Nothing Special   »   [go: up one dir, main page]

WO1997005068A1 - Method for removing heavy metals from liquid effluents - Google Patents

Method for removing heavy metals from liquid effluents Download PDF

Info

Publication number
WO1997005068A1
WO1997005068A1 PCT/FR1996/001150 FR9601150W WO9705068A1 WO 1997005068 A1 WO1997005068 A1 WO 1997005068A1 FR 9601150 W FR9601150 W FR 9601150W WO 9705068 A1 WO9705068 A1 WO 9705068A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metals
additive
liquid
final neutralization
effluent
Prior art date
Application number
PCT/FR1996/001150
Other languages
French (fr)
Inventor
Isabelle Baudin
Christophe Anselme
Original Assignee
Lyonnaise Des Eaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lyonnaise Des Eaux filed Critical Lyonnaise Des Eaux
Publication of WO1997005068A1 publication Critical patent/WO1997005068A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Definitions

  • the present invention relates to a process intended to ensure the elimination of heavy metals in liquid effluents, in particular in water for washing fumes from incinerators of household or industrial waste, without these fields of application being can be considered as limiting.
  • the present invention has set itself the objective of providing a process for removing heavy metals contained in liquid effluents, and in particular in washing water from waste incinerators which can be used industrially, in particular providing the following advantage: minimization of solid discharges, the method according to the invention also rendering these solid discharges inert;
  • the method according to the present invention is characterized in that it consists in:
  • liquid effluent containing the heavy metals to be eliminated to a pre-neutralization, for example using sodium hydroxide, so as to raise the pH of the liquid effluent by a value of 1 to 4, and to precipitate thus metal hydroxides;
  • the pre-neutralization step can be carried out by adding NaOH to the liquid effluent.
  • the final neutralization step is carried out by adding, in the liquid effluent whose pH was raised to approximately 4 during the pre-neutralization, an additive capable of removing heavy metals in an acid medium.
  • This final neutralization additive may for example be a zeolite, a hydroxycarbonate, an ion exchange material, composite mixtures of clays + silicates + carbonates.
  • the invention gives particularly satisfactory results using the heavy metal cation capture agents as described and claimed in two French patent applications filed on the same day as this application, by the company RHONE-POULENC CHIMIE and entitled:
  • Heavy metal cation capture agent comprising a compound of the silicate or aluminosilicate type, and a compound of the carbonate type.
  • Heavy metal cation capture agent comprising a compound of the silicate or aluminosilicate type or a compound of the carbonate type and a support.
  • the agent described and claimed in one of these two applications comprises at least one compound of the silicate or carbonate type, which is preferably a silicate or an aluminosilicate of an alkali metal, in particular of sodium or potassium, and at least one compound of the carbonate type, which is preferably an alkali metal carbonate, in particular of sodium, or a hydroxycarbonate chosen from hydrotalcite and dawsonite.
  • the present agent generally a molar ratio of CO 3 2 2 ./SIO between 0.05 and 10.
  • this agent further comprises at least one support, in particular a clay.
  • the agent described and claimed in the other application comprises at least one support, in particular a clay, and either at least one compound of the silicate or aluminosilicate type, in particular a silicate or an aluminosilicate of an alkali metal, for example sodium or potassium, preferably at least one compound of the carbonate type, in particular an alkali metal carbonate, for example sodium, or a hydroxycarbonate chosen from hydrotalcite and dawsonite.
  • the addition of the adsorbent during the final neutralization phase is carried out in powder form, preferably with an average particle size of the order of 10 to 20 microns .
  • FIG. 1 is a diagram which illustrates the various steps specified above of the process which is the subject of the present invention.
  • Figure 2 is a schematic representation of an installation implementing such a method.
  • the final neutralization additive which ensures the fixing of heavy metals, is added, in powder form and according to an average particle size of the order of 20 microns, to the liquid effluent pre-neutralized in an enclosure maintained with stirring.
  • the solid concentrate / permeat separation is carried out in an ultra or membrane microfiltration module which gives excellent results, in particular a very good quality of the permeat and a low volume of the solid materials generated.
  • the use of such modules makes it possible to avoid the addition of coagulants, for the solid / liquid separation.
  • the concentrated solid after optional addition of polymer, is subjected to filtration, for example using a filter press, or to a centrifugation treatment in order to recover the solid materials containing the heavy metals which are then vitrified.
  • the liquid from the filtration stage is recycled at the head of the installation.
  • the pH is regulated at the end of the final neutralization step by acting on the concentrations of the base (NaOH) used during the pre-neutralization step and / or of the adsorbent additive. used during the final neutralization step.
  • the mercury can be eliminated by providing an additional loop at the outlet of the separation module, this loop using for example a sulphide for this elimination;
  • a composite adsorbent consisting of a mixture (in mol%) of clay
  • a silicate composite adsorbent consisting of a mixture (in mol%) of clay (25%) of carbonate (37.5%), and of silicate (37.5%).
  • the regulation of the pH obtained at the end of the final neutralization step can be carried out by controlling the concentration of the base (NaOH) used during the pre-neutralization step, and / or the addition of the composite adsorbent used in the final neutralization step, as specified above.
  • the silicate compound is more effective for the removal of metals in all types of water for dosing at stoichiometry by bringing the pH to 8.5.
  • the invention makes it possible to meet the standards relating to the elimination of heavy metals. Furthermore, the small volume of solid discharges and their composition which makes them inert, facilitate their storage or their rejection in a natural environment without risks for the environment. As regards mercury, it has been seen above that its elimination can be obtained using a specific loop after the separation step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A method for removing heavy metals from liquid effluents, particularly water used for scrubbing industrial waste or household refuse incinerator fumes, wherein the liquid effluent containing the heavy metals to be removed is pre-neutralised, particularly using soda, to raise the pH of the liquid effluent to around 1-4 and thereby precipitate out the metal hydroxides; the resulting pre-neutralised liquid effluent is contacted with a metered amount of a final neutralisation additive to adjust the pH of the effluent to around 9, wherein said additive binds the heavy metals; the heavy metals are separated; and the concentrated solid thus separated is filtered to give a liquid material and a heavy metal-containing solid material that may then be vitrified.

Description

Procédé d'élimination des métaux lourds contenus dans des effluents liquides  Method for removing heavy metals from liquid effluents
La présente invention est relative à un procédé destiné à assurer l'élimination de métaux lourds dans des effluents liquides, notamment dans des eaux de lavage de fumées d'incinérateurs d'ordures ménagères ou de déchets industriels, sans que ces domaines d'application ne puissent être considérés comme limitatifs. The present invention relates to a process intended to ensure the elimination of heavy metals in liquid effluents, in particular in water for washing fumes from incinerators of household or industrial waste, without these fields of application being can be considered as limiting.
On connaît la difficulté que l'on rencontre à l'heure actuelle dans l'élimination des métaux lourds contenus dans les effluents liquides. Or, cette élimination est indispensable en vue de respecter les normes actuellement en vigueur relatives aux rejets liquides en milieu naturel. Ces difficultés sont dues notamment au pH fortement acide de ces effluents qui nécessite une neutralisation préalable, aux concentrations importantes en métaux lourds (de l'ordre de 200 mg/l) aux différentes matières en suspension exigeant une décantation et une filtration poussées se traduisant par de grands volumes de boues devant être traitées avant de pouvoir être mises en décharge. We know the difficulty that we encounter at present in the elimination of heavy metals contained in liquid effluents. However, this elimination is essential in order to comply with the standards currently in force relating to liquid discharges into the natural environment. These difficulties are due in particular to the highly acidic pH of these effluents which requires prior neutralization, to the high concentrations of heavy metals (of the order of 200 mg / l) to the various suspended solids requiring decantation and extensive filtration resulting in large volumes of sludge to be treated before they can be landfilled.
La présente invention s'est fixée pour objectif d'apporter un procédé d'élimination des métaux lourds contenus dans des effluents liquides, et notamment dans des eaux de lavage d'incinérateurs de déchets pouvant être mis en oeuvre de façon industrielle en apportant notamment l'avantage suivant : minimisation des rejets solides, le procédé selon l'invention rendant en outre inertes ces rejets solides ; The present invention has set itself the objective of providing a process for removing heavy metals contained in liquid effluents, and in particular in washing water from waste incinerators which can be used industrially, in particular providing the following advantage: minimization of solid discharges, the method according to the invention also rendering these solid discharges inert;
En conséquence, le procédé selon la présente invention est caractérisé en ce qu'il consiste à : Consequently, the method according to the present invention is characterized in that it consists in:
- soumettre l'effluent liquide contenant les métaux lourds à éliminer à une pré-neutralisation, par exemple à l'aide de soude, de manière à élever le pH de l'effluent liquide d'une valeur de 1 à 4, et à précipiter ainsi les hydroxydes métalliques; - subject the liquid effluent containing the heavy metals to be eliminated to a pre-neutralization, for example using sodium hydroxide, so as to raise the pH of the liquid effluent by a value of 1 to 4, and to precipitate thus metal hydroxides;
- soumettre l'effluent liquide ainsi pré-neutralisé à l'action dosée d'un additif de neutralisation finale permettant d'amener le pH de l'effluent à traiter jusqu'à une valeur de l'ordre de 9, cet additif assurant la fixation des métaux lourds ; subjecting the liquid effluent thus pre-neutralized to the metered action of a final neutralization additive making it possible to bring the pH of the effluent to be treated to a value of the order of 9, this additive ensuring the fixing of heavy metals;
- effectuer la séparation des métaux lourds et ; - separate heavy metals and;
- filtrer le solide concentré issu de l'étape de séparation pour obtenir d'une part les matières solides contenant les métaux lourds que l'on peut soumettre ensuite à une vitrification, et d'autre part la matière liquide. Ainsi qu'on l'a précisé ci-dessus, l'étape de pré-neutralisation peut être réalisée par addition de NaOH à l'effluent liquide. L'étape de neutralisation finale est réalisée en ajoutant, dans l'effluent liquide dont le pH a été élevé à environ 4 lors de la pré-neutralisation, un additif apte à éliminer les métaux lourds en milieu acide. Cet additif de neutralisation finale peut être par exemple une zéolite, un hydroxycarbonate, un matériau échangeur d'ions, des mélanges composites argiles + silicates + carbonates. L'invention donne des résultats particulièrement satisfaisants en utilisant les agents de captation de cations de métaux lourds tels que décrits et revendiqués dans deux demandes de brevet français déposées le même jour que la présente demande, par la Société RHONE-POULENC CHIMIE et intitulées : - Filter the concentrated solid from the separation step to obtain on the one hand the solid materials containing heavy metals which can then be subjected to vitrification, and on the other hand the liquid material. As specified above, the pre-neutralization step can be carried out by adding NaOH to the liquid effluent. The final neutralization step is carried out by adding, in the liquid effluent whose pH was raised to approximately 4 during the pre-neutralization, an additive capable of removing heavy metals in an acid medium. This final neutralization additive may for example be a zeolite, a hydroxycarbonate, an ion exchange material, composite mixtures of clays + silicates + carbonates. The invention gives particularly satisfactory results using the heavy metal cation capture agents as described and claimed in two French patent applications filed on the same day as this application, by the company RHONE-POULENC CHIMIE and entitled:
« Agent de captation de cations de métaux lourds comprenant un composé du type silicate ou aluminosilicate, et un composé du type carbonate ». et "Heavy metal cation capture agent comprising a compound of the silicate or aluminosilicate type, and a compound of the carbonate type". and
« Agent de captation de cations de métaux lourds comprenant un composé du type silicate ou aluminosilicate ou un composé du type carbonate et un support ». "Heavy metal cation capture agent comprising a compound of the silicate or aluminosilicate type or a compound of the carbonate type and a support".
L'agent décrit et revendiqué dans l'une de ces deux demandes comprend au moins un composé du type silicate ou carbonate, qui est de préférence un silicate ou un aluminosilicate de métal alcalin, notamment de sodium ou de potassium, et au moins un composé du type carbonate, qui est de préférence un carbonate de métal alcalin, notamment de sodium, ou un hydroxycarbonate choisi parmi l'hydrotalcite et la dawsonite. Cet agent présente, en général, un rapport en moles CO3 2 ./SIO2 compris entre 0,05 et 10. De manière préférée, cet agent comprend en outre au moins un support, en particulier une argile. The agent described and claimed in one of these two applications comprises at least one compound of the silicate or carbonate type, which is preferably a silicate or an aluminosilicate of an alkali metal, in particular of sodium or potassium, and at least one compound of the carbonate type, which is preferably an alkali metal carbonate, in particular of sodium, or a hydroxycarbonate chosen from hydrotalcite and dawsonite. The present agent, generally a molar ratio of CO 3 2 2 ./SIO between 0.05 and 10. Preferably, this agent further comprises at least one support, in particular a clay.
L'agent décrit et revendiqué dans l'autre demande comprend au moins un support, notamment une argile, et soit au moins un composé du type silicate ou aluminosilicate, en particulier un silicate ou un aluminosilicate de métal alcalin, par exemple de sodium ou de potassium, soit de préférence au moins un composé du type carbonate, en particulier un carbonate de métal alcalin, par exemple de sodium, ou un hydroxycarbonate choisi parmi l'hydrotalcite et la dawsonite. Selon un mode préféré de mise en oeuvre du procédé de l'invention, l'addition de l'adsorbant lors de la phase de neutralisation finale est effectuée sous forme pulvérulente, de préférence avec une granulometrie moyenne de l'ordre de 10 à 20 microns. D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-après en référence aux dessins annexés qui en illustrent un mode de mise en oeuvre et de réalisation dépourvu de tout caractère limitatif. Sur les dessins : La figure 1 est un schéma qui illustre les différentes étapes spécifiées ci-dessus du procédé objet de la présente invention, et The agent described and claimed in the other application comprises at least one support, in particular a clay, and either at least one compound of the silicate or aluminosilicate type, in particular a silicate or an aluminosilicate of an alkali metal, for example sodium or potassium, preferably at least one compound of the carbonate type, in particular an alkali metal carbonate, for example sodium, or a hydroxycarbonate chosen from hydrotalcite and dawsonite. According to a preferred embodiment of the process of the invention, the addition of the adsorbent during the final neutralization phase is carried out in powder form, preferably with an average particle size of the order of 10 to 20 microns . Other characteristics and advantages of the present invention will emerge from the description given below with reference to the appended drawings which illustrate an embodiment and an embodiment thereof which is devoid of any limiting character. In the drawings: FIG. 1 is a diagram which illustrates the various steps specified above of the process which is the subject of the present invention, and
La figure 2 est une représentation schématique d'une installation mettant en oeuvre un tel procédé. Figure 2 is a schematic representation of an installation implementing such a method.
Dans cette installation, on remarque que l'additif de neutralisation finale, qui assure la fixation des métaux lourds, est ajouté, sous forme pulvérulente et selon une granulometrie moyenne de l'ordre de 20 microns, à l'effluent liquide pré-neutralisé dans une enceinte maintenue sous agitation. Dans ce même dispositif, la séparation solide concentrat/permeat est effectuée dans un module d'ultra ou de micro-filtration à membranes qui donne d 'excellentes résultats, notamment une très bonne qualité du permeat et un faible volume des matières solides générées. En outre, l'utilisation de tels modules permet d'éviter l'addition de coagulants, pour la séparation solide/liquide. Le solide concentré, après addition éventuelle de polymère est soumis à une filtration par exemple à l'aide d'un filtre-presse, ou à un traitement par centrifugation afin de récupérer les matières solides contenant les métaux lourds qui sont ensuite vitrifiées. Le liquide issu de l'étape de filtration est recyclé en tête de l'installation. In this installation, it is noted that the final neutralization additive, which ensures the fixing of heavy metals, is added, in powder form and according to an average particle size of the order of 20 microns, to the liquid effluent pre-neutralized in an enclosure maintained with stirring. In this same device, the solid concentrate / permeat separation is carried out in an ultra or membrane microfiltration module which gives excellent results, in particular a very good quality of the permeat and a low volume of the solid materials generated. In addition, the use of such modules makes it possible to avoid the addition of coagulants, for the solid / liquid separation. The concentrated solid, after optional addition of polymer, is subjected to filtration, for example using a filter press, or to a centrifugation treatment in order to recover the solid materials containing the heavy metals which are then vitrified. The liquid from the filtration stage is recycled at the head of the installation.
Selon l'invention, on effectue une régulation du pH à la sortie de l'étape de neutralisation finale en agissant sur les concentrations de la base (NaOH) utilisée lors de l'étape de pré-neutralisation et/ou de l'additif adsorbant utilisé lors de l'étape de neutralisation finale. According to the invention, the pH is regulated at the end of the final neutralization step by acting on the concentrations of the base (NaOH) used during the pre-neutralization step and / or of the adsorbent additive. used during the final neutralization step.
Les résultats obtenus par la présente invention, et qui ressortiront de la lecture des compte-rendu d'essais, sont les suivants : - élimination des métaux lourds dont la teneur passe de 185 mg/l à moins de 10 mg/l, The results obtained by the present invention, which will emerge from the reading of the test reports, are the following: - elimination of heavy metals whose content goes from 185 mg / l to less than 10 mg / l,
- élimination des métaux : Fe, Cu, Ni, Cd, Pb, Zn, lorsque le pH, à l'issue de l'étape de neutralisation finale atteint au moins la valeur 8, elimination of metals: Fe, Cu, Ni, Cd, Pb, Zn, when the pH, at the end of the final neutralization step reaches at least the value 8,
- élimination de l'aluminium lorsque le pH atteint au moins la valeur de 7,5, mais ne dépasse pas la valeur de 9, dans l'étape de neutralisation finale ; - elimination of aluminum when the pH reaches at least the value of 7.5, but does not exceed the value of 9, in the final neutralization step;
- le mercure peut être éliminé en prévoyant une boucle additionnelle à la sortie du module de séparation, cette boucle utilisant par exemple un sulfure pour cette élimination ; the mercury can be eliminated by providing an additional loop at the outlet of the separation module, this loop using for example a sulphide for this elimination;
- réduction considérable du volume des précipitations sous forme de boues, qui sont rendues inertes, ce qui permet de stocker ou de rejeter en milieu naturel les déchets solides, sans danger pour l'environnement ; - abaissement de l'ordre de 20% du coût du traitement. - considerable reduction in the volume of precipitation in the form of sludge, which is rendered inert, which makes it possible to store or reject solid waste in a natural environment, without danger to the environment; - reduction of around 20% in the cost of treatment.
On a donné ci-après des exemples de mise en oeuvre du procédé de l'invention confirmant les résultats obtenus, mentionnés ci-dessus. Examples of implementation of the process of the invention have been given below confirming the results obtained, mentioned above.
Dans ces exemples, on a traité en laboratoire des eaux synthétiques représentatives d'eaux de lavage de fumées d'incinérateurs d'ordures ménagères (OM) et de déchets industriels chlorés (Di-CI) ou sulfatés (Di-SO4). Le tableau 1 donné en annexe précise les compositions de ces trois types d'eaux sur lesquels ont porté lesdits essais. In these examples, synthetic waters representative of washing water from smoke from household waste incinerators (OM) and chlorinated (Di-CI) or sulphated (Di-SO 4 ) industrial waste were treated in the laboratory. Table 1 given in the appendix specifies the compositions of these three types of water covered by said tests.
Le mode opératoire commun à tous les essais a été le suivant : The procedure common to all the tests was as follows:
1/ Préparation de l'eau synthétique du type considéré conforme au tableau 1 , à partir d'eau Miilipore additionnée de sels de chlorures métalliques et de1 / Preparation of synthetic water of the type considered in accordance with Table 1, using Miilipore water added with salts of metal chlorides and
CaCl2, ce qui permet d'obtenir une solution acide dont le pH est inférieur àCaCl 2 , which gives an acid solution with a pH below
2 ; 2;
2/ Pré-neutralisation de cette eau synthétique par addition de soude de manière à obtenir un pH de l'ordre de 4, ce qui élimine le fer et l'aluminium par précipitation de leurs hydroxydes métalliques.  2 / Pre-neutralization of this synthetic water by adding sodium hydroxide so as to obtain a pH of the order of 4, which eliminates iron and aluminum by precipitation of their metal hydroxides.
3/ Addition de l'additif de neutralisation finale pour amener le pH à la valeur voulue, conformément au procédé exposé ci-dessus (les différentes valeurs de pH testées sont indiquées ci-après).  3 / Addition of the final neutralization additive to bring the pH to the desired value, in accordance with the process set out above (the various pH values tested are indicated below).
Dans cette étape de neutralisation finale, on a utilisé des additifs tels que décrits dans la demande de brevet RHONE-POULENC mentionnée ci-dessus, c'est-à-dire respectivement :  In this final neutralization step, additives were used as described in the RHONE-POULENC patent application mentioned above, that is to say respectively:
. un adsorbant composite constitué d'un mélange (en % molaire) d'argile . a composite adsorbent consisting of a mixture (in mol%) of clay
(25%) et de carbonate (75%) et (25%) and carbonate (75%) and
. un adsorbant composite silicate constitué d'un mélange (en % molaire) d'argile (25%) de carbonate (37,5%), et de silicate (37,5%). Les quantités minimales des matériaux ainsi ajoutés sous forme pulvérulente et selon la granulometrie mentionnée ci-dessus, aux eaux synthétiques préneutralisées sont basées sur la stoechiométrie = nombre de fonctions carbonates + silicates = nombre de moles de métaux totaux (Cu + Ni + Cd + Pb + Hg + Zn) + nombre de moles de Ca. Soit en masse : . a silicate composite adsorbent consisting of a mixture (in mol%) of clay (25%) of carbonate (37.5%), and of silicate (37.5%). The minimum quantities of the materials thus added in pulverulent form and according to the granulometry mentioned above, to the pre-neutralized synthetic waters are based on the stoichiometry = number of carbonate + silicate functions = number of moles of total metals (Cu + Ni + Cd + Pb + Hg + Zn) + number of moles of Ca. Let be in mass:
4 g/l de composite 4 g / l of composite
4 g/l de composite silicate 4 g / l of silicate composite
Cette addition s'effectue sous agitation comme on l'a déjà précisé, et l'on constate que le pH monte instantanément jusqu'aux valeurs indiquées dans les tableaux 2 à 7 suivants.  This addition is carried out with stirring as has already been specified, and it is found that the pH instantly rises to the values indicated in tables 2 to 7 below.
Selon l'invention, la régulation du pH obtenu à l'issue de l'étape de neutralisation finale peut être effectuée en contrôlant la concentration de la base (NaOH) utilisée lors de l'étape de pré-neutralisation, et/ou de l'addition de l'adsorbant composite mis en oeuvre dans l'étape de neutralisation finale, comme on l'a précisé ci-dessus. According to the invention, the regulation of the pH obtained at the end of the final neutralization step can be carried out by controlling the concentration of the base (NaOH) used during the pre-neutralization step, and / or the addition of the composite adsorbent used in the final neutralization step, as specified above.
On a effectué ensuite le dosage des métaux dans le filtrat, et les résultats obtenus ont été consignés dans les tableaux 2 à 7 suivants, qui donnent les résultats pour différentes compositions d'eaux synthétiques correspondant au tableau 1 , et pour les différents adsorbants spécifiés ci-dessus. The metals in the filtrate were then assayed, and the results obtained were recorded in the following tables 2 to 7, which give the results for different synthetic water compositions corresponding to table 1, and for the various adsorbents specified above. -above.
Dans le tableau 2 : pour OM + composite (pH initial = 7,2) : on remarque qu'il faut élever encore le pH à partir de cette valeur initiale (soit par addition de soude lors de l'étape de pré-neutralisation, soit par addition du composite) jusqu'à 9, pour éliminer le zinc, l'élimination d'aluminium posant alors un problème. Le résultat optimal est obtenu pour pH = 8,5. Dans le tableau 3 : pour OM + composite silicate (pH initial = 7,9) on constate une bonne élimination de tous les métaux, sauf du mercure. Dans le tableau 4 : pour Di-CI + composite (pH initial 5,6) on constate que l'élimination en métaux totaux est faible pour cette valeur de pH. Après réajustement du pH (comme indiqué ci-dessus : soit par addition de NaOH dans l'étape de pré-neutralisation ou addition de composite dans l'étape de neutralisation finale), on constate que l'élimination des métaux est bonne pour un pH proche de 9, avec un problème en ce qui concerne l'élimination de l'aluminium, la valeur optimale du pH se situant aux alentours de 8 (pH = 7,8). Dans le tableau 5 : pour Di-CI + composé silicate (pH initial 6,7), on constate une bonne élimination à cette valeur de pH jusqu'à la valeur de pH = 9, les résultats optimaux étant obtenus pour une valeur voisine de 8 (pH = 7,7). Dans le tableau 6 : pour Di-SO4 + composite (pH initial = 5,8) on constate une faible élimination des métaux pour cette valeur de pH, et que la valeur optimale se situe à PH = 8,5. In Table 2: for OM + composite (initial pH = 7.2): we note that the pH must be further raised from this initial value (either by adding sodium hydroxide during the pre-neutralization step, or by adding the composite) up to 9, to eliminate the zinc, the elimination of aluminum then posing a problem. The optimal result is obtained for pH = 8.5. In Table 3: for OM + composite silicate (initial pH = 7.9), good elimination of all metals except mercury is noted. In Table 4: for Di-CI + composite (initial pH 5.6), it can be seen that the elimination of total metals is low for this pH value. After readjusting the pH (as indicated above: either by addition of NaOH in the pre-neutralization step or addition of composite in the final neutralization step), it is found that the removal of the metals is good for a pH close to 9, with a problem regarding the elimination of aluminum, the optimal pH value being around 8 (pH = 7.8). In Table 5: for Di-CI + silicate compound (initial pH 6.7), good elimination is observed at this pH value up to the pH value = 9, the optimal results being obtained for a value close to 8 (pH = 7.7). In Table 6: for Di-SO 4 + composite (initial pH = 5.8), there is a slight elimination of metals for this pH value, and that the optimal value is located at PH = 8.5.
Dans le tableau 7 : pour Di-SO4 + composé silicate (pH initial 6,9) on constate une élimination optimale à pH = 9. In Table 7: for Di-SO 4 + silicate compound (initial pH 6.9) there is an optimal elimination at pH = 9.
Dans tous les cas, on remarque que le composé silicate est plus efficace pour l'élimination des métaux dans tous les types d'eaux pour dosage à la stoechiométrie en amenant le pH à 8,5. In all cases, it is noted that the silicate compound is more effective for the removal of metals in all types of water for dosing at stoichiometry by bringing the pH to 8.5.
A titre de comparaison, on rappellera que les normes de rejets liquides en milieu naturel (auxquelles doivent naturellement satisfaire les eaux de lavage des fumées d'incinérateurs rejetées après traitement) sont les suivantes : . Métaux lourds totaux < 15 mg/l By way of comparison, it will be recalled that the standards for liquid discharges into the natural environment (which must naturally comply with the water used to wash the flue gases from incinerators released after treatment) are as follows: . Total heavy metals <15 mg / l
. Cr VI < 0,1 mg/l . Cr VI <0.1 mg / l
. Pb < 1 mg/l . Pb <1 mg / l
. As < 0,5 mg/l . As <0.5 mg / l
. CN < 0,1 mg/l . CN <0.1 mg / l
. Cd < 0,2 mg/l . Cd <0.2 mg / l
. Hg total < 0,05 mg/l. . Total Hg <0.05 mg / l.
Dans tous les cas, avec un choix optimal du pH à l'issue de l'étape finale de neutralisation, compte-tenu de l'additif de neutralisation et de fixation des métaux lourds mis en oeuvre, l'invention permet de satisfaire les normes relatives à l'élimination des métaux lourds. Par ailleurs, le faible volume des rejets solides et leur composition qui permet de les rendre inertes, facilitent leur stockage ou leur rejet en milieu naturel sans risques pour l'environnement. En ce qui concerne le mercure, on a vu ci-dessus que son élimination peut être obtenue à l'aide d'une boucle spécifique après l'étape de séparation. In all cases, with an optimal choice of pH at the end of the final neutralization step, taking into account the additive for neutralization and fixing of heavy metals used, the invention makes it possible to meet the standards relating to the elimination of heavy metals. Furthermore, the small volume of solid discharges and their composition which makes them inert, facilitate their storage or their rejection in a natural environment without risks for the environment. As regards mercury, it has been seen above that its elimination can be obtained using a specific loop after the separation step.
II demeure bien entendu que la présente invention n'est pas limitée aux exemples de mise en oeuvre ou de réalisation décrits et/ou mentionnés ici, mais qu'elle en englobe toutes les variantes. It remains to be understood that the present invention is not limited to the examples of implementation or embodiment described and / or mentioned here, but that it encompasses all variants thereof.
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0002
Figure imgf000013_0001
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0002
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0002

Claims

REVENDICATIONS
1 - Procédé d'élimination des métaux lourds contenus dans des effluents liquides, notamment dans des eaux de lavage de fumées d'incinérateurs d'ordures ménagères ou de déchets industriels, caractérisé en ce qu'il consiste à : 1 - Process for the elimination of heavy metals contained in liquid effluents, in particular in water for washing fumes from incinerators of household or industrial waste, characterized in that it consists of:
- soumettre l'effluent liquide contenant les métaux lourds à éliminer à une pré-neutralisation, notamment à l'aide de soude, de manière à élever le pH de l'effluent liquide d'une valeur de l'ordre de 1 jusqu'à environ 4, ce qui précipite les hydroxydes métalliques ; - subject the liquid effluent containing the heavy metals to be eliminated to a pre-neutralization, in particular using sodium hydroxide, so as to raise the pH of the liquid effluent by a value of the order of 1 to about 4, which precipitates the metal hydroxides;
- soumettre l'effluent liquide ainsi pré-neutralisé à l'action dosée d'un additif de neutralisation finale permettant d'amener le pH de l'effluent à traiter jusqu'à une valeur de l'ordre de 9, cet additif assurant la fixation des métaux lourds ; - subject the liquid effluent thus pre-neutralized to the metered action of a final neutralization additive making it possible to bring the pH of the effluent to be treated to a value of the order of 9, this additive ensuring the fixing of heavy metals;
- effectuer le séparation des métaux lourds et ; - separate heavy metals and;
- filtrer le solide concentré issu de l'étape de séparation pour obtenir d'une part les matières solides contenant les métaux lourds que l'on peut soumettre ensuite à une vitrification, et d'autre part la matière liquide. 2 - Procédé selon la revendication 1 caractérisé en ce que l'additif de neutralisation finale et de fixation des métaux lourds est choisi dans le groupe qui comprend : les zeolites, les hydroxycarbonates, les matériaux échangeurs d'ions, des adsorbants tels que notamment des mélanges composites argiles + silicates et argiles + silicates + carbonates. 3 - Procédé selon l'une des revendications 1 ou 2 caractérisé en ce que l'additif de neutralisation finale et de fixation des métaux lourds est ajouté sous forme pulvérulente. - Filter the concentrated solid from the separation step to obtain on the one hand the solid materials containing heavy metals which can then be subjected to vitrification, and on the other hand the liquid material. 2 - Process according to claim 1 characterized in that the additive for final neutralization and fixing of heavy metals is chosen from the group which comprises: zeolites, hydroxycarbonates, ion exchange materials, adsorbents such as in particular composite mixtures of clays + silicates and clays + silicates + carbonates. 3 - Method according to one of claims 1 or 2 characterized in that the additive for final neutralization and fixing of heavy metals is added in powder form.
4- Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que la séparation solide concentré/permeat est effectuée à l'aide de modules d'ultra ou de micro-filtration à membranes. 4- A method according to any one of claims 1 to 3 characterized in that the concentrated solid / permeat separation is carried out using ultra modules or membrane microfiltration.
5- Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'on effectue une régulation du pH à la sortie de l'étape de neutralisation finale en agissant sur les concentrations de la base utilisée dans l'étape de pré-neutralisation et/ou de l'additif utilisé lors de l'étape de neutralisation finale. 6 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le mercure est éliminé à l'aide d'une boucle additionnelle, prévue à la sortie du module de séparation, cette boucle utilisant notamment un sulfure en vue de cette élimination. 5- Method according to any one of the preceding claims, characterized in that a pH regulation is carried out at the end of the final neutralization step by acting on the concentrations of the base used in the pre-neutralization step and / or the additive used during the final neutralization step. 6 - Method according to any one of the preceding claims, characterized in that the mercury is removed using an additional loop, provided at the outlet of the separation module, this loop using in particular a sulfide for this elimination .
PCT/FR1996/001150 1995-07-28 1996-07-22 Method for removing heavy metals from liquid effluents WO1997005068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR95/09256 1995-07-28
FR9509256A FR2731422B1 (en) 1995-07-28 1995-07-28 PROCESS FOR REMOVING HEAVY METALS FROM LIQUID EFFLUENTS

Publications (1)

Publication Number Publication Date
WO1997005068A1 true WO1997005068A1 (en) 1997-02-13

Family

ID=9481524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001150 WO1997005068A1 (en) 1995-07-28 1996-07-22 Method for removing heavy metals from liquid effluents

Country Status (2)

Country Link
FR (1) FR2731422B1 (en)
WO (1) WO1997005068A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008302064B9 (en) * 2007-09-20 2012-11-22 Skyonic Corporation Removing carbon dioxide from waste gas streams through co-generation of carbonate and/or bicarbonate minerals
WO2016202694A1 (en) * 2015-06-16 2016-12-22 Cappellotto S.P.A. Vehicle-mounted portable apparatus for clarification and disinfection of wastewater produced by the washing of road drainage inlets and drains and tunnels, and method for clarification and disinfection of wastewater produced by the washing of road drainage inlets and drains and tunnels

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1081837B (en) * 1958-03-12 1960-05-12 Siegfried Barth Neutralization system for acidic industrial waste water
DE1170334B (en) * 1961-06-02 1964-05-14 Siegfried Barth Neutralization system for acidic industrial waste water
FR2218389A1 (en) * 1973-02-19 1974-09-13 Hitachi Shipbuilding Eng Co
JPS574284A (en) * 1980-06-12 1982-01-09 Sumitomo Chem Co Ltd Heavy metal removing method in waste water
US4655928A (en) * 1983-10-18 1987-04-07 Gnb Incorporated Membrane processes for metal recovery and pollution control in metal process industries
US4746439A (en) * 1987-05-15 1988-05-24 Manville Corporation Process for removal of heavy metal contamination in waste water
SU1691321A1 (en) * 1988-11-28 1991-11-15 A.M.Цветников Method for purifying effluents from mercury

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1081837B (en) * 1958-03-12 1960-05-12 Siegfried Barth Neutralization system for acidic industrial waste water
DE1170334B (en) * 1961-06-02 1964-05-14 Siegfried Barth Neutralization system for acidic industrial waste water
FR2218389A1 (en) * 1973-02-19 1974-09-13 Hitachi Shipbuilding Eng Co
JPS574284A (en) * 1980-06-12 1982-01-09 Sumitomo Chem Co Ltd Heavy metal removing method in waste water
US4655928A (en) * 1983-10-18 1987-04-07 Gnb Incorporated Membrane processes for metal recovery and pollution control in metal process industries
US4746439A (en) * 1987-05-15 1988-05-24 Manville Corporation Process for removal of heavy metal contamination in waste water
SU1691321A1 (en) * 1988-11-28 1991-11-15 A.M.Цветников Method for purifying effluents from mercury

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 9234, Derwent World Patents Index; AN 92-282952, XP002020372 *
PATENT ABSTRACTS OF JAPAN vol. 6, no. 63 (C - 099) 22 April 1982 (1982-04-22) *

Also Published As

Publication number Publication date
FR2731422A1 (en) 1996-09-13
FR2731422B1 (en) 1997-05-09

Similar Documents

Publication Publication Date Title
TW593662B (en) Process for removing mercury from hydrocarbons
AU734044B2 (en) Process for removing selenium from refinery process water and wastewater streams
CA2077460C (en) Waste water treatment process using improved recycle of high density sludge
RU2632213C2 (en) Method and equipment for treatment of sewage waters containing radioactive strontium
CN1071716C (en) Process for preparing pure alkali and/or ammonium tungstate solutions
FR2527584A1 (en) AGENT FOR THE PURIFICATION OF WASTEWATER AND PROCESS FOR PRODUCING THE SAME
CN1232495C (en) Method of treating fluorine compound and treated substance
EP0087268B1 (en) Process for treating sludge
CN108178395A (en) A kind of vulcanization minimizing technology of arsenic in waste water and/or heavy metal
WO1997005068A1 (en) Method for removing heavy metals from liquid effluents
FR2731421A1 (en) Heavy metal removal from liq. waste, e.g. water for scrubbing flue gases from incinerators
EP0595861B1 (en) Method for producing an aqueous sodium chloride solution
FR2719304A1 (en) A heavy metal cation capture agent comprising a silicate or aluminosilicate compound and a carbonate compound.
US6936177B2 (en) Method for removing metal from wastewater
CN109019985A (en) A kind of processing method of oil-containing heavy metal wastewater thereby industry
FR2763930A1 (en) PROCESS FOR PREPARING AN ULTRA-PURE HYDROGEN PEROXIDE SOLUTION BY IONIC SEQUENCE EXCHANGE: ANIONIC-CATIONIC-ANIONIC-CATIONIC
EP0759889B1 (en) Process for valorizing a liquid acid effluent containing heavy metals
FR2496083A1 (en) PROCESS FOR REMOVING MERCURY FROM INDUSTRIAL WASTEWATER
CA2334323A1 (en) Inclusion methods for purifying a solvent
JPS6353121B2 (en)
US5785863A (en) Removing metals from aqueous waste streams
CN105722794A (en) Method of heavy metal removal from waste water streams
JPS6235837B2 (en)
US20220017390A1 (en) Method for the precipitation of arsenic and heavy metals from acidic process water
JP3947663B2 (en) Chelate regenerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase