of the G-protein chemokine receptors, i.e. a fragment of the ligand, which have lost biological function and when binding to the G-protein chemokine receptor elicit no response.
An antisense construct prepared through the use of antisense technology, may be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes for the mature polypeptides of the present invention, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix -see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al, Science, 241:456 (1988); and Dervan et al., Science, 251: 1360 (1991) ) , thereby preventing transcription and the production of G-protein chemokine receptor. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of mRNA molecules into G-protein coupled receptor (antisense - Okano, J. Neurochem. , 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of G-protein chemokine receptor.
A small molecule which binds to the G-protein chemokine receptor, making it inaccessible to ligands such that normal biological activity is prevented, for example small peptides or non-peptide antagonists, may also be used to inhibit activation of the receptor polypeptide of the present invention.
A soluble form of the G-protein chemokine receptor, e.g. a fragment of the receptors, may be used to inhibit activation of the receptor by binding to the ligand to a polypeptide of the present invention and preventing the ligand from interacting with membrane bound G-protein chemokine receptors.
The compounds which bind to and activate the G-protein chemokine receptors of the present invention may be employed to stimulate haematopoiesis, wound healing, coagulation, angiogenesis, to treat tumors, chronic infections, leukemia, T-cell mediated auto-immune diseases, parasitic infections, psoriasis, and to stimulate growth factor activity.
The compounds which bind to and inhibit the G-protein chemokine receptors of the present invention may be employed to treat allergy, atherogenesiε, anaphylaxis, malignancy, chronic and acute inflammation, histamine and IgE-mediated allergic reactions, prostaglandin-independent fever, bone marrow failure, silicoεiε, sarcoidosis, rheumatoid arthritis, shock and hyper-eosinophilic εyndrome.
The compounds may be employed in combination with a suitable pharmaceutical carrier. Such compositions comprise a therapeutically effective amount of the compound and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.
The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the compounds of the present invention may be employed in conjunction with other therapeutic compounds.
The pharmaceutical compositions may be administered in a convenient manner such as by the topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. ' The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, the pharmaceutical compositions will be administered in an amount of at least about 10 μg/kg body weight and in most cases they will be administered in an amount not in excess of about 8 mg/Kg body weight per day. In most cases, the dosage is from about 10 μg/kg to about 1 mg/kg body weight daily, taking into account the routes of administration, symptoms, etc.
The soluble G-protein chemokine receptor polypeptides and antagonists or agonists which are polypeptides, may also be employed in accordance with the present invention by expression of such polypeptides in vivo, which is often referred to as "gene therapy."
Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide. Such methods are well-known in the art. For example, cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.
Similarly, cells may be engineered in vivo for expression of a polypeptide in vivo by, for example, procedures known in the art. As known in the art, a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo. These and other methods for administering a polypeptide of the present invention by such method should be apparent to those skilled in the art from the teachings of the present invention. For example, the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle. Retroviruses from which the retroviral plasmid vectors hereinabove mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus. In one embodiment, the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.
The vector includes one or more promoters. Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and the human cytomegalovirus (CMV) promoter described in Miller, et al., Biotechniαues, Vol. 7, No. 9, 980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, pol III, and /8-actin promoters) . Other viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein.
The nucleic acid sequence encoding the polypeptide of the present invention is under the control of a suitable promoter. Suitable promoters which may be employed include, but are not limited to, adenoviral promoters, such as the adenoviral major late promoter,- or hetorologous promoters, such as the cytomegalovirus (CMV) promoter,- the respiratory syncytial virus (RSV) promoter ; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter,- the ApoAI promoter; human globin promoters,- viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs (including the modified retroviral LTRs hereinabove described) ,- the 3-actin promoter; and human growth hormone promoters. The promoter also may be the native promoter which controls the genes encoding the polypeptides. The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, ψ-2 , φ-AM, PA12, T19- 14X, VT-19-17-H2, φ RE , φ RIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, Human Gene Therapy. Vol. 1, pgs. 5-14 (1990), which iε incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP04 precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
The producer cell line generates infectious retroviral vector particles which include the nucleic acid sequence(s) encoding the polypeptides. Such retroviral vector particleε then may be employed, to tranεduce eukaryotic cellε, either in vi tro or in vivo. The tranεduced eukaryotic cellε will expreεs the nucleic acid sequence(s) encoding the polypeptide. Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblaεtε, keratinocytes, endothelial cells, and bronchial epithelial cells.
The present invention also provides a method for determining whether a ligand not known to be capable of binding to a G-protein chemokine receptor can bind to such receptor which comprises contacting a mammalian cell which expresses a G-protein chemokine receptor with the ligand under conditions permitting binding of ligands to the G- protein chemokine receptor, detecting the presence of a ligand which binds to the receptor and thereby determining whether the ligand binds to the G-protein chemokine receptor. The systems hereinabove described for determining agonists and/or antagonists may also be employed for determining ligands which bind to the receptor.
This invention also provides a method of detecting expression of a G-protein chemokine receptor polypeptide of the present invention on the surface of a cell by detecting the presence of mRNA coding for the receptor which comprises obtaining total mRNA from the cell and contacting the mRNA so obtained with a nucleic acid probe comprising a nucleic acid molecule of at least 10 nucleotides capable of specifically hybridizing with a εequence included within the sequence of a nucleic acid molecule encoding the receptor under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of the receptor by the cell.
The present invention also provides a method for identifying receptors related to the receptor polypeptides of the present invention. These related receptors may be identified by homology to a G-protein chemokine receptor polypeptide of the present invention, by low stringency cross hybridization, or by identifying receptors that interact with related natural or synthetic ligands and or elicit similar behaviors after genetic or pharmacological blockade of the chemokine receptor polypeptides of the present invention.
The present invention also contemplates the use of the gene of the present invention as a diagnostic, for example, some diseases result from inherited defective genes. These genes can be detected by comparing the sequences of the defective gene with that of a normal one. Subsequently, one can verify that a "mutant" gene is associated with abnormal receptor activity. In addition, one can insert mutant receptor genes into a suitable vector for expression in a functional asεay system (e.g., colorimetric assay, expression on MacConkey plates, complementation experiments, in a receptor deficient strain of HEK293 cellε) aε yet another means to verify or identify mutations. Once "mutant" genes have been identified, one can then screen population for carriers of the "mutant" receptor gene.
Individuals carrying mutations in the gene of the present invention may be detected at the DNA level by a variety of techniques. Nucleic acids used for diagnosis may be obtained from a patient's cells, including but not limited to such as from blood, urine, saliva, tissue biopsy and autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki, et al. , Nature, 324:163-166 1986) prior to analysis . RNA or cDNA may also be uεed for the same purpoεe. Aε an example, PCR primerε complimentary to the nucleic acid of the instant invention can be used to identify and analyze mutations in the gene of the present invention. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to radio labeled RNA of the invention or alternatively, radio labeled antisense DNA sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures. Such a diagnostic would be particularly useful for prenatal or even neonatal testing.
Sequence differences between the reference gene and "mutants" may be revealed by the direct DNA sequencing method. In addition, cloned DNA segments may be used as probes to detect specific DNA segments. The sensitivity of this method is greatly enhanced when combined with PCR. For example, a sequence primer is used with double stranded PCR product or a single stranded template molecule generated by a modified PCR. The sequence determination is performed by conventional procedures with radio labeled nucleotide or by an automatic sequencing procedure with fluorescent-tags.
Genetic testing based on DNA sequence differences may be achieved by detection of alterations in the electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Sequences changes at specific locations may also be revealed by nucleus protection assays, such RNase and SI protection or the chemical cleavage method (e.g. Cotton, et al., PNAS. USA. 85:4397- 4401 1985) .
In addition, some diseases are a result of, or are characterized by changes in gene expression which can be detected by changes in the mRNA. Alternatively, the genes of the present invention can be used as a reference to identify individuals expressing a decrease of functions associated with receptors of this type.
The present invention also relates to a diagnostic asεay for detecting altered levelε of soluble form of the G-protein chemokine receptor polypeptides of the present invention in various tissues. Assays used to detect levelε of the soluble receptor polypeptides in a sample derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive-binding aεεayε, Western blot analysiε and preferably as ELISA assay.
An ELISA assay initially comprises preparing an antibody specific to antigens of the G-protein chemokine receptor polypeptides, preferably a monoclonal antibody. In addition a reporter antibody is prepared against the monoclonal antibody. To the reporter antibody is attached a detectable reagent such as radioactivity, fluorescence or in this example a horseradish peroxidase enzyme. A sample is now removed from a host and incubated on a solid support, e.g. a polyεtyrene diεh, that bindε the proteinε in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumin. Next, the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies attach to any G-protein chemokine receptor proteins attached to the polystyrene dish. All unbound monoclonal antibody is washed out with buffer. The reporter antibody linked to horseradiεh peroxidase is now placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to G-protein chemokine receptor proteinε. Unattached reporter antibody iε then washed out. Peroxidase subεtrateε are then added to the diεh and the amount of color developed in a given time period iε a meaεurement of the amount of G-protein chemokine receptor proteinε preεent in a given volume of patient εample when compared against a standard curve.
The sequenceε of the present invention are alεo valuable for chromosome identification. The εequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular siteε on the chromoεome. Few chromoεome marking reagents baεed on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequenceε with genes associated with disease.
Briefly, sequences can be mapped to chromosomeε by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the cDNA is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.
PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers, sublocalization can be achieved with panels of fragmentε from εpecific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries. Fluorescence in si tu hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one εtep. Thiε technique can be uεed with cDNA as short as 50 or 60 bases. For a review of this technique, see Verma et al. , Human Chromosomes: a Manual of Basic Techniques, Pergamon Press, New York (1988) .
Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library) . The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysiε (coinheritance of phyεically adjacent geneε) .
Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.
With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This aεεumes 1 megabase mapping resolution and one gene per 20 kb) .
The polypeptides, their fragmentε or other derivativeε, or analogε thereof, or cellε expresεing them can be used aε an immunogen to produce antibodieε thereto. These antibodieε can be, for example, polyclonal or monoclonal antibodieε. The present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragmentε, or the product of an Fab expression library. Various procedures known in the art may be used or the production of such antibodies and fragments. Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tisεue expreεεing that polypeptide.
For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, 1975, Nature, 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al. , 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Lisε, Inc., pp. 77- 96) .
Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention. Also, transgenic mice may be used to express humanized antibodieε to immunogenic polypeptide products of this invention.
The above-described antibodies may be employed to isolate the polypeptide of the present invention by attachment of the antibody to a solid support and performing affinity chromatography by passing the polypeptide desired to be purified over the column and recovering the purified polypeptide.
The present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples. All parts or amounts, unless otherwise specified, are by weight. In order to facilitate underεtanding of the following examples certain frequently occurring methods and/or terms will be deεcribed.
"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmidε in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.
"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 μg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 μl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 μg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate bufferε and εubεtrate amounts for particular restriction enzymes are speciEied by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instructionε. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.
Size separation of the cleaved fragments s performed using 8 percent polyacrylamide gel described by Goeddel, D. et al., Nucleic Acids Res., 8:4057 (1980).
"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that haε not been dephosphorylated.
"Ligation" refers to the procesε of forming phoεphodiester bonds between two double εtranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unleεs otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units to T4 DNA ligase ("ligase") per 0.5 μg of approximately equimolar amounts of the DNA fragments to be ligated.
Unlesε otherwise stated, transformation was performed as described in the method of Graham, F. and Van der Eb, A., Virology, 52:456-457 (1973).
Example 1 Bacterial Expression and Purification of HSATU68
The DNA sequence encoding for HSATU68, ATCC # 97334 is initially amplified using PCR oligonucleotide primerε corresponding to the 5' and sequences of the processed HSATU68 protein (minus the signal peptide sequence) and the vector sequences 3' to the HSATU68 gene. Additional nucleotides corresponding to HSATU68 were added to the 5' and 3' sequenceε respectively. The 5' oligonucleotide primer has the sequence 5' CGGGATCCTCCATGGAGTTGAGGAAGTAC 3' (SEQ ID NO:3) contains a BamHI restriction enzyme site followed by 18 nucleotides of HSATU68 coding sequence starting from the presumed terminal amino acid of the protein. The 3' sequence 5' GGCGGATCCCGCTCACAAGCCCGAGTAGGA 3' (SEQ ID NO:4) contains complementary sequences to a BamHI site and is followed by 18 nucleotides of HSATU68 coding sequence. The restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expresεion vector pQE-9 (Qiagen, Inc., Chatεworth, CA, 91311) . pQE-9 encodes antibiotic resistance (Ampr) , a bacterial origin of replication (ori) , an IPTG-regulatable promoter operator (P/O) , a ribosome binding site (RBS) , a 6-His tag and restriction enzyme sites. pQE-9 was then digested with BamHI. The amplified sequences were ligated into pQE-9 and were inserted in frame with the sequence encoding for the histidine tag and the RBS. The ligation mixture waε then used to transform E. coli strain M15/rep 4 (Qiagen, Inc.) by the procedure described in Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989) . M15/rep4 contains multiple copies of the plasmid pREP4, which expresses the lad repressor and also confers kanamycin resistance (Kanr) . Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies were selected. Plasmid DNA was isolated and confirmed by restriction analysiε. Cloneε containing the deεired conεtructε were grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml) . The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells were grown to an optical density 600 (O.D.600) of between 0.4 and 0.6. IPTG ("Isopropyl-B-D-thiogalacto pyranoεide") waε then added to a final concentration of 1 mM. IPTG induceε by inactivating the lad repressor, clearing the P/O leading to increased gene expression. Cells were grown an extra 3 to 4 hourε. Cellε were then harveεted by centrifugation. The cell pellet was solubilized in the chaotropic agent 6 Molar Guanidine HCI. After clarification, solubilized HSATU68 was purified from this solution by chromatography on a Nickel-Chelate column under conditions that allow for tight binding by proteins containing the 6-His tag (Hochuli, E. et al., J. Chromatography 411:177-184 (1984)) . HSATU68 was eluted from the column in 6 molar guanidine HCI pH 5.0 and for the purpose of renaturation adjusted to 3 molar guanidine HCI, 10OmM sodium phosphate, 10 mmolar glutathione (reduced) and 2 mmolar glutathione (oxidized) . After incubation in this solution for 12 hours the protein was dialyzed to 10 mmolar sodium phosphate.
Example 2 Expression of Recombinant HSATU68 in COS cells
The expression of plasmid, HSATU68 HA is derived from a vector pcDNAI/Amp (Invitrogen) containing: 1) SV40 origin of replication, 2) ampicillin resistance gene, 3) E.coli replication origin, 4) CMV promoter followed by a polylinker region, a SV40 intron and polyadenylation site. A DNA fragment encoding the entire HSATU68 precursor and a HA tag fused in frame to its 3' end was cloned into the polylinker region of the vector, therefore, the recombinant protein expression is directed under the CMV promoter. The HA tag correspond to an epitope derived from the influenza hemagglutinin protein as previously described (I. Wilson, H. Niman, R. Heighten, A Cherenson, M. Connolly, and R. Lerner, 1984, Cell 37, 767) . The infuεion of HA tag to the target protein allowε eaεy detection of the recombinant protein with an antibody that recognizes the HA epitope.
The plasmid construction strategy is described as follows:
The DNA sequence encoding for HSATU68, ATCC # 97334, waε conεtructed by PCR uεing two primerε: the 5' primer 5' GTCC
AAGCTTGCCACCATGGAGTTGAGGAAGTAC 3' (SEQ ID NO:5) and contains a Hindlll site followed by 18 nucleotides of HSATU68 coding sequence starting from the initiation codon ( under l ined) ; the 3 ' s equence 5 ' CTGCΓCGAGTCAAGCGTAGTCTGGGACGTCGTATGGGTAGCACA AGCCCGAGTAGGA 3' (SEQ ID NO:6) contains complementary sequences to an Xhol site, translation stop codon, HA tag and the last 15 nucleotideε of the HSATU68 coding sequence (not including the stop codon) . Therefore, the PCR product contains a Hindlll site HSATU68 coding sequence followed by HA tag fused in frame, a translation termination stop codon next to the HA tag, and an Xhol site. The PCR amplified DNA fragment and the vector, pcDNAI/Amp, were digested with Hindlll and Xhol restriction enzyme and ligated. The ligation mixture was transformed into E. coli strain SURE (Stratagene Cloning Systems, La Jolla, CA 92037) the transformed culture was plated on ampicillin media plates and resistant colonies were selected. Plasmid DNA was isolated from transformants and examined by restriction analysis for the presence of the correct fragment. For expression of the recombinant HSATU68, COS cells were transfected with the expression vector by DEAE-DEXTRAN method (J. Sambrook, E. Fritsch, T. Maniatiε, Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989) ) . The expression of the HSATU68 HA protein waε detected by radiolabelling and immunoprecipitation method (E. Harlow, D. Lane, Antibodieε: A Laboratory Manual, Cold Spring Harbor Laboratory Press, (1988)) . Cellε were labelled for 8 hourε with 35S-cyεteine two dayε poεt transfection. Culture media were then collected and cells were lysed with detergent (RIPA buffer (150 mM NaCl, 1% NP- 40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50mM Tns, pH 7.5) (Wilson, I. et al., Id. 37:767 (1984)) . Both cell lysate and culture media were precipitated with a HA specific monoclonal antibody. Proteins precipitated were analyzed on 15% SDS-PAGE gels.
Example 3 Cloning and expression of HSATU68 using the baculovirus expression system
The DNA sequence encoding the full length HSATU68 protein, ATCC # 97334, was amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene:
The 5' primer has the sequence 5' CGGGATCCCTCCC ATGGAGTTGAGGAAGTAC 3' (SEQ ID NO:7) and contains a BamHI restriction enzyme site followed by 5 nucleotides resembling an efficient signal for the initiation of translation in eukaryotic cells (J. Mol. Biol. 1987, 196. 947-950, Kozak, M.) , and just behind the first 6 nucleotides of the HSATU68 gene (the initiation codon for translation is "ATG") . The 3' primer has the sequence 5' CGGGATCCCGCTCACAAGCCCGAGTAGGA 3' (SEQ ID NO:8) and contains the cleavage site for the restriction endonuclease BamHI and 18 nucleotides complementary to the 3' non- ranslated sequence of the HSATU68 gene. The amplified sequences were isolated from a 1% agarose gel using a commercially available kit ("Geneclean, " BIO 101 Inc., La Jolla, Ca.) . The fragment was then digested with the endonuclease BamHI and purified aε described above.- Thiε fragment iε designated F2.
The vector pRGl (modification of pVL941 vector, discussed below) is used for the expression of the HSATU68 protein using the baculovirus expression syεtem (for review εee: Summerε, M.D. and Smith, G.E. 1987, A manual of methods for baculoviruε vectorε and insect cell culture procedures, Texas Agricultural Experimental Station Bulletin No. 1555) . This expresεion vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis viruε (AcMNPV) followed by the recognition sites for the restriction endonuclease BamHI. The polyadenylation site of the simian virus SV40 is uεed for efficient polyadenylation. For an eaεy εelection of recombinant viruses the beta-galactosidase gene from E. coli is inserted in the same orientation as the polyhedrin promoter followed by the polyadenylation signal of the polyhedrin gene. The polyhedrin sequences are flanked at both sideε by viral εequences for the cell-mediated homologouε recombination of co-transfected wild-type viral DNA. Many other baculovirus vectors could be used in place of pRGl such as pAc373, pVL941 and pAcIMl (Luckow, V.A. and Summers, M.D., Virology, 170:31-39) .
The plasmid was digested with the restriction enzyme BamHI and then dephoεphorylated uεing calf intestinal phosphatase by procedures known in the art. The DNA waε then iεolated from a 1% agarose gel as deεcribed above. Thiε vector DNA is designated V2.
Fragment F2 and the dephosphorylated plasmid V2 were ligated with T4 DNA ligase. E. coli HBlOl cells were then transformed and bacteria identified that contained the plasmid (pBacHSATU68) with the HSATU68 gene using the enzyme BamHI. The sequence of the cloned fragment was confirmed by DNA sequencing.
5 μg of the plasmid pBacHSATU68 were co-transfected with 1.0 μg of a commercially available linearized baculoviruε ("BaculoGold™ baculoviruε DNA" , Pharmingen, San Diego, CA.) uεing the lipofection method (Feigner et al. Proc. Natl. "Acad. Sci. USA, 84:7413-7417 (1987)) . lμg of BaculoGold™ viruε DNA and 5 μg of the plasmid pBacHSATU68 were mixed in a sterile well of a microtiter plate containing 50 μl of serum free Grace's medium (Life Technologies Inc., Gaithersburg, MD) . Afterwards 10 μl Lipofectin plus 90 μl Grace's medium were added, mixed and incubated for 15 minuteε at room temperature. Then the transfection mixture was added drop wise to the Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace' medium without serum. The plate was rocked back and forth to mix the newly added solution. The plate was then incubated for 5 hours at 27°C. After 5 hours the transfection solution was removed from the plate and 1 ml of Grace's insect medium εupplemented with 10% fetal calf εerum waε added. The plate was put back into an incubator and cultivation continued at 27°C for four dayε.
After four dayε the εupernatant was collected and a plaque assay performed similar as described by Summers and Smith (supra) . As a modification an agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) was used which allowε an easy isolation of blue stained plaques. (A detailed description of a "plaque assay" can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc. , Gaithersburg, page 9-10) .
Four days after the serial dilution, the viruses were added to the cells and blue stained plaques were picked with the tip of an Eppendorf pipette. The agar containing the recombinant viruses was then resuspended in an Eppendorf tube containing 200 μl of Grace's medium. The agar was removed by a brief centrifugation and the supernatant containing the recombinant baculoviruses waε used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture disheε were harvested and then stored at 4°C.
Sf9 cells were grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells were infected with the recombinant baculovirus V-HSATU68 at a multiplicity of infection (MOI) of 2-. Six hours later the medium was removed and replaced with SF900 II medium minus methionine and cysteine (Life Technologies Inc., Gaithersburg) . 42 hours later 5 μCi of 35S-methionine and 5 μCi 35S cysteine (Amersham) were added. The cells were further incubated for 16 hours before they were harvested by centrifugation and the labelled proteins visualized by SDS-PAGE and autoradiography.
Example 4 Expression via Gene Therapy
Fibroblastε are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tisεue are placed on a wet εurface of a tiεsue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. This is then incubated at 37°C for approximately one week. At thiε time, freεh media iε added and εubεequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer iε trypsinized and scaled into larger flasks. pMV-7 (Kirεchmeier, P.T. et al, DNA, 7:219-25 (1988) flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and Hindlll and subεequently treated with calf intestinal phoεphatase. The linear vector iε fractionated on agarose gel and purified, using glass beads.
The cDNA encoding a polypeptide of the present invention is amplified using PCR primers which correspond to the 5' and 3' end sequences respectively. The 5' primer contains an EcoRI site and the 3' primer contains a Hindlll site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the EcoRI and Hindlll fragment are added together, in the presence of T4 DNA ligase. The resulting mixture iε maintained under conditionε appropriate for ligation of the two fragments. The ligation mixture iε used to transform bacteria HBlOl, which are then plated onto agar-containing kanamycin for the purpose of confirming that the vector had the gene of interest properly inserted.
The amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco'ε Modified Eagleε Medium (DMEM) with 10% calf serum (CS) , penicillin and streptomycin. The MSV vector containing the gene iε then added to the media and the packaging cellε are tranεduced with the vector. The packaging cellε now produce infectiouε viral particleε containing the gene (the packaging cellε are now referred to as producer cells) .
Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cellε. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer ceLls and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his.
The engineered fibroblasts are then injected into the host. The fibroblasts now produce the protein product.
Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, within the scope of the appended claims, the invention may be practiced otherwise than as particularly described.

Claims

WHAT IS CLAIMED IS:
1. An isolated polynucleotide comprising a polynucleotide having at leaεt a 70% identity to a member selected from the group consisting of:
(a) a polynucleotide encoding a polypeptide comprising an amino acid sequence as set forth in Figure 1:
(b) a polynucleotide which is complementary to the polynucleotide of (a) ; and
(c) a polynucleotide comprising at least 30 baseε of the polynucleotide of (a) or (b) .
2. The polynucleotide of claim 1 wherein the polynucleotide is DNA.
3. The polynucleotide of claim 1 wherein the polynucleotide iε RNA.
4. The polynucleotide of claim l wherein the polynucleotide is genomic DNA.
5. The polynucleotide of Claim 2 compriεing nucleotide l to 1866 set forth in Figure 1.
6. The polynucleotide of Claim 2 comprising nucleotide 173 to 1477 set forth in Figure l.
7. The polynucleotide of Claim 2 wherein said polynucleotide encodes a polypeptide comprising an amino acid sequence as set forth in Figure 1.
8. An isolated polynucleotide comprising a polynucleotide having at least a 70% identity to a member selected from the group consisting of:
(a) a polynucleotide encoding the same mature polypeptide expressed by the human cDNA contained in ATCC Deposit NO. 97334;
(b) a polynucleotide which is complementary to the polynucleotide of (a) ; and (c) a polynucleotide comprising at least 30 bases of the polynucleotide of (a) or (b) .
9. A vector comprising the DNA of Claim 2.
10. A hoεt cell comprising the vector of Claim 9.
11. A process for producing a polypeptide comprising: expressing from the host cell of claim 10 the polypeptide encoded by said DNA.
12. A process for producing cells comprising: transforming or transfecting the cellε with the vector of Claim 9 to thereby express a polypeptide encoded by the human cDNA contained in said vector.
13. A polypeptide comprising an amino acid sequence selected from the group consisting of:
(a) a polypeptide which is at least 70% identical to the amino acid sequence of Figure 1; and
(b) a polypeptide comprising at least 30 amino acid residues of the polypeptide of (a) .
14. An antibody against the polypeptide of claim 13.
15. An agonist to the polypeptide of claim 13.
16. An antagonist to the polypeptide of claim 13.
17. A method for the treatment of a patient having need to activate a G-protein chemokine receptor comprising: administering to the patient a therapeutically effective amount of the compound of claim 15.
18. A method for the treatment of a patient having need to inhibit a G-protein chemokine receptor comprising: administering to the patient a therapeutically effective amount of the compound of claim 16.
19. The method of claim 17 wherein said compound is a polypeptide and a therapeutically effective amount of the compound is administered by providing to the patient DNA encoding said agonist and expressing said agonist in vivo.
20. The method of claim 18 wherein said compound is a polypeptide and a therapeutically effective amount of the compound is administered by providing to the patient DNA encoding said antagonist and expressing said antagonist in vivo.
21. A method for identifying compounds which bind to and activate the polypeptide of claim 13 comprising: contacting a cell expressing on the surface thereof said polypeptide, said polypeptide being aεεociated with a second component capable of providing a detectable signal in response to the binding of a compound to said receptor polypeptide, with a compound under conditions sufficient to permit binding of the compound to the polypeptide,- and identifying if the compound is an effective agonist by detecting the signal produced by said second component.
22. A method for identifying compounds which bind to and inhibit activation the polypeptide of claim 13 comprising: contacting a cell expressing on a surface thereof said polypeptide, said polypeptide being associated with a second component which provides a detectable signal in response to the binding of a compound thereto, with a compound to be screened under conditions to permit binding to the polypeptide; and determining whether the compound inhibits activation of by detecting the absence of a signal generated from the interaction of said compound with the polypeptide.
23. A proceεs for diagnosing a disease or a suεceptibility to a disease related to an under-expression of the polypeptide of claim 13 comprising: determining a mutation in the nucleic acid sequence encoding said polypeptide.
24. A process for diagnosing a disease or a susceptibility to a disease related to an over-expresεion of the polypeptide of claim 13 comprising: determining a mutation in the nucleic acid εequence encoding said polypeptide.
25. A process for diagnosing a disease or a susceptibility to a disease related to an under-activity of the polypeptide of claim 13 comprising: determining a mutation in the nucleic acid sequence encoding said polypeptide.
26. A process for diagnosing a disease or a susceptibility to a diseaεe related to an over-activity of the polypeptide of claim 13 compriεing: determining a mutation in the nucleic acid sequence encoding said polypeptide.
27. The polypeptide of Claim 13 wherein the polypeptide iε a soluble fragment of the polypeptide and is capable of binding a ligand for the receptor.
28. A diagnostic proceεs comprising: analyzing for the presence of the polypeptide of claim 27 in a sample derived from a host.
PCT/US1996/000499 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68 WO1997025340A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU48984/96A AU4898496A (en) 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68
JP09512227A JP2000506365A (en) 1996-01-11 1996-01-11 Human G protein chemokine receptor HSATU68
PCT/US1996/000499 WO1997025340A1 (en) 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68
CA002242908A CA2242908A1 (en) 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68
EP96905151A EP0886643A4 (en) 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68
US10/411,284 US7888466B2 (en) 1996-01-11 2003-04-11 Human G-protein chemokine receptor HSATU68
US11/017,058 US20060014243A1 (en) 1996-01-11 2004-12-21 Human G-protein chemokine receptor HSATU68
US13/018,300 US8937169B2 (en) 1996-01-11 2011-01-31 Human G-protein chemokine receptor HSATU68

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US1996/000499 WO1997025340A1 (en) 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68
CA002242908A CA2242908A1 (en) 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10151898A Continuation-In-Part 1996-01-11 1998-12-21

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US09101518 A-371-Of-International 1996-01-11
US10/411,284 Continuation-In-Part US7888466B2 (en) 1996-01-11 2003-04-11 Human G-protein chemokine receptor HSATU68
US10/411,284 A-371-Of-International US7888466B2 (en) 1996-01-11 2003-04-11 Human G-protein chemokine receptor HSATU68
US11/017,058 Continuation US20060014243A1 (en) 1996-01-11 2004-12-21 Human G-protein chemokine receptor HSATU68

Publications (1)

Publication Number Publication Date
WO1997025340A1 true WO1997025340A1 (en) 1997-07-17

Family

ID=25680364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/000499 WO1997025340A1 (en) 1996-01-11 1996-01-11 Human g-protein chemokine receptor hsatu68

Country Status (4)

Country Link
EP (1) EP0886643A4 (en)
AU (1) AU4898496A (en)
CA (1) CA2242908A1 (en)
WO (1) WO1997025340A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050299A1 (en) * 1998-03-30 1999-10-07 Astrazeneca Ab Receptors
US6140064A (en) * 1996-09-10 2000-10-31 Theodor-Kocher Institute Method of detecting or identifying ligands, inhibitors or promoters of CXC chemokine receptor 3
US6171590B1 (en) 1998-09-30 2001-01-09 Corixa Corporation Chemokine receptor peptide for inducing an immune response
US6511826B2 (en) 1995-06-06 2003-01-28 Human Genome Sciences, Inc. Polynucleotides encoding human G-protein chemokine receptor (CCR5) HDGNR10
WO2003059949A2 (en) * 2002-01-18 2003-07-24 Universita' Degli Studi Di Firenze A protein that mediates angiogenesis and tumour growth inhibition, its cdna, alone or in complex with an expression vector
US6743594B1 (en) 1995-06-06 2004-06-01 Human Genome Sciences, Inc. Methods of screening using human G-protein chemokine receptor HDGNR10 (CCR5)
US7175988B2 (en) 2001-02-09 2007-02-13 Human Genome Sciences, Inc. Human G-protein Chemokine Receptor (CCR5) HDGNR10
US7393934B2 (en) 2001-12-21 2008-07-01 Human Genome Sciences, Inc. Human G-protein chemokine receptor (CCR5) HDGNR10
US7501123B2 (en) 2004-03-12 2009-03-10 Human Genome Sciences, Inc. Human G-protein chemokine receptor (CCR5) HDGNR10

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155218A (en) * 1990-05-08 1992-10-13 Neurogenetic Corporation Dna encoding human 5-ht1d receptors
WO1992000986A1 (en) * 1990-07-10 1992-01-23 Neurogenetic Corporation Nucleic acid sequences encoding a human dopamine d1 receptor
WO1992018641A1 (en) * 1991-04-10 1992-10-29 The Trustees Of Boston University Interleukin-8 receptors and related molecules and methods
US5374506A (en) * 1991-09-13 1994-12-20 The United States Of America As Represented By The Department Of Health And Human Services Amino acid sequence for a functional human interleukin-8 receptor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GENOMICS, 1995, Vol. 29, MARCHESE et al., "Cloning and Chromosomal Mapping of Three Novel Genes, GPR9, GPR10 and GPR14, Encoding Receptors Related to Interleukin 8, Neuropeptide Y and Somatostatin Receptors", pages 335-344. *
JOURNAL OF BIOLOGICAL CHEMISTRY, 15 July 1994, Vol. 269, No. 28, SUZUKI et al., "The N Terminus of Interleukin-8 (IL-8) Receptor Confers High Affinity Binding to Human IL-8", pages 18263-18266. *
See also references of EP0886643A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759519B2 (en) 1995-06-06 2004-07-06 Human Genome Sciences, Inc. Antibodies to human G-protein chemokine receptor HDGNR10 (CCR5receptor)
US7160546B2 (en) 1995-06-06 2007-01-09 Human Genome Sciences, Inc. Human G-protein chemokine receptor (CCR5) HDGNR10
US6511826B2 (en) 1995-06-06 2003-01-28 Human Genome Sciences, Inc. Polynucleotides encoding human G-protein chemokine receptor (CCR5) HDGNR10
US6743594B1 (en) 1995-06-06 2004-06-01 Human Genome Sciences, Inc. Methods of screening using human G-protein chemokine receptor HDGNR10 (CCR5)
US6800729B2 (en) 1995-06-06 2004-10-05 Human Genome Sciences, Inc. Human G-Protein chemokine receptor HDGNR10 (CCR5 receptor)
US6184358B1 (en) 1996-09-10 2001-02-06 Millennium Pharmaceuticals, Inc. IP-10/Mig receptor designated CXCR3, antibodies, nucleic acids, and methods of use therefor
US7407655B2 (en) 1996-09-10 2008-08-05 Millennium Pharmaceuticals, Inc. Method of inhibiting leukocytes with human CXC chemokine receptor 3 antibody
US6686175B1 (en) 1996-09-10 2004-02-03 Theodor-Kocher Institute IP-10/MIG receptor designated CXCR3, nucleic acids, and methods of use therefor
US6140064A (en) * 1996-09-10 2000-10-31 Theodor-Kocher Institute Method of detecting or identifying ligands, inhibitors or promoters of CXC chemokine receptor 3
US6833439B1 (en) 1996-09-10 2004-12-21 Theodor-Kocher-Institute IP-10/MIG receptor designated CXCR3, nucleic acids and methods of use therefor
US7029862B1 (en) 1996-09-10 2006-04-18 Theodor-Kocher Institute Method for identifying ligands, inhibitors or promoters of CXC chemokine receptor 3
WO1999050299A1 (en) * 1998-03-30 1999-10-07 Astrazeneca Ab Receptors
US6171590B1 (en) 1998-09-30 2001-01-09 Corixa Corporation Chemokine receptor peptide for inducing an immune response
US7862818B2 (en) 2001-02-09 2011-01-04 Human Genome Sciences, Inc. Method of inhibiting human G-protein chemokine receptor (CCR5) HDGNR10
US7175988B2 (en) 2001-02-09 2007-02-13 Human Genome Sciences, Inc. Human G-protein Chemokine Receptor (CCR5) HDGNR10
US7393934B2 (en) 2001-12-21 2008-07-01 Human Genome Sciences, Inc. Human G-protein chemokine receptor (CCR5) HDGNR10
WO2003059949A2 (en) * 2002-01-18 2003-07-24 Universita' Degli Studi Di Firenze A protein that mediates angiogenesis and tumour growth inhibition, its cdna, alone or in complex with an expression vector
WO2003059949A3 (en) * 2002-01-18 2004-07-22 Univ Firenze A protein that mediates angiogenesis and tumour growth inhibition, its cdna, alone or in complex with an expression vector
US7501123B2 (en) 2004-03-12 2009-03-10 Human Genome Sciences, Inc. Human G-protein chemokine receptor (CCR5) HDGNR10

Also Published As

Publication number Publication date
AU4898496A (en) 1997-08-01
CA2242908A1 (en) 1997-07-17
EP0886643A1 (en) 1998-12-30
EP0886643A4 (en) 2000-04-19

Similar Documents

Publication Publication Date Title
US6511826B2 (en) Polynucleotides encoding human G-protein chemokine receptor (CCR5) HDGNR10
US6743594B1 (en) Methods of screening using human G-protein chemokine receptor HDGNR10 (CCR5)
US20110201030A1 (en) Human G-Protein Chemokine Receptor (CCR5) HDGNR10
US5776729A (en) Human G-protein receptor HGBER32
CA2216990A1 (en) Human g-protein chemokine receptor hdgnr10
US5861272A (en) C5A receptor
US20060148708A1 (en) C5a receptor
EP0886643A1 (en) Human g-protein chemokine receptor hsatu68
EP1149582A2 (en) Human G-protein chemokine receptor HDGNR10 (CCR5 receptor). Uses thereof
EP1148126A2 (en) Human G-protein chemokine receptor HDGNR10 (CCR5 receptor)
US20050123998A1 (en) C5a receptor
WO1996039442A1 (en) G-protein receptor htnad29
US20020086363A1 (en) G-protein parathyroid hormone receptor HLTDG74
US20050266527A1 (en) Human G-protein receptor HIBEF51
US20050059114A1 (en) G-protein receptor HTNAD29
US20060166327A1 (en) Human G-protein receptor HGBER32
US20060014243A1 (en) Human G-protein chemokine receptor HSATU68
EP0871668A1 (en) Human g-protein receptor hibef51
WO1996039433A1 (en) G-protein parathyroid hormone receptor hltdg74
CA2216912A1 (en) Human g-protein chemokine receptor hdgnr10
AU2003235001A1 (en) G-Protein Receptor HTNAD29

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR MX NZ

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: PAT.BUL.31/97, UNDER INID(81)"DESIGNATED STATES",ADD"US";DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2242908

Country of ref document: CA

Ref country code: CA

Ref document number: 2242908

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996905151

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996905151

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996905151

Country of ref document: EP