Nothing Special   »   [go: up one dir, main page]

WO1997017321A1 - Derives cycliques d'acide amique - Google Patents

Derives cycliques d'acide amique Download PDF

Info

Publication number
WO1997017321A1
WO1997017321A1 PCT/JP1996/003239 JP9603239W WO9717321A1 WO 1997017321 A1 WO1997017321 A1 WO 1997017321A1 JP 9603239 W JP9603239 W JP 9603239W WO 9717321 A1 WO9717321 A1 WO 9717321A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
reaction
lower alkyl
compound
Prior art date
Application number
PCT/JP1996/003239
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Iwasawa
Tetsuya Aoyama
Kumiko Kawakami
Sachie Arai
Toshihiko Satoh
Yoshiaki Monden
Original Assignee
Banyu Pharmaceuticals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Banyu Pharmaceuticals Co., Ltd. filed Critical Banyu Pharmaceuticals Co., Ltd.
Priority to AU75051/96A priority Critical patent/AU7505196A/en
Publication of WO1997017321A1 publication Critical patent/WO1997017321A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/12Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups
    • C07C233/13Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom

Definitions

  • the present invention relates to novel substituted amide derivatives. More specifically, the substituted amide derivative of the present invention inhibits the function of the oncogene protein Ras by inhibiting the protein clear-fuarnesyltransferase (PFT) in the living body, thereby inhibiting the oncogenic effect.
  • PFT protein clear-fuarnesyltransferase
  • the ras oncogene is activated by mutation, and its translation product, Ras protein, plays an important role in transforming normal cells into cancer cells. This activation of the ras oncogene is observed in many cancers such as colorectal cancer and kidney cancer, and its rate is said to reach about 20% of all human cancers. Therefore, if the activation of these ras oncogenes is suppressed, or if the function of the Ras protein, which is a product of the ras oncogenes, is inhibited, an anticancer effect can be expected in suppressing canceration.
  • Ras protein function requires phanesylation of the Ras protein itself, and inhibition of the phanesylation suppresses the localization of the Ras protein to the cell membrane, resulting in the transformation of cancer cells into cancer cells. It was found to be inhibited.
  • Protein-Pharnesyltransferase (PFT) is an enzyme that catalyzes the pharmacosylation of this Ras protein, and inhibiting this enzyme can suppress the functional expression of the oncogenic Ras protein.
  • PFT Protein-Pharnesyltransferase
  • this enzyme is involved only in the pharmacosylation of a very limited number of proteins in vivo, and therefore, inhibitors of this enzyme are expected to be safe and highly selective anticancer agents.
  • An object of the present invention is to inhibit protein-farnesyltransferase (PFT), thereby suppressing the expression of the oncogene protein Ras, thereby resulting in a novel antitumor agent or antitumor agent having an antitumor or anti-AIDS effect.
  • PFT protein-farnesyltransferase
  • Q is — (C3 ⁇ 4) m- (where m is an integer of 1 to 6) Or (CH 2 ) n — W— (CH 2 ) P- (where W is an oxygen atom, a sulfur atom, a vinylene group or an ethynylene group; n and p are the same or different and are 0
  • R ′ is a hydrogen atom, a halogen atom, a hydroxyl group, a lower alkyl group, a lower alkoxy group, or a halogen atom, a lower alkyl group, and a lower alkoxy group.
  • R 2 , R 7 and R 8 are the same or different and are a hydrogen atom, a halogen atom, a hydroxyl group, a lower alkyl group; group or a lower alkoxy group;
  • R 3 and R 4 are the same or different, a hydrogen atom, A hydrogen atom, a hydroxyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a lower alkoxycarbonyl group, a carbamoyl group, a lower alkyl group, a lower alkyl group, a lower hydroxyalkyl group, a lower hydroxyalkyl group, a lower fluoroalkyl group or a lower alkoxy group;
  • R 5 is a lower alkyl group;
  • R 6 is a hydrogen atom or a lower alkyl group;
  • R 9 and R ′
  • R ' 1 is a hydroxyl group, a carboxyl group, a lower alkyl group, a lower hydroxyalkyl group or a lower alkoxy group
  • X and z are the same or different and Or an integer of 2
  • y represents 0 or 1] which inhibits protein-phagenesyltransferase (PFT), thereby suppressing the functional expression of the oncogene protein Ras;
  • PFT protein-phagenesyltransferase
  • the present invention relates to a compound represented by the general formula [I], a pharmaceutically acceptable salt or ester thereof, and use thereof.
  • the aryl group means a phenyl group, a naphthyl group or an anthryl group, and a phenyl group and a naphthyl group are preferable.
  • a heteroaromatic group is a group consisting of an oxygen atom, a nitrogen atom and a sulfur atom.
  • An aliphatic cyclic group which may contain 1 or 2 oxygen atoms means a 3- or 7-membered saturated or unsaturated aliphatic carbocyclic group or a 3- or 7-membered oxygen atom containing 1 or 2 oxygen atoms.
  • aliphatic oxygen-containing heterocyclic group for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, oxilanyl group, oxetanyl group, oxolanyl group, oxanil Group, oxepanyl group, 1,3-dioxetanyl group, 1.3-dioxolanyl group, 1,3-dioxanyl group, 1,3-dioxepanyl group, 1,4-dioxepanyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl Group, cycloheptenyl group, oxylenyl group, oxetyl group, 2,3-dihydrofuranyl group, 2,5-dihydrofuranyl group, 3,4 Dihydrovinyly
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a fluorine atom and a chlorine atom are preferable.
  • the lower alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group and a tert-butyl group. And a pentyl group, a hexyl group and the like, and among them, a methyl group, an ethyl group and the like are preferable.
  • the lower alkoxy group means an alkoxy group having 1 to 6 carbon atoms or an alkylene dioxy group, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, butoxy, tert-butyne, methylene dioxy, and the like.
  • alkylene dioxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, butoxy, tert-butyne, methylene dioxy, and the like.
  • Examples thereof include an ethylenedioxy group and a trimethylenedioxy group, and among them, a methoxy group, an ethoxy group, and a methylenedioxy group are preferable.
  • the lower alkoxyl alkoxyl group means an alkoxycarbonyl group having 1 to 7 carbon atoms, such as a methoxycarbonyl group, an ethoxyquincarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, and a tert-butoxycarbonyl group. And the like, among which methoxycarbonyl group, ethoxycarbonyl group and the like are preferable.
  • lower alkyl group refers to a mono- or di-substituted group formed by the lower alkyl group, such as a methylcarbamoyl group, an ethylcarbamoyl group, a dimethylcarbamoyl group, and a getylcarbamoyl group.
  • the lower hydroxyalkyl group means the lower alkyl group having a hydroxyl group, that is, a hydroxyalkyl group having 1 to 6 carbon atoms, for example, a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxypropyl group.
  • a hydroxymethyl group, a hydroxyxetyl group and the like are preferable.
  • the lower fluoroalkyl group means the lower alkyl group having a fluorine atom, that is, a fluoroalkyl group having 1 to 6 carbon atoms, for example, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 1-fluoroethyl group,
  • Examples thereof include a 2-fluoroethyl group, a 2,2,2-trifluoroethyl group, and a pentafluoroethyl group.
  • the salt of the compound represented by the general formula [I] means a conventional pharmaceutically acceptable salt, for example, a base addition salt at a carboxyl group or, when the compound has an amino group, the amino group or the basic complex.
  • a base addition salt at a carboxyl group or, when the compound has an amino group, the amino group or the basic complex in the case of having an aromatic ring, salts of acid addition salts on the basic heteroaromatic ring can be mentioned.
  • the base addition salt examples include an alkaline metal salt such as a sodium salt and a potassium salt; an alkaline earth metal salt such as a calcium salt and a magnesium salt; an ammonium salt: for example, a trimethylamine salt; And organic amine salts such as triethylamine salt, dicyclohexylamine salt, ethanolamine salt, diethanolamine salt, triethanolamine salt, proforce salt, and ⁇ , ⁇ ′-dibenzylethylenediamine salt.
  • an alkaline metal salt such as a sodium salt and a potassium salt
  • an alkaline earth metal salt such as a calcium salt and a magnesium salt
  • an ammonium salt for example, a trimethylamine salt
  • organic amine salts such as triethylamine salt, dicyclohexylamine salt, ethanolamine salt, diethanolamine salt, triethanolamine salt, proforce salt, and ⁇ , ⁇ ′-dibenzylethylenediamine salt.
  • the acid addition salts include, for example, inorganic acid salts such as hydrochloride, sulfate, nitrate, phosphate, perchlorate; for example, maleate, fumarate, tartrate, citrate, ascorbate, Organic acid salts such as trifluoroacetate; and sulfonates such as methanesulfonate, isethionate, benzenesulfonate and ⁇ -toluenesulfonate.
  • inorganic acid salts such as hydrochloride, sulfate, nitrate, phosphate, perchlorate
  • maleate, fumarate, tartrate, citrate, ascorbate Organic acid salts such as trifluoroacetate
  • sulfonates such as methanesulfonate, isethionate, benzenesulfonate and ⁇ -toluenesulfonate.
  • the ester of the compound represented by the general formula [I] means a conventional pharmaceutically acceptable carboxyl group at the terminal or a carboxyl group in the case where R or R "is a carbonyl group.
  • Esters with lower alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, cyclopropyl group and cyclopentyl group, and aralkyl groups such as benzyl group and phenyl group
  • Esters with lower alkenyl groups such as aryl, 2-butenyl, etc., and lower alkoxyalkyl groups such as methoxymethyl, 2-methoxyl, 2-ethoxyquinethyl, etc.
  • lower alkoxycarbonylalkyl groups such as methoxycarbonylmethyl group, isopropoxycarbonylmethyl group, etc.
  • esters with lower alkenyloxyalkyl groups such as acetyloxymethyl group, bivaloyloxymethyl group and 1-pivaloyloxyquinethyl group.
  • Okiso one Lou 4 one I le) an ester of methyl group an ester of methyl group.
  • the compound of the present invention may have stereoisomers such as optical isomers, diastereoisomers, and geometric isomers depending on the mode of the substituent. Also encompasses stereoisomers and mixtures thereof. Among them, the general formula [ ⁇ ⁇ 1]
  • Q is a group represented by — (CH 2 ) m — (where m has the meaning described above), m is preferably 1 to 4, and — (CH 2 ) n — W — (CH 2 ) P — (wherein W, n and p have the same meanings as above), W is a vinylene group or an ethynylene group, more preferably a vinylene group.
  • N and p are the same or different, and 0 or 1 is preferred.
  • R ' is a hydrogen atom, a halogen atom, a hydroxyl group, a lower alkyl group, a lower alkoxy group, or an aryl group or a hetero group which may have a substituent selected from the group consisting of a halogen atom, a lower alkyl group and a lower alkoxy group.
  • R 2 represents a hydrogen atom, a halogen atom, a hydroxyl group, a lower alkyl group or a lower alkoxy group
  • An aryl group or a heteroaromatic group which may have a substituent selected from the group consisting of a halogen atom, a lower alkyl group and a lower alkoxy group in R 1 is the unsubstituted aryl group or the heterocyclic group.
  • R ' represents a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group:
  • R 2a represents a hydrogen atom, a halogen atom or a lower alkyl group
  • a naphthyl group a benzofuranyl And benzothienyl, benzothiazolyl, benzoxazolyl and benzoimidazolyl groups, and more specifically, phenyl, 2-benzo [b] furanyl, 2-benzo [ b] A phenyl group, a 2-naphthyl group, a 2-benzoxazolyl group and the like are preferred.
  • R 3 and the same or different, hydrogen atom, halogen atom, hydroxyl group, amino group, nitro group, cyano group, carboxyl group, lower alkoxycarbonyl group, rubamoyl group, lower alkyl group A hydroxyalkyl group, a lower fluoroalkyl group or a lower alkoxy group,
  • R 3 and R also have the same meaning as described above
  • a naphthyl group and a pyridyl group, a furyl group or a phenyl group having R 3 on the ring and more specifically, 4 —Fluorophenyl, 4-chlorophenyl, 4-methylphenyl, 3-fluoro-4-methylphenyl, 4-fluoro-3-methylphenyl, 3-chloro-4-methylphenyl, 4-chloro-3-methylphenyl, 3,4-dichlorophenyl Group, 3,4-dimethylphenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl, 412-nitrophenyl, 4-aminophenyl, 4-hydroxyphenyl, 4-hydroxy Rubamoylphenyl, 4-methylcarbamoylphenyl, 4-hydroxymethylphenyl, 4-trifluoromethylphenyl, 4-sia Fuweniru group, 4-main Bok Kin carbonyl full
  • R 6 is preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group or the like, and particularly preferably a hydrogen atom, a methyl group or the like.
  • R 7 and R 8 are the same or different and represent a hydrogen atom, a halogen atom, a hydroxyl group, a lower alkyl group or a lower alkoxy group,
  • R 7a and R ea are the same or different and each represent a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group, a naphthyl group, a quinolyl group, a benzoxazolyl group Benzofuranyl group and benzophenyl group. More specifically, 3,4-dichlorophenyl group, 3,4-difluorophenyl group, 3,4-dimethylphenyl group, 2-naphthyl group, 2-benzoxazolyl group , 2-benzo [b] furanyl, 2-benzo [b] thenyl, 5-benzo [b] thenyl and the like are preferred.
  • R ; 'and R 1 are the same or different and each represent a hydrogen atom, a hydroxyl group or a lower alkyl group.
  • R y represents a hydrogen atom, a hydroxyl group, a methyl group, or the like;
  • R 10 represents a hydrogen atom; Hydroxyl groups and the like are preferred.
  • R represents a hydroxyl group, a carboxyl group, a lower alkyl group, a lower hydroxyalkyl group or a lower alkoxy group, and among them, a carboxyl group is preferable.
  • X and z are the same or different and each represents an integer of 0 to 2; y represents 0 or 1; X is preferably 0 or 1 and y is 0, and z is preferably 1 or 2.
  • the compound of the present invention represented by the general formula [I] can be produced by, for example, the following production methods 1, 2, 3, 4, It can be prepared by the method shown in 5 or 6 (
  • Q is one (where m represents an integer of 1 to 6) or-(CH 2 ) n -W— (CH 2 ) P- (Where W is an oxygen atom, a sulfur atom, a vinylene group or an ethynylene group; n and p are the same or different and each represents an integer of 0 to 3); and R ′ p is hydrogen.
  • R 2P , R 7P and R sp are the same or different and each represents a hydrogen atom, a halogen atom, an optionally protected hydroxyl group, a lower alkyl group or a lower alkoxy group;
  • R 5 represents a lower alkyl group;
  • R s represents a hydrogen atom or a lower alkyl group] and a compound represented by the general formula [III]
  • R 9P and R ′ ° p are the same or different and each represents a hydrogen atom
  • R '' p represents a lower alkyl group, a lower alkoxy group or an optionally protected hydroxyl group, a carboxyl group or a lower hydroxyalkyl group
  • x and z are the same or different
  • y is 0 or 1
  • R p is a hydrogen atom or a carboxyl group-protecting group]
  • R IOp R p, x, y, z and R p have the meanings given above]
  • the compound represented by the general formula [I] can be obtained by removing the protecting group as necessary.
  • the reactive derivative of the carboxylic acid represented by the general formula [III] for example, an acid halide, a mixed acid anhydride, an active ester, an active amide and the like are used.
  • a carboxylic acid of the general formula [III] ⁇ , ⁇ '-dicyclohexyl
  • the reaction is preferably performed in the presence of a condensing agent such as silcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, 2-chloro-1,3-dimethylimidazolinolechloride, and the like.
  • reaction between the compound represented by the general formula [II] and the carboxylic acid represented by the general formula [III] or a reactive derivative thereof is performed based on 1 mol of the compound represented by the general formula [III] Of the carboxylic acid or a reactive derivative thereof is used in an amount of 1 mol to excess mol, preferably 1 to 5 mol.
  • the reaction is usually carried out in an inert solvent.
  • the inert solvent include halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and trichloroethylene; for example, ethyl ether and tetrahydrofuran.
  • Ethers such as benzene, dioxane and the like: aromatic hydrocarbons such as benzene, toluene, black benzene, xylene and the like; non-hydrocarbons such as dimethylformamide, acetonitrile, acetone, ethyl acetate, hexamethylphosphate triamide and the like.
  • a protic polar solvent, a mixed solvent thereof, and the like are included.
  • the reaction temperature is usually from about 70 ° C to the boiling point of the solvent used in the reaction, preferably
  • the reaction time is generally 5 minutes to 7 days, preferably 10 minutes to 24 hours.
  • the above reaction can be carried out in the presence of a base in order to smoothly carry out the reaction.
  • the base include inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, lithium carbonate, sodium hydrogencarbonate, and the like, or triethylamine, N-ethyldiisopropylamine, pyridine, and the like. It is preferable to carry out the reaction in the presence of an organic base such as 2,4-dimethylaminopyridine, ⁇ , ⁇ -dimethylaniline and ⁇ -methylmorpholine.
  • the amount of the base to be used is 1 mol to excess mol, preferably 1 to 5 mol, per 1 mol of the reactive derivative of the carboxylic acid of the general formula [ ⁇ ].
  • the acid halide of the compound of the general formula [III] can be obtained by reacting the carboxylic acid of the general formula [III] with a halogenating agent according to a conventional method.
  • a halogenating agent for example, thionyl chloride, phosphorus trichloride, phosphorus pentachloride, oxyphosphorus chloride, phosphorus tribromide, oxalyl chloride, phosgene and the like are used.
  • the mixed acid anhydride of the compound of the general formula [III] is usually a carboxylic acid of the general formula [III].
  • an intramolecular acid anhydride is formed between the carboxyl groups at both ends, or, when R ′ ′ P represents a carboxyl group, the compound involved in the reaction with the carboxyl group is carboxylic acid.
  • An intramolecular acid anhydride may be formed between the groups to form a reactive derivative of the carboxylic acid.
  • the active ester of the compound of the general formula [III] can be prepared by a conventional method using a carboxylic acid of the general formula [III], for example, ⁇ , ⁇ '-zinclohexylcarpoimide, 1-ethyl-3- (3-dimethylamino)
  • a condensing agent such as propyl) propylamide
  • ⁇ -hydroxy compounds such as ⁇ -hydroxysuccinimide, ⁇ -hydroxyphthalimid, 1-hydroxybenzotriazole, and the like: 4-nitrophenol , 2,4-dinitrophenol, 2,4,5-trichlorophenol, pentachlorophenol, and other phenol compounds.
  • the active amide of the compound of the general formula [III] is prepared by reacting the carboxylic acid of the general formula [III] with, for example, ⁇ , ⁇ -carbonyldiimidazole, 1. 1.-carbonylbis (2-methylimidazole) or the like according to a conventional method. Can be obtained.
  • ⁇ -carbonyldiimidazole
  • R "P or R 'if ° P means a hydroxyl group and R' '[rho water group, carboxyl
  • R "P or R 'if ° P means a hydroxyl group and R' '[rho water group, carboxyl
  • R "P or R 'if ° P means a hydroxyl group and R' '[rho water group, carboxyl
  • the hydroxyl group, the lower hydroxyalkyl group, the amino group or the carboxyl group is appropriately protected by a hydroxyl group-protecting group, an amino group-protecting group or a carboxyl group-protecting group. It is preferred to carry out the reaction later and to remove the protecting group after the reaction.
  • hydroxyl-protecting group examples include: lower alkylsilyl groups such as trimethylsilyl group and tert-butyldimethylsilyl group; lower alkoxymethyl groups such as methoxymethyl group and 2-methoxyquinethoxymethyl group; for example tetrahydropyranyl group; Aralkyl groups such as benzyl group, P-methoxybenzyl group, p-nitrobenzyl group and trityl group; and aralkyl groups such as formyl group and acetyl group; particularly, methoxymethyl group and tetrahydroviranyl Group, trityl group, tert-butyldimethylsilyl group, acetyl group and the like.
  • lower alkylsilyl groups such as trimethylsilyl group and tert-butyldimethylsilyl group
  • lower alkoxymethyl groups such as methoxymethyl group and 2-methoxyquinethoxymethyl group
  • Examples of the protecting group for the amino group include aralkylidene groups such as benzylidene group, p-chlorobenzylidene group, and p-nitrobenzylidene group; for example, benzyl group, P-methoxybenzyl group, and p-nitrobenzene.
  • Aralkyl groups such as benzyl group, benzhydryl group and trityl group: lower alkanoyl groups such as formyl group, acetyl group, propionyl group, butyryl group, and bivaloyl group; lower haloalkanol groups such as trifluorescetyl group; A lower alkoxycarbonyl group such as a carbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a tert-butyne carbonyl group; a lower haloalkoxycarbonyl group such as a 2,2,2-trichloromouth ethoxycarbonyl group; Propenyloxy force Alkenyloxycarbonyl such as rubonyl group An aralkyloxycarbonyl group such as a benzyloxycarbonyl group and a p-nitrobenzoylcarbonyl group; a lower alkylsilyl group such as a trimethylsilyl group and
  • Examples of the carboxyl-protecting group include lower alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group and tert-butyl group: lower haloalkyl groups such as 2,2,2-trichloromethylethyl group; Lower alkenyl groups such as 2-propenyl group: for example, benzyl groups, p-methoxybenzyl groups, p-nitrobenzyl groups, benzhydryl groups, aralkyl groups such as trityl groups, etc., and especially methyl Group, ethyl group, tert-butyl group, 2-propenyl group, benzyl group, P-methoxybenzyl group, benzhydryl group and the like.
  • lower alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group and tert-butyl group: lower haloalkyl groups such as 2,2,2-trich
  • the compound represented by the general formula [IV] is purified according to a conventional method, or without purification, if necessary, a protecting group for a hydroxyl group, an amino group and a carboxyl group.
  • the compound of the general formula [I] can be produced by appropriately combining the removal reactions.
  • protecting groups depends on the type, but the method described in the literature [Protective Groups in Organic Synthesis, TW Greene, TW Greene, John Wiley & Sons, Inc. (1981)] or a method analogous thereto, for example, using an acid or a base, using a solvolysis, a metal hydride complex, or using a chemical reduction or a radium-one carbon catalyst, a Raney nickel catalyst, or the like. It is performed by catalytic reduction or the like.
  • R ′ p , R 2P and n have the above-mentioned meanings] and a compound represented by the general formula [VI]
  • T represents a triphenylphosphonio group, a dimethoxyphosphoryl group or a methoxyphosphoryl group;
  • Ar 2 ⁇ Ar 3 - Cy p , R 3P, R 'p, R 5, R 6, R 7P, R 8P, R 9P, R'. p , R ′ lp , x, y, z and R p have the above-mentioned meanings]
  • n, p, R lp , R 2P , R 3P , R 4P , R 5 , R 6 , R 7p , R 8p , R 9P , R IOp , R " ⁇ x, y, z and R p have the above meanings Having the general formula [I-11] by removing a protecting group as necessary.
  • R ′, R 2 , R 3 , R ⁇ R 5 , RR 7 , R 8 , R H , R 10 , R u , x, y and z have the above-mentioned meanings. it can.
  • the portion represented by Q in the formula represents one (CH—CH —CH— (CH, one (where n and p Is).
  • the reaction of the compound represented by the general formula [v] with the compound represented by the general formula [VI] is usually carried out using both in equimolar amount or using a slight excess of either one.
  • the reaction is usually performed in an inert solvent.
  • the inert solvent include ethers such as ethyl ether, tetrahydrofuran, and dioxane: aromatic hydrocarbons such as benzene, toluene, benzene, xylene, and the like;
  • aprotic polar solvents such as dimethylformamide, acetonitrile, acetone, ethyl acetate, and hexamethylphosphate triamide, or a mixed solvent thereof can be used.
  • the reaction temperature is usually from 100 ° C. to the boiling point of the solvent used in the reaction, preferably from ⁇ 70 ° C. to 5 (TC).
  • the reaction time is generally 5 minutes to 7 days, preferably 10 minutes to 24 hours.
  • the above reaction can be carried out in the presence of a base in order to smoothly carry out the reaction.
  • T in the general formula [VI] is a triphenylphosphonio group, for example, sodium hydride, n-butyllithium, sodium methoxide, potassium tert-butoxide, hydroxide It is preferable to carry out the reaction in the presence of a base such as sodium or hydroxylated lime.
  • the amount of the base to be used is 1 mol to excess mol, preferably 1 to 5 mol, per 1 mol of the compound represented by the general formula [VI], wherein T is a triphenylphosphonio group. .
  • Examples of the protecting group for a hydroxyl group, the protecting group for an amino group, and the protecting group for a carboxyl group include the protecting groups described in the above Production Method 1.
  • the thus-obtained compound represented by the general formula [IV-1] is purified by a conventional method or, without purification, if necessary, removal of protecting groups for a hydroxyl group, an amino group and a carboxyl group.
  • the compound of the general formula [1-1] can be produced by appropriately combining the reactions.
  • the method for removing the protecting group varies depending on the type of the protecting group, the stability of the target compound [I-1], and the like, and can be appropriately performed, for example, according to the method described in the above-mentioned literature or a method analogous thereto.
  • T, ⁇ , R ′ p and R 2P have the above-mentioned meanings] and a compound represented by the general formula [VIII] COORD
  • n, p, R 'p, R 2p, R 3p, R, R 5, R 6, R 7p, R 8p, R 9p, R ⁇ 0p, R llp, x, y , z and RP are as defined above Having the general formula [1-1] by removing a protecting group as necessary.
  • R ', R 2, R 3 , R ⁇ R 5, R 6, RRR 9, R 10, R u, x, y and z can be obtained a compound represented by have the meanings above.
  • Production method 3 is equivalent to the reaction of production method 2 in which compound [V] and compound [VI] as the starting compounds are replaced with compound [VIII] and compound [VII], respectively. Can all be carried out according to Production Method 2.
  • n and Pl are the same or different and each represents an integer of 0 to 3.
  • R lp , R 2p , R 3P , R A R 5 , R 6 , R 7P , R 8p , R 9p , R ′ ° p , R p , x, y, z and R p have the above-mentioned meanings (however, , N, and p, the sum of which does not exceed 4)], reducing the compound represented by the general formula [1-2] [1-2]
  • Q 2 represents a group represented by the formula: (CH 2 ) m — (where m has the meaning described above):
  • R ', R 2, R 3 , RR 5, R 6, R 7, R 8, R 9, R'. , R ", x, y, and z have the above-mentioned meanings].
  • the reaction for reducing the compound represented by the general formula [IV- ⁇ ] is usually preferably carried out in an inert solvent by catalytic reduction using a palladium-carbon catalyst, a Raney nickel catalyst, a platinum catalyst or the like.
  • inert solvent examples include alcohols such as methanol, ethanol, and propanol, and acetic acid.
  • the reaction temperature is usually from ⁇ 20 ° C. to 100 ° C., preferably from 0 ° C. to room temperature.
  • the reaction time is generally 5 minutes to 7 days, preferably 10 minutes to 24 hours.
  • the hydrogen pressure in the catalytic reduction reaction is preferably from normal pressure to 5 atm, and the amount of the catalyst used is usually 0.01 to 1 mol, preferably 1 to 1 mol, relative to 1 mol of the starting compound [IV- ⁇ ]. Is 0.05 to 0.2 mol.
  • W 1 represents an oxygen atom or a sulfur atom
  • Z 1 represents a leaving group
  • R 3-Way R is 'p R 5 R 6 R 7p R 8p R 9P R' p R p xyz and R p is reacted with a compound represented by have the meanings of the general formula [IV- 3]
  • has the meaning of ⁇
  • R ′, RR 3 , RR 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R ⁇ ′, x, y and z have the above-mentioned meanings]. .
  • the part of the compound of the present invention represented by the general formula [I] represented by Q in the formula is represented by-(CH 2 ) n -W '— (CH 2 ) P- (where , N, p and W have the same meaning as described above), that is, a production method for synthesizing a compound represented by the general formula [1-3].
  • the reaction between the compound represented by the general formula [IX] and the compound represented by the general formula [X] is usually performed by reacting the compound represented by the general formula [IX] with respect to 1 mol of the compound represented by the general formula [X].
  • the reaction is carried out using the compound represented by 1 mol to excess mol, preferably 1 to 3 mol.
  • the reaction is usually performed in an inert solvent.
  • the inert solvent include halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and trichloroethylene: for example, ethyl ether, tetrahydrofuran.
  • Ethers such as benzene, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, black benzene, xylene and the like: dimethylformamide, acetonitrile, acetone, ethyl acetate, hexamethyl phosphate triamide Etc. non Examples thereof include a protonic polar solvent, a mixed solvent thereof, and the like.
  • the reaction temperature is usually from -70 ° C to the boiling point of the solvent used in the reaction, preferably
  • the reaction time is generally 5 minutes to 7 days, preferably 10 minutes to 24 hours.
  • the above reaction is preferably performed in the presence of a base to smoothly carry out the reaction.
  • the base include sodium hydride, n-butyllithium, sodium hydroxide, lithium hydroxide, and hydroxide.
  • Inorganic bases such as calcium, sodium carbonate, potassium carbonate, sodium hydrogencarbonate and the like or organic bases such as triethylamine, N-ethyldiisopropylamine, pyridine, 4-dimethylaminopyridine, ⁇ , ⁇ -dimethylaniline and the like. No.
  • the amount of the base to be used is 1 mol to excess mol, preferably 1 to 5 mol, per 1 mol of compound represented by general formula [IX].
  • the leaving group represented by Z ′ is, for example, a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, or an organic sulfo such as a methanesulfonyloxy group, a ⁇ -toluenesulfonyloxy group or a benzenesulfonyloxy group. And a carbonyl group.
  • an amino group when there is a carboxyl group or a lower heat Dorokishia alkyl group, when R or R iep means a hydroxyl group and R l lp water group, a carboxyl group or a lower Hidorokin
  • the reaction is carried out after protecting the hydroxyl group, lower hydroxyalkyl group, amino group or carboxyl group with a hydroxyl group-protecting group, amino group-protecting group or carboxyl group-protecting group as appropriate.
  • the protecting group is removed. Examples of the protecting group for a hydroxyl group, the protecting group for an amino group, and the protecting group for a carboxyl group include the protecting groups described in the above Production Method 1.
  • the thus-obtained compound represented by the general formula [IV-3] is purified by a conventional method, or without purification, where necessary, removal of protecting groups for hydroxyl, amino and carboxyl groups.
  • the compound of the general formula [I-13] can be produced by appropriately combining the reactions.
  • the method for removing the protecting group can be appropriately determined according to the type of the protecting group and the stability depending on the stability of the target compound [I-3], for example, the method described in the above-mentioned literature or a method analogous thereto.
  • R ', R 2 , R 3, R', R 5, R 6, R 7, R 8, RR 10, R u, x, y and z are represented by have the meanings of the compound Can be obtained.
  • the isolation and purification of the compound of the general formula [1], [1-1], [1-2] or [1-3] obtained by the above method can be performed, for example, by column chromatography using silica gel or an adsorption resin. This can be achieved by using conventional separation means such as liquid chromatography, solvent extraction or recrystallization / reprecipitation alone or in appropriate combination.
  • the compound of the general formula [1], [1-1], [1-2] or [1-3] can be converted into a pharmaceutically acceptable salt or ester by a conventional method.
  • the conversion of the ter to the free carboxylic acid can also be performed according to a conventional method.
  • the compounds according to the present invention can be all produced by the same method as the above-mentioned production method, using raw materials corresponding to the target compound.
  • X represents a halogen atom
  • Y represents a cyano group, a carboxyl group, a lower alkoxycarbonyl group, a cycloformyl group, or a ⁇ -methoxy ⁇ -methylcarbamoyl group
  • a leaving group selected from the group consisting of an atom, a trifluoroacetoxy group, a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group, and a ⁇ -toluenesulfonyloxy group;
  • the target compound [ ⁇ ] is represented by the general formula
  • An alkyllithium reagent represented by the general formula 2 or an alkyl Grignard reagent (or an alkyl Gilman reagent) represented by the general formula 3 is formed on a ril or carboxylic acid derivative.
  • the compound can be produced by reacting an amine compound represented by
  • the above reaction step will be specifically described below with reference to suitable reaction conditions and the like.
  • the alkyl lithium or alkyl Grignard reagent (1 mol) is used per 1 mol of the starting compound ⁇ .
  • an alkyl Gilman reagent is reacted with 1 mol to an excess mol, preferably 1 to 5 mol, and then, if necessary, hydrolyzed under acidic conditions.
  • the reaction temperature is usually from 80 ° C to the boiling point of the solvent used in the reaction, preferably from -70 ° C to 50 ° C, and the reaction time is generally from 5 minutes to 48 hours, preferably from 30 minutes to 24 hours. Time.
  • the substituent Y in the formula of the starting compound i is a cyano group
  • the reaction is carried out in the presence of an acid such as toluenesulfonic acid, for example, in methanol, ethanol, tetrahydrofuran or a mixed solvent thereof with water.
  • the reaction temperature is usually from 0 ° C. to the boiling point of the solvent used in the reaction, and the reaction time is from 30 minutes to 24 hours.
  • the compound represented by the general formula 6 In the step of producing the compound represented by the general formula 6 from the ketone compound, the compound represented by the general formula 6
  • the reaction can be carried out by reacting the alkylating agent represented by 5 with 1 mol to excess mol, preferably 1 to 2 mol.
  • the inert solvent examples include ethers such as ethyl ether, tetrahydrofuran, and dioxane; aromatic hydrocarbons such as benzene, toluene, and xylene; and dimethylformamide, dimethylsulfoxide, and hexamethylphosphate triamide. And aprotic polar solvents, and mixtures of the above solvents.
  • the base used in this reaction includes, for example, alkali metal hydrides such as sodium hydride, lithium hydride and potassium hydride: for example, lithium amide, lithium diisopropyl amide, lithium pistrimethylsilyl amide and the like.
  • Titanium amides such as methyllithium, butyllithium, and tert-butyllithium: metal alkoxides such as sodium methoxide, sodium ethoxide, and potassium tert-butoxide: sodium hydroxide, hydroxylation power Metal hydroxides such as lithium and lithium hydroxide.
  • the amount of the base to be used is generally 1 mol to excess mol, preferably 1 to 5 mol, per 1 mol of the starting alkylating agent 5.
  • the reaction temperature is usually —100 ° C. to the boiling point of the solvent used in the reaction, preferably —80 ° C. to 100 ° C.
  • the reaction time is usually 10 minutes to 48 hours, preferably 30 minutes. ⁇ 24 hours.
  • the step of producing the target compound [ ⁇ ] from the compound represented by the general formula is usually carried out by reacting the compound represented by the general formula 6 in an inert solvent such as methanol, ethanol, benzene, ethyl ether, and tetrahydrofuran.
  • the imine compound represented by the general formula Z may be used in an amount of 1 mole to excess mole, preferably 1 to 2 moles, preferably 1 to 2 moles, to form an imine in advance, followed by reduction to reduce the imine compound. it can.
  • the reaction temperature in the process of forming the imine is usually from 0 ° C. to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C., and the reaction time is generally from 5 minutes to 48 hours, preferably 30 minutes. ⁇ 24 hours.
  • the reaction solution may be used as it is in the reduction reaction in the next step, or the reaction solution may be distilled off, or the imine compound may be isolated using a conventional separation means, and subjected to the subsequent reduction reaction. I can do it.
  • a gold hydride complex such as sodium borohydride, sodium cyanoborohydride, lithium aluminum hydride, or the like is used, or a catalytic reduction using, for example, a palladium-carbon catalyst, a Raney nickel catalyst, or the like is performed. be able to.
  • the amount of the reducing agent is 1 mol to excess mol, preferably 1 to 5 mol, per 1 mol of the imine.
  • a solvent may be used as appropriate, for example, alcohols such as methanol and ethanol; for example, dimethyl ether, ethyl ether, diisopropyl ether, dibutyl ether, dimethyloxetane, dioxane, tetrahydrofuran.
  • Ether solvents such as pentane, hexane, heptane and cyclohexane; and inert solvents such as aromatic hydrocarbons such as benzene and toluene, or mixed solvents thereof. It is.
  • the reaction temperature is usually from 0 ° C. to room temperature, and the reaction time is usually from 1 hour to 6 hours.
  • an alkyl derivative represented by the general formula 5 is acted on a nitrile or carboxylic acid derivative represented by the general formula II to produce an alkyl derivative in advance, and then the alkyl derivative is prepared.
  • the reaction at this time can be carried out under the same conditions as in the above-mentioned production method A, and therefore, the reaction conditions and the like can all be used as they are in the production method A.
  • the target compound [ ⁇ ] has the general formula Can be produced by reacting a compound represented by the formula (1) with a reducing agent such as a hydrogenated metal complex to produce an alcohol compound, and then reacting the alcohol compound with an amine compound represented by the general formula Z.
  • a reducing agent such as a hydrogenated metal complex
  • the above reaction step will be specifically described below with reference to suitable reaction conditions and the like.
  • the step of reducing the compound represented by the general formula 6 to the alcohol 8 is usually performed in an inert solvent that does not adversely affect the reaction, for example, sodium borohydride, diisobutylaluminum hydride, lithium hydride.
  • This can be performed by force using a metal hydride complex such as aluminum, tri-sec-butyllithium borohydride (L-selectride TM), or catalytic reduction using, for example, a palladium-carbon catalyst or a Raney-nickel catalyst. it can.
  • the amount of the reducing agent used is usually The amount is from 1 mol to an excess, preferably from 1 to 5 mol, per 1 mol of the compound represented by the general formula 6.
  • the inert solvent used in this reaction can be appropriately selected depending on the type of the reducing agent.
  • the reducing agent is sodium borohydride
  • alcohols such as methanol and ethanol
  • ethers such as dimethoxetane, dioxane, tetrahydrofuran, and diglyme
  • non-protons such as dimethylformamide and dimethylacetamide
  • an inert solvent such as a polar solvent or water, or a mixed solvent thereof is used, and alcohols such as methanol and ethanol are particularly preferable.
  • ethers such as dimethyl ether, ethyl ether, diisopropyl ether, dibutyl ether, dimethyloxetane, dioxane, tetrahydrofuran, and diglyme; for example, pentane, hexane, heptane, cyclohexane, and the like
  • Aliphatic hydrocarbons for example, aromatic hydrocarbons such as benzene and toluene; and inert solvents such as methylene chloride or mixed solvents thereof, and toluene and methylene chloride are particularly preferred.
  • ethers such as dimethyl ether, ethyl ether, diisopropyl ether, dibutyl ether, dimethyloxetane, dioxane, tetrahydrofuran, diglyme; Aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane; inert solvents such as aromatic hydrocarbons such as benzene and toluene; and mixed solvents thereof are used. Lahydrofuran and the like are preferred.
  • alcohols such as methanol and ethanol are preferable as the solvent.
  • reaction temperature and reaction time vary depending on the stability of the ketone body 6 as a raw material, the susceptibility of the reduction reaction, the type of the reducing agent and the type of the solvent, etc., but the reaction temperature is usually -80 °. C to 100 ° C, preferably -70 ° C to 40 ° C, and the reaction time is usually 5 minutes to 2 days, preferably 30 minutes to 24 hours.
  • a sulfonating agent such as, for example, methansulfonyl chloride is acted on the alcohol compound represented by the general formula 8 in the presence of a base.
  • the reaction for introducing a leaving group is usually carried out in an inert solvent such as methylene chloride, chloroform, benzene, tetrahydrofuran, ethyl acetate or the like in an amount of 1 mol to excess mol, preferably 1 to 1 mol, per 1 mol of the alcohol.
  • the reaction can be carried out by reacting 2 mol of a sulfonating agent and a base such as triethylamine, or by using 1 mol to an excess mol, preferably 1 to 5 mol of a halogenating agent.
  • the reaction temperature is usually from -70 ° C to the boiling point of the solvent used in the reaction, preferably from 20 ° C to 80 ° C, and the reaction time is usually from 5 minutes to 48 hours, preferably from 30 minutes to 24 hours. Time.
  • the step of allowing the amine compound Z to act on the compound after introduction of the leaving group obtained in the above reaction is usually carried out in an inert solvent such as methylene chloride, chloroform, benzene, ethyl ether, tetrahydrofuran or the like.
  • the reaction can be carried out using 1 to 50 moles, preferably 1 to 50 moles, of the amine compound Z based on 1 mole of the starting compound having a leaving group.
  • this reaction can be carried out in the presence of another base different from the amine compound represented by the general formula Z, if necessary.
  • the base examples include inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, and the like, or triethylamine, N-ethyldiisopropylpropylamine, pyridine, and the like. And organic bases such as ⁇ , ⁇ -dimethylaniline.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, and the like, or triethylamine, N-ethyldiisopropylpropylamine, pyridine, and the like.
  • organic bases such as ⁇ , ⁇ -dimethylaniline.
  • the amount of the base to be used is generally 1 mol to excess mol, preferably 1 to 5 mol, per 1 mol of the starting compound.
  • the reaction temperature is usually from 50 ° C to 150 ° C, preferably from -20 ° C to 100 ° C, and the reaction time is usually from 5 minutes to 7 days, preferably from 10 minutes to 24 hours.
  • the target compound [ ⁇ ] is The alcohol derivative represented by the general formula 8 is reacted with azodicarboxylic acid acetyl ester, triphenylphosphine and phthalimid (or hydrazic acid or diphenylphosphoric azide) or in the presence of a base such as triethylamine.
  • phthalimid or sodium azide
  • a base After reacting with a sulfonylating agent such as methanesulfonyl chloride, phthalimid (or sodium azide) is reacted in the presence of a base to produce a protected phthalimid (or azide) of the amine form.
  • Hydrazine or reducing agent
  • the amine group is removed (or the azide group is reduced) to produce an amide represented by the general formula, and finally, the compound is treated with the compound represented by the general formula, and then reduced to produce can do.
  • reaction step will be specifically described below with reference to suitable reaction conditions and the like.
  • various synthetic methods and reaction conditions well known in organic synthetic chemistry for converting an alcohol to an amine can be used.
  • a so-called Mitsunobu reaction is carried out using azodicarboxylic acid getyl ester, triflatin phosphine and phthalimid (or hydrazoic acid or difunyuryl phosphate azide), or in the presence of a base such as triethylamine.
  • a sulfonylating agent such as methanesulfonyl and the like
  • phthalimid or sodium azide
  • the resulting phthalimid is treated with hydrazine ( Or reduction).
  • the above reaction is usually carried out in an inert solvent which does not participate in the reaction.
  • the inert solvent include tetrahydrofuran, dimethoxyethane, benzene, toluene and the like in the Mitsunobu reaction, and phthalimid after sulfonylation.
  • Or sodium azide for example, methylene chloride, chloroform, tetrahydrofuran, benzene, ethyl acetate, dimethylformamide, etc.
  • alcohols such as methanol and ethanol are suitable.
  • ethers such as ethyl ether and tetrahydrofuran are used, and when phosphine is reduced using trifenylphosphine and the like, hydrated tetrahydrofuran is used.
  • alcohols such as methanol and ethanol are preferable.
  • the amount of the reagent to be used is, for example, 1 mole of the alcohol compound as a raw material in the above-mentioned Mitsunobu reaction, based on ezodicarboxylic acid getyl ester, triphenyl phosphine and phthalimid (or hydrazoic acid or diphenylphosphoric acid azide). Is 1 mol to excess mol, preferably 1 to 5 mol, respectively.
  • a sulfonylating agent such as methanesulfonyl chloride is added to 1 mole of the alcohol 8
  • 1 mol to excess mol preferably 1 to 2 mol
  • the base such as triethylamine used in this case is 1 mol to excess mol, preferably 1 to 2 mol, per 1 mol of sulfonylating agent.
  • 1 mol to excess mol preferably 1 to 5 mol of phthalimid is used per 1 mol of the sulfonylating agent.
  • bases or sodium azide are used.
  • the base used together with phthalimide is preferably sodium carbonate, potassium carbonate, or the like.
  • the sodium salt or potassium salt of phthalimid can be used as it is.
  • the hydrazine is used in an amount of 1 mol to excess mol, preferably 1 to 10 mol, per 1 mol of the phthalimid compound as a raw material compound, and the azide metal hydride
  • the reducing agent is used in an amount of 1 mol to excess mol, preferably 1 to 2 mol, per 1 mol of the azide.
  • the reaction temperature is usually -7 (TC to 100 ° C, preferably 1 to 20 ° C to 50 ° C, and the reaction time is usually 5 to 48 hours, preferably 30 minutes.
  • the reaction temperature is usually from 0 ° C. to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C.
  • the reaction time is usually In the reaction for reducing an azide form to an amine form, when a metal hydride complex is used as a reducing agent, the reaction temperature is usually--48 hours, preferably 30 minutes-24 hours.
  • the reaction time is usually 5 minutes to 48 hours, is preferred properly from 10 minutes to 10 hours, also Torifuyuni as a reducing agent
  • the reaction temperature is usually from room temperature to the solution used for the reaction. To the boiling point of the medium, it is preferably from 30 ° C. to 100 ° C., and the reaction time is usually from 10 minutes to 48 hours, preferably from 30 minutes to 24 hours.
  • the reaction temperature is usually 0 to 100 ° C, preferably room temperature to 50 ° C, and the reaction time is generally 10 minutes to 48 hours, preferably 10 minutes to 24 hours.
  • a compound represented by the general formula 9 is reacted with 1 mol to an excess mol, preferably 1 to 2 mol, of 1 mol of the compound represented by the general formula 9 to form an imine in advance. It can be manufactured later by reducing it.
  • This step can be carried out in the same manner as in the step of producing the target compound [ ⁇ ] from the compound represented by the general formula in the above-mentioned production method A, and therefore, the same method can be used for the reaction conditions and the like.
  • the compound represented by the general formula can be produced by using a commercially available product, or by appropriately combining a method described in Reference Example, a known method, or a method analogous thereto as needed.
  • R pl represents a hydroxyl-protecting group
  • the target compound [VI] is first represented by the general formula [!]
  • an alkylating agent represented by the general formula U to act on a ketone represented by the general formula:
  • a reducing agent such as a metal hydride complex to form an alcohol
  • acetyldicarboxylate acetyl ester triphenylphosphine and phthalimid (or hydrazoic acid or diphenylphosphoric acid adjuvant) are obtained.
  • a sulfonating agent such as methanesulfonyl chloride in the presence of a base such as triethylamine
  • phthalimid or sodium azide
  • Ahmin body A phthalimid protected form (or azide form) of ⁇ is produced, followed by the action of hydrazine (or a reducing agent) to remove the phthalimide group (or to reduce the azide group), and represented by the general formula]
  • a compound represented by the general formula [1] is produced by reacting the compound with a compound represented by the general formula 1Q, and then reduced to a compound represented by the general formula [11].
  • the protecting group represented by Rpl is selectively removed to obtain a compound represented by the general formula.
  • General formula by introducing a leaving group into ⁇ !
  • the compound represented by ⁇ is obtained, the compound can be produced by finally allowing the compound to act with triunilylphosphine, trimethyl phosphite, triethyl phosphite, or the like.
  • Examples of the hydroxyl-protecting group represented by IT include the hydroxyl-protecting groups described in the above Production Method 1.
  • the step of producing the compound represented by the general formula from the ketone body represented by the general formula includes the step of producing the compound represented by the general formula from the ketone body represented by the general formula in the above-mentioned production method A.
  • the same conditions can be applied to the reaction conditions and the like.
  • the step of producing the compound represented by the general formula from the amine compound represented by ⁇ includes the step of producing the compound represented by the general formula [II] from the amine compound represented by the general formula by the above-mentioned production method c. Can be done in a similar way and therefore anti Similar conditions can be applied to the response conditions and the like.
  • the general formula from the compound represented by general formula 11! In the process of producing the compound represented by ⁇ , the reaction between the compound represented by the general formula and the carboxylic acid represented by the general formula [in] or a reactive derivative thereof is carried out by the general formula
  • the reaction can be carried out in the same manner as in the reaction of the compound represented by [II] with the carboxylic acid represented by the general formula [ ⁇ ] or a reactive derivative thereof, and therefore, the same conditions apply to the reaction conditions and the like. it can.
  • the protecting group represented by R p ′ In the step of selectively removing the protecting group represented by R p ′ from the compound obtained by the above reaction, various methods are appropriately selected depending on the type and properties of the protecting group. That is, by utilizing the difference in stability between R pl and another protecting group with respect to acid, base or reduction, the protecting group can be selectively removed by a conventional means such as acid, base or reduction. . Specific conditions for these reactions include, for example, methods described in known literature [Protective Groups in Organic Synthesis, 1.W.7 Lean (TWGreene), John Wiley & Sons (1981)].
  • the step of producing a compound represented by the general formula] by introducing a leaving group into the compound represented by the general formula includes, for example, a halogenating agent such as thionyl chloride, phosphorus trichloride, phosphorus pentachloride, or oxychloride. Phosphorus, phosphorus tribromide, oxalyl chloride, phosgene, etc. are used as the sulfonating agent using, for example, methyl sulfonyl chloride, p-toluenesulfonyl chloride, benzenesulfonyl chloride and the like.
  • the reaction can be carried out in the same manner as the method for introducing a leaving group into the represented compound, and therefore, the same conditions can be applied to the reaction conditions and the like.
  • the step of producing the desired compound [VI] from the compound represented by ⁇ is performed by reacting the compound represented by the general formula with triphenylphosphine, trimethyl phosphite, or triethyl phosphite. be able to.
  • triphenylphosphine trimethyl phosphite, or triethyl phosphite.
  • trif-Xnylphosphine when trif-Xnylphosphine is allowed to act, it is usually carried out in an inert solvent which does not participate in the reaction.
  • the inert solvent toluene, xylene and the like are preferable.
  • the amount of triphenylphosphine used is usually 1 mol to excess mol, preferably 1 to 5 mol, per 1 mol of the compound.
  • the reaction temperature is usually from 80 ° C to 150 ° C, usually from room temperature to the boiling point of the solvent used in the reaction, and the reaction time is usually from 5 minutes to 7 days, preferably from 1 hour to 24 hours.
  • the reaction is usually carried out in an inert solvent not involved in the reaction, or more preferably, in excess of trimethyl phosphite or excess.
  • Triethyl phosphite is used as a solvent and reactant.
  • the reaction temperature is usually from 80 ° C to 150 ° C, usually from room temperature to the boiling point of the solvent used in the reaction, and the reaction time is usually from 5 minutes to 7 days, preferably from 1 hour to 24 hours.
  • the compound represented by the general formula (1) can be produced by using a commercially available product, a method described in Reference Examples, a known method, or a method analogous thereto, if necessary, in an appropriate combination.
  • R p2 and R p3 are the same or different and each represents a methyl group, an ethyl group, or an ethylene group together with R p2 and R p3 ;
  • the target compound [VIII] is obtained by first reacting a ketone represented by the general formula with an alkylating agent represented by the general formula II to obtain a compound represented by the general formula After reacting the compound with a reducing agent such as a metal hydride complex to form an alcohol, azodicarboxylic acid getyl ester, triphenylphosphine and phthalimid (or hydrazoic acid or diphenylphosphoric acid azide) are reacted. Or a sulfonating agent such as methylsulfonyl chloride in the presence of a base such as triethylamine, and then phthalimid (or sodium azide) in the presence of a base to react with the amine.
  • a reducing agent such as a metal hydride complex
  • azodicarboxylic acid getyl ester triphenylphosphine and phthalimid (or hydrazoic acid or diphenylphosphoric acid azide) are reacted.
  • a protected product (or azide) of ⁇ is prepared, followed by the action of hydrazine (or a reducing agent) to remove the phthalimide group (or to reduce the azide group) to give the general formula!
  • An amine represented by ⁇ is produced, and the compound ⁇ has a general formula!
  • the compound is reduced to a compound represented by the general formula ⁇ , and after reacting the compound ⁇ with the carboxylic acid represented by the general formula [in] or a reactive derivative thereof, , R p2 and R p3 can be produced by selectively removing the protecting groups.
  • the removal of these protecting groups is preferably carried out in a solvent such as aqueous methanol, aqueous ethanol, aqueous tetrahydrofuran and the like in the presence of an acid such as hydrochloric acid, sulfuric acid and p-toluenesulfonic acid.
  • a solvent such as aqueous methanol, aqueous ethanol, aqueous tetrahydrofuran and the like in the presence of an acid such as hydrochloric acid, sulfuric acid and p-toluenesulfonic acid.
  • the reaction temperature is usually-20 ° C to 100 ° C, preferably 0 ° C to 50 ° C, and the reaction time is generally 5 minutes to 48 hours, preferably 10 minutes to 24 hours.
  • the respective steps from the production of the target compound [VIII] from the ketone compound represented by the general formula 4 include the conversion of the ketone compound represented by the general formula 4 into the general formula!
  • the reaction can be performed in the same manner as in each step of producing the compound represented by ⁇ , and therefore, the same reaction conditions and the like as those in the corresponding steps can be applied.
  • the compound represented by the general formula 17 may be a commercially available product or a method described in Reference Example. Alternatively, it can be produced by appropriately combining known methods or methods equivalent thereto as necessary.
  • FT represents a protecting group for a hydroxyl group when W ′ is an oxygen atom; a protecting group for a mercapto group when W 1 is a sulfur atom;, I Ar 3 ⁇ , (Cy-,
  • W has', Z, R 3P, R 4P, R 5, R 6, R 7p, R 8P, R 9p, R '0p, R' lp, x, y, and z and R p as defined above ]
  • the target compound [ ⁇ ] is first obtained by reacting a ketone compound represented by the general formula with an alkylating agent represented by the general formula to obtain a compound represented by the general formula:
  • a reducing agent such as a metal hydride complex to form an alcohol
  • azodicarboxylic acid getyl ester, triphenylphosphine and phthalimid (or hydrazoic acid or diphenylphosphoric acid azide) are reacted, or
  • a sulfonylating agent such as methanesulfonyl chloride is allowed to act in the presence of a base such as triethylamine, and then phthalimid (or sodium azide) is actuated in the presence of a base to protect the amine in the presence of phthalimid.
  • R w is a hydroxyl-protecting group
  • examples of the hydroxyl-protecting group include the hydroxyl-protecting groups described in the above Production Method 1.
  • the protective group for an IT-capable mercapto group the protective group for a hydroxyl group described in the above-mentioned Production Method 1 can be applied as the protective group for the mercapto group.
  • the respective steps from the production of the target compound [XII] from the ketone compound represented by the general formula are represented by the general formula!
  • the reaction can be performed in the same manner as in each step of producing the compound represented by ⁇ , and therefore, the same reaction conditions and the like as those in the corresponding steps can be applied.
  • the target compound [X] can be produced by introducing a leaving group into the compound represented by the general formula [XII-a].
  • This step can be performed by a method similar to the method of introducing a leaving group into the compound represented by the general formula in the above-mentioned Production Method D, and therefore, the same reaction conditions and the like can be applied.
  • n, T, R lp and R 2p have the above-mentioned meaning] is a method for producing a compound represented by the general formula [VI] from a compound represented by the general formula in Production Method D According to the general formula [XIII]
  • n, ZR lp and R 2P have the above-mentioned meaning].
  • the compound represented by the general formula [ ⁇ ] can be produced by appropriately combining the power of a commercially available product, the method described in Reference Examples, a known method, or a method analogous thereto, as necessary.
  • R a and R e same or different, a lower alkyl group:
  • R b denotes a tert- Petit group, a benzyl group, Benzuhi drill group or trityl group]
  • Production method H is a synthesis method for producing a carboxylic acid derivative represented by the general formula [III-a] among the compounds represented by the general formula [III].
  • the target carboxylic acid derivative [III-a] is obtained by hydrolyzing a lower alkyl ester derivative of D- or L- or meso-tartaric acid represented by the general formula into a corresponding monocarboxylic acid derivative, After introducing the protecting group Rb of the laboxyl group which can be easily removed, the dibromomalonic acid derivative represented by the general formula ⁇ is reacted in the presence of a base to form a cyclic compound ⁇ . It can be produced by removing the protecting group R ′ ′′ of the group.
  • the protecting group R u or carboxyl group for example a methyl group, Echiru group And the like.
  • the carboxyl-protecting group Rb is preferably a group which can be easily removed under mild conditions such as weak acidity or catalytic reduction such as tert-butyl, benzyl, benzhydryl or trityl. ,.
  • the monohydrolysis reaction of the ester represented by the general formula is usually performed in an inert solvent such as tetrahydrofuran, methanol, ethanol or the like or a mixed solvent thereof with water, for example, sodium hydroxide,
  • an inert solvent such as tetrahydrofuran, methanol, ethanol or the like or a mixed solvent thereof with water, for example, sodium hydroxide
  • the reaction can be carried out by reacting the base with 1 mol to a small excess, preferably 1 to 1.5 mol, per 1 mol of the compound represented by the general formula.
  • the reaction temperature is -100 ° C to 100 ° C, preferably 0 ° C to 50 ° C, and the reaction time is generally 5 minutes to 48 hours, preferably 8 hours to 24 hours.
  • the step of introducing the protecting group Rb into the monocarboxylic acid derivative obtained above is usually carried out in an inert solvent that does not adversely influence the reaction, for example, diphenyl diazomethane, ⁇ , ⁇ ′-diisopropyl monoamine.
  • an inert solvent that does not adversely influence the reaction
  • diphenyl diazomethane ⁇ , ⁇ ′-diisopropyl monoamine.
  • —Venzyl isopera ⁇ , ⁇ ′—diisopropyl-1-0-tert-butyl isoperrea, etc.
  • an amount of 1 mol to excess mol preferably 1 to 5 mol, per 1 mol of the compound represented by the general formula.
  • inert solvent for example, methanol, ethanol, tetrahydrofuran, dioxane, acetone, dimethylformamide, methylene chloride, chloroform, ethyl acetate and the like can be used.
  • the reaction temperature is usually from room temperature to the boiling point of the solvent used in the reaction, and the reaction time is usually from 5 minutes to 7, preferably from 1 hour to 3 days.
  • the step of selectively removing the protecting group represented by R ′ ′′ from the compound obtained in the above step various methods are appropriately selected depending on the type and properties of the protecting group.
  • the difference in stability between R "and other protecting groups R- and FT with respect to acid, base or reduction is used.
  • the protecting group can then be selectively removed by conventional means such as hydrolysis or reduction with an acid or base. Specific methods for these reactions are described, for example, in the method described in the literature [Protective uroups in Organic Synthesis] TW Greene, John Wiley & Sons, Inc. (1981)] or an equivalent method can be used.
  • the compound represented by the general formula ⁇ can be produced by using a commercially available product, or by appropriately combining the methods described in Reference Examples, known methods, or methods analogous thereto as needed.
  • R ' p and R 2p have the above-mentioned meanings), R p "-W 1- (CH 2 ) P -1 (where p' represents an integer of 0 to 4; R M and W 'has the above meaning) or
  • R s is a hydrogen atom or a methyl group
  • R ′ is a lower alkyl group, an aryl group or a lower alkenyl group
  • R 3p , R 4P and R 5 have the above-mentioned meanings]
  • the production method I is a synthetic method for producing an optically active form ⁇ or of an alcohol form obtained as a reduction product of the general formula or the general formula II or, and according to the present production method, the objective optically active alcohol form and Reacts a racemic alcohol derivative represented by the general formula with a vinyl ester derivative represented by the general formula in the presence of lipase to separate the obtained optically active ester derivative and the optically active alcohol derivative. Thereafter, the optically active ester derivative ⁇ can be produced by hydrolyzing the ester group.
  • R ′ of the vinyl ester derivative represented by the general formula ⁇ i is, for example, a lower alkyl group such as a methyl group or an ethyl group; an aryl group such as a phenyl group or a naphthyl group; a benzyl group; An aralkyl group such as a phenylethyl group is preferred.
  • a methyl group that is, a case where the compound represented by the general formula ii is vinyl acetate or isopropenyl acetate is preferred.
  • optical resolution reaction using lipase is usually carried out in an inert solvent such as methylene chloride, chloroform, ethyl ether, tetrahydrofuran, benzene, tonolene, hexane, heptane, and acetonitrile, or a vinyl ester of the general formula ⁇ which is a raw material.
  • an inert solvent such as methylene chloride, chloroform, ethyl ether, tetrahydrofuran, benzene, tonolene, hexane, heptane, and acetonitrile, or a vinyl ester of the general formula ⁇ which is a raw material.
  • the derivative itself can be used as a solvent.
  • the amount of the vinyl ester derivative ⁇ _ to be used is generally 1 mol to a large excess mol, preferably 1 to 100 mol, relative to the starting compound, and the amount of the lipase, which is a catalyst, is It is 0.01 to 100% by weight, preferably 0.1 to 20%.
  • the type of lipase is Reno, derived from Pseudomonas sp.
  • Toyozyme LIP TM manufactured by Toyobo
  • Toyobo is preferable.
  • the above-mentioned enzyme reaction tends to be accelerated by being carried out in the presence of a base.
  • a base for example, an organic base such as triethylamine and diisopropylethylamine is preferable.
  • the amount of the base to be used is generally 0.01 mol to a small excess mol, preferably 0.1 to 1.5 mol, relative to the starting compound.
  • the reaction temperature is generally 0 ° C to 50 ° C, preferably room temperature to 40 ° C, and the reaction time is generally 30 minutes to 7 days, preferably 1 hour to 48 hours.
  • the hydrolysis of the ester represented by the general formula ⁇ can be carried out under acidic or basic conditions by a general method well known in organic synthetic chemistry.
  • R a is a lower alkyl group
  • R lla is a lower alkoxycarbonyl group, a lower alkyl group, a lower alkoxy group or an optionally protected hydroxyl group or a lower hydroxyalkyl group
  • R is a carboxyl group or a lower An alkyl group, a lower alkoxy group or a protected t, a hydroxyl group or a lower hydroxyalkyl group
  • R ′′ c is a diphenylmethyloxycarbonyl group, a lower alkyl group, a lower alkoxy group or a protected May be a hydroxyl group or a lower hydroxyalkyl group
  • Ph represents a phenyl group
  • the target compound [III-1] is a compound having a leaving group. Then, a nitrile derivative is produced by reacting the compound with sodium cyanide or sodium cyanide, and then the nitrile derivative is hydrolyzed under acidic or basic conditions. Still another target compound, a protected benzhydryl form of carboxylic acid [III-2], is produced by treating the carboxylic acid [III-1] obtained above with diphenyldiazomethane. You can do it.
  • the reaction of reacting a compound having a leaving group with a compound having a leaving group is usually carried out in an inert solvent such as methanol, ethanol, dimethylformamide or the like.
  • the reaction can be carried out using 1 mol to an excess mol, preferably 1 to 5 mol of potassium cyanide or sodium cyanide with respect to 1 mol of ⁇ .
  • the reaction temperature is usually from 0 ° C to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C, and the reaction time is generally from 10 minutes to 48 hours, preferably from 30 minutes to 24 hours. .
  • the step of producing the target carboxylic acid [ ⁇ -1] by hydrolyzing the nitrile form ⁇ obtained above is usually carried out in an inert solvent that does not adversely affect the reaction, for example, hydrochloric acid, sulfuric acid or nitric acid. It can be carried out using an acid or using a base such as sodium hydroxide or potassium hydroxide.
  • Acids and bases are usually preferred in excess.
  • the inert solvent is preferably an alcohol such as methanol, ethanol, propanol, butanol, tert-butanol or water, or a mixed solvent thereof under any of acidic conditions and basic conditions.
  • the reaction temperature is usually up to the boiling point of the solvent used in the room temperature to the reaction, preferably 50 ° C ⁇ 150 e C, the reaction time is usually 30 minutes to 72 hours, preferably one hour is ⁇ 48 hours .
  • the step of treating the carboxylic acid [III-11] with diphenyldiazomethane to produce another protected compound, a benzhydryl-protected carboxylic acid [III-11], is usually performed by the following steps.
  • the reaction can be carried out using a limited amount of diphenyldiazomethane in an inert solvent that does not adversely influence the reaction.
  • This reaction can be viewed as a partial (selective) esterification reaction of two or three existing carboxylic acid [ ⁇ -1] carboxylic acid [ ⁇ -1] with diphenyldiazomethane. Therefore, diphenyldiazomethane is usually used in limited amounts for this purpose.
  • inert solvent used for the reaction examples include ethers such as tetrahydrofuran and dioxane; halogenated hydrocarbons such as methylene chloride and chloroform; aromatic hydrocarbons such as benzene and toluene; or Acetone, ethyl acetate and the like are preferred.
  • the reaction temperature is usually 0 ° C to 4 (TC, and the reaction time is usually 30 minutes to 24 hours.
  • the compound represented by the general formula ⁇ can be produced by using a commercially available product, or by appropriately combining the methods described in Reference Examples, known methods, or methods analogous thereto as needed.
  • PFT activity was measured by adding biotin to the N-terminus of a peptide corresponding to the C-terminal 7 amino acid residues of H-ras protein or K-rasB protein (biosylated Lys-Thr-Ser-Cys-Val). -lie-Met) as a prenyl acceptor and [ ⁇ ] -labeled funaresyl pyrophosphate (FPP) as a prenyl donor [Rice et al., Methods: A Companion to Methods in Enzymology. No. 3, pp. 241-245 (1990)].
  • the H-ras protein was expressed and purified in Escherichia coli [Gibbs et al., Proc. Natl. Acad. Sci .. 81: 5704-5708 (1984)].
  • H- ras protein PFT reaction solution volume was prenyl receptor is Ri 25 mu 1 der, its composition, 50mM Hepes pH7.5 / 50 M ZnCl 2 / 5mM MgCl 2 / 20mM KClZ5mM DTT / 0.6 M all-trans [ ⁇ ] -Farnesyl pyrophosphate 25 MH-ras protein ⁇
  • Rat brain-derived PFT Q-Sepharose fractionation
  • Biochin additional Lys - Thr - Ser- Cys - Val one lie - PFT reaction solution volume was prenyl receptor Met is 25 / a zl, its composition, 50 mM Tris-C1 PH7.5 / 50 fi M ZnCl 2 / 5mM MgCl 2 / 20mM KCl / lmM DTT / 0.2% n- old Kuchiru S- D-Darukobiranoshido /0.6 / M all-trans [3 H] - Faruneshirupi port phosphate /3.6 beta Micromax Biochin additional Lys - Thr one Ser one Cys -Val-He-Met / PFT (Q-Sepharose fraction) derived from rat brain. Reaction temperature was 37 ° C, thermal equilibration time was 10 minutes, and reaction time was 20 minutes.
  • the enzymatic reaction product using the H-ras protein as a prenyl receptor was analyzed by SDS-PAGE (sodium dodecyl sulfate Z polyacrylamide gel electrophoresis). And analyzed.
  • the [ 3 H] -labeled enzyme reaction product is boiled for 3 minutes in a buffer containing 2% SDSZ 50 mM Tris-Cl, pH 6.8 ZlO% sucrose Z5% 2-mercaptoethanol, and electrophoresed on a slab gel of 12% polyacrylamide. After electrophoresis, [ ⁇ ] -labeled H-ras protein was fluorographically enhanced with EN 3 HANCE TM (New England Nuclear Co., Ltd.), and then visualized by autoradiography [J. James) et al., Science, Vol. 260, No. 25, pp. 1937-1942 (1993)].
  • the measurement of PFT using the H-ras protein as a prenyl receptor could be analyzed by another more rapid method.
  • the prenyl group transfer reaction is initiated by the addition of [ 3 H] -FPP and a convenient time by the addition of 0.5 ml of 4% SDS. To stop. After further adding 0.5 ml of 30% trichloroacetic acid and mixing well, the reaction solution was left at 4 ° C. for 60 minutes to precipitate H-ras protein. The reaction solution was filtered under reduced pressure through a hotman GFZB filter.
  • the filter was washed 6 times with 2 ml of 6% trichloroacetic acid, mixed with 8 ml of scintillation cocktail (Clearsol 1 TM, manufactured by Narai Lightesque), and then counted on a Beckman TRI-CARB2500TR scintillation counter.
  • Chevron 1 TM manufactured by Narai Lightesque
  • the PFT activity could be measured using biotin-added Lys-Thr-Ser-Cys-Val-He-Met as a prenyl receptor.
  • Pyrotination Lys— Thr— Ser— Cys— Val— lie— Met is used as a prenyl acceptor, and the measurement mixture without prenyl donor is thermally equilibrated in advance.
  • stop at a convenient time by adding 0.2 ml of 2 mg Zml perforated serum albumin, / 2% sodium dodecyl sulfate / 150 mM NaCl. Add 0.02 ml of avidin agarose (Pierce) and shake for 30 minutes. Add biotin with [-]-farnesyl group added.
  • Lys-Thr-Ser-Cys-Val-lie-Met is sufficient for avidin agarose.
  • avidin agarose is washed 4 times with 1 ml of 2 mg Zml ⁇ serum albumin (BSA) / 4% sodium dodecyl sulfate 150 mM NaCl, and 1 ml of scintillation cocktail (Clearsol 1 TM, Nacalai Tesque, Inc.) And then counted with a Beckman TRI-CARB2500TR scintillation counter.
  • BSA serum albumin
  • scintillation cocktail Clearsol 1 TM, Nacalai Tesque, Inc.
  • Biotin-added Lys-Thr-Ser-Cys-Val-He-Met heptapeptide used as an artificial substrate is converted to Lys-Thr-Ser-Cys-Val-lie-Met peptide.
  • Applied Biosystems Model 431A After solid-phase synthesis using a peptide synthesizer, the ⁇ -amino terminus of Lys-Thr-Ser-Cys-Val-lie-Met heptapeptide as it remains on the resin is biotinylated with ⁇ -hydroxysuccinimidobiotin, It was separated from the resin and purified by reversed-phase high-performance liquid chromatography (HPLC).
  • the compound of the present invention was added to the PFT reaction system by adding dimethyl sulfoxide in advance to 1% volume (0.251) of the reaction solution.
  • Table 1 shows the 50% inhibitory concentration (IC 5 value) of the compound of the present invention against PFT activity. Table 1 50% inhibitory concentration for PFT activity
  • the inhibitory effect on Ras protein falnesylation in NIH3T3 cells into which the activated ras gene was incorporated was measured.
  • NIH3T3 cells into which the activated ras gene had been incorporated were spread on a culture plate, and after the culture 3, the compounds of the present invention were added at various concentrations during the culture. After culturing the cells for 24 hours according to the method described in Journal of Biological 'Chemistry (J. Biol. Chem.), Vol. 268, p. 18415 (1993), the cells were lysed and lysed from the plate. . After centrifugation at 12000 g for 5 minutes, the supernatant was used as a cell extract. SDS polyacrylamide gel electrophoresis of the cell extract was performed to separate the farnesylated Ras protein and the farnesylated Ras protein.
  • the protein on the gel was transferred to a nitrocellulose membrane and reacted with a Ras protein antibody as a probe (primary antibody reaction). After reacting with the anti-primary antibody and the peroxidase conjugate (secondary antibody), Ras protein was detected with a chemiluminescence enhancement kit. The percentage of Ras protein that was not phnaresylated was quantified using a densidometer and defined as the inhibitory activity.
  • Table 2 50% inhibitory concentration on Ras protein pharmacosylation
  • the compound of the present invention exhibits excellent antitumor activity as shown in the following pharmacological test examples.
  • Table 3 shows the therapeutic effect of the compound of the present invention on NIHZras cells.
  • Table 3 Effect of the compound of Example 4 on NIH / ras Dose 2 ), Inhibition rate of intraperitoneal growth "(mgZkgZ injection) Average (g): standard deviation (%)
  • Tumor inoculation 10 6 cells were inoculated into female Nu nude mice subcutaneously.
  • Tumor weight On day 7 after cell inoculation, a tumor was excised and weighed.
  • the compound of the present invention has an excellent protein-farnesyltransferase (PFT) inhibitory activity, for example, colon cancer, spleen cancer, myeloid leukemia, lung cancer, skin cancer, thyroid cancer, etc. Useful as an antitumor agent for cancer You.
  • PFT protein-farnesyltransferase
  • the protein-pharmacinyltransferase (PFT) inhibitor according to the present invention can suppress ras transfection and suppress reactivation of HIV genes integrated into host cells, and thus can be used as an anti-HIV agent. Useful.
  • the compound represented by the general formula [I] can be administered orally or parenterally, and formulated as a form suitable for such administration, and provided as an antitumor agent or anti-HIV agent Can be.
  • pharmaceutically acceptable additives can be added to the compound according to the administration form, and then administered after various preparations.
  • additives commonly used in the pharmaceutical field can be used as the additives at this time, for example, gelatin, lactose, sucrose, titanium oxide, starch, crystalline cellulose, hydroxypropyl methylcellulose, Carboquin methyl cellulose, corn starch, microcrystalline wax, white petrolatum, magnesium aluminate metasilicate, calcium phosphate anhydrous, citrate, trisodium citrate, hydroxypropylcellulose, sorbitol, sorbitan fatty acid ester, polysorbate Sucrose fatty acid ester, polyoxyethylene hydrogenated castor oil, polyvinylpyrrolidone, magnesium stearate, light gay anhydride, tanolek, vegetable oil, benzyl alcohol, gum arabic, propylene glycol Lumpur, polyalkylene glycol, cyclodextrin or hydroxycarboxylic professional buildings cyclodextrin.
  • gelatin lactose
  • sucrose sucrose
  • titanium oxide starch
  • Dosage forms formulated as a mixture with these additives include, for example, solid preparations such as tablets, capsules, granules, powders and suppositories; and liquid preparations such as syrups, elixirs and injections, etc. These can be prepared according to a usual method in the pharmaceutical field.
  • liquid preparations they may be dissolved or suspended in water or other appropriate medium before use.
  • it may be dissolved or suspended in a physiological saline solution or a glucose solution as necessary, and a buffer or a preservative may be added.
  • formulations may contain a compound of the present invention in a proportion of 1.0 to 100%, preferably 1.0 to 60% by weight of the total drug. These formulations may also contain other therapeutically effective compounds.
  • the dosage and frequency of administration vary depending on the sex, age, weight, degree of symptoms, the type and range of the intended therapeutic effect, etc. of the patient. In general, for oral administration, it is preferable to administer 0.01 to 20 mgZkg in 1 to several doses per adult, and for parenteral administration, it is preferable to administer 0.002 to 10 mgZkg in 1 to several doses. .
  • Other compounds that are therapeutically effective include, for example, agents that cause a reduction in pharmacophoric acid in vivo.
  • the drug that reduces pharmacophoric acid in vivo is not limited as long as it has the above effect and is a pharmaceutically acceptable drug.
  • Inhibitors are preferred, and among them, for example, hydroxymethyldaltharyl represented by mouth bath, simvastatin, pravastatin, flupastatin and the like described in Nature, Vol. 343, pp. 425-430 (1990), for example.
  • Drugs that inhibit the biosynthesis process of funaresyl pyrophosphate such as CoA reductase inhibitor or hydroxymethyl glutaryl CoA synthase inhibitor, etc., especially oral vasculin, simpastatin, pravastatin, fluvastin, etc. Hydroquinone methylglutaryl CoA reductase inhibitor is preferred.
  • composition of the compound of the present invention and the above-mentioned drug can be formulated as in the case of using the compound of the present invention as a single agent.
  • the drug and the drug that causes reduction of fumaricylphosphoric acid in vivo may be contained in a proportion of 1.0 to 100% by weight, preferably 1.0 to 60% by weight of the whole drug.
  • the weight ratio of the protein-farnesyltransferase inhibitor to the agent that causes a decrease in phthalnesyl pyrophosphate in vivo may be 0.001: 1 to 1000: 1, but the weight ratio is particularly high. It is preferably 0.01: 1-100: 1.
  • Example 4 N- ⁇ (1R2R) —4,4-diethoxy-1 1-methyl-1-2- (3,4-methylenedioxyphenyl) butyl ⁇ used as a raw material in Example 4 ⁇ —2-naphthylmethylamine and / or (4S , 5S) — 1,3-Dioxolane 1,2,4,5-tetracarboxylic acid 2,2-Jetyl 5-methyl ester in place of the corresponding amine or carboxylic acid derivative L, Otherwise, the same reaction as in Example 4 was carried out to obtain the compounds of Examples 10 to 15.
  • the organic layer was washed with saturated saline, dried over anhydrous magnesium sulfate, the desiccant was filtered off, and the solvent was distilled off under reduced pressure. Subsequently, the residue was dissolved in 100 ml of dimethylformamide, 16.7 g of sodium azide was added, and the mixture was heated and stirred at 120 ° C for 1 hour. After allowing the reaction solution to cool to room temperature, ethyl ether and water were added for extraction. The organic layer was separated, washed with saturated saline, and then the solvent was distilled off under reduced pressure.
  • (2R3S) obtained in the above (2) —2-Acetoxy-5,5—Jetoxy 3- (3,4-Methylenedioxyphenyl) Obtained by the hydrolytic hydrolysis of pentane.
  • (2R.3S) 5.5—Dietokin-3- (3,4-Methylenedioxyphenyl)
  • pentan-1-ol in the same manner as in (3) and (4), N- ⁇ (1S.2S) -1,4,1-ethoxy-l-methyl-2- (3,4-methylenedioxyphenyl) ) Butyl ⁇ 1-2-naphthylmethylamine was obtained.
  • the compound of the present invention has an excellent inhibitory effect on protein-pharmacinyltransferase (PFT) and is useful as an antitumor agent or an anti-HIV agent.
  • PFT protein-pharmacinyltransferase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

環式ァミ ド酸誘導体
技 術 分 野
本発明は新規な置換アミ ド誘導体に関する。 更に詳しくは、 本発明の置換 アミ ド誘導体は生体内の蛋白明質—フアルネシルトランスフェラ一ゼ (PFT) を阻害することにより、 癌遺伝子蛋白質 Rasの機能発現を抑制し、 抗腫瘍作 用等を有するので医薬の分野で有用である。 背 景 技 術 書
ras癌遺伝子は突然変異により活性化され、その翻訳生産物である Ras蛋白 は正常細胞を癌細胞へと形質転換する上で、 重要な役割を果たしている。 こ の ras癌遺伝子の活性化は、結腸直腸癌や脬臓癌等の多くの癌で観察され、そ の割合はヒト癌全体の約 20 %に達すると言われている。 したがって、 これら ras癌遗伝子の活性化を抑えたり、また、その生産物たる Ras蛋白の機能を阻 害すれば、 癌化の抑制に蘩り抗癌効果が期待できる。
ところで、最近、 Ras蛋白の機能発現には、 Ras蛋白自身のフアルネシル化 が必要であり、このフアルネシル化を阻害すると、 Ras蛋白の細胞膜への局在 性が抑えられ、 癌細胞への形質転換が阻害されることが明らかとなった。 蛋 白質ーフアルネシルトランスフヱラーゼ (PFT) は、 この Ras蛋白のフアル ネシル化を触媒する酵素であり、 この酵素を阻害すれば発癌 Ras蛋白の機能 発現を抑えることができる。 また、 この酵素は生体内において、 極めて限ら れた蛋白のフアルネシル化にしか関与せず、 そのため、 この酵素の阻害剤は、 安全で、 非常に選択性の高い抗癌剤となることが期待される。 これら観点か ら、 近年、 数多くの PFT阻害剤が開発されてきた [セル (Cdl)、 第 57巻、 1167 - 1177頁 (1989年);プロシーディング'ナショナル'アカデミー.ォ フ " 'サイエンス (Proc.Natl.Acad.Sci.)、第 86巻、 8323 - 8327 H (1989年); 同第 90卷、 2281— 2285頁 (1993年) :サイエンス (Science) 第 245卷、 379— 385頁 (1989年);同第 260巻、 1934 - 1937頁 (1993年);同第 260 巻、 1937 - 1942頁 (1993年) ; ジャーナル ·ォブ ·バイオロジカル .ケミ ストリ一 CJ.Biol.Chem.)、 第 266巻、 15575— 15578頁 (1991年) ; ジャー ナル 'ォブ 'アンティバイオテイクス (J. Antibiotics)、 第 46卷、 222 - 227 頁 (1993年) :ネィチヤ一 .メディスン (Natur Medicine)、 第 1巻、 792 頁- 797頁 (1995年) ;特開平 5 - 201869号公報;同 5— 213992号公報等 参照]。
また、最近、 本発明者らの研究により、上記 PFT阻害剤が成熟型 Rasの発 現を抑制することにより、 無症候期からウイルスが再活性化する過程を阻害 できるので抗エイズ(HIV)剤として有用であることが見出された(国際公開 W096/ 17623号公報参照)。
し力、しな力 ら、現在までのところ、報告された全ての PFT阻害剤は細胞内 での活性が低かったり、 in vivo (生体内) での効 が不充分である等、 なお 医薬としての開発には問題が残されている。 発 明 の 開 示
本発明の目的は、 蛋白質ーフアルネシルトランスフェラーゼ (PFT) を阻 害することにより、 癌遺伝子蛋白質 Rasの機能発現を抑制し、 その結果、 抗 腫瘍又は抗エイズ効果をもたらす新規な抗腫瘍剤又は抗エイズ剤を提供する ことである。
本発明者らは、 一般式 [I]
Figure imgf000004_0001
[式中、 Ar Ar2— 及び Ar3
は同一又は異なって、 ァリール基又は複素芳香環基を;
Figure imgf000005_0001
はァリール基、複素芳香環基又は 1若しくは 2の酸素原子を含有してもよい脂 肪族環式基を; Qは— (C¾)m - (ここにおいて、 mは 1ないし 6の整数を意 味する) 又は— (CH2)n— W— (CH2)P - (ここにおいて、 Wは酸素原子、硫 黄原子、 ビニレン基又はェチニレン基を; n及び pは同一又は異なって、 0な いし 3の整数を意味する) で表される基を; R'は水素原子、ハロゲン原子、水 酸基、 低級アルキル基、 低級アルコキシ基、 又はハロゲン原子、 低級アルキ ル基及び低級アルコキシ基からなる群より選ばれる置換基を有していてもよ ぃァリ一ル基若しくは複素芳香環基を; R2、 R7及び R8は同一又は異なって、 水素原子、ハロゲン原子、水酸基、低級アルキル基又は低級アルコキシ基を; R3及び R4は同一又は異なって、水素原子、ハロゲン原子、水酸基、ァミノ基、 ニトロ基、 シァノ基、 カルボキシル基、 低級アルコキシカルボニル基、 カル バモイル基、 低級アルキル力ルバモイル基、 低級アルキル基、 低級ヒドロキ シアルキル基、 低級フルォロアルキル基又は低級アルコキシ基を; R5は低級 アルキル基を; R6は水素原子又は低級アルキル基を; R9及び R'。は同一又は 異なって、 水素原子、 水酸基又は低級アルキル基を; R'1は水酸基、 カルボキ シル基、 低級アルキル基、 低級ヒドロキシアルキル基又は低級アルコキシ基 を; X及び zは同一又は異なって、 0ないし 2の整数を; yは 0又は 1を意味す る]で表される化合物が蛋白質—フアルネシルトランスフヱラーゼ(PFT)を 阻害することにより、癌遺伝子蛋白質 Rasの機能発現を抑制し、その結果、抗 腫瘍剤又は抗エイズ剤として有用であることを見出し本発明を完成した。 本発明は、一般式 [I] で表される化合物、 その医薬として許容されうる塩 又はエステル及びその用途に関する。
本明細書に記載された記号及び用語について説明する。
ァリール基とは、 フヱニル基、 ナフチル基又はアントリル基を意味し、 フ ヱ二ル基、 ナフチル基が好適である。 複素芳香環基とは、 酸素原子、 窒素原子及び硫黄原子からなる群より、 同
—若しくは異なつて選ばれる 1若しくは 2の複素原子を含有する 5員若しくは 6員の単環式芳香族複素環基又は該単環式芳香族複素環基と前記ァリール基 が縮合した、 若しくは同一若しくは異なる該単環式芳香族複素環基が互いに 縮合した縮合環式芳香族複素環基を意味し、 例えばピロリル基、 ィミダゾリ ル基、 ピラゾリル基、 ピリジル基、 ビラジニル基、 ピリ ミジニル基、 ピリダ ジニル基、 ォキサゾリル基、 イソキサゾリル基、 フリル基、 チェニル基、 チ ァゾリル基、 イソチアゾリル基、 ィンドリル基、 ベンゾフラニル基、 ベンゾ チェニル基、 ベンゾィミダゾリル基、 ベンゾォキサゾリル基、 ベンゾィソキ サゾリル基、 ベンゾチァゾリル基、 ベンゾイソチアゾリル基、 イングゾリル 基、 プリニル基、 キノリル基、 イソキノリル基、 フタラジニル基、 ナフチリ ジニル基、 キノキサリニル基、 キナゾリニル基、 シンノリニル基、 プテリジ ニル基等が挙げられ、 中でもフリル基、 チェニル基、 ピリジル基、 ピリ ミジ ニル基、 ォキサゾリル基、 イソキサゾリル基、 チアゾリル基、 ベンゾフラ二 ル基、ベンゾチェ二ル基、ベンゾィミダゾリル基、ベンゾォキサゾリル基、ベ ンゾチァゾリル基、 キノリル基等が好適である。
1若しくは 2の酸素原子を含有してもよい脂肪族環式基とは、 3員ないし 7 員の飽和若しくは不飽和の脂肪族炭素環基又は 1若しくは 2の酸素原子を含 有する 3員ないし 7員の飽和若しくは不飽和の脂肪族含酸素複素環基を意味 し、 例えばシクロプロピル基、 シクロブチル基、 シクロペンチル基、 シクロ へキシル基、 シクロへプチル基、 ォキシラニル基、 ォキセタニル基、 ォキソ ラニル基、 ォキサニル基、 ォキセパニル基、 1,3 —ジォキセタニル基、 1.3— ジォキソラニル基、 1,3—ジォキサニル基、 1,3—ジォキセパニル基、 1,4ージ ォキセパニル基、 シクロブテニル基、 シクロペンテニル基、 シクロへキセニ ル基、 シクロヘプテニル基、 ォキシレニル基、 ォキセチル基、 2,3—ジヒドロ フラニル基、 2,5—ジヒドロフラニル基、 3,4—ジヒドロビラ二ル基、 5,6 -ジ ヒ ドロビラニル基、 2,3 —ジヒ ドロォキセピニル基、 4,5—ジヒドロォキセピ ニル基、 2,5 —ジヒドロォキセピニル基、 シクロペンタジェニル基、 1 ,3 —シ クロへキサジェニル基、 1 ,4ーシクロへキサジェニル基、 2H —ビラ二ル基、 4H -ビラ二ル基、 2,3,4.5—テ卜ラヒ ドロォキセピニル基、 2,3,4,7—テトラヒ ドロォキセピニル基、 2,3.6,7—テトラヒドロォキセピニル基、 1,3—ジォキソ リル基、 1,3—ジォキシニル基、 1,4一ジォキシニル基、 ジヒ ドロー 1,4ージォ キン二ル基、 6,7—ジヒドロー 1,3—ジォキセピニル基、 4,7—ジヒドロー 1,3 一ジォキセピニル基、 5,6—ジヒドロー 1,4一ジォキセピニル基、 2,3ージヒド ロー 1,4ージォキセピニル基、 1,3—ジォキセピニル基、 1,4ージォキセピニル 基等が挙げられ、 中でもシクロブチル基、 シクロペンチル基、 ォキソラニル 基、 1,3 —ジォキソラニル基等が好適である。
ハロゲン原子としては、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子が 挙げられ、 例えばフッ素原子、 塩素原子が好適である。
低級アルキル基とは、炭素数 1ないし 6の直鎖状又は分岐状のアルキル基を 意味し、 例えばメチル基、 ェチル基、 プロピル基、 イソプロピル基、 ブチル 基、 sec -ブチル基、 tert -ブチル基、ペンチル基、へキシル基等が挙げられ、 中でもメチル基、 ェチル基等が好適である。
低級アルコキシ基とは、炭素数 1ないし 6のアルコキシ基又はアルキレンジ ォキシ基を意味し、 例えばメ トキシ基、 エトキン基、 プロポキシ基、 イソプ 口ポキシ基、 ブトキシ基、 tert—ブトキン基、 メチレンジォキシ基、 ェチレ ンジォキシ基、 トリメチレンジォキシ基等が挙げられ、中でもメ トキシ基、ェ 卜キシ基、 メチレンジォキシ基等が好適である。
低級アルコキシ力ルポ二ル基とは、炭素数 1ないし 7のアルコキシカルボ二 ル基を意味し、 例えばメ トキシカルボニル基、 エトキンカルボニル基、 プロ ポキシカルボニル基、 ブトキシカルボニル基、 tert —ブトキシカルボニル基 等が挙げられ、 中でもメ トキシカルボニル基、 エトキシカルボニル基等が好 適である。
低級アルキル力ルバモイル基とは、 前記低級アルキル基により、 モノ置換 又はジ置換された力ルバモイル基を意味し、 例えばメチルカルバモイル基、 ェチルカルバモイル基、 ジメチルカルバモイル基、 ジェチルカルバモイル基 等が挙げられる。
低級ヒ ドロキシアルキル基とは、 水酸基を有する前記低級アルキル基、 即 ち、炭素数 1ないし 6のヒドロキシアルキル基を意味し、例えばヒドロキシメ チル基、 ヒ ドロキシェチル基、 ヒ ドロキシプロピル基、 ヒ ドロキシブチル甚 等が挙げられ、 中でもヒ ドロキシメチル基、 ヒ ドロキシェチル基等が好適で ある。
低級フルォロアルキル基とは、 フッ素原子を有する前記低級アルキル基、 即ち、炭素数 1ないし 6のフルォロアルキル基を意味し、例えばフルォロメチ ル基、 ジフルォロメチル基、 トリフルォロメチル基、 1 一フルォロェチル基、
2—フルォロェチル基、 2,2,2— トリフルォロェチル基、 ペンタフルォロェチ ル基等が挙げられる。
一般式 [I] で表される化合物の塩としては、 医薬として許容されうる慣用 的なものを意味し、 例えばカルボキシル基における塩基付加塩又はアミノ基 を有する場合の当該アミノ基若しくは塩基性の複素芳香環を有する場合の当 該塩基性複素芳香環における酸付加塩の塩類を挙げることができる。
該塩基付加塩としては、 例えばナトリウム塩、 力リウム塩等のアル力リ金 属塩;例えばカルシウム塩、 マグネシウム塩等のアル力リ土類金属塩;例え ばァンモニゥム塩:例えばトリメチルァミン塩、 トリェチルァミン塩、 ジシ クロへキシルァミン塩、 エタノールアミン塩、 ジエタノールアミン塩、 トリ エタノールァミン塩、 プロ力イン塩、 Ν,Ν' ―ジベンジルエチレンジァミン塩 等の有機ァミン塩等が挙げられる。
該酸付加塩としては、 例えば塩酸塩、 硫酸塩、 硝酸塩、 りん酸塩、 過塩素 酸塩等の無機酸塩;例えばマレイン酸塩、 フマール酸塩、 酒石酸塩、 くえん 酸塩、 ァスコルビン酸塩、 トリフルォロ酢酸塩等の有機酸塩;例えばメタン スルホン酸塩、 イセチオン酸塩、ベンゼンスルホン酸塩、 ρ—トルエンスルホ ン酸塩等のスルホン酸塩等が挙げられる。
一般式 [I] で表される化合物のエステルとしては、末端のカルボキシル基 又は R 若しくは R"が力ルボキシル基である場合の当該カルボキシル基 における医薬として許容されうる慣用的なものを意味し、 例えばメチル基、 ェチル基、 プロピル基、 イソプロピル基、 ブチル基、 sec—ブチル基、 tert - ブチル基、 シクロプロピル基、 シクロペンチル基等の低級アルキル基とのェ ステル、 ベンジル基、 フヱネチル基等のァラルキル基とのエステル、 ァリル 基、 2—ブテニル基等の低級アルケニル基とのエステル、 メ 卜キシメチル基、 2—メ トキシェチル基、 2—エトキンェチル基等の低級アルコキシアルキル基 とのエステル、 ァセトキシメチル基、 ビバロイルォキシメチル基、 1ーピバロ ィルォキンェチル基等の低級アル力ノィルォキシアルキル基とのエステル、 メ トキシカルボニルメチル基、 イソプロポキシカルボニルメチル基等の低級 アルコキシカルボニルアルキル基とのエステル、 カルボキシメチル基等の低 級カルボキシアルキル基とのエステル、 1— (エトキンカルボニルォキシ) ェ チル基、 1 一 (シクロへキシルォキシカルボニルォキン)ェチル基等の低級ァ ルコキシカルボニルォキシアルキル基とのエステル、 力ルバモイルォキシメ チル基等の低級力ルバモイルォキシアルキル基とのエステル、 フタリジル基 とのエステル、(5—メチル—2—ォキソ一 1, 3—ジォキソールー 4一ィル) メ チル基等の (5—置換— 2—ォキソ— 1 3—ジォキソ一ルー 4一ィル) メチル 基とのエステル等が挙げられる。
また、 本発明の化合物は、 その置換基の態様によって、 光学異性体、 ジァ ステレオ異性体、 幾何異性体等の立体異性体が存在する場合があるが、 本発 明の化合物はこれら全ての立体異性体及びそれらの混合物をも包含する。 中 でも、 一般式 [Γ 一 1]
Figure imgf000009_0001
又は一般式 [Γ 一 2]
Figure imgf000009_0002
[式中、 Ar1― ヽ ^ Ar2 ~ 、 (^Ar3 ~ ヽ (^Cy一 、
Q、 R'、 R2、 R3、 R\ R5、 R6、 R7、 R8、 R9、 R10、 R"、 x、 y及び zは前記の 意味を有する] で表される化合物が好ましい。
また Qにおける— (CH2)n— W— (CH2)P— (ここにおいて、 W、 n及び p は前記の意味を有する) で表される基において、 Wがビニレン基の場合、 該 基に基づく幾何異性体として、 E異性体(トランス異性体) 及び Z異性体 (シ ス異性体) が存在するが、 E異性体がより好適である。
Qとしては、 Qが— (CH2)m— (ここにおいて、 mは前記の意味を有する) で表される基の場合、 mは 1ないし 4のときが好適であり、 - (CH2)n— W - (CH2)P - (ここにおいて、 W、 n及び pは前記の意味を有する) で表される 基の場合、 Wはビニレン基又はェチニレン基、 より好ましくはビニレン基の とき力 また n及び pは同一又は異なって、 0又は 1のとき力好ましい。 一般式 [I] で表される化合物の
Figure imgf000010_0001
については、
Figure imgf000010_0002
がフヱニル基、 ナフチル基、 ベンゾフラニル基、 ベンゾチェニル基又はベン ゾォキサゾリル基である場合、
Figure imgf000010_0003
がフヱニル基である場合、
Figure imgf000010_0004
がナフチル基、 ベンゾフラニル基又はベンゾチェ二ル基である場合及び 一
Figure imgf000010_0005
がシクロブチル基、 シクロペンチル基、 ォキソラニル基、 1,3—ジォキソラニ ル基、 フヱニル基又はピリジル基である場合が好適である。
R'は水素原子、 ハロゲン原子、 水酸基、 低級アルキル基、 低級アルコキシ 基、 又はハロゲン原子、 低級アルキル基及び低級アルコキシ基からなる群よ り選ばれる置換基を有していてもよいァリール基若しくは複素芳香環基を;
R2は水素原子、 ハロゲン原子、 水酸基、 低級アルキル基又は低級アルコキシ 基を意味し、 それぞれ
Figure imgf000011_0001
で表されるァリール基又は複素芳香環基上の置換可能な任意の位置に置換す ることができる。
R1におけるハロゲン原子、 低級ァルキル基及び低級アルコキシ基からなる 群より選ばれる置換基を有していてもよいァリ一ル基若しくは複素芳香環基 とは、 無置換の前記ァリール基若しくは前記複素芳香環基又は置換可能な任 意の位置に置換基を有する前記ァリール基若しくは前記複素芳香環基を意味 し、 該置換基はハロゲン原子、 低級アルキル基及び低級アルコキシ基からな る群より、同一又は異なって 1又は 2以上選択することができるが、中でも無 置換の前記ァリール基又は複素芳香環基等が好ましい。
一般式 [I] で表される化合物中、 式
Figure imgf000011_0002
で表される基としては、 例えば
Figure imgf000011_0003
(ここにおいて、 R'。は水素原子、 ハロゲン原子、 低級アルキル基又は低級ァ ルコキシ基を: R2aは水素原子、ハロゲン原子又は低級アルキル基を意味する) で表される基、 ナフチル基、 ベンゾフラニル基、 ベンゾチェ二ル基、 ベンゾ チアゾリル基、 ベンゾォキサゾリル基及びべンゾィミダゾリル基等が挙げら れ、 より具体的にはフエ二ル基、 2—ベンゾ [b] フラニル基、 2—ベンゾ [b] チェニル基、 2—ナフチル基、 2—べンゾォキサゾリル基等が好ましい。
R3及び ί¾Ίま同一又は異なって、水素原子、 ハロゲン原子、 水酸基、 ァミノ 基、ニトロ基、 シァノ基、 カルボキシル基、低級アルコキシカルボニル基、 力 ルバモイル基、 低級アルキル力ルバモイル基、 低級アルキル基、 低級ヒドロ キシァルキル基、 低級フルォロアルキル基又は低級アルコキシ基を意味し、 それぞれ
Figure imgf000012_0001
で表されるァリール基又は複素芳香環基上の置換可能な任意の位置に置換す ることができる。
Figure imgf000012_0002
で表される基としては、 例えば
Figure imgf000012_0003
(ここにおいて、 R3及び R ま前記の意味を有する) で表される基、 ナフチル 基及び環上に R3を有するピリジル基、 フリル基若しくはチェニル基等が挙げ られ、 より具体的には 4—フルオロフヱニル基、 4ークロロフヱニル基、 4一 メチルフヱニル基、 3—フルオロー 4ーメチルフヱニル基、 4一フルオロー 3—メチルフヱニル基、 3—クロロー 4—メチルフェニル基、 4一クロロー 3— メチルフヱニル基、 3,4—ジクロロフェニル基、 3,4—ジメチルフエニル基、 4ーメ トキシフヱニル基、 3,4—ジメ トキシフヱニル基、 4一二卜ロフヱニル 基、 4一アミノフエ二ル基、 4ーヒドロキシフヱニル基、 4一力ルバモイルフ ェニル基、 4—メチルカルバモイルフヱニル基、 4ーヒドロキシメチルフエ二 ル基、 4一 卜リフルォロメチルフヱニル基、 4—シァノフヱニル基、 4—メ 卜 キンカルボニルフヱニル基、 3,4—メチレンジォキシフヱニル基、 4ーヒドロ キシ一 3—メ トキシフエニル基、 3—ヒ ドロキシー 4ーメ トキシフエニル基、 3,4—ビス (メ トキシカルボニル) フヱニル基、 3,4—ビス (ヒドロキシメチ ル) フヱニル基、 1 一ナフチル基、 2—ナフチル基、 5—メチルフリル基、 5 - メチルチェニル基、 6—メチル—3—ピリジル基等が好ましい。
R5としては、 メチル基、 ェチル基、 プロピル基等が好適であり、 特にメチ ル基、 ェチル基等が好ましい。
R6としては、水素原子、 メチル基、 ェチル基、 プロピル基等が好適であり、 特に水素原子、 メチル基等が好ましい。
R7及び R8は同一又は異なって、 水素原子、 ハロゲン原子、 水酸基、 低級ァ ルキル基又は低級アルコキシ基を意味し、
Figure imgf000013_0001
で表されるァリール基又は複素芳香環基上の置換可能な任意の位置に置換す ることができる。
Figure imgf000013_0002
で表される基としては、 例えば
Figure imgf000013_0003
(ここにおいて、 R7a及び Reaは同一又は異なって、 水素原子、 ハロゲン原子、 低級アルキル基又は低級アルコキシ基を意味する) で表される基、 ナフチル 基、 キノリル基、 ベンゾォキサゾリル基、 ベンゾフラニル基及びべンゾチェ ニル基等が挙げられ、 より具体的には 3,4—ジクロロフヱニル基、 3,4—ジフ ルオロフヱニル基、 3,4 —ジメチルフヱニル基、 2 —ナフチル基、 2—ベンゾ ォキサゾリル基、 2—べンゾ [b] フラニル基、 2—べンゾ [b] チェニル基、 5 -べンゾ [b] チェニル基等が好ましい。
R; '及び R1"は同一又は異なって、水素原子、水酸基又は低級アルキル基を意 味する。 Ryとしては水素原子、水酸基、メチル基等が、 R10としては水素原子、 水酸基等が好ましい。
R は水酸基、 カルボキシル基、低級アルキル基、低級ヒ ドロキシアルキル 基又は低級アルコキシ基を意味し、 中でもカルボキシル基が好ましい。
X及び zは同一又は異なって、 0ないし 2の整数を; yは 0又は 1を意味する。 Xとしては 0又は 1カ^ yとしては 0力、 zとしては 1又は 2が好ましい。
R10
- (CH) y— COOH で表される基及び zが 1又は 2の場合の R"で表される基は
Figure imgf000014_0001
で表されるァリール基、複素芳香環基又は 1若しくは 2の酸素原子を含有して もよい脂肪族環式基上の置換可能な任意の位置に置換することができる。 式
Figure imgf000014_0002
で表される基としては、 例えば
Figure imgf000014_0003
Figure imgf000014_0004
で表される基等が好ましい。
次に本発明化合物の製造法について説明する。
一般式 [I] で表される本発明化合物は、 例えば下記の製造法 1、 2、 3、 4、 5又は 6に示す方法により製造することができる (
製造法 1
一般式 [Π]
Figure imgf000015_0001
[式中、
Figure imgf000015_0002
は同一又は異なって、 ァリール基又は複素芳香環基を; Qは一 (こ こにおいて、 mは 1ないし 6の整数を意味する) 又は- (CH2)n - W— (CH2)P - (ここにおいて、 Wは酸素原子、 硫黄原子、 ビニレン基又はェチニ レン基を; n及び pは同一又は異なって、 0ないし 3の整数を意味する) で表 される基を; R'pは水素原子、 ハロゲン原子、 保護されていてもよい水酸基、 低級アルキル基、 低級アルコキシ基、 又はハロゲン原子、 低級アルキル基及 び低級アルコキシ基からなる群より選ばれる置換基を有していてもよいァ リール基若しくは複素芳香環基を; R2P、 R7P及び Rspは同一又は異なって、水 素原子、 ハロゲン原子、 保護されていてもよい水酸基、 低級アルキル基又は 低級アルコキシ基を; R3p及び は同一又は異なって、 水素原子、 ハロゲン 原子、 ニトロ基、 シァノ基、 低級アルコキシカルボニル基、 力ルバモイル基、 低級アルキル力ルバモイル基、低級アルキル基、低級フルォロアルキル基、低 級アルコキシ基又は保護されていてもよい水酸基、 アミノ基、 カルボキシル 基若しくは低級ヒ ドロキシアルキル基を; R5は低級アルキル基を; Rsは水素 原子又は低級アルキル基を意味する] で表される化合物と、 一般式 [III]
Figure imgf000016_0001
[式中、
Figure imgf000016_0002
はァリール基、複素芳香環基又は 1若しくは 2の酸素原子を含有してもよ t、脂 肪族環式基を; R9P及び R'°pは同一又は異なって、 水素原子、保護されていて もよい水酸基又は低級アルキル基を; R''pは低級アルキル基、低級アルコキシ 基又は保護されていてもよい水酸基、 カルボキシル基若しくは低級ヒドロキ シアルキル基を:x及び zは同一又は異なって、 0ないし 2の整数を; yは 0又 は 1を; Rpは水素原子又はカルボキシル基の保護基を意味する] で表される カルボン酸又はその反応性誘導体とを反応させ、 一般式 [IV]
COORp
[ I V]
Figure imgf000016_0003
[式中、
Figure imgf000016_0004
Q、 R'p、 R2P、 R3P、 RA R5、 R6、 R7p、 R8p、 R9p、 RIOp、 R p、 x、 y、 z及び Rp は前記の意味を有する] で表される化合物とし、 必要に応じ保護基を除去す ることにより、 一般式 [I] で表される化合物を得ることができる。
一般式 [III] で表されるカルボン酸の反応性誘導体としては、 例えば酸ハ ロゲン化物、 混合酸無水物、 活性エステル、 活性アミ ド等が用いられる。 また、一般式 [III] のカルボン酸を用いる場合には、 Ν,Ν' —ジシクロへキ シルカルボジイ ミ ド、 1ーェチルー 3— (3—ジメチルァミノプロピル) カル ボジイミ ド、 2—クロロー 1,3—ジメチルイミダゾリノレクロリ ド等の縮合剤の 存在下、 反応を行うことが好ましい。
一般式 [II] で表される化合物と一般式 [III] のカルボン酸又はその反応性 誘導体との反応は、 一般式 [Π] で表される化合物 1モルに対して、 一般式 [III] のカルボン酸又はその反応性誘導体を 1モルないし過剰モル、好ましく は 1〜5モル用いて行われる。
反応は、 通常、 不活性溶媒中で行われ、 当該不活性溶媒としては、 例えば 塩化メチレン、 クロ口ホルム、 四塩化炭素、 ジクロロエタン、 トリクロロェ チレン等のハロゲン化炭化水素類;例えばェチルエーテル、 テトラヒドロフ ラン、 ジォキサン等のエーテル類:例えばベンゼン、 トルエン、 クロ口ベン ゼン、 キシレン等の芳香族炭化水素類;例えばジメチルホルムアミ ド、 ァセ トニトリル、 アセトン、 酢酸ェチル、 へキサメチルりん酸トリアミ ド等の非 プロトン性極性溶媒、 又はその混合溶媒等が挙げられる。
反応温度は、 通常、 一 70 °Cないし反応に用いる溶媒の沸点、 好ましくは
- 20 °C〜100 °Cである。
反応時間は、 通常、 5分間〜 7日間、 好ましくは 10分間〜 24時間である。 また、 上記反応は反応を円滑に進めるために塩基の存在下に行うこともで きる。 当該塩基としては、 例えば水酸化ナトリウム、 水酸化カリウム、 水酸 化カルシウム、 炭酸ナトリウム、 炭酸力リウ厶、 炭酸水素ナトリウム等の無 機塩基又は例えば卜リエチルアミン、 N—ェチルジイソプロピルアミン、 ピリ ジン、 4ージメチルアミノピリジン、 Ν,Ν—ジメチルァニリン、 Ν—メチルモ ルホリン等の有機塩基の存在下に行うことが好ましい。
当該塩基の使用量は、 一般式 [ΙΠ] のカルボン酸の反応性誘導体 1モルに 対して、 1モルないし過剰モル、 好ましくは 1〜5モルである。
—般式 [III] の化合物の酸ハロゲン化物は、 一般式 [III] のカルボン酸を 常法に従つてハロゲン化剤と反応させることにより得ることができる。 ハロ ゲン化剤としては、 例えば塩化チォニル、 三塩化りん、 五塩化りん、 ォキシ 塩化りん、 三臭化りん、 ォキサリルクロリ ド、 ホスゲン等が用いられる。 一般式 [III] の化合物の混合酸無水物は、 一般式 [III] のカルボン酸を常 法に従って、 例えばクロ口炭酸ェチル等のクロ口炭酸アルキル;ァセチルク ロリ ド等の脂肪族カルボン酸クロリ ド等と反応させることにより得ることが できる。 また、 構造的に可能であれば、 両端のカルボキシル基の間で分子内 酸無水物を形成させるか、 R' 'Pがカルボキシル基を意味する場合、当該カルボ キシル基と反応に関与する力ルボキシル基の間で分子内酸無水物を形成さ せ、 カルボン酸の反応性誘導体としてもよい。
一般式 [III] の化合物の活性エステルは、 一般式 [III] のカルボン酸を常 法に従って、 例えば Ν,Ν' —ジンクロへキシルカルポジイミ ド、 1—ェチルー 3 - (3—ジメチルァミノプロピル) 力ルポジィミ ド等の縮合剤の存在下、例 えば Ν—ヒドロキシスクシンィミ ド、 Ν—ヒドロキシフタルイミ ド、 1ーヒ ド ロキシベンゾ卜リアゾール等の Ν—ヒ ドロキシ化合物: 4—ニトロフエノー ル、 2,4—ジニトロフヱノール、 2,4,5— トリクロロフヱノール、ペンタクロロ フエノ一ル等のフヱノ一ル化合物等と反応させることにより得ることができ 。
一般式 [III] の化合物の活性アミ ドは、 一般式 [III] のカルボン酸を常法 に従って、 例えば Ι , Γ 一カルボニルジイミダゾール、 1. Γ 一カルボニルビス (2—メチルイミダゾール) 等と反応させることにより得ることができる。 式中、 r3
Figure imgf000018_0001
で表される基上に水酸基が存在する場合、
Figure imgf000018_0002
で表される基上に水酸基、 アミノ基、 カルボキシル基又は低級ヒ ドロキシァ ルキル基が存在する場合、 R"P又は R'°Pが水酸基を意味する場合及び R' 'Ρが水 酸基、 カルボキシル基又は低級ヒドロキシアルキル基を意味する場合、 当該 水酸基、低級ヒドロキシアルキル基、 ァミノ基又はカルボキシル基を、適宜、 水酸基の保護基、 アミノ基の保護基又はカルボキシル基の保護基で保護した 後に反応を行い、 反応後に当該保護基を除去することが好ましい。
水酸基の保護基としては、 例えばトリメチルシリル基、 tert -ブチルジメ チルシリル基等の低級アルキルシリル基;例えばメ トキシメチル基、 2—メ 卜 キンエトキシメチル基等の低級アルコキシメチル基:例えばテトラヒドロピ ラニル基;例えばべンジル基、 P—メ トキシベンジル基、 p—二トロべンジル 基、 トリチル基等のァラルキル基;例えばホルミル基、 ァセチル基等のアン ル基等が挙げられ、 特にメ トキシメチル基、 テトラヒドロビラニル基、 トリ チル基、 tert—ブチルジメチルシリル基、 ァセチル基等が好ましい。
ァミノ基の保護基としては、例えばべンジリデン基、 p—クロ口べンジリデ ン基、 p—ニトロべンジリデン基等のァラルキリデン基;例えばべンジル基、 P—メ トキシベンジル基、 p—二トロべンジル基、ベンズヒドリル基、 トリチ ル基等のァラルキル基:例えばホルミル基、ァセチル基、プロピオニル基、ブ チリル基、 ビバロイル基等の低級アルカノィル基;例えば卜リフルォロァセ チル基等の低級ハロアルカノィル基;例えばメ トキシカルボニル基、 ェトキ シカルボニル基、 プロポキシカルボニル基、 tert—ブトキンカルボ二ル基等 の低級アルコキシカルボニル基;例えば 2,2,2— トリクロ口エトキシカルボ二 ル基等の低級ハロアルコキシカルボニル基;例えば 2—プロぺニルォキシ力 ルボニル基等のアルケニルォキシカルボニル基;例えばべンジルォキシカル ボニル基、 p—二卜口べンジルォキシカルボニル基等のァラルキルォキシ力 ルポニル基;例えば卜リメチルシリル基、 tert—ブチルジメチルシリル基等 の低級アルキルシリル基等が挙げられ、 特に、 ァセチル基、 トリフルォロア セチル基、 tert—ブトキシカルボニル基、 ベンジルォキシカルボニル基等が 好ましい。
カルボキシル基の保護基としては、 例えばメチル基、 ェチル基、 プロピル 基、 ィソプロピル基、 tert—ブチル基等の低級アルキル基:例えば 2,2,2 - ト リクロ口ェチル基等の低級ハロアルキル基;例えば 2 -プロぺニル基等の低 級アルケニル基:例えばべンジル基、 p—メ トキシベンジル基、 p一二トロべ ンジル基、ベンズヒドリル基、 トリチル基等のァラルキル基等が挙げられ、特 にメチル基、 ェチル基、 tert—ブチル基、 2—プロぺニル基、 ベンジル基、 P—メ トキシベンジル基、 ベンズヒドリル基等が好ましい。 反応終了後、 通常の処理を行い、 一般式 [IV] で表される化合物の粗生成 物を得ることができる。 このようにして得られた一般式 [IV] で表される化 合物を、 常法に従って精製し、 又は精製することなく、 必要に応じて、 水酸 基、 ァミノ基及びカルボキシル基の保護基の除去反応を適宜組み合わせて行 うことにより、 一般式 [I] の化合物を製造することができる。
保護基の除去はその種類により異なるが、 文献記載の方法 [プロテクティ ブ ·グノレープス ·イン -ォー刀ニック · シンセシス (Protective Groups in Organic Synthesis)、 T.W. リーン (T.W.Greene) 著、 John Wiley & Sons社 (1981年)参照] 又はそれに準ずる方法に従って、例えば酸又は塩基 を用 L、る加溶媒分解、 水素化金属錯体等を用 、る化学的還元又はノ、ラジウム 一炭素触媒、 ラネーニッケル触媒等を用いる接触還元等により行われる。
製造法 2
一般式 [V]
Figure imgf000020_0001
[式中、
Figure imgf000020_0002
R'p、 R2P及び nは前記の意味を有する] で表される化合物と、 一般式 [VI]
Figure imgf000020_0003
[式中、 Tはトリフエニルホスホニォ基、 ジメ トキシホスホリル基又はジェ卜 キシホスホリル基を意味し ; Ar2 ~ Ar3— Cy p、 R3P、 R'p、 R5、 R6、 R7P、 R8P、 R9P、 R'。p、 R' lp、 x、 y、 z及び Rpは前記の 意味を有する] で表される化合物とを反応させ、 一般式 [IV— 1]
3
Figure imgf000021_0001
[式中、
Figure imgf000021_0002
n、 p、 Rlp、 R2P、 R3P、 R4P、 R5、 R6、 R7p、 R8p、 R9P、 RIOp、 R"\ x、 y、 z及び Rpは前記の意味を有する] で表される化合物とし、 必要に応じ保護基を除去 することにより、 一般式 [I一 1]
[ I一 1 ]
Figure imgf000021_0003
[式中、 Q1は一 (CH ー CH = CH— (CH2)P— (ここにおいて、 n及び pは 前記の意味を有する) で表される基を意味し
Figure imgf000021_0004
R'、 R2、 R3、 R\ R5、 R R7、 R8、 RH、 Rl0、 Ru、 x、 y及び zは前記の意味 を有する] で表される化合物を得ることができる。
製造法 2は、 一般式 [I] で表される本発明化合物のうち、 式中の Qで表さ れる部分が、 一 (CH — CH = CH— (CH ,一 (ここにおいて、 n及び pは 前記の意味を有する) で表される基である化合物、 即ち、 一般式 [1 - 1] で 表される化合物を合成するための製造法である。
一般式 [v〕 で表される化合物と一般式 [VI] で表される化合物との反応 は、 通常、 両者を等モル又はいずれか一方を少過剰モル用いて行われる。 反応は、 通常、 不活性溶媒中で行われ、 当該不活性溶媒としては、 例えば ェチルエーテル、 テトラヒ ドロフラン、 ジォキサン等のエーテル類:例えば ベンゼン、 トルエン、 クロ口ベンゼン、 キシレン等の芳香族炭化水素類;例 えばジメチルホルムアミ ド、 ァセトニトリル、 アセトン、 酢酸ェチル、 へキ サメチルりん酸トリアミ ド等の非プロトン性極性溶媒、 又はその混合溶媒等 が挙げられる。
反応温度は、 通常、 一 100 °Cないし反応に用いる溶媒の沸点、 好ましくは — 70 °C〜5(TCである。
反応時間は、 通常、 5分間〜 7日間、 好ましくは 10分間〜 24時間である。 また、 上記反応は反応を円滑に進めるために塩基の存在下に行うこともで きる。 特に、 一般式 [VI] の式中の Tがトリフヱニルホスホニォ基である場 合には、例えば水素化ナ卜リウム、 n—ブチルリチウム、ナトリウムメ トキシ ド、 カリウム tert—ブトキシド、 水酸化ナトリウム、 水酸化力リゥム等の塩 基の存在下に行うことが好ましい。
当該塩基の使用量は、 一般式 [VI] で表される化合物中、 Tがトリフエ二 ルホスホニォ基である化合物 1モルに対して、 1モルないし過剰モル、好まし くは 1〜5モルである。
式中、
又は Ar
Figure imgf000022_0001
R8D
で表される基上に水酸基が存在する場合、
Figure imgf000022_0002
で表される基上に水酸基、 アミノ基、 カルボキシル基又は低級ヒ ドロキシァ ルキル基が存在する場合、 R9p又は R1C)Pが水酸基を意味する場合及び FTPが水 酸基、 カルボキシル基又は低級ヒ ドロキシアルキル基を意味する場合、 当該 水酸基、 低級ヒ ドロキシアルキル基、 アミノ基又はカルボキシル基を、 適宜、 水酸基の保護基、 ァミノ基の保護基又はカルボキシル基の保護基で保護した 後に反応を行い、 反応後に当該保護基を除去することが好ましい。
当該水酸基の保護基、 ァミノ基の保護基及びカルボキシル基の保護基とし ては、 前記製造法 1に記載した保護基を挙げることができる。
反応終了後、 通常の処理を行い、 一般式 [IV— 1] で表される化合物の粗 生成物を得ることができる。 このようにして得られた一般式 [IV— 1] で表 される化合物を、 常法に従って精製し、 又は精製することなく、 必要に応じ て、 水酸基、 アミノ基及びカルボキシル基の保護基の除去反応を適宜組み合 わせて行うことにより、 一般式 [1— 1] の化合物を製造することができる。 保護基の除去法は、 当該保護基の種類及び目的化合物 [I - 1] の安定性等 により異なるが、 例えば前記文献記載の方法又はそれに準ずる方法に従って 適宜行うことができる。
製造法 3
一般式 [VII]
Figure imgf000023_0001
[式中、
Figure imgf000023_0002
T、 η、 R'p及び R2Pは前記の意味を有する] で表される化合物と、 一般式 [VIII] COORD
[VIII]
Figure imgf000024_0001
[式中、
Figure imgf000024_0002
p、 R3p、 R4P、 R5、 R6、 R7p、 R8p、 R9p、 R'°p、 R"p、 x、 y、 z及び Rpは前記の 意味を有する] で表される化合物とを反応させ、 一般式 [IV - 1]
R ,
Figure imgf000024_0003
[式中、
Figure imgf000024_0004
n、 p、 R'p、 R2p、 R3p、 R 、 R5、 R6、 R7p、 R8p、 R9p、 R〗0p、 Rllp、 x、 y、 z及び RPは前記の意味を有する] で表される化合物とし、 必要に応じ保護基を除去 することにより、 一般式 [1— 1]
[I一 1]
Figure imgf000024_0005
[式中、 Q'は— (CH — CH = CH— (C¾)p- (ここにおいて、 n及び pは 前記の意味を有する) で表される基を意味し;
Figure imgf000025_0001
R'、 R2、 R3、 R\ R5、 R6、 R R R9、 R10、 Ru、 x、 y及び zは前記の意味 を有する] で表される化合物を得ることができる。
製造法 3は、 前記製造法 2と同じく、 一般式 [I] で表される本発明化合物 のうち、式中の Qで表される部分が、 一 (CH2) n— CH = CH— (CH2) P - (こ こにおいて、 n及び pは前記の意味を有する) で表される基である化合物、即 ち、 一般式 [I一 1 ] で表される化合物を合成するための製造法である。 製造法 3は、製造法 2の原料化合物の化合物 [V] と化合物 [VI] を、 それ ぞれ化合物 [VIII] と化合物 [VII] に置き換えた反応に等しく、 したがって、 反応の方法及び条件等は全て製造法 2に準 て行うことができる。
製造法 4
一般式 [IV— Γ]
Figure imgf000025_0002
[式中、 n,及び Plは同一又は異なって、 0ないし 3の整数を意味し
Figure imgf000025_0003
Rlp、 R2p、 R3P、 RA R5、 R6、 R7P、 R8p、 R9p、 R'°p、 R p、 x、 y、 z及び Rpは 前記の意味を有する (ただし、 n,及び p,の和は 4を越えない)] で表される化 合物を還元後、 必要に応じ保護基を除去することにより、 一般式 [1 - 2] [ 1 - 2 ]
Figure imgf000026_0001
[式中、 Q2は一 (CH2)m— (ここにおいて、 mは前記の意味を有する) で表さ れる基を意味し:
Figure imgf000026_0002
R'、 R2、 R3、 R R5、 R6、 R7、 R8、 R9、 R'。、 R"、 x、 y及び zは前記の意味 を有する] で表される化合物を得ることができる。
製造法 4は、 一般式 [I] で表される本発明化合物のうち、 式中の Qで表さ れる部分が、 一 (CH2)m— (ここにおいて、 mは前記の意味を有する) で表 される基である化合物、 即ち、 一般式 [I - 2] で表される化合物を合成する ための製造法である。
一般式 [IV - Γ] で表される化合物を還元する反応は、 通常、 不活性溶媒 中、 パラジウム一炭素触媒、 ラネーニッケル触媒又は白金触媒等を用いる接 触還元により行うことが好ましい。
当該不活性溶媒としては、 例えばメタノール、 エタノール、 プロパノール 等のアルコール類又は酢酸等が挙げられる。
反応温度は、 通常、 — 20°C〜100°C、 好ましくは 0 °C〜室温である。 反応時間は、 通常、 5分間〜 7日間、 好ましくは 10分間〜 24時間である。 なお、接触還元反応における水素圧は、通常、常圧〜 5気圧が好ましく、 ま た触媒の使用量は、 原料の化合物 [IV— Γ] 1モルに対して、 通常、 0.01〜 1モル、 好ましくは 0.05〜0.2モルである。
反応終了後、生成物に保護基が存在する場合、当該保護基を除去した後に、 又は生成物に保護基が存在しない場合はそのまま通常の処理を行 、、 一般式 [1 - 2] の化合物を製造することができる。
保護基の除去及び後処理等は、 前記製造法 1に記載した方法がそのまま適 用できる。
製造法 5
一般式 [IX]
Figure imgf000027_0001
[式中、 W1は酸素原子又は硫黄原子を意味し;
Figure imgf000027_0002
n R'p及び R2Pは前記の意味を有する] で表される化合物と、 一般式 [X]
Figure imgf000027_0003
[式中、 Z1は脱離基を意味し;
Figure imgf000027_0004
p R3P R 'p R5 R6 R7p R8p R9P R' p R p x y z及び Rpは前記の 意味を有する] で表される化合物とを反応させ、 一般式 [IV— 3]
Figure imgf000027_0005
[式中、 Ar 1— Ar' Ar3 _ Cy— n、 p、 W Rl R2P、 R3P、 R" R R6、 R7p、 Ra R9p、 Ri0 R""N xy、 z及び Rpは前記の意味を有する] で表される化合物とし、 必要に応じ保護基 を除去することにより、 一般式 [1— 3]
[ 1 - 3 ]
Figure imgf000028_0001
[式中、 Q3は— (CH2) n - — (CH2) P - (ここにおいて、 n、 p及び W'は前
Ϊ己の意味を有する) で表される基を意味し;
Figure imgf000028_0002
R'、 R R3、 R R5、 R6、 R7、 R8、 R9、 Rl0、 R〗'、 x、 y及び zは前記の意味 を有する] で表される化合物を得ることができる。
製造法 5は、 一般式 [I] で表される本発明化合物のうち、 式中の Qで表さ れる部分が、 - (CH2)n - W '— (CH2)P - (ここにおいて、 n、 p及び Wリま 前記の意味を有する) で表される基である化合物、 即ち、 一般式 [1 _ 3] で 表される化合物を合成するための製造法である。
一般式 [IX] で表される化合物と一般式 [X] で表される化合物との反応 は、通常、一般式 [X] で表される化合物 1モルに対して、一般式 [IX] で表 される化合物を 1モルないし過剰モル、好ましくは 1 ~3モル用いて行われる。 反応は、 通常、 不活性溶媒中で行われ、 当該不活性溶媒としては、 例えば 塩化メチレン、 クロ口ホルム、 四塩化炭素、 ジクロロェタン、 トリクロロェ チレン等のハロゲン化炭化水素類:例えばェチルエーテル、 テトラヒドロフ ラン、 ジォキサン等のエーテル類;例えばベンゼン、 トルエン、 クロ口ベン ゼン、 キシレン等の芳香族炭化水素類:例えばジメチルホルムアミ ド、 ァセ トニトリル、 ァセ卜ン、 酢酸ェチル、 へキサメチルりん酸トリアミ ド等の非 プロ トン性極性溶媒、 又はその混合溶媒等が挙げられる。
反応温度は、 通常、 —70 °Cないし反応に用いる溶媒の沸点、 好ましくは
- 20°C〜100°Cである。
反応時間は、 通常、 5分間〜 7日間、 好ましくは 10分間〜 24時間である。 また、 上記反応は反応を円滑に進めるために塩基の存在下に行うことが好 ましく、 当該塩基としては、 例えば水素化ナトリウム、 n—ブチルリチウム、 水酸化ナトリウム、水酸化力リウム、水酸化カルシウム、炭酸ナトリウム、炭 酸力リウム、炭酸水素ナトリゥム等の無機塩基又は例えばトリエチルァミン、 N—ェチルジイソプロピルアミン、 ピリジン、 4ージメチルアミノピリジン、 Ν,Ν—ジメチルァニリン等の有機塩基が挙げられる。
当該塩基の使用量は、一般式 [IX] で表される化合物 1モルに対して、 1モ ルないし過剰モル、 好ましくは 1~5モルである。
Z'で示される脱離基としては、 例えば塩素原子、 臭素原子若しくはヨウ素 原子等のハロゲン原子、又は例えばメタンスルホニルォキン基、 ρ—トルエン スルホニルォキシ基若しくはベンゼンスルホニルォキシ基等の有機スルホ二 ルォキシ基等が挙げられる。
式中、
R _
又は Ar3
Figure imgf000029_0001
R8
で表される基上に水酸基が存在する場合、
Figure imgf000029_0002
で表される基上に水酸基、 アミノ基、 カルボキシル基又は低級ヒ ドロキシァ ルキル基が存在する場合、 R 又は Riepが水酸基を意味する場合及び Rl lpが水 酸基、 カルボキシル基又は低級ヒドロキンアルキル基を意味する場合、 当該 水酸基、低級ヒドロキシアルキル基、 アミノ基又はカルボキシル基を、 適宜、 水酸基の保護基、 アミノ基の保護基又はカルボキシル基の保護基で保護した 後に反応を行い、 反応後に当該保護基を除去することが好ましい。 当該水酸基の保護基、 ァミノ基の保護基及びカルボキシル基の保護基とし ては、 前記製造法 1に記載した保護基を挙げることができる。
反応終了後、 通常の処理を行い、 一般式 [IV - 3] で表される化合物の粗 生成物を得ることができる。 このようにして得られた一般式 [IV— 3] で表 される化合物を、 常法に従って精製し、 又は精製することなく、 必要に応じ て、 水酸基、 アミノ基及びカルボキシル基の保護基の除去反応を適宜組み合 わせて行うことにより、 一般式 [I一 3] の化合物を製造することができる。 保護基の除去法は、 当該保護基の種類及び目的化合物 [I - 3] の安定性等 により異なる力 例えば前記文献 載の方法又はそれに準ずる方法に従って 適宜行うことができる。
製造法 6
一般式 [XI]
Figure imgf000030_0001
[式中、
Figure imgf000030_0002
n、 Z R'p及び R2pは前記の意味を有する]で表される化合物と、一般式 [XII]
Figure imgf000030_0003
[式中、 、
Figure imgf000030_0004
p、 W、 Ra'\ R'"、 R\ R\ R7|>、 RH,>、 R" R,ヽ R' lp、 x、 y、 z及び R"は前 記の意味を有する] で表される化合物とを反応させ、 一般式 [IV - 3] - 3 ]
Figure imgf000031_0001
[式中、
Figure imgf000031_0002
n、 p、 W'、 Rlp、 R2P、 R3P、 R R R6、 R7p、 R8p、 R9p、 R R l ip x、 yヽ z及び Rpは前記の意味を有する] で表される化合物とし、 必要に応じ保護基 を除去することにより、 一般式 [1— 3]
Figure imgf000031_0003
[式中、
Figure imgf000031_0004
Q3、 R'、 R2、 R3、 R'、 R5、 R6、 R7、 R8、 R R10、 Ru、 x、 y及び zは前記の 意味を有する] で表される化合物を得ることができる。
製造法 6は、 前記製造法 5と同じく、 一般式 [I] で表される本発明化合物 のうち、 式中の Qで表される部分が、 一 (CH2)。— W' _ (CH2)P - (ここに おいて、 n、 p及び W'は前記の意味を有する) で表される基である化合物、即 ち、 一般式 [I一 3] で表される化合物を合成するための製造法である。 上記製造法は、 通常、 不活性溶媒中、 好ましくは塩基の存在下、 一般式 [XII] で表される化合物 1モルに対して、 一般式 [XI] で表される化合物を 1モルないし過剰モル、 好ましくは 1〜3モル用いて行うことができる。 その 際の不活性溶媒及び塩基の種類、 更に反応条件等については前記製造法 5の 記載をそのまま適用することができ、 したがって、 反応及び反応後の後処理 等は、 全て製造法 5に準じて行うことが好ましい。
上記の方法により得られた一般式 [1]、 [1— 1]、 [1 - 2] 又は [1— 3] の 化合物の単離 ·精製は、 例えばシリカゲル、 吸着樹脂等を用いるカラムクロ マトグラフィー、液体クロマトグラフィー、 溶媒抽出又は再結晶 ·再沈澱等 の常用の分離手段を単独又は適宜組み合わせて行うことにより達成される。 一般式 [1]、 [1— 1]、 [1 - 2] 又は [1— 3] の化合物は、 常法により医薬 として許容されうる塩又はエステルとすることができ、 また逆に塩又はエス テルから遊離カルボン酸への変換も常法に従って行うことができる。
更に、 本発明に係る化合物は目的化合物に対応する原料を用い、 上記製造 法と同様な方法で全て製造することができる。
一般式 [Π]、 [III]、 [V]、 [VI]、 [VII]、 [VIII]、 [IX]、 [X]、 [XI]、 [XII] で表される化合物は例えば市販品を用いる力、、文献記載の方法 [ジャーナル, ォブ'メディンナル 'ケミストリー (J.Med.Chem.)、第 10卷、 717頁 (1967 年);同 725頁等参照] 又はこれらの方法に準ずる方法、 あるいは以下の方法 又は参考例に記載した方法等により製造することができる。
製造法 A
Figure imgf000033_0001
Figure imgf000033_0002
Figure imgf000033_0003
[II]
[式中、 Xはハロゲン原子を; Yはシァノ基、 カルボキシル基、 低級アルコキ シカルボニル基、 クロ口ホルミル基又は Ν—メ トキシー Ν—メチルカルバモ ィル基を; Ζは塩素原子、臭素原子、 ヨウ素原子、 トリフルォロアセトキシ基、 メタンスルホニルォキシ基、 トリフルォロメタンスルホニルォキシ基、 ρ—卜 ルエンスルホニルォキシ基からなる群より選ばれる脱離基を意味し;
Figure imgf000033_0004
Q、 Rlp、 R2P、 R3P、 R" R R R7p及び RBpは前記の意味を有する] 本製造法によれば、 目的の化合物 [Π] は、一般式丄で表される、 二卜リル 又は力ルポン酸誘導体に一般式 2で表されるアルキルリチウム若しくは一般 式 3で表されるアルキルグリニャール試薬(又はアルキルギルマン試薬)を作 用させてケ卜ン体 4を製造し、該ケ卜ン体 4に一般式 5で表されるアルキル化 剤を作用させて一般式 6で表される化合物とし、該化合物 §に一般式 Zで表さ れるアミン化合物を作用させた後、 還元することにより製造することができ る。
上記の反応工程を、好適な反応条件等を挙げて、以下に具体的に説明する。 最初の工程であるケトン体 4の製造は、通常、例えばテトラヒドロフラン、 ェチルエーテル又はべンゼン等の反応に関与しない不活性溶媒中、 原料化合 物丄の 1モルに対して、 アルキルリチウム 又はアルキルグリニャール試薬 (あるいは化合物丄の置換基 Yがクロ口ホルミル基の場合はアルキルギルマン 試薬) 3を 1モルないし過剰モル、 好ましくは 1〜5モル作用させ、 次いで要 すれば酸性条件下に加水分解することにより行われる。
反応温度は、通常、 一 80°Cないし反応に用いる溶媒の沸点まで、好ましく は - 70°C~50°Cであり、反応時間は、通常、 5分間〜 48時間、好ましくは 30 分間〜 24時間である。
また、 原料化合物 iの式中の置換基 Yがシァノ基である場合、 場合により 反応終了後に酸性条件下で加水分解反応を行う必要があり、その際の反応は、 例えば塩酸、 硫酸又は P - トルエンスルホン酸等の酸の存在下、 例えばメタ ノール、 エタノール、 テトラヒ ドロフラン又はそれらと水との混合溶媒中で 行われる。
反応温度は、通常、 0°Cないし反応に用いる溶媒の沸点まで、反応時間は 30 分間〜 24時間である。
ケトン体 から一般式 6で表される化合物を製造する工程は、無溶媒中又は 反応に悪影響を及ぼさない不活性溶媒中で、塩基の存在下、 ケトン体 4の 1モ ルに対し、一般式 5で表されるアルキル化剤を 1モルないし過剰モル、好まし くは 1〜2モル作用させることにより行うことができる。
当該不活性溶媒としては、例えばェチルエーテル、テトラヒドロフラン、 ジ ォキサン等のエーテル類;例えばベンゼン、 トルエン、 キシレン等の芳香族 炭化水素類;例えばジメチルホルムァミ ド、 ジメチルスルホキシド、 へキサ メチルりん酸トリアミ ド等の非プロトン性極性溶媒、 又は前記溶媒の混合物 等が挙げられる。 本反応で使用される塩基としては、 例えば水素化ナトリウム、 水素化リチ ゥ厶、 水素化カリウム等の水素化アルカリ金属:例えばリチウムアミ ド、 リ チウムジイソプロピルアミ ド、 リチウムピストリメチルシリルアミ ド等のリ チウムアミ ド類;例えばメチルリチウム、 ブチルリチウム、 tert—プチルリ チウム等のアルキルリチウム:例えばナトリウムメ トキシド、 ナトリウムェ トキシド、 カリウム tert—ブトキシド等のアル力リ金属アルコキシド:例え ば水酸化ナトリウム、 水酸化力リウム、 水酸化リチウム等の水酸化アル力リ 金属等が挙げられる。
当該塩基の使用量は、通常、原料のアルキル化剤 5の 1モルに対し、 1モル ないし過剰モル、 好ましくは 1〜5モルである。
反応温度は、 通常、 — 100 °Cないし反応に用いる溶媒の沸点まで、 好まし くは— 80°C〜100°Cであり、反応時間は、通常、 10分間〜 48時間、好ましく は 30分間〜 24時間である。
一般式 で表される化合物から目的の化合物 [Π]を製造する工程は、通常、 例えばメタノール、 エタノール、 ベンゼン、 ェチルエーテル、 テトラヒ ドロ フラン等の不活性溶媒中、一般式 6で表される化合物の 1モルに対し、一般式 Zで表されるァミン化合物を 1モルないし過剰モル、 好ましくは 1〜2モル作 用させて、 予めイミンを形成し、 後にこれを還元することにより製造するこ とができる。
前記ィミンの形成過程における反応温度は、通常、 0°Cないし反応に用いる 溶媒の沸点まで、 好ましくは室温〜 100 °Cであり、 反応時間は、 通常、 5分間〜 48時間、好ましくは 30分間〜 24時間である。 またィミン形成後は反 応液をそのまま次工程の還元反応に用いるか、 又は反応液を留去するか、 若 しくは通常の分離手段を用いてィミン体を単離し、 以後の還元反応に付すこ とができる。
還元反応としては、 例えば水素化ホウ素ナトリウム、 シァノ水素化ホウ素 ナトリウム、水素化リチウムアルミニウム等の水素化金厲錯体等を用いるか、 又は例えばパラジウム一炭素触媒、 ラネーニッケル触媒等を用いた接触還元 により行うことができる。
還元剤として水素化金属錯体を用いる場合、 還元剤の使用量は、 通常、 前 記ィミン 1モルに対して、 1モルないし過剰モル、 好ましくは 1〜5モルであ 。
当該還元反応は、還元剤の種類により、適宜、溶媒として、例えばメタノ一 ル、 エタノール等のアルコール類;例えばジメチルエーテル、 ェチルエーテ ル、 ジイソプロピルエーテル、 ジブチルエーテル、 ジメ 卜キシェタン、 ジォ キサン、テ卜ラヒドロフラン、 ジグリム等のエーテル類;例えばペンタン、へ キサン、 ヘプタン、 シクロへキサン等の脂肪族炭化水素類;例えばベンゼン、 トルエン等の芳香族炭化水素類等の不活性溶媒又はその混合溶媒等が使用さ れる。
反応温度は、 通常、 0 °C〜室温であり、 反応時間は、 通常、 1時間〜 6時間 である。
また、本製造法において、一般式丄で表される、二トリル又はカルボン酸誘 導体に一般式 5で表されるアルキル化剤を作用させて、 事前にアルキル体を 製造した後、 該アルキル体に一般式 2で表されるァルキルリチウム若しくは 一般式 3で表されるアルキルグリニヤ一ル試薬 (又はアルキルギルマン試薬) を作用させて一般式 §で表される化合物とすることができる。 この際の反応 は上記製造法 Aと同様な条件下に行うことができ、 したがって反応条件等も、 全て上記製造法 Aで記載された方法がそのまま利用できる。
なお、 一般式丄、 2. 3, 又は Zで表される化合物は市販品を用いる力、、参 考例記載の方法若しくは公知の方法又はそれらに準じる方法を必要に応じ適 宜組み合わせることにより製造することができる。
製造法 B
Figure imgf000037_0001
* triethylamine
[式中、
Figure imgf000037_0002
Q、 R'p、 R2p、 R3p、 R4P、 R5、 R6、 R7p及び R8pは前記の意味を有する] 本製造法によれば、 目的の化合物 [Π] は、一般式 で表される化合物に水 素化金属錯体等の還元剤を作用させてアルコール体 を製造し、 該アルコー ル体 に一般式 Zで表されるアミン化合物を作用させることにより製造する ことができる。
上記の反応工程を、好適な反応条件等を挙げて、以下に具体的に説明する。 一般式 6で表される化合物をアルコール体 8へ還元する工程は、通常、反応 に悪影響を及ぼさない不活性溶媒中で、 例えば水素化ホウ素ナトリウム、 水 素化ジィソブチルアルミニウム、水素化リチウ厶アルミニウム、 トリ sec -ブ チル水素化ホウ素リチウム (L— selectride™) 等の水素化金属錯体を用いる 力、、 又は例えばパラジウム一炭素触媒、 ラネ一ニッケル触媒等を用いた接触 還元等により行うことができる。
還元剤として水素化金属錯体を用いる場合、 当該還元剤の使用量は、通常、 —般式 6で表される化合物の 1モルに対して、 1モルないし過剰モル、好まし くは 1〜5モルである。
本反応で使用される不活性溶媒は還元剤の種類により適宜選択することが できる。
例えば還元剤が水素化ホウ素ナトリウムの場合、 例えばメタノール、 エタ ノール等のアルコール類;例えばジメ トキシェタン、 ジォキサン、 テトラヒ ドロフラン、 ジグリム等のエーテル類;例えばジメチルホルムァミ ド、 ジメ チルァセトアミ ド等の非プロトン性極性溶媒等の不活性溶媒又は水、 あるい はそれらの混合溶媒等が使用され、 特にメタノール、 エタノール等のアル コール類が好ましい。
例えば還元剤が水素化ジイソブチルアルミニウムの場合、 例えばジメチル エーテル、 ェチルエーテル、 ジイソプロピルエーテル、 ジブチルエーテル、 ジ メ トキシェタン、 ジォキサン、 テトラヒ ドロフラン、 ジグリム等のエーテル 類;例えばペンタン、 へキサン、 ヘプタン、 シクロへキサン等の脂肪族炭化 水素類;例えばベンゼン、 トルエン等の芳香族炭化水素類;塩化メチレン等 の不活性溶媒又はその混合溶媒等が使用され、 特にトルエン、 塩化メチレン 等が好ましい。
例えば還元剤が水素化リチウムアルミニウム、 トリ sec -ブチル水素化ホウ 素リチウムの場合、 例えばジメチルエーテル、 ェチルエーテル、 ジイソプロ ピルエーテル、 ジブチルエーテル、 ジメ トキシェタン、 ジォキサン、 テ卜ラ ヒドロフラン、 ジグリム等のエーテル類;例えばペンタン、 へキサン、 ヘプ タン、 シクロへキサン等の脂肪族炭化水素類;例えばベンゼン、 トルエン等 の芳香族炭化水素類等の不活性溶媒又はその混合溶媒等が使用され、 特にェ チルエーテル、 テ卜ラヒ ドロフラン等が好ましい。
接触還元を行う場合、 溶媒としてはメタノール、 エタノール等のアルコー ル類が好ましい。
反応温度及び反応時間については、 原料であるケトン体 6の安定性及び還 元反応の受け易さ、 還元剤の種類及び溶媒の種類等により種々異なるが、 反 応温度は、 通常、 - 80 °C〜100 °C、 好ましくは— 70 °C〜40 °Cであり、 反応 時間は、 通常、 5分間〜 2日間、 好ましくは 30分間〜 24時間である。 一般式 8で表される化合物から目的の化合物 [II] を製造する工程は、一般 式 8で表されるアルコール体に、塩基の存在下、例えば塩化メ夕ンスルホニル 等のスルホン化剤を作用させるか、 又は例えば塩化チォニル若しくは三臭化 りん等のハロゲン化剤を作用させて、 式中の水酸基を脱離基に変換後、 続い て一般式 Zで表されるアミン化合物を作用させることにより行うことができ る。
脱離基導入反応は、 通常、 例えば塩化メチレン、 クロ口ホルム、 ベンゼン、 テトラヒ ドロフラン、酢酸ェチル等の不活性溶媒中、 アルコール体 の 1モル に対して、 1モルないし過剰モル、 好ましくは 1〜2モルのスルホン化剤及び トリエチルァミン等の塩基を作用させるか、又は 1モルないし過剰モル、好ま しくは 1〜5モルのハロゲン化剤を用いて行うことができる。
反応温度は、 通常、 —70 °Cないし反応に用いる溶媒の沸点まで、好ましく は一 20°C~80°Cであり、反応時間は、通常、 5分間〜 48時間、好ましくは 30 分間〜 24時間である。
次に、 上記反応で得られた脱離基導入後の化合物にァミン化合物 Zを作用 させる工程は、 通常、 例えば塩化メチレン、 クロ口ホルム、 ベンゼン、 ェチ ルエーテル、 テトラヒドロフラン等の不活性溶媒中、 脱離基を有する原料化 合物 1モルに対して、 1モルないし過剰モル、好ましくは 1〜50モルのァミン 化合物 Zを用いて行うことができる。
また、本反応は必要に応じ、一般式 Zで表されるアミン化合物とは別の他の 塩基の存在下に行うこともできる。
該塩基としては、 例えば水酸化ナトリウム、 水酸化カリウム、 水酸化カル シゥム、 炭酸ナトリウム、 炭酸カリウム、 炭酸水素ナトリウム等の無機塩基 又は例えばトリエチルァミン、 N—ェチルジィソプロピルァミ ン、 ピリジン、 Ν,Ν -ジメチルァニリン等の有機塩基が挙げられる。
該塩基の使用量は、通常、原料化合物 1モルに対して、 1モルないし過剰モ ル、 好ましくは 1〜5モルである。
反応温度は、 通常、 一 50°C〜150°C、 好ましくは— 20°C〜100°Cであり、 反応時間は、 通常、 5分間〜 7日間、 好ましくは 10分間〜 24時間である。 製造法 C
Figure imgf000040_0001
* 1 diethyl azodicarboxylate
* 2 triethylamine
* 3 diphenylphosphoryl azide
Figure imgf000040_0002
[II]
[式中、
Figure imgf000040_0003
Q、 R'p、 R2p、 R3p、 FT、 R5、 R6、 R7p及び R8pは前記の意味を有する] 本製造法によれば、 目的の化合物 [Π] は、初めに、一般式 8で表されるァ ルコール体に、 ァゾジカルボン酸ジェチルエステル、 トリフ ニルホスフィ ン及びフタルイミ ド (又はアジ化水素酸若しくはジフヱニルりん酸アジド) を作用させるか、 又はトリェチルァミン等の塩基の存在下、 塩化メタンスル ホニル等のスルホ二ル化剤を作用させた後、塩基の存在下、フタルイミ ド(又 はアジ化ナトリウム)を作用させてァミン体 のフタルイミ ド保護体(又はァ ジド体) を製造し、 続いてヒドラジン (又は還元剤) を作用させてフタルイ ミ ド基を除去(又はアジド基を還元) して一般式 で表されるァミン体を製造 し、 最後に該化合物 に一般式 で表される化合物を作用させた後、 還元す ることにより製造することができる。
上記の反応工程を、好適な反応条件等を挙げて、以下に具体的に説明する。 アルコール体 8から一般式 9で表される化合物を製造する工程は、有機合成 化学においてよく知られた、 アルコール体をアミ ンへ変換する各種の合成方 法及び反応条件が利用できる。 例えばァゾジカルボン酸ジェチルエステル、 トリフヱニルホスフィ ン及びフタルイミ ド (又はアジ化水素酸若しくは ジフユニルりん酸アジド) を用いる、 所謂光延反応を行うか、 又は卜リエチ ルァミン等の塩基の存在下、 塩化メタンスルホニル等のスルホニル化剤でス ルホニル化し、 次いで塩基の存在下、 フタルイミ ド (又はアジ化ナ卜リウム) を作用させた後、 得られたフタルイミ ド体 (又はアジド体) をヒドラジンで 処理 (又は還元) する方法等が好ましい。
上記反応は、 通常、 反応に関与しない不活性溶媒中で行われ、 当該不活性 溶媒としては、 前記光延反応では、 例えばテトラヒドロフラン、 ジメ トキシ ェタン、 ベンゼン、 トルエン等が、 またスルホニル化後、 フタルイミ ド (又 はアジ化ナトリウム) を作用させる反応では、 例えば塩化メチレン、 クロ口 ホルム、 テトラヒドロフラン、 ベンゼン、 酢酸ェチル、 ジメチルホルムアミ ド等が、 更に次段階のヒ ドラジンによるフタルイミ ド基の除去反応では、 例 えばメタノール、 エタノール等のアルコール類等が好適である。 またアジド 体の還元反応で還元剤として水素化金属錯体を用いる場合、 例えばェチル エーテル、 テトラヒドロフラン等のエーテル類等が、 トリフヱニルホスフィ ン等でホスフィン還元を行う場合、 例えば含水テトラヒ ドロフラン等が、 接 触還元による還元では、 例えばメタノール、 エタノール等のアルコール類等 力好ましい。
使用される試薬の量は、 例えば前記光延反応では原料であるアルコール体 の 1モルに対して、 ァゾジカルボン酸ジェチルエステル、 トリフエニルホス フィ ン及びフタルイミ ド (又はアジ化水素酸若しくはジフヱニルりん酸アジ ド) がそれぞれ 1モルないし過剰モル、好ましくは 1〜5モルであり、 スルホ ニル化後、 フタルイミ ド(又はアジ化ナトリウム) を作用させる反応では、ァ ルコール体 8の 1モルに対して、塩化メタンスルホニル等のスルホニル化剤が
1モルないし過剰モル、 好ましくは 1〜2モル、 またこの際使用されるトリエ チルアミン等の塩基はスルホ二ル化剤 1モルに対して、 1モルないし過剰モ ル、 好ましくは 1〜2モルであり、 次段階の塩基の存在下、 フタルイミ ド (又 はアジ化ナトリウム) を作用させる反応では、 スルホ二ル化剤 1モルに対し て、 1モルないし過剰モル、好ましくは 1〜5モルのフタルイミ ド及び塩基、又 はアジ化ナトリウムが使用される。 またこの際フタルイミ ドとともに使用さ れる塩基としては、 炭酸ナトリウム、 炭酸カリウム等が好ましく、 更にこれ ら塩基を使用せずにフタルイミ ドのナ卜リウム塩若しくは力リウム塩をその まま使用することもできる。 次にヒドラジンによるフタルイミ ド基の除去反 応では、原料化合物であるフタルイミ ド体 1モルに対して、 ヒドラジンが 1モ ルないし過剰モル、 好ましくは 1〜10モルであり、 アジド体の水素化金属錯 体又はトリフヱニルホスフィンによる還元反応では、 アジド体 1モルに対し て、 還元剤が 1モルないし過剰モル、 好ましくは 1〜2モルである。
前記光延反応の場合、 反応温度は、 通常、 - 7(TC〜100 °C、 好ましくは 一 20 °C〜50 °Cであり、 反応時間は、 通常、 5分間〜 48時間、 好ましくは 30 分間〜 24時間である。 ヒドラジンによるフタルイミ ド基の除去反応の場合、 反応温度は、 通常、 0 °Cないし反応に用いる溶媒の沸点まで、 好ましくは 室温〜 100 °Cであり、 反応時間は、 通常、 5分間〜 48時間、 好ましくは 30分 間〜 24時間である。 アジド体を還元してアミン体へ変換する反応では、還元 剤として水素化金属錯体を用いる場合、反応温度は、通常、 - 70°C〜150°C、 好ましくは一 20°C~50 eCであり、反応時間は、通常、 5分間〜 48時間、好ま しくは 10分間〜 10時間であり、また還元剤としてトリフユニルホスフィンを 用いる場合、反応温度は、通常、室温ないし反応に用いる溶媒の沸点まで、好 ましくは 30°C〜100°Cであり、反応時間は、通常、 10分間〜 48時間、好まし くは 30分間〜 24時間である。 接触還元による還元の場合、 反応温度は、 通 常、 0で〜 100 °C、 好ましくは室温〜 50 °Cであり、 反応時間は、 通常、 10分 間〜 48時間、 好ましくは 10分間〜 24時間である。
一般式 で表される化合物から目的の化合物 [Π]を製造する工程は、通常、 例えばメタノール、 エタノール、 ベンゼン、 ェチルエーテル、 テトラヒドロ フラン等の不活性溶媒中、一般式 9で表される化合物の 1モルに対し、一般式 で表される化合物を 1モルないし過剰モル、好ましくは 1〜2モル作用させ て、 予めイミンを形成し、 後にこれを還元することにより製造することがで さる。
本工程は前記製造法 Aで一般式 で表される化合物から目的の化合物 [Π] を製造する工程と同様に行うことができ、 したがって反応条件等も同様な方 法が利用できる。
なお、一般式 で表される化合物は市販品を用いるか、参考例記載の方法 若しくは公知の方法又はそれらに準じる方法を必要に応じ適宜組み合わせる ことにより製造することができる。
法 D
Figure imgf000044_0001
(or DEAD *2, Ph3P, DPPA*3)
3) reduction 13
Figure imgf000044_0002
15
* 1 tnethylamine
* 2 methyl azodicarboxyiate
* 3 diphenylphosphoryl azide 製造法 Dの続き
Figure imgf000045_0001
16
Figure imgf000045_0002
[VI] ぼ中、 Rplは水酸基の保護基を意味し;
Figure imgf000045_0003
p、 T、 Z、 Z'、 R3p、 R R R6、 R R8p、 R9p、 R'。p、 RUp、 x、 y、 z及び Rp は前記の意味を有する]
本製造法によれば、 目的の化合物 [VI] は、 初めに、 一般式 で表される ケトン体に一般式 Uで表されるアルキル化剤を作用させて—般式]!で表さ れる化合物とし、該化合物 に水素化金属錯体等の還元剤を作用させてアル コール体とした後、 ァゾジカルボン酸ジェチルエステル、 トリフヱニルホス フィ ン及びフタルイ ミ ド (又はアジ化水素酸若しくはジフヱニルりん酸アジ ド) を作用させるか、 又はトリエチルァミ ン等の塩基の存在下、 塩化メタン スルホニル等のスルホ二ル化剤を作用させた後、 塩基の存在下、 フタルイミ ド (又はアジ化ナトリウム) を作用させてァミン体!^のフタルイミ ド保護体 (又はアジド体) を製造し、続いてヒドラジン (又は還元剤) を作用させてフ タルィミ ド基を除去 (又はアジド基を還元) して一般式]^で表されるァミン 体を製造し、該化合物 に一般式 1Qで表される化合物を作用させた後、還元 して一般式 11で表される化合物とし、 該化合物 Mに一般式 [ΠΙ] で表され るカルボン酸又はその反応性誘導体を作用させた後、 Rplで表される保護基を 選択的に除去して一般式 で表される化合物とし、次に該化合物!^に脱離基 を導入して一般式!^で表される化合物とした後、 最後に該化合物 に トリフユニルホスフィ ン、 亜りん酸トリメチル、 亜りん酸トリェチル等を作 用させることにより製造することができる。
ITで表される水酸基の保護基としては前記製造法 1に記載の水酸基の保護 基を挙げることができる。
一般式 で表されるケトン体から一般式 で表される化合物を製造するェ 程は、前記製造法 Aで一般式 で表されるケトン体から一般式 で表される化 合物を製造する工程と同様な方法で行うことができ、 したがって、 反応条件 等も同様な条件が適用できる。
一般式!^で表される化合物に水素化金属錯体等の還元剤を作用させてアル コール体とした後、 一般式 で表されるアミン体を製造する工程において、 一般式^で表される化合物をアルコール体とする工程は、前記製造法 Bで一 般式 6で表される化合物をアルコール体 へ還元する工程と同様な方法で行 うことができ、 したがって、反応条件等も同様な条件が適用できる。 また、得 られたアルコール体から一般式!^で表されるァミン体を製造する工程は、前 記製造法 Cで一般式 8で表されるアルコール体からァミン体 を製造する工程 と同様な方法で行うことができ、 したがって、 反応条件等も同様な条件が適 用できる。
一般式!^で表されるァミン体から一般式 で表される化合物を製造する 工程は、前記製造法 cで一般式 で表されるァミン体から一般式 [II] で表さ れる化合物を製造する工程と同様な方法で行うことができ、 したがって、 反 応条件等も同様な条件が適用できる。
一般式 11で表される化合物から一般式!^で表される化合物を製造するェ 程において、一般式 で表される化合物と—般式 [in] で表されるカルボン 酸又はその反応性誘導体との反応は、前記製造法 1における一般式 [II] で表 される化合物と一般式 [ΠΙ] で表されるカルボン酸又はその反応性誘導体と の反応と同様な方法で行うことができ、 したがって、 反応条件等も同様な条 件が適用できる。
上記反応で得られた化合物から Rp'で表される保護基を選択的に除去する 工程は、保護基の種類及び特性に応じて様々な方法が適宜選択される。 即ち、 Rplと他の保護基との酸、塩基又は還元等に対する安定性の差を利用して、酸、 塩基又は還元等の常用の手段により選択的に保護基を除去することができ る。 これら反応の具体的な条件としては、 例えば公知の文献記載の方法 [プ ロテクティブ ' グループス 'イン 'オーガ二ック · シンセンス (Protective Groups in Organic Synthesis 、 1.W.7リーン (T.W.Greene) 著、 John Wiley & Sons社 (1981年) 参照] 等が利用できる。
一般式 で表される化合物に脱離基を導入して一般式 ] で表される化合 物を製造する工程は、 例えばハロゲン化剤として、 例えば塩化チォニル、 三 塩化りん、五塩化りん、 ォキシ塩化りん、三臭化りん、 ォキサリルクロリ ド、 ホスゲン等を、例えばスルホン化剤として、塩化メ夕ンスルホニル、塩化 p— トルエンスルホニル、 塩化ベンゼンスルホ二ル等を用いて、 前記製造法 Bで 一般式 で表される化合物に脱離基を導入する方法と同様な方法で行うこと ができ、 したがって、 反応条件等も同様な条件が適用できる。
一般式!^で表される化合物から目的の化合物 [VI] を製造する工程は、一 般式 で表される化合物にトリフエニルホスフィン、亜りん酸トリメチル又 は亜りん酸トリェチル等を作用させることにより製造することができる。 上記反応で、 トリフ Xニルホスフィンを作用させる場合は、 通常、 反応に 関与しない不活性溶媒中で行われ、 当該不活性溶媒としてはトルエン、 キシ レン等が好ましい。
使用される卜リフヱニルホスフィンの量は、 通常、 化合物 の 1モルに対 して、 1モルないし過剰モル、 好ましくは 1〜5モルである。 反応温度は、 通常、 室温ないし反応に用いる溶媒の沸点まで、 好ましくは 80 °C〜150 °Cであり、 反応時間は、 通常、 5分間〜 7日間、 好ましくは 1時間〜 24時間である。
また同じく上記反応で亜りん酸トリメチル又は亜りん酸トリェチルを化合 物 j ^に作用させる場合は、通常、反応に関与しない不活性溶媒中か、 より好 ましくは過剰の亜りん酸卜リメチル又は亜りん酸トリェチルを溶媒兼反応剤 として行われる。
反応温度は、 通常、 室温ないし反応に用いる溶媒の沸点まで、 好ましくは 80 °C〜150 °Cであり、 反応時間は、 通常、 5分間〜 7日間、 好ましくは 1時間〜 24時間である。
なお、一般式 ϋで表される化合物は市販品を用いる力、、参考例記載の方法 若しくは公知の方法又はそれらに準じる方法を必要に応じ適宜組み合わせる ことにより製造することができる。
法 E
Figure imgf000049_0001
(or DEAD*2, Ph3P, DPPA*3)
3) reduction . 19
Figure imgf000049_0002
CVffl]
* 1 triethylamine
* 2 diethyl azodicarboxylate
* 3 diphenylphosphoryl azide [式中、 Rp2及び Rp3は同一又は異なって、 メチル基、 ェチル基、 又は Rp2及び Rp3が一緒になつてェチレン基を意味し;
Figure imgf000050_0001
p、 Z、 R3p、 R4P、 R5、 R6、 R7p、 R8p、 R9p、 R10p、 R'lp、 x、 y、 z及び Rpは前記 の意味を有する]
本製造法によれば、 目的の化合物 [VIII] は、初めに、一般式 で表される ケ卜ン体に一般式 IIで表されるアルキル化剤を作用させて一般式 で表さ れる化合物とし、該化合物 に水素化金属錯体等の還元剤を作用させてアル コール体とした後、 ァゾジカルボン酸ジェチルエステル、 トリフヱニルホス フィン及びフタルイミ ド (又はアジ化水素酸若しくはジフヱニルりん酸アジ ド) を作用させるか、 又はトリエチルァミン等の塩基の存在下、 塩化メ夕ン スルホニル等のスルホ二ル化剤を作用させた後、 塩基の存在下、 フタルイミ ド (又はアジ化ナトリウム) を作用させてァミン体!^のフ夕ルイミ ド保護体 (又はアジド体) を製造し、続いてヒドラジン (又は還元剤) を作用させてフ タルィミ ド基を除去 (又はアジド基を還元) して一般式!^で表されるァミン 体を製造し、該化合物 ϋに一般式!^で表される化合物を作用させた後、還元 して一般式^で表される化合物とし、 該化合物^に一般式 [in] で表され るカルボン酸又はその反応性誘導体を作用させた後、 Rp2及び Rp3で表される 保護基を選択的に除去することにより製造することができる。
これら保護基の除去は、 通常、 含水メタノール、 含水エタノール、 含水テ トラヒ ドロフラン等の溶媒中で、塩酸、硫酸、 p— トルエンスルホン酸等の酸 の存在下に行うことが好ましい。
反応温度は、通常、 — 20°C〜100°C、 好ましくは 0°C〜50°Cであり、 反応 時間は、 通常、 5分間〜 48時間、 好ましくは 10分間〜 24時間である。
一般式 4で表されるケトン体から目的の化合物 [VIII]を製造するまでの各 工程は、前記製造法 Dで一般式 4で表されるケ卜ン体から一般式!^で表され る化合物を製造する各工程と同様な方法で行うことができ、 したがって、 反 応条件等も対応する各工程と同様な条件が適用できる。
なお、一般式 17で表される化合物は市販品を用いるか、参考例記載の方法 若しくは公知の方法又はそれらに準じる方法を必要に応じ適宜組み合わせる ことにより製造することができる。
製造法 F
Figure imgf000052_0001
(or DEAD *2, Ph3P, DPPA,3)
3) reduction
Figure imgf000052_0002
[XII]
* 1 triethylamine
* 2 diethyl azodicarboxylate
* diphenylphosphoryl azide [式中、 FTは、 W'が酸素原子の場合、水酸基の保護基を; W1が硫黄原子の場 合、 メルカプト基の保護基を意味し; 、 I Ar3 ~ 、 ( Cy― 、
Figure imgf000053_0001
p、 W'、 Z、 R3P、 R4P、 R5、 R6、 R7p、 R8P、 R9p、 R'0p、 R'lp、 x、 y、 z及び Rpは 前記の意味を有する]
本製造法によれば、 目的の化合物 [ΧΠ] は、初めに、 一般式 で表される ケトン体に一般式 で表されるァルキル化剤を作用させて一般式 で表さ れる化合物とし、該化合物 に水素化金属錯体等の還元剤を作用させてアル コール体とした後、 ァゾジカルボン酸ジェチルエステル、 トリフエニルホス フィン及びフタルイミ ド (又はアジ化水素酸若しくはジフヱニルりん酸アジ ド) を作用させるか、 又はトリエチルァミン等の塩基の存在下、 塩化メタン スルホニル等のスルホ二ル化剤を作用させた後、 塩基の存在下、 フタルイミ ド(又はアジ化ナトリウム) を作用させてァミン体 のフタルイミ ド保護体 (又はアジド体) を製造し、続いてヒドラジン (又は還元剤) を作用させてフ 夕ルイミ ド基を除去 (又はアジド基を還元) して一般式^で表されるァミン 体を製造し、該化合物^に一般式 で表される化合物を作用させた後、還元 して一般式 21で表される化合物とし、 該化合物 ^に一般式 [in] で表され る力ルポン酸又はその反応性誘導体を作用させた後、 RMで表される保護基を 選択的に除去することにより製造することができる。
Rwが水酸基の保護基の場合、当該水酸基の保護基としては前記製造法 1に 記載の水酸基の保護基を挙げることができる。
IT力メルカプト基の保護基の場合、当該メルカプト基の保護基としては前 記製造法 1に記載の水酸基の保護基を適用することができる。
一般式 で表されるケトン体から目的の化合物 [XII] を製造するまでの各 工程は、 前記製造法 Dで一般式 4で表されるケトン体から一般式!^で表され る化合物を製造する各工程と同様な方法で行うことができ、 したがって、 反 応条件等も対応する各工程と同様な条件が適用できる。
なお、一般式^ iで表される化合物は市販品を用いるか、参考例記載の方法 若しくは公知の方法又はそれらに準じる方法を必要に応じ適宜組み合わせる ことにより製造することができる。
製造法 G
Figure imgf000054_0001
[X]
[式中、
Figure imgf000054_0002
p、 Z'、 R3P、 R4P、 R5、 R6、 R7p、 R8P、 R9p、 R10p、 Rl lp、 x、 y、 z及び Rpは前記 の意味を有する]
本製造法によれば、 目的の化合物 [X] は、 一般式 [XII - a] で表される 化合物に脱離基を導入することにより製造することができる。
本工程は前記製造法 Dで一般式 で表される化合物に脱離基を導入する方 法と同様な方法で行うことができ、 したがって、 反応条件等も同様な条件が 適用できる。
一般式 [VII]
Figure imgf000054_0003
[式中、 Ar1— 、
n、 T、 Rlp及び R2pは前記の意味を有する] で表される化合物は、 製造法 Dの 一般式 で表される化合物から一般式 [VI] で表される化合物を製造する方 法に準じて、 一般式 [XIII]
[XIII]
Figure imgf000055_0001
[式中、 、
Figure imgf000055_0002
n、 Z Rlp及び R2Pは前記の意味を有する] で表される化合物から製造するこ とができる。
なお、一般式 [ΧΠΙ] で表される化合物は市販品を用いる力、、参考例記載の 方法若しくは公知の方法又はそれらに準じる方法を必要に応じ適宜組み合わ せることにより製造することができる。
製造法 H
HO OH hydrolysis HO OH
RaOOC COORa HOOC COORa
26
Figure imgf000056_0001
RcOOC COORC deprotection
[ΠΙ - a]
HOOC COORa
[式中、 Ra及び Reは同一又は異なって、 低級アルキル基を: Rbは tert—プチ ル基、 ベンジル基、 ベンズヒ ドリル基又はトリチル基を意味する]
製造法 Hは前記一般式 [III]で表される化合物のうち、一般式 [III一 a]で 表されるカルボン酸誘導体を製造するための合成法である。
本製造法によれば、 目的のカルボン酸誘導体 [III - a] は一般式 で表さ れる D—若しくは L -又はメソ酒石酸の低級アルキルエステル誘導体を加水 分解して対応するモノカルボン酸誘導体とし、 容易に脱離可能な力ルボキシ ル基の保護基 Rbを導入した後、一般式^で表されるジブロモマロン酸誘導体 を塩基の存在下反応させ、環状化合物^とし、緩和な条件下、 カルボキシル 基の保護基 R' 'を除去することにより製造することができる。
Ru又は のカルボキシル基の保護基としては、例えばメチル基、 ェチル基 等の低級アルキル基が好ましい。
カルボキシル基の保護基 Rbとしては、例えば tert—ブチル基、ベンジル基、 ベンズヒドリル基又は卜リチル基等の弱酸性又は接触還元等の緩和な条件下 に容易に除去することができるものが好まし 、。
一般式 で表されるエステル体のモノ加水分解反応は、通常、例えばテ卜 ラヒ ドロフラン、 メタノール、 エタノール等の不活性溶媒又はそれらと水と の混合溶媒中、 例えば水酸化ナトリウム、 水酸化力リゥム、 水酸化リチウム 等の塩基の存在下、一般式 で表される化合物 1モルに対して、 当該塩基を 1モルないし少過剰モル、 好ましくは 1〜1.5モル作用させて行うことができ る
反応温度は- 100°C〜100°C、好ましくは 0°C〜50°Cであり、反応時間は、 通常、 5分間〜 48時間、 好ましくは 8時間〜 24時間である。
上記で得られたモノカルボン酸誘導体 に保護基 Rbを導入する工程は、通 常、 反応に悪影響を及ぼさない不活性溶媒中、 例えばジフエニルジァゾメタ ン、 Ν,Ν' —ジイソプロピル一 0—べンジルイソゥレア、 Ν,Ν' —ジイソプロ ピル一 0— tert—プチルイソゥレア等の各種エステル化剤を、一般式 で表 される化合物 1モルに対して、 1モルないし過剰モル、 好ましくは 1〜5モル を反応させることにより、一般式^で表されるジエステル体に導くことがで さる。
不活性溶媒としては、 例えばメタノール、 エタノール、 テトラヒ ドロフラ ン、 ジォキサン、 アセトン、 ジメチルホルムアミ ド、 塩化メチレン、 クロ口 ホルム、 酢酸ェチル等を用いることができる。
反応温度は、通常、室温ないし反応に用いる溶媒の沸点まで、反応時間は、 通常、 5分間〜 7曰間、 好ましくは 1時間〜 3日間である。
一般式 で表される化合物から一般式^で表される化合物を製造するェ 程は、 文献記載の方法 [米国特許 3855248号公報参照] と同様の条件によつ て行うことができる。
上記工程で得られた化合物から R' 'で表される保護基を選択的に除去するェ 程は、 保護基の種類及び特性に応じて種々の方法が適宜選択される。 即ち、 R"と他の保護基 R-及び FTとの酸、塩基又は還元等に対する安定性の差を利用 して、 酸若しくは塩基による加水分解又は還元等の常用の手段により選択的 に保護基を除去することができる。 これら反応の具体的な方法は、 例えば文 献記載の方法 [プロテクティブ ·グループス 'イン ·オーガ二ック . シンセ シス (Protective uroups in Organic Synthesis) T.W.グリーン (T.W. Greene) 著、 John Wiley & Sons社 (1981年) 参照] 又はそれに準ずる 方法等が利用できる。
なお、一般式^で表される化合物は市販品を用いるか、参考例記載の方法 若しくは公知の方法又はそれらに準じる方法を必要に応じ適宜組み合わせる ことにより製造することができる。
製造法 I
Figure imgf000058_0001
Figure imgf000058_0002
[式中、 WQは Q -
Figure imgf000059_0001
(ここにおいて、
Figure imgf000059_0002
Q、 R'p及び R2pは前記の意味を有する)、 Rp"— W1 - (CH2)P- 一 (ここにおい て、 p' は 0ないし 4の整数を意味し; RM及び W'は前記の意味を有する) 又 は
Rp2〇、
RP3。:CH- (CH2)p-
(ここにおいて、 Rp2、 R-3及び pは前記の意味を有する) で表される基を; Rs は水素原子又はメチル基を; R 'は低級アルキル基、 ァリール基又は低級アル ケニル基を意味し:
Figure imgf000059_0003
R3p、 R4P及び R5は前記の意味を有する]
製造法 Iは前記一般式 又は一般式 II、 若しくは の還元成績体として 得られるアルコール体 の光学活性体^又は を製造するための合成法で 本製造法によれば、 目的の光学活性アルコール体 及び は、 一般式 で表されるラセミ体のアルコール誘導体に、 リパーゼの存在下、一般式 で 表されるビニルエステル誘導体を作用させ、 得られた光学活性のエステル誘 導体 と光学活性のアルコール誘導体を分離後、光学活性のエステル誘導体 ^についてはエステル基を加水分解することにより製造することができる。 一般式^ iのビニルエステル誘導体の R'は、例えばメチル基、ェチル基等の 低級アルキル基;フヱニル基、 ナフチル基等のァリ一ル基;ベンジル基、 2 - フヱニルェチル基等のァラルキル基が好ましく、特にメチル基の場合、即ち、 —般式^ iの化合物が、酢酸ビニル又は酢酸ィソプロぺニルである場合が好ま しい。
上記のリパーゼによる光学分割の反応は、 通常、 例えば塩化メチレン、 ク ロロホルム、 ェチルエーテル、 テトラヒ ドロフラン、 ベンゼン、 トノレェン、 へ キサン、 ヘプタン、 ァセトニトリル等の不活性溶媒中又は原料である一般式 ^のビニルエステル誘導体自身を溶媒として行うことができる。
ビニルエステル誘導体^ _の使用量は、通常、原料化合物 に対して、 1モ ルないし大過剰モル、好ましくは 1〜100モルであり、 また触媒であるリパー ゼの量は、 化合物 に対して、 重量比で 0.01〜100 %、 好ましくは 0.1〜 20 %である。
リパーゼの種類は、 Pseudomonas sp.由来のリノ、。ーゼ、例えばトヨチーム LIP™ (東洋紡製) 等が好ましい。
また、 上記酵素反応は、 塩基の存在下に行うことにより反応が加速される 傾向があり、 この際使用される塩基としては、 例えば卜リエチルァミン、 ジ イソプロピルェチルァミン等の有機塩基が好ましい。
当該塩基の使用量は、原料化合物 に対して、通常、 0.01モルないし小過 剰モル、 好ましくは 0.1〜1.5モルである。
反応温度は、 通常、 0 °C〜50 °C、 好ましくは室温〜 40 °Cであり、 反応時間 は、 通常、 30分間〜 7日間、 好ましくは 1時間〜 48時間である。
一般式 ^で表されるエステル体の加水分解反応は、酸性又は塩基性の条件 下、 有機合成化学上よく知られた一般的方法により行うことができる。
»法】
a
Figure imgf000061_0001
[式中、 Raは低級アルキル基を; Rllaは低級アルコキシカルボニル基、 低級ァ ルキル基、 低級アルコキシ基又は保護されていてもよ 、水酸基若しくは低級 ヒドロキシアルキル基を; R はカルボキシル基、低級アルキル基、低級アル コキシ基又は保護されていてもよ t、水酸基若しくは低級ヒ ドロキシアルキル 基を; R''cはジフヱニルメチルォキシカルボニル基、低級アルキル基、低級ァ ルコキシ基又は保護されていてもよ 、水酸基若しくは低級ヒ ドロキシアルキ ル基を; Phはフヱ二ル基を意味し;
Figure imgf000061_0002
Z、 Ra RiU x、 y及び zは前記の意味を有する]
本製造法によれば、 目的の化合物 [III - 1] は、 脱離基を有する化合物 35 に、 シアン化力リ又はシアン化ナトリウムを作用させて二トリル誘導体 を 製造し、続いて該ニ卜リル体^を酸性又は塩基性の条件下に加水分解するこ とにより製造することができる。 更にもう一つの目的の化合物であるカルボ ン酸のベンズヒ ドリル保護体 [III— 2] は、 上記で得られたカルボン酸 [III - 1] をジフヱニルジァゾメタンで処理することにより製造することがで さる。
上記の反応工程を、 好適な反応条件を挙げて、 以下に具体的に説明する。 最初の工程である脱離基を有する化合物 にシアン化力リ又はシアン化ナ トリウムを作用させる反応は、 通常、 例えばメタノール、 エタノール、 ジメ チルホルムァミ ド等の不活性溶媒中、脱離基を有する化合物^の 1モルに対 して、 1モルないし過剰モル、 好ましくは 1〜5モルのシアン化カリ又はシァ ン化ナトリウムを用いて行うことができる。
反応温度は、通常、 0°Cないし反応に用いる溶媒の沸点まで、好ましくは室 温〜 100 °Cであり、 反応時間は、 通常、 10分間〜 48時間、 好ましくは 30分間〜 24時間である。
上記で得られた二トリル体^を加水分解し、 目的のカルボン酸 [ΠΙ - 1] を製造する工程は、 通常、 反応に悪影響を及ぼさない不活性溶媒中、 例えば 塩酸、 硫酸若しくは硝酸等の酸を用いるか、 又は例えば水酸化ナトリウム若 しくは水酸化力リウム等の塩基を用いて行うことができる。
酸及び塩基は、 通常、 その過剰量が好ましい。
不活性溶媒としては、 酸性条件下及び塩基性条件下のいずれの場合も、 例 えばメタノール、 エタノール、 プロパノール、 ブタノール、 tert—ブタノ一 ル等のアルコール類若しくは水、 又はそれらの混合溶媒が好ましい。
反応温度は、 通常、 室温ないし反応に用いる溶媒の沸点まで、 好ましくは 50°C〜150eCであり、 反応時間は、 通常、 30分間〜 72時間、好ましくは 1時 間〜 48時間である。
次に、 カルボン酸 [III一 1] をジフヱニルジァゾメタンで処理して、 もう —つの目的化合物であるカルボン酸のベンズヒドリル保護体 [III一 2] を製 造する工程は、 通常、 反応に悪影響を及ぼさない不活性溶媒中、 制限された 量のジフヱニルジァゾメ夕ンを用いて行うことができる。 本反応は、原料のカルボン酸 [ΠΙ - 1] の分子内に 2個又は 3個存在する力 ルポキシル基のジフヱニルジァゾメタンによる部分的 (選択的) エステル化 の反応と見ることができ、 したがって、 ジフヱニルジァゾメタンは当該目的 に沿って、 通常、 その制限された量が使用される。 即ち、 例えば原料のカル ボン酸 [III— 1] の分子内に 2個のカルボキシル基が存在する場合、該カルボ ン酸 [III一 1] の 1モルに対して、 ジフエニルジァゾメタン 1〜1.5モルを使 用することが好ましく、また原料のカルボン酸 [III一 1]の分子内に 3個の力 ルポキシル基力、'存在する場合、該カルボン酸 [III一 1] の 1モルに対して、 ジ フエニルジァゾメタン 2〜3モルを使用することが好ましい。
反応に用いられる不活性溶媒としては、 例えばテトラヒ ドロフラン、 ジォ キサン等のエーテル類;例えば塩化メチレン、 クロ口ホルム等のハロゲン化 炭化水素類;例えばベンゼン、 トルエン等の芳香族炭化水素類;又はァセト ン、 酢酸ェチル等が好ましい。
反応温度は、 通常、 0°C〜4(TCであり、 反応時間は、 通常、 30分間〜 24時 間である。
またジフニニルジァゾメタンに代えて、 カルボキシル基の各種保護試薬を 用いることにより、 所望の各種保護体をそれぞれ製造することができる。 なお、一般式^で表される化合物は市販品を用いるか、参考例記載の方法 若しくは公知の方法又はそれらに準じる方法を必要に応じ適宜組み合わせる ことにより製造することができる。
薬理試験例 1 (蛋白質ーフアルネシルトランスフ ラーゼ阻害作用) 本発明の有用性を具体的に示すため、 本発明の化合物の蛋白質 -フアルネ シルトランスフヱラーゼ (PFT) 活性に対する 50 %阻害濃度 (IC5。値) を求 めた。
(1) PFTの調製
PFTは、 ラッ ト脳の可溶性画分を 30 %— 50 %の飽和硫安を用いて分画し、 更に透析後、 Q—セファロース"^ (フアルマシア社製) によるカラムクロマト グラフィ一によつて分離した [ライス (Reiss) 等、 Cell、 第 62巻、 81— 88 頁 (1990年) ]。
(2) PFT活性の測定法 PFT活性の測定は、 H - rasタンパク質あるいは K一 rasBタンパク質の C 末端の 7アミノ酸残基に相当するべプチドの N末端にピオチンを付加させた もの (ビォチン付加 Lys - Thr - Ser - Cys - Val - lie - Met) をプレニ ル受容体とし、 [Ή] 標識のフアルネシルピロリン酸 (FPP) をプレニル供与 体として ί亍なった [ライス等、 Methods: A Companion to Methods in Enzymology. 第 1巻 3号、 241 - 245頁 (1990年) ]。
[Ή] 標識のフアルネシルピロリン酸 (22.5Ciノミ リモル) は、 ニューイン グランドニュークリア一社より購入した。 非標識のフアルネシルピロリン酸 は、 ジ トリェチルァンモニゥムホスフェイ 卜と トランス トランスフアルネ ソールとトリクロロアセトニトリルより化学合成し、 XAD— 2レジンカラム 及びジェチルァミ ノエチルセルロースにより精製した [コーンフォース (Cornforth)等、 Methods in Enzymology,第 15巻、 385 - 390頁(1969 年) ]。
H - rasタンパク質は、 大腸菌で発現させ精製した [ギプス (Gibbs) 等、 Proc.Natl.Acad.Sci.. 第 81卷、 5704— 5708頁 (1984年)]。
H— rasタンパク質をプレニル受容体とした PFT反応液量は、 25 μ 1であ り、 その組成は、 50mM Hepes pH7.5/50 M ZnCl2/5mM MgCl2/ 20mM KClZ5mM DTT/0.6 M オールトランス [Ή] ーフアルネシル ピロリン酸ノ 25 M H— rasタンパク質 Ζラッ ト脳由来 PFT (Q—セファ ロース分画) であり、 反応温度は 37 °C、 熱平衡化時間 10分間、 反応時間 20 分間で行なつた。
ビォチン付加 Lys - Thr - Ser― Cys - Val一 lie - Metをプレニル受容 体とした PFT反応液量は、 25 /z lであり、 その組成は、 50mM トリスー C1 PH7.5/50 fi M ZnCl2/5mM MgCl2/20mM KCl/lmM DTT/0.2 % n—才クチルー S— D—ダルコビラノシド /0.6 / Mオールトランス [3H]— ファルネシルピ口リン酸 /3.6 β Μ ビォチン付加 Lys - Thr一 Ser一 Cys - Val— He— Met/ラッ ト脳由来 PFT (Q -セファロース分画) であり、 反応 温度は 37 °C、 熱平衡化時間 10分間、 反応時間 20分間で行なった。
H— rasタンパク質をプレニル受容体とした酵素反応生成物を、 SDS— PAGE (ドデシル硫酸ナ卜リゥム Zポリアクリルァミ ドゲル電気泳動)によつ て分析した。 [3H] 標識の酵素反応生成物を 2 % SDSZ50mM トリス— Cl、 pH6.8ZlO %シュ一クロース Z5 % 2—メルカプトエタノールを含む緩衝液 中で 3分間煮沸し、 12 %ポリアクリルァミ ドのスラブゲルで電気泳動し、 [Ή]標識の H— ras夕ンノ ク質を EN3HANCE™ (ニューイングランドニュー クリア一社製) でフルォログラフィー増強した後、 ォ一卜ラジオグラフィ一 で可視化した [ジエームズ (James) 等、 Science, 第 260巻 25号、 1937 - 1942頁 (1993年) ]。
H— rasタンパク質をプレニル受容体とした PFTの測定は、 更に急速な別 の方法によって分析することができた。 プレニル供与体の存在しない測定混 合液を予め熱的に平衡化した後、 プレニル基転移反応を [3H] - FPPの添加 により開始し、 0.5mlの 4 % SDSの添加により都合のよい時間に停止する。 更に 0.5mlの 30 %トリクロロ酢酸を添加し、 よく混合した後、 反応液を 4 °C で 60分間放置し H— rasタンパク質を沈降させた。 この反応液をホヮッ トマ ン GFZBフィルタ一により減圧濾過した。 フィルターを 2mlの 6 %トリクロ 口酢酸で 6回洗浄し、 8mlのシンチレーションカクテル (クリアゾル 1™、 ナ 力ライテスク社製) と混合し、 次いでベックマン TRI - CARB2500TRシン チレ一シヨンカウンターで計数した。
PFT活性の測定は、 ビォチン付加 Lys - Thr - Ser - Cys - Val - He一 Metをプレニル受容体としても行なうことができた。 ピオチン付加 Lys— Thr— Ser— Cys— Val— lie— Metをプレニル受容体とし、プレニル供与体 の存在しない測定混合液を予め熱的に平衡化した後、 プレニル基転移反応を [Ή] - FPPの添加により開始し、 0.2mlの 2mgZmlゥシ血清アルブミノ、 / 2 %ドデシル硫酸ナ卜リウム/ 150mM NaCl添加により都合のよい時間に停 止する。 更に 0.02mlのアビディンァガロース (ピアース) を加え 30分間振 ¾して [Ή] -ファルネシル基の付加したビォチン付加 Lys - Thr― Ser - Cys— Val— lie— Metをアビディンァガロースに充分に結合させた後、 1ml の 2mgZmlゥシ血清アルブミ ン (BSA) /4 %ドデシル硫酸ナトリウムノ 150mM NaClでアビディンァガロースを 4回洗浄し、 1mlのシンチレーショ ンカクテル (クリアゾル 1™、 ナカライテスク社製) と混合し、 次いでベック マン TRI— CARB2500TRシンチレ一ションカウンタ一で計数した。 人工基質として用いられるピオチン付加 Lys - Thr一 Ser - Cys― Val - He一 Metヘプタぺプチドは、 Lys - Thr - Ser - Cys一 Val - lie一 Metへ プタぺプチドをアプライ ドバイオシステムズモデル 431Aぺプチドシンセサ ィザ一で固相合成し、 レジンについたままの Lys— Thr— Ser一 Cys一 Val— lie— Metヘプタぺプチドの α—アミノ末端を Ν—ヒドロキシサクシニ ミ ドビォチンでピオチン化した後、 レジンより切り離し、 逆相高性能液体ク 口マトグラフィー (HPLC) により精製した。
本発明の化合物の PFT反応系への添加は、予め、 ジメチルスルホキシドを 反応液の 1 %容積 (0.25 1) 加えることによって行なった。
本発明化合物の PFT活性に対する 50 %阻害濃度(IC5。値)を第 1表に示す。 第 1表 PFT活性に対する 50 %阻害濃度
Figure imgf000066_0001
薬理試験例 2 (Ras蛋白質のフアルネシル化に対する阻害活性)
本発明化合物を用 t、て、 活性化 ras遺伝子を組み込んだ NIH3T3細胞にお ける、 Ras蛋白質のフアルネシル化に対する阻害効果を測定した。
活性化 ras遺伝子を組み込んだ NIH3T3細胞を培養プレー卜にまき、 培養 3曰後、培養中に各濃度の本発明化合物を添加した。 ジャーナル ·ォブ ·バイ ォロジカル 'ケミストリー (J.Biol.Chem.)、 第 268巻、 18415頁 (1993年) に記載の方法に従って細胞を 24時間培養後、 プレートより录 ijし、細胞を溶解 した。 12000gで 5分間遠心し、上清を細胞抽出物として用いた。 細胞抽出物 の SDSポリアクリルアミ ドゲル電気泳動を行いフアルネシル化した Ras蛋白 質とファルネシル化していない Ras蛋白質を分離した。 ゲル上の蛋白質を二 トロセルロース膜に転写し、 杭 Ras蛋白質抗体をプローブとして反応させた (1次抗体反応)。 抗 1次抗体、ペルォキシダーゼ抱合体(2次抗体) を反応後、 化学発光増強キッ トにて Ras蛋白質を検出した。 フアルネシル化していない Ras蛋白質の割合をデンシドメーターで定量し阻害活性とした。 本発明化合物の Ras蛋白質のフアルネシル化に対する 50 %阻害濃度 (ICS 値) を第 2表に示す。 第 2表 Ras蛋白質のフアルネシル化に対する 50 %阻害濃度
Figure imgf000067_0001
薬理試験例 3 (活性型ヒト Ha— rasを用いた形暂 換細胞 (NIHZras) に 対する治療効果)
本発明化合物は以下の薬理試験例に示される如く、 優れた抗腫瘍活性を示 す。
NIHZras細胞に対する本発明化合物の治療効果を第 3表に示す。 第 3表 実施例 4の化合物の NIH/rasに対する効果 投与量2)、 腹腔内 増殖阻害率" (mgZkgZ注射) 平均 (g) :標準偏差 (%)
NIH ras 0 0.22 ± 0.07 0
20 0.17 ± 0.09 23
40 0.13 ± 0.08* 41
80 0.04 ± 0.02* 82
1) 腫瘍接種: 106個の細胞を雌性ヌー ドマウス皮下に接種した。
2) 投与量:細胞接種後 1日目から 6日目まで 1日 1回各投与量を腹腔内に投与 した。
3) 腫瘙重量:細胞接種後 7日目に腫瘤を摘出し重量を測定した。
4)増殖阻害率:(1 - (治療群の平均腫瘍重量 対象群の平均腫瘍重虽)) X 100 *及び * * : t検定による危険率が 5 %及び 1 %
以上の結果より、 本発明の化合物は優れた蛋白質 -ファルネシル卜ランス フェラーゼ (PFT) 阻害作用を有し、 例えば大腸癌、脾臓癌、 骨髄性白血病、 肺癌、 皮膚癌、 甲状腺癌等、 中でも滕臓癌に対する抗腫瘍剤として有用であ る。
更に本発明に係る蛋白質ーフアルネシルトランスフェラーゼ (PFT) 阻害 剤は、 rasのトランスフヱクションを抑制し、宿主細胞に組み込まれた HIV遺 伝子の再活性化を抑制できるので抗 HIV剤としても有用である。
—般式 [I]で表される化合物は、経口又は非経口的に投与することができ、 そしてそのような投与に適する形態に製剤化することにより、 抗腫瘍剤又は 抗 HIV剤として供することができる。 本発明の化合物を臨床的に用いるにあ たり、 その投与形態に合わせ、 薬剤学的に許容される添加剤を加えて各種製 剤化の後投与することも可能である。 その際の添加剤としては、 製剤分野に おいて通常用いられる各種の添加剤が使用可能であり、 例えばゼラチン、 乳 糖、 白糖、 酸化チタン、 デンプン、 結晶セルロース、 ヒ ドロキシプロピルメ チルセルロース、 カルボキンメチルセルロース、 トウモロコシデンプン、 マ イク口クリスタリンワックス、 白色ワセリン、 メタケイ酸アルミ ン酸マグネ シゥム、 無水りん酸カルシウム、 クェン酸、 クェン酸三ナトリウム、 ヒドロ キシプロピルセルロース、 ソルビトール、 ソルビタン脂肪酸エステル、 ポリ ソルベー卜、 ショ糖脂肪酸エステル、 ポリオキシエチレン硬化ヒマシ油、 ポ リビニルピロリ ドン、 ステアリン酸マグネシウム、 軽質無水ゲイ酸、 タノレク、 植物油、 ベンジルアルコール、 アラビアゴム、 プロピレングリコール、 ポリ アルキレングリコール、 シクロデキストリン又はヒ ドロキシプロビルシクロ デキストリン等が挙げられる。
これらの添加剤との混合物として製剤化される剤形としては、例えば錠剤、 カプセル剤、 顆粒剤、 散剤若しくは坐剤等の固形製剤;又は例えばシロップ 剤、 エリキシル剤若しくは注射剤等の液体製剤等が挙げられ、 これらは、 製 剤分野における通常の方法に従って調製することができる。 なお、 液体製剤 にあっては、 用時に水又は他の適当な媒体に溶解又は懸濁させる形であって もよい。 また、 特に注射剤の場合、 必要に応じて生理食塩水又はブドウ糖液 に溶解又は懸濁させてもよく、 更に緩衝剤や保存剤を添加してもよい。
これらの製剤は、本発明の化合物を全薬剤の 1.0〜100重量%、好ましくは 1.0〜60重量%の割合で含有することができる。 これらの製剤は、 また、治療 上有効な他の化合物を含んで 、てもよい。 本発明の化合物を抗腫瘍剤又は抗 HIV剤として使用する場合、 その投与量 及び投与回数は、 患者の性別、 年齢、 体重、 症状の程度及び目的とする治療 効果の種類と範囲等により異なるが、 一般に経口投与の場合、 成人 1曰あた り、 0.01〜20mgZkgを 1〜数回に分けて、 また非経口投与の場合は、 0.002〜10mgZkgを 1〜数回に分けて投与するのが好ましい。
治療上有効な他の化合物としては、 例えば生体内でフアルネシルピロリン 酸の減少を来す薬剤を挙げることができる。
生体内でフアルネシルピロリン酸の減少を来す薬剤としては、 当該作用を 有し、 医薬として許容されうる薬剤であれば何ら限定されることはないが、 例えばフアルネシルピロリン酸の生合成阻害剤が好ましく、 中でも、 例えば ネイチヤー (Nature)、 第 343卷、 425— 430頁 (1990年) に記載された口 バス夕チン、 シンバスタチン、 プラバスタチン、 フルパスタチン等に代表さ れるヒドロキシメチルダルタリル CoA還元酵素阻害剤又はヒドロキシメチル グルタリル CoA合成酵素阻害剤等のフアルネシルピロリン酸の生合成過程を 阻害する薬剤等が挙げられ、 特に口バス夕チン、 シンパスタチン、 プラバス タチン、 フルバス夕チン等のヒドロキンメチルグルタリル CoA還元酵素阻害 剤が好ましい。
本発明化合物と上記薬剤との組成物は前記のとおり本発明化合物を単剤で 使用する場合と同様に製剤化することができ、 当該製剤は有効成分として蛋 白質ーフアルネシルトランスフヱラーゼ阻害剤及び生体内でフマルネシルピ 口リン酸の減少を来す薬剤を全薬剤の 1.0〜100重量%、 好ましくは 1.0〜60 重量%の割合で含有することができる。
また、 蛋白質ーフアルネシルトランスフヱラ一ゼ阻害剤と生体内でフアル ネシルピロリン酸の減少を来す薬剤との重量比は 0.001: 1〜1000: 1であれ ばよいが、 特にその重量比が 0.01: 1-100: 1であることが好ましい。 発明を実施するための最良の形態
実施例及び参考例を挙げて本発明を更に具体的に説明するが、 本発明はこ れらによって何ら限定されるものではない。
実施例 1 4 - [N - { (1RS.2RS) - 2 - (4—クロロフヱニル) 一 1ーメチルー 5 - (2—ナフチル) ペンチル} - N - (2—ナフチルメチル) カルバモィルメチ ノレ 1 フタル酸の製造
参考例 1と同様にして得られた N— { (1RS.2RS) - 2 - (4ークロロフヱ ニル) — 1ーメチルー 5— (2—ナフチル) ペンチル} —2—ナフチルメチル ァミ ン 156mg、 参考例 4で得られた 3,4 -ビス (ジフエニルメチルォキン力 ルポニル) フエニル酢酸 191mg及び 4ージメチルァミノピリジン 60mgを塩 化メチレン 4mlに溶解し、氷冷攪拌下、塩酸 1 一ェチル—3— (3—ジメチル ァミノプロピル) カルポジイミ ド 94mgを加えて室温で一夜擋拌した。 反応 液をェチルエーテルで希釈後、 1規定塩酸、飽和炭酸水素ナトリゥム水溶液及 び飽和食塩水で順次洗'净し、 無水硫酸マグネシウムにより乾燥した。 乾燥剤 を濾別後、 溶媒を減圧留去し、 残渣をシリカゲルカラムクロマトグラフィー [へキサン Z酢酸ェチル = 6Z1→3Z1] で精製して、 標題化合物のジベンズ ヒ ドリルエステノレ体 310mg (収率 92 %) を得た。
上記で得られたエステノレ体 150mgとァニソール 32mgを塩化メチレン lml に溶解し、 トリフルォロ酢酸 lmlを加えて室温で一夜放置した。 反応液を減 圧乾固後、 残渣をシリカゲルカラムクロマトグラフィー [塩化メチレンノメ 夕ノール = 20Z1] で精製して、 標題化合物 98mg (収率 97 %) を白色粉末 として得た。
Ή - NMR (CDC13) δ 0.80 and 0.86 (total 3H,each d,J = 6.3 and
6.0Hz), 1.20 - 1.70 (4H,m),2.10 - 2.20 and 2.50— 2.70 (total 2H,each m) , 3.40— 4.30 and 4.50 - 4.80 (total 6H,each m) .6.70 - 8.00 (21H, m) .
FAB - MS: 684 (M + H)
実施例 2
4一 [N— { (1R*,2R*,4E) 一 2 - (4 -クロロフヱニル) 一 1—メチル— 5 - (2—ナフチル) —4一ペンテ二ル} - N - (2—ナフチルメチル) カル バモイルメチル 1 フタル酸の製造
参考例 2で得られた N— { ( 1R*,2R*,4E) - 2 - (4—クロロフヱニル) 一 1ーメチルー 5— (2—ナフチル) —4 一ペンテ二ル} —2—ナフチルメチル アミン 53mg、参考例 4で得られた 3,4—ビス (ジフエニルメチルォキンカル ボニル) フヱニル酢酸 74mg及び 4ージメチルァミノピリジン 20mgを塩化メ チレン 2mlに溶解し、 塩酸 1ーェチルー 3— (3—ジメチルアミノプロピル) カルボジィミ ド 63mgを加えて室温で一夜撹拌した。 反応液を減圧乾固し、 残渣をシリカゲルカラムクロマトグラフィー [へキサン 酢酸ェチル =
3/1] で精製して、 標題化合物のジベンズヒ ドリルエステル体 112mgを得 た。
上記で得られたエステル体 112mgをエタノール 4mlとテトラヒドロフラン 2mlの混液に溶解し、 1規定水酸化ナトリゥム水溶液 1mlを加えて 60°Cで 2 時間加温撹拌した。 反応液を減圧濃縮後、 残渣を酢酸ェチルと 1規定塩酸の 混液に溶解し、 有機層を分取後、 飽和食塩水で洗浄、 次いで無水硫酸マグネ シゥムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留去し、 残渣をシリカ ゲルカラムクロマトグラフィー [クロ口ホルム/メタノール = 50Z1→10Z 1] により精製後、 塩化メチレン一へキサンの混液で処理して、 標題化合物 47mg (収率 63 %) を白色結晶性粉末、 mpl l6— 117°C、 [な;^一 34.7。 (c 1.0,クロ口ホルム)、 として得た。
Ή - NMR (CDCla) δ 0.84 and 0.94 (total 3H,each d,J = 7.1 and 6.3Hz), 1.90— 3.15 (total 3H,m),3.73 and 4.03 (total 2H,each s),4.46, 4.66 and 4.88 (total 2H,each d,J = 18.5,17.9 and 16.3Hz), 4.05 - 4.28 and 4.90 - 5.40 (total lH.each m),5.26 - 5.40 and 5.93 (total 1H, m and dt,J = 16.1,8.1Hz),5.61 and 6.29 (total lH.each dfJ = 15.8 and 15.1Hz),6.91 - 7.87 (21H,m).
FAB - MS: 682 (M + H)
実施例 3
4 - [N - {(1RS.2RS.4E) - 2 - (4—クロ口フエニル) 一 1 -メチル—
5 - (2—ナフチル) —4一ペンテ二ル} - N - (2—ナフチルメチル) カル バモイル 1 一 1,2,3—シクロブ夕ントリカルボン酸の製造
参考例 1で得られた N— {(1RS.2RS.4E) 一 2— (4 -クロロフヱニル) ― 1—メチルー 5— (2—ナフチル) 一 4一ペンテ二ル} 一 2 —ナフチルメチル ァミン 47mg、 1,2,3,4 —シクロブタンテ卜ラカルボン酸 46mgをジメチルホ ルムアミ ド 4mlに溶解し、塩酸 1一ェチル—3— (3—ジメチルァミノプロピ ノレ) カルポジイミ ド 38mgを加え室温で 3時間攪拌した後、 4ージメチルアミ ノピリジン 24mgを加え 2日間撹拌した。 反応液を酢酸ェチルで希釈後、 1規 定塩酸及び飽和食塩水で洗浄し、 無水硫酸マグネシゥムで乾燥した。 溶媒を 減圧留去した後、 残渣を中圧液体ク口マトグラフィー [Lobar column™ Size A、 RP— 8 (メルク社製);ァセトニトリル 0.1 %トリフルォロ酢酸水 溶液 = 1ノ1] により精製して、標題化合物 39mg (収率 56 %) を白色粉末と して得た。
Ή一 NMR (CD3OD) δ 0.94, 1.03 and 1.04 (total 3H,each d,each J = 6.6Hz),2.19 - 3.10 (3H,m),3.50— 6.26 (8H,m),6.72— 8.01 (19H,m) . FAB - MS: 690 (M + H)
実施例 4
(4S,5S) 一 5— 「N— {(1R.2R.4E) 一 5— (2—べンゾォキサゾリル) 一 1ーメチルー 2— (3,4—メチレンジォキシフエニル) —4一ペンテ二ル} 一 N - (2—ナフチルメチル) 力ルバモイル] 一 1,3—ジォキソラン一 2,2,4— 卜リカルボン酸の製造
(1) (4S.5S) 一 5— [N - {(1R.2R) 一 4,4ージエトキシ一 1一メチル一 2— (3,4—メチレンジォキシフヱニル) ブチル } — N— (2—ナフチルメチル) 力 ルバモイル] 一 1,3 -ジォキソラン一 2,2,4 - トリカルボン酸 2,2 -ジェチル 4一メチルエステルの製造
参考例 5で得られた N— {(1R.2R) —4,4—ジェトキシ— 1一メチル—2— (3,4—メチレンジォキシフエニル) ブチル } 一 2—ナフチルメチルァミ ン 180mg、参考例 6で得られた (4S,5S) - 1,3—ジォキソラン一 2,2,4,5—テ卜 ラカルボン酸 2,2—ジェチル 5—メチルエステル 171mg及びトリエチルアミ ン 262 1をクロ口ホルム 3mlに溶解し、氷冷下 2—クロロー 1,3—ジメチル ィミダゾリニゥムクロリ ド 105mgのク口口ホルム 1ml溶液を加え、同温度で 1時間搜拌した。 反応液を水に注ぎクロ口ホルムにて抽出し、抽出液を無水硫 酸マグネシウムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留去し、 残渣 をシリカゲルカラムクロマトグラフィー [へキサン 舴酸ェチル = 2Z1] で 精製して、 標題化合物 294mg (収率 96 %) を無色油状物として得た。 (2) (4S.5S) — 5— [N— {(1R.2R) — 3—ホルミル— 1 一メチル - 2— (3, 4ーメチレンジォキシフエニル) プロピル) - N - (2—ナフチルメチル) 力 ルバモイル] 一 1,3—ジォキソラン— 2,2,4一 トリカルボン酸 2,2―ジェチル 4一メチルエステルの製造
(4S.5S) - 5 - [N - {(1R2R) — 4,4—ジエトキシ— 1 一メチル - 2— (3,
4ーメチレンジォキシフエニル) ブチル } - N - (2—ナフチルメチル) カル バモイル] 一 1,3 -ジォキソラン一 2,2,4— トリカルボン酸 2,2—ジェチル 4一メチルエステル 294mgをテトラヒドロフラン 4mlに溶解し、 1規定塩酸 lmlを加え室温で 24時間攪拌した。 反応液に飽和炭酸水素ナトリウム水溶液 を加えた後、 酢酸ェチルで抽出し、 有機層を飽和食塩水で洗浄後、 無水硫酸 マグネシウムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留去し、 標題化 合物 233mg (収率 88 %) を無色油状物として得た。
(3) (4S.5S) - 5 - [N - {(1R.2R.4E) —5— (2—べンゾォキサゾリル) 一 1—メチルー 2— (3,4—メチレンジォキシフエニル) 一 4一ペンテ二ル} - N - (2—ナフチルメチル) 力ルバモイル] 一 1,3—ジォキソラン— 2,2,4— トリカルボン酸 2,2 -ジェチル 4一メチルエステルの製造
60 %油性水素化ナ卜リウム 24mgをテ卜ラヒドロフラン 5mlに懸濁し、氷 冷下、 2—べンゾォキサゾリルメチルトリフヱニルホスホニゥムクロリ ド 291mgを加え、 室温で 4時間攪拌した。 (4S.5S) —5— [N - {(1R2R) 一 3—ホルミル一 1 —メチルー 2— (3,4—メチレンジォキシフエニル) プロピ ル} - N - (2—ナフチルメチル) 力ルバモイル] 一 1,3—ジォキソラン一 2, 2,4—トリカルボン酸 2,2—ジェチル 4一メチルエステル 233mgのテトラヒ ドロフラン lml溶液を加え、室温で 36時間攪拌した後、反応液に飽和塩化ァ ンモニゥム水溶液を加え、 酢酸ェチルで抽出した。 有機層を飽和食塩水で洗 浄後、 無水硫酸マグネシウムにより乾燥し、 乾燥剤を濾別後、 溶媒を減圧留 去した。 残渣をカラムクロマトグラフィー [へキサン 酢酸ェチル = 3 1] により精製し、 標題化合物 198mg (収率 73 %) を無色油状物として得た。
(4) (4S.5S) 一 5 - [N - {(1R.2R.4E) —5— (2—ベンゾォキサゾリル) 一 1—メチル—2— (3,4—メチレンジォキシフエニル) 一 4—ペンテ二ル} - N— (2—ナフチルメチル) 力ルバモイル] 一 1.3—ジォキソラン一 2,2,4— トリカルボン酸の製造
(4S.5S) 一 5— [N - {(1R2R4E) 一 5— (2—べンゾォキサゾリル) 一 1—メチルー 2— (3,4—メチレンジォキシフヱニル) 一 4一ペンテ二ル} ― N - (2—ナフチルメチル) 力ルバモイル] — 1,3—ジォキソラン一 2,2,4— 卜リカルボン酸 2,2 -ジェチル 4一メチルエステル 150mgをテ卜ラヒドロフ ラン 2mlと水 lmlの混合液に溶解し、水酸化リチウム一水和物 39mgを加え、 室温で 4時間攪拌した。 反応液を 1規定塩酸で酸性とした後、ェチルエーテル で抽出した。 有機層を飽和食塩水で洗浄後、 無水硫酸ナ卜リウムで乾燥し、 乾燥剤を濾別した後、 溶媒を減圧留去した。 残渣を酢酸ェチル -へキサンで 結晶化し、 標題化合物 138mg (収率定量的) を白色粉末として得た。
Ή一画 R (CD3COCD3) δ : 1.01 - 1.17 (3H,m),2.50— 2.99 (2H,m), 3.21 一 3.33 (lH,m),4.63一 5.65 (5H,m),5.90一 6.00 (2H,m),6.23— 6.40 and 6.60 - 7.05 (total 5H,m) ,7.23— 8.07 (l lH.m).
FAB - MS: 709 (M + H)
上記反応で原料として使用した N— {(1R2R) 一 4,4ージエトキン一 1 一 メチルー 2— (3,4—メチレンジォキシフエニル) ブチル } —2—ナフチルメ チルァミン及び 又は (4S.5S) - 1,3—ジォキソラン— 2,2,4,5—テトラカル ボン酸 2,2—ジェチル 5—メチルエステルに代えて、 N— {(1S.2S) - 4,4 - ジエトキン一 1ーメチルー 2— (3,4—メチレンジォキシフエニル)ブチル } 一 2—ナフチルメチルァミン及び 又は (4R.5R) — 1,3—ジォキソラン一 2,2, 4,5—テトラカルボン酸 2,2—ジェチル 5—メチルエステルを用い、他は実施 例 4と同様な反応を行つて実施例 5〜7の化合物を得た。
実施例 5
(4R.5R) 一 5 - 「N— f (lR,2R,4E) 一 5— (2 -べンゾォキサゾリル) 一 1ーメチルー 2— (3,4—メチレンジォキシフエニル) 一 4 一ペンテニル } 一 N— (2—ナフチルメチル) 力ルバモイル, 一 1,3—ジォキソラン一 2.2.4— トリカルボン酸
Ή - NMR (CD3C0CD3) δ : 1.03 - 1.17 (3H,m),2.60 - 2.99 (2H,m) , 3.20 - 3.34 (lH,m),4.67 - 6.05 (8H,m),6.30 - 7.05 (4H,m) ,7.24 - 8.06 (HH,m). FAB一 MS: 709 (M + H)
実施例 6
(4R5R) 一 5— 「N— {(1S,2S,4E) 一 5— (2—べンゾォキサゾリル) - 1—メチルー 2— (3,4—メチレンジォキシフエニル) —4一ペンテニル - N - (2—ナフチルメチル) 力ルバモイル 1 一 1.3—ジォキソラン一 2,2,4 - トリカルボン酸
Ή - NMR (CD3COCD3) δ 1.01 - 1.17 (3H,m).2.50— 2.99 (2H,m), 3.21 - 3.33 (lH,m),4.63一 5.65 (5H,m),5.90一 6.00 (2H,m),6.23— 6.40, 6.60 - 7.05 (5H,m),7.23 - 8.07 (HH.m).
FAB - MS: 709 (M + H)
実施例 7
(4S.5S) 一 5— 「N— {(1S.2S.4E) — 5— (2—べンゾォキサゾリル) 一 1ーメチルー 2— (3,4—メチレンジォキシフエニル) 一 4一ペンテニル 1 一 N— (2—ナフチルメチル) 力ルバモイル] 一 1,3—ジォキソラン一 2,2,4— 卜リ力ノレボン酸
Ή一画 R (CD3COCD3) δ : 1.03 - 1.17 (3H,m) ,2.60— 2.99 (2H,m), 3.20— 3.34 (lH,m),4.67 - 6.05 (8H,m),6.30— 7.05 (4H,m),7.24 - 8.06 (l lH'm).
FAB - MS: 709 (M + H)
実施例 8
(4R*,5S*) 一 5— 「N— {(1R2R.4E) —5— (2—べンゾォキサゾリル) 一
1ーメチルー 2— (3,4—メチレンジォキシフエニル) ー4一ペンテ二ル} - N— (2—ナフチルメチル) 力ルバモイル 1 — 1,3—ジォキソラン一 2,2,4— トリカルボン酸及び (4S*,5R*) —5 - [N - { (1R.2R.4E) - 5 - (2—ベ ンゾォキサゾリル) 一 1—メチルー 2— (3,4—メチレンジォキシフヱニル) 一 4一ペンテ二ル} - N - (2—ナフチルメチル) 力ルバモイル 1 一 1,3 -ジォ キソラン一 2,2.4— トリ力ルポン酸の製造
(1) (4RS.5SR) —5— [N - {(1R.2R) 一 4.4—ジエトキシ— 1—メチル—
2— (3,4—メチレンジォキシフヱニル) ブチル } - N - (2—ナフチルメチ ノレ) 力ルバモイル] 一 1.3—ジォキソラン一 2,2,4— トリカルボン酸 2,2—ジ ェチル 4ーメチルエステルの製造
参考例 5で得られた N— {(1R.2R) —4,4—ジエトキン一 1 —メチル—2— (3,4 —メチレンジォキシフエニル) ブチル } 一 2 —ナフチルメチルァミン 261mg、参考例 6と同様にして得られた (4RS,5SR) — 1,3 -ジォキソラン一 2.2,4,5—テトラカルボン酸 2,2—ジェチノレ 5—メチルエステル 201mg及び N —メチルモルホリン 260 lをクロ口ホルム 3mlに溶解し、氷冷下 2—クロ口 一 1,3—ジメチルイミダゾリニゥムクロリ ド 105mgのクロ口ホルム 1ml溶液 を加え、 同温度で 1時間攪拌した。 反応液を水に注ぎクロ口ホルムにて抽出 し、 抽出液を無水硫酸マグネシウムにより乾燥した。 乾燥剤を濾別後、 溶媒 を減圧留去し、 残渣をシリ力ゲル力ラムクロマトグラフィー [へキサン Z酢 酸ェチル = 2ノ1] で精製して、 標題化合物 279mg (収率 63 %) を無色油状 物として得た。
(2) (4R*,5S*) 一 5— [N— { (1R.2R.4E) —5— (2—ベンゾォキサゾリ ノレ) 一 1—メチルー 2— (3,4—メチレンジォキシフエニル) 一 4一ペンテ二 ノレ } - N - (2—ナフチルメチル) 力ルバモイル] 一 1,3—ジォキソラン一 2, 2,4 -トリカルボン酸及び(4S*.5R*) - 5 - [N— {(1R2R.4E) 一 5— (2 - ベンゾォキサゾリル) 一 1 一メチル—2— (3,4—メチレンジォキシフエ二 ル) 一 4一ペンテ二ル} - N - (2—ナフチルメチル) 力ルバモイル] 一 1,3— ジォキソラン— 2,2,4一 トリカルボン酸の製造
(4RS.5SR) - 5 - [N— {(1R2R) 一 4,4 -ジエトキン一 1ーメチル一 2―
(3,4—メチレンジォキシフエニル) ブチル } - N - (2—ナフチルメチル) 力 ルバモイル] 一 1,3—ジォキソラン一 2,2,4— トリカルボン酸 2,2 -ジェチル 4—メチルエステルを実施例 4 (2)、 (3) と同様に処理して (4RS.5SR) - 5— [N - {(1R.2R.4E) 一 5— (2—べンゾォキサゾリル) —1—メチルー 2— (3, 4—メチレンジォキシフエニル) 一 4一ペンテ二ル} - N - (2—ナフチルメ チル) 力ルバモイル] 一 1,3—ジォキソラン一 2,2,4— 卜リカルボン酸 2,2— ジェチル 4 一メチルエステルを得、 次いで分取用高速液体クロマトグラ フィー [Senshupak Silica— 5301— N;へキサン 酢酸ェチル = 7/4] に より分離して、便宜上 (4S*,5R*) -体 (高速液体クロマトグラフィーにおけ る先行溶出成分)、 (4R*.5S*) —体(高速液体クロマ卜グラフィ一における後 溶出成分) と命名した標題化合物のトリエステル体を製造し、 それぞれを実 施例 4 (4) と同様に処理して標題化合物をそれぞれ白色粉末として得た。
(4S*,5R*) -5- [N- {(1R.2R4E) — 5— (2—ベンゾォキサゾリル) 一 1—メチル一 2— (3,4—メチレンジォキシフエニル) 一4一ペンテ二ル} 一 N- (2—ナフチルメチル) 力ルバモイル] 一 1,3—ジォキソラン一 2,2,4一 トリカルボン酸
Ή - NMR (CD3COCD3) δ 1.09 (3H,d,J = 6.4Hz), 2.78 - 3.64 (3H,m), 4.50 - 5.48 (4H,m), 5.93— 7.08 (8H,m),7.27 - 8.02 (llH'm).
FAB一 MS: 709 (M + H)
(4R*,5S*) —5— [N- {(1R.2R4E) 一 5— (2 -ベンゾォキサゾリル) 一 1一メチル一2— (3,4—メチレンジォキシフエニル) 一 4—ペンテ二ル} 一 N— (2—ナフチルメチル) 力ルバモイル] 一 1,3—ジォキソラン— 2,2,4— トリカルボン酸
Ή - NMR (CD3COCD3) δ: 0.98- 1.12 (3H,m) ,2.10 - 3.64 (3H,m), 4.60 - 5.38 (4H,m),5.85- 7.03 (8H,m),7.24 - 8.08 (llH.m).
FAB一 MS: 709 (M + H)
実施例 9
(1R*) -t-4- 「N— {(1R,2R,4E) —5— (2—べンゾォキサゾリル) - 1—メチル一2— (3,4—メチレンジォキシフエニル) 一4-ペンテニル } - N- (2—ナフチルメチル) 力ルバモイル] 一 r一 1, c— 2, t— 3—シクロブ タントリカルボン酸及び (IS*) -t-4- 「N— {(1R,2R,4E) 一 5— (2- ベンゾォキサゾリル) 一 1ーメチルー 2— (3,4—メチレンジォキシフエ二 ル) 一 4一ペンテニル } - N - (2—ナフチルメチル) 力ルバモイル, - r- 1, c一 2, t— 3—シクロブタン卜リカルボン酸の製造
参考例 5で得られた N— {(1R2R) 一 4,4ージエトキン— 1一メチル—2— (3,4-メチレンジォキシフエニル) ブチル } —2—ナフチルメチルアミ ンと参 考例 7で得られた 1,2,3,4—シクロブタンテトラ力ノレボン酸 2,3,4—卜リメチル エステル用い、実施例 4と同様な方法で合成した 4一 [N- {(1R.2R.4E) 一 5— (2—ベンゾォキサゾリル) — 1ーメチルー 2— (3,4—メチレンジォキシ フエニル) 一 4一ペンテ二ル} 一 N— (2—ナフチルメチル) 力ルバモイル] 一 1.2,3一シクロブ夕ン 卜リカルボン酸 407mgをァセ 卜ン 5mlに溶解し、 ジ フエニルジァゾメタン 430mgのァセ卜ン 5ml溶液を加え室温で 17時間攪拌 した。 反応液を減圧濃縮後、 残渣をフラッシュカラムクロマトグラフィーで 粗精製し、続いて中圧液体カラムクロマトグラフィー (ULTRA PAK™,Size C,Si40 (山善製):へキサン Z酢酸ェチル = 20/ ) により分離して、 便宜上 (1R*) 一体 (中圧液体カラムクロマトグラフィーにおける先行溶出成分)、 (1S*) 一体 (中圧液体カラムクロマトグラフィーにおける後溶出成分) と命 名した標題化合物の卜リベンズヒドリルエステルをそれぞれ 249mg (収率 39 %)、 306mg (収率 48 %) 製造し、 それぞれ別個にギ酸に溶解し、 室温で 15 時間攪拌した後、 反応液を減圧乾固し、 残渣を中圧液体クロマトグラフィー [Lobar column™. Size B、 RP— 8 (メルク社製) ;ァセトニ卜リル/ ^. l
°/oトリフルォロ酢酸水溶液 == 1/1] により精製後、 水から結晶化し、 便宜上 (1R*) 一体と命名した標題化合物 123mg (収率 85 %) と (IS*) —体と命名 した標題化合物 137mg (収率 77 %) をそれぞれ白色粉末として得た。
(1R*) 一 t一 4一 [N - {(1R2R4E) 一 5— (2—べンゾォキサゾリル) 一
1 一メチル一 2— (3,4—メチレンジォキシフエニル) 一 4—ペンテ二ル} 一 N— (2—ナフチルメチル) 力ルバモイル] — r— 1, c— 2. t— 3—シクロブ タントリカルボン酸
Ή一 NMR (CD3COCD3) δ : 0.80 - 1.05 (3H,m),2.35― 3.30 (3H,m), 3.73 - 4.40,4.53 - 4.82 and 5.02 - 5.12 (total 7H,m), 5.90 - 3.00 (2H, m), 6.05— 7.00 (5H,m) ,7.25 - 7.65 and 7.75 - 8.00 (total l lH.m). FAB一 MS: 691 (M + H)
(IS*) - t - 4 - [N - {(1R2R.4E) 一 5— (2—べンゾォキサゾリル) 一 1ーメチルー 2— (3,4—メチレンジォキシフエニル) 一 4一ペンテ二ル} - N - (2—ナフチルメチル) 力ルバモイル] 一 r一 1, c— 2, t— 3—シクロブ タントリカルボン酸
Ή一 NMR (CD3COCD3) δ 0.85一 1.10 (3H,m),2.50 - 3.30 (3H,m), 3.50 - 3.70 and 3.75 - 4.00 (total 3H,m),4.15 - 4.55 and 4.75 - 5.10 (total 4H,m),5.80 - 6.00 (2H.m),6.10 - 6.30,6.40 - 6.60 and 6.65 - 7.00 (total 5H,m),7.20 - 7.70 and 7.75 - 8.10 (total l lH.m). FAB - MS: 691 (M + H)
実施例 4で原料として使用した N - { (1R2R) —4,4ージエトキン一 1 一 メチル一 2— (3,4—メチレンジォキシフエニル) ブチル } —2—ナフチルメ チルァミン及び/又は (4S,5S) — 1,3—ジォキソラン一 2,2,4,5—テ卜ラカル ボン酸 2,2—ジェチル 5—メチルエステルに代えて、対応するァミン誘導体及 び 又はカルボン酸誘導体を用 L、、 他は実施例 4と同様な反応を行つて実施 例 10〜15の化合物を得た。
実施例 10
3— [N— {(1RS.2RS.4E) —5— (2—べンゾォキサゾリル) — 1—メチ ル— 2— (3.4—メチレンジォキシフエニル) 一 4一ペンテ二ル} 一 N— (2 - ナフチルメチル) 力ルバモイル] —2,3—エポキシ一 1.2—プロパンジカルボ ン酸
Ή - NMR (CD3COCD3) δ : 0.80 - 1.00 (3H,m), 2.20 - 3.30 (5H,m), 3.50 - 3.70 (1Η,ιπ),4.40— 4.60 and 4.75 - 5.00 (3H,m) ,5.95 (2H,brs), 6.10 - 7.00 (5H,m),7.20— 8.10 (l lH.m).
FAB - MS: 649 (M + H)
実施例 11
5— 「N— {(1RS.2RS.4E) - 5 - (2—ベンゾォキサゾリル) 一 1ーメチ ルー 2— (3,4—メチレンジォキシフエニル) 一 4一ペンテ二ル} - N - (2 - ナフチルメチル) 力ルバモイル, - 2,3,4—テトラヒドロフラントリカルボン
Ή - NMR (CD3OD) δ : 0.85— 1.08 (3H,m),2.49— 4.18 (5H,m), 4.47 - 6.91 (12H,m),7.24 - 7.92 (l lH.m).
FAB一 MS: 707 (M + H)
実施例 12
(4RS.5RS) —5— 「N— {(1RS,2RS,4E) —5— (2—べンゾォキサゾリ ル) 一 1ーメチルー 2— (3,4—メチレンジォキシフエニル) 一 4一ペンテ二 ル} - N - (2—ナフチルメチル) 力ルバモイル] 一 2,2—ジメチルー 1,3— ジォキソラン一 4一力ルボン酸
Ή - NMR (CD3COCD3) <5 : 0.83 - 1.03 (3H,m).1.27 - 1.63 (6H,m) ,
Figure imgf000080_0001
οε
9i \m
(H + 1^) 869 : sn一 avj
•(s t Ba'HI mo^)
9Z'8 PUB 99'8'(s ΜΟΒΘ'ΗΪ mo^) '8 PUB SO'S ^HII) 06ト 0Γ
'(吨 S) 06·9 -„ 'HI) 9一 9'9'(^¾00 ·9 - Ο^' ^'ΚΖ) 0Γ9
-06' '(^'HZ) 00'S— 09· (m'HI) OS'卜 0I' '(m ^^'HL 1^0;) OS'S — 06,S PUB 08 一 OS (m'HS) 08Ό - 09Ό : 9 (ea00Sea3)丽 N - H,
翊ベ べ^ — S's— L ェ ^>, ^ (^^ r^ - -Z) -N- { ニ^ — ― ( τ乙く' + ^ ベ ^ — 'ε) - Ζ- < ■^ - l - ( Α/、4 /、ベ 一 S) - S— O^'SHS'SHI)] -NJ -S 。s
(Η + Vi) 699 : Yi - QVA
• H ΐ) 90'8 - ΟΖΊ' ^ΉΖ) 08·9 - 09'9'( 1) OS'9 - 0 9 '( ΐ) SS'9 - SI'9'(ui'HS) S6'S - 08'S' (吨 OI'S— 0 '(吨 ΐ) 0Γ
- 06'ε'(^Ήε) 9rs― oz'z'C^'m) ΟΖΊ― ΟΟΊ: 9 (aoeao)腦 N - H, si -z) 一 N— {nr—^ - - 二 τ乙く- べ^^ 一 'ε) - ζ - (
-^ - l - ( ί(ι /、 4 V- Ζ) -9- (3 SHS'SHI) } — Ν」 一
I im
(H + n) 0 9 : SIAI - avj 01
Figure imgf000080_0002
'(吨 8) n's - εΐ'ε'( 'Ηε) Ζ6Ό - S O: 9 (ea30Sea3) H顧— H,
Figure imgf000080_0003
WJ O-Z) -N- { ベ — ー ^ ー ΐ— ( : τ乙 , く' — W -Ζ- ( に.八 、ベ 一 S) -9- O^'SHS'SHO} —N] — 5
(H + n) 6^9: sn - avd
•(ω'ΗΠ)
0'8 - 9Z'L'(^'HL) 80' - Γ2' ^Ή9) OS'S - Ζ9Ύ(^'Η£) £0' ― 99"2
81
6£Z£0/96dT/lDd IZZLIIL6 OA 1—メチルー 2— (3,4—メチレンジォキシフヱニル) 一 4 -ペンテ二ル} - N— (2—ナフチルメチル) 力ルバモイル, 一 1,3—ジォキソラン一 2.2.4 - 卜リカルボン酸 2,2—ビスビバロイルォキシメチルエステルの 诰
(4S.5S) - 5 - [N - {(1R.2R4E) 一 5— (2—ベンゾォキサゾリル) 一 1—メチルー 2— (3,4ーメチレンジォキシフエニル) 一 4—ペンテ二ル} 一 N - (2—ナフチルメチル) 力ルバモイル] — 1,3—ジォキソラン— 2,2,4一 トリカルボン酸 [実施例 4の化合物] 379mgをジメチルホルムアミ ド 5mlに 溶解し、 卜リエチルァミン 1.6mlとビバロイルォキシメチルクロリ ド 329 / 1 を加え、室温で 2日間攢拌した。 反応液を 1規定塩酸に注ぎ、酢酸ェチルで抽 出後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留去し、 残渣をシリ力ゲル力ラムクロマトグラ フィー [へキサン 酢酸ェチル = 1 3] で精製して、 トリエステル体 74mg (収率 13 %) を得た。
上記卜リエステル体 41mgをテトラヒドロフラン lmlと水 0.5mlの混合液 に溶解し、水酸化ナトリウム水溶液 80 1を加え、室温で 2時間攪拌した。 反 応液を 1規定塩酸で酸性とした後、 ェチルエーテルで抽出した。 有機層を飽 和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別した後、溶 媒を減圧留去した。 残渣をシリ 力ゲル力ラムク ロマ トグラフィ ー [へキサン 酢酸ェチル = 1/1→酢酸ェチル メタノール = 8 1] により精 製し、 標題化合物 7.4mg (収率 20 %) を得た。
Ή - NMR (CD3COCD3) δ 0.92一 1.23 (21H,m).2.57一 3.68 (3H,m), 4.54— 6.13 (l lH,m),6.30— 7.05 (5H,m) ,7.23 - 8.05 (HH.m).
FAB一 MS: 937 (M + H)
参考例 1
N— {(1RS.2RS.4E) 一 2—(4一クロ口フエニル) 一 1 —メチルー 5—(2— ナフチル) 一 4—ペンテニル 1 一 2—ナフチルメチルァミンの製造
(1) (E) 一 3— (4—クロロフヱニル) —6— (2—ナフチル) 一 5—へキセ ンー 2—オンの製造
p—クロロフェニルァセトン 2.56gをジメチルホルムァミ ド 5mlとべンゼ ン 5mlの混液に溶解し、 氷冷撹拌下、 60 %油性水素化ナトリウム 0.62gと (E) - 3 - (2—ナフチル) —2—プロぺニルブロミ ド 3.50gのジメチルホル ムアミ ド 8mlZベンゼン 8ml溶液を加えて室温で 2時間撹拌した。 反応液に 1規定塩酸を加えて酸性とし、水とェチルエーテルを加えて抽出後、有機層を 飽和食塩水で洗浄、 次 、で無水硫酸マグネシゥムにより乾燥した。 乾燥剤を 濾別後、溶媒を減圧留去し、残渣をシリ力ゲル力ラムクロマトグラフィー [へ キサン 酢酸ェチル = 5 1] により精製して、 標題化合物 3.70gを得た。
(2) (2RS.3SR5E) — 3— (4—クロロフヱニル) —6— (2—ナフチル) ― 5 -へキセン— 2—オールの製造
(E) — 3— (4—クロロフヱニル) —6— (2—ナフチル) 一 5—へキセン- 2—オン 4.78gをテトラヒドロフラン 30mlに溶解し、 —78°Cで冷却撹拌下、 水素化トリ sec—ブチルホウ素リチウムの 1Mテトラヒドロフラン溶液 14.3 mlを加えて同温度で 2時間攩拌した。 反応液に、 氷冷撹拌下、 2規定水酸化 ナトリウ厶水溶液 10mlを加え、続いて 30 %過酸化水素水 15mlを徐々に滴下 後、室温で 1時間撹拌した。 反応液にェチルエーテルと水を加えて抽出し、有 機層を飽和チォ硫酸ナ卜リウム水溶液及び飽和食塩水で洗浄後、 無水硫酸マ グネシゥムにより乾燥した。 乾燥剤を濂別後、 溶媒を減圧留去し、 残渣をシ リカゲルカラムクロマトグラフィー [へキサンノ酢酸ェチル = 15/1→5/1] で精製して、 標題化合物 4.06gを得た。
(3) (1RS.2RS.4E) 一 2— (4一クロ口フエニル) 一 1ーメチルー 5— (2 - ナフチル) 一 4一ペンテニルァミ ンの製造
(2RS.3SR5E) 一 3— (4—クロ口フエニル) —6— (2—ナフチル) 一 5— へキセン— 2—オール 4.06gをテトラヒドロフラン 30mlに溶解し、氷冷撹拌 下、 トリフエニルホスフィン 4.77g、ァゾジカルボン酸ジェチルエステル 2.89 ml及びジフユ二ルりん酸アジド 4.77gを加えて室温で 30分間撹拌した。 反応 液を減圧乾固後、 残渣をシリカゲル力ラムクロマトグラフィー [へキサン Z 酢酸ェチル = 50 1→30ノ1] で精製し、得られたアジド体をトリフヱニルホ スフィン 3.2gとともに 10 %含水テ卜ラヒ ドロフラン 100ml中で 3時間加熱 還流した。 反応液を減圧乾固後、 残渣をシリ力ゲル力ラムクロマトグラ フィー [塩化メチレン メタノール = 50Z1→20Z1] で精製して、標題化合 物 2.30gを得た。 (4) N - {(1RS.2RS.4E) — 2— (4一クロ口フエニル) — 1—メチルー 5— (2—ナフチル) 一 4一ペンテ二ル} —2—ナフチルメチルァミ ンの製造
(1RS.2RS.4E) -2- (4—クロ口フエニル) 一 1一メチル一5— (2—ナ フチル) —4—ペンテニルアミ ン 0.75gをメタノール 10mlに溶解し、 2—ナ フトアルデヒ ド 0.34gを加えて室温で一夜撹拌した。 反応液にテトラヒドロ フラン 10mlを加えて析出した沈殿を溶解し、水素化ホウ素ナトリウム 84mg を加えて室温で 2時間撹拌した。 反応液にェチルエーテルと水を加えて抽出 し、 有機層を飽和食塩水で洗浄後、 無水硫酸マグネシウムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留去し、 残渣をシリ力ゲル力ラムクロマトグラ フィー [へキサン Z酢酸ェチル =7ノ 1→3/1]で精製して、標題化合物 0.76g を得た。
上記反応で原料として使用した p—クロロフユ二ルァセトン及びノ又は (E) 一 3— (2—ナフチル) ー2—プロぺニルブロミ ド及び Z又は 2—ナフト アルデヒドに代えて、 対応するァリールアセトン誘導体及び 又はハロゲン 化物及びノ又はァリールアルデヒド誘導体を用い、 他は参考例 1と同様な反 応を行って、 N— {(1RS,2RS,4E) -2- (4ークロロフヱニル) 一 1—メチ ルー 5— (1—ナフチル) 一 4一ペンテ二ル} 一 2—ナフチルメチルァミ ン、 N— {(1RS.2RS) -2- (4—クロ口フエニル) 一 1—メチルー 5— (2—ナ フチル) ペンチル} —2—ナフチルメチルァミ ン、 N— {(1RS.2RS) 一 2— (4一クロ口フエニル) — 1—メチルー 4一 (2—ナフ トキシ) ブチル } 一 2— ナフチルメチルァミン、 N— {(1RS.2RS) -2- (4—クロ口フエニル) 一 1ーメチルー 4一 (2—ナフチル) ブチル } 一 2—ナフチルメチルアミン、 N— {(1RS.2RS) 一 2— (4一クロ口フエニル) 一 1—メチル一6— (2—ナフチ ル) へキシル } 一 2—ナフチルメチルァミン、 N— {(1RS.2RS) -2- (4— クロ口フエニル) — 1ーメチルー 5-フヱニルー 4—ペンチ二ル} 一 2—ナフ チルメチルァミ ン、 N— {(1RS.2RS.4E) -2- (4ーメ 卜キシフエニル) 一 1ーメチルー 5— (2—ナフチル) -4—ペンテ二ル} 一 2—ナフチルメチル ァミ ン、 N— {(1RS.2RS.4E) -2- (4一メチルフエニル) 一 1ーメチルー 5 - (2—ナフチル) —4一ペンテ二ル} — 2—ナフチルメチルァミ ン、 N— {(1RS.2RS.4E) — 1—メチルー 5— (2—ナフチル) —2— (4一二卜口フエ ニル) 一 4一ペンテ二ル} 一 2—ナフチルメチルァミ ン、 N— {(1RS.2RS, 4E) —2— (4一フルオロフェニル) 一 1—メチルー 5— (2—ナフチル) ― 4—ペンテ二ル} —2—ナフチルメチルァミ ン、 N— {(1RS.2RS.4E) 一 1— メチル—5— (2—ナフチル) 一 2— (4— トリフルォロメチルフエニル) 一 4—ペンテ二ル} —2—ナフチルメチルァミ ン、 N— {(1RS.2RS.4E) 一 1一 メチル—5— (2—ナフチル) — 2 _フエニル— 4一ペンテ二ル} 一 2—ナフ チルメチルァミ ン、 N— {(1RS.2RS.4E) — 1ーメチルー 2— (6—メチルー 3—ピリジル) —5— (2—ナフチル) 一 4一ペンテ二ル} 一 2—ナフチルメ チルァミ ン、 N— {(1RS.2RS.6E) -2 - (4—クロ口フエニル) 一 1—メチ ル— 7—フヱニルー 6—ヘプテニル } — 2—ナフチルメチルァミ ン、 N— {(1RS.2RS.6E) -2- (4—クロ口フエニル) — 1—メチルー 7— (2—ナフ チル) 一 6—ヘプテニル } 一 2—ナフチルメチルァミ ン、 N— {(1RS.2RS, 4E) —2— (4—クロ口フエニル) —1一メチル—5— (2—ナフチル) 一 4一 ペンテ二ル} —3—キノリルメチルァミ ン、 N— {(1RS.2RS.4E) —2— (4— クロ口フエニル) 一 1—メチル—5— (2—ナフチル) 一 4一ペンテ二ル} 一 3,4—ジフルォロベンジルァミ ン、 N— (2—べンゾォキサゾリルメチル) ― {(1RS.2RS.4E) -2 - (4一クロ口フエニル) — 1—メチル一5— (2—ナフ チル) 一 4一ペンテ二ル} ァミン、 N— (2—べンゾ [b] チェニルメチル) 一 {(1RS.2RS.4E) 一 2— (4一クロ口フエニル) 一 1一メチル一5— (2—ナフ チル) —4一ペンテ二ル} ァミ ン、 N— {(1RS.2RS.4E) — 1—メチル—2— (3,4—メチレンジォキシフエニル) 一 5— (2—ナフチル) —4—ペンテ二 ル} — 2—ナフチルメチルァミ ン、 N— {(1RS.2RS) —4,4ージエトキシ— 1ーメチルー 2— (3,4—メチレンジォキシフエニル) ブチル } 一 2—ナフチ ルメチルアミ ン、 N— (2—べンゾ [b] フラニルメチル) ― {(1RS.2RS) — 4,4—ジエトキン一 1一メチル一2— (3,4-メチレンジォキシフエニル) ブチ ル} ァミ ン、 N— (2—べンゾ [b] チェニルメチル) 一 {(1RS.2RS) — 4,4一 ジエトキン一 1ーメチルー 2— (3,4—メチレンジォキシフエニル) ブチル } 了 ミン、 N— [(1RS,2RS) —4,4—ジエトキン一 1—メチル—2— , 4一ビス (メ 卜キンカルボニル) フエ二ル} ブチル] —2—ナフチルメチルァミ ン、 N— (2—べンゾ [b] チェニルメチル) ― {(1RS.2RS) — 4,4ージエトキン一 2— (4—メ トキシカルボ二ルフヱニル) 一 1 一メチルブチル } ァミ ン、 N— (2— ベンゾ [b] フラニルメチル) 一 {(1RS.2RS) — 4.4ージエトキン— 2— (4一 メ トキシカルボ二ルフヱニル) 一 1 一メチルブチル } ァミン、 N— (2—ベン ゾ [b] チェニルメチル) 一 {(1RS.2RS) - 2 - (4ーシァノフヱニル) 一 4, 4ージエトキン一 1 一メチルブチル } ァミン、 N— (5—ベンゾ [b] チェニル メチル) 一 K1RS.2RS) — 4,4—ジエトキン一 2— (4—メ トキシカルボニル フエニル) 一 1—メチルブチル } ァミ ン、 N— {(1RS.2RS) 一 2— (4 —ク ロロフエニル) — 4,4—ジエトキン一 1 一メチルブチル } 一 2—ナフチルメチ ルァミン、 N— {(1RS.2RS) - 2 - (4—シァノフエニル) 一 4.4—ジェトキ シ— 1 一メチルブチル } 一 2—ナフチルメチルァミ ン、 N— {(1RS.2RS) - 2 - (4—シァノフエニル) 一 4,4—ジエトキシ一 1 一メチルブチル } - 2 - ナフチルメチルァミ ン、 N— { (1RS.2RS) —4,4一ジェ卜キシー 2— (4ーメ トキシカルボニルフエニル) 一 1一メチルブチル } 一 2—ナフチルメチルアミ ン、 N— { (1RS.2RS.4E) 一 2— (4—メ トキシカルボニルフエニル) 一 1 一 メチル—5— (2—ナフチル) 一 4一ペンテ二ル} 一 2 -ナフチルメチルアミ ン及び N— [ (1RS.2RS) 一 5— (1,3—ジォキソラン— 2—ィル) — 1ーメ チルー 2— (3,4—メチレンジォキシフエニル) ブチル] —2—ナフチルメチ ルァミ ンを得た。
参考例 2
N— { (1R*,2R*,4E) 一 2— (4一クロ口フエニル) —1一メチル一5— (2 - ナフチル) 一 4一ペンテ二ル} 一 2—ナフチルメチルァミ ンの製造
p—クロロフェニル酢酸 7.0gを塩化チォニル 14mlに溶解し、 60 °Cで 2時 間加熱後、 減圧下に過剰の塩化チォニルを留去した。 残渣をテ卜ラヒドロフ ラン 5mlに溶解し、 この液を予め (4S) — (―) —イソプロピル一 2—ォキ サゾリジノン 4.4gとブチルリチウムの 1.6Mへキサン溶液 23.2mlをテトラヒ ドロフラン 50ml中で、 一 78°C、 1時間撹拌した液に徐々に滴下し、滴下後同 温度で 30分間撹拌した。 反応液に水とェチルエーテルを加えて抽出し、有機 層を飽和食塩水で洗浄後、 無水硫酸マグネシウムにより乾燥した。 乾燥剤を 濾別後、 溶媒を減圧留去し、 残馇をシリカゲルカラムクロマトグラフィーで 精製して、 (4S) - N - (p—クロロフヱ二ルァセチル) 一 4一イソプロピル一 2—ォキサゾリジノン 6.02g (収率 63 %) を得た。
上記で得られた 2—ォキサゾリジノン体 6.00gをテトラヒ ドロフラン 120mlに溶解し、 一 78°Cで冷却撹拌下、ナトリウムビス (卜リメチルシリノレ) アミ ドの 1Mテトラヒドロフラン溶液 23.4mlを加えて 1時間撹拌後、 一 78°C を保ちながら撹拌下、 へキサメチルリン酸トリアミ ド 21ml及び 3— (2 -ナ フチル) 一 2—プロぺニルブロミ ド 6.60gのテトラヒ ドロフラン溶液 (15ml) を加えて同温度で 1時間撹拌した。 反応液に水と酢酸ェチルを加えて抽出し、 有機層を飽和食塩水で洗浄後、 無水硫酸マグネシウムにより乾燥した。 乾燥 剤を濾別後、 溶媒を減圧留去し、 残渣をシリカゲルカラムクロマトグラ フィー [へキサンノ塩化メチレン = 1Z1] で粗精製後、 中圧液体クロマトグ ラフィ ー [へキサン Z塩化メチレン = 2ノ1 ] により精製して、 便宜上 (2S*) 一体、 (2R*) —体と命名した (4R) — N— {(2S*,4E) 一 2— (4— クロロフヱニル) ー5— (2—ナフチル) —4—ペンテノィル } ー4一イソプ 口ピル一 2—ォキサゾリジノン (中圧液体クロマトグラフィ一における先行 溶出成分) 3.80g (収率 40 %) と (4R) - N - { (2R*,4E) —2— (4—ク ロロフエニル) —5— (2—ナフチル) —4—ペンテノィル } —4一イソプロ ピル一 2—ォキサゾリジノン (中圧液体クロマ卜グラフィ一における後溶出 成分) 3.25g (収率 34 %) を得た。
上記で得られた (2R*) —体 3.25gをテトラヒドロフラン 110mlと水 32ml の混液に溶解し、氷冷撹拌下、 30 %過酸化水素水 4.2gを加えた後、更に水酸 化リチウム一水和物 0.57gを加えて氷冷下に 1時間撹拌した。 反応液に亜硫 酸ナ卜リゥム 10.3gを加えて過酸化水素を分解後、 2規定塩酸及び酢酸ェチル を加えて抽出した。 有機層を飽和食塩水で洗浄後、 無水硫酸マグネシウムで 乾燥し、 乾燥剤を濾別後、 溶媒を減圧留去した。 残渣をテトラヒドロフラン 44mlに溶解し、 1,1' —カルボニルジイミダゾール 1.36gを加えて室温で 1時 間撹拌後、 Ν,Ο—ジメチルヒドロキシルァミン塩酸塩 4.22gと N.N—ジィソ プロピルェチルァミン 7.5mlを加えて室温で 2時間撹拌した。 反応液に 1規定 塩酸とェチルエーテルを加えて抽出し、 有機層を飽和食塩水で洗浄後、 無水 硫酸マグネシゥムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留去し、 残 渣をシリカゲルカラムクロマトグラフィー [へキサンノ酢酸ェチル = 5ノ1 ] により精製して、 (2R*,4E) - 2 - (4ークロロフヱニル) —5— (2—ナフ チル) —4一ペンテン酸 Ν,Ο—ジメチルヒドロキサミ ド 2.61g (収率 95 %)を ί守た o
上記で得られたヒ ドロキサム酸誘導体 2.61gをテトラヒドロフラン 80mlに 溶解し、氷冷撹拌下、 メチルリチウムの 1.5Mェチルエーテル溶液 9.2mlを加 えて同温度で 30分間撹拌した。 反応液に水と酢酸ェチルを加えて抽出し、常 法により後処理後、 シリカゲルカラムクロマトグラフィー [へキサン Z酢酸 ェチル = 5 1] により精製して、 (3R*,5E) —3— (4ークロロフヱニル) 一 6 - (2—ナフチル) 一 5—へキセン— 2—オン 2.03g (収率 88 %) を得た。 上記で得られたケトン体 2.00gをテトラヒドロフラン 64mlに溶解し、 一 78
°Cで冷却撹拌下、水素化卜リー sec -ブチルホウ素リチウムの 1Mテトラヒド ロフラン溶液 7.2mlを加えて同温度で 30分間撐拌した。 反応液に 0.5N水酸 化ナトリウム水溶液 20mlを加えた後、 30 %過酸化水素水 10mlを滴下し、滴 下後室温で 30分間撹拌した。 反応液に水と酢酸ェチルを加えて抽出し、常法 により後処理後、 中圧液体クロマトグラフィー [へキサン 酢酸ェチル = 5/1] により精製して、 (2R*,3S*,5E) —3— (4—クロロフヱニル) — 6— (2 -ナフチル) 一 5—へキセン— 2—オール 1.94g (収率 96 %) を得た。 上記で得られたアルコーノレ体 1.94gをテトラヒドロフラン 20mlに溶解し、 氷冷撹拌下、 トリフヱニルホスフィン 2.66g、ァゾジカルボン酸ジェチルエス テル 1.36ml及びジフヱ二ルリン酸アジド 1.85gを加えて室温で 30分間撹拌し た。 反応液を減圧乾固後、 残渣をシリ力ゲル力ラムクロマトグラフィー [へ キサン Z酢酸ェチル = 50/1]で精製して、(4R*,5R*,5E)— 5—アジドー 4— (4—クロロフヱニル) 一 1一 (2—ナフチル) 一 1一へキセン 1.79g (収率 86 %) を得た。
上記で得られたアジド体 1.79gをテトラヒ ドロフラン 40mlと水 4mlの混液 に溶解し、 トリフヱニルホスフィン 1.5gを加えて 1時間加熱還流した。 反応 液を室温まで放冷後、 ェチルエーテルと水を加えて抽出し、 常法により後処 理後、 シリカゲルカラムクロマトグラフィー [塩化メチレン/メタノール = 50/1→30/1] により精製して、粗製の (1R*,2R*,4E) — 2— (4—クロ口 フエニル) _ 1 一メチル—5— (2—ナフチル) 一 4一ペンテニルァミン 1.38 (収率 78 %) を得た。
上記で得られたァミン体 1.32gをメタノール 30mlに溶解し、 2—ナフ トァ ルデヒ ド 0.49gを加えて還流下に 30分間加熱した。 反応液を室温まで放冷 後、 テトラヒドロフラン 10mlを加えて沈澱を溶解し、次いで水素化ホウ素ナ トリウム 0.18gを加えて室温で 30分間攪拌した。 反応液に水とェチルエーテ ルを加えて抽出し、 常法により後処理後、 中圧液体クロマトグラフィー [へ キサン Z酢酸ェチル = 10/1→4/1] により精製して、標題化合物 0.61g (収 率 32 %)、 [αΒ。一 23.5 ° (c 1.0,クロ口ホルム)、 を得た。
参考例 3
1,2,4 一ベンゼントリカルボン酸 1,2 -ジメチルエステルの製造
1,2,4 —ベンゼントリカルボン酸無水物 3.84gをテトラヒ ドロフラン 60ml に溶解し、 ジフヱニルジァゾメタン 3.88gを加え、室温で 5時間放置した。 反 応液に、 メタノール 0.81mlと 60 %油性水素化ナトリウム 0.80gを加え、室温 で 3時間攪拌後、溶媒を減圧留去した。 残渣をジメチルホルムアミ ド 30mlに 溶解し、 ヨウ化メチル 3.72mlと 60 %油性水素化ナトリウム 0.80gを加えて室 温で 16時間攪拌した。 反応液をジェチルエーテルで希釈後、水洗し、無水硫 酸マグネシウムにより乾燥した後、 溶媒を減圧留去した。 残渣をシリカゲル カラムクロマトグラフィー [へキサン/酢酸ェチル = 10Z1—3Z1] で精製 して 1,2,4—ベンゼントリカルボン酸 1,2—ジメチル 4ージフエニルメチルェ ステル 6.53g (収率 81 %) を得た。
上記で得られたトリエステル体 6.5gを塩化メチレン 10mUこ溶解し、 卜リ フルォロ酢酸 25mlを加え、室温で 時間攪拌した後、溶媒を減圧留去した。 残渣をシリカゲルカラムクロマトグラフィー [へキサン 酢酸ェチル = 4Z1— 1Z1] により精製し、 標題化合物 3.35g (収率 88 %) を得た。
参考例 4
3,4—ビス (ジフヱニルメチルォキシカルボニル) フヱニル酢酸の製造 (1) 4ーヒ ドロキシメチルフタル酸ジメチルエステルの製造
参考例 3で得られた 1,2,4—ベンゼン卜リカルボン酸 1,2 —ジメチルエステ ル 1.43gをテトラヒ ドロフラン 20mlに溶解し、 ボランーテトラヒ ドロフラン 錯体の 1Mテ卜ラヒ ドロフラン溶液 20mlを加え、室温で一夜撹拌した。 反応 液にェチルエーテルと水を加えて抽出し、 有機層を常法通り後処理後、 生成 物をシリカゲルカラムクロマトグラフィ一 [へキサン 酢酸ェチル = 4 1→ 1/1] で精製して、 標題化合物 1.31g (収率 97 %) を得た。
(2) 4—シァノメチルフタル酸ジメチルエステルの製造
上記で得られたアルコーノレ体 1.30gを酢酸ェチル 15mlに溶解し、氷冷撹拌 下、 塩化メタンスルホニル 0.58mlとトリエチルアミン 1.55mlを加えて室温 で一夜撹拌した。 不溶物を濾別後、 溶媒を減圧留去し、 残渣をジメチルホル ムァミ ド 13mlに溶解後、 シァン化ナトリウム 0.54gを加えて室温で 3時間撹 拌した。 反応液にェチルエーテルと水を加えて抽出し、 有機層を常法通り後 処理後、 生成物をシリ力ゲル力ラムクロマトグラフィー [へキサン 酢酸ェ チル = 2ノ 1] で精製して、 標題化合物 0.78g (収率 58 %) を得た。
(3) 4一カルボキシメチルフタル酸の製造
上記で得られたシァノ体 0.78gを濃塩酸 15mlと酢酸 4mlの混液に溶解し、 120 Cで 2.5時間加熱攪拌した。 反応液を室温まで放冷後、酢酸ェチルと水を 加えて抽出し、有機層を常法通り後処理して、標題化合物 0.53g (収率 71 %) を得た。
(4) 3,4—ビス (ジフヱニルメチルォキンカルボニル) フヱニル酢酸の製造 上記で得られたトリカルボン酸体 0.52gをアセトン 10mlに溶解し、室温撹 拌下、 ジフヱニルジァゾメタン 0.89gのアセトン (20ml)溶液を 15分間を要 して滴下した。 滴下終了後、 室温で一夜撹拌し、 次いで溶媒を留去後、 残渣 をシリカゲルカラムクロマトグラフィー [へキサンノ酢酸ェチル = 2 1→酢 酸ェチル] で精製して、 標題化合物 0.67g (収率 52 %) を得た。
参考例 5
N - {(1R.2R) - 4,4一ジェ卜キシ一 1 -メチルー 2— (3,4ーメチレンジ ォキシフヱニル) ブチル } 一 2—ナフチルメチルァミンの製造
(1) 5,5—ジエトキシー 3— (3,4—メチレンジォキシフヱニル) ペンタン一 2—オンの製造
3,4—メチレンジォキシフエ二ルァセトン 11.7gをジメチルホルムァミ ド 100mlに溶解し、 氷冷撹拌下、 60 Q/Q油性水素化ナトリウム 2.76gを加え、 同 温度で 30分間攪拌した後、 ョ一ドアセトアルデヒ ドジェチルァセタール 20.9gのジメチルホルムアミ ド 20ml溶液を加えて室温で 2時間撹拌した。 反 応液に水とェチルエーテルを加えて抽出し、 有機層を飽和食塩水で洗浄後、 無水硫酸マグネシウムにより乾燥した。 乾燥剤を濾別後、溶媒を減圧留去し、 残渣をシリ力ゲル力ラムクロマトグラフィー [へキサン/酢酸ェチル = 15/1→10/1] により精製して、標題化合物 18.3g (収率 95 Q/o) を無色油状 物として得た。
(2) (2RS.3SR)—5,5—ジエトキン一 3— (3,4—メチレンジォキシフエニル) ペンタン一 2—オールの製造
5,5—ジエトキン一 3— (3,4—メチレンジォキシフエニル) ペンタン一 2— オン 18.3gをテトラヒドロフラン 200mlに溶解し、 ― 78 °Cで冷却撹拌下、水 素化卜リ sec—ブチルホウ素リチウムの 1Mテトラヒドロフラン溶液 65mlを 加えて同温度で 1時間撹拌した。 反応液に、氷冷撹拌下、 3規定水酸化ナトリ ゥム水溶液 109mlを加え、 、て 30 %過酸化水素水 43mlを徐々に滴下し、 室温で 1時間携拌した。 反応液にェチルエーテルと水を加えて抽出し、 有機 層を飽和チォ硫酸ナトリゥム水溶液及び飽和食塩水で洗浄後、 無水硫酸マグ ネシゥムにより乾燥した。 乾燥剤を濾別後、 溶媒を'减圧留去し、 残渣をシリ 力ゲルカラムクロマ卜グラフィー [へキサンノ酢酸ェチル = 10/1→3/1] により精製して、 標題化合物 16.8g (収率 91 %) を無色油状物として得た。
(3) (2S.3R) — 5,5 -ジエトキシ— 3— (3,4—メチレンジォキシフエニル) ペンタン一 2—オールの製造
(2RS.3SR) — 5,5—ジェ卜キシー 3— (3,4—メチレンジォキシフエニル) ペンタン— 2—オール 31.98gをビニルァセテ一ト 320mlに溶解し、 卜リエチ ルアミン 15. lmlを加えた。 次いで固定化リパーゼ(トヨチーム LIP) l.Ogを 加え、 3CTCで 4日間攪拌した。 不溶物を濾去後、濾液を酢酸ェチルで希釈し、 1規定塩酸、飽和炭酸水素ナトリウム水溶液及び飽和食塩水にて順次洗浄した 後、 無水硫酸マグネシウムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留 去し、 残渣をシリカゲルカラムクロマトグラフィー [へキサンノ酢酸ェチ ル = 5ノ 1→1ノ により精製して、 (2R.3S) — 2—ァセトキシー 5,5—ジェ 卜キシ— 3— (3,4—メチレンジ才キシフヱニル) ペンタン 18.40g (収率 50 %) 及び標題化合物 16.05g、 0 — 31.8° (c 1.0,メタノール) (収率 50 °/o) をそれぞれ無色油状物として得た。 なお標題化合物の立体絶対配置は、 Mosher法 [ジャーナル ·ォブ 'アメ リカン .ケミカル · ソサイエティ一 (丄 Am.Chem.Soc) , 第 113巻、 4092頁 (1991年) 参照] を用い決定した。 (3) (1R,2R) — 4,4—ジェ卜キシー 1ーメチルー 2— (3,4—メチレンジォキ シフヱニル) ブチルァミ ンの製造
(2S.3R) 一 5,5—ジエトキン一 3— (3,4ーメチレンジォキシフユニル) ぺ ンタン— 2—オール 15.2gを酢酸ェチル 130mlに溶解し、 氷冷撹拌下、 トリ ェチルァミン 14.0mlと塩化メタンスルホニル 6.0mlを加えて同温度で 30分 間撹拌した。 反応液に飽和炭酸水素ナトリゥム水溶液を加え、室温で 30分間 激しく撹拌した後、 酢酸ェチルで抽出した。 有機層を飽和食塩水で洗浄後、 無水硫酸マグネシウムにより乾燥し、乾燥剤を濾別後、溶媒を減圧留去した。 続いて、 残渣をジメチルホルムアミ ド 100mlに溶解し、 アジ化ナトリウム 16.7gを加えて 120°Cで 1時間加熱撹拌した。 反応液を室温まで放冷後、ェチ ルエーテルと水を加えて抽出し、 有機層を分取後、 飽和食塩水で洗浄、 次い で溶媒を減圧留去した。 得られた残渣を卜リフヱニルホスフィ ン 13.5gとと もに 10 %含水テトラヒドロフラン 110ml中で 4時間加熱還流した。 反応液を 減圧乾固後、 残渣をシリ力ゲル力ラムクロマトグラフィー [酢酸ェチル→酢 酸ェチル //メタノール = 10/1] で精製して、標題化合物 11.8g (収率 78 %) を無色油状物として得た。
(4) N - { (1R.2R) —4,4ージエトキシー 1—メチル—2— (3,4ーメチレン ジォキシフヱニル) ブチル } — 2—ナフチルメチルァミ ンの製造
(1R,2R) —4,4—ジエトキシー 1ーメチルー 2— (3,4—メチレンジォキシ フエニル) プチルァミン 11.8gをメタノール 80mlに溶解し、 2—ナフ卜アル デヒド 5.98gを加えて 60°Cで 3時間加熱撹拌した。 反応液を 0°Cに冷却し、水 素化ホウ素ナ卜リゥム 2.27gを加え、室温で 1時間撹拌した。 反応液を水に加 え、 酢酸ェチルで抽出し、 有機層を飽和食塩水で洗浄後、 無水硫酸マグネシ ゥムにより乾燥した。 乾燥剤を濾別後、 溶媒を減圧留去し、 残渣をシリカゲ ルカラムクロマトグラフィー [へキサン/酢酸ェチル = 10Z1—2Z1] で精 製して、 標題化合物 16.6g (収率 99 %) を無色油状物として得た。
上記 (2) で得られた (2R3S) —2—ァセトキシ - 5,5—ジェ卜キシー 3— (3,4—メチレンジォキシフヱニル) ペンタンをアル力リ加水分解することに より得られる (2R.3S) — 5.5—ジエトキン一 3— (3,4—メチレンジォキシフ ヱニル) ペンタン一 2—オールを (3)、 (4) と同様に処理することにより、 N— { (1S.2S) 一 4,4一ジェ卜キシー 1一メチル—2— (3,4—メチレンジォ キシフエニル) ブチル } 一 2—ナフチルメチルァミンを得た。
参考例 6
(4S.5S) - 1.3—ジォキソラン一 2,2,4,5 -テトラカルボン酸 2,2—ジェチル 5—メチルエステルの製造
(1) D -酒石酸ジフヱニルメチル メチルエステルの製造
D—酒石酸ジメチルエステル 5.71gをメタノール 64mlに溶解し、 氷冷下 1 規定水酸化ナトリウム水溶液 32mlを加え、 室温で 12時間攪拌した。 溶媒を 減圧留去した後、氷冷下 4規定塩酸-ジォキサン溶液 80mlを加え、反応液を 濃縮乾固した。 次いで、残渣をアセトン 20mlに溶解し、 ジフヱニルジァゾメ 夕ン 7.4gのァセトン 50ml溶液を氷冷下滴下した後、室温で 15時間攪拌した。 溶媒を減圧留去後、 析出した塩を濾別し、 残渣を酢酸ェチル-へキサンより 結晶化し、 標題化合物 6.71g (収率 63 %) を得た。
(2) 1,3—ジォキソラン一 2,2,4,5—テトラカルボン酸 2.2—ジェチル 4—ジ フエニルメチル 5—メチルエステルの製造
60 %水素化ナトリウム L76gをジメ トキシェタン 65mlに懸濁し、 氷冷下 D—酒石酸ジフエ二ルメチル メチルエステル 6.49gのジメ トキシェタン 30ml溶液を滴下した後、 室温で 10分間攪拌した。 ジブロモマロン酸ジェチ ルエステル 7.5gを室温で加えた後、 80 °Cで 6時間加熱攪拌した。 反応液を室 温に冷却した後、水に注ぎ、水層を食塩で飽和させ、酢酸ェチルで抽出した。 得られた有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムにより乾燥し、 乾燥剤を濾別した。 溶媒を減圧留去し、 残渣をカラムクロマトグラフィー
[へキサンノ酢酸ェチル = 5 1→3/1] で精製し、 標題化合物 2.46g (収率 26 %) を無色油状物として得た。
(3) (4S.5S) — 1,3—ジォキソラン一 2,2,4,5—テトラカルボン酸 2,2—ジェ チル 5—メチルエステルの製造
1.3 -ジォキソラン一 2,2,4,5—テトラカルボン酸 2,2—ジェチル 4—ジフエ ニルメチル 5—メチルエステル 2.46gをジォキサン 25mlに溶解し、 10 %パ ラジウム一炭素触媒 250mgを加え、室温水素常圧下 3時間接触還元した。 触 媒を濾別後、濾液を減圧乾固し、残渣をへキサンから結晶化することにより、 標題化合物 1.32g (収率 82 %) を得た。
上記反応で原料として使用した D -酒石酸に代えて、 L -酒石酸及び meso—酒石酸を用い、 他は参考例 6と同様な反応を行って、 . (4R5R) - 1, 3—ジォキソラン一 2,2,4.5—テトラカルボン酸 2,2—ジェチル 5 -メチルェ ステル及び (4RS.5SR) — 1,3—ジォキソラン— 2,2,4,5—テ卜ラカルボン酸 2,2一ジェチル 5—メチルエステルを得た。
参考例 7
1.2,3,4—シクロブタンテトラカルボン酸 2,3,4— トリメチルエステルの製
1,2,3,4—シクロブタンテ卜ラカルボン酸 3.48gとメタノール 2.01mlをジメ チルホルムアミ ド 30mlに溶解し、塩酸 1—ェチルー 3— (3—ジメチルアミ ノプロピル) カルボジィミ ド 2.88gを氷冷下加え、次いで 4ージメチルァミノ ピリジン 0.18gを加えて同温度で 2時間攪拌した後、室温で 20時間攪拌した。 反応液を酢酸ェチルで希釈後、 1規定塩酸及び飽和食塩水で洗浄し、無水硫酸 マグネシウムにより乾燥した。 溶媒を減圧留去し、 残渣をシリカゲルカラム クロマトグラフィー [クロ口ホルム メタノール = 10ノ1→4 1] により精 製し、 標題化合物 2.24g (収率 55 %) を得た。
参考例 8
1,2—エポキシ— 1.2,3—プロパントリカルボン酸 2,3—ジメチルエステルの 製造
(1) 1,2—エポキシ一 1,2,3—プロパン卜リカルボン酸 2,3—ジメチル 1—ジ フヱニルメチルエステルの製造
(土) — cis—エポキシトリカルバリル酸力リウム塩 985mgを水 20mlに溶 解し、 Dowex™ (50W x 8) 10mlを加え、室温で 3日間攪拌した。 不溶物を 濾去後、濾液を減圧濃縮し、残渣をメタノール 15mlに溶解した後、過剰のジ ァゾメタンのェチルエーテル溶液を加えた。 反応液を減圧乾固し、 トリメチ ルエステル 990mgを得た。 上記トリメチルエステル体 990mgをメタノール 15mlと水 15mlの混合液 に溶解し、激しく撹拌しながら室温で 0.1規定水酸化ナ卜リウム水溶液 30ml を 15分間かけて加えた。 反応液を水に注ぎ酢酸ェチルにて抽出し、 水層を 25mlまで濃縮した後、 1規定塩酸で酸性にし、 酢酸ェチルで抽出した。 有機 層を無水硫酸マグネシウムにより乾燥した後、 溶媒を減圧留去後、 残渣をァ セ卜ン 10mlに溶解し、過剰のジフヱニルジァゾメタンを加え、室温で 1時間 攪拌した。 反応液を減圧濃縮した後、 残渣をシリカゲルカラムクロマトグラ フィ 一で粗精製し、 分取用高速液体クロマ トグラフィー [Senshupak Silica一 5301 - N;へキサン //酢酸ェチル = 7/2] で精製して標題化合物 418mg (収率 27 %) を得た。
(2) 1,2—エポキシ— 1.2,3—プロパントリカルボン酸 2,3—ジメチルエステル の製造
1,2 —エポキシ一 1 ,2,3 —プロパントリカルボン酸 2,3 —ジメチル 1 一ジ フエニルメチルエステル 314mgを酢酸ェチル 5mlに溶解し、 10 %パラジゥ ム-炭素触媒 30mgを加え、室温常圧水素下 10時間接触還元した。 触媒を濾 別後、 濾液を減圧乾固し、 残渣をへキサンから結晶化することにより、 標題 化合物 137mg (収率 72 %) を白色固体として得た。
参考例 9
1.2,3,4—テトラヒ ドロフランテトラカルボン酸 2,3,4— トリメチルエステ ルの製造
メタノール 40ml中に、塩化チォニル 2.9mlを氷冷下滴下し、 1,2,3,4—テ卜 ラヒドロフランテトラカルボン酸 993mgを室温にて加えた。 反応液を 10時 間加熱還流した後、 溶媒を減圧留去し、 残渣をシリカゲルカラムクロマトグ ラフィー [へキサン/酢酸ェチル = により精製し得られるテトラエス テル体 994mgをテトラヒドロフラン 12mlと水 3mlの混合液に溶解し、水酸 化ナトリウム水溶液 3.25mlを加え、 室温で 3時間攪拌した。 反応液を 1規定 塩酸で酸性とした後、 ジェチルエーテルで抽出した。 有機層を飽和食塩水で 洗浄後、 無水硫酸マグネシウムで乾燥し、 乾燥剤を濾別した後、 溶媒を減圧 留去した。 残渣をシリカゲルカラムクロマトグラフィー [クロ口ホルム メ タノール = 20Z1] により精製し、 標題化合物 647mg (収率 56 %) を得た。 参考例 10
5,6—ビス (エトキンカルボニル) 一 3—ピリジルプロピオン酸塩酸塩の製 造
(1) 5 - tert—ブトキシカルボ二ルェテニル— 2,3 -ピリジンジカルボン酸ジ ェチルエステルの製造
5—ブロモ— 2.3—ピリジンジカルボン酸ジェチルエステル 435mgをジメ チルホルムァミ ド 2mlに溶解し、 tert—ブチルァクリレート 1.09ml、 トリェ チルアミ ン 2ml、 ジクロロビストリフエニルホスフィノパラジウム 35mgを 加え、 100°Cで 8.5時間加熱攪拌した。 反応液をェチルエーテルで希釈後、水 洗し、 無水硫酸マグネシウムにより乾燥した後、 溶媒を減圧留去した。 残渣 をシリカゲルカラムクロマトグラフィ一により精製し、 標題化合物 465mg (収率 92 %) を得た。
(2) 5一 tert一ブトキシカルポニルェチル一 2,3—ピリジンジカルポン酸ジェ チルエステルの製造
5一 tertーブトキシカルボ二ルェテ二ルー 2,3—ピリジンジカルボン酸ジェ チルエステル 460mgを酢酸ェチル 10mlに溶解し、 10 %パラジゥム—炭素触 媒 lOOmgを加え、 室温水素常圧下 時間接触還元した。 触媒を濾別後、 濾 液を減圧留去し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、 標題化合物 414mg (収率 89 %) を得た。
(3) 5,6一ビス (ェトキシカルボニル) 一 3—ピリジルプロピオン酸塩酸塩の
5— tert—ブトキシカルボ二ルェチルー 2,3—ピリジンジカルボン酸ジェチ ルエステル 31 Omgを 4規定塩酸ジォキサン溶液 5mlに溶解し、 室温で 4.5時 間攪拌した。 反応液を減圧乾固し、標題化合物 301mg (収率定量的)を得た。 産 業 上 の 利 用 可 能 性
本発明の化合物は、 優れた蛋白質ーフアルネシル卜ランスフヱラーゼ (PFT) 阻害作用を有し、 抗腫瘍剤又は抗 HIV剤として有用である。

Claims

(1) 一般式 [I]
Figure imgf000096_0001
[式中、 or
Figure imgf000096_0002
は同一又は異なって、 ァリール基又は複素芳香環基を
Figure imgf000096_0003
はァリ一ル基、複素芳香環基又は 1若しくは 2の酸素原子を含有してもよい脂 肪族環式基を; Qは— (CH2)m— (ここにおいて、 mは 1ないし 6の整数を意 味する) 又は- (CH2)n - W— (CH2)P - (ここにおいて、 Wは酸素原子、硫 黄原子、 ビニレン基又はェチニレン基を; n及び pは同一又は異なって、 0な いし 3の整数を意味する) で表される基を; R'は水素原子、ハロゲン原子、水 酸基、 低級アルキル基、 低級アルコキシ基、 又はハロゲン原子、 低級アルキ ル基及び低級アルコキシ基からなる群より選ばれる置換基を有していてもよ ぃァリ一ル基若しくは複素芳香環基を; R2、 R7及び R8は同一又は異なって、 水素原子、ハロゲン原子、水酸基、低級アルキル基又は低級アルコキシ基を; R3及び ま同一又は異なって、水素原子、ハロゲン原子、水酸基、アミノ基、 ニトロ基、 シァノ基、 カルボキシル基、 低級アルコキシカルボニル基、 カル バモイル基、 低級アルキル力ルバモイル基、 低級アルキル基、 低級ヒドロキ シアルキル基、 低級フルォロアルキル基又は低級アルコキシ基を; R5は低級 アルキル基を; RRは水素原子又は低級アルキル基を; R9及び FTは同一又は 異なって、 水素原子、 水酸基又は低級アルキル基を: R'1は水酸基、 カルボキ シル基、 低級アルキル基、 低級ヒ ドロキシアルキル基又は低級アルコキシ基 を; X及び zは同一又は異なって、 0ないし 2の整数を; yは 0又は 1を意味す る] で表される化合物、 その医薬として許容されうる塩又はエステル。
(2)
Figure imgf000097_0001
がフヱニル基、 ナフチル基、 ベンゾフラニル基、 ベンゾチェニル基又はべン ゾォキサゾリル基である請求項 1記載の化合物。
(3)
Figure imgf000097_0002
がフエニル基である請求項 1記載の化合物 c
(4)
Figure imgf000097_0003
がナフチル基、 ベンゾフラニル基又はべンゾチェ二ル基である請求項 1記載 の化合物。
(5)
Figure imgf000097_0004
がシクロブチル基、 シクロペンチル基、ォキソラニル基、 1.3—ジォキソラ. ノレ基、 フエニル基又はピリジル基である請求項 1記載の化合物。
(6) 一般式 [I]
Figure imgf000097_0005
[式中、 Ar1一 、 (^Ar2— 及び {^ ^一 は同一又は異なって、 ァリール基又は複素芳香環基を;
Figure imgf000098_0001
はァリール基、複素芳香環基又は 1若しくは 2の酸素原子を含有してもよい脂 肪族環式基を; Qは一 (CH2)m— (ここにおいて、 mは 1ないし 6の整数を意 味する) 又は一 (CH2)n— W - (CH2)P - (ここにおいて、 Wは酸素原子、硫 黄原子、 ビニレン基又はェチニレン基を; n及び pは同一又は異なって、 0な いし 3の整数を意味する)で表される基を; R'は水素原子、ハロゲン原子、水 酸基、 低級アルキル基、 低級アルコキシ基、 又はハロゲン原子、 低級アルキ ル基及び低級アルコキシ基からなる群より選ばれる置換基を有していてもよ ぃァリール基若しくは複素芳香環基を: R2、 R7及び R8は同一又は異なって、 水素原子、ハロゲン原子、水酸基、低級アルキル基又は低級アルコキシ基を; R3及び R4は同一又は異なって、水素原子、ハロゲン原子、水酸基、アミノ基、 ニトロ基、 シァノ基、 カルボキシル基、 低級アルコキシカルボニル基、 カル バモイル基、 低級アルキル力ルバモイル基、 低級アルキル基、 低級ヒドロキ シアルキル基、 低級フルォロアルキル基又は低級アルコキシ基を; R5は低級 アルキル基を; R6は水素原子又は低級アルキル基を; R9及び は同一又は 異なって、 水素原子、 水酸基又は低級アルキル基を; R は水酸基、 カルボキ シル基、 低級アルキル基、 低級ヒドロキンアルキル基又は低級アルコキシ基 を; X及び zは同一又は異なって、 0ないし 2の整数を; yは 0又は 1を意味す る] で表される化合物、 その医薬として許容されうる塩又はエステルを有効 成分とする抗腫瘍剤。
PCT/JP1996/003239 1995-11-07 1996-11-06 Derives cycliques d'acide amique WO1997017321A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU75051/96A AU7505196A (en) 1995-11-07 1996-11-06 Cyclic amic acid derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31362595 1995-11-07
JP7/313625 1995-11-07

Publications (1)

Publication Number Publication Date
WO1997017321A1 true WO1997017321A1 (fr) 1997-05-15

Family

ID=18043580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003239 WO1997017321A1 (fr) 1995-11-07 1996-11-06 Derives cycliques d'acide amique

Country Status (2)

Country Link
AU (1) AU7505196A (ja)
WO (1) WO1997017321A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037070A1 (fr) * 1997-02-21 1998-08-27 Takeda Chemical Industries, Ltd. Composes a anneaux condenses, leur procede de production et leur utilisation
FR2780892A1 (fr) * 1998-07-08 2000-01-14 Sod Conseils Rech Applic Utilisation d'inhibiteurs de prenyltransferases pour preparer un medicament destine a traiter les pathologies qui resultent de la fixation membranaire de la proteine g heterotrimerique
US7550489B2 (en) 2002-03-12 2009-06-23 Merck & Co., Inc. Substituted pyridyoxy amides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005168A1 (fr) * 1994-08-11 1996-02-22 Banyu Pharmaceutical Co., Ltd. Derive d'amide substitue
WO1996005169A1 (fr) * 1994-08-12 1996-02-22 Banyu Pharmaceutical Co., Ltd. Derive d'acide amique n,n-bisubstitue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005168A1 (fr) * 1994-08-11 1996-02-22 Banyu Pharmaceutical Co., Ltd. Derive d'amide substitue
WO1996005169A1 (fr) * 1994-08-12 1996-02-22 Banyu Pharmaceutical Co., Ltd. Derive d'acide amique n,n-bisubstitue

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037070A1 (fr) * 1997-02-21 1998-08-27 Takeda Chemical Industries, Ltd. Composes a anneaux condenses, leur procede de production et leur utilisation
US6420375B1 (en) 1997-02-21 2002-07-16 Takeda Chemical Industries, Ltd. Fused ring compounds, process for producing the same and use thereof
FR2780892A1 (fr) * 1998-07-08 2000-01-14 Sod Conseils Rech Applic Utilisation d'inhibiteurs de prenyltransferases pour preparer un medicament destine a traiter les pathologies qui resultent de la fixation membranaire de la proteine g heterotrimerique
WO2000002558A1 (fr) * 1998-07-08 2000-01-20 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Utilisation d'inhibiteurs de prenyltransferases pour preparer un medicament destine a traiter les pathologies qui resultent de la fixation membranaire de la proteine g heterotrimerique
US7550489B2 (en) 2002-03-12 2009-06-23 Merck & Co., Inc. Substituted pyridyoxy amides
US7816534B2 (en) 2002-03-12 2010-10-19 Merck Sharp & Dohme Corp. Substituted amides

Also Published As

Publication number Publication date
AU7505196A (en) 1997-05-29

Similar Documents

Publication Publication Date Title
TW323271B (ja)
CN104822680B (zh) 咪唑并吡啶化合物
WO1996005169A1 (fr) Derive d&#39;acide amique n,n-bisubstitue
CN102712577B (zh) 取代的3-苯基丙酸和其应用
CN100528846C (zh) 胺化合物及其用途
JP2020500207A (ja) カルパインモジュレーター及びそれらの治療上の使用
DK3109240T3 (en) TRIAZINE CONNECTION AND ITS USE FOR MEDICAL PURPOSES
TWI481604B (zh) Novel 5-fluorouracil derivatives
CN101646653A (zh) 作为ppar-y的部分激动剂的稠环化合物
JP6976618B2 (ja) 活性酸素種スカベンジャーの調製および使用
JPH04308574A (ja) レトロウイルス阻害性化合物
CN111108092A (zh) 芳酰胺类Kv2.1抑制剂及其制备方法、药物组合物和用途
CN105085429B (zh) 芳杂环类衍生物及其在药物上的应用
CN102414168A (zh) 用作为alx受体和/或fprl2激动剂的桥联螺[2.4]庚烷衍生物
TWI592407B (zh) 飢餓素o-醯基轉移酶抑制劑
WO2004072018A1 (ja) アミン誘導体
JP2015517544A (ja) 置換ピペリジノアセトアミドおよびその使用
KR20040095311A (ko) 프로스타글란딘 f 수용체의 모듈레이터로서의 티아졸리딘카르복사미드 유도체
TWI826492B (zh) 經取代四氫環戊[c]吡咯、經取代二氫吡咯,其類似物及使用其之方法
US6083985A (en) Medicinal composition
JP2006508055A (ja) オキシトシンインヒビター
CN107001271A (zh) 羟基脒类衍生物、其制备方法及其在医药上的应用
CN114929694A (zh) 肾上腺素能受体adrac2拮抗剂
WO2004052859A1 (ja) エリスロポエチン産生促進剤
WO1999011640A1 (fr) Derives d&#39;epoxysuccinamide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA