WO1994017734B1 - Ultrasound catheter - Google Patents
Ultrasound catheterInfo
- Publication number
- WO1994017734B1 WO1994017734B1 PCT/US1994/000474 US9400474W WO9417734B1 WO 1994017734 B1 WO1994017734 B1 WO 1994017734B1 US 9400474 W US9400474 W US 9400474W WO 9417734 B1 WO9417734 B1 WO 9417734B1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transducer
- electrical signals
- section
- integrated electronic
- transducer array
- Prior art date
Links
- 238000002604 ultrasonography Methods 0.000 title claims abstract 20
- 239000000463 material Substances 0.000 claims abstract 10
- 239000004020 conductor Substances 0.000 claims abstract 6
- 239000000523 sample Substances 0.000 claims 15
- 238000006243 chemical reaction Methods 0.000 claims 10
- 238000003384 imaging method Methods 0.000 claims 5
- 230000005540 biological transmission Effects 0.000 claims 3
- 238000010521 absorption reaction Methods 0.000 claims 2
- 230000000875 corresponding Effects 0.000 claims 2
- 238000003780 insertion Methods 0.000 claims 2
- 241000894007 species Species 0.000 claims 1
- 239000000969 carrier Substances 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 abstract 1
- 230000004059 degradation Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
Abstract
An ultrasound catheter (10) is disclosed for providing substantially real-time images of small cavities. The ultrasound catheter (10) is characterized by separate and distinct materials for backing the transducers (22) and for carrying the electronics components (18). The separate materials comprise an electronics carrier (20) meeting the requirements for holding the integrated circuitry (18) of the ultrasound device and a backing material (24) displaying superior characteristics relating to reducing ringing and minimizing the effect of other sources of signal degradation in the transducer assembly. Also, in accordance with the present invention, a technique is described for connecting the conductor lines of the separate transducer assembly and electronics body.
Claims
1. An ultrasound catheter probe for insertion into a vasculature and emitting ultrasonic acoustic waves and providing transduced electrical signals arising from ultrasonic echoes of the ultrasonic acoustic waves, said ultrasound catheter probe comprising: a multi-sectioned body having distinct sections for independently supporting a transducer array and integrated electronic circuitry, the multi-sectioned body comprising: a first section, comprising a first material, serving as a transducer backing and having a relatively high acoustic energy absorption in comparison to a second section, comprising a second material, for supporting integrated electronic circuitry; a transducer assembly, mounted upon the first section of the multi-sectioned body, including the transducer array for transmitting the ultrasonic acoustic waves into the vasculature and generating first electrical signals in accordance with the ultrasonic echoes of the ultrasonic acoustic waves; integrated electronic signal conversion circuitry, mounted upon the second section of the multi-sectioned body, for receiving the first electrical signals from the transducer assembly, converting the first electrical signals to second electrical signals, and transmitting the second electrical signals to an environment external of the vasculature via a cable including at least one signal channel for transmitting the second electrical signals; and a plurality of electrical transmission paths between the transducer array and the integrated electronic signal conversion circuitry for communicating the first electrical signals from the transducer array to the integrated electronic signal conversion circuitry.
2. The ultrasound catheter probe of claim 1 wherein the first section and the second section are mounted adjacently upon a guide wire lumen.
3. The imaging device of claim 1 wherein the first material has a relatively low acoustic impedance.
4. The imaging device of claim 1 wherein the second material has a relatively low thermal expansion coefficient in comparison to the first material.
5. The ultrasound catheter probe of claim 1 wherein the transducer assembly includes a plurality of conducting electrodes bonded directly to a transducer layer.
6. The ultrasound catheter probe of claim 1 wherein the transducer assembly includes a continuous layer conducting electrode bonded directly to a transducer layer.
7. The ultrasound catheter probe of claim 1 wherein the transducer assembly includes a transducer array configured in a cylindrical shape.
8. The ultrasound catheter probe of claim 1 wherein the transducer assembly includes a transducer array configured in a planar shape.
9. The ultrasound catheter probe of claim 8 wherein the transducer array is disposed upon a side of the multi- sectioned body in order to provide a side-looking view within the cavity.
10. The ultrasound catheter probe of claim 8 wherein the transducer array is disposed upon a front of the multi-sectioned body in order to provide a forward-looking view within the cavity. 28
11. The ultrasound catheter probe of claim 1 further comprising a balloon section positioned proximate the multi-sectioned body.
12. The ultrasound catheter probe of claim 11 wherein the balloon is positioned at a portion of a catheter which is inserted ahead of the multi-sectioned body.
13. The ultrasound catheter probe of claim 1 wherein said plurality of electrical transmission paths includes a set of transducer contacts coupled to a plurality of conducting electrodes of the transducer array and extending laterally from the transducer array thereby facilitating connection of the plurality of conducting electrodes to a plurality of conducting lines disposed upon the second section and electrically coupled to the integrated electronic signal conversion circuitry.
14. The ultrasound catheter probe of claim 13 wherein said set of transducer contacts overlap the plurality of conducting lines, thereby facilitating the use of a gap welder to fuse ones of the set of transducer contacts to corresponding ones of the plurality of conductor lines.
15. An ultrasound imaging catheter for insertion into a vasculature and emitting ultrasonic acoustic waves and providing transduced electrical signals arising from ultrasonic echoes of the ultrasonic acoustic waves, said imaging catheter comprising: a shaft containing at least one lumen; and an ultrasound probe mounted upon the shaft, said imaging device comprising: a multi-sectioned body having distinct sections for independently supporting a transducer array and integrated electronic circuitry, the multi-sectioned 29
body comprising: a first section, comprising a first material, serving as a transducer backing and having a relatively high acoustic energy absorption in comparison to a second section, comprising a second material, for supporting integrated electronic circuitry; a transducer assembly, mounted upon the first section of the multi-sectioned body, including the transducer array for transmitting the ultrasonic acoustic waves into the vasculature and generating first electrical signals in accordance with the ultrasonic echoes of the ultrasonic acoustic waves; integrated electronic signal conversion circuitry, mounted upon the second section of the multi-sectioned body, for receiving the first electrical signals from the transducer assembly, converting the first electrical signals to second electrical signals, and transmitting the second electrical signals to an environment external of the vasculature via a cable including at least one signal channel for transmitting the second electrical signals; and a plurality of electrical transmission paths between the transducer array and the integrated electronic signal conversion circuitry for communicating the first electrical signals from the transducer array to the integrated electronic signal conversion circuitry.
16. A method for assembling an ultrasound intravascular catheter probe having a multi-sectioned body for independently supporting a transducer array and integrated electronic circuitry, the multi-sectioned body having a first section consisting of a transducer backing and a second section for supporting the integrated electronic circuitry, said method comprising the steps of: mounting upon the first section of the multi- sectioned body a transducer assembly including the 30
transducer array for transmitting ultrasonic acoustic waves into the vasculature and generating first electrical signals in accordance with ultrasonic echoes of the ultrasonic acoustic waves, said transducer assembly including a set of transducer contacts coupled to a plurality of conducting electrodes and extending laterally from the transducer array; mounting upon the second section of the multi- sectioned body integrated electronic signal conversion circuitry for receiving the first electrical signals from the array of transducers and converting the first electrical signals to second electrical signals transmitted by a cable connecting the integrated electronic signal conversion circuitry to an environment external of the vasculature and including at least one signal channel for transmitting the second electrical signals; bringing the first and second sections in proximate position so that ones of the set of transducer contacts overlap corresponding ones of a set of conductor lines communicatively connected to the integrated electronic signal conversion circuitry; and applying a localized electrical current source to overlapping transducer contacts and conductor lines, thereby fusing ones of the transducer contacts to ones of the conductor lines.
17. The method of claim 16 wherein the applying step comprises applying localized electrical current to each of the overlapping transducer contacts and conductor lines by means of a gap welder. 31
STATEMENT UNDER ARTICLE19
The above claim amendments are submitted to more generically define that which the applicant regards as its invention. Additionally, the amended claims include additional species of the invention. The amended claims are fully supported by the subject matter of the original priority document. The applicant believes that the amended claims are clearly supported by the description and the drawings of this international application, and as such do not go beyond the disclosure in the application as filed.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT94906070T ATE236573T1 (en) | 1993-02-01 | 1994-01-14 | ULTRASONIC CATHETER SENSOR |
DE69432448T DE69432448T2 (en) | 1993-02-01 | 1994-01-14 | ULTRASONIC CATHETER SENSOR |
JP51804094A JP3732854B2 (en) | 1993-02-01 | 1994-01-14 | Ultrasound catheter |
EP94906070A EP0637937B1 (en) | 1993-02-01 | 1994-01-14 | Ultrasound catheter probe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/012,251 | 1993-02-01 | ||
US08/012,251 US5368037A (en) | 1993-02-01 | 1993-02-01 | Ultrasound catheter |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1994017734A1 WO1994017734A1 (en) | 1994-08-18 |
WO1994017734B1 true WO1994017734B1 (en) | 1994-09-29 |
Family
ID=21754054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/000474 WO1994017734A1 (en) | 1993-02-01 | 1994-01-14 | Ultrasound catheter |
Country Status (7)
Country | Link |
---|---|
US (1) | US5368037A (en) |
EP (3) | EP1327417B1 (en) |
JP (3) | JP3732854B2 (en) |
AT (3) | ATE481034T1 (en) |
CA (2) | CA2235947C (en) |
DE (3) | DE69435314D1 (en) |
WO (1) | WO1994017734A1 (en) |
Families Citing this family (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6029671A (en) * | 1991-07-16 | 2000-02-29 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5453575A (en) * | 1993-02-01 | 1995-09-26 | Endosonics Corporation | Apparatus and method for detecting blood flow in intravascular ultrasonic imaging |
US20070016071A1 (en) * | 1993-02-01 | 2007-01-18 | Volcano Corporation | Ultrasound transducer assembly |
GB2287375B (en) * | 1994-03-11 | 1998-04-15 | Intravascular Res Ltd | Ultrasonic transducer array and method of manufacturing the same |
US5488954A (en) * | 1994-09-09 | 1996-02-06 | Georgia Tech Research Corp. | Ultrasonic transducer and method for using same |
US5606975A (en) * | 1994-09-19 | 1997-03-04 | The Board Of Trustees Of The Leland Stanford Junior University | Forward viewing ultrasonic imaging catheter |
US5590658A (en) | 1995-06-29 | 1997-01-07 | Teratech Corporation | Portable ultrasound imaging system |
US8241217B2 (en) | 1995-06-29 | 2012-08-14 | Teratech Corporation | Portable ultrasound imaging data |
US7500952B1 (en) | 1995-06-29 | 2009-03-10 | Teratech Corporation | Portable ultrasound imaging system |
US5957846A (en) * | 1995-06-29 | 1999-09-28 | Teratech Corporation | Portable ultrasound imaging system |
US5738100A (en) * | 1995-06-30 | 1998-04-14 | Terumo Kabushiki Kaisha | Ultrasonic imaging catheter |
US7226417B1 (en) | 1995-12-26 | 2007-06-05 | Volcano Corporation | High resolution intravascular ultrasound transducer assembly having a flexible substrate |
US6030346A (en) * | 1996-02-21 | 2000-02-29 | The Whitaker Corporation | Ultrasound imaging probe assembly |
US6117083A (en) * | 1996-02-21 | 2000-09-12 | The Whitaker Corporation | Ultrasound imaging probe assembly |
DE69736549T2 (en) | 1996-02-29 | 2007-08-23 | Acuson Corp., Mountain View | SYSTEM, METHOD AND CONVERTER FOR ORIENTING MULTIPLE ULTRASOUND IMAGES |
US5733281A (en) * | 1996-03-19 | 1998-03-31 | American Ablation Co., Inc. | Ultrasound and impedance feedback system for use with electrosurgical instruments |
GB2315020A (en) | 1996-07-11 | 1998-01-21 | Intravascular Res Ltd | Ultrasonic visualisation catheters |
US5830145A (en) | 1996-09-20 | 1998-11-03 | Cardiovascular Imaging Systems, Inc. | Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction |
US5857974A (en) | 1997-01-08 | 1999-01-12 | Endosonics Corporation | High resolution intravascular ultrasound transducer assembly having a flexible substrate |
US5938616A (en) * | 1997-01-31 | 1999-08-17 | Acuson Corporation | Steering mechanism and steering line for a catheter-mounted ultrasonic transducer |
US5954654A (en) * | 1997-01-31 | 1999-09-21 | Acuson Corporation | Steering mechanism and steering line for a catheter-mounted ultrasonic transducer |
US5797848A (en) * | 1997-01-31 | 1998-08-25 | Acuson Corporation | Ultrasonic transducer assembly with improved electrical interface |
US5846205A (en) * | 1997-01-31 | 1998-12-08 | Acuson Corporation | Catheter-mounted, phased-array ultrasound transducer with improved imaging |
US6464645B1 (en) | 1997-01-31 | 2002-10-15 | Acuson Corporation | Ultrasonic transducer assembly controller |
US5795299A (en) * | 1997-01-31 | 1998-08-18 | Acuson Corporation | Ultrasonic transducer assembly with extended flexible circuits |
US5876345A (en) * | 1997-02-27 | 1999-03-02 | Acuson Corporation | Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction |
US6045508A (en) * | 1997-02-27 | 2000-04-04 | Acuson Corporation | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
US5921931A (en) | 1997-04-08 | 1999-07-13 | Endosonics Corporation | Method and apparatus for creating a color blood flow image based upon ultrasonic echo signals received by an intravascular ultrasound imaging probe |
AT407009B (en) | 1997-09-01 | 2000-11-27 | Ali Dr Hassan | CATHETER DEVICE FOR RADIOACTIVE TREATMENT OF BODY CAVES |
JP3525700B2 (en) * | 1997-09-24 | 2004-05-10 | 富士写真光機株式会社 | Ultrasonic probe |
US5876344A (en) * | 1997-12-09 | 1999-03-02 | Endosonics Corporation | Modular imaging/treatment catheter assembly and method |
US20050171478A1 (en) * | 1998-01-13 | 2005-08-04 | Selmon Matthew R. | Catheter system for crossing total occlusions in vasculature |
CA2348580C (en) | 1998-03-05 | 2009-07-14 | Evgeni Spivak | Optical-acoustic imaging device |
US6440102B1 (en) * | 1998-07-23 | 2002-08-27 | Durect Corporation | Fluid transfer and diagnostic system for treating the inner ear |
US6277077B1 (en) | 1998-11-16 | 2001-08-21 | Cardiac Pathways Corporation | Catheter including ultrasound transducer with emissions attenuation |
US6306097B1 (en) | 1999-06-17 | 2001-10-23 | Acuson Corporation | Ultrasound imaging catheter guiding assembly with catheter working port |
US6423002B1 (en) | 1999-06-24 | 2002-07-23 | Acuson Corporation | Intra-operative diagnostic ultrasound multiple-array transducer probe and optional surgical tool |
US6457365B1 (en) * | 2000-02-09 | 2002-10-01 | Endosonics Corporation | Method and apparatus for ultrasonic imaging |
US20030060731A1 (en) * | 2001-01-26 | 2003-03-27 | Fleischhacker Mark G. | Non-metallic guide wire |
US6589182B1 (en) | 2001-02-12 | 2003-07-08 | Acuson Corporation | Medical diagnostic ultrasound catheter with first and second tip portions |
US7387612B2 (en) * | 2001-03-28 | 2008-06-17 | Cybersonics, Inc. | Floating probe for ultrasonic transducers |
WO2002078886A1 (en) * | 2001-03-28 | 2002-10-10 | Thomas Peterson | Floating probe for ultrasonic transducers |
US6572547B2 (en) * | 2001-07-31 | 2003-06-03 | Koninklijke Philips Electronics N.V. | Transesophageal and transnasal, transesophageal ultrasound imaging systems |
EP1453425B1 (en) | 2001-12-03 | 2006-03-08 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US20040054287A1 (en) * | 2002-08-29 | 2004-03-18 | Stephens Douglas Neil | Ultrasonic imaging devices and methods of fabrication |
US6712767B2 (en) * | 2002-08-29 | 2004-03-30 | Volcano Therapeutics, Inc. | Ultrasonic imaging devices and methods of fabrication |
US7245789B2 (en) * | 2002-10-07 | 2007-07-17 | Vascular Imaging Corporation | Systems and methods for minimally-invasive optical-acoustic imaging |
US20050113698A1 (en) * | 2003-11-21 | 2005-05-26 | Kjell Kristoffersen | Ultrasound probe transceiver circuitry |
US7527591B2 (en) * | 2003-11-21 | 2009-05-05 | General Electric Company | Ultrasound probe distributed beamformer |
US7527592B2 (en) * | 2003-11-21 | 2009-05-05 | General Electric Company | Ultrasound probe sub-aperture processing |
CA2563775C (en) | 2004-04-20 | 2014-08-26 | Visualsonics Inc. | Arrayed ultrasonic transducer |
EP1762182B1 (en) * | 2004-06-10 | 2011-08-03 | Olympus Corporation | Electrostatic capacity type ultrasonic probe device |
WO2006003606A2 (en) * | 2004-06-29 | 2006-01-12 | Koninklijke Philips Electronics, N.V. | System simplification for an ultrasound-based perfusion detection system |
US7488288B2 (en) * | 2004-07-29 | 2009-02-10 | Fujinon Corporation | Ultrasonic endoscope |
US20070005011A1 (en) * | 2005-06-20 | 2007-01-04 | Boston Scientific Scimed, Inc. | Method, system, apparatus, and kit for remote therapeutic delivery |
CA2935422C (en) | 2005-11-02 | 2019-01-08 | Visualsonics Inc. | High frequency array ultrasound system |
US7887488B2 (en) * | 2005-11-12 | 2011-02-15 | Scimed Life Systems, Inc. | Systems and methods for reducing noise in an imaging catheter system |
US7599588B2 (en) | 2005-11-22 | 2009-10-06 | Vascular Imaging Corporation | Optical imaging probe connector |
US8303505B2 (en) | 2005-12-02 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Methods and apparatuses for image guided medical procedures |
EP2001359B1 (en) * | 2006-04-04 | 2018-06-27 | Volcano Corporation | Ultrasound catheter and hand-held device for manipulating a transducer on the catheter's distal end |
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
US10182833B2 (en) | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
WO2009002881A1 (en) | 2007-06-22 | 2008-12-31 | Ekos Corporation | Method and apparatus for treatment of intracranial hemorrhages |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
WO2009009799A1 (en) | 2007-07-12 | 2009-01-15 | Volcano Corporation | Catheter for in vivo imaging |
WO2009009802A1 (en) | 2007-07-12 | 2009-01-15 | Volcano Corporation | Oct-ivus catheter for concurrent luminal imaging |
US20090183350A1 (en) * | 2008-01-17 | 2009-07-23 | Wetsco, Inc. | Method for Ultrasound Probe Repair |
GB2457240B (en) | 2008-02-05 | 2013-04-10 | Fujitsu Ltd | Ultrasound probe device and method of operation |
US9184369B2 (en) | 2008-09-18 | 2015-11-10 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US9173047B2 (en) | 2008-09-18 | 2015-10-27 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
EP2345066B1 (en) | 2008-09-18 | 2018-10-31 | FUJIFILM SonoSite, Inc. | Methods for manufacturing ultrasound transducers and other components |
WO2010039950A1 (en) | 2008-10-02 | 2010-04-08 | Eberle Michael J | Optical ultrasound receiver |
US20100228130A1 (en) * | 2009-03-09 | 2010-09-09 | Teratech Corporation | Portable ultrasound imaging system |
EP3556307B1 (en) * | 2010-08-27 | 2021-12-01 | Ekos Corporation | Apparatus for treatment of intracranial hemorrhages |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
CN102793568B (en) * | 2011-05-23 | 2014-12-10 | 香港理工大学 | Annular-array ultrasonic endoscope probe, preparation method thereof and fixing rotating device |
US9295447B2 (en) | 2011-08-17 | 2016-03-29 | Volcano Corporation | Systems and methods for identifying vascular borders |
WO2013033592A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
US9164084B2 (en) | 2012-01-31 | 2015-10-20 | Purdue Research Foundation | Methods for determining aggressiveness of a cancer and treatment thereof |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US9478940B2 (en) | 2012-10-05 | 2016-10-25 | Volcano Corporation | Systems and methods for amplifying light |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US9840734B2 (en) | 2012-10-22 | 2017-12-12 | Raindance Technologies, Inc. | Methods for analyzing DNA |
JP6322210B2 (en) | 2012-12-13 | 2018-05-09 | ボルケーノ コーポレイション | Devices, systems, and methods for targeted intubation |
CA2895989A1 (en) | 2012-12-20 | 2014-07-10 | Nathaniel J. Kemp | Optical coherence tomography system that is reconfigurable between different imaging modes |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
CA2895770A1 (en) | 2012-12-20 | 2014-07-24 | Jeremy Stigall | Locating intravascular images |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
JP6785554B2 (en) | 2012-12-20 | 2020-11-18 | ボルケーノ コーポレイション | Smooth transition catheter |
CA2895995A1 (en) * | 2012-12-20 | 2014-06-26 | Jeremy Stigall | Catheter assembly with a shortened tip |
US10993694B2 (en) | 2012-12-21 | 2021-05-04 | Philips Image Guided Therapy Corporation | Rotational ultrasound imaging catheter with extended catheter body telescope |
JP2016501623A (en) | 2012-12-21 | 2016-01-21 | アンドリュー ハンコック, | System and method for multipath processing of image signals |
US9615878B2 (en) | 2012-12-21 | 2017-04-11 | Volcano Corporation | Device, system, and method for imaging and tissue characterization of ablated tissue |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
EP2934321A4 (en) * | 2012-12-21 | 2016-07-20 | Paul Hoseit | Imaging catheter for imaging from within balloon |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
US10327695B2 (en) | 2012-12-21 | 2019-06-25 | Volcano Corporation | Functional gain measurement technique and representation |
EP2936626A4 (en) | 2012-12-21 | 2016-08-17 | David Welford | Systems and methods for narrowing a wavelength emission of light |
WO2014099760A1 (en) | 2012-12-21 | 2014-06-26 | Mai Jerome | Ultrasound imaging with variable line density |
JP2016508757A (en) | 2012-12-21 | 2016-03-24 | ジェイソン スペンサー, | System and method for graphical processing of medical data |
EP2936241B1 (en) | 2012-12-21 | 2020-10-21 | Nathaniel J. Kemp | Power-efficient optical buffering using a polarisation-maintaining active optical switch |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
US20140257107A1 (en) * | 2012-12-28 | 2014-09-11 | Volcano Corporation | Transducer Assembly for an Imaging Device |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
CN113705586A (en) | 2013-03-07 | 2021-11-26 | 飞利浦影像引导治疗公司 | Multi-modal segmentation in intravascular images |
US20140276923A1 (en) | 2013-03-12 | 2014-09-18 | Volcano Corporation | Vibrating catheter and methods of use |
JP2016521138A (en) | 2013-03-12 | 2016-07-21 | コリンズ,ドナ | System and method for diagnosing coronary microvascular disease |
US9278187B2 (en) * | 2013-03-13 | 2016-03-08 | Biosense Webster (Israel) Ltd. | Method for making a low OHMIC pressure-contact electrical connection between split ring electrode and lead wire |
JP6339170B2 (en) | 2013-03-13 | 2018-06-06 | ジンヒョン パーク | System and method for generating images from a rotating intravascular ultrasound device |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
SG10201702432YA (en) | 2013-03-14 | 2017-05-30 | Ekos Corp | Method and apparatus for drug delivery to a target site |
EP2967606B1 (en) | 2013-03-14 | 2018-05-16 | Volcano Corporation | Filters with echogenic characteristics |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
US9592027B2 (en) | 2013-03-14 | 2017-03-14 | Volcano Corporation | System and method of adventitial tissue characterization |
EP3076881B1 (en) | 2013-11-18 | 2022-01-05 | Koninklijke Philips N.V. | Guided thrombus dispersal catheter |
US10687832B2 (en) | 2013-11-18 | 2020-06-23 | Koninklijke Philips N.V. | Methods and devices for thrombus dispersal |
US10575822B2 (en) | 2014-01-10 | 2020-03-03 | Philips Image Guided Therapy Corporation | Detecting endoleaks associated with aneurysm repair |
CN105899142B (en) | 2014-01-10 | 2020-04-10 | 火山公司 | Detecting endoleaks associated with aneurysm repair |
US10238816B2 (en) | 2014-01-14 | 2019-03-26 | Volcano Corporation | Devices and methods for forming vascular access |
WO2015108973A1 (en) | 2014-01-14 | 2015-07-23 | Volcano Corporation | Methods and systems for clearing thrombus from a vascular access site |
JP2017509366A (en) | 2014-01-14 | 2017-04-06 | ボルケーノ コーポレイション | Catheter assembly for vascular access site creation |
US10251606B2 (en) | 2014-01-14 | 2019-04-09 | Volcano Corporation | Systems and methods for evaluating hemodialysis arteriovenous fistula maturation |
US20150297097A1 (en) | 2014-01-14 | 2015-10-22 | Volcano Corporation | Vascular access evaluation and treatment |
US11260160B2 (en) | 2014-01-14 | 2022-03-01 | Philips Image Guided Therapy Corporation | Systems and methods for improving an AV access site |
EP3142564A4 (en) | 2014-04-11 | 2017-07-19 | Koninklijke Philips N.V. | Imaging and treatment device |
US11413017B2 (en) * | 2014-04-28 | 2022-08-16 | Philips Image Guided Therapy Corporation | Pre-doped solid substrate for intravascular devices |
CN116172611A (en) | 2014-07-15 | 2023-05-30 | 皇家飞利浦有限公司 | Intrahepatic bypass apparatus and method |
CN107072636A (en) | 2014-08-21 | 2017-08-18 | 皇家飞利浦有限公司 | Apparatus and method for break-through occlusion |
WO2016132241A1 (en) | 2015-02-20 | 2016-08-25 | Koninklijke Philips N.V. | Atherectomy apparatus with imaging |
WO2016170446A1 (en) | 2015-04-20 | 2016-10-27 | Koninklijke Philips N.V. | Dual lumen diagnostic catheter |
CN107708581B (en) | 2015-06-10 | 2021-11-19 | Ekos公司 | Ultrasonic wave guide tube |
EP3435869B1 (en) * | 2016-03-30 | 2023-05-10 | Koninklijke Philips N.V. | Intravascular imaging device and associated method of assembly |
JP2019516477A (en) | 2016-05-20 | 2019-06-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Patient stratification device and method for renal denaturation based on intravascular pressure and cross-sectional lumen measurement |
EP3568081B1 (en) * | 2017-01-12 | 2023-11-29 | Koninklijke Philips N.V. | Support members for connection of components in intraluminal devices, systems, and methods |
EP4275609A3 (en) | 2018-03-15 | 2024-04-03 | Koninklijke Philips N.V. | Variable intraluminal ultrasound transmit pulse generation and control devices, systems, and methods |
EP3814917B1 (en) | 2018-06-27 | 2024-04-03 | Koninklijke Philips N.V. | Dynamic resource reconfiguration for patient interface module (pim) in intraluminal medical ultrasound imaging |
WO2020002177A1 (en) | 2018-06-28 | 2020-01-02 | Koninklijke Philips N.V. | Internal ultrasound assisted local therapeutic delivery |
EP3813677A1 (en) | 2018-06-28 | 2021-05-05 | Koninklijke Philips N.V. | External targeted delivery of active therapeutic agents |
WO2020070021A1 (en) | 2018-10-04 | 2020-04-09 | Koninklijke Philips N.V. | Fluid flow detection for ultrasound imaging devices, systems, and methods |
EP3692893A1 (en) * | 2019-02-05 | 2020-08-12 | Koninklijke Philips N.V. | Sensor having an adapted housing |
US20220370037A1 (en) | 2019-10-10 | 2022-11-24 | Koninklijke Philips N.V. | Vascular tissue characterization devices, systems, and methods |
WO2021076833A1 (en) | 2019-10-17 | 2021-04-22 | Verathon Inc. | Systems and methods for ultrasound scanning |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE755557A (en) * | 1969-09-03 | 1971-03-01 | Hoffmann La Roche | BLOOD PRESSURE TESTING DEVICE |
DE2308443A1 (en) * | 1972-02-22 | 1973-08-30 | Univ Erasmus | EXAMINATION DEVICE WITH CATHETER FOR EXAMINING A HOLLOW ORGAN WITH THE AID OF ULTRASOUND WAVES AND METHOD OF MAKING THE CATHETER |
US3938502A (en) * | 1972-02-22 | 1976-02-17 | Nicolaas Bom | Apparatus with a catheter for examining hollow organs or bodies with the ultrasonic waves |
JPS5918051B2 (en) * | 1976-02-29 | 1984-04-25 | 三菱油化株式会社 | catheter |
JPS5921495B2 (en) * | 1977-12-15 | 1984-05-21 | 株式会社豊田中央研究所 | Capillary pressure gauge |
JPS54149615A (en) * | 1978-05-17 | 1979-11-24 | Oki Electric Ind Co Ltd | Production of ultrasonic oscillator of curved arrangement type |
US4211949A (en) * | 1978-11-08 | 1980-07-08 | General Electric Company | Wear plate for piezoelectric ultrasonic transducer arrays |
US4237900A (en) * | 1979-02-14 | 1980-12-09 | Pacesetter Systems, Inc. | Implantable calibration means and calibration method for an implantable body transducer |
US4325257A (en) * | 1980-02-20 | 1982-04-20 | Kino Gordon S | Real-time digital, synthetic-focus, acoustic imaging system |
JPS57121400A (en) * | 1981-01-20 | 1982-07-28 | Matsushita Electric Ind Co Ltd | Ultrasonic probe |
US4456013A (en) * | 1981-09-08 | 1984-06-26 | Brown University Research Foundation | Catheter |
US4582067A (en) * | 1983-02-14 | 1986-04-15 | Washington Research Foundation | Method for endoscopic blood flow detection by the use of ultrasonic energy |
US4576177A (en) * | 1983-02-18 | 1986-03-18 | Webster Wilton W Jr | Catheter for removing arteriosclerotic plaque |
US4505156A (en) * | 1983-06-21 | 1985-03-19 | Sound Products Company L.P. | Method and apparatus for switching multi-element transducer arrays |
US4589419A (en) * | 1984-11-01 | 1986-05-20 | University Of Iowa Research Foundation | Catheter for treating arterial occlusion |
US4641657A (en) * | 1985-02-08 | 1987-02-10 | University Patents, Inc. | Probe swivel mechanism |
US4665925A (en) * | 1985-09-13 | 1987-05-19 | Pfizer Hospital Products Group, Inc. | Doppler catheter |
US4671293A (en) * | 1985-10-15 | 1987-06-09 | North American Philips Corporation | Biplane phased array for ultrasonic medical imaging |
US4794931A (en) * | 1986-02-28 | 1989-01-03 | Cardiovascular Imaging Systems, Inc. | Catheter apparatus, system and method for intravascular two-dimensional ultrasonography |
US4771788A (en) * | 1986-07-18 | 1988-09-20 | Pfizer Hospital Products Group, Inc. | Doppler tip wire guide |
US4771782A (en) * | 1986-11-14 | 1988-09-20 | Millar Instruments, Inc. | Method and assembly for introducing multiple catheters into a biological vessel |
US4841977A (en) * | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4917097A (en) * | 1987-10-27 | 1990-04-17 | Endosonics Corporation | Apparatus and method for imaging small cavities |
US4817616A (en) * | 1987-10-30 | 1989-04-04 | Wayne State University | Auto switch biplane prostate probe |
GB2212267B (en) * | 1987-11-11 | 1992-07-29 | Circulation Res Ltd | Methods and apparatus for the examination and treatment of internal organs |
WO1989006934A1 (en) * | 1988-02-02 | 1989-08-10 | Intra-Sonix, Inc. | Ultrasonic transducer |
US4951677A (en) * | 1988-03-21 | 1990-08-28 | Prutech Research And Development Partnership Ii | Acoustic imaging catheter and the like |
JP2502685B2 (en) * | 1988-06-15 | 1996-05-29 | 松下電器産業株式会社 | Ultrasonic probe manufacturing method |
US5046503A (en) * | 1989-04-26 | 1991-09-10 | Advanced Cardiovascular Systems, Inc. | Angioplasty autoperfusion catheter flow measurement method and apparatus |
US5109861A (en) * | 1989-04-28 | 1992-05-05 | Thomas Jefferson University | Intravascular, ultrasonic imaging catheters and methods for making same |
US5117831A (en) * | 1990-03-28 | 1992-06-02 | Cardiovascular Imaging Systems, Inc. | Vascular catheter having tandem imaging and dilatation components |
JPH03280939A (en) * | 1990-03-29 | 1991-12-11 | Fujitsu Ltd | Ultrasonic probe |
US5167233A (en) * | 1991-01-07 | 1992-12-01 | Endosonics Corporation | Dilating and imaging apparatus |
US5199437A (en) * | 1991-09-09 | 1993-04-06 | Sensor Electronics, Inc. | Ultrasonic imager |
US5186177A (en) * | 1991-12-05 | 1993-02-16 | General Electric Company | Method and apparatus for applying synthetic aperture focusing techniques to a catheter based system for high frequency ultrasound imaging of small vessels |
-
1993
- 1993-02-01 US US08/012,251 patent/US5368037A/en not_active Expired - Lifetime
-
1994
- 1994-01-14 JP JP51804094A patent/JP3732854B2/en not_active Expired - Lifetime
- 1994-01-14 EP EP03075230A patent/EP1327417B1/en not_active Expired - Lifetime
- 1994-01-14 DE DE69435314T patent/DE69435314D1/en not_active Expired - Lifetime
- 1994-01-14 AT AT03075230T patent/ATE481034T1/en not_active IP Right Cessation
- 1994-01-14 DE DE69432448T patent/DE69432448T2/en not_active Expired - Fee Related
- 1994-01-14 CA CA002235947A patent/CA2235947C/en not_active Expired - Fee Related
- 1994-01-14 AT AT96202546T patent/ATE216570T1/en not_active IP Right Cessation
- 1994-01-14 EP EP96202546A patent/EP0750883B2/en not_active Expired - Lifetime
- 1994-01-14 DE DE69430490T patent/DE69430490T3/en not_active Expired - Fee Related
- 1994-01-14 AT AT94906070T patent/ATE236573T1/en not_active IP Right Cessation
- 1994-01-14 EP EP94906070A patent/EP0637937B1/en not_active Expired - Lifetime
- 1994-01-14 CA CA002133475A patent/CA2133475C/en not_active Expired - Fee Related
- 1994-01-14 WO PCT/US1994/000474 patent/WO1994017734A1/en active IP Right Grant
-
2005
- 2005-08-31 JP JP2005251525A patent/JP3831743B2/en not_active Expired - Lifetime
- 2005-08-31 JP JP2005251527A patent/JP2005342535A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994017734B1 (en) | Ultrasound catheter | |
CA2133475C (en) | Ultrasound catheter | |
US5603327A (en) | Ultrasound catheter probe | |
EP1436097B1 (en) | System for attaching an acoustic element to an integrated circuit | |
US6733456B1 (en) | Off-aperture electrical connection for ultrasonic transducer | |
JP2006198425A (en) | Intraluminal ultrasonic imaging catheter | |
US20070016071A1 (en) | Ultrasound transducer assembly | |
CN102245316A (en) | Front-end circuit for an ultrasound transducer probe | |
CA2211196A1 (en) | A high resolution intravascular ultrasound transducer assembly having a flexible substrate | |
US5296777A (en) | Ultrasonic probe | |
US4676106A (en) | Ultrasonic transducer | |
JPH08191835A (en) | Ultrasonic probe | |
JP3029931B2 (en) | Ultrasonic transducer manufacturing method | |
CN111317507B (en) | Acoustic head of area array ultrasonic probe and area array ultrasonic probe | |
JP3934202B2 (en) | Ultrasonic probe | |
JP4149018B2 (en) | Ultrasonic diagnostic equipment | |
CA2202479A1 (en) | Transducer for intraluminal ultrasound imaging catheter | |
JPH11197154A (en) | Ultrasonic wave generator, ultrasonic wave treatment device using ultrasonic wave generator and manufacture of ultrasonic wave generator |