WO1996017926A1 - Transgenic animal lacking native amyloid precursor protein - Google Patents
Transgenic animal lacking native amyloid precursor protein Download PDFInfo
- Publication number
- WO1996017926A1 WO1996017926A1 PCT/US1995/015672 US9515672W WO9617926A1 WO 1996017926 A1 WO1996017926 A1 WO 1996017926A1 US 9515672 W US9515672 W US 9515672W WO 9617926 A1 WO9617926 A1 WO 9617926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- app
- mouse
- gene
- altered
- mice
- Prior art date
Links
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 title claims abstract description 106
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 title claims abstract description 100
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 title claims abstract description 100
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 title claims abstract description 97
- 241001465754 Metazoa Species 0.000 title claims abstract description 28
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 23
- 238000011830 transgenic mouse model Methods 0.000 claims abstract description 18
- 210000004027 cell Anatomy 0.000 claims description 51
- 108090000623 proteins and genes Proteins 0.000 claims description 46
- 241000699670 Mus sp. Species 0.000 claims description 34
- 101150031224 app gene Proteins 0.000 claims description 33
- 241000699666 Mus <mouse, genus> Species 0.000 claims description 25
- 108700028369 Alleles Proteins 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 241000699660 Mus musculus Species 0.000 claims description 11
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 11
- 210000002459 blastocyst Anatomy 0.000 claims description 9
- 101000823042 Mus musculus Amyloid-beta precursor protein Proteins 0.000 claims description 6
- 238000009395 breeding Methods 0.000 claims description 6
- 230000001488 breeding effect Effects 0.000 claims description 6
- 210000004602 germ cell Anatomy 0.000 claims description 6
- 238000000520 microinjection Methods 0.000 claims description 5
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 2
- 210000001161 mammalian embryo Anatomy 0.000 claims description 2
- 210000001082 somatic cell Anatomy 0.000 claims 2
- 230000000392 somatic effect Effects 0.000 claims 2
- 235000013601 eggs Nutrition 0.000 claims 1
- 208000024827 Alzheimer disease Diseases 0.000 abstract description 36
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 9
- 210000003169 central nervous system Anatomy 0.000 abstract description 6
- 208000035475 disorder Diseases 0.000 abstract description 5
- 239000013598 vector Substances 0.000 description 20
- 108020004414 DNA Proteins 0.000 description 19
- 239000000523 sample Substances 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 14
- 230000008685 targeting Effects 0.000 description 12
- 239000012634 fragment Substances 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 10
- 238000002105 Southern blotting Methods 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 241001529936 Murinae Species 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 230000002950 deficient Effects 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 108010072151 Agouti Signaling Protein Proteins 0.000 description 7
- 102000006822 Agouti Signaling Protein Human genes 0.000 description 7
- 241000484025 Cuniculus Species 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- IPVFGAYTKQKGBM-BYPJNBLXSA-N 1-[(2r,3s,4r,5r)-3-fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidine-2,4-dione Chemical compound F[C@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 IPVFGAYTKQKGBM-BYPJNBLXSA-N 0.000 description 6
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 6
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 6
- 101100268556 Mus musculus App gene Proteins 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 208000037259 Amyloid Plaque Diseases 0.000 description 5
- 201000010374 Down Syndrome Diseases 0.000 description 5
- 101000823051 Homo sapiens Amyloid-beta precursor protein Proteins 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 102000006601 Thymidine Kinase Human genes 0.000 description 4
- 108020004440 Thymidine kinase Proteins 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000011813 knockout mouse model Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 108010078523 APP717 Proteins 0.000 description 3
- 102000002659 Amyloid Precursor Protein Secretases Human genes 0.000 description 3
- 108010043324 Amyloid Precursor Protein Secretases Proteins 0.000 description 3
- 206010068051 Chimerism Diseases 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 102000046783 human APP Human genes 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 102000009091 Amyloidogenic Proteins Human genes 0.000 description 2
- 108010048112 Amyloidogenic Proteins Proteins 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101710132360 Kunitz-type serine protease inhibitor Proteins 0.000 description 2
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 2
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000003942 amyloidogenic effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 2
- 229960002963 ganciclovir Drugs 0.000 description 2
- 238000010363 gene targeting Methods 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- CAMWVBRDIKKGII-UHFFFAOYSA-M n,n-dimethyl-4-(1-methylpyridin-1-ium-4-yl)aniline;iodide Chemical compound [I-].C1=CC(N(C)C)=CC=C1C1=CC=[N+](C)C=C1 CAMWVBRDIKKGII-UHFFFAOYSA-M 0.000 description 2
- 210000000478 neocortex Anatomy 0.000 description 2
- 230000007171 neuropathology Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 208000001608 teratocarcinoma Diseases 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 101100268553 Homo sapiens APP gene Proteins 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 101000756628 Mus musculus Actin, cytoplasmic 1 Proteins 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108091008109 Pseudogenes Proteins 0.000 description 1
- 102000057361 Pseudogenes Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 1
- 208000037280 Trisomy Diseases 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 241001147416 Ursus maritimus Species 0.000 description 1
- PNVLWFYAPWAQMU-CIUDSAMLSA-N Val-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](N)C(C)C PNVLWFYAPWAQMU-CIUDSAMLSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 108010091628 alpha 1-Antichymotrypsin Proteins 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000025688 early-onset autosomal dominant Alzheimer disease Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000012248 genetic selection Methods 0.000 description 1
- 210000002980 germ line cell Anatomy 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 210000002241 neurite Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007121 neuropathological change Effects 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0276—Knock-out vertebrates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4711—Alzheimer's disease; Amyloid plaque core protein
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0306—Animal model for genetic diseases
- A01K2267/0312—Animal model for Alzheimer's disease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2517/00—Cells related to new breeds of animals
- C12N2517/02—Cells from transgenic animals
Definitions
- the present invention relates to a transgenic nonhuman animal lacking native amyloid precursor protein.
- AD Alzheimer's disease
- AD Alzheimer's disease
- AD Alzheimer's disease
- senile plaques consist of extracellular deposits containing a ⁇ -amyloid core surrounded by a halo of dystrophic neurites, glia and astrocytes. ⁇ -amyloid deposits are present in neocortex blood vessel walls.
- the major component of senile plaques is a 4 kDa peptide referred to as A ⁇ , that is proteolytically cleaved from a larger 120 kDa amyloid precursor protein (APP).
- a ⁇ amyloid precursor protein
- Other components of the plaques include ubiquitin, amyloid P, Apo E, interleukin- 1 , and ⁇ -1 -antichymotrypsin.
- APP amyloid precursor protein
- FAD early onset familial AD
- Genetic analysis of FAD families has established that the disorder is inherited as a dominant autosomal gene defect, which maps to the long arm of chromosome 21 and is closely linked to the APP gene. These findings are consistent with genetic data obtained from the analysis of Down syndrome patients.
- FAD families have also been identified in which an early onset of AD is strictly correlated with the presence of a mutation in exon 17 of the APP gene at amino acid 717 (Val-Ile). This mutation within the transmembrane spanning domain of the APP co- segregates with FAD.
- the APP gene is approximately 400 kb in length and encodes a glycosylated, transmembrane protein which may be involved in cell-cell interaction.
- the APP gene has at least 18 exons that create at least 5 distinct APP transcripts by alternative splicing.
- the predominant transcripts encode proteins of 695, 751 and 770 amino acids (these major forms of APP are referred as APP695, APP751 and APP770, respectively).
- Transcripts for APP695 are enriched in the brain.
- Transcripts encoding APP751 and APP770 mRNA species predominate in peripheral tissues. All three isoforms contain the 42 amino acid A ⁇ domain.
- APP isoforms 751 and 770 contain an additional 56 amino acid insert encoding the Kunitz type serine protease inhibitor (KPI).
- KPI Kunitz type serine protease inhibitor
- APP is proteolytically metabolized by at least two pathways. One pathway involves an ⁇ -secretase cleavage site positioned between Lys 16 and Leu 17 of A ⁇ domain; proteolytic cleavage at this site precludes the formation of an amyloidogenic A ⁇ entity. The second pathway produces intact, amyloidogenic A ⁇ (39-42 amino acids) by proteolytic cleavages at the ⁇ - and ⁇ -secretase cleavage sites of the full- length APP molecule.
- AD patients are also found in aged humans and other aged mammals including non-human primates, polar bears and dogs.
- other aged mammals such as laboratory rats and mice, do not normally develop A ⁇ deposits. This could be due to the fact that the three amino acid differences present in the ⁇ -amyloid sequence between human and mouse APP prevents mouse A ⁇ from forming plaques.
- the lack of a cost-effective, experimental animal model mimicking human pathogenesis hinders the understanding AD neuropathology and developing therapeutics against AD.
- Transgenic technology may offer a suitable alternative to this problem.
- Addition of a gene construct directing high levels of human APP or its components to key regions in the murine central nervous system may cause neuropathological changes resembling the AD phenotype.
- Attempts to express human amyloid precursor protein segments or the full-length wild type protein in transgenic animals have been successful.
- transgenic mice of the present invention are useful in the determination of the in vivo function of APP and the ⁇ - amyloid peptide in the central nervous system and in other tissues. These mice are being bred with transgenic mice expressing the human APP FAD with the aim of producing a strain of mice in which the only APP produced is of human origin. The precise roles of APP in AD is not fully understood at this time. Due to the biological importance of APP in AD and other neurological disorders, the APP gene is an important target for embryonic stem (ES) cell manipulation.
- ES embryonic stem
- APP deficient transgenic mice would aid in defining the normal role(s) of APP, and allow an animal model of APP deficiency to be used in the design and assessment of various approaches to modulating APP activity.
- Such APP modified transgenic mice can also be used as a source of cells for cell culture.
- the present invention relates to a transgenic nonhuman animal lacking native amyloid precursor protein (APP).
- APP amyloid precursor protein
- the transgenic mouse of the invention may be used in the study of Alzheimer's Disease and disorders involving the central nervous system. BRIEF DESCRIP ⁇ ON OF THE DRAWINGS
- Figure 1 is a genomic map of the mouse APP gene, the location of the cosmid clone isolated from a primary genomic library and different probes and subclones generated from the cosmid clone.
- ex 1 exon 1 of the APP gene.
- Figure 2 is the predicted modification of the mouse chromosomal APP gene by targeted recombination using replacement vector pHZ 038.
- the targeting vector (pHZ038) contains from left to right:
- the probes used for Southern blot analysis were the 1.0 kb Xbal-Bglll fragment (5'-probe), the 0.8 kb Bglll-Ncol fragment (3'- probe), both of which are outside the targeting vector, and the neo sequence.
- EcoRI was used to differentiate the wild-type and the targeted APP alleles, which generates a 9.0 kb and 6.5 kb fragments by the 5'-probe and a 9.5 kb and a 9.0 kb by the 3'-probe, respectively.
- R EcoRI
- X Xbal
- B Bglll
- N Ncol
- Pr mouse APP promoter
- El exon 1 of the mouse APP gene.
- PGK phosphoglycerate kinase promoter.
- Figure 3 is a Southern hybridization analysis of four targeted embryonic stem (ES) clones having an APP knockout.
- ES cell DNA 8 ⁇ g from the wild-type AB2.1 cells and four positive clones (76, 123, 174 and 196) were restriction enzyme digested with EcoRI, electrophoresed on a 0.7% agarose gel, transferred onto a Gene Screen Plus nylon membrane (NEN-Dupont) and hybridized with a 5'-probe (labeled a), a 3'-probe (data not shown), and a neo probe (labeled b). A 6.5 kb diagnostic fragment is detected by the 5'-probe in all the targeted clones in addition to the wild-type 9.0 kb fragment.
- Probing of the same filter with a neo coding sequence shows that the neo gene is present in the 6.5 kb band and is the only integration event in all the clones.
- the other two bands at high molecular weight corresponds to a nonfunctional neo sequence introduced by a retrovirus in the parental AB2.1 cells.
- Figure 4 is a Southern hybridization analysis of tail DNA from transgenic mice having an APP knockout. Southern analysis of genomic DNA from het. x het. crosses yielded the expected number of mice homozygous for the disrupted APP allele.
- Genomic DNA isolated from the tails of two week old pups generated from crosses of heterozygous mice was digested with EcoRI, blotted onto filters, and hybridized with the 5'-probe. +/+: wild-type; +/-: heterozygotes; -/-: homozygous APP deficient mice.
- Figure 5 is a Northern hybridization analysis for the determination of APP transcripts in the knockout and wild-type control mice. As expected, the brain RNA from the knockout mice did not exhibit any detectable APP expression, whereas wild-type control and heterozygous animals showed a significant amount of APP activity.
- RNA 20 ⁇ g from wild-type (+/+), heterozygous(+/-) and homozygous (-/-) APP mice were isolated (2 mice each) from brain using the RNAzol B method (Biotecx
- the present invention relates to a transgenic nonhuman animal lacking native amyloid precursor protein.
- the transgenic mouse of the invention may be used in the study of Alzheimer's Disease and disorders involving the central nervous system.
- a 39 to 43 amino acid ⁇ -amyloid peptide is the major component of the neuritic plaques characterizing Alzheimer disease, ⁇ - amyloid is derived from a larger amyloid precursor protein (APP).
- APP amyloid precursor protein
- the APP mRNA undergoes alternative splicing to generate several isoforms, encoding proteins that range from 695 to 770 amino acid residues. Among these, APP695 is expressed predominantly in neurons and APP751 and APP770 can be detected in all the tissues examined.
- Five different types of point mutations have now been identified in the human APP gene, causative of familial early onset Alzheimer's disease (FAD) in several unrelated families. These affected families provide the strongest evidence yet for the notion that APP processing and the ⁇ - amyloid peptide serve a central role in Alzheimer disease progression.
- APP is one of the most abundant proteins in the brain and the ⁇ -amyloid peptide is secreted in cerebrospinal fluid (CSF) of healthy individuals and AD patients.
- CSF cerebrospinal fluid
- the functions of the APP and ⁇ -amyloid in vivo are obscure.
- the APP has been implicated as a growth factor in vitro in fibroblast cultures.
- the ⁇ -amyloid peptide has been shown to have neuroprotective and neurotoxic actions, dependent on the cell line and protein preparations tested.
- a Kunitz protease inhibitor domain in the N-terminal portion of the APP may serve a role in regulating protein half-life.
- mice may be useful as acceptors of the human FAD protein.
- Mouse APP is overall conserved when compared to human APP but differs in three potentially essential amino acid residues of the ⁇ -amyloid domain.
- the murine APP gene is about 400 kb in size and is encoded by at least 18 exons.
- the murine APP gene was inactivated by deleting its promoter and first exon, which encodes the ATG translation initiation codon. To target the APP gene in murine ES cells, a positive-negative selection strategy was used.
- the targeting vector pHZ038 ( Figure 2) encoded 8.5 kilobases (kb) of DNA derived from the 5' end of the APP gene.
- a 3.8 kb sequence encoding the APP promoter and the first intron was deleted from this vector and replaced with a positive selectable marker, PGKneo (neomycin-phospho-transferase).
- a MC1 - TK (thymidine kinase) cassette (labeled HSV-TK in Figure 2) was inserted at the end of the vector for negative selection. Correct homologous recombination between the targeting vector and one of the APP alleles in the ES cells would result in a deletion of the APP promoter and exon 1 , encoding the signal peptide.
- the targeting vector was electroporated into AB2.1 ES cells. G418 and FIAU resistant clones were screened by a mini- Southern protocol. A five-fold enrichment was achieved by selecting the cells with FIAU. Six targeted clones were identified and the frequency of targeted recombination versus random integration at the APP locus was 1/160 ( Figure 3). Of four clones injected into blastoysts two (no. 76 and 174) transmitted the targeted APP allele to the offspring. Heterozygous matings were set up to produce mice homozygous for the disrupted APP gene.
- mice Homozygous APP knockout mice that resulted from these breedings were generated at expected frequencies (Figure 4). These mice appeared normal and healthy up to 14 weeks of age. Northern blot analysis of RNA isolated from brain using APP695 cDNA as a probe showed that APP mRNA was not produced in mice homozygous for the targeted allele. The APP mRNA level was reduced by approximately 50% in the heterozygous mice as compared to wild-type controls ( Figure 5).
- the present invention utilizes a cloned DNA encoding the
- Transgenic animals are generated which have an altered APP gene.
- the alterations to the naturally occurring gene are modifications, deletions and substitutions. Modifications, deletions and substituteions may render the naturally occurring gene nonfunctional, producing a "knockout" animal, or may lead to an APP with altered function.
- These transgenic animals are critical for drug antagonist or agonist studies, for creation of animal models of human diseases, and for eventual treatment of disorders or diseases associated with APP.
- Transgenic animals lacking native APP are useful in characterizing the in vivo function of APP.
- a transgenic animal carrying a "knockout" of APP is useful for the establishment of a nonhuman model for diseases involving APP, and to distinguish between the activities of APP in in vivo and in vitro systems.
- animal is used herein to include all vertebrate animals, except humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages.
- a "transgenic animal” is an animal containing one or more cells bearing genetic information received, directly or indirectly, by deliberate genetic manipulation at a subcellular level, such as by microinjection or infection with recombinant virus. This introduced DNA molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA.
- the term “germ cell-line transgenic animal” refers to a transgenic animal in which the genetic information was introduced into a germ line cell, thereby conferring the ability to transfer the information to offspring. If such offspring in fact possess some or all of that information, then they, too, are transgenic animals.
- the genetic alteration or genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.
- the altered APP gene should not fully encode the same APP as native to the host animal, and its expression product should be altered to a minor or great degree, or absent altogether. However, it is conceivable that a more modestly modified APP gene fall within the scope of the present invention.
- ES cells may be obtained from pre- implantation embryos cultured in vitro and fused with embryos (M. J. Evans ai-, Nature 292: 154-156 (1981); Bradley et ah, Nature 309: 255-258 (1984); Gossler et aL Proc. Natl. Acad. Sci. USA 83: 9065-9069 (1986); and Robertson et aj., Nature 322, 445-448 (1986)).
- Transgenes can be efficiently introduced into the ES cells by a variety of standard techniques such as DNA transfection, microinjection, or by retrovirus-mediated transduction.
- the resultant transformed ES cells can thereafter be combined with blastocysts from a non-human animal.
- the introduced ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal (R. Jaenisch, Science 240: 1468-1474 (1988)).
- APP functions are complex, they must be examined in a variety of ways.
- One approach to the problem of determining the contributions of individual genes and their expression products is to use isolated genes to selectively inactivate the native wild-type gene in totipotent ES cells (such as those described herein) and then generate transgenic mice.
- the use of gene-targeted ES cells in the generation of gene-targeted transgenic mice was described 1987 (Thomas et a] . ., Cell 51 :503-512, (1987)) and is reviewed elsewhere (Frohman et al., Cell 56:145-147 (1989); Capecchi, Trends in Genet. 5:70-76 (1989); Baribault et aL, Mol. Biol. Med.
- Nonhomologous plasmid-chromosome interactions are more frequent, occurring at levels 105-fold (Lin et ah, Proc. Natl. Acad. Sci. USA 82:1391-1395 (1985)) to 102-fold (Thomas et al-, Cell 44:419-428 (1986); Song et aL, Proc. Natl. Acad. Sci. USA 84:6820-6824 ( 1987)) greater than comparable homologous insertion.
- PCR polymerase chain reaction
- a positive genetic selection approach has been developed in which a marker gene is constructed which will only be active if homologous insertion occurs, allowing these recombinants to be selected directly (Sedivy et al-, Proc. Natl. Acad.
- PNS positive-negative selection
- Nonhomologous recombinants are selected against by using the Herpes Simplex virus thymidine kinase (HSV-TK) gene and selecting against its nonhomologous insertion with the herpes drugs such as gancyclovir (GANC) or FIAU (l-(2-deoxy 2-fluoro-B-D-arabinofluranosyl)-5-iodouracil).
- HSV-TK Herpes Simplex virus thymidine kinase
- GANC gancyclovir
- FIAU l-(2-deoxy 2-fluoro-B-D-arabinofluranosyl
- a “targeted gene” or “Knock-out” is a DNA sequence introduced into the germline of a non-human animal by way of human intervention, including but not limited to, the above described methods.
- the targeted genes of the invention include DNA sequences which are designed to specifically alter cognate endogenouos alleles.
- the methods for evaluating the targeted recombination events as well as the resulting knockout mice are readily available and known in the art. Such methods include, but are not limited to DNA (Southern) hybridization to detect the targeted allele, polymerase chain reaction (PCR), polyacrylamide gel electrophoresis (PAGE) and Western blots to detect DNA, RNA and protein.
- genomic libraries were constructed from ES cells grown in the absence of feeder cell layers for the isolation of genes to be used for subsequent ES cell targeting. Genomic libraries were prepared from AB2.1 cells according to the in situ procedure described in (Mudgett et ah, Genomics 8:623-633, (1990)).
- the cosmid vector sCos-1 was chosen, as it allows both the vector and the insert to be dephosphorylated. This prevents concantamer formation and generally results in genomic libraries of better quality and quantity (up to 5x106 clones per package) than is achieved with other vectors (Evans et ah, Gene 79:9-20, (1989)).
- the genomic library was constructed with bacterial hosts SURE.
- the SURE host line (Stratagene) was used to stably maintain indirect repeats and allow isolation of methylated DNA.
- the primary mouse cosmid library of Example 1 was screened using a 1.0 kb Hindlll-PvuTJ fragment located in the promoter of the APP gene as a probe (Izumi ______ Gene 112: 189-195 (1992)).
- the cosmid DNA was digested with different restriction endonucleases, electrophoresed on agarose gels, and hybridized with different probes isolated from the plasmid HH5.0 (Izumi et al.. Gene 112: 189-195 (1992)) to map the boundary as well as the promoter and exon 1 of the mouse APP gene (Fig.l).
- a gene targeting vector for inactivating the APP gene was prepared using standard cloning techniques (Sambrook et al.. supra): a). A three-way ligation was performed using the 1.4 kb Bglll-Xhol fragment in the 5' portion of the APP cosmid clone upstream of exon 1 (ex 1), the 7 kb Xhol-Bglll fragment in the 3' portion of the cosmid clone, and BamHI digested pKS vector. The resulting plasmid was named pHZ036. b).
- Plasmid pHZ036 was partially-digested with Xhol and ligated with the 1.5 kb Xhol-Sall fragment of PGKneo. A ligation product with neo inserted in between the two APP fragments was selected and referred to as pHZ037. c). A 2 kb Xhol fragment from pKS-TK was inserted into the Sail digested pHZ037 vector. The resulting plasmid, pHZ038, is the complete construct for targeting of the mouse APP gene.
- the targeting vector used in the APP gene disruption experiments was the pHZ038 vector of Example 3.
- APP KO wild-type APP allele to generate the APP knockout
- the mouse embryonic stem cell line AB2.1 was electroporated with NotI digested pHZ038 to linearize the plasmid, leaving the pks sequence attached to the end of the TK cassette. All AB2.1 ES cells were cultured on SNL feeder cells as described (Robertson, in Teratocarcinomas and embryonic stem cells, E L Press, pp. 71-112 (1987)).
- Electroporations were performed with 1x107 ES cells and 25 ⁇ g linearized vector in 0.8 ml PBS buffer at 230v, 500 ⁇ F using a Bio-Rad Gene Pulser.
- ES cell transformants were selected with the antibiotic geneticin (Gibco G418: 200 ⁇ g/ml active G418) 24 hr post electroporation, and some transformants were counter-selected with FIAU (Bristol Myers Squibb; 0.4 ⁇ M) 48 hours later for enhancement of homologous recombinants.
- FIAU Bacillus Squibb
- Murine leukemia inhibitory factor (LIF; ESGRO, Gibco BRL, Inc.) was used at 200 U/ml.
- G418- and FIAU -resistant ES clones were isolated, grown up and analyzed by a mini-Southern protocol (Ramirez-Solis, R. et al. Anal. Biochem. 201:331-335, 1992). A total of six targeted clones were identified from 200 double resistant colonies analyzed. Therefore, the frequency of targeted recombination vs. random integration at the APP locus is 1/160.
- ES cell line AB2.1 is homozygous for the agouti (A) coat color gene
- penetrance of ES cells into the injected (black coat color) C57B1/6 blastocyst gives rise to chimeric coat color mice.
- the chimeric coat color mice were bred to wild-type C57BL/6 (black coated) and 129/J (agouti coated) female mice. Some of the progeny from the chimera X C57BL/6 cross were expected to be agouti if the chimeric male had ES cell genetic material incorporated into its germline (agouti is dominant to black coat color). The chimera X 129/J cross would yield only agouti mice. These crosses were performed to transfer ES cell genetic information, including the disrupted APP allele, to its offspring. Breeding of three male chimeras from both clone 76 and 174 resulted in agouti pups when crossed with C57B1/6J females.
- genomic DNA was purified from about 1 cm of tail taken from each mouse at about two weeks of age. The genomic DNA was isolated as described (Laird et al., supra), followed by phenol hloroform extractions and ethanol precipitation. Southern hybridization analysis (as described in Example 5) were used to identify offspring which contained the disrupted APP allele. These transgenic offspring were heterozygous for the APP disruption. Both transgenic heterozygous and nontransgenic mouse (tail) genomic DNAs were digested with EcoRI, and were hybridized with 5' flanking DNA probe to confirm the transgenic APP structure. Southern hybridization analysis confirmed that the structure of the altered APP allele was identical to that predicted, and previously characterized in the APP targeted ES clones. EXAMPLE 7
- mice Male and female transgenic mice, each of which contained one copy of the altered APP allele (heterozygous mice), were mated with each other to generate mice in which both copies of the APP gene encoded the targeted, altered APP allele. It was predicted that one fourth of the mouse embryos would be homozygous for the altered APP gene.
- Surviving offspring were genotyped by Southern hybridization as described above (Fig. 4). It was determined that 21 ( 24%) of the 87 offspring mice were homozygous APP-/-, 30 ( 34%) were wild-type APP+/+, and 36 (41 %) were heterozygous APP+/-. These numbers indicate that there was no significant decrease in the number of APP deficient transgenic mice which survived at two weeks of age.
- mice of Example 7 Surviving homozygous APP deficient mice of Example 7 were bred with wild-type or heterozygous mates to determine if they were fertile. All homozygous APP-/- males and females tested were fertile. Significant differences in gross morphology or histology between the APP deficient mice and the wild-type or heterozygous mice were not observed.
- the transgenic animals of the invention may be used as a source of cells for cell culture.
- Cells of brain tissues lacking the APP gene may be cultured using standard culture techniques.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Environmental Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Neurology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8517675A JP2000504202A (en) | 1994-12-05 | 1995-12-01 | Transgenic animals lacking native amyloid precursor protein |
EP95942534A EP0799305A4 (en) | 1994-12-05 | 1995-12-01 | Transgenic animal lacking native amyloid precursor protein |
US09/266,475 US6187992B1 (en) | 1994-12-05 | 1999-03-11 | Transgenic mouse having a disrupted amyloid precursor protein gene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34933494A | 1994-12-05 | 1994-12-05 | |
US349,334 | 1994-12-05 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US34933494A Continuation-In-Part | 1994-12-05 | 1994-12-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US84948797A Continuation | 1994-12-05 | 1997-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996017926A1 true WO1996017926A1 (en) | 1996-06-13 |
Family
ID=23371941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/015672 WO1996017926A1 (en) | 1994-12-05 | 1995-12-01 | Transgenic animal lacking native amyloid precursor protein |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0799305A4 (en) |
JP (1) | JP2000504202A (en) |
CA (1) | CA2206789A1 (en) |
WO (1) | WO1996017926A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6166289A (en) * | 1998-05-15 | 2000-12-26 | Ortho-Mcneil Pharmacueticals | IRAK modified transgenic animals |
US6717031B2 (en) | 1995-06-07 | 2004-04-06 | Kate Dora Games | Method for selecting a transgenic mouse model of alzheimer's disease |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993014200A1 (en) * | 1992-01-07 | 1993-07-22 | Tsi Corporation | Transgenic animal models for alzheimer's disease |
-
1995
- 1995-12-01 CA CA 2206789 patent/CA2206789A1/en not_active Abandoned
- 1995-12-01 WO PCT/US1995/015672 patent/WO1996017926A1/en not_active Application Discontinuation
- 1995-12-01 JP JP8517675A patent/JP2000504202A/en active Pending
- 1995-12-01 EP EP95942534A patent/EP0799305A4/en not_active Withdrawn
Non-Patent Citations (3)
Title |
---|
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, Volume 149, No. 2, issued 16 December 1987, T. YAMADA et al., "Complementary DNA for the Mouse Homolog of the Human Amyloid Beta Protein Precursor", pages 665-671. * |
NATURE, Volume 336, issued 24 November 1988, S.L. MANSOUR et al., "Disruption of the Proto-Oncogene int-2 in Mouse Embryo-Derived Stem Cells: a General Strategy for Targeting Mutations to Non-Selectable Genes", pages 348-352. * |
See also references of EP0799305A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6717031B2 (en) | 1995-06-07 | 2004-04-06 | Kate Dora Games | Method for selecting a transgenic mouse model of alzheimer's disease |
US6166289A (en) * | 1998-05-15 | 2000-12-26 | Ortho-Mcneil Pharmacueticals | IRAK modified transgenic animals |
Also Published As
Publication number | Publication date |
---|---|
JP2000504202A (en) | 2000-04-11 |
EP0799305A4 (en) | 2000-01-26 |
CA2206789A1 (en) | 1996-06-13 |
EP0799305A1 (en) | 1997-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6187992B1 (en) | Transgenic mouse having a disrupted amyloid precursor protein gene | |
Von Koch et al. | Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice | |
AU671093B2 (en) | Transgenic animal models for alzheimer's disease | |
EP0653154A2 (en) | Transgenic animal for alzheimer's disease | |
PT730643E (en) | APP TRANSPORTATION ALGE TRANSGENIC ANIMALS WITH SWEDISH MUTACAO | |
US6452065B2 (en) | Transgenic mouse expressing non-native wild-type and familial Alzheimer's Disease mutant presenilin 1 protein on native presenilin 1 null background | |
WO1996034097A1 (en) | GENE-TARGETED NON-HUMAN MAMMALS DEFICIENT IN SOD-1 GENE AND EXPRESSING HUMANIZED Aβ SEQUENCE WITH SWEDISH FAD MUTATION | |
US5777194A (en) | Gene-targeted mice with humanized Aβ sequence and Swedish FAD mutation | |
Mallm et al. | Generation of conditional null alleles for APP and APLP2 | |
WO1996017926A1 (en) | Transgenic animal lacking native amyloid precursor protein | |
US7432414B2 (en) | Transgenic mouse having an amyloid precursor protein with a modified beta secretase cleavage site | |
AU2001276995C1 (en) | Gene-targeted non-human mammal with human fad presenilin mutation and generational offspring | |
WO1996012792A1 (en) | INTERLEUKIN-1β DEFICIENT TRANSGENIC ANIMALS | |
WO1999037756A1 (en) | Non-human animal having a functionally disrupted slp-76 gene | |
MXPA06003670A (en) | Transgenic animals with serious disorders related to alzheimer's disease. | |
AU2001276995A1 (en) | Gene-targeted non-human mammal with human fad presenilin mutation and generational offspring | |
US20060064766A1 (en) | Histamine receptor h3 modified transgenic mice | |
WO2005037994A2 (en) | Transgenic rodents selectively expressing human b1 bradykinin receptor protein | |
Wadsworth et al. | Transgenic mouse expressing APP 770 | |
AU2002342156A1 (en) | Transgenic mice knockout for histamine receptor H3 gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2206789 Country of ref document: CA Ref country code: CA Ref document number: 2206789 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995942534 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1997 849487 Date of ref document: 19970605 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1995942534 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995942534 Country of ref document: EP |