WO1996018717A1 - Microemulsion light duty liquid cleaning compositions - Google Patents
Microemulsion light duty liquid cleaning compositions Download PDFInfo
- Publication number
- WO1996018717A1 WO1996018717A1 PCT/US1995/015920 US9515920W WO9618717A1 WO 1996018717 A1 WO1996018717 A1 WO 1996018717A1 US 9515920 W US9515920 W US 9515920W WO 9618717 A1 WO9618717 A1 WO 9618717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- glycol
- group
- surfactant
- cosurfactant
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/143—Sulfonic acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/50—Derivatives of urea, thiourea, cyanamide, guanidine or urethanes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/662—Carbohydrates or derivatives
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/90—Betaines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/94—Mixtures with anionic, cationic or non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0017—Multi-phase liquid compositions
- C11D17/0021—Aqueous microemulsions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/18—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2068—Ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2096—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/32—Amides; Substituted amides
- C11D3/323—Amides; Substituted amides urea or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/43—Solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/722—Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/75—Amino oxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
Definitions
- This invention relates to a light duty liquid cleaning composition which imparts mildness to the skin and is in the form of a microemulsion designed in particular for cleaning hard surfaces and which is effective in removing grease soil and/or bath soil and in leaving unrinsed surfaces with a shiny appearance.
- all-purpose liquid detergents have become widely accepted for cleaning hard surfaces, e.g., painted woodwork and panels, tiled walls, wash bowls, bathtubs, linoleum or tile floors, washable wall paper, etc.
- Such all-purpose liquids comprise clear and opaque aqueous mixtures of water-soluble organic detergents and water-soluble detergent builder salts.
- use of water- soluble inorganic phosphate builder salts was favored in the prior art all-purpose liquids.
- such early phosphate-containing compositions are described in U.S. Patent Nos. 2,560,839; 3,234,138; 3,350,319; and British Patent No. 1 ,223,739.
- U.S. Patent No. 4,017,409 teaches that a mixture of paraffin sulfonate and a reduced concentration of inorganic phosphate builder salt should be employed.
- such compositions are not completely acceptable from an environmental point of view based upon the phosphate content.
- another alternative to achieving phosphate-free all-purpose liquids has been to use a major proportion of a mixture of anionic and nonionic detergents with minor amounts of glycol ether solvent and organic amine as shown in U.S. Patent NO. 3,935,130. Again, this approach has not been completely satisfactory and the high levels of organic detergents necessary to achieve cleaning cause foaming which, in turn, leads to the need for thorough rinsing which has been found to be undesirable to today's consumers.
- an o/w microemulsion is a spontaneously forming colloidal dispersion of "oil" phase particles having a particle size in the range of about 25 to about 800 A in a continuous aqueous phase.
- Patent disclosures relating to use of grease-removal solvents in o/w microemulsions include, for example, European Patent Applications EP 0137615 and EP 0137616 - Herbots et al; European Patent Application EP 0160762 - Johnston et al; and U.S. Patent No. 4,561 ,991 - Herbots et al. Each of these patent disclosures also teaches using at least 5% by weight of grease-removal solvent.
- compositions of this invention described by Herbots et al. require at least 5% of the mixture of grease-removal solvent and magnesium salt and preferably at least 5% of solvent (which may be a mixture of water-immiscible non-polar solvent with a sparingly soluble slightly polar solvent) and at least 0.1% magnesium salt.
- Liquid detergent compositions which include terpenes, such as d-limonene, or other grease-removal solvent, although not disclosed to be in the form of o/w microemulsions, are the subject matter of the following representative patent documents: European Patent Application 0080749; British Patent Specification 1 ,603,047; 4,414,128; and 4,540,505.
- European Patent Application 0080749 British Patent Specification 1 ,603,047; 4,414,128; and 4,540,505.
- U.S. Patent No. 4,414,128 broadly discloses an aqueous liquid detergent composition characterized by, by weight: (a) from about 1% to about 20% of a synthetic anionic, nonionic, amphoteric or zwitterionic surfactant or mixture thereof;
- Other ingredients present in the formulations disclosed in this patent include from about 0.05% to about 2% by weight of an alkali metal, ammonium or alkanolammonium soap of a C13-C24 fatty acid; a calcium sequestrant from about 0.5% to about 13% by weight; non-aqueous solvent, e.g., alcohols and glycol ethers, up to about 10% by weight; and hydrotropes, e.g., urea, ethanolamines, salts of lower alkylaryl sulfonates, up to about 10% by weight. All of the formulations shown in the Examples of this patent include relatively large amounts of detergent builder salts which are detrimental to surface shine.
- U.S. Patent 5,082,584 discloses a microemulsion composition having an anionic surfactant, a cosurfactant, nonionic surfactant, perfume and water; however, these compositions are not light duty liquid compositions.
- the present invention relates to novel microemulsion light duty liquid detergent compositions with high foaming properties, containing a nonionic surfactant, a sulfonate surfactant, a betaine surfactant, and an ethoxylated alkyl ether sulfate surfactant.
- Nonionic surfactants are in general chemically inert and stable toward pH change and are therefore well suited for mixing and formulation with other materials. The superior performance of nonionic surfactants on the removal of oily soil is well recognized.
- Nonionic surfactants are also known to be mild to human skin. However, as a class, nonionic surfactants are known to be low or moderate foamers. Consequently, for detergents which require copious and stable foam, the application of nonionic surfactants is limited. There have been substantial interest and efforts to develop a high foaming detergent with nonionic surfactants as the major active ingredient. Yet, little has been achieved.
- 4,329,335 also discloses a shampoo containing a betaine surfactant as the major ingredient and minor amounts of a nonionic surfactant and of a fatty acid mono- or di-ethanolamide.
- U.S. Patent No. 4,259,204 discloses a shampoo comprising 0.8-20% by weight of an anionic phosphoric acid ester and one additional surfactant which may be either anionic, amphoteric, or nonionic.
- U.S. Patent No. 4,329,334 discloses an anionic-amphoteric based shampoo containing a major amount of anionic surfactant and lesser amounts of a betaine and nonionic surfactants.
- 3,935,129 discloses a liquid cleaning composition based on the alkali metal silicate content and containing five basic ingredients, namely, urea, glycerin, triethanolamine, an anionic detergent and a nonionic detergent.
- the silicate content determines the amount of anionic and/or nonionic detergent in the liquid cleaning composition.
- U.S. Patent No. 4,129,515 discloses a heavy duty liquid detergent for laundering fabrics comprising a mixture of substantially equal amounts of anionic and nonionic surfactants, alkanolamines and magnesium salts, and, optionally, zwitterionic surfactants as suds modifiers.
- U.S. Patent No. 4,224,195 discloses an aqueous detergent composition for laundering socks or stockings comprising a specific group of nonionic detergents, namely, an ethylene oxide of a secondary alcohol, a specific group of anionic detergents, namely, a sulfuric ester salt of an ethylene oxide adduct of a secondary alcohol, and an amphoteric surfactant which may be a betaine, wherein either the anionic or nonionic surfactant may be the major ingredient.
- the prior art also discloses detergent compositions containing all nonionic surfactants as shown in U.S. Patent Nos.
- U.S. Patent 4,671 ,895 teaches a liquid detergent composition containing an alcohol sulfate surfactant, a nonionic surfactant, a paraffin sulfonate surfactant, an alkyl ether sulfate surfactant and water but fails to disclose an alkyl polysaccharide surfactant.
- U.S. Patent No. 4,450,091 discloses high viscosity shampoo compositions containing a blend of an amphoteric betaine surfactant, a polyoxybutylene polyoxyethylene nonionic detergent, an anionic surfactant, a fatty acid alkanolamide and a polyoxyalkylene glycol fatty ester. But, none of the exemplified compositions contains an active ingredient mixture wherein the nonionic detergent is present in major proportion, probably due to the low foaming properties of the polyoxybutylene polyoxyethylene nonionic detergent.
- U.S. Patent No. 4,595,526 describes a composition comprising a nonionic surfactant, a betaine surfactant, an anionic surfactant and a C-12-C14 fatty acid monethanolamide foam stabilizer.
- An object of this invention is to provide a novel microemulsion light duty liquid detergent composition containing a nonionic surfactant, a betaine surfactant, a sulfonate surfactant and an ethoxylated alkyl ether sulfate surfactant, wherein the composition does not contain any amine oxide, HEDTA, fatty acid alkanolamides, silicas, abrasives, alkali metal carbonates, alkaline earth metal carbonates, alkyl glycine surfactant, cyclic imidinium surfactant, or more than 3 wt. % of a fatty acid or salt thereof.
- Another object of this invention is to provide a novel microemulsion light duty liquid detergent with desirable high foaming and cleaning properties which is mild to the human skin.
- the novel, high foaming microemulsion light duty liquid detergent of this invention comprises four essential surfactants: a water soluble, ethoxylated, nonionic surfactant, a betaine surfactant, an ethoxylated alkyl ether sulfate surfactant and a sulfonate anionic surfactant as well as a cosurfactant, a hydrocarbon and water, wherein the composition does not contain any amine oxide, HEDTA, fatty acid alkanolamides, silicas, abrasives, alkali metal carbonates, alkaline earth metal carbonates, alkyl glycine surfactant, cyclic imidinium surfactant or more than 3 wt. % of a fatty acid or salt thereof.
- microemulsion light duty liquid compositions of the instant invention comprise approximately by weight:
- the nonionic surfactant is present in amounts of about 4 to 12%, preferably 4% to 10% by weight of the composition and provides superior performance in the removal of oily soil and mildness to human skin.
- the water soluble nonionic surfactants utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI).
- the nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups.
- any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof , polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
- the nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing about 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with about 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with about 16 moles of ethylene oxide (EO), tridecanol condensed with about 6 to moles of EO, myristyl alcohol condensed with about 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to about 14 carbon atoms in length and wherein the condensate contains either about 6 moles of EO per mole of total alcohol or about 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
- a higher alcohol e.g., an
- Neodol ethoxylates which are higher aliphatic, primary alcohol containing about 9- 15 carbon atoms, such as C9-C11 alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91 -8), C-12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C*
- Neodol ethoxylates such as C9-C11 alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91 -8), C-12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C*
- Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of about 8 to 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 8 contain less than 5 ethyleneoxide groups and tend to be poor emulsifiers and poor detergents.
- Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide. Examples of commercially available nonionic detergents of the foregoing type are C** ⁇ -C*
- nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from about 8 to 18 carbon atoms in a straight- or branched chain alkyl group with about 5 to 30 moles of ethylene oxide.
- alkyl phenol ethoxylates include nonyl phenol condensed with about 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with about 12 moles of EO per mole of phenol, dinonyl phenol condensed with about 15 moles of EO per mole of phenol and di-isoctylphenol condensed with about 15 moles of EO per mole of phenol.
- nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
- nonionic detergents are the water-soluble condensation products of a C8-C20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from 2.5:1 to 4:1 , preferably 2.8:1 to 3.3:1 , with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or propanol group) being from 60-85%, preferably 70-80%, by weight.
- Such detergents are commercially available from BASF-Wyandotte and a particularly preferred detergent is a C-
- Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri-C-j Q- C20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described composition.
- These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate.
- Suitable water-soluble nonionic detergents are marketed under the trade name "Pluronics.”
- the compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
- the molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4000 and preferably 200 to 2,500.
- the addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole so as to make the surfactant water-soluble.
- the molecular weight of the block polymers varies from 1 ,000 to 15,000 and the polyethylene oxide content may comprise 20% to 80% by weight.
- these surfactants will be in liquid form and satisfactory surfactants are available as grades L 62 and L 64.
- anionic sulfonate surfactants which may be used in the detergent of this invention are water soluble such as triethanolamine and include the sodium, potassium, ammonium and ethanolammonium salts of linear C8-C16 alkyl benzene sulfonates; C10-C20 paraffin sulfonates and alpha olefin sulfonates containing about 10-24 carbon atoms.
- the preferred anionic sulfonate surfactant is a C12-I 8 paraffin sulfonate present in the composition at a concentration of about 14% to 24 wt. %, more preferably
- the paraffin sulfonates may be monosulfonates or di-sulfonates and usually are mixtures thereof, obtained by sulfonating paraffins of 10 to 20 carbon atoms.
- Preferred paraffin sulfonates are those of Ci 2-18 carbon atoms chains, and more preferably they are of C 14-17 chains.
- Paraffin sulfonates that have the sulfonate group(s) distributed along the paraffin chain are described in U.S. Patents 2,503,280; 2,507,088; 3,260,744; and 3,372,188; and also in German Patent 735,096. Such compounds may be made to specifications and desirably the content of paraffin sulfonates outside the C14-17 range will be minor and will be minimized, as will be any contents of di- or poly-sulfonates.
- Suitable other sulfonated anionic detergents are the well known higher alkyl mononuclear aromatic sulfonates, such as the higher alkylbenzene sulfonates containing 9 to 18 or preferably 9 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, or C ⁇ -15 alkyl toluene sulfonates.
- a preferred alkylbenzene sulfonate is a linear alkylbenzene sulfonate having a higher content of 3- phenyl (or higher) isomers and a correspondingly lower content (well below 50%) of 2- phenyl (or lower) isomers, such as those sulfonates wherein the benzene ring is attached mostly at the 3 or higher (for example 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low.
- Preferred materials are set forth in U.S. Patent
- the C ⁇ -18 ethoxylated alkyl ether sulfate surfactants have the structure
- n is about 1 to about 22 more preferably 1 to 3 and R is an alkyl group having about 8 to about 18 carbon atoms, more preferably 12 to 15 and natural cuts, for example, C12-14; C12-15 and M is an ammonium cation or a metal cation, most preferably sodium.
- the ethoxylated alkyl ether sulfate is present in the composition at a concentration of about 2.0 to about 5.0 wt. %, more preferably about 2.5% to 4.5 wt. %.
- the ethoxylated alkyl ether sulfate may be made by sulfating the condensation product of ethylene oxide and C ⁇ -10 alkanol, and neutralizing the resultant product.
- the ethoxylated alkyl ether sulfates differ from one another in the number of carbon atoms in the alcohols and in the number of moles of ethylene oxide reacted with one mole of such alcohol.
- Preferred ethoxylated alkyl ether polyethenoxy sulfates contain
- Ethoxylated C ⁇ -18 alkylphenyl ether sulfates containing from 2 to 6 moles of ethylene oxide in the molecule are also suitable for use in the invention compositions.
- These detergents can be prepared by reacting an alkyl phenol with 2 to 6 moles of ethylene oxide and sulfating and neutralizing the resultant ethoxylated alkylphenol.
- concentration of the ethoxylated alkyl ether sulfate surfactant is about 1 to about 8 wt.
- the water-soluble zwitterionic surfactant which is also an essential ingredient of present microemulsion light duty liquid detergent composition, constitutes about 2% to 8%, preferably 3% to 6%, by weight and provides good foaming properties and mildness to the present nonionic based liquid detergent.
- the zwitterionic surfactan is a water soluble betaine having the general formula:
- R3 wherein X " is selected from the group consisting of SO3 " and CO2 " and R-* is an alkyl group having 10 to about 20 carbon atoms, preferably 12 to 16 carbon atoms, or the amido radical:
- Typical alkyldimethyl betaines include decyl dimethyl betaine or 2-(N-decyl-N, N-dimethyl-ammonia) acetate, coco dimethyl betaine or 2-(N- coco N, N-dimethylammonia) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, lauryl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine, etc.
- the amidobetaines similarly include cocoamidoethylbetaine, cocoamidopropyl betaine and the like.
- a preferred betaine is coco (C ⁇ -C-i ⁇ ) amidopropyl dimethyl betaine.
- the role of the water insoluble hydrocarbon in the instant micromeulsion light duty liquid formula is performed by an aliphatic hydrocarbon having 8 to 20 carbon atoms, terpineol, d or I limonene, dipentene, an essential oil or a perfume and mixtures thereof at a concentration range of about 1.0 wt. % to about 8.0 wt. %, more preferably about 2.0 wt. % to about 7.0 wt. %.
- Suitable essential oils are selected from the group consisting of: Anethole 20/21 natural, Aniseed oil china star, Aniseed oil globe brand, Balsam (Peru), Basil oil (India), Black pepper oil, Black pepper oleoresin 40/20, Bois de Rose (Brazil) FOB, Borneol Flakes (China), Camphor oil, White, Camphor powder synthetic technical, Cananga oil (Java), Cardamom oil, Cassia oil (China), Cedarwood oil (China) BP, Cinnamon bark oil, Cinnamon leaf oil, Citronella oil, Clove bud oil, Clove leaf, Coriander (Russia), Coumarin 69°C (China), Cyclamen Aldehyde, Diphenyl oxide, Ethyl vanilin, Eucalyptol, Eucalyptus oil, Eucalyptus citriodora.
- the instant compositions contain about 1 wt. % to about 10 wt. %, more preferably about 1 wt. % to about 8 wt. %, of at least one solubilizing agent which is a C2-4 mono or dihydroxy alkanols such as ethanol, isopropanol and propylene glycol and mixtures thereof.
- the solubilizing agents are included in order to control low temperature cloud clear properties.
- Urea can be optionally employed in the instant composition as a supplemental solubilizing agent at a concentration of 0 to about 10 wt. %, more preferably about 0.5 wt. % to about 8 wt. %.
- the cosurfactant may play an essential role in the formation of the dilute o/w microemulsion and the concentrated microemulsion compositions.
- the water, detergent(s) and hydrocarbon e.g., perfume
- the cosurfactant added to this system, the interfacial tension at the interface between the emulsion droplets and aqueous phase is reduced to a very low value.
- thermodynamic factors come into balance with varying degrees of stability related to the total free energy of the microemulsion.
- Some of the thermodynamic factors involved in determining the total free energy of the system are (1 ) particle-particle potential; (2) interfacial tension or free energy (stretching and bending); (3) droplet dispersion entropy; and (4) chemical potential changes upon formation.
- a thermodynamically stable system is achieved when (2) interfacial tension or free energy is minimized and (3) droplet dispersion entropy is maximized.
- the role of cosurfactant in formation of a stable o/w microemulsion is to (a) decrease interfacial tension (2); and (b) modify the microemulsion structure and increase the number of possible configurations (3). Also, the cosurfactant will (c) decrease the rigidity. Generally, an increase in cosurfactant concentration results in a wider temperature range of the stability of the product.
- the major class of compounds found to provide highly suitable cosurfactants for the microemulsion over temperature ranges extending from 5°C to 43°C for instance are glycerol, ethylene glycol, water-soluble polyethylene glycols having a molecular weight of 300 to 1000, polypropylene glycol of the formula HO(CH3CHCH2 ⁇ ) n H wherein n is a number from 2 to 18, mixtures of polyethylene glycol and polypropyl glycol (Synalox) and mono C1-C6 alkyl ethers and esters of ethylene glycol and propylene glycol having the structural formulas R(X)nOH and Ri (X)nOH wherein R is C1 -C6 alkyl group, Ri is C2-C4 acyl group, X is (OCH2CH2) or (OCH2(CH3)CH) and n is a number from 1 to 4, diethylene glycol, triethylene glycol, an alkyl lactate, wherein the alkyl group has 1 to 6 carbon
- Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 200 to 1000, e.g., polypropylene glycol 400.
- Other satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, mono, di, tripropylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, ethylene glycol monopentyl ether, diethylene glycol mono
- glycol type cosurfactants When these glycol type cosurfactants are at a concentartion of about 1.0 to about 14 weight %, more preferably about 2.0 weight % to about 10 weight % in combination with a water insoluble hydrocarbon at a concentration of at least 0.5 weight %, more preferably 1.5 weight % one can form a microemulsion composition.
- glycol ether compounds While all of the aforementioned glycol ether compounds provide the described stability, the most preferred cosurfactant compounds of each type, on the basis of cost and cosmetic appearance (particularly odor), are dipropylene glycol monomethyl ether and diethylene glycol monobutyl ether.
- the amount of cosurfactant required to stabilize the microemulsion compositions will, of course, depend on such factors as the surface tension characteristics of the cosurfactant, the type and amounts of the primary surfactants and water insoluble hydrocarbon, and the type and amounts of any other additional ingredients which may be present in the composition and which have an influence on the thermodynamic factors enumerated above.
- amounts of cosurfactant in the range of from 1 % to 14%, preferably from about 2 wt. % to 10 wt. % provide stable dilute o/w microemulsions for the above-described levels of primary surfactants and water insoluble hydrocarbon and any other additional ingredients as described below.
- the ability to formulate mild, neutral products without builders which have grease removal capacities is a feature of the present invention because the prior art o/w microemulsion formulations most usually are highly alkaline or highly built or both.
- the instant microemulsion formulas explicitly exclude alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
- the final essential ingredient in the inventive microemulsion compositions having improved interfacial tension properties is water.
- the proportion of water in the microemulsion compositions generally is in the range of 35% to 65%, preferably 40% to 60% by weight of the usual diluted o/w microemulsion composition.
- the instant compositions exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 5°C to 50°C, especially 10°C to 43°C. Such compositions exhibit a pH iof 5 to 8.
- the liquid microemulsion compositions are readily pourable and exhibit a viscosity in the range of 6 to 150 milliPascal . second (mPas.) as measured at 25°C. with a Brookfield RVT Viscometer using a #1 spindle rotating at 20 RPM. Preferably, the viscosity is maintained in the range of 10 to 100 mPas.
- compositions in wt. % were prepared by simple mixing procedure:
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Molecular Biology (AREA)
- Detergent Compositions (AREA)
- Cosmetics (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95942584A EP0797657A1 (en) | 1994-12-15 | 1995-12-06 | Microemulsion light duty liquid cleaning compositions |
AU43764/96A AU699888B2 (en) | 1994-12-15 | 1995-12-06 | Microemulsion light duty liquid cleaning compositions |
MXPA/A/1997/004347A MXPA97004347A (en) | 1994-12-15 | 1997-06-12 | Liquid cleaning compositions for working in microemuls |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/356,615 | 1994-12-15 | ||
US08/356,615 US5529723A (en) | 1994-12-15 | 1994-12-15 | Microemulsion light duty liquid cleaning compositions |
US08/526,785 | 1995-09-11 | ||
US08/526,785 US5580848A (en) | 1994-12-15 | 1995-09-11 | Microemulsion light duty liquid cleaning comnpositions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996018717A1 true WO1996018717A1 (en) | 1996-06-20 |
Family
ID=26999285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/015920 WO1996018717A1 (en) | 1994-12-15 | 1995-12-06 | Microemulsion light duty liquid cleaning compositions |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0797657A1 (en) |
AU (1) | AU699888B2 (en) |
CA (1) | CA2207683A1 (en) |
PL (1) | PL321067A1 (en) |
WO (1) | WO1996018717A1 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998000506A2 (en) * | 1996-07-01 | 1998-01-08 | Colgate-Palmolive Company | Microemulsion light duty liquid cleaning compositions |
WO1998005743A1 (en) * | 1996-08-06 | 1998-02-12 | Colgate-Palmolive Company | High foaming nonionic surfactant based liquid detergent |
WO1998006817A1 (en) * | 1996-08-14 | 1998-02-19 | Colgate-Palmolive Company | Light duty liquid microemulsion cleaning compositions |
WO1998046721A1 (en) * | 1997-04-17 | 1998-10-22 | Colgate-Palmolive Company | Microemulsion light duty liquid cleaning compositions |
WO1998050508A1 (en) * | 1997-05-08 | 1998-11-12 | Colgate-Palmolive Company | Cleaning compositions |
EP0878535A1 (en) * | 1997-05-16 | 1998-11-18 | The Procter & Gamble Company | Light-duty liquid or gel dishwashing detergent compositions which are microemulsions and which have desirable greasy food soil removal and sudsing characteristics. |
WO1998053041A1 (en) * | 1997-05-20 | 1998-11-26 | Colgate-Palmolive Company | Light duty liquid microemulsion cleaning compositions |
WO1999003968A1 (en) * | 1997-07-17 | 1999-01-28 | Colgate-Palmolive Company | Microemulsion light duty liquid cleaning compositions |
WO1999031216A1 (en) * | 1997-12-12 | 1999-06-24 | Colgate-Palmolive Company | Antimicrobial multipurpose microemulsion containing a cationic surfactant |
WO1999035237A1 (en) * | 1998-01-08 | 1999-07-15 | Colgate-Palmolive Company | Microemulsion cleaning compositions |
FR2785556A1 (en) * | 1998-11-10 | 2000-05-12 | Jean Claude Attali | Microemulsions useful for e.g. for sanitizing purposes or spraying onto linen as aid to ironing without using non-flammable propellant gas, contain active material, nonionic surfactant and demineralized water |
EP0840778B1 (en) * | 1995-07-18 | 2002-11-27 | JohnsonDiversey, Inc. | Concentrated aqueous degreasing cleanser |
EP1564283A2 (en) | 2000-01-27 | 2005-08-17 | Henkel Kommanditgesellschaft auf Aktien | Surfactant combination |
US7186675B2 (en) | 2000-09-13 | 2007-03-06 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Quick drying washing and cleaning agent, comprising an anionic/cationic/amphoteric surfactant mixture |
WO2007096711A2 (en) | 2005-12-12 | 2007-08-30 | Vitech International, Inc. | Multipurpose, non-corrosive cleaning compositions and methods of use |
WO2007118747A1 (en) * | 2006-04-11 | 2007-10-25 | Henkel Ag & Co. Kgaa | Aqueous cleaning agent containing perfume |
US7998919B2 (en) | 2006-12-05 | 2011-08-16 | Henkel Ag & Co. Kgaa | Compositions for treating hard surfaces comprising silyl polyalkoxylates |
US7998918B2 (en) | 2006-12-05 | 2011-08-16 | Henkel Ag & Co. Kgaa | Cleaning compositions for hard surfaces comprising a silyl polyalkoxylate |
WO2015187787A1 (en) * | 2014-06-04 | 2015-12-10 | Pi Extreme, Inc. | Novel compound for improved traction |
WO2022128173A1 (en) * | 2020-12-18 | 2022-06-23 | Babinski Wojciech | Degreasing compositions, process for producing and uses thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006017315A1 (en) * | 2006-04-11 | 2007-10-18 | Henkel Kgaa | Aqueous cleaning agent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0638634A2 (en) * | 1993-07-14 | 1995-02-15 | Colgate-Palmolive Company | Stable microemulsion cleaning composition |
WO1995014763A1 (en) * | 1993-11-22 | 1995-06-01 | Colgate-Palmolive Company | Liquid cleaning compositions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146499A (en) * | 1976-09-18 | 1979-03-27 | Rosano Henri L | Method for preparing microemulsions |
US5082584A (en) * | 1986-05-21 | 1992-01-21 | Colgate-Palmolive Company | Microemulsion all purpose liquid cleaning composition |
-
1995
- 1995-12-06 EP EP95942584A patent/EP0797657A1/en not_active Ceased
- 1995-12-06 CA CA 2207683 patent/CA2207683A1/en not_active Abandoned
- 1995-12-06 AU AU43764/96A patent/AU699888B2/en not_active Ceased
- 1995-12-06 PL PL32106795A patent/PL321067A1/en unknown
- 1995-12-06 WO PCT/US1995/015920 patent/WO1996018717A1/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0638634A2 (en) * | 1993-07-14 | 1995-02-15 | Colgate-Palmolive Company | Stable microemulsion cleaning composition |
WO1995014763A1 (en) * | 1993-11-22 | 1995-06-01 | Colgate-Palmolive Company | Liquid cleaning compositions |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0840778B1 (en) * | 1995-07-18 | 2002-11-27 | JohnsonDiversey, Inc. | Concentrated aqueous degreasing cleanser |
WO1998000506A3 (en) * | 1996-07-01 | 1998-05-22 | Colgate Palmolive Co | Microemulsion light duty liquid cleaning compositions |
WO1998000506A2 (en) * | 1996-07-01 | 1998-01-08 | Colgate-Palmolive Company | Microemulsion light duty liquid cleaning compositions |
WO1998005743A1 (en) * | 1996-08-06 | 1998-02-12 | Colgate-Palmolive Company | High foaming nonionic surfactant based liquid detergent |
WO1998006817A1 (en) * | 1996-08-14 | 1998-02-19 | Colgate-Palmolive Company | Light duty liquid microemulsion cleaning compositions |
WO1998046721A1 (en) * | 1997-04-17 | 1998-10-22 | Colgate-Palmolive Company | Microemulsion light duty liquid cleaning compositions |
WO1998050508A1 (en) * | 1997-05-08 | 1998-11-12 | Colgate-Palmolive Company | Cleaning compositions |
EP0878535A1 (en) * | 1997-05-16 | 1998-11-18 | The Procter & Gamble Company | Light-duty liquid or gel dishwashing detergent compositions which are microemulsions and which have desirable greasy food soil removal and sudsing characteristics. |
WO1998053041A1 (en) * | 1997-05-20 | 1998-11-26 | Colgate-Palmolive Company | Light duty liquid microemulsion cleaning compositions |
WO1999003968A1 (en) * | 1997-07-17 | 1999-01-28 | Colgate-Palmolive Company | Microemulsion light duty liquid cleaning compositions |
WO1999031216A1 (en) * | 1997-12-12 | 1999-06-24 | Colgate-Palmolive Company | Antimicrobial multipurpose microemulsion containing a cationic surfactant |
WO1999035237A1 (en) * | 1998-01-08 | 1999-07-15 | Colgate-Palmolive Company | Microemulsion cleaning compositions |
FR2785556A1 (en) * | 1998-11-10 | 2000-05-12 | Jean Claude Attali | Microemulsions useful for e.g. for sanitizing purposes or spraying onto linen as aid to ironing without using non-flammable propellant gas, contain active material, nonionic surfactant and demineralized water |
EP1564283A2 (en) | 2000-01-27 | 2005-08-17 | Henkel Kommanditgesellschaft auf Aktien | Surfactant combination |
EP1564283A3 (en) * | 2000-01-27 | 2006-06-07 | Henkel Kommanditgesellschaft auf Aktien | Surfactant combination |
US7186675B2 (en) | 2000-09-13 | 2007-03-06 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Quick drying washing and cleaning agent, comprising an anionic/cationic/amphoteric surfactant mixture |
WO2007096711A2 (en) | 2005-12-12 | 2007-08-30 | Vitech International, Inc. | Multipurpose, non-corrosive cleaning compositions and methods of use |
EP1969115A2 (en) * | 2005-12-12 | 2008-09-17 | Vitech International Inc. | Multipurpose, non-corrosive cleaning compositions and methods of use |
EP1969115A4 (en) * | 2005-12-12 | 2011-04-27 | Vitech Internat Inc | Multipurpose, non-corrosive cleaning compositions and methods of use |
US8450257B2 (en) | 2005-12-12 | 2013-05-28 | Vitech International, Inc. | Multipurpose, non-corrosive cleaning compositions and methods of use |
US8859476B2 (en) | 2005-12-12 | 2014-10-14 | Vitech International, Inc. | Multi-purpose, non-corrosive cleaning compositions and methods of use |
WO2007118747A1 (en) * | 2006-04-11 | 2007-10-25 | Henkel Ag & Co. Kgaa | Aqueous cleaning agent containing perfume |
US7998919B2 (en) | 2006-12-05 | 2011-08-16 | Henkel Ag & Co. Kgaa | Compositions for treating hard surfaces comprising silyl polyalkoxylates |
US7998918B2 (en) | 2006-12-05 | 2011-08-16 | Henkel Ag & Co. Kgaa | Cleaning compositions for hard surfaces comprising a silyl polyalkoxylate |
WO2015187787A1 (en) * | 2014-06-04 | 2015-12-10 | Pi Extreme, Inc. | Novel compound for improved traction |
US9518203B2 (en) | 2014-06-04 | 2016-12-13 | Pi Extreme, Inc. | Compound for improved traction |
WO2022128173A1 (en) * | 2020-12-18 | 2022-06-23 | Babinski Wojciech | Degreasing compositions, process for producing and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
CA2207683A1 (en) | 1996-06-20 |
PL321067A1 (en) | 1997-11-24 |
AU699888B2 (en) | 1998-12-17 |
AU4376496A (en) | 1996-07-03 |
EP0797657A1 (en) | 1997-10-01 |
MX9704347A (en) | 1998-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5580848A (en) | Microemulsion light duty liquid cleaning comnpositions | |
US6121228A (en) | Microemulsion light duty liquid cleaning compositions | |
AU699888B2 (en) | Microemulsion light duty liquid cleaning compositions | |
US6046151A (en) | Microemulsion light duty liquid cleaning compositions | |
US6632784B2 (en) | Acidic all purpose liquid cleaning compositions | |
US6048834A (en) | Microemulsion light duty liquid cleaning compositions | |
WO1998010048A2 (en) | Cleaning compositions | |
US5912223A (en) | Microemulsion light duty liquid cleaning compositions | |
US5741769A (en) | Microemulsion light duty liquid cleaning compositions | |
US5840676A (en) | Microemulsion light duty liquid cleaning compositions | |
EP0793712B1 (en) | Microemulsion light duty liquid cleaning compositions | |
US5922672A (en) | Cleaning compositions comprising an amine oxide and acetic acid | |
AU698866B2 (en) | Microemulsion light duty liquid cleaning compositions | |
US5939378A (en) | Cleaning compositions containing amine oxide and formic acid | |
US6008180A (en) | Microemulsion light duty liquid cleaning compositions | |
US5688754A (en) | Light duty liquid cleaning compositions | |
US5858955A (en) | Cleaning compositions containing amine oxide and formic acid | |
WO1998050508A1 (en) | Cleaning compositions | |
AU762731B2 (en) | Microemulsion liquid cleaning composition containing a short chain amphiphile | |
AU755191B2 (en) | Microemulsion cleaning compositions | |
WO1997015650A1 (en) | Light duty liquid cleaning compositions | |
MXPA97004347A (en) | Liquid cleaning compositions for working in microemuls |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1997/004347 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2207683 Country of ref document: CA Ref country code: CA Ref document number: 2207683 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995942584 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995942584 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWR | Wipo information: refused in national office |
Ref document number: 1995942584 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995942584 Country of ref document: EP |