Nothing Special   »   [go: up one dir, main page]

WO1995022089A1 - Method and apparatus for diagnosing fault - Google Patents

Method and apparatus for diagnosing fault Download PDF

Info

Publication number
WO1995022089A1
WO1995022089A1 PCT/JP1995/000171 JP9500171W WO9522089A1 WO 1995022089 A1 WO1995022089 A1 WO 1995022089A1 JP 9500171 W JP9500171 W JP 9500171W WO 9522089 A1 WO9522089 A1 WO 9522089A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
failure
degree
abnormality
failure diagnosis
Prior art date
Application number
PCT/JP1995/000171
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyoshi Yamaguchi
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1995022089A1 publication Critical patent/WO1995022089A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]

Definitions

  • the present invention relates to a method and an apparatus for diagnosing a failure of a failure diagnosis target such as a construction machine.
  • This system asks the operator on the screen about the items to be diagnosed at the time of failure diagnosis on the screen, and the operator inspects these inspection items, and inputs the inspection results as abnormalities for each inspection item. It uses this data to perform fault diagnosis, also called an interactive diagnosis system:
  • This system captures sensor signals from sensors installed at the target of failure diagnosis at the time of failure diagnosis, calculates the degree of abnormality based on these sensor signals, and performs failure diagnosis using the calculated degree of abnormality. It is also called an automatic diagnostic system-
  • This system always captures sensor signals from sensors arranged for failure diagnosis, determines whether or not there is an abnormality based on these sensor signals, and issues a warning if it is determined to be abnormal. It emits:
  • the abnormality monitoring system described in C above simply determines the abnormality at the location detected by the sensor, and cannot identify the cause of the failure:
  • the diagnostic systems A and B identify the cause of the failure, but the off-line diagnosis of A has the problem that it takes time for the operator to perform all inspections: The degree of abnormality entered as data Another problem is that depending on the subjectivity, different failure causes are diagnosed by different people.
  • the failure diagnosis is performed based on only the limited inspection items. There is a problem that the accuracy of the diagnosis is deteriorated. Also, when an output from the sensor cannot be obtained due to a malfunction such as a sensor failure, or when the sensor outputs a clearly abnormal value. However, the accuracy of the fault diagnosis is reduced:
  • the present invention has been made in view of such circumstances, and can solve the problem of performing a failure diagnosis only by the online type diagnosis or only the offline type diagnosis, and can obtain an accurate diagnosis result in a short time. It is an object of the present invention to provide a failure diagnosis method and apparatus which can be performed.
  • a failure for diagnosing the failure of the failure diagnosis target based on the relevance data indicating the degree of association between the various inspection items of the failure diagnosis target and the various failure causes of the failure diagnosis target.
  • a knowledge base having relevance data indicating the degree of relevance between various inspection items to be diagnosed and various causes of the failure to be diagnosed is provided.
  • the various inspection items are classified into a sensor inspection item inspected by a detection value of a sensor disposed on the failure diagnosis target and an input data inspection item inspected by input data, and the knowledge base is classified. Create a resource in advance, A threshold value is set for each sensor, and a process of determining whether or not the sensor is abnormal is performed by comparing the set threshold value with a detection value of the sensor.
  • the degree of certainty for each cause of failure is inferred, and based on the inference result, The failure diagnosis target is diagnosed.
  • the inspection items of the sensor can be quickly inspected based on the detection value of the sensor without causing individual differences: Further, the degree of abnormality is obtained from the detection value of the sensor. Inspection items that cannot be checked can be inspected by inputting data as input data inspection items, and accurate inspection results can be obtained with a large number of inspection items that are not limited to sensor inspection items: According to the configuration of the second invention, similarly to the first invention, the degree of abnormality of the sensor inspection item can be quickly obtained based on the detection value of the sensor without causing individual differences. For inspection items for which the degree of abnormality cannot be determined from sensor detection values, the degree of abnormality can be obtained by inputting data as input data inspection items. High accuracy and fault diagnosis results can be obtained:
  • the detected value of each sensor and the result of abnormality determination of each sensor are displayed, and the detected value of the sensor can be changed and corrected as appropriate from the displayed contents, and the degree of abnormality for the calculated sensor inspection item is displayed.
  • the degree of abnormality can be changed and corrected as appropriate from the displayed content: For this reason, even if there is an abnormality such as a failure of the sensor itself or an error when calculating the Can determine abnormalities Since the display contents can be corrected, accurate fault diagnosis results can be obtained without being based on abnormal data.
  • Figure 1 is a fault diagnosis method and device flow Chiya one preparative illustrating a processing procedure of the embodiment of the present invention c
  • FIG. 2 is a flowchart illustrating a processing procedure of another embodiment of the failure diagnosis method and apparatus according to the present invention.
  • FIG. 3 is a diagram showing the contents of a knowledge base for failure diagnosis applied to the embodiment.
  • FIG. 4 is a diagram showing an abnormality degree display screen displayed on the display screen in the process of failure diagnosis.
  • FIG. 5 is a diagram illustrating a membership function for calculating the degree of abnormality.
  • FIG. 6 is a diagram showing a sensor value display screen displayed on the display screen in the process of failure diagnosis.
  • FIG. 7 is a diagram showing a diagnosis result display screen showing the result of the failure diagnosis. Best form for
  • a failure diagnosis of a construction machine is performed: Specifically, a personal computer (hereinafter referred to as a personal computer) performs a failure diagnosis of a construction machine according to the procedure shown in FIG.
  • the knowledge base 1 for fault diagnosis will now be described with reference to FIG. 3.
  • the structure of the knowledge base 1 is basically based on the inspection item i of the construction machine on the line side, that is, “ The battery voltage (low), the exhaust temperature (low), ... and the failure cause j of the row-side construction machine, that is, ⁇ battery failure, injection nozzle failure, electric heater failure, etc.
  • the degree of association Wij indicating the degree of association between these various inspection items i and various failure causes j is preset and stored as data:
  • Various inspection items i include sensor inspection items that are inspected based on the detection values of sensors installed on construction machinery, and input data inspection items that cannot be inspected based on the detection values of sensors (inspection by operators). Items that can be inspected based on the values detected by the sensors may be included in the input data inspection items:
  • Such a knowledge base 1 is set and stored for each fault condition of the construction machine, that is, for “bad engine startability”:
  • a sensor group corresponding to the above-mentioned various sensor check items that is, a battery voltage sensor for detecting a battery voltage, an exhaust temperature sensor for detecting an exhaust temperature, and the like, are naturally provided at a predetermined location on the construction machine before failure diagnosis.
  • These sensors and the personal computer should be wired so that sensor signals can be input to the computer via a predetermined interface-as shown in Fig. 1.
  • the operator operates the keyboard of a personal computer, for example, to check the current failure state of the construction machine to be diagnosed, for example, “Fault (1): Poor engine startability. Is input as data (step 101):
  • each sensor corresponding to the various sensor inspection items shown in the read knowledge base 1 is selected, and the input of the sensor signal is controlled so that the detection value of each of the selected sensors is obtained.
  • the detected values of the battery voltage sensor, exhaust temperature sensor, etc. corresponding to the sensor inspection items “battery voltage”, “exhaust temperature”, etc. shown in FIG. 3 are input and acquired in the personal computer (step 1 0 2)
  • the threshold value of the output is set in advance for each sensor, and whether or not the sensor is abnormal is determined based on whether or not the threshold value is equal to or higher than the threshold value.
  • a first threshold of "0 ° C” A second threshold value of “0 0 0 ° C” is set: Therefore, if the “detected value (exhaust gas temperature) is less than or equal to the first threshold value (0 ° C), (Temperature) is greater than or equal to the second threshold value (100 ° C), the sensor (exhaust temperature sensor) is abnormal: '' is determined in advance.
  • the detection value of the exhaust gas temperature sensor taken in step 102 is applied to the abnormality determination rule to determine whether the exhaust gas temperature sensor is abnormal (step 103);
  • the detection values of each sensor captured in step 102 are displayed on the display screen of the display unit, and the sensor abnormality determination result in step 103 described above corresponding to each sensor detection value is displayed. Is also displayed:
  • the detected values are converted into predetermined engineering units and displayed.
  • the current battery voltage is 12 V
  • the lubricating oil pressure is 20 kg Z cm2.
  • the sensor abnormality judgment result is “normal” or “normal”.
  • the detected value of the sensor is displayed on the sensor value display screen 3.
  • the abnormality degree I i is calculated for each sensor inspection item i:
  • a membership function that is an abnormality evaluation function as shown in Fig. 5 is prepared: Therefore, the final decision in step 104 was made.
  • the exhaust gas temperature is applied to this membership function to calculate the degree of abnormality I i for the inspection item “exhaust gas temperature”. That is, assuming that the exhaust gas temperature is currently 50 °, the arrow in FIG. As shown in (1), the degree of abnormality Ii indicating that the exhaust gas temperature is low due to the membership function is determined to be 0.8 (step 105).
  • the result of the calculation of the degree of abnormality in the above step 105 is displayed on the display screen as the surface 2 of the degree of abnormality display:
  • the abnormality level Ii is displayed for each of the sensor check items i: "low battery voltage”, “low exhaust temperature”, “high lubrication oil pressure”: For example, as described above, regarding “exhaust gas temperature”, the degree of abnormality “0.8” is displayed corresponding to the check item “exhaust gas temperature is low”.
  • the operator can perform a keyboard operation based on experience or the like to change the value.
  • the value can be similarly determined by operating the keyboard. Can be modified.
  • the abnormality level display screen 2 also displays each input data inspection item, and for the abnormality degree corresponding to these input data inspection items, the value determined by the operator based on his / her own experience and the like is operated by keyboard operation.
  • all the abnormalities Ii corresponding to each sensor inspection item are given as those within the appropriate range, and all the abnormalities corresponding to each input data inspection item are obtained.
  • I i is given as being within the proper range, and these abnormalities I i will be displayed on the abnormal degree display section 2 a shown by the broken line on the abnormal degree display screen 2 (step 106).
  • the fault diagnosis is performed: The failure diagnosis is performed by calculating the certainty factor CFj of various failure causes j based on the relevance data Wij of the knowledge base 1 and the abnormality level Ii of each inspection item i obtained in step 106 above. is there:
  • Equation (1) can be used to calculate the confidence factor CFj:
  • Step 107 the calculation result of the above step 107 is displayed on the diagnostic result display screen 4 as shown in FIG. 7: That is, as shown in FIG. , Various failure causes J, that is, “battery failure”, “injection nozzle failure” ... are displayed in units of “25%”, “89%” ...
  • a predetermined cause of failure is selected in the failure cause display section 4a
  • FIG. 2 shows a failure diagnosis processing procedure according to another embodiment.
  • the difference from the flow chart shown in FIG. 1 described above is that the failure input processing corresponding to step 101 in FIG. There is no corresponding action:
  • steps 201 to 207 the same processing as in steps 102 to 108 in FIG. 1 is executed. That is, in this embodiment, the necessary knowledge base 1 is not extracted in accordance with the failure state, and the process proceeds based on the general-purpose knowledge base 11 which does not specify the failure state.
  • step 205 the data from all input data check items will be input as well as the detection values from the sensors corresponding to the check items.
  • various inspection items for performing failure diagnosis are provided. Sensor inspection items and input data items are classified, so sensor inspection items can be inspected quickly without individual differences based on sensor detection values, and are not limited to sensor inspection items Accurate failure diagnosis results can be obtained by many inspection items
  • the detection value of each sensor and the abnormality determination result of each sensor are displayed, and the detection value of the sensor can be appropriately changed and corrected based on the display contents.
  • the abnormalities of the detected sensor inspection items are displayed, and the abnormalities can be appropriately changed and corrected based on the display contents. Therefore, a failure occurs in the sensor itself, or an error occurs when the abnormalities are calculated. Even if there is an abnormality such as an error, it is possible to determine and correct the abnormality based on the displayed content, and to obtain an accurate failure diagnosis result based on no abnormal data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

This invention relates to a method and an apparatus for diagnosing a fault quickly and accurately. Various inspection items for fault diagnosis are classified into sensor inspection items and input data inspection items. As to the sensor inspection items, the degree of abnormality is computed on the basis of a detection value of a sensor. As to the input data inspection items, the degree of abnormality is acquired by data input. The detection value of each sensor and the abnormality judgement result of each sensor are displayed during the fault diagnosing process, and the detection values of the sensors can be appropriately changed and modified from the display content. The degree of abnormality is displayed for each sensor inspection item computed, and the degree of abnormality can be appropriately changed and corrected from the display content. The degree of reliability is computed for each of the various causes of fault on the basis of the data representing the degree of association of various inspection items and various causes of fault and the data of the degree of abnormality obtained finally.

Description

明 細 書 故障診断方法および装置 技術分野  Description Failure diagnosis method and device Technical field
本発明は、 建設機械等の故障診断対象の故障を診断する方法および装置に関す る。 背景技術  The present invention relates to a method and an apparatus for diagnosing a failure of a failure diagnosis target such as a construction machine. Background art
従来の故障診断システムには、 以下に示す 2つのタイプが存在する:  There are two types of conventional fault diagnosis systems:
A . オフライン型診断システム  A. Offline diagnostic system
このシステムは、 故障診断時に、 オペレータに故障診断対象についての点検項 目を画面上で質問し、 この点検項目をオペレータが点検し、 点検した結果を、 各 点検項目ごとに異常度としてデータ入力し、 このデータを用いて故障診断を実施 するというものであり、 会話型診断システムともいわれる:  This system asks the operator on the screen about the items to be diagnosed at the time of failure diagnosis on the screen, and the operator inspects these inspection items, and inputs the inspection results as abnormalities for each inspection item. It uses this data to perform fault diagnosis, also called an interactive diagnosis system:
B . オンライン型診断システム  B. Online diagnostic system
このシステムは、 故障診断時に、 故障診断対象に配設されたセンサからセンサ 信号を取り込み、 これらのセンサ信号に基づき異常度を演算し、 この演算された 異常度を用いて故障診断を実施するというものであり、 自動型診断システムとも いわれる- This system captures sensor signals from sensors installed at the target of failure diagnosis at the time of failure diagnosis, calculates the degree of abnormality based on these sensor signals, and performs failure diagnosis using the calculated degree of abnormality. It is also called an automatic diagnostic system-
C . オンライン型異常監視システム C. Online type abnormality monitoring system
このシステムは、 常時、 故障診断対象に配設されたセンサからセンサ信号を取 り込み、 これらのセンサ信号に基づき異常であるか否かを判定し、 異常と判定さ れた場合に、 警告を発するというものである:  This system always captures sensor signals from sensors arranged for failure diagnosis, determines whether or not there is an abnormality based on these sensor signals, and issues a warning if it is determined to be abnormal. It emits:
上記 Cの異常監視システムは、 単にセンサによって検出される箇所の異常を判 定するだけであり、 故障原因までは特定することができない:  The abnormality monitoring system described in C above simply determines the abnormality at the location detected by the sensor, and cannot identify the cause of the failure:
この点、 A、 Bの診断システムでは、 故障原因が特定されるものの、 Aのオフ ライン型診断では、 オペレータがすべての点検を実施するため、 点検に時間を要 するという問題がある: また、 データとして入力される異常度は、 オペレータの 主観に依存するため、 人によって異なった故障原因が診断されてしまうという問 題もある。 In this regard, the diagnostic systems A and B identify the cause of the failure, but the off-line diagnosis of A has the problem that it takes time for the operator to perform all inspections: The degree of abnormality entered as data Another problem is that depending on the subjectivity, different failure causes are diagnosed by different people.
一方、 Bのオンライン型診断では、 センサによって検出することができない点 検項目は、 故障診断に利用することができない: したがって、 限られた点検項目 のみに基づき故障診断が行われることになり、 故障診断の精度が悪くなつてしま うという問題がある: また、 センサの故障等何らかの不具合によって、 センサか らの出力が得られない場合や明らかに異常な値をセンサが出力している場合にも 、 故障診断の精度が悪くなつてしまう:  On the other hand, in the online diagnosis of B, the inspection items that cannot be detected by the sensor cannot be used for failure diagnosis: Therefore, the failure diagnosis is performed based on only the limited inspection items. There is a problem that the accuracy of the diagnosis is deteriorated. Also, when an output from the sensor cannot be obtained due to a malfunction such as a sensor failure, or when the sensor outputs a clearly abnormal value. However, the accuracy of the fault diagnosis is reduced:
本発明はこうした実状に鑑みてなされたものであり、 上記オンライン型診断の み、 あるいはオフライン型診断のみによって故障診断を行う場合の問題点を解決 し、 短時間で正確な診断結果を得ることができる故障診断方法および装置を提供 することを目的とするものである- 発明の開示  The present invention has been made in view of such circumstances, and can solve the problem of performing a failure diagnosis only by the online type diagnosis or only the offline type diagnosis, and can obtain an accurate diagnosis result in a short time. It is an object of the present invention to provide a failure diagnosis method and apparatus which can be performed.
そこで、 この発明の第 1発明では、 故障診断対象の各種点検項目と該故障診断 対象の各種故障原因との関連の度合いを示す関連度データに基づいて前記故障診 断対象の故障を診断する故障診断方法において、  Therefore, in the first invention of the present invention, a failure for diagnosing the failure of the failure diagnosis target based on the relevance data indicating the degree of association between the various inspection items of the failure diagnosis target and the various failure causes of the failure diagnosis target. In the diagnostic method,
前記各種点検項目を、 前記故障診断対象に配設されたセンサの検出値により点 検されるセンサ点検項目と入力されるデータにより点検される入力データ点検項 目とに分類した前記関連度データを用意し、 該関連度データに基づいて前記故障 診断対象の故障を診断するようにしている:  The relevance data obtained by classifying the various inspection items into a sensor inspection item inspected by a detection value of a sensor disposed on the failure diagnosis target and an input data inspection item inspected by input data. And preparing a failure to be diagnosed based on the relevance data.
また、 この発明の第 2発明では、 故障診断対象の各種点検項目と該故障診断対 象の各種故障原因との関連の度合いを示す関連度データを有した知識べ一スを用 意し、 前記各種点検項目の異常の度合いを示す異常度データと前記関連度データ とに ¾づいて、 各種故障原因ごとの確信度を推論し、 該推論結果に基づいて前記 故障診断対象の故障を診断する故障診断装置において、  Also, in the second invention of the present invention, a knowledge base having relevance data indicating the degree of relevance between various inspection items to be diagnosed and various causes of the failure to be diagnosed is provided. A fault for inferring a certainty factor for each cause of failure based on the abnormality degree data indicating the degree of abnormality of various inspection items and the association degree data, and diagnosing the failure to be diagnosed based on the inference result. In a diagnostic device,
前記各種点検項目を、 前記故障診断対象に配設されたセンサの検出値により点 検されるセンサ点検項目と入力されるデータにより点検される入力データ点検項 目とに分類して前記知識べ一スを予め作成しておき、 各センサごとにしきい値を設定して、 該設定されたしきい値と当該センサの検 出値とを比較することにより当該センサが異常であるか否かを判定する処理を行 い、 The various inspection items are classified into a sensor inspection item inspected by a detection value of a sensor disposed on the failure diagnosis target and an input data inspection item inspected by input data, and the knowledge base is classified. Create a resource in advance, A threshold value is set for each sensor, and a process of determining whether or not the sensor is abnormal is performed by comparing the set threshold value with a detection value of the sensor.
各センサの検出値を表示するとともに、 各センサごとの異常判定内容を表示し 、 該表示内容に基づいて各センサの検出値を変更する操作を行い、  In addition to displaying the detection value of each sensor, displaying the abnormality determination content for each sensor, and performing an operation of changing the detection value of each sensor based on the display content,
前記変更操作がされた各センサの検出値に基づいて、 各センサ点検項目ごとに 異常度を演算する処理を行い、  Based on the detection value of each sensor subjected to the change operation, perform a process of calculating the degree of abnormality for each sensor inspection item,
前記演算された各センサ点検項目の異常度を表示し、 該表示内容に基づいて各 センサ点検項目の異常度を変更する操作を行うとともに、 各入力データ点検項目 ごとに必要な異常度データを入力する操作を行い、  Displays the calculated degree of abnormality of each sensor inspection item, performs an operation to change the degree of abnormality of each sensor inspection item based on the display contents, and inputs necessary abnormality degree data for each input data inspection item. Do
前記変更操作がされた各センサ点検項目の異常度とデータ入力操作がされた各 入力データ点検項目の異常度とに基づいて、 各種故障原因ごとの確信度を推論し 、 該推論結果に基づいて前記故障診断対象を故障診断する。  Based on the degree of abnormality of each sensor check item subjected to the change operation and the degree of abnormality of each input data check item subjected to the data input operation, the degree of certainty for each cause of failure is inferred, and based on the inference result, The failure diagnosis target is diagnosed.
上記第 1発明の構成によれば、 センサ点検項目については、 センサの検出値に 基づいて、 個人差を生じることなく迅速に点検することができる: また、 センサ の検出値から異常度を求めることができない点検項目については、 入力データ点 検項目として、 データ入力により点検することができ、 センサ点検項目に限定さ れない多数の点検項目によって、 精度のよい故障診断結果を得ることができる: 上記第 2発明の構成によれば、 第 1発明と同様に、 センサ点検項目については 、 センサの検出値に基づいてその異常度を、 個人差を生じることなく迅速に求め ることができる。 また、 センサの検出値から異常度を求めることができない点検 項目については、 入力データ点検項目として、 データ入力により異常度を取得す ることができ、 センサ点検項目に限定されない多数の点検項目によって、 精度の よレ、故障診断結果を得ることができる:  According to the configuration of the first aspect, the inspection items of the sensor can be quickly inspected based on the detection value of the sensor without causing individual differences: Further, the degree of abnormality is obtained from the detection value of the sensor. Inspection items that cannot be checked can be inspected by inputting data as input data inspection items, and accurate inspection results can be obtained with a large number of inspection items that are not limited to sensor inspection items: According to the configuration of the second invention, similarly to the first invention, the degree of abnormality of the sensor inspection item can be quickly obtained based on the detection value of the sensor without causing individual differences. For inspection items for which the degree of abnormality cannot be determined from sensor detection values, the degree of abnormality can be obtained by inputting data as input data inspection items. High accuracy and fault diagnosis results can be obtained:
これに加えて、 各センサの検出値および各センサの異常判定結果が表示され、 その表示内容からセンサの検出値を適宜変更修正できるとともに、 演算されたセ ンサ点検項目についての異常度が表示され、 その表示内容から異常度を適宜変更 修正できる: このため、 センサ自体に故障が発生したり、 異常度演算の際にエラ 一が発生したり等の異常があつたとしても、 表示内容によりその異常を判別でき 、 表示内容を修正できるので、 異常データに基づくことのない正確な故障診断結 果を得ることができる: 図面の簡単な説明 In addition to this, the detected value of each sensor and the result of abnormality determination of each sensor are displayed, and the detected value of the sensor can be changed and corrected as appropriate from the displayed contents, and the degree of abnormality for the calculated sensor inspection item is displayed. , The degree of abnormality can be changed and corrected as appropriate from the displayed content: For this reason, even if there is an abnormality such as a failure of the sensor itself or an error when calculating the Can determine abnormalities Since the display contents can be corrected, accurate fault diagnosis results can be obtained without being based on abnormal data.
図 1は本発明に係る故障診断方法および装置の実施例の処理手順を示すフロー チヤ一トである c Figure 1 is a fault diagnosis method and device flow Chiya one preparative illustrating a processing procedure of the embodiment of the present invention c
図 2は本発明に係る故障診断方法および装置の他の実施例の処理手順を示すフ 口一チヤ一トである。  FIG. 2 is a flowchart illustrating a processing procedure of another embodiment of the failure diagnosis method and apparatus according to the present invention.
図 3は、 実施例に適用される故障診断のための知識ベースの内容を示す図であ る。  FIG. 3 is a diagram showing the contents of a knowledge base for failure diagnosis applied to the embodiment.
図 4は、 故障診断の過程で、 表示画面上に表示される異常度表示画面を示す図 である。  FIG. 4 is a diagram showing an abnormality degree display screen displayed on the display screen in the process of failure diagnosis.
図 5は、 異常度を演算するメンバシップ関数を例示する図である。  FIG. 5 is a diagram illustrating a membership function for calculating the degree of abnormality.
図 6は、 故障診断の過程で、 表示画面上に表示されるセンサ値表示画面を示す 図である- 図 7は故障診断の結果を示す診断結果表示画面を示す図である: 発明を実施するための最良の形態  FIG. 6 is a diagram showing a sensor value display screen displayed on the display screen in the process of failure diagnosis. FIG. 7 is a diagram showing a diagnosis result display screen showing the result of the failure diagnosis. Best form for
以下、 図面を参照して本発明に係る故障診断方法および装置の実施例について 説明する。 実施例では、 建設機械の故障診断を行う場合を想定している: 具体 的には、 パーソナルコンピュータ (以下パソコンという) が図 1に示す手順にし たがい建設機械の故障診断を行うものである- ここで、 故障診断の知識ベース 1について図 3を参照して説明する: 図 3に示すように知識べ—ス 1の構造は、 基本的には、 行側の建設機械の点検 項目 i、 つまり 「バッテリ電圧 (が低い) 」 、 「排気温度 (が低い) 」 …と、 列 側の建設機械の故障原因 j、 つまり Γバッテリ不良」 、 「噴射ノズル不良」 、 「 電気ヒータ不良」 …とからなるマ ト リ ックス構造であり、 これら各種点検項目 i と各種故障原因 j との関連の度合いを示す関連度 Wi jがデータとして予め設定、 記憶されている: 関連度 Wijは 0≤Wi j≤ 1の範囲内の数値として与えられるものであり、 関連 度 Wi j = 0は 「まったく関連がない」 に対応し、 関連度 Wi j = lは 「最大の関連 がある」 に対応している: Hereinafter, embodiments of a failure diagnosis method and apparatus according to the present invention will be described with reference to the drawings. In the embodiment, it is assumed that a failure diagnosis of a construction machine is performed: Specifically, a personal computer (hereinafter referred to as a personal computer) performs a failure diagnosis of a construction machine according to the procedure shown in FIG. The knowledge base 1 for fault diagnosis will now be described with reference to FIG. 3. As shown in FIG. 3, the structure of the knowledge base 1 is basically based on the inspection item i of the construction machine on the line side, that is, “ The battery voltage (low), the exhaust temperature (low), ... and the failure cause j of the row-side construction machine, that is, Γbattery failure, injection nozzle failure, electric heater failure, etc. It has a matrix structure, and the degree of association Wi j indicating the degree of association between these various inspection items i and various failure causes j is preset and stored as data: The degree of association Wij is given as a numerical value in the range of 0≤Wi j≤1, and the degree of association Wi j = 0 corresponds to "no association", and the degree of association Wi j = l is "maximum association". There is a corresponding to:
また、 各種点検項目 iは、 建設機械に配設されたセンサの検出値に基づき点検 が行われるセンサ点検項目と、 センサの検出値によつて点検することができない 入力データ点検項目 (オペレータによる点検項目) との 2種類に分類されている なお、 センサの検出値によって点検することができる点検項目であっても、 入 力データ点検項目の中に含めるようにしてもよい:  Various inspection items i include sensor inspection items that are inspected based on the detection values of sensors installed on construction machinery, and input data inspection items that cannot be inspected based on the detection values of sensors (inspection by operators). Items that can be inspected based on the values detected by the sensors may be included in the input data inspection items:
こうした知識ベース 1は、 建設機械の各種故障状態、 つまり 「エンジンの始動 性が悪い」 …ごとに、 設定され、 記憶されておかれるものとする:  Such a knowledge base 1 is set and stored for each fault condition of the construction machine, that is, for “bad engine startability”:
また、 上記各種センサ点検項目に対応するセンサ群、 つまりバッテリ電圧を検 出するバッテリ電圧センサ、 排気温度を検出する排気温度センサ等は、 当然なが ら故障診断前に、 建設機械の所定箇所に配設されておかれるものとし、 これらセ ンサと上記パソコンとは、 所定のインターフェースを介してセンサ信号がバソコ ンに入力され得るように配線接続されておかれるものとする- 図 1に示すように、 故障診断にあたり、 まず最初に、 オペレータがパソコンの' キーボードを操作する等して、 故障診断対象たる建設機械の現在の故障状態、 た とえば 「不具合 (1 ) : エンジンの始動性が悪い」 をデータとして入力する (ス テツプ 1 0 1 ) :  In addition, a sensor group corresponding to the above-mentioned various sensor check items, that is, a battery voltage sensor for detecting a battery voltage, an exhaust temperature sensor for detecting an exhaust temperature, and the like, are naturally provided at a predetermined location on the construction machine before failure diagnosis. These sensors and the personal computer should be wired so that sensor signals can be input to the computer via a predetermined interface-as shown in Fig. 1. First, when performing a failure diagnosis, the operator operates the keyboard of a personal computer, for example, to check the current failure state of the construction machine to be diagnosed, for example, “Fault (1): Poor engine startability. Is input as data (step 101):
そして、 上記読み出された知識ベース 1に示される各種センサ点検項目に対応 する各センサが選択され、 これら選択された各センサの検出値が取得されるよう に、 センサ信号の入力を制御する。 この結果、 図 3に示すセンサ点検項目である 「バッテリ電圧」 、 「排気温度」 …に対応するバッテリ電圧センサ、 排気温度セ ンサ…の各検出値が、 パソコン内に入力、 取得される (ステップ 1 0 2 )  Then, each sensor corresponding to the various sensor inspection items shown in the read knowledge base 1 is selected, and the input of the sensor signal is controlled so that the detection value of each of the selected sensors is obtained. As a result, the detected values of the battery voltage sensor, exhaust temperature sensor, etc. corresponding to the sensor inspection items “battery voltage”, “exhaust temperature”, etc. shown in FIG. 3 are input and acquired in the personal computer (step 1 0 2)
つぎに、 パソコン内に取り込まれた各センサの検出信号に基づいて、 センサが 異常であるか否かを判定する:  Next, it is determined whether or not the sensor is abnormal based on the detection signal of each sensor taken into the personal computer:
すなわち、 各センサごとに、 その出力のしきい値が予め設定されおり、 当該し きい値以上か否かにより、 センサが異常であるか否かが判断される  That is, the threshold value of the output is set in advance for each sensor, and whether or not the sensor is abnormal is determined based on whether or not the threshold value is equal to or higher than the threshold value.
たとえば、 排気温度センサの場合、 「0 ° C」 という第 1のしきい値と、 「1 0 0 0 ° C」 という第 2のしきい値が設定されている: そこで、 「検出値 (排気 温度) が第 1のしきい値 (0 ° C ) 以下である場合、 あるいは検出値 (排気温度 ) が第 2のしきい値 (1 0 0 0 ° C ) 以上である場合には、 センサ (排気温度セ ンサ) は異常である: 」 という異常判定ルールが予め決めておかれる. For example, for an exhaust temperature sensor, a first threshold of "0 ° C" A second threshold value of “0 0 0 ° C” is set: Therefore, if the “detected value (exhaust gas temperature) is less than or equal to the first threshold value (0 ° C), (Temperature) is greater than or equal to the second threshold value (100 ° C), the sensor (exhaust temperature sensor) is abnormal: '' is determined in advance.
そこで、 上記ステップ 1 0 2で取り込まれた排気温度センサの検出値を、 上記 異常判定ルールに適用し、 当該排気温度センサの異常を判定する (ステップ 1 0 3 ) ;  Therefore, the detection value of the exhaust gas temperature sensor taken in step 102 is applied to the abnormality determination rule to determine whether the exhaust gas temperature sensor is abnormal (step 103);
つぎに、 ステップ 1 0 2で取り込まれた各センサの検出値が表示器の表示画面 上に表示されるとともに、 各センサ検出値に対応して、 上記ステップ 1 0 3にお けるセンサ異常判定結果も併せて表示される:  Next, the detection values of each sensor captured in step 102 are displayed on the display screen of the display unit, and the sensor abnormality determination result in step 103 described above corresponding to each sensor detection value is displayed. Is also displayed:
すなわち、 図 6にセンサ値表示画面 3として示すように、 バッテリ電圧、 排気 温度、 潤滑油圧…といった各センサの種類ごとに、 それらの検出値が所定の工学 単位に変換されて表示される。 たとえば、 現在のバッテリ電圧は 1 2 V、 潤滑油 圧は 2 0 k g Z c m2であるがごとくである: そして、 各センサの検出値に対応し て、 センサ異常判断結果も 「正常」 または 「異常」 と表示される- たとえば、 バ ッテリ電圧は 1 2 Vであり、 「正常」 である、 潤滑油圧は2 0 1^ ノじ1112でぁり 「正常」 であるがごとくである:  That is, as shown as a sensor value display screen 3 in FIG. 6, for each type of sensor such as battery voltage, exhaust temperature, lubricating oil pressure, and the like, the detected values are converted into predetermined engineering units and displayed. For example, the current battery voltage is 12 V, and the lubricating oil pressure is 20 kg Z cm2. Then, depending on the detection value of each sensor, the sensor abnormality judgment result is “normal” or “normal”. Abnormal "is displayed-For example, the battery voltage is 12 V and" Normal ", the lubricating oil pressure is 2111 and the normal is as follows:
しかし、 前述したように、 たとえば排気温度センサのセンサ信号が上記異常判 定ルールによる異常判定の結果、 異常であると判断されれば、 そのセンサの検出 値はセンサ値表示画面 3上には表示されない:  However, as described above, for example, if the sensor signal of the exhaust temperature sensor is determined to be abnormal as a result of the abnormality determination according to the abnormality determination rule described above, the detected value of the sensor is displayed on the sensor value display screen 3. Not:
この場合、 センサの故障等により真の排気温度が不明である異常状態であるの で、 別途所定の検出手段によって得られた排気温度あるいは、 オペレータの経験 等に基づき判断した排気温度をキーボ一ドを操作する等して入力する- この結果 、 各センサ点検項目に対応するすべてのセンサについての値が、 正確に与えられ るとともに、 これら正常範囲内のセンサ値がセンサ値表示画面 3上の破線に示す センサ値表示部 3 aに表示されることになる (ステップ 1 0 4 ) :  In this case, since the true exhaust temperature is unknown due to a sensor failure, etc., the exhaust temperature obtained separately by the predetermined detection means or the exhaust temperature determined based on the operator's experience etc. is keyboard. As a result, the values for all sensors corresponding to each sensor inspection item are accurately given, and the sensor values within these normal ranges are indicated by broken lines on the sensor value display screen 3. Will be displayed on the sensor value display section 3a as shown in (step 104):
つぎに、 所定の異常度評価関数に基づいて、 各センサ点検項目 iごとにその異 常度 I iが演算される: ここで、 異常度 I iとは、 点検項目 iの異常の度合いのこ とであり、 0≤ I i≤ 1の範囲内の数値として与えられ、 異常度 I i = 0は 「異常 がまったく発生しない」 に対応し、 異常度 I i = lは 「最大の異常である」 に対応 している。 Next, based on a predetermined abnormality degree evaluation function, the abnormality degree I i is calculated for each sensor inspection item i: Here, the abnormality degree I i is the abnormality degree of the inspection item i. Is given as a numerical value in the range of 0≤I i≤1, and the degree of abnormality I i = 0 is Abnormality I i = l corresponds to “the largest abnormality”.
たとえば、 センサ点検項目として 「排気温度」 を例にとると、 図 5に示すよう な異常度評価関数であるメンバシップ関数が用意されている: そこで、 ステップ 1 0 4で最終的に決定された排気温度を、 このメンバシップ関数に適用して、 点 検項目 「排気温度」 についての異常度 I iを演算する: すなわち、 排気温度が現在 5 0 ° であるものとすると、 同図 5の矢印に示すようにメンバシップ関数による 「排気温度が低い」 という異常度 I iは、 0 . 8であると判断されることになる ( ステップ 1 0 5 )  For example, taking “exhaust gas temperature” as an example of a sensor check item, a membership function that is an abnormality evaluation function as shown in Fig. 5 is prepared: Therefore, the final decision in step 104 was made. The exhaust gas temperature is applied to this membership function to calculate the degree of abnormality I i for the inspection item “exhaust gas temperature”. That is, assuming that the exhaust gas temperature is currently 50 °, the arrow in FIG. As shown in (1), the degree of abnormality Ii indicating that the exhaust gas temperature is low due to the membership function is determined to be 0.8 (step 105).
つぎに、 図 4に示すように上記ステップ 1 0 5の異常度演算結果が表示画面上 に異常度表示國面 2として表示される:  Next, as shown in FIG. 4, the result of the calculation of the degree of abnormality in the above step 105 is displayed on the display screen as the surface 2 of the degree of abnormality display:
すなわち、 同図 4に示すように、 センサ点検項目 iである 「バッテリ電圧が低 い」 、 「排気温度が低い」 、 「潤滑油圧が高い」 …ごとにその異常度 I iが表示さ れる: たとえば、 前述したように 「排気温度」 に関しては、 その異常度 「0 . 8 」 が 「排気温度が低い」 という点検項目に対応して表示される- さて、 ここでも、 前述したステップ 1 0 4と同様に、 演算の際のエラ一等何ら かの原因により演算することができなかった異常度 I iについても、 オペレータが 経験等に基づいてキ一ボ一ド操作する等してその値を与えることができる: また 、 たとえ演算がなされた異常度 I iであっても、 その値が故障伏態からみて異常と 判断されるような場合には、 同様にキーボード操作する等してその値を修正する ことができる。  That is, as shown in FIG. 4, the abnormality level Ii is displayed for each of the sensor check items i: "low battery voltage", "low exhaust temperature", "high lubrication oil pressure": For example, as described above, regarding “exhaust gas temperature”, the degree of abnormality “0.8” is displayed corresponding to the check item “exhaust gas temperature is low”. Similarly to the above, for the degree of abnormality I i, which could not be calculated due to an error such as an error in the calculation, the operator can perform a keyboard operation based on experience or the like to change the value. In addition, even if the calculated degree of abnormality I i is determined to be abnormal in view of the failure state, the value can be similarly determined by operating the keyboard. Can be modified.
一方、 異常度表示画面 2には、 各入力データ点検項目についても表示されてお り、 これら入力データ点検項目に対応する異常度については、 オペレータが自己 の経験等に基づき判断した値をキーボード操作する等して与えることができる: この結果、 各センサ点検項目に対応するすべての異常度 I iが、 適正範囲内のも のとして与えられるとともに、 各入力データ点検項目に対応するすべての異常度 I iが適正範囲内のものとして与えられ、 異常度表示画面 2上の破線に示す異常度 表示部 2 aにそれら異常度 I iが表示されることになる (ステップ 1 0 6 ) , つぎに、 図 3に示す知識べ一ス 1に基づいて、 故障診断がなされる: 故障診断は、 知識ベース 1の関連度データ Wijと上記ステップ 106で取得さ れた各点検項目 iの異常度 I iとに基づいて各種故障原因 jの確信度 CFjを演算 することにより行うものである: On the other hand, the abnormality level display screen 2 also displays each input data inspection item, and for the abnormality degree corresponding to these input data inspection items, the value determined by the operator based on his / her own experience and the like is operated by keyboard operation. As a result, all the abnormalities Ii corresponding to each sensor inspection item are given as those within the appropriate range, and all the abnormalities corresponding to each input data inspection item are obtained. I i is given as being within the proper range, and these abnormalities I i will be displayed on the abnormal degree display section 2 a shown by the broken line on the abnormal degree display screen 2 (step 106). Based on the knowledge base 1 shown in Fig. 3, the fault diagnosis is performed: The failure diagnosis is performed by calculating the certainty factor CFj of various failure causes j based on the relevance data Wij of the knowledge base 1 and the abnormality level Ii of each inspection item i obtained in step 106 above. is there:
確信度 CFjを求める演算式としては、 たとえば、 次式 (1) を使用することが できる:  For example, the following equation (1) can be used to calculate the confidence factor CFj:
CFj =∑Wij* I i ■·· (1)  CFj = ∑Wij * I i
i  i
(ステップ 107) つぎに、 上記ステップ 107の演算結果が、 診断結果表示画面 4として図 7に 示すごとく表示される: すなわち、 同図 7に示すように、 上記 (1) 式の演算結 果が、 各種故障原因 J、 つまり 「バッテリ不良」 、 「噴射ノズル不良」 …ごとに 、 「25%」 、 「89%」 …とったごとく 「%」 単位で表示される- なお、 表示 画面 4のうち故障原因表示部 4 a内の所定の故障原因を選択すると、 その選択し た故障原因に対応して、 予め設定されている故障対処方法が画面上に表示される = たとえば、 故障原因 「バッテリ不良」 が選択されると、 バッテリ不良の確認方 法とその故障対策方法の詳細説明が画面に表示され、 これに基づいてォペレ一タ は迅速に対処することができる (ステップ 108) ,  (Step 107) Next, the calculation result of the above step 107 is displayed on the diagnostic result display screen 4 as shown in FIG. 7: That is, as shown in FIG. , Various failure causes J, that is, “battery failure”, “injection nozzle failure” ... are displayed in units of “25%”, “89%” ... When a predetermined cause of failure is selected in the failure cause display section 4a, a preset troubleshooting method is displayed on the screen corresponding to the selected failure cause = For example, the failure cause `` Battery failure Is selected, a detailed explanation of how to check for a battery failure and how to take measures against the failure is displayed on the screen, based on which the operator can take immediate action (step 108),
ところで、 図 2は、 他の実施例による故障診断処理手順を示すものであり、 前 述した図 1に示すフローチヤ一トと異なるのは、 図 1のステップ 101に相当す る発生不具合入力処理に対応する処理がない点である:  FIG. 2 shows a failure diagnosis processing procedure according to another embodiment. The difference from the flow chart shown in FIG. 1 described above is that the failure input processing corresponding to step 101 in FIG. There is no corresponding action:
この実施例では、 ステップ 201〜207において、 図 1のステップ 102〜 108と同様な処理が実行される。 すなわち、 この実施例では、 故障状態に応じ て必要な知識べ一ス 1は引き出されず、 故障状態を特定しない汎用の知識ベース 1 一に基づいて処理がすすめられる: したがって、 ステップ 201では、 全セン サ点検項目に応じたセンサからの検出値が取り込まれるとともに、 ステップ 20 5では、 同様に全入力デ一タ点検項目のデータが入力されることになる: 産業上の利用可能性  In this embodiment, in steps 201 to 207, the same processing as in steps 102 to 108 in FIG. 1 is executed. That is, in this embodiment, the necessary knowledge base 1 is not extracted in accordance with the failure state, and the process proceeds based on the general-purpose knowledge base 11 which does not specify the failure state. In step 205, the data from all input data check items will be input as well as the detection values from the sensors corresponding to the check items.
以上説明したように、 本発明によれば、 故障診断を行うための各種点検項目を センサ点検項目と入力データ項目とに分類するようにしたので、 センサ点検項目 についてはセンサの検出値に基づいて、 個人差を生じることなく迅速に点検する ことができるとともに、 センサ点検項目に限定されない多数の点検項目によって 、 精度のよい故障診断結果を得ることができる As described above, according to the present invention, various inspection items for performing failure diagnosis are provided. Sensor inspection items and input data items are classified, so sensor inspection items can be inspected quickly without individual differences based on sensor detection values, and are not limited to sensor inspection items Accurate failure diagnosis results can be obtained by many inspection items
また、 本発明によれば、 故障診断の過程で、 各センサの検出値および各センサ の異常判定結果を表示し、 その表示内容からセンサの検出値が適宜変更修正され 得るようにするとともに、 演算されたセンサ点検項目についての異常度を表示し 、 その表示内容から異常度が適宜変更修正され得るようにしたので、 センサ自体 に故障が発生したり、 異常度演算の際にエラーが発生したり等の異常があつたと しても、 表示内容によりその異常を判別、 修正でき、 異常なデータに基づくこと のない正確な故障診断結果が得られる。  Further, according to the present invention, in the course of the failure diagnosis, the detection value of each sensor and the abnormality determination result of each sensor are displayed, and the detection value of the sensor can be appropriately changed and corrected based on the display contents, The abnormalities of the detected sensor inspection items are displayed, and the abnormalities can be appropriately changed and corrected based on the display contents. Therefore, a failure occurs in the sensor itself, or an error occurs when the abnormalities are calculated. Even if there is an abnormality such as an error, it is possible to determine and correct the abnormality based on the displayed content, and to obtain an accurate failure diagnosis result based on no abnormal data.

Claims

請 求 の 範 囲 The scope of the claims
1 . 故障診断対象の各種点検項目と該故障診断対象の各種故障原因との関連 の度合いを示す関連度データに基づいて前記故障診断対象の故障を診断する故障 診断方法において、 1. A failure diagnosis method for diagnosing a failure of a failure diagnosis target based on association degree data indicating a degree of association between various inspection items of the failure diagnosis target and various failure causes of the failure diagnosis target,
前記各種点検項目を、 前記故障診断対象に配設されたセンサの検出値により点 検されるセンサ点検項目と入力されるデータにより点検される入力データ点検項 目とに分類した前記関連度データを用意し、 該関連度デ一タに基づいて前記故障 診断対象の故障を診断するようにした故障診断方法  The relevance data obtained by classifying the various inspection items into a sensor inspection item inspected by a detection value of a sensor disposed on the failure diagnosis target and an input data inspection item inspected by input data. A failure diagnosis method for diagnosing the failure to be diagnosed based on the relevance data.
2 . 故障診断対象の各種点検項目と該故障診断対象の各種故障原因との関連 の度合いを示す関連度データに基づいて前記故障診断対象の故障を診断する故障 診断装置において、  2. A failure diagnosis device that diagnoses a failure of the failure diagnosis target based on association degree data indicating a degree of association between various inspection items of the failure diagnosis target and various failure causes of the failure diagnosis target,
前記各種点検項目を、 前記故障診断対象に配設されたセンサの検出値により点 検されるセンサ点検項目と入力されるデータにより点検される入力データ点検項 目とに分類し、 該分類された各種点検項目と前記各種故障原因との関連の度合い を示す関連度データを有した知識ベースを作成し、 該知識ベースに基づいて前記 故障診断対象の故障を診断するようにした故障診断装置  The various inspection items are classified into a sensor inspection item inspected by a detection value of a sensor arranged in the failure diagnosis target and an input data inspection item inspected by input data. A failure diagnosis apparatus that creates a knowledge base having relevance data indicating the degree of relevance between various inspection items and the various failure causes, and diagnoses the failure to be diagnosed based on the knowledge base.
3 . 故障診断対象の各種点検項目と該故障診断対象の各種故障原因との関連 の度合いを示す関連度データを有した知識ベースを用意し、 前記各種点検項目の 異常の度合いを示す異常度デ—タと前記関連度デ—タとに基づいて、 各種故障原 因ごとの確信度を推論し、 該推論結果に基づいて前記故障診断対象の故障を診断 する故障診断装置において、  3. Prepare a knowledge base that contains the degree of association between the various inspection items to be diagnosed and the various causes of the failure to be diagnosed, and use the abnormality degree data that indicates the degree of abnormality of the various inspection items. A failure diagnostic device for inferring certainty factors for various failure causes based on the inference data and the relevance data, and diagnosing the failure to be diagnosed based on the inference result;
前記各種点検項目を、 前記故障診断対象に配設されたセンサの検出値により点 検されるセンサ点検項目と入力されるデータにより点検される入力データ点検項 目とに分類して前記知識べ一スを予め作成しておき、  The various inspection items are classified into a sensor inspection item inspected by a detection value of a sensor disposed on the failure diagnosis target and an input data inspection item inspected by input data, and the knowledge base is classified. Create a resource in advance,
各センサごとにしきい値を設定して、 該設定されたしきい値と当該センサの検 出値とを比較することにより当該センサが異常であるか否かを判定する処理を行 い、  A threshold value is set for each sensor, and a process of determining whether or not the sensor is abnormal is performed by comparing the set threshold value with a detection value of the sensor.
各センサの検出値を表示するとともに、 各センサごとの異常判定内容を表示し 、 該表示内容に基づいて各センサの検出値を変更する操作を行い、 In addition to displaying the detection value of each sensor, the details of abnormality determination for each sensor are also displayed. Performing an operation of changing the detection value of each sensor based on the display content;
前記変更操作がされた各センサの検出値に基づいて、 各センサ点検項目ごとに 異常度を演算する処理を行い、  Based on the detection value of each sensor subjected to the change operation, perform a process of calculating the degree of abnormality for each sensor inspection item,
前記演算された各センサ点検項目の異常度を表示し、 該表示内容に基づいて各 センサ点検項目の異常度を変更する操作を行うとともに、 各入力データ点検項目 ごとに必要な異常度データを入力する操作を行い、  Displays the calculated degree of abnormality of each sensor inspection item, performs an operation to change the degree of abnormality of each sensor inspection item based on the display contents, and inputs necessary abnormality degree data for each input data inspection item. Do
前記変更操作がされた各センサ点検項目の異常度とデータ入力操作がされた各 入力データ点検項目の異常度とに基づいて、 各種故障原因ごとの確信度を推論し Based on the degree of abnormality of each sensor check item subjected to the change operation and the degree of abnormality of each input data check item subjected to the data input operation, a certainty factor for each cause of failure is inferred.
、 該推論結果に基づいて前記故障診断対象を故障診断する故障診断装置: A failure diagnosis device for performing a failure diagnosis on the failure diagnosis target based on the inference result:
4 . 前記故障診断対象の各種故障状態ごとに、 前記知識ベースを予め用意し ておき、  4. The knowledge base is prepared in advance for each failure state of the failure diagnosis target,
故障状態を示すデータが入力された場合に、 該入力データに対応する知識べ一 スを選択し、  When data indicating a failure state is input, a knowledge base corresponding to the input data is selected,
該選択された知識ベースに示される各センサ点検項目に対応する各センサの検 出値を入力するよう制御するとともに、 前記選択された知識ベースの内容を表示 し、 該表示内容に基づいて各入力データ点検項目に対応する異常度データを入力 操作するようにした請求の範囲第 3項記載の故障診断装置:  While controlling to input the detection value of each sensor corresponding to each sensor check item indicated in the selected knowledge base, displaying the content of the selected knowledge base, and performing each input based on the display content 4. The failure diagnosis device according to claim 3, wherein the abnormality degree data corresponding to the data check item is input and operated.
PCT/JP1995/000171 1994-02-09 1995-02-08 Method and apparatus for diagnosing fault WO1995022089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/15418 1994-02-09
JP6015418A JPH07225610A (en) 1994-02-09 1994-02-09 Method and device for fault diagnosis

Publications (1)

Publication Number Publication Date
WO1995022089A1 true WO1995022089A1 (en) 1995-08-17

Family

ID=11888218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000171 WO1995022089A1 (en) 1994-02-09 1995-02-08 Method and apparatus for diagnosing fault

Country Status (2)

Country Link
JP (1) JPH07225610A (en)
WO (1) WO1995022089A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195013A (en) * 2017-05-11 2017-09-22 国网山东省电力公司信息通信公司 The O&M automation method for inspecting and its system of a kind of fine granularity control
CN115362421A (en) * 2020-03-30 2022-11-18 大金工业株式会社 Diagnostic system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144524A (en) * 1997-07-28 1999-02-16 Matsushita Electric Ind Co Ltd Electronic part-mounting device using surface-mounting type package and inspection method thereof
US8719327B2 (en) * 2005-10-25 2014-05-06 Fisher-Rosemount Systems, Inc. Wireless communication of process measurements
JP6585482B2 (en) * 2015-11-26 2019-10-02 株式会社日立製作所 Device diagnostic apparatus and system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214915A (en) * 1983-05-20 1984-12-04 Hitachi Ltd Fault extent and its forecasting and diagnozing method
JPS6157868A (en) * 1984-08-29 1986-03-24 Sumitomo Electric Ind Ltd Diagnosis aiding system for automobile fault
JPH01278866A (en) * 1988-04-30 1989-11-09 Mazda Motor Corp Trouble diagnoser for vehicle
JPH022404A (en) * 1988-06-13 1990-01-08 Mitsubishi Heavy Ind Ltd Device for fault diagnosis of plant
JPH04188307A (en) * 1990-11-22 1992-07-06 Yamatake Honeywell Co Ltd Fault diagnostic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214915A (en) * 1983-05-20 1984-12-04 Hitachi Ltd Fault extent and its forecasting and diagnozing method
JPS6157868A (en) * 1984-08-29 1986-03-24 Sumitomo Electric Ind Ltd Diagnosis aiding system for automobile fault
JPH01278866A (en) * 1988-04-30 1989-11-09 Mazda Motor Corp Trouble diagnoser for vehicle
JPH022404A (en) * 1988-06-13 1990-01-08 Mitsubishi Heavy Ind Ltd Device for fault diagnosis of plant
JPH04188307A (en) * 1990-11-22 1992-07-06 Yamatake Honeywell Co Ltd Fault diagnostic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195013A (en) * 2017-05-11 2017-09-22 国网山东省电力公司信息通信公司 The O&M automation method for inspecting and its system of a kind of fine granularity control
CN115362421A (en) * 2020-03-30 2022-11-18 大金工业株式会社 Diagnostic system
CN115362421B (en) * 2020-03-30 2024-02-23 大金工业株式会社 Diagnostic system

Also Published As

Publication number Publication date
JPH07225610A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
US6898554B2 (en) Fault detection in a physical system
JP4071449B2 (en) Sensor abnormality detection method and sensor abnormality detection device
EP2047339B1 (en) Methods and apparatuses for monitoring a system
US8417432B2 (en) Method for calculating confidence on prediction in fault diagnosis systems
JPH08202444A (en) Method and device for diagnosing abnormality of machine facility
CN109187060B (en) The detection of train speed sensor abnormal signal and axis locking method for diagnosing faults
KR20190081933A (en) Method for sensing and diagnosing abnormality of manufacture equipment
JP2672576B2 (en) Diagnosis support system for plants and equipment
WO1995022089A1 (en) Method and apparatus for diagnosing fault
CN109990803B (en) Method and device for detecting system abnormity and method and device for sensor processing
KR102303406B1 (en) Method for something wrong diagnosis of industrial equipment and the device
JP3461932B2 (en) Fault diagnosis device using expert system
JPH086635A (en) Plant diagnostic device
JP2000298511A (en) Equipment diagnosing device and recording medium
CN113551764B (en) Vibration analysis apparatus and method thereof
WO2020204043A1 (en) Blast furnace abnormality assessment device, blast furnace abnormality assessment method, and blast furnace operation method
JP2005265454A (en) Fault diagnosis device for vehicle
CN116802471A (en) Method and system for comprehensively diagnosing defects of rotary machine
JPH10198420A (en) Method and device for diagnosing abnormality
JPH07181292A (en) Plant operation support system
JPH05322714A (en) Cavitation phenomenon detection device
JPH07281736A (en) Facility diagnostic device
RU2781738C2 (en) Method for functional diagnostics of a liquid rocket engine during firing tests
KR100249770B1 (en) Diagnosis device and method of a construction machine
JP2540727B2 (en) Plant parameter abnormal amount search method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB KR RU SE US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642