Nothing Special   »   [go: up one dir, main page]

WO1993016271A1 - Steam power plant - Google Patents

Steam power plant Download PDF

Info

Publication number
WO1993016271A1
WO1993016271A1 PCT/DE1993/000113 DE9300113W WO9316271A1 WO 1993016271 A1 WO1993016271 A1 WO 1993016271A1 DE 9300113 W DE9300113 W DE 9300113W WO 9316271 A1 WO9316271 A1 WO 9316271A1
Authority
WO
WIPO (PCT)
Prior art keywords
power plant
steam power
boiling point
coolant
plant according
Prior art date
Application number
PCT/DE1993/000113
Other languages
German (de)
French (fr)
Inventor
Vinzenz Bankhamer
Albrecht Epple
Gerhard Zeman
Helmut Seyr
Original Assignee
Vinzenz Bankhamer
Albrecht Epple
Gerhard Zeman
Helmut Seyr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vinzenz Bankhamer, Albrecht Epple, Gerhard Zeman, Helmut Seyr filed Critical Vinzenz Bankhamer
Priority to EP93903159A priority Critical patent/EP0626034B1/en
Priority to JP5513663A priority patent/JPH07508327A/en
Priority to DE59302452T priority patent/DE59302452D1/en
Priority to AT93903159T priority patent/ATE137563T1/en
Publication of WO1993016271A1 publication Critical patent/WO1993016271A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/005Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Definitions

  • the invention aims to significantly improve the efficiency of a steam power plant.
  • a working medium which is a mixture of at least two substances which are the same Pressure have different boiling points.
  • the heated, liquid working medium under pressure in the pressure vessel is so relaxed when it passes through an expansion machine that it partially evaporates.
  • the substance with the low boiling point is essentially evaporated, while the substance with the higher boiling point essentially changes into fine mist droplets, that is to say remains in the liquid state.
  • These mist droplets initially have a temperature that approximately corresponds to the high temperature of the working medium in the pressure vessel. Due to their high temperature, the mist droplets keep the vapor from the material with the low boiling point in a highly overheated state. The heat of the droplets of the substance with the high boiling point is thus converted into working energy in the relaxation machine.
  • the substance of the working medium with the higher boiling point remains largely liquid, it being converted into hot mist droplets when it enters the expansion machine.
  • the steam from the material with the lower boiling point, which cools down during relaxation in the relaxation machine, is kept permanently in the hot steam area by the hot mist droplets, since the mist droplets have to give up their heat to the steam.
  • the substances which form the working medium according to the invention must be such that they mix well with one another.
  • ammonia and water, low-boiling alcohols, such as methyl alcohol, and water or carbon dioxide and water are suitable as such a two-component mixture.
  • the working fluid i.e. a mixture of a substance with a low boiling point, such as ammonia, and a substance with a high boiling point, such as water
  • a pressure vessel 1 can e.g. B. heated with the help of a solar system.
  • a pressure compensation vessel with a gas cushion 2 connected to the top of the pressure vessel 1 ensures that the desired pressure is maintained.
  • the pressure vessel 1 can also be heated, for example, with environmental heat or waste heat.
  • the pressurized, heated working fluid in the pressure vessel 1 is fed to a relaxation machine 4, that is to say a steam engine, such as a steam turbine, which drives an electric generator 5.
  • a relaxation machine 4 that is to say a steam engine, such as a steam turbine, which drives an electric generator 5.
  • the expansion machine 4 the energy released during the expansion of the superheated steam portion of the working medium is converted into a rotary movement, which is used to drive the electrical generator 5.
  • the mist emerging from the throttle valve 3 with the hot droplets of the substance with the higher boiling point causes the relaxation machine 4 during the entire relaxation process an overheating of the steam from the material with the low boiling point, whereby the whole work process takes place in the superheated steam area and thus a high efficiency is achieved.
  • the end of the expansion process i.e.
  • the working medium consisting of cooled steam and mist droplets is fed to a condenser 6, in which the steam-mist mixture cooled by the expansion is completely liquefied and, via a condensate pump 7, the pressure vessel 1 for heating again is fed.
  • the liquefaction of the working medium in the condenser 6 has the great advantage that only the heat of vaporization of the vapor portion, that is to say the substance with the low boiling point, has to be recooled for condensation, while the substance with the higher boiling point is already present in the form of mist droplets, is already fluid.
  • a coolant circuit with a heat pump is used for heat recovery in order to generate a lower temperature level, so that the condensation of the working fluid is ensured.
  • the evaporator 8 of the heat pump is arranged in the condenser 6 for the working fluid and extracts the heat of condensation from the vaporous portion of the working fluid.
  • the compressor 9 With the compressor 9, the coolant of the heat pump is liquefied and heated.
  • the cooling of the coolant heated by the pump 9 takes place in a heat exchanger 10 by means of the working medium liquefied in the condenser 6.
  • the coolant of the heat pump gives the condensation heat of the working fluid, which has been extracted in the condenser 6 with the evaporator 8 and which has been pumped up with the heat pump, to that with the Condensate pump 7 pumped liquid working fluid, which is thereby preheated. In this way, the energy extracted with the coolant from the heat of condensation is returned to the working medium before it enters the pressure vessel 1.
  • the liquid coolant cooled with the heat exchanger 10 is evaporated and expanded, as a result of which it cools further and is able to extract the required heat of condensation from the working medium.
  • a throttle valve 12 is connected into the coolant circuit following the heat exchanger 10.
  • the coolant vapor is expanded via a relaxation machine 13, as a result of which almost all of the energy introduced into the system, insofar as it has not been consumed by useful energy generation, remains in the system, apart from radiant heat and insulation losses.
  • the energy for operating the compressor 9 of the heat pump and for operating the condensate pump 7 can also be applied by the system.
  • the working medium is a mixture of at least two substances with different boiling points, the substance with the higher boiling point in the mixture being essentially not evaporated during relaxation in the relaxation machine 4, but in Form of mist droplets is present, while the part of the mixture of the substance with the lower boiling point essentially evaporates and this steam portion continuously absorbs heat energy from the mist droplets during the relaxation and thus remains in the superheated steam range.
  • the condensation poor which occurs when condensing the steam portion in the condenser 6, is first withdrawn by means of a heat pump and returned to the working fluid before entering the pressure vessel 1 via the heat exchanger 10 after the condensate pump 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The high-efficiency steam power plant proposed uses as its working fluid a mixture of two liquids with different boiling points. The working fluid is heated in a pressure vessel (1) and passed in a closed circuit through an expansion chamber (4) and a condenser (6) to the pressure vessel (1) again. In the expansion chamber (4), the liquid with the lower boiling point evaporates, while the liquid with the higher boiling point forms droplets. In another closed circuit running in the opposite direction, a coolant is liquefied by a heat pump and cooled in a heat exchanger (10) in order to cool the condenser (6) following expansion. After the condenser (6), the working fluid passes through the heat exchanger (10) where it is heated.

Description

Dampfkraftanlage Steam power plant
Die bekannten Dampfkraftanlagen, die praktisch ausschließlich mit Wasserdampf betrieben werden, und zwar mit überhitztem Dampf oder Heißdampf, haben den großen Nachteil, daß der im allgemeinen nur wenig überhitzte Heißdampf in der Entspannungsmaschine bald in Sattdampf und dann in Naßdampf übergeht, wodurch der Wirkungsgrad in der Energiegewinnung nicht sehr hoch ist.The known steam power plants, which are operated practically exclusively with steam, namely with superheated steam or superheated steam, have the major disadvantage that the superheated steam, which is generally only slightly overheated, soon changes into saturated steam and then into wet steam, so that the efficiency in the Energy generation is not very high.
Weiters wird bei einem geschlossenen System die ganze Kondensationswärme ungenutzt abgegeben, während bei einem offenen System der austretende Dampf noch einen Teil seiner Energie an das zu erhitzende Arbeitsmittel zur Vorerwärmung abgeben kann. Diese Systeme haben dadurch bei niedrigen Temperaturgefällen und niedrigen Temperaturen einen äußerst schlechten Wirkungsgrad.Furthermore, all the heat of condensation is released unused in a closed system, while in an open system the escaping steam can still give off part of its energy to the working fluid to be heated for preheating. As a result, these systems have extremely poor efficiency at low temperature gradients and low temperatures.
Die Erfindung setzt sich zum Ziel, den Wirkungsgrad einer Dampfkraftanlage wesentlich zu verbessern.The invention aims to significantly improve the efficiency of a steam power plant.
Dies wird erfindungsgemäß mit der im Anspruch 1 gekennzeichneten Dampfkraftanlage erreicht. In den Unteransprüchen sind vorteilhafte Ausgestaltungen der Erfindung wiedergegeben.This is achieved according to the invention with the steam power plant characterized in claim 1. Advantageous embodiments of the invention are given in the subclaims.
Nach der Erfindung wird also ein Arbeitsmittel verwendet, das ein Gemisch von wenigstens zwei Stoffen ist, die bei gleichem Druck unterschiedliche Siedepunkte besitzen. Das in dem Druckkessel unter Druck stehende, erhitzte, flüssige Arbeitsmittel wird beim Durchtritt durch eine Entspannungsmaschine so entspannt, daß es zum Teil verdampft. D. h., es wird im wesentlichen der Stoff mit dem niedrigen Siedepunkt verdampft, während der Stoff mit dem höheren Siedepunkt im wesentlichen in feine Nebeltröpfchen übergeht, also im flüssigen Zustand verbleibt. Diese Nebeltröpfchen weisen zunächst eine Temperatur auf, die annähernd der hohen Temperatur des Arbeitsmittels im Druckkessel entspricht. Durch ihre hohe Temperatur halten die Nebeltröpfchen den Dampf aus dem Stoff mit dem niedrigen Siedepunkt in einem stark überhitzten Zustand. Die Wärme der Tröpfchen des Stoffs mit dem hohen Siedepunkt wird also in der Entspannungsmaschine in Arbeitsenergie umgesetzt. Mit anderen Worten, bei der erfindungsgemäßen Dampfkraftanlage bleibt der Stoff des Arbeitsmittels mit dem höheren Siedepunkt großteils flüssig, wobei er bei Eintritt in die Entspannungsmaschine in heiße Nebeltröpfchen übergeführt wird. Der sich bei der Entspannung in der Entspannungsmaschine abkühlende Dampf aus dem Stoff mit dem niedrigeren Siedepunkt wird durch die heißen Nebeltropfchen dauernd im Heißdampfbereich gehalten, da die Nebeltröpfchen ihre Wärme an den Dampf abgeben müssen.According to the invention, therefore, a working medium is used which is a mixture of at least two substances which are the same Pressure have different boiling points. The heated, liquid working medium under pressure in the pressure vessel is so relaxed when it passes through an expansion machine that it partially evaporates. In other words, the substance with the low boiling point is essentially evaporated, while the substance with the higher boiling point essentially changes into fine mist droplets, that is to say remains in the liquid state. These mist droplets initially have a temperature that approximately corresponds to the high temperature of the working medium in the pressure vessel. Due to their high temperature, the mist droplets keep the vapor from the material with the low boiling point in a highly overheated state. The heat of the droplets of the substance with the high boiling point is thus converted into working energy in the relaxation machine. In other words, in the steam power plant according to the invention, the substance of the working medium with the higher boiling point remains largely liquid, it being converted into hot mist droplets when it enters the expansion machine. The steam from the material with the lower boiling point, which cools down during relaxation in the relaxation machine, is kept permanently in the hot steam area by the hot mist droplets, since the mist droplets have to give up their heat to the steam.
Damit braucht bei der Kondensation des Arbeitsmittels im Kondensator nur der Anteil des verdampften Stoffes mit dem niedrigeren Siedepunkt rückgekühlt zu werden. Die im Kondensator durch Kondensation des Dampfes erzeugte Kondensationswärme wird mit Hilfe einer Wärmepumpe abgeführt.This means that only the portion of the vaporized material with the lower boiling point needs to be recooled during the condensation of the working medium in the condenser. The heat of condensation generated in the condenser by condensation of the steam is dissipated with the help of a heat pump.
Die Stoffe, die erfindungsgemäß das Arbeitsmittel bilden, müssen so beschaffen sein, daß sie sich gut miteinander mischen. So sind beispielsweise Ammoniak und Wasser, niedrigsiedende Alkohole, wie Methylalkohol, und Wasser oder Kohlendioxid und Wasser als derartige Zweistoffgemisehe geeignet. Nachstehend ist eine Ausführungsform der erfindungsgemäßen Dampf raftanlage anhand der Zeichnung näher erläutert, deren einzige Figur schematisch einen Schnitt durch die Anlage zeigt.The substances which form the working medium according to the invention must be such that they mix well with one another. For example, ammonia and water, low-boiling alcohols, such as methyl alcohol, and water or carbon dioxide and water are suitable as such a two-component mixture. An embodiment of the steam rafting system according to the invention is explained in more detail with reference to the drawing, the single figure of which schematically shows a section through the system.
Danach wird das Arbeitsmittel, also ein Gemisch aus einem Stoff mit einem niedrigen Siedepunkt, wie Ammoniak, und ein Stoff mit einem hohen Siedepunkt, wie Wasser, im flüssigen Zustand einem Druckkessel 1 zugeführt, und darin so erhitzt, daß es unter Druck flüssig oder zumindest flüssigkeitsähnlich bleibt. Der Druckkessel 1 kann z. B. mit Hilfe einer Solaranlage beheizt werden. Ein oben an den Druckkessel 1 angeschlossenes Druckausgleichsgefäß mit einem Gaspolster 2 sorgt für die Aufrechterhaltung des gewünschten Drucks.Thereafter, the working fluid, i.e. a mixture of a substance with a low boiling point, such as ammonia, and a substance with a high boiling point, such as water, is supplied in a liquid state to a pressure vessel 1, and is heated therein so that it is liquid or at least liquid under pressure remains liquid-like. The pressure vessel 1 can e.g. B. heated with the help of a solar system. A pressure compensation vessel with a gas cushion 2 connected to the top of the pressure vessel 1 ensures that the desired pressure is maintained.
Der Druckkessel 1 kann neben Solarenergie beispielsweise auch mit Umweltwärme oder Abwärme beheizt werden.In addition to solar energy, the pressure vessel 1 can also be heated, for example, with environmental heat or waste heat.
Das unter Druck stehende, erhitzte Arbeitsmittel im Druckkessel 1 wird einer Entspannungsmaschine 4, also einer Dampfkraftmaschine, wie einer Dampfturbine, zugeführt, welche einen elektrischen Generator 5 antreibt.The pressurized, heated working fluid in the pressure vessel 1 is fed to a relaxation machine 4, that is to say a steam engine, such as a steam turbine, which drives an electric generator 5.
Um den gewünschten Druck zu erhalten, so daß in der Maschine 4 ein Arbeitsmittel erzeugt wird, in dem der Stoff mit dem niedrigen Siedepunkt im wesentlichen verdampft ist, während der Stoff mit dem höheren Siedepunkt im wesentlichen in Nebeltröpfchen übergeführt worden ist, passiert das noch flüssige Stoffgemisch ein Drosselventil 3.In order to obtain the desired pressure so that a working medium is generated in the machine 4, in which the substance with the low boiling point has essentially evaporated, while the substance with the higher boiling point has essentially been converted into mist droplets, the liquid still happens Substance mixture a throttle valve 3.
In der Entspannungsmaschine 4 wird die bei der Entspannung des überhitzten Dampfanteils des Arbeitsmittels freiwerdende Energie in eine Drehbewegung umgesetzt, die zum Antrieb des elektrischen Generators 5 verwendet wird. D. h., der aus dem Drosselventil 3 austretende Nebel mit den heißen Tröpfchen aus dem Stoff mit dem höheren Siedepunkt bewirkt während des ganzen Entspannungsprozesses in der Entspannungsmaschine 4 eine Überhitzung des Dampfes aus dem Stoff mit dem niedrigen Siedepunkt, wodurch der ganze Arbeitsprozeß im Heißdampfbereich erfolgt und somit ein hoher Wirkungsgrad entsteht. Am Ende des Entspannungsprozesses, also nach Verlassen der Entspannungsmaschine 4, wird das aus abgekühltem Dampf und Nebeltröpfchen bestehende Arbeitsmittel einem Kondensator 6 zugeführt, in dem das durch die Entspannung abgekühlte Dampf-Nebelgemisch zur Gänze verflüssigt und über eine Kondensatpumpe 7 dem Druckkessel 1 zur Erhitzung wieder zugeführt wird.In the expansion machine 4, the energy released during the expansion of the superheated steam portion of the working medium is converted into a rotary movement, which is used to drive the electrical generator 5. In other words, the mist emerging from the throttle valve 3 with the hot droplets of the substance with the higher boiling point causes the relaxation machine 4 during the entire relaxation process an overheating of the steam from the material with the low boiling point, whereby the whole work process takes place in the superheated steam area and thus a high efficiency is achieved. At the end of the expansion process, i.e. after leaving the expansion machine 4, the working medium consisting of cooled steam and mist droplets is fed to a condenser 6, in which the steam-mist mixture cooled by the expansion is completely liquefied and, via a condensate pump 7, the pressure vessel 1 for heating again is fed.
Bei der Verflüssigung des Arbeitsmittels im Kondensator 6 ergibt sich der große Vorteil, daß nur die Verdampfungswärme des Dampf-Anteils, also des Stoffes mit dem niedrigen Siedepunkt zur Kondensation rückgekühlt werden muß, während der Stoff mit dem höheren Siedepunkt bereits in Form von Nebeltröpfchen vorliegt, also schon flüssig ist.The liquefaction of the working medium in the condenser 6 has the great advantage that only the heat of vaporization of the vapor portion, that is to say the substance with the low boiling point, has to be recooled for condensation, while the substance with the higher boiling point is already present in the form of mist droplets, is already fluid.
Um zu vermeiden, daß die Kondensationswärme des damp förmigen Anteils des Arbeitsmittels verlorengeht, wird zur Wärmerückgewinnung ein Kühlmittelkreislauf mit einer Wärmepumpe eingesetzt, um ein tieferes Temperaturniveau zu erzeugen, so daß die Kondensation des Arbeitsmittels gewährleistet wird.In order to avoid that the heat of condensation of the vapor-shaped portion of the working fluid is lost, a coolant circuit with a heat pump is used for heat recovery in order to generate a lower temperature level, so that the condensation of the working fluid is ensured.
Der Verdampfer 8 der Wärmepumpe ist dabei in dem Kondensator 6 für das Arbeitsmittel angeordnet und entzieht dort dem dampfförmigen Anteil des Arbeitsmittels die Kondensationswärme. Mit dem Kompressor 9 wird das Kühlmittel der Wärmepumpe verflüssigt und erhitzt.The evaporator 8 of the heat pump is arranged in the condenser 6 for the working fluid and extracts the heat of condensation from the vaporous portion of the working fluid. With the compressor 9, the coolant of the heat pump is liquefied and heated.
Die Abkühlung des durch die Pumpe 9 erhitzten Kühlmittels erfolgt in einem Wärmetauscher 10 durch das im Kondensator 6 verflüssigte Arbeitsmittel. Dabei gibt das Kühlmittel der Wärmepumpe die im Kondensator 6 mit dem Verdampfer 8 entzogene Kondensationswärme des Arbeitsmittels, die mit der Wärmepumpe hochgepumpt worden ist, an das mit der Kondensatpumpe 7 gepumpte flüssige Arbeitsmittel ab, das dadurch vorerwärmt wird. Auf diese Weise wird also die mit dem Kühlmittel aus der Kondensationswärme entzogene Energie wieder in das Arbeitsmittel vor dessen Eintritt in den Druckkessel 1 zurückgeführt.The cooling of the coolant heated by the pump 9 takes place in a heat exchanger 10 by means of the working medium liquefied in the condenser 6. The coolant of the heat pump gives the condensation heat of the working fluid, which has been extracted in the condenser 6 with the evaporator 8 and which has been pumped up with the heat pump, to that with the Condensate pump 7 pumped liquid working fluid, which is thereby preheated. In this way, the energy extracted with the coolant from the heat of condensation is returned to the working medium before it enters the pressure vessel 1.
Das mit dem Wärmetauscher 10 gekühlte flüssige Kühlmittel wird verdampft und entspannt, wodurch es sich weiter abkühlt und in der Lage ist, dem Arbeitsmittel die erforderliche Kondensationswärme zu entziehen. Um den richtigen Druck, die richtigen Temperatur- und somit richtigen Rückkühlungsenergieübergänge zu schaffen, ist dazu im Anschluß an den Wärmetauscher 10 ein Drosselventil 12 in den Kühlmittelkreislauf geschaltet.The liquid coolant cooled with the heat exchanger 10 is evaporated and expanded, as a result of which it cools further and is able to extract the required heat of condensation from the working medium. In order to create the right pressure, the right temperature and thus the right recooling energy transitions, a throttle valve 12 is connected into the coolant circuit following the heat exchanger 10.
Um keine Energie zu verlieren, erfolgt die Entspannung des Kühlmitteldampfes über eine Entspannungsmaschine 13, wodurch nahezu die gesamte in die Anlage eingebrachte Energie, soweit sie nicht durch Nutz-Energieerzeugung verbraucht wurde, im System bleibt, abgesehen von Abstrahlungswärme und Isolationsverlusten. Auch die Energie zum Betrieb des Kompressors 9 der Wärmepumpe und zum Betrieb der Kondensatpumpe 7 kann durch die Anlage aufgebracht werden.In order not to lose any energy, the coolant vapor is expanded via a relaxation machine 13, as a result of which almost all of the energy introduced into the system, insofar as it has not been consumed by useful energy generation, remains in the system, apart from radiant heat and insulation losses. The energy for operating the compressor 9 of the heat pump and for operating the condensate pump 7 can also be applied by the system.
Durch Verwendung von sehr tiefsiedenden Mehrstoffkomponenten kann mit der erfindungsgemäßen Dampfkraftanlage auch noch bei sehr tiefen Temperaturen Energie erzeugt werden.By using very low-boiling multi-component components, energy can be generated with the steam power plant according to the invention even at very low temperatures.
Man kann z. B. an eine Schiffshaut einen Druckkessel anschließen und dann aus dem Wasser, in dem das Schiff schwimmt, die für die Erwärmung des Arbeitsmittels im Druckkessel erforderliche Energie durch Wärmeaustausch über die Schiffshaut beziehen.You can e.g. B. connect to a ship's hull a pressure vessel and then get from the water in which the ship is swimming, the energy required for heating the working fluid in the pressure vessel by heat exchange via the ship's hull.
Mit der erfindungsgemäßen Dampfkraftanlage kann Umwelt- und Sonnenenergie mit einem relativ hohen Wirkungsgrad in nutzbare mechanische, elektrische oder sonstige Energie umgewandelt werden. Wie vorstehend geschildert, wird dies im wesentlichen dadurch erreicht, daß das Arbeitsmittel ein Gemisch von wenigstens zwei Stoffen mit unterschiedlichen Siedepunkten ist, wobei der Stoff mit dem höheren Siedepunkt in dem Gemisch bei der Entspannung in der Entspannungεmaschine 4 im wesentlichen nicht verdampft wird, sondern in Form von Nebeltröpfchen vorliegt, während der Teil des Gemisches aus dem Stoff mit dem niedrigeren Siedepunkt im wesentlichen verdampft und dieser Dampfanteil während der Entspannung dauernd Wärmeenergie von den Nebeltröpfchen aufnimmt und somit im Heißdampfbereich bleibt.With the steam power plant according to the invention, environmental and solar energy can be converted into usable mechanical, electrical or other energy with a relatively high degree of efficiency being transformed. As described above, this is essentially achieved in that the working medium is a mixture of at least two substances with different boiling points, the substance with the higher boiling point in the mixture being essentially not evaporated during relaxation in the relaxation machine 4, but in Form of mist droplets is present, while the part of the mixture of the substance with the lower boiling point essentially evaporates and this steam portion continuously absorbs heat energy from the mist droplets during the relaxation and thus remains in the superheated steam range.
Die Kondensations ärme, die beim Kondensieren des Dampfanteils in dem Kondensator 6 anfällt, wird mittels einer Wärmepumpe zunächst entzogen und über den Wärmetauscher 10 nach der Kondensatpumpe 7 dem Arbeitsmittel vor Eintritt in den Druckkessel 1 wieder zurückgegeben.The condensation poor, which occurs when condensing the steam portion in the condenser 6, is first withdrawn by means of a heat pump and returned to the working fluid before entering the pressure vessel 1 via the heat exchanger 10 after the condensate pump 7.
Damit ergibt sich eine Dampfkraftanlage mit maximaler Energieausbeute bei minimalen Wärmeaufnahme lächen. This results in a steam power plant with maximum energy yield and minimal heat absorption.

Claims

DampfkraftanlagePatentansprüche Steam power plant patent claims
1. Dampfkraftanlage, bei der das in einem Druckkessel (1) erhitzte flüssige Arbeitsmittel über eine Entspannungsmaschine (4) zur Energieabgabe und einen Kondensator (6) in einem geschlossenen Kreislauf dem Druckkessel (1) wieder zugeführt wird, dadurch gekennzeichnet, daß das Arbeitsmittel ein Gemisch aus wenigstens zwei Stoffen ist, die bei gleichem Druck unterschiedliche Siedepunkte aufweisen, der Druck des flüssigen Arbeitsmittels beim Durchtritt durch die Entspannungsmaschine (4) soweit herabgesetzt wird, daß der Stoff mit dem niedrigen Siedepunkt im wesentlichen verdampft, während der Stoff mit dem höheren Siedepunkt im wesentlichen Tröpfchen bildet, und daß ein ebenfalls geschlossener gegenläufiger Kühlmittelkreislauf vorgesehen ist, in dem das gasförmige Kühlmittel mit einer Wärmepumpe (Kompressor 9) verflüssigt wird, das flüssige Kühlmittel mit einem Wärmetauscher (10) gekühlt, das gekühlte flüssige Kühlmittel verdampft und entspannt und mit dem entspannten gekühlten gasförmigen Kühlmittel der Kondensator (6) im Kreislauf des Arbeitsmittels gekühlt wird. 1. Steam power plant, in which the heated in a pressure vessel (1) liquid working fluid via a relaxation machine (4) to deliver energy and a condenser (6) in a closed circuit, the pressure vessel (1) is fed again, characterized in that the working fluid Mixture of at least two substances which have different boiling points at the same pressure, the pressure of the liquid working fluid is reduced as it passes through the expansion machine (4) so that the substance with the low boiling point evaporates substantially, while the substance with the higher boiling point essentially forms droplets, and that a closed, counter-rotating coolant circuit is also provided, in which the gaseous coolant is liquefied with a heat pump (compressor 9), the liquid coolant is cooled with a heat exchanger (10), the cooled liquid coolant evaporates and expands and with the relaxed en cooled gaseous coolant the condenser (6) is cooled in the circuit of the working medium.
2. Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß zur Herabsetzung des Drucks des flüssigen Arbeitsmittels unter Verdampfung des Stoffs mit dem niedrigen Siedepunkt und Tropfchenbildung des Stoffs mit dem höheren Siedepunkt der Entspannungsmaschine (4) ein Drosselventil (3) vorgeschaltet ist.2. Steam power plant according to claim 1, characterized in that a throttle valve (3) is connected upstream to reduce the pressure of the liquid working fluid with evaporation of the substance with the low boiling point and droplet formation of the substance with the higher boiling point.
3. Dampfkraftanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das im Kondensator (6) verflüssigte Arbeitsmittel über den Wärmetauscher (10) im Kühlmittelkreislauf erwärmt und dem Druckkessel (1) zugeführt wird.3. Steam power plant according to claim 1 or 2, characterized in that the working fluid liquefied in the condenser (6) is heated in the coolant circuit via the heat exchanger (10) and is fed to the pressure vessel (1).
4. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß an dem Druckkessel (1) ein Druckausgleichgefäß mit einem Gaspolster (2) angeschlossen ist.4. Steam power plant according to one of the preceding claims, characterized in that a pressure compensation vessel with a gas cushion (2) is connected to the pressure vessel (1).
5. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß im Kreislauf des Arbeitsmittels zwischen dem Kondensator (6) und dem Wärmetauscher (10) eine Kondensatpumpe (7) vorgesehen ist.5. Steam power plant according to one of the preceding claims, characterized in that a condensate pump (7) is provided in the circuit of the working fluid between the condenser (6) and the heat exchanger (10).
6. Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß zur Verdampfung des im Wärmetauscher (10) gekühlten Kühlmittels ein Drosselventil (12) vorgesehen ist.6. Steam power plant according to claim 1, characterized in that a throttle valve (12) is provided for the evaporation of the coolant cooled in the heat exchanger (10).
7. Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß zur Entspannung des im Wärmetauscher (10) gekühlten Kühlmittels eine Entspannungsmaschine (13) vorgesehen ist.7. Steam power plant according to claim 1, characterized in that a relaxation machine (13) is provided for relaxing the coolant cooled in the heat exchanger (10).
8. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Arbeitsmittel aus einem Gemisch aus Ammoniak und Wasser, einem Alkohol mit niedrigem Siedepunkt und Wasser oder aus Kohlendioxid und Wasser gebildet wird.8. Steam power plant according to one of the preceding claims, characterized in that the working fluid from a mixture of ammonia and water, an alcohol low boiling point and water or is formed from carbon dioxide and water.
9. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Kühlmittel durch einen Stoff gebildet wird, der einen Siedepunkt aufweist, der dem Siedepunkt des Stoffes des Arbeitsmittels mit dem niedrigen Siedepunkt entspricht.9. Steam power plant according to one of the preceding claims, characterized in that the coolant is formed by a substance which has a boiling point which corresponds to the boiling point of the substance of the working medium with the low boiling point.
10. Dampfkraftanlage nach Anspruch 9, dadurch gekennzeichnet, daß das Kühlmittel durch den Stoff des Arbeitsmittels mit dem niedrigen Siedepunkt gebildet wird.10. Steam power plant according to claim 9, characterized in that the coolant is formed by the substance of the working medium with the low boiling point.
11. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Kühlmittel Ammoniak ist.11. Steam power plant according to one of the preceding claims, characterized in that the coolant is ammonia.
12. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Druckkessel (1) durch Umweltwärme, Abwärme oder Solarenergie erhitzt wird. 12. Steam power plant according to one of the preceding claims, characterized in that the pressure boiler (1) is heated by environmental heat, waste heat or solar energy.
PCT/DE1993/000113 1992-02-13 1993-02-10 Steam power plant WO1993016271A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP93903159A EP0626034B1 (en) 1992-02-13 1993-02-10 Steam power plant
JP5513663A JPH07508327A (en) 1992-02-13 1993-02-10 steam power plant
DE59302452T DE59302452D1 (en) 1992-02-13 1993-02-10 STEAM POWER PLANT
AT93903159T ATE137563T1 (en) 1992-02-13 1993-02-10 STEAM POWER PLANT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT237/92 1992-02-13
AT23792 1992-02-13

Publications (1)

Publication Number Publication Date
WO1993016271A1 true WO1993016271A1 (en) 1993-08-19

Family

ID=3485193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000113 WO1993016271A1 (en) 1992-02-13 1993-02-10 Steam power plant

Country Status (6)

Country Link
EP (1) EP0626034B1 (en)
JP (1) JPH07508327A (en)
AT (1) ATE137563T1 (en)
CA (1) CA2117465A1 (en)
DE (1) DE59302452D1 (en)
WO (1) WO1993016271A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752615A2 (en) * 2005-03-31 2007-02-14 Air Products and Chemicals, Inc. Process to convert low grade heat source into power using dense fluid expander
BE1017812A5 (en) * 2008-01-09 2009-07-07 Cohen Albert Thermodynamic pendular heat engine, has pendulum comprising cylindrical chamber with piston connected to free flywheel, and heat supply positioned at certain distance away from chamber, with extension to turbine engines using phase changes
CN113330191A (en) * 2019-01-14 2021-08-31 气体膨胀汽车有限公司 Engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5847387B2 (en) * 2010-10-08 2016-01-20 白川 利久 Active condenser
CN109059342B (en) * 2018-06-21 2020-08-04 冰轮环境技术股份有限公司 Low-temperature refrigeration and high-temperature heat supply comprehensive supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE691549C (en) * 1937-06-16 1940-05-30 Emile Franciskus Johannes Mari Power plant with a turbine driven by steam with a low evaporation temperature
GB703979A (en) * 1952-10-02 1954-02-10 Henry Gordon Turnell Improvements in steam power installations
US3879949A (en) * 1972-11-29 1975-04-29 Biphase Engines Inc Two-phase engine
WO1985002881A1 (en) * 1983-12-22 1985-07-04 Lipovetz Ivan System for converting heat energy, particularly for utilizing heat energy of the environment
WO1991002885A1 (en) * 1989-08-18 1991-03-07 Glen John S Heat engine, refrigeration and heat pump cycles approximating the carnot cycle and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE691549C (en) * 1937-06-16 1940-05-30 Emile Franciskus Johannes Mari Power plant with a turbine driven by steam with a low evaporation temperature
GB703979A (en) * 1952-10-02 1954-02-10 Henry Gordon Turnell Improvements in steam power installations
US3879949A (en) * 1972-11-29 1975-04-29 Biphase Engines Inc Two-phase engine
WO1985002881A1 (en) * 1983-12-22 1985-07-04 Lipovetz Ivan System for converting heat energy, particularly for utilizing heat energy of the environment
WO1991002885A1 (en) * 1989-08-18 1991-03-07 Glen John S Heat engine, refrigeration and heat pump cycles approximating the carnot cycle and apparatus therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752615A2 (en) * 2005-03-31 2007-02-14 Air Products and Chemicals, Inc. Process to convert low grade heat source into power using dense fluid expander
EP1752615A3 (en) * 2005-03-31 2011-03-16 Air Products and Chemicals, Inc. Process to convert low grade heat source into power using dense fluid expander
BE1017812A5 (en) * 2008-01-09 2009-07-07 Cohen Albert Thermodynamic pendular heat engine, has pendulum comprising cylindrical chamber with piston connected to free flywheel, and heat supply positioned at certain distance away from chamber, with extension to turbine engines using phase changes
WO2009112666A2 (en) * 2008-01-09 2009-09-17 Albert Cohen Pendular engine
WO2009112666A3 (en) * 2008-01-09 2012-02-02 Albert Cohen Pendular engine
US8408000B2 (en) 2008-01-09 2013-04-02 Albert Cohen Pendular engine
CN113330191A (en) * 2019-01-14 2021-08-31 气体膨胀汽车有限公司 Engine
CN113330191B (en) * 2019-01-14 2023-10-24 气体膨胀汽车有限公司 Engine with a motor

Also Published As

Publication number Publication date
JPH07508327A (en) 1995-09-14
DE59302452D1 (en) 1996-06-05
ATE137563T1 (en) 1996-05-15
EP0626034A1 (en) 1994-11-30
CA2117465A1 (en) 1993-08-19
EP0626034B1 (en) 1996-05-01

Similar Documents

Publication Publication Date Title
DE2611890C3 (en) Arrangement for converting heat contained in a gaseous primary fluid into another type of energy
DE60127040T2 (en) Method and device for generating power from heat
DE102008005978B4 (en) Low-temperature power plant and method for operating a thermodynamic cycle
DE69218206T2 (en) ENERGY SYSTEM BASED ON THE ORGANIC RANKINE CYCLE AND METHOD FOR OPERATING THE SYSTEM
DE69032108T2 (en) Method and device for thermodynamic cycle
DE69218484T2 (en) Method and device for converting thermal energy into electrical energy
DE60033738T2 (en) Device for humidifying and heating fuel gas
DE69231982T2 (en) Adding steam to a gas turbine
DE2904232A1 (en) Thermal power station - combines cooling and working process to lower upper temp. level thus making it independent of outside coolant source
DE2929995A1 (en) METHOD FOR CONVERTING LOW HEATING ENERGY TO MECHANICAL ENERGY IN A TURBINE FOR FURTHER USE AND SYSTEM FOR IMPLEMENTING THE METHOD
DE3420293A1 (en) Rankine cycle power station with an improved organic working fluid or liquid
CH675749A5 (en)
DE2639187C3 (en) Process for using waste heat
EP0626034B1 (en) Steam power plant
EP1702139A1 (en) Device and method for converting heat energy into mechanical energy
DE202004013299U1 (en) Installation for generation of mechanical energy with utilization of the principle of organic Rankine cycle incorporates a condensate line which branches downstream the condensate pump
DE19921336A1 (en) Heat-driven power station combines discrete carbon dioxide and ammonia gas circuits to operate at higher conversion efficiency ratio
DE2638084A1 (en) PROCEDURE FOR ISENTROPIC EXPANSION OF GASES
DE931889C (en) Steam power plant
DE903818C (en) Process for operating steam engines
DE3427219A1 (en) Supercritical steam engine cycle
DE69119903T2 (en) Process for transferring heat from a low to a higher temperature level
EP0381825A1 (en) Process for the production of mechanical energy during the NH3 oxidation in the HNO3 process
EP0381826A1 (en) Process for the production of mechanical energy during the NH3 oxidation in the HNO3 process
WO2023237162A1 (en) Arrangement and method for converting waste heat into mechanical energy and use of an absorption cooling system as temperature controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1993903159

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2117465

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1994 284575

Country of ref document: US

Date of ref document: 19941011

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993903159

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993903159

Country of ref document: EP