WO1997044634A1 - Device for inspecting terminals of semiconductor package - Google Patents
Device for inspecting terminals of semiconductor package Download PDFInfo
- Publication number
- WO1997044634A1 WO1997044634A1 PCT/JP1997/001561 JP9701561W WO9744634A1 WO 1997044634 A1 WO1997044634 A1 WO 1997044634A1 JP 9701561 W JP9701561 W JP 9701561W WO 9744634 A1 WO9744634 A1 WO 9744634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging
- semiconductor package
- lens
- camera
- image
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Definitions
- the present invention relates to a semiconductor package terminal inspection device for inspecting various inspection items such as terminal displacement, pitch, flatness, and uneven tip of various semiconductor packages such as PGA, BGA, QFP, and QFJ.
- a BGA (Ball Grid Array) is a two-dimensional array of ball-shaped solder bumps on the back surface of a semiconductor package. These solder bumps are mounted directly on the printed wiring board by soldering.
- the conventional method when inspecting the misalignment, pitch, flatness, etc. of terminals of a semiconductor package such as BGA in which terminals are formed on the back surface of the package, the conventional method is based on the principle of triangulation. A laser displacement meter that measures the distance to the object to be inspected was used.
- a laser displacement meter is arranged on the semiconductor package arranged with the back side up, and the laser displacement meter measures the vicinity of the top of each solder bump of the semiconductor package by one. By scanning one by one, the height of each solder bump is measured.
- the height of each solder bump is measured one by one by the laser displacement meter, so that it takes a lot of time for the inspection, and when the surface of the solder bump has a scratch, etc., an accurate There is a problem that inspection measurement cannot be performed.
- the present invention has been made in view of such circumstances, and improves the inspection speed thereof and enables a semiconductor package terminal inspection device capable of performing accurate measurement without being affected by the surface condition of an inspection object. The purpose is to provide.
- a terminal inspection device for a semiconductor package for inspecting a terminal of a semiconductor package an imaging means for imaging a package surface of the semiconductor package from an oblique direction at a predetermined elevation angle; Inspection means for inspecting the terminals of the semiconductor package based on the information. That is, the package surface of the semiconductor package is imaged from obliquely above, so that each terminal row is obtained as a separate image, and information on their height is also obtained. In addition, since information about the terminal is captured as an image of the entire terminal, accurate height measurement can be performed even if the terminal is damaged.
- the imaging surface of the imaging unit is inclined at a predetermined angle with respect to the optical axis of the imaging unit, so that the imaging unit is focused on a wide area and a range of the package surface, and the imaging surface can be adjusted once. To expand the inspection range.
- an object-side telecentric lens is used as a lens of the image pickup means, and even if a position shift of the semiconductor package itself occurs, a shadow on an image forming position, size, and shape of each terminal. Try to keep the feast small.
- a double-sided telecentric lens is used as the lens of the image pickup means, so that the image forming position, size, and shape of each terminal are not changed even if the semiconductor package itself is misaligned.
- terminals at each position on the package surface are imaged in the same size and shape.
- FIG. 1 is a diagram showing a first embodiment of the present invention.
- FIG. 2 A perspective view showing a first embodiment of the present invention.
- Figure 3 Diagram showing the principle of measurement by the camera according to the first embodiment.
- Figure 4 Explanatory drawing of the ball height measurement formula according to the first embodiment.
- FIG. 5 A diagram showing a first embodiment of the present invention.
- FIG. 6 A diagram showing a second embodiment of the present invention.
- FIG. 7 is an explanatory diagram of the inclination angle of the imaging surface of the second embodiment.
- FIG. 8 A diagram showing a specific example of tilting the imaging surface according to the second embodiment.
- FIG. 9 A diagram showing a second embodiment of the present invention.
- FIG. 10 A diagram for explaining the operation of the second embodiment.
- Figure 11 Diagram showing captured images of BGA.
- FIG. 12 A diagram showing a third embodiment of the present invention.
- Fig. 13 Diagram for explaining the operation of the third embodiment.
- FIG. 14 A diagram showing a fourth embodiment of the present invention.
- Fig. 15 Diagram for explaining the operation of the fourth embodiment.
- FIG. 16 is an explanatory diagram of the inclination angle of the imaging surface of the fourth embodiment.
- Figure 17 Diagram for explaining ball inspection of the fourth embodiment.
- FIG. 18 A diagram for explaining a method of calculating the height displacement of the ball according to the fourth embodiment.
- FIG. 19 A diagram showing a modification of the present invention.
- FIG. 20 A diagram showing a modification of the present invention.
- FIG. 21 A diagram showing a modification of the present invention.
- FIG. 22 A diagram showing a modification of the present invention.
- FIG. 23 A diagram showing a modification of the present invention.
- FIG. 1 shows a first embodiment of the present invention.
- the inspection target is BGA 1.
- BGA1 is a land grid arrey (LGA) type chip carrier using a printed circuit board, which molds the upper surface of the chip and has a plurality of solder bumps 2 (hereinafter referred to as balls) on the lower surface. ) Are formed in a lattice pattern.
- LGA land grid arrey
- the BGA 1 is turned upside down and placed on the BGA tray 3. In this case, the BGA tray 3 can be moved only in the X direction.
- a half mirror 4 is provided, and further above that, a lighting 5 is provided.
- the camera A is for capturing an image of the back surface of the BGA 1 on which the ball 2 is disposed straight from above. In this case, the back surface image of the BGA 1 is captured via the half mirror 4 as a plan view image.
- Lighting 5 is for Camera A.
- the illumination 6 is also provided on the side of the BGA1, and is turned on when the other camera B performs imaging.
- the camera B is for obliquely capturing an image of the back surface of the BGA 1 on which the ball 2 is disposed from above, and its elevation angle 0 is set to, for example, about 20 degrees.
- the illumination 6 is a planar illumination so that the back surface of the BGA 1 is uniformly illuminated.
- the illumination 6 needs to have a certain height from the upper surface of the BGA tray 3 so that the substrate surface of the BGA 1 does not emit light.
- the flat plate illumination includes an arrangement of a plurality of LEDs and a fiber bundle. Lighting and the like can be used.
- the cameras A and B, the lights 5 and 6 and the half mirror 14 are housed in an inspection unit 7 as shown in FIG. 2, and the inspection unit 7 itself can be moved in the y-z direction. It is configured. However, camera B can be moved in the X direction by camera B alone.
- the cameras A and B are assumed to have a field of view that cannot image the entire back surface of the BGA 1 at a time, so that the movement of the BGA tray 1 in the X direction and the y of the inspection unit 7 — Combined with movement in the z-direction, imaging scanning for BGA 1 is performed.
- the inspection unit 7 may be movable in the X-y-z directions so that the BGA tray 3 may be fixed, and vice versa.
- cameras A and B cameras having a field of view that can image the entire back surface of BGA1 at one time may be adopted.
- BGA 1 is imaged obliquely from above for camera B, so it is not possible to focus on the entire field of view of the camera by one image, so it was imaged in one image
- One to several rows of images of ball 2 are captured as inspection targets.
- one to several rows of ball images are captured while moving camera B in the X direction.
- the imaging data of these cameras A and B are taken into the control unit 8 of FIG.
- the control unit 8 performs image processing on the imaging data of the cameras A and B and performs the calculation described below, thereby displacing the position of the ball 2 on the plane (X-y plane) and the true height of each ball. Inspect the flatness of each ball in the height direction (z direction).
- the BGA tray 3 is transported in the X direction, and the BGA 1 to be inspected this time is positioned at a predetermined inspection position and stopped.
- the inspection unit 7 is appropriately moved in the y-z directions to position the inspection unit 7 at a predetermined imaging position above BGA1.
- the light 5 is turned off and the other light 6 is turned on, and the height of each ball in the oblique direction is obtained by capturing the back surface of BGA 1 obliquely from above with the camera B. That is, as shown in FIG. 3, the height d of the ball 2 in the direction z perpendicular to the optical axis of the camera B is obtained from the image data of the camera B.
- camera B alternately captures a ball image in units of one to several rows and moves in the X direction.
- all ball images captured in the camera's field of view can be captured at once.
- a CCD camera is used as the camera, it is possible to use the CCD shutter function to trigger the camera at appropriate intervals to capture the captured image, and capture the image without stopping the camera. is there.
- the control unit 8 obtains the height d of each ball in the oblique direction by performing processing such as pattern matching on the imaging data of the camera B. Then, when this height data d is obtained, as shown in FIG. 4, the height z of each ball is calculated using the height data d, the previously known ideal radius r of the ball, and the elevation angle ⁇ of the camera B.
- the height H in the direction is calculated according to the following equation (1).
- ball images for a plurality of rows are captured at once by two cameras, and based on the captured data, inspection of various items of the BGA ball is performed.
- the inspection speed is improved, and an accurate inspection can be performed without being affected by surface conditions such as scratches on the ball surface.
- the ball 2 on the back surface of the BGA 1 is imaged from obliquely above the BGA 1, so that each ball row can be obtained as a separated image and information on their height can also be obtained. it can.
- the height information is measured from the entire ball image, accurate height measurement can be performed even if the ball has a scratch or the like.
- the camera B uses an ordinary camera in which the lens 11 and the imaging surface 12 are arranged at right angles to the optical axis 10 of the camera B.
- the position (plane) 13 where camera B is in focus is limited to only a small portion near the focal position of lens 11, and otherwise the focus is not achieved.
- the object plane the back side of BGA 1
- the image plane 12 Is perpendicular to the optical axis 12, so the distance to the lens 11 is long.
- the left part of BGA an image is formed on the lens 11 side from the image plane 12, and the distance to the lens 11 is small.
- the right part of the short BGA the image is formed on the side farther than the image plane 12. Therefore, in the first embodiment, it is necessary to move the camera B (or the BGA tray 3) in the X direction to sequentially move the focus position.
- the position where the camera B is in focus is limited to only a part.
- the image plane 12 of the camera B is inclined with respect to the optical axis 10 as shown in FIG. That is, the imaging surface 12 is inclined by a predetermined angle ⁇ 2 with respect to the optical axis 10 so that the imaging surface 12 has a conjugate relationship with the object surface (in this case, the back surface of the BGA 1).
- the focal length of lens 11 is f
- the distance from lens 11 to object plane 1 is Ll
- the distance from lens 11 to imaging plane 12 is L2
- the distance of object plane 1 is L2.
- the imaging plane 12 is inclined so as to have a conjugate relationship with the object plane 1, so that it is possible to focus at all positions on the object plane. This eliminates the need to move camera B (or BGA tray 3) in the X direction during BGA inspection, thereby improving inspection speed and simplifying equipment configuration. Can be realized.
- a plane image of the back surface of the BGA is taken from above the BGA 1 as in the first embodiment.
- a method for inclining the imaging surface 12 of the camera B As a method for inclining the imaging surface 12 of the camera B, a method of inclining the imaging surface (CCD) 12 itself with respect to the housing 19 of the camera B as shown in FIG. As shown in FIG. 8 ( ⁇ ), an attachment 14 is arranged between the lens 11 of the camera B and the imaging surface 12 to incline the camera housing 19 itself with respect to the optical axis 10. However, there is a method of preventing the imaging surface 12 itself from being inclined with respect to the housing 13 of the camera B.
- the imaging surface 12 of the camera B employs a special one with an inclined angle, but the lens 11 uses a normal lens.
- both the incoming light and the outgoing light of the lens 11 have an angle of view. Therefore, as shown in FIG. 10, when a plurality of works 20 of the same size q are imaged using such a normal lens 11, the work on the imaging surface 12 depends on the position of the work 20. Changes the size of (see ql, q2). Further, if the position of the object 1 itself changes as shown in FIG. 10 (in this case, it is assumed that the position is shifted in the direction along the optical axis 10), the object 1 Shape and size will change.
- the BGA 1 in which the balls 2 as shown in FIG. 11 are two-dimensionally arrayed is imaged by the configuration according to the second embodiment, the image is obtained by the perspective projection as shown in FIG.
- the size and shape of the imaging ball change depending on the position of the ball 2.
- an object side telecentric lens 30 is employed.
- a telecentric lens is a lens having an angle of view of 0 °, that is, a principal ray is parallel to an optical axis
- an object-side telecentric lens is a lens that realizes a telecentric lens only on the object side.
- FIG. 12 shows the third embodiment, in which the imaging surface 12 of the camera B is inclined with respect to the optical axis 10 and the object-side telecentric lens 30 is adopted as the lens of the camera B.
- the camera A a plane image of the back surface of the BGA is taken from above the BGA 1 as in the previous embodiment.
- the inclination angle ⁇ 2 of the imaging surface 12 is set using the above-mentioned formula (23), as in the case of the normal lens.
- the object side telecentric lens 30 is used for the lens of the camera B, the light (principal ray) from the object to the lens 30 is a light as shown in FIG. Becomes parallel to axis 10.
- the angle of view at each position on the surface of the BGA 1 is constant, and the image is blurred even when the BGA 1 itself is shifted in the optical axis direction as shown in FIG.
- the blur amount can be reduced. It can. That is, when the object 1 is displaced by the same distance in the optical axis direction, the object-side telecentric lens 30 is less blurred than the normal lens.
- the normal lens 11 or the object side telecentric lens 3 In order to eliminate the phenomenon shown in Fig. 11 that occurs when 0 is used, that is, the phenomenon that the size and shape of the captured image changes according to the position of the target object to be imaged, instead of the side telecentric lens 30, a bilateral telecentric lens 40 is adopted.
- a double-sided telecentric lens is one that implements a telecentric optical system on the object side and the imaging surface side.
- FIG. 14 shows this fourth embodiment, in which the imaging surface 12 of the camera B is obliquely inclined with respect to the optical axis 10, and both-side telecentric lenses and a kick lens 40 are employed as lenses of the camera. .
- a plane image of the back surface of BGA is taken from above BGA1.
- the double-sided telecentric lens 40 is used as the lens of the camera B, the light from the object with respect to the lens 40 becomes parallel to the optical axis 1 °, and the imaging surface from the lens 40 The light emitted to 12 is also parallel to the optical axis 10.
- a plane image of the back surface of BG A 1 is captured by camera A. This imaging data is shown in FIG. 17 (). From the imaging data, for example, the following three items are inspected.
- FIG. 18 is a drawing for explaining the calculation for calculating the displacement h from the standard height of each ball based on the ball images picked up by the cameras A and B. It is assumed that not only the direction but also the X direction is shifted. That is, xl is the position in the X direction on the imaging surface 15 of the camera A when the ball 2 is at the ideal X position, and is xl on the imaging surface 15 of the camera A when the ball 2 is at the ideal z position. Assuming that the position in the w direction of wl is wl, the position x2, w2 of the ball image in each direction x, w of each of the cameras A, B is detected, and this is substituted into the following equation 6) to obtain the displacement h Can be requested.
- BGA1 The details of the inspection of BGA1 are the same as those in the second and third embodiments.
- the imaging surface of the camera B is tilted so as to have a conjugate relationship with the object surface, and the telecentric lens is used as the lens of the camera B, the BGA 1 This makes it possible to secure a backside ball image at one time, and to capture balls at different positions on the BGA 1 as images of the same size and the same shape.
- the present invention is applied to the BGA, but any other semiconductor such as PGA (Pin Grid Array), QFP (Quad flat package),
- the present invention may be applied to inspection of package terminals.
- the present invention may be applied to an electrode array inspection of a connector or the like. For example, in the case where the pitch ⁇ of the electrode 50 of the connector as shown in FIG. 19 is measured, when this is imaged from above with a normal camera, as shown in FIG. A sharp image of only the electrode 50 cannot be captured due to the influence of the image of the portion.
- the present invention is applied to an IC terminal flatness inspection (detection of vertical displacement of an IC terminal) as shown in FIG. 20 and a bonding wire 52 height inspection as shown in FIG. You can do it.
- the positions of camera B and camera A can be made closer, which allows the camera part
- the configuration can be compact.
- the two lights 5 and 6 are alternately turned on, a force s , and one of the lights is a red light and the other is a green light. If the emission spectrum is made different and each camera A and B is provided with a filter that allows only one of the illumination light to pass, the two illuminations 5 and 6 can be always turned on. The troublesome control of alternate lighting can be omitted.
- a ring-shaped illumination 70 made of LED or the like may be used as illumination for camera A. That is, in the configuration of FIG. 23, when driving camera A, ring-shaped illumination 70 is turned on (flat illumination 71 is turned off), and when driving camera B, flat illumination 71 is turned on. Lights up (ring light 70 is off).
- the terminals of the semiconductor package are inspected by imaging the package surface of the semiconductor package from a diagonal direction with a predetermined elevation angle. And information on the height of each terminal can be obtained. In addition, since the information about the terminal is captured as a whole image of the terminal, accurate height measurement can be performed even if the terminal is damaged.
- the imaging surface of the imaging means is inclined at a predetermined angle with respect to the optical axis of the imaging means, so that the imaging means can be focused on a wide area of the package surface, thereby enabling one inspection.
- the range can be expanded, and the inspection speed can be improved.
- the object side telecentric lens is used as the lens of the imaging means, so that even if the semiconductor package itself is misaligned, the imaging position, size, and shape of each terminal are not changed. This makes it possible to simplify image processing and arithmetic processing for terminal inspection.
- the image forming position, size, and shape of each terminal are not changed even if the semiconductor package itself is misaligned.
- the terminals at each position on the package surface are imaged in the same size and shape. As a result, it becomes possible to further simplify image processing and arithmetic processing for terminal inspection.
Landscapes
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
An inspecting device comprising an image pickup means which picks up the image of the package surface of a semiconductor package from above obliquely at a predetermined angle of elevation and an inspecting means which inspects the terminals of the semiconductor package based on the pickup data obtained by the image pickup means. The inspecting speed is increased and accurate measurement is achieved irrespective of the surface condition of an object to be inspected.
Description
明 細 書 Specification
半導体パッケージの端子検査装置 Semiconductor package terminal inspection equipment
技術分野 Technical field
この発明は P G A、 B G A、 Q F P、 Q F Jなどの各種半導体パッケージの端 子の位置ズレ、 ピッチ、 平坦度、 先端不揃いなどの各種検査項目を検査する半導 体パッケージの端子検査装置に関する。 The present invention relates to a semiconductor package terminal inspection device for inspecting various inspection items such as terminal displacement, pitch, flatness, and uneven tip of various semiconductor packages such as PGA, BGA, QFP, and QFJ.
背景技術 Background art
B G A (Ball Grid Array) は、 半導体パッケージの裏面にボール状のハンダ バンプが 2次元配列されたものであり、 これらハンダバンプによってプリント配 線基板に直接ハンダ付けして実装される。 A BGA (Ball Grid Array) is a two-dimensional array of ball-shaped solder bumps on the back surface of a semiconductor package. These solder bumps are mounted directly on the printed wiring board by soldering.
この B G Aのようなパッケ一ジ裏面に端子が形成されたタイプの半導体パッケ —ジに関して、 端子の位置ズレ、 ピッチ、 平坦度などを検査する際、 従来は、 3 角測量の原理を用いて被検査対象までの距離を測定するレーザ変位計を用いるよ うにしていた。 Conventionally, when inspecting the misalignment, pitch, flatness, etc. of terminals of a semiconductor package such as BGA in which terminals are formed on the back surface of the package, the conventional method is based on the principle of triangulation. A laser displacement meter that measures the distance to the object to be inspected was used.
すなわち、 この従来技術では、 裏面を上にして配設された上記半導体パッケ一 ジの上にレーザ変位計を配置し、 このレ一ザ変位計で半導体パッケージの各ハン ダバンプの頂上部付近を 1つずつ走査することで、 各ハンダバンプの高さを計測 するようにしている。 That is, in this prior art, a laser displacement meter is arranged on the semiconductor package arranged with the back side up, and the laser displacement meter measures the vicinity of the top of each solder bump of the semiconductor package by one. By scanning one by one, the height of each solder bump is measured.
このように従来技術では、 レーザ変位計によって各ハンダバンプの高さを 1つ ずつ計測するようにしているので、 検査に多くの時間がかかり、 またハンダバン プの表面に傷等がある場合、 正確な検査測定をなし得ないという問題がある。 この発明はこのような実情に鑑みてなされたもので、 その検査速度を向上させ ると共に、 検査対象の表面状態に影饗されることなく正確な測定をなし得る半導 体パッケージの端子検査装置を提供することを目的とする。 As described above, in the prior art, the height of each solder bump is measured one by one by the laser displacement meter, so that it takes a lot of time for the inspection, and when the surface of the solder bump has a scratch, etc., an accurate There is a problem that inspection measurement cannot be performed. SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and improves the inspection speed thereof and enables a semiconductor package terminal inspection device capable of performing accurate measurement without being affected by the surface condition of an inspection object. The purpose is to provide.
発明の開示 Disclosure of the invention
この発明では、 半導体パッケ一ジの端子を検査する半導体パッケージの端子検 查装置において、 この半導体パッケージのパッケージ面を所定の仰角をもって斜 め方向から撮像する撮像手段と、 この撮像手段の撮像データに基づいて半導体パ ッケージの端子を検査する検査手段とを具えるようにする。
すなわち、 半導体パッケージのパッケージ面を斜め上方から撮像するようにし て、 各端子列を分離した画像として得るようにするとともに、 それらの高さに関 する情報も得る。 また、 端子に関する情報は端子全体画像として捉えるので、 端 子に傷などがあった場合でも正確な高さ測定をなし得る。 According to the present invention, in a terminal inspection device for a semiconductor package for inspecting a terminal of a semiconductor package, an imaging means for imaging a package surface of the semiconductor package from an oblique direction at a predetermined elevation angle; Inspection means for inspecting the terminals of the semiconductor package based on the information. That is, the package surface of the semiconductor package is imaged from obliquely above, so that each terminal row is obtained as a separate image, and information on their height is also obtained. In addition, since information about the terminal is captured as an image of the entire terminal, accurate height measurement can be performed even if the terminal is damaged.
またこの発明では、 前記撮像手段の撮像面を撮像手段の光軸に対し所定角度傾 斜させるようにすることで、 パッケージ面の広 t、範囲に撮像手段のピントが合う ようにして、 一回の検査範囲を広げるようにしている。 Also, in the present invention, the imaging surface of the imaging unit is inclined at a predetermined angle with respect to the optical axis of the imaging unit, so that the imaging unit is focused on a wide area and a range of the package surface, and the imaging surface can be adjusted once. To expand the inspection range.
またこの発明では、 前記撮像手段のレンズとして、 物体側テレセントリ ックレ ンズを採用するようにして、 半導体パッケージ自体の位置ズレが発生しても各端 子の結像位置、 大きさ、 形状への影饗が小さくなるようにする。 Further, in the present invention, an object-side telecentric lens is used as a lens of the image pickup means, and even if a position shift of the semiconductor package itself occurs, a shadow on an image forming position, size, and shape of each terminal. Try to keep the feast small.
更にこの発明では、 前記撮像手段のレンズとして、 両側テレセントリ ックレン ズを採用するようにして、 半導体パッケージ自体の位置ズレが発生しても各端子 の結像位置、 大きさ、 形状が変わらないようにするとともに、 パッケージ面の各 位置にある端子が同じ大きさ及び形状で撮像されるようにしている。 Further, in the present invention, a double-sided telecentric lens is used as the lens of the image pickup means, so that the image forming position, size, and shape of each terminal are not changed even if the semiconductor package itself is misaligned. In addition, terminals at each position on the package surface are imaged in the same size and shape.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 : この発明の第 1実施例を示す図。 FIG. 1 is a diagram showing a first embodiment of the present invention.
図 2 : この発明の第 1実施例を示す斜視図。 FIG. 2: A perspective view showing a first embodiment of the present invention.
図 3 :第 1の実施例によるカメラによる測定原理を示す図。 Figure 3: Diagram showing the principle of measurement by the camera according to the first embodiment.
図 4 :第 1の実施例によるボール高さ測定式の説明図。 Figure 4: Explanatory drawing of the ball height measurement formula according to the first embodiment.
図 5 : この発明の第 1実施例を示す図。 FIG. 5: A diagram showing a first embodiment of the present invention.
図 6 : この発明の第 2実施例を示す図。 FIG. 6: A diagram showing a second embodiment of the present invention.
図 7 :第 2実施例の撮像面の傾斜角の説明図。 FIG. 7 is an explanatory diagram of the inclination angle of the imaging surface of the second embodiment.
図 8 :第 2実施例による撮像面を傾斜させる具体例を示す図。 FIG. 8: A diagram showing a specific example of tilting the imaging surface according to the second embodiment.
図 9 : この発明の第 2実施例を示す図。 FIG. 9: A diagram showing a second embodiment of the present invention.
図 1 0 :第 2実施例の作用を説明するための図。 FIG. 10: A diagram for explaining the operation of the second embodiment.
図 1 1 : B G Aの撮像画像などを示す図。 Figure 11: Diagram showing captured images of BGA.
図 1 2 : この発明の第 3実施例を示す図。 FIG. 12: A diagram showing a third embodiment of the present invention.
図 1 3 :第 3実施例の作用を説明する為の図。 Fig. 13: Diagram for explaining the operation of the third embodiment.
図 1 4 : この発明の第 4実施例を示す図。
図 15 :第 4実施例の作用を説明する為の図。 FIG. 14: A diagram showing a fourth embodiment of the present invention. Fig. 15: Diagram for explaining the operation of the fourth embodiment.
図 16 :第 4実施例の撮像面の傾斜角の説明図。 FIG. 16 is an explanatory diagram of the inclination angle of the imaging surface of the fourth embodiment.
図 1 7 :第 4実施例のボール検査を説明するための図。 Figure 17: Diagram for explaining ball inspection of the fourth embodiment.
図 18 :第 4実施例のボールの高さ変位の演算手法を説明する図。 FIG. 18: A diagram for explaining a method of calculating the height displacement of the ball according to the fourth embodiment.
図 19 : この発明の変形例を示す図。 FIG. 19: A diagram showing a modification of the present invention.
図 20 : この発明の変形例を示す図。 FIG. 20: A diagram showing a modification of the present invention.
図 21 : この発明の変形例を示す図。 FIG. 21: A diagram showing a modification of the present invention.
図 22 : この発明の変形例を示す図。 FIG. 22: A diagram showing a modification of the present invention.
図 23 : この発明の変形例を示す図。 FIG. 23: A diagram showing a modification of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下この発明の実施例を添付図面に従って詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[第 1実施例] [First embodiment]
図 1にこの発明の第 1実施例を示す。 FIG. 1 shows a first embodiment of the present invention.
図 1の実施例では検査対象を BGA 1とする。 BGA1は、 周知のように、 プ リント基板を用いた LG A (Land grid arrey) タイプのチップキャリアであり、 チップの上面側をモ一ルドし、 下面側に複数のハンダバンプ 2 (以下ボールとい う) を格子状に形成したものである。 In the embodiment of FIG. 1, the inspection target is BGA 1. As is well known, BGA1 is a land grid arrey (LGA) type chip carrier using a printed circuit board, which molds the upper surface of the chip and has a plurality of solder bumps 2 (hereinafter referred to as balls) on the lower surface. ) Are formed in a lattice pattern.
この BGA 1を表裏反転して BGAトレイ 3上に載置する。 この場合、 BGA トレィ 3は、 X方向にのみ移動可能とする。 The BGA 1 is turned upside down and placed on the BGA tray 3. In this case, the BGA tray 3 can be moved only in the X direction.
BGA1の上方には、 ハーフミラー 4が配設され、 更にその上方には照明 5が 配設されている。 カメラ Aは、 BGA 1のボ一ル 2が配設された裏面を真っ直ぐ 上方から撮像するためのもので、 この場合はハーフミラー 4を介して BGA1の 裏面像を平面図像として撮像する。 なお、 照明 5はカメラ A用の照明である。 Above the BGA 1, a half mirror 4 is provided, and further above that, a lighting 5 is provided. The camera A is for capturing an image of the back surface of the BGA 1 on which the ball 2 is disposed straight from above. In this case, the back surface image of the BGA 1 is captured via the half mirror 4 as a plan view image. Lighting 5 is for Camera A.
—方、 BGA1の側部にも照明 6が設けられており、 他方のカメラ Bで撮像を 行うときに点灯される。 カメラ Bは、 ボール 2が配設された BGA 1の裏面を斜 め上方から撮像するもので、 その仰角 0は例えば 20度前後に設定する。 なお、 この場合、 照明 6は平面照明として、 BGA 1の裏面が一様に照射されるように している。 また、 照明 6は、 BGA 1の基板面が光らないように BGAトレィ 3 の上面からある程度の高さを設けることが必要である。
なお、 照明 5, 6としては、 平板状のものを用いると、 基板面を一様に照明す る点で有利であるが、 この平板照明としては、 複数の L E Dを配列したもの、 フ アイババンドル照明などを利用することができる。 On the other hand, the illumination 6 is also provided on the side of the BGA1, and is turned on when the other camera B performs imaging. The camera B is for obliquely capturing an image of the back surface of the BGA 1 on which the ball 2 is disposed from above, and its elevation angle 0 is set to, for example, about 20 degrees. In this case, the illumination 6 is a planar illumination so that the back surface of the BGA 1 is uniformly illuminated. In addition, the illumination 6 needs to have a certain height from the upper surface of the BGA tray 3 so that the substrate surface of the BGA 1 does not emit light. It is to be noted that it is advantageous to use a flat plate as the illuminations 5 and 6 in terms of uniformly illuminating the substrate surface. However, the flat plate illumination includes an arrangement of a plurality of LEDs and a fiber bundle. Lighting and the like can be used.
上記カメラ A, B、 照明 5, 6およびハーフミラ一 4は、 図 2に示すように、 検査ュニット 7内に収容されており、 検査ュニッ 卜 7自体は y— z方向に移動可 能なように構成されている。 ただし、 カメラ Bに関しては、 カメラ B単独で X方 向に移動できるようになつている。 The cameras A and B, the lights 5 and 6 and the half mirror 14 are housed in an inspection unit 7 as shown in FIG. 2, and the inspection unit 7 itself can be moved in the y-z direction. It is configured. However, camera B can be moved in the X direction by camera B alone.
すなわち、 この場合カメラ Aおよび Bは、 B G A 1の裏面全体を 1度に撮像す ることができない視野を持つものを想定しているので、 B G Aトレイ 1の X方向 の移動と検査ュニット 7の y — z方向への移動とを併用することで、 B G A 1に 対する撮像走査を行うようにしている。 なお、 勿論、 検査ユニット 7側を X — y — z方向に移動自在として B G Aトレィ 3を固定とするようにしてもよく、 また その逆に設定するようにしてもよレ、。 また、 カメラ A, Bとして、 B G A 1の裏 面全体を 1度に撮像することができる視野をもつものを採用するようにしてもよ い。 That is, in this case, the cameras A and B are assumed to have a field of view that cannot image the entire back surface of the BGA 1 at a time, so that the movement of the BGA tray 1 in the X direction and the y of the inspection unit 7 — Combined with movement in the z-direction, imaging scanning for BGA 1 is performed. Of course, the inspection unit 7 may be movable in the X-y-z directions so that the BGA tray 3 may be fixed, and vice versa. Further, as cameras A and B, cameras having a field of view that can image the entire back surface of BGA1 at one time may be adopted.
ただし、 この場合、 カメラ Bに関しては、 B G A 1を斜め上方から撮像するよ うにしているので、 一度の撮像でカメラの視野全体にピントを合わせるのが不可 能なので、 1度の撮像で撮像したデータのうち 1列〜数列分のボール 2の画像を 検査対象として取り込むようにしている。 すなわち、 この場合は、 カメラ Bを X 方向に移動させながら 1列〜数列ずつボール画像を取り込むようにしている。 これらカメラ Aおよび Bの撮像データは、 図 1の制御部 8に取り込まれる。 制 御部 8は、 カメラ Aおよび Bの撮像データを画像処理して、 下述する演算を行う ことで、 ボール 2の平面上 (X— y面) での位置ズレ、 各ボールの真の高さ、 各 ボールの高さ方向 (z方向) の平坦度などを検査する。 However, in this case, BGA 1 is imaged obliquely from above for camera B, so it is not possible to focus on the entire field of view of the camera by one image, so it was imaged in one image One to several rows of images of ball 2 are captured as inspection targets. In other words, in this case, one to several rows of ball images are captured while moving camera B in the X direction. The imaging data of these cameras A and B are taken into the control unit 8 of FIG. The control unit 8 performs image processing on the imaging data of the cameras A and B and performs the calculation described below, thereby displacing the position of the ball 2 on the plane (X-y plane) and the true height of each ball. Inspect the flatness of each ball in the height direction (z direction).
かかる図 1及び図 2に示す構成において、 B G A検査を実行する際、 まず B G Aトレィ 3を X方向に搬送して今回の検査対象の B G A 1を所定の検査位置に位 置させ停止する。 一方、 検査ユニット 7を適宜 y — z方向に移動させて、 検査ュ ニット 7を B G A 1の上方の所定の撮像位置に位置させる。 In the configuration shown in FIGS. 1 and 2, when performing the BGA inspection, first, the BGA tray 3 is transported in the X direction, and the BGA 1 to be inspected this time is positioned at a predetermined inspection position and stopped. On the other hand, the inspection unit 7 is appropriately moved in the y-z directions to position the inspection unit 7 at a predetermined imaging position above BGA1.
この状態で、 照明 5を点灯し、 カメラ Aによって B G A 1の裏面の平面像を撮
像する。 なお、 この際、 他方の照明 6は消灯しておく。 カメラ Aの撮像デ一タカ、 らは、 各 B G A 1のボール 2の X— y位置を得る。 また、 必要に応じて、 各ポ一 ルの直径、 変形の有無等の情報も得る。 In this state, light 5 is turned on and camera A takes a planar image of the back of BGA 1 Image. At this time, the other light 6 is turned off. The imaging data of camera A, etc. obtain the X-y position of ball 2 of each BGA 1. In addition, if necessary, information such as the diameter of each pole and the presence or absence of deformation is obtained.
次に、 照明 5を消灯し他方の照明 6を点灯し、 カメラ Bによって B G A 1の裏 面を斜め上方から撮像することで、 各ボールの斜め方向の高さ dを得る。 すなわ ち、 図 3に示すように、 カメラ Bの撮像データにより、 カメラ Bの光軸に直角な 方向 z こついてのボール 2の高さ dを得る。 前述したように、 カメラ Bは斜め 上方から B G A 1の裏面画像を捉えるために、 1列〜数列単位のボール画像取り 込みと X方向への移動とを交互に繰り返すようにする。 なお、 焦点深度の深い力 メラを用いる場合には、 カメラ視野に捉えられた全てのボール画像を 1度に取り 込むことができる。 なお、 カメラに C C Dカメラを用いる場合、 C C Dのシャツ タ機能を用いて、 適当な周期でトリガをかけて撮像画像を取り込むようにし、 力 メラを停止させることなく画像を取り込みを行うことも可能である。 Next, the light 5 is turned off and the other light 6 is turned on, and the height of each ball in the oblique direction is obtained by capturing the back surface of BGA 1 obliquely from above with the camera B. That is, as shown in FIG. 3, the height d of the ball 2 in the direction z perpendicular to the optical axis of the camera B is obtained from the image data of the camera B. As described above, in order to capture the backside image of BGA1 from diagonally above, camera B alternately captures a ball image in units of one to several rows and moves in the X direction. When using a camera with a large depth of focus, all ball images captured in the camera's field of view can be captured at once. When a CCD camera is used as the camera, it is possible to use the CCD shutter function to trigger the camera at appropriate intervals to capture the captured image, and capture the image without stopping the camera. is there.
制御部 8では、 カメラ Bの撮像データにパターンマッチングなどの処理を加え て各ボールの斜め方向の高さ dを得る。 そして、 この高さデータ dが得られると、 図 4に示すように、 この高さデータ dと予め既知であるボールの理想半径 rおよ びカメラ Bの仰角 Θを用いて、 各ボールの z方向の高さ Hを下式 (1)に従って演 算する。 The control unit 8 obtains the height d of each ball in the oblique direction by performing processing such as pattern matching on the imaging data of the camera B. Then, when this height data d is obtained, as shown in FIG. 4, the height z of each ball is calculated using the height data d, the previously known ideal radius r of the ball, and the elevation angle の of the camera B. The height H in the direction is calculated according to the following equation (1).
H = ( d /cos θ ) 一 ( r /cos Θ ) + r …(! H = (d / cos θ) one (r / cos Θ) + r… (!
このようにこの実施例によれば、 2つのカメラによって一度に複数列分のボー ル画像を撮像し、 この撮像データに基づ!/、て B G Aのボールの各種項目について の検査を行うようにしたので、 検査速度が向上すると共に、 ボール表面の傷など の表面状態に影響されることない正確な検査をなし得る。 また、 この実施例では、 B G A 1の斜め上方から B G A 1の裏面のボール 2を撮像するようにしたので、 各ボール列を分離した画像として得られると共に、 それらの高さに関する情報も 得ることができる。 また、 高さ情報はボール全体像から測定されるので、 ボール に傷などがあった場合でも正確な高さ測定をなし得る。 As described above, according to this embodiment, ball images for a plurality of rows are captured at once by two cameras, and based on the captured data, inspection of various items of the BGA ball is performed. As a result, the inspection speed is improved, and an accurate inspection can be performed without being affected by surface conditions such as scratches on the ball surface. Further, in this embodiment, the ball 2 on the back surface of the BGA 1 is imaged from obliquely above the BGA 1, so that each ball row can be obtained as a separated image and information on their height can also be obtained. it can. In addition, since the height information is measured from the entire ball image, accurate height measurement can be performed even if the ball has a scratch or the like.
[第 2実施例] [Second embodiment]
ところで、 上記第 1の実施例では、 B G A 1の斜め上方からの画像を得るため
のカメラ Bは、 図 5に示すように、 カメラ Bの光軸 1 0に対し、 レンズ 1 1およ び撮像面 1 2が直角に配設されている通常のカメラを用いるようにしている。 By the way, in the first embodiment, in order to obtain an image from obliquely above the BGA 1, As shown in FIG. 5, the camera B uses an ordinary camera in which the lens 11 and the imaging surface 12 are arranged at right angles to the optical axis 10 of the camera B.
したがって、 この場合には、 カメラ Bのピン卜が合う位置 (面) 1 3は、 レン ズ 1 1の焦点位置近傍のごく一部に限られ、 それ以外ではピントが合わない。 す なわち、 これは光軸 1 0に対して物体面 (BGA 1の裏面) が傾き、 BGA 1の 図面上の左部と右部で物体距離が変化したのも係わらず、 撮像面 1 2は光軸 1 2 に対し垂直となっているために、 レンズ 1 1までの距離が長い BG A左部では結 像面 1 2よりレンズ 1 1側に結像し、 レンズ 1 1までの距離が短い BG A右部で は結像面 1 2より遠い側に結像することによる。 したがって、 先の第 1の実施例 では、 カメラ B (または BGAトレイ 3) を X方向に移動して、 合焦点位置を順 次移動させることが必要になる。 Therefore, in this case, the position (plane) 13 where camera B is in focus is limited to only a small portion near the focal position of lens 11, and otherwise the focus is not achieved. In other words, this is because the object plane (the back side of BGA 1) is tilted with respect to the optical axis 10 and the image plane 12 Is perpendicular to the optical axis 12, so the distance to the lens 11 is long.In the left part of BGA, an image is formed on the lens 11 side from the image plane 12, and the distance to the lens 11 is small. In the right part of the short BGA, the image is formed on the side farther than the image plane 12. Therefore, in the first embodiment, it is necessary to move the camera B (or the BGA tray 3) in the X direction to sequentially move the focus position.
このように先の第 1の実施例では、 通常のカメラ Bを用いるようにしているの で、 カメラ Bのピン卜が合う位置はごく一部に限られる。 As described above, in the first embodiment, since the normal camera B is used, the position where the camera B is in focus is limited to only a part.
これを改良するために本第 2の実施例では、 図 6に示すように、 カメラ Bの撮 像面 1 2を光軸 1 0に対し傾斜するようにしている。 すなわち、 撮像面 1 2を物 体面 (この場合は BGA 1の裏面) と共役関係となるように撮像面 1 2を光軸 1 0に対し所定角度 φ 2だけ傾斜する。 In order to improve this, in the second embodiment, the image plane 12 of the camera B is inclined with respect to the optical axis 10 as shown in FIG. That is, the imaging surface 12 is inclined by a predetermined angle φ2 with respect to the optical axis 10 so that the imaging surface 12 has a conjugate relationship with the object surface (in this case, the back surface of the BGA 1).
ここで、 図 7に示すように、 レンズ 1 1の焦点距離を f 、 レンズ 1 1から物体 面 1までの距離を Ll、 レンズ 1 1から撮像面 1 2までの距離を L2、 物体面 1の 光軸 1 0に対する傾斜角を φ1、 撮像面 1 2の傾斜角を φ 2とした場合、 下式 (2 3 が成立するように、 傾斜角 Φ2を決定する。 すなわち、 値 Ll、 d)lは、 任意に設定 することができるが、 これを予め決定し、 下記 式を解くことで L2および 2を決定する。 Here, as shown in Fig. 7, the focal length of lens 11 is f, the distance from lens 11 to object plane 1 is Ll, the distance from lens 11 to imaging plane 12 is L2, and the distance of object plane 1 is L2. When the inclination angle with respect to the optical axis 10 is φ1 and the inclination angle of the imaging surface 12 is φ2, the inclination angle Φ2 is determined so that the following equation (2 3 is satisfied. That is, the value Ll, d) l Can be set arbitrarily, but this is determined in advance, and L2 and 2 are determined by solving the following equation.
(1/L1) 一 (1/L2) =一 (1/ f ) … (1 / L1) one (1 / L2) = one (1 / f)…
LI · tan 1= L2■ tan φ 2 - ft) LI tan 1 = L2 ■ tan φ 2-ft)
このようにこの第 2の実施例では、 撮像面 1 2を物体面 1と共役な関係にとな るように傾斜させるようにしたので、 物体面上の全ての位置でピントを合わせる ことができ、 これにより BGA検査の際、 カメラ B (または BGAトレィ 3) を X方向に移動する必要がなくなり、 これにより検査速度の向上、 装置構成の簡単
化を実現できる。 As described above, in the second embodiment, the imaging plane 12 is inclined so as to have a conjugate relationship with the object plane 1, so that it is possible to focus at all positions on the object plane. This eliminates the need to move camera B (or BGA tray 3) in the X direction during BGA inspection, thereby improving inspection speed and simplifying equipment configuration. Can be realized.
なお、 この第 2の実施例において、 カメラ Aに関しては、 先の第 1の実施例同 様、 B G A 1の上方から B G A裏面の平面像を撮像する。 In the second embodiment, for the camera A, a plane image of the back surface of the BGA is taken from above the BGA 1 as in the first embodiment.
また、 カメラ Bの撮像面 1 2を傾斜させるための手法としては、 図 8 (aに示 すように、 カメラ Bの筐体 1 9に対し、 撮像面 (C C D ) 1 2自体を傾斜させる 方法と、 図 8 ( ^に示すように、 カメラ Bのレンズ 1 1と撮像面 1 2との間に力 メラ筐体 1 9自体を光軸 1 0に対し傾斜させるためアタッチメント 1 4を配置し て、 撮像面 1 2自体はカメラ Bの筐体 1 3に対し傾斜させない様にする手法があ る。 As a method for inclining the imaging surface 12 of the camera B, a method of inclining the imaging surface (CCD) 12 itself with respect to the housing 19 of the camera B as shown in FIG. As shown in FIG. 8 (^), an attachment 14 is arranged between the lens 11 of the camera B and the imaging surface 12 to incline the camera housing 19 itself with respect to the optical axis 10. However, there is a method of preventing the imaging surface 12 itself from being inclined with respect to the housing 13 of the camera B.
図 8 ( の手法を用いた場合は、 カメラ Bをコンパク 卜にできるという利点が あり、 また図 8 の手法を用いた場合は通常市販されているカメラが使え装置 コスト安価にできるという利点がある。 When the method of Fig. 8 (is used, there is an advantage that the camera B can be made compact, and when the method of Fig. 8 is used, there is an advantage that a commercially available camera can be used and the equipment cost can be reduced. .
ところで、 上記第 2実施例では、 カメラ Bの撮像面 1 2に関してはその角度を 傾けた特殊なものを採用するようにしたが、 レンズ 1 1に関しては通常のレンズ を用いるようにしている。 By the way, in the second embodiment, the imaging surface 12 of the camera B employs a special one with an inclined angle, but the lens 11 uses a normal lens.
このような通常のレンズ 1 1においては、 図 9に示すように、 レンズ 1 1の入 射光および出射光共に画角を持っている。 したがって、 このような通常レンズ 1 1を用いて、 図 1 0 に示すように、 同じ大きさ qの複数のワーク 2 0を撮像 した場合、 ワーク 2 0の位置によって撮像面 1 2上でのワークの大きさが変化し てしまう (q l, q 2参照) 。 また、 図 1 0 (¾に示すように、 物体 1自体の位置 が変化した場合は (この場合は光軸 1 0に沿った方向にずれたとしている) 、 物 体の撮像面 1 2上での形状、 大きさが変化してしまう。 In such a normal lens 11, as shown in FIG. 9, both the incoming light and the outgoing light of the lens 11 have an angle of view. Therefore, as shown in FIG. 10, when a plurality of works 20 of the same size q are imaged using such a normal lens 11, the work on the imaging surface 12 depends on the position of the work 20. Changes the size of (see ql, q2). Further, if the position of the object 1 itself changes as shown in FIG. 10 (in this case, it is assumed that the position is shifted in the direction along the optical axis 10), the object 1 Shape and size will change.
因みに、 図 1 1 に示すようなボール 2が 2次元配列された B G A 1を、 第 2の実施例による構成によって撮像した場合、 その撮像画像は、 図 1 1 ¾ こ示 すように遠近図法を用いたごとくになり、 ボール 2の位置によって撮像ボールの 大きさ、 形状が変化してしまう。 By the way, when the BGA 1 in which the balls 2 as shown in FIG. 11 are two-dimensionally arrayed is imaged by the configuration according to the second embodiment, the image is obtained by the perspective projection as shown in FIG. The size and shape of the imaging ball change depending on the position of the ball 2.
[第 3実施例] [Third embodiment]
そこで、 この第 3の実施例では、 図 1 0 ( ^で示した、 撮像物体自体が光軸方 向にずれると撮像画像の大きさ、 形状が変化するという問題点を改良すべく、 先
の第 2の実施例の通常レンズ 1 1に変えて物体側テレセントリ ックレンズ 3 0を 採用する。 Therefore, in the third embodiment, in order to improve the problem that the size and shape of the captured image change when the imaging object itself shifts in the optical axis direction, as shown in FIG. Instead of the normal lens 11 of the second embodiment, an object side telecentric lens 30 is employed.
テレセントリックレンズとは、 周知のように、 画角が 0 ° 、 すなわち主光線が 光軸に対して平行なレンズをいい、 物体側テレセントリ ックレンズとは物体側に のみテレセントリックレンズを実現したものをいう。 As is well known, a telecentric lens is a lens having an angle of view of 0 °, that is, a principal ray is parallel to an optical axis, and an object-side telecentric lens is a lens that realizes a telecentric lens only on the object side.
図 1 2は、 この第 3の実施例を示すものであり、 カメラ Bの撮像面 1 2を光軸 1 0に対し傾斜するとともに、 カメラ Bのレンズとして物体側テレセントリック レンズ 3 0を採用している。 カメラ Aに関しては、 先の実施例同様、 B G A 1の 上方から B G A裏面の平面像を撮像する。 なお、 撮像面 1 2の傾斜角 φ 2に関して は、 通常レンズの場合と同様、 先の第 (2 3式を用いて設定する。 FIG. 12 shows the third embodiment, in which the imaging surface 12 of the camera B is inclined with respect to the optical axis 10 and the object-side telecentric lens 30 is adopted as the lens of the camera B. I have. As for the camera A, a plane image of the back surface of the BGA is taken from above the BGA 1 as in the previous embodiment. Note that the inclination angle φ 2 of the imaging surface 12 is set using the above-mentioned formula (23), as in the case of the normal lens.
このようにこの実施例では、 カメラ Bのレンズに物体側テレセントリ ックレン ズ 3 0を用いるようにしているので、 図 1 2に示すようにレンズ 3 0に対する物 体からの光 (主光線) は光軸 1 0と平行になる。 As described above, in this embodiment, since the object side telecentric lens 30 is used for the lens of the camera B, the light (principal ray) from the object to the lens 30 is a light as shown in FIG. Becomes parallel to axis 10.
したがって、 この第 3実施例の場合は、 B G A 1面上の各位置での画角が一定 となり、 図 1 3に示すように、 B G A 1自体が光軸方向にずれた場合でも、 像は ぼけるが、 各ボールが撮像面で結像する位置自体に変化がなくなるようになる。 すなわち、 B G A 1が光軸方向へ移動しても、 撮像した像の大きさ、 相対位置に は変化がない。 なお、 物体が光軸以外の方向にずれた場合は、 このずれにより像 の大きさに変化が生じる。 Therefore, in the case of the third embodiment, the angle of view at each position on the surface of the BGA 1 is constant, and the image is blurred even when the BGA 1 itself is shifted in the optical axis direction as shown in FIG. However, there is no change in the position where each ball forms an image on the imaging surface. That is, even if BGA1 moves in the optical axis direction, the size and relative position of the captured image do not change. If the object is shifted in a direction other than the optical axis, the shift causes a change in the size of the image.
また、 B G A 1が光軸方向に移動することによって生じる像のぼけに関しても、 物体側テレセントリックレンズ 3 0は通常レンズ 1 1よりも被写界深度が深いの で、 そのボケ量を少なくすることができる。 すなわち、 光軸方向に物体 1が同じ 距離だけずれた場合は、 物体側テレセントリ ックレンズ 3 0のほうが通常レンズ よりもそのぼけ方が少なくなる。 Also, regarding the image blur caused by the movement of the BGA 1 in the optical axis direction, since the object side telecentric lens 30 has a deeper depth of field than the normal lens 11, the blur amount can be reduced. it can. That is, when the object 1 is displaced by the same distance in the optical axis direction, the object-side telecentric lens 30 is less blurred than the normal lens.
なお、 物体側テレセントリックレンズ 3 0を用いても、 撮像した B G A 1上の 各ボール 2の大きさ、 形状は、 先の通常レンズ 1 1と同様、 図 1 1 に示した ように、 ボール 2の位置によって変化してしまう。 Even when the object-side telecentric lens 30 is used, the size and shape of each ball 2 on the BGA 1 imaged are the same as those of the normal lens 11 described above, as shown in FIG. It changes depending on the position.
[第 4実施例] [Fourth embodiment]
この第 4の実施例は、 通常レンズ 1 1または物体側テレセントリックレンズ 3
0を用いた場合に発生する、 先の図 1 1 に示したような現象、 すなわち撮像 する対象物体の位置に応じて撮像画像の大きさ、 形状が変化するという現象をな くすために、 物体側テレセントリックレンズ 30に変えて両側テレセントリック レンズ 40を採用する。 両側テレセントリックレンズとは物体側および撮像面側 にテレセントリック光学系を実現したものをいう。 In this fourth embodiment, the normal lens 11 or the object side telecentric lens 3 In order to eliminate the phenomenon shown in Fig. 11 that occurs when 0 is used, that is, the phenomenon that the size and shape of the captured image changes according to the position of the target object to be imaged, Instead of the side telecentric lens 30, a bilateral telecentric lens 40 is adopted. A double-sided telecentric lens is one that implements a telecentric optical system on the object side and the imaging surface side.
図 14は、 この第 4の実施例を示すものであり、 カメラ Bの撮像面 12を光軸 10に対し ί頃斜するとともに、 カメラ Βのレンズとして両側テレセントリ,ックレ ンズ 40を採用している。 カメラ Αに関しては、 先の実施例同様、 BGA1の上 方から B G A裏面の平面像を撮像する。 FIG. 14 shows this fourth embodiment, in which the imaging surface 12 of the camera B is obliquely inclined with respect to the optical axis 10, and both-side telecentric lenses and a kick lens 40 are employed as lenses of the camera. . For camera Α, as in the previous embodiment, a plane image of the back surface of BGA is taken from above BGA1.
このようにこの第 4実施例では、 カメラ Bのレンズとして両側テレセントリツ クレンズ 40を用いるようにしているので、 レンズ 40に対する物体からの光は 光軸 1◦と平行になるとともに、 レンズ 40から撮像面 12に出射される光も光 軸 10と平行になる。 As described above, in the fourth embodiment, since the double-sided telecentric lens 40 is used as the lens of the camera B, the light from the object with respect to the lens 40 becomes parallel to the optical axis 1 °, and the imaging surface from the lens 40 The light emitted to 12 is also parallel to the optical axis 10.
したがって、 この第 4実施例の場合、 図 15f に示すように、 撮像した各ボ —ル 2の大きさ、 形状は、 BG A 1上のボールの位置によらず一定となる (q3 = q3) 。 したがって、 この第 4実施例による BGA 1の撮像画像は、 図 11 fe) に示すように、 全てのボールの大きさが一定となる。 なお、 図 15の場合は、 便 宜上、 ボール 2を四角形として示している、 Therefore, in the case of the fourth embodiment, as shown in FIG. 15f, the size and shape of each imaged ball 2 are constant regardless of the position of the ball on BGA 1 (q3 = q3). . Therefore, in the captured image of the BGA 1 according to the fourth embodiment, as shown in FIG. 11 fe), the size of all balls is constant. In the case of FIG. 15, the ball 2 is shown as a square for convenience.
また、 この第 4実施例の場合、 図 15(¾に示すように、 BGA1自体の位置 がずれた際でも、 撮像した像の大きさ (相対位置) 、 形状には変化がない。 ところで、 この第 4実施例の場合は、 両側テレセントリックレンズ 40を用い るようにしているので、 撮像面 12の傾斜角 φ 2に関する式が先の第2)式および 第 式とは少し異なるようになる。 Further, in the case of the fourth embodiment, as shown in FIG. 15 (で も), even when the position of the BGA 1 itself shifts, the size (relative position) and shape of the captured image do not change. In the case of the fourth embodiment, since the double-sided telecentric lens 40 is used, the expression relating to the inclination angle φ2 of the imaging surface 12 is slightly different from the above expressions 2) and 2.
すなわち、 図 16に示すように、 両側テレセントリックレンズ 40を焦点距離 f 1をもつレンズ 40 aと焦点距離 f 2を持つレンズ 40 bとで構成した場合を考 える。 物体 1がレンズ 40 aから距離 (f l+ul) だけ離れた位置にあるとし、 撮像面 12がレンズ 40 bから距離 (f2— u2) だけ離れた位置にあるとした場 合、 下式4 5を解くことで Φ2を決定する。 なお、 Λ2は 2乗を示す代用記号であ る。
ul ( f 2/ f 1) A2=u2 - -( ) That is, as shown in FIG. 16, a case is considered in which the both-side telecentric lens 40 is composed of a lens 40a having a focal length f1 and a lens 40b having a focal length f2. If object 1 is located at a distance (fl + ul) from lens 40a and imaging surface 12 is located at a distance (f2-u2) from lens 40b, Φ2 is determined by solving 5. Note that Λ 2 is a substitute symbol indicating the square. ul (f 2 / f 1) A 2 = u2--()
f 1 · ίαηφ 1= f 2 · ίαη 2 ···(¾ f 1 · ηαηφ 1 = f 2 · ηαη 2
次に、 この第 4の実施例による BGA 1の検査の詳細について説明する。 Next, the details of the inspection of the BGA 1 according to the fourth embodiment will be described.
まずカメラ Aによって、 BG A 1の裏面の平面像を撮像する。 この撮像データ を図 17( " に示す。 そして、 この撮像データからは、 例えば以下の 3項目の検 査を行う。 First, a plane image of the back surface of BG A 1 is captured by camera A. This imaging data is shown in FIG. 17 (). From the imaging data, for example, the following three items are inspected.
l各ボール 2の中心位置の測定 (ボールが本来あるべき位置一点鎖線の交点 Jからのずれ量) lMeasurement of the center position of each ball 2
2各ボールの大きさ (面積または直径) 2 Size of each ball (area or diameter)
(3余計なところにボール (異物) がないかどう力 (3 Make sure that there is no extra ball (foreign matter)
次に、 カメラ Bによって BGA1の裏面を斜め上方から撮像する。 Next, the back surface of BGA1 is imaged from obliquely above by camera B.
この場合、 BGA1上には、 図 17(¾ こ示すように、 高さが高い、 普通、 低 い 3つのボール 2が存在しているとする。 このような 3つのボールをカメラ Aで 捉えても、 図 1 7(¾)に示すように、 その画像には差はない。 しかし、 これら 3 つのボールをカメラ Bで撮像した場合は、 図 17めに示すように、 撮像面 12 上での各ボールの位置が撮像面の 1軸方向 wに対し変化することになる。 したが つて、 この撮像面 12上での変位 Awlおよび Aw2を測定することで、 各ボール の相対高さ変位 Δ1ι1、 Δ h2を求めることができる。 In this case, it is assumed that there are three high, normal, and low balls 2 on the BGA1 as shown in FIG. 17 (camera A captures these three balls). However, as shown in Fig. 17 (そ の), there is no difference between the images.However, when these three balls are imaged by the camera B, as shown in Fig. 17, The position of each ball changes with respect to the direction w of the imaging surface in one axis direction.Therefore, by measuring the displacements Awl and Aw2 on the imaging surface 12, the relative height displacement Δ1ι1, Δh2 can be obtained.
図 18は、 カメラ Aおよびカメラ Bで撮像したボール像に基づいて各ボールの 標準高さからの変位厶 hを求めるための演算を説明するための図面であり、 この 場合は、 ボール 2が z方向のみならず、 X方向に関してもずれているとする。 すなわち、 ボール 2が理想的な X位置にあるときのカメラ Aの撮像面 15上で の X方向位置を xlとし、 ボール 2が理想的な z位置にあるときのカメラ Aの撮像 面 15上での w方向位置を wlとすると、 各カメラ A、 Bの各方向 x, wについて のボール像の位置 x2, w2を検出し、 これを下式6)に代入することで、 上記変 位厶 hを求めることができる。 FIG. 18 is a drawing for explaining the calculation for calculating the displacement h from the standard height of each ball based on the ball images picked up by the cameras A and B. It is assumed that not only the direction but also the X direction is shifted. That is, xl is the position in the X direction on the imaging surface 15 of the camera A when the ball 2 is at the ideal X position, and is xl on the imaging surface 15 of the camera A when the ball 2 is at the ideal z position. Assuming that the position in the w direction of wl is wl, the position x2, w2 of the ball image in each direction x, w of each of the cameras A, B is detected, and this is substituted into the following equation 6) to obtain the displacement h Can be requested.
厶 h = { (wl— w2) δί φ 2— ( χ 1— χ 2) sin θ } / cos θ H = {(wl— w2) δί φ 2— (χ 1— χ 2) sin θ} / cos θ
…^ … ^
そして、 このようにして求めた Ahをレンズの倍率を考慮して補正することで、
ボールの真の高さ変位を求めることができる。 Then, by correcting the Ah thus obtained in consideration of the magnification of the lens, The true height displacement of the ball can be determined.
尚、 上記 B G A 1の検査の詳細は、 第 2実施例、 第 3実施例と同様である。 このようにこの第 4実施例では、 カメラ Bの撮像面を物体面と共役な関係とな るように傾斜させると共にカメラ Bのレンズとして両側テレセントリ ックレンズ を用いるようにしたので、 広い範囲で B G A 1の裏面ボール像を一度に確保する ことができるようになり、 また B G A 1上で異なる位置にあるボールを同じ大き さ、 同じ形状の像として撮像する事ができるようになる。 The details of the inspection of BGA1 are the same as those in the second and third embodiments. As described above, in the fourth embodiment, since the imaging surface of the camera B is tilted so as to have a conjugate relationship with the object surface, and the telecentric lens is used as the lens of the camera B, the BGA 1 This makes it possible to secure a backside ball image at one time, and to capture balls at different positions on the BGA 1 as images of the same size and the same shape.
なお、 上記実施例では、 本発明を B G Aに適用するようにしたが、 P G A (Pi n Grid Array) 、 Q F P {Quad flat package) 、 Q F J {Quad flat j -leaded p ackage) など他の任意の半導体パッケージの端子検査に適用するようにしても よい。 また、 本発明をコネクタなどの電極配列検査に適用するようにしてもよい。 例えば、 図 1 9 こ示すようなコネクタの電極 5 0のピッチ ρを計測するよ うな場合において、 これを通常のカメラで上方から撮像すると、 図 1 9 こ示 すように、 電極取り付け部 5 1の部分の像の影響を受けて電極 5 0のみの鮮明な 影像を捉える事ができない。 In the above embodiment, the present invention is applied to the BGA, but any other semiconductor such as PGA (Pin Grid Array), QFP (Quad flat package), The present invention may be applied to inspection of package terminals. Further, the present invention may be applied to an electrode array inspection of a connector or the like. For example, in the case where the pitch ρ of the electrode 50 of the connector as shown in FIG. 19 is measured, when this is imaged from above with a normal camera, as shown in FIG. A sharp image of only the electrode 50 cannot be captured due to the influence of the image of the portion.
そこで、 図 1 9 C)に示すように、 撮像面 1 2を傾斜させたカメラで斜め上方 から電極配列を撮像するようすると、 全ての電極の頂上部でカメラのピントを合 わせることができ、 かつ電極取り付け部 5 1の像が撮像されないようにする事が できる。 Therefore, as shown in FIG. 1 9 C), when to image the electrode array obliquely from above a camera is tilted imaging surface 1 2, it is possible Conform the focus of the camera at the top of all the electrodes In addition, it is possible to prevent the image of the electrode mounting portion 51 from being captured.
また、 本発明は、 図 2 0に示すような I Cの端子の平坦度検査 ( I C端子の上 下方向のズレ検出) や、 図 2 1に示すようなボンディングワイヤ 5 2の高さ検査 に適用する事もできる。 In addition, the present invention is applied to an IC terminal flatness inspection (detection of vertical displacement of an IC terminal) as shown in FIG. 20 and a bonding wire 52 height inspection as shown in FIG. You can do it.
また、 図 2 2に示すように、 カメラ Bに対する物体光をミラ一 5 3を介して入 射するようにすれば、 カメラ Bとカメラ Aの位置を近づけることができ、 これに よりカメラ部分の構成をコンパク トにすることができる。 In addition, as shown in FIG. 22, if the object light for camera B is made to enter through mirror 53, the positions of camera B and camera A can be made closer, which allows the camera part The configuration can be compact.
また、 上記第 1の実施例では、 2つの照明 5、 6を交互に点灯するようにした 力 s、 一方の照明に赤照明を用い、 他方の照明に緑の照明を用いるなど、 両照明の 発光スペク トルを異ならせ、 各カメラ A, Bに一方の照明光のみを通過させるフ ィルタを設けるようにすれば、 2つの照明 5 , 6を常に点灯できるようになり、
交互点灯という面倒な制御を省略する事が可能になる。 In the first embodiment, the two lights 5 and 6 are alternately turned on, a force s , and one of the lights is a red light and the other is a green light. If the emission spectrum is made different and each camera A and B is provided with a filter that allows only one of the illumination light to pass, the two illuminations 5 and 6 can be always turned on. The troublesome control of alternate lighting can be omitted.
また、 図 2 3に示すように、 カメラ A用の照明として L E D等からなるリング 状照明 7 0を用いるようにしてもよレ、。 すなわち、 この図 2 3の構成では、 カメ ラ Aを駆動する際にはリング状照明 7 0を点灯し (平板照明 7 1は消灯) 、 カメ ラ Bを駆動する際には平板照明 7 1を点灯する (リング状照明 7 0は消灯) 。 産業上の利用可能性 Further, as shown in FIG. 23, a ring-shaped illumination 70 made of LED or the like may be used as illumination for camera A. That is, in the configuration of FIG. 23, when driving camera A, ring-shaped illumination 70 is turned on (flat illumination 71 is turned off), and when driving camera B, flat illumination 71 is turned on. Lights up (ring light 70 is off). Industrial applicability
以上説明したようにこの発明によれば、 この半導体パッケージのパッケージ面 を所定の仰角をもつて斜め方向から撮像することにより半導体パッケージの端子 を検査するようにしたので、 各端子列を分離した画像として得ることができると とに、 各端子の高さに関する情報も得ることができる。 また、 端子に関する情報 は端子全体画像として捉えるので、 端子に傷などがあった場合でも正確な高さ測 定をなし得る。 As described above, according to the present invention, the terminals of the semiconductor package are inspected by imaging the package surface of the semiconductor package from a diagonal direction with a predetermined elevation angle. And information on the height of each terminal can be obtained. In addition, since the information about the terminal is captured as a whole image of the terminal, accurate height measurement can be performed even if the terminal is damaged.
またこの発明では、 撮像手段の撮像面を撮像手段の光軸に対し所定角度傾斜さ せるようにしたので、 パッケージ面の広い範囲に撮像手段のピントが合うように なり、 これにより一回の検査範囲を広げることができ、 検査速度を向上させるこ とができる。 Further, in the present invention, the imaging surface of the imaging means is inclined at a predetermined angle with respect to the optical axis of the imaging means, so that the imaging means can be focused on a wide area of the package surface, thereby enabling one inspection. The range can be expanded, and the inspection speed can be improved.
またこの発明では、 撮像手段のレンズとして、 物体側テレセントリックレンズ を採用するようにしたので、 半導体パッケージ自体の位置ズレが発生しても各端 子の結像位置、 大きさ、 形状が変わらないようになり、 これにより端子検査のた めの画像処理および演算処理を簡単化する事が可能になる。 Further, in the present invention, the object side telecentric lens is used as the lens of the imaging means, so that even if the semiconductor package itself is misaligned, the imaging position, size, and shape of each terminal are not changed. This makes it possible to simplify image processing and arithmetic processing for terminal inspection.
更にこの発明では、 撮像手段のレンズとして、 両側テレセントリックレンズを 採用するようにしたので、 半導体パッケージ自体の位置ズレが発生しても各端子 の結像位置、 大きさ、 形状が変わらないようになり、 またパッケージ面の各位置 にある端子が同じ大きさ及び形状で撮像されるようになる。 この結果、 端子検査 のための画像処理および演算処理をさらに簡単化する事が可能になる。
Further, according to the present invention, since a double-sided telecentric lens is employed as a lens of the image pickup means, the image forming position, size, and shape of each terminal are not changed even if the semiconductor package itself is misaligned. In addition, the terminals at each position on the package surface are imaged in the same size and shape. As a result, it becomes possible to further simplify image processing and arithmetic processing for terminal inspection.
Claims
1 . 半導体パッケージの端子を検査する半導体パッケージの端子検査装置にお レ、て、 1. In a semiconductor package terminal inspection device that inspects semiconductor package terminals,
この半導体パッケージのパッケージ面を所定の仰角をもつて斜め方向から撮像 する撮像手段と、 Imaging means for imaging the package surface of the semiconductor package from a diagonal direction with a predetermined elevation angle;
この撮像手段の撮像デ一タに基づいて半導体パッケージの端子を検査する検査 手段と、 Inspection means for inspecting the terminals of the semiconductor package based on the imaging data of the imaging means;
を具える半導体パッケージの端子検査装置。 A semiconductor package terminal inspection device equipped with:
2 . 撮像手段は、 レンズ手段と、 このレンズ手段を介してパッケージ面像が入 射される撮像面とを有し、 2. The imaging means has a lens means and an imaging surface on which a package surface image is incident via the lens means,
前記撮像面を撮像手段の光軸に対し所定角度傾斜させるようにしたこと特徴と する請求の範囲第 1項記載の半導体パッケージの端子検査装置。 2. The semiconductor package terminal inspection device according to claim 1, wherein the imaging surface is inclined at a predetermined angle with respect to an optical axis of the imaging means.
3 . 前記レンズ手段を物体側テレセントリックレンズとしたことを特徴とする 請求の範囲第 2項記載の半導体パッケージの端子検査装置。 3. The semiconductor package terminal inspection device according to claim 2, wherein said lens means is an object-side telecentric lens.
4 . 前記レンズ手段を両側テレセントリックレンズとしたことを特徴とする請 求の範囲第 2項記載の半導体パッケージの端子検査装置。 4. The terminal inspection apparatus for a semiconductor package according to claim 2, wherein said lens means is a double-sided telecentric lens.
5 . 前記撮像手段は、 撮像手段の本体に対して傾斜された撮像面を有する請求 の範囲第 2項〜第 4項記載の半導体パッケージの端子検査装置。 5. The semiconductor package terminal inspection device according to claim 2, wherein the imaging means has an imaging surface inclined with respect to a main body of the imaging means.
6 . 前記撮像手段は、 前記レンズ手段と撮像面を収容する撮像面収容体の間に 配設されて撮像面収容体をレンズ手段の光軸に対し傾斜させるアタッチメントを 有する請求の範囲第 2項〜第 4項記載の半導体パッケージの端子検査装置。 6. The imaging means according to claim 2, wherein the imaging means has an attachment disposed between the lens means and an imaging surface housing for housing the imaging surface, the attachment being configured to incline the imaging surface housing with respect to the optical axis of the lens means. 5. The semiconductor package terminal inspecting apparatus according to claim 4.
7 . 前記半導体パッケージのパッケージ面の平面像を撮像する平面像撮像手段 を更に具え、 7. The image forming apparatus further includes a plane image capturing unit configured to capture a planar image of a package surface of the semiconductor package,
前記検査手段は、 前記撮像手段及び平面像撮像手段の撮像データに基づ 、て半 導体パッケージの端子を検査することを特徴とする請求の範囲第 1項記載の半導 体パッケージの端子検査装置。 2. The semiconductor package terminal inspecting device according to claim 1, wherein the inspecting unit inspects a terminal of the semiconductor package based on imaging data of the imaging unit and the plane image imaging unit. .
8 . 前記半導体パッケージのパッケージ面を上から照明する第 1の照明手段と、 前記前記半導体パッケージのパッケージ面を斜め側方から照明する第 2の照明 手段と、
これら第 1及び第 2の照明手段を排反的に点灯し、 第 1の照明手段が点灯して いるときには前記平面像撮像手段を作動し、 前記第 2の照明手段が点灯している ときには前記撮像手段を作動するように制御する制御手段と、 8. First illuminating means for illuminating the package surface of the semiconductor package from above, and second illuminating means for illuminating the package surface of the semiconductor package from an oblique side. The first and second lighting means are illuminated in an exhaustive manner. When the first lighting means is turned on, the plane image capturing means is operated. When the second lighting means is turned on, the above-mentioned light is emitted. Control means for controlling the imaging means to operate;
を更に具えるようにしたことを特徴とする請求の範囲第 7項記載の半導体パッ ケージの端子検査装置。
9. The semiconductor package terminal inspection device according to claim 7, further comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8/124953 | 1996-05-20 | ||
JP12495396A JPH09304030A (en) | 1996-05-20 | 1996-05-20 | Instrument for inspecting terminal of semiconductor package |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997044634A1 true WO1997044634A1 (en) | 1997-11-27 |
Family
ID=14898306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/001561 WO1997044634A1 (en) | 1996-05-20 | 1997-05-09 | Device for inspecting terminals of semiconductor package |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH09304030A (en) |
TW (1) | TW325517B (en) |
WO (1) | WO1997044634A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1046127A1 (en) * | 1998-01-16 | 2000-10-25 | BEATY, Elwin M. | Method and apparatus for three-dimensional inspection of electronic components |
US6915007B2 (en) | 1998-01-16 | 2005-07-05 | Elwin M. Beaty | Method and apparatus for three dimensional inspection of electronic components |
US7079678B2 (en) | 1998-01-16 | 2006-07-18 | Scanner Technologies Corporation | Electronic component products made according to a process that includes a method for three dimensional inspection |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1218688B1 (en) * | 1999-07-13 | 2006-04-05 | BEATY, Elwin M. | Method and apparatus for three dimensional inspection of electronic components |
KR19990078765A (en) * | 1999-08-05 | 1999-11-05 | 김동걸 | inspecting apparatus and method of ball grid array |
JP2005340648A (en) * | 2004-05-28 | 2005-12-08 | Yamaha Motor Co Ltd | Part recognition method, part recognition apparatus, surface mounter, and part inspection apparatus |
DE102007002082B3 (en) * | 2007-01-09 | 2008-07-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Detecting method for relative motions of two camera of stereo camera system, involves taking auxiliary picture of object from camera, where auxiliary line of sight of auxiliary pictures runs from line of sight of camera to another camera |
JP2009276207A (en) * | 2008-05-14 | 2009-11-26 | Nikon Corp | Surface defect inspection device |
JP6122310B2 (en) * | 2013-02-27 | 2017-04-26 | ヴィスコ・テクノロジーズ株式会社 | Inspection device |
KR101725427B1 (en) * | 2015-08-31 | 2017-04-11 | (주)다원넥스뷰 | Laser Soldering Device Having Height Adjustment Function |
TWI735330B (en) * | 2020-09-03 | 2021-08-01 | 由田新技股份有限公司 | Sphere height measurement system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04346011A (en) * | 1991-05-23 | 1992-12-01 | Hitachi Denshi Ltd | Visual inspection apparatus for soldered state |
JPH05180622A (en) * | 1992-01-08 | 1993-07-23 | Hitachi Ltd | Position and attitude detecting apparatus |
-
1996
- 1996-05-20 JP JP12495396A patent/JPH09304030A/en active Pending
-
1997
- 1997-03-17 TW TW086103475A patent/TW325517B/en active
- 1997-05-09 WO PCT/JP1997/001561 patent/WO1997044634A1/en active Search and Examination
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04346011A (en) * | 1991-05-23 | 1992-12-01 | Hitachi Denshi Ltd | Visual inspection apparatus for soldered state |
JPH05180622A (en) * | 1992-01-08 | 1993-07-23 | Hitachi Ltd | Position and attitude detecting apparatus |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1046127A1 (en) * | 1998-01-16 | 2000-10-25 | BEATY, Elwin M. | Method and apparatus for three-dimensional inspection of electronic components |
US6915007B2 (en) | 1998-01-16 | 2005-07-05 | Elwin M. Beaty | Method and apparatus for three dimensional inspection of electronic components |
US7079678B2 (en) | 1998-01-16 | 2006-07-18 | Scanner Technologies Corporation | Electronic component products made according to a process that includes a method for three dimensional inspection |
US7085411B2 (en) | 1998-01-16 | 2006-08-01 | Scanner Technologies Corporation | Method of manufacturing electronic components including a method for three dimensional inspection |
EP1046127A4 (en) * | 1998-01-16 | 2007-02-07 | Elwin M Beaty | Method and apparatus for three-dimensional inspection of electronic components |
Also Published As
Publication number | Publication date |
---|---|
TW325517B (en) | 1998-01-21 |
JPH09304030A (en) | 1997-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7239399B2 (en) | Pick and place machine with component placement inspection | |
US6005965A (en) | Inspection apparatus for semiconductor packages | |
US7397550B2 (en) | Parts manipulation and inspection system and method | |
US20040156539A1 (en) | Inspecting an array of electronic components | |
CN100585615C (en) | Detection system | |
JP2002529711A (en) | Electronic component assembling apparatus having stereo image line scanning sensor | |
JP2002513137A (en) | Apparatus and method for inspecting lead of semiconductor device | |
EP3282223A1 (en) | Three-dimensional shape measuring apparatus | |
WO1997044634A1 (en) | Device for inspecting terminals of semiconductor package | |
KR102393237B1 (en) | Conductive ball inspection and repair device | |
JP2009092485A (en) | Print solder inspection device | |
JPH1068614A (en) | Image pickup system | |
JPH07151522A (en) | Electronic part inspecting device | |
JP3978507B2 (en) | Bump inspection method and apparatus | |
JP2000292126A (en) | Visual inspection apparatus and manufacturing method of semiconductor device which uses the apparatus | |
JP2013084792A (en) | Imaging device | |
JPH09293999A (en) | Image sensing device for part mounting equipment | |
JP2002267415A (en) | Semiconductor measuring instrument | |
KR20200026245A (en) | Imaging Device, Bump Inspection Device and Imaging Method | |
JP3340114B2 (en) | Inspection equipment for semiconductor devices and component mounting machines | |
WO2020188647A1 (en) | Measurement device and surface mounting machine | |
JPH05296739A (en) | Contour form measuring device | |
JP3326665B2 (en) | Solder ball mounting inspection method, solder ball mounting inspection device, and solder ball mounting device | |
JPH10227620A (en) | Device for inspecting terminal of semiconductor package | |
JP2004045592A (en) | Observation apparatus for spherical body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR SG US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |