WO1992018672A1 - Device and method for growing crystal - Google Patents
Device and method for growing crystal Download PDFInfo
- Publication number
- WO1992018672A1 WO1992018672A1 PCT/JP1991/001450 JP9101450W WO9218672A1 WO 1992018672 A1 WO1992018672 A1 WO 1992018672A1 JP 9101450 W JP9101450 W JP 9101450W WO 9218672 A1 WO9218672 A1 WO 9218672A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- pulling
- melt
- control plate
- temperature control
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
Definitions
- the present invention is applied to a crystal growth technique by a pulling method, particularly a single crystal pulling technique of a semiconductor, and is used to determine a radial temperature distribution of a surface temperature of a material melt filled in a crucible.
- the present invention relates to a technology for controlling a temperature control plate on the top to improve the pulling speed of a single crystal and the quality of the obtained crystal.
- semiconductor single crystal pulling technology especially silicon single crystal pulling technology using the Czochralski (CZ) method
- CZ Czochralski
- a pulling crystal as disclosed in Japanese Patent Publication No. 57-40119 or Japanese Patent Publication No. 2-310400 is used.
- something like a kind of heat radiation plate in the shape of an inverted cone is provided. These increase the cooling rate of the pulled crystal by cutting off or reflecting the heat from the heating heater that passes through the crucible and the radiant heat from the melt surface. It is a thing.
- the heat radiated by the heat radiating plate partially heats the melt surface, and the temperature distribution of the entire melt is not normal. In some cases, the crystal properties were adversely affected. Also raise Further improvement in speed is also desired from the standpoint of productivity.
- the operator who actually pulls the melt surface based on the temperature distribution state of the melt surface knows that the pattern changes even while pulling a single crystal. ing. Normally, this pattern progresses from the top side (at the beginning of pulling) to the tail side (at the end of pulling) of the single crystal. Therefore, in Fig. 4, the pattern changes from X to Z, but it changes to a state like Z. At that point, it will be difficult to pull up the monozong crystals, and in some cases it may be necessary to raise them on the way.
- the present invention provides a new pulling technique that enables control of the temperature distribution of the melt in the radial direction in order to solve the problems of the prior art, and the crucible is filled in the crucible.
- a technique for growing crystals by immersing a seed crystal in a material melt melted by a heater as an external heating means and gradually pulling it up.
- the temperature distribution on the melt surface is the lowest at the solid-liquid interface below the pulled crystal during pulling of the crystal.
- it is a method and a device for constantly maintaining the height gradually in the direction toward the inner wall surface of the crucible.
- the temperature control plate when the temperature control plate is moved so that the distance from the melt surface during the crystal pulling is variable according to the pulling condition, the temperature distribution on the melt surface is controlled to the above-mentioned state. Become.
- the temperature control plate has a holding portion along the crystal pulling region, and an umbrella-shaped portion provided at a lower end portion thereof and extending to the vicinity of the inner wall surface of the crucible which opens downward or horizontally.
- FIG. 1 is a vertical front view of a single crystal growth apparatus showing an embodiment of the present invention.
- FIG. 2 is a longitudinal sectional view of a single crystal growth apparatus showing a different embodiment of the present invention.
- FIG. 3 is a longitudinal sectional view of a single crystal growth apparatus showing still another embodiment of the present invention.
- FIG. 4 is a schematic diagram showing the temperature distribution on the melt surface.
- FIG. 5 is a longitudinal sectional view of a conventional single crystal growth apparatus.
- the temperature distribution state of the surface of the material melt heated and melted by the heater from a portion immediately below the crystal to a portion in contact with the inner wall of the crucible is determined by the temperature distribution during the pulling. Even at this point, it is intended to realize a high-speed pulling of a crystal of good quality by controlling the temperature directly below the crystal to be the lowest, and increasing toward the outside.
- the reason that the present invention uses such an action is that, in order to obtain a large-diameter silicon single crystal of excellent quality for IC, for example, in the CZ method, the most important point is that the crystal is a melt.
- the temperature history of the pulled silicon single crystal is determined around the position A (Fig. 4) where it solidifies from the center, which affects the so-called vertical temperature distribution state and the solidification state from the melt. Is there a temperature distribution in the lateral direction of the melt surface toward the inner wall of the crucible? It is.
- the optimum temperature of a silicon melt can only be the temperature of the melt immediately below the silicon single crystal, but when it is manufactured industrially, the melt in the crucible is required. Control of the temperature distribution on the whole, especially on the surface, is important.
- the umbrella-shaped portions 9, 99 ⁇ of the temperature control plates 7, 77 suppress heat dissipation on the melt surface, Since the holding parts 8 and 8 8 "around the crystal dissipate heat upward by conduction and increase the cooling rate at the solid-liquid interface, the temperature distribution in the radial direction of the melt surface is shown in FIG. It is considered that the temperature control plate will not fall into the state of Y or Z in any situation during the withdrawal, so that this temperature control plate can follow the fluctuation of the melt surface level. If it is made movable, this effect will be more stable.
- the quartz crucible (16 inches) 2 was placed in the graphite crucible 1 of the single crystal growth apparatus by the CZ method shown in Fig. 5, and the cylindrical graphite heater (16 inch inside diameter) that had been set in advance was used. 3 Place the silicon material inside the quartz crucible. 45kg of nannageite was loaded. The inside of the apparatus is evacuated, purged with argon gas, the material is heated and melted by the graphite heater 3 to form a melt, and a 5 mm X 5 mm seed crystal 4 is immersed in the melt surface. , Got accustomed. By gradually pulling the seed crystal, a single crystal 5 was started and grown to a diameter of 6 inches.
- the calorific value of the graphite heater was adjusted so that the pulling speed was 1.3 mm / min., And the growth continued.
- the growth length of the single crystal approached 400 mm, a part of the silicon melt began to solidify from a part of the inner wall 6 of the crucible into an island shape.
- the island gradually grew larger, extended toward the center of the crucible, and abandoned pulling because of the danger of contact between the crystal and the island at a crystal length of 48 ram.
- a temperature control plate 7 was loaded in the lifting apparatus.
- the temperature control plate 7 has a cylindrical holding portion ⁇ and an umbrella-shaped portion 9, and the holding portion 8 surrounds the periphery of the single crystal to be pulled.
- a support portion 14 for supporting the temperature control plate is provided at an intermediate height of the holding portion 8, and is fixed to an upper portion of a heat insulating cylinder 15 of the single crystal growth apparatus.
- the outer surface 10 of the umbrella-shaped portion 9 reaches near the boundary surface between the inner wall of the quartz crucible and the melt.
- the inner diameter of the holding part is 229 mm ⁇
- the angle ⁇ formed on the horizontal plane of the umbrella-shaped part is 5 °
- the shortest distance from the melt surface is 25 mm
- the distance between the outer diameter 10 and the quartz crucible 2 Is 25mm.
- the umbrella-shaped part 9 keeps the temperature of the melt surface, and the holding part radiates heat at the solid-liquid interface by transmission.
- the inner contact surface of the inner wall surface of the crucible and the circumferential contact region of the melt can be more effectively kept warm than the solid-liquid interface portion. It was found that the effect was not particularly noticeable when the angle was set more than 15 ° from the horizontal plane.
- a silicon single crystal with a length of 642 ⁇ was obtained.
- the temperature control plate 7 ′ has a shaft 11 fixed to the upper end of the holding portion 8 ′, which is provided on the inner wall 12 of the lifting device chamber 1, so that the temperature control plate 7 ′ can be swung from outside the chamber.
- the gear 13 rotates by a source (not shown), and moves up and down in conjunction with JP91 / 01450 1 g-1
- the temperature control plate employed in the present embodiment has an umbrella-shaped portion 9 "set horizontally and a holding portion 8 ⁇ having a thickness.
- the surface of the melt is umbrella-shaped.
- the high temperature is maintained by the reflection and heat retaining action of the part 9 ⁇ , and the vicinity of the solid-liquid interface, on the contrary, is effectively radiated by the conduction action of the thick retaining part 8 ⁇ and is maintained at a low temperature. Since the source is outside the crucible, an ideal temperature gradient pattern of the melt surface rising from the center of the crucible to the outside is formed.
- graphite is used as the material of the temperature control plate.
- a metal material such as molybdenum may be used.
- a multilayer structure may be used.
- the pattern of the temperature distribution in the crucible radial direction on the surface of the melt gradually increases from the solid-liquid interface to the crucible inner wall surface at any stage from the start to the end of the pulling. Can be maintained Therefore, even if the pulling speed of the single crystal is increased, the melt temperature on the crucible side does not decrease. Therefore, it is possible to pull crystals at a speed at which solidification islands are conventionally formed on the melt and pulling is impossible, thereby improving the productivity.
- the present invention is applied to semiconductor single crystal pulling technology.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
A device and method for growing a crystal which provide a new technique in picking up a crystal to enable control over temperature distribution of a liquid of the melt in the radial direction of the crucible wherein; when a seed crystal is immersed into a material filled in the crucible and melted by a heater as external heating means surrounding said crucible and grown into a crystal while being gradually picked up, a temperature control plate is disposed in a zone above the liquid and around a crystal to be picked up so that, during picking-up of the crystal, a degree of temperature distribution on the liquid may be constantly kept lowest at the solid-liquid interface below the crystal and, at the same time, gradually higher toward the inner wall of the crucible.
Description
明 細 書 Specification
結晶成長方法及び結晶成長装置 技術分野 Crystal growth method and crystal growth apparatus
本発明は、 引上げ法によ る結晶成長技術、 と く に半 導体の単結晶引上げ技術に適用され、 るつぼ内に充填 された素材融液の表面温度の半径方向の温度分布を、 融液表面上に温度制御板をも う ける こ と によ り制御 し、 単結晶の引上げ速度と得られる結晶の品質を向上させ る技術に関する。 INDUSTRIAL APPLICABILITY The present invention is applied to a crystal growth technique by a pulling method, particularly a single crystal pulling technique of a semiconductor, and is used to determine a radial temperature distribution of a surface temperature of a material melt filled in a crucible. The present invention relates to a technology for controlling a temperature control plate on the top to improve the pulling speed of a single crystal and the quality of the obtained crystal.
背景技術 Background art
従来、 半導体の単結晶引上げ技術、 と く にチヨ ク ラ ルスキー (以下 C Z ) 法によ るシ リ コ ン単結晶の引上 げ技術においては、 生産性の向上や、 引上げ途上にお ける熱履歴の結晶への影響を制御するために、 たと え ば、 特公昭 57- 4 01 1 9号公報や、 特公平 2 - 3 1 04 0号公報 に開示される よ う な、 引上げ結晶の周 り に逆円錐状の 一種の熱輻射板のよ う なもの を設けた技術がある 。 こ れ らは、 るつぼを介 して及んで く る加熱用 ヒータ から の熱や、 融液面からの輻射熱をさ えぎる か又は反射す る こ と によ り 、 引上げ結晶の冷却速度を速めるもので ある。 Conventionally, semiconductor single crystal pulling technology, especially silicon single crystal pulling technology using the Czochralski (CZ) method, has been used to improve productivity and increase heat during the pulling process. In order to control the influence of the history on the crystal, for example, a pulling crystal as disclosed in Japanese Patent Publication No. 57-40119 or Japanese Patent Publication No. 2-310400 is used. In addition, there is a technology in which something like a kind of heat radiation plate in the shape of an inverted cone is provided. These increase the cooling rate of the pulled crystal by cutting off or reflecting the heat from the heating heater that passes through the crucible and the radiant heat from the melt surface. It is a thing.
し かし、 これ らの技術では熱輻射板によ り輻射され た熱で、 融液表面が部分的に過熱した り 、 このため融 液全体の温度分布が正常でな く な り、 かえっ て結晶特 性に悪影響がでた りする こ と もあっ た。 また、 引上げ
速度もさ らに向上させることが、 生産性の上からも望 まれている。 However, in these techniques, the heat radiated by the heat radiating plate partially heats the melt surface, and the temperature distribution of the entire melt is not normal. In some cases, the crystal properties were adversely affected. Also raise Further improvement in speed is also desired from the standpoint of productivity.
また、 従来よ り C Z法においては、 融液面の温度分 布状態に闋し、 引上げを実際に行なうオペレータ は、 1本の単結晶引上げ途中でもそのパターンがかわって く ることをよ く知っている。 通常このパターンは、 単 結晶の トップ側 (引上げ初め) からテール側 (引上げ 終わり) に進行する ことに したがって、 第 4 図の: Xか ら Zへ変化していく が、 Zのよ うな状態になると単粽 晶の引上げが困難にな り、 途中で引上げを靳念するよ うなこともある。 Also, conventionally, in the CZ method, the operator who actually pulls the melt surface based on the temperature distribution state of the melt surface knows that the pattern changes even while pulling a single crystal. ing. Normally, this pattern progresses from the top side (at the beginning of pulling) to the tail side (at the end of pulling) of the single crystal. Therefore, in Fig. 4, the pattern changes from X to Z, but it changes to a state like Z. At that point, it will be difficult to pull up the monozong crystals, and in some cases it may be necessary to raise them on the way.
ょ リ髙速で単結晶を引き上げよう とするればするほ ど、 この温度分布のパターンは一層 Υ 、 Ζの煩向を蒂 びてく る。 これはシリコンの凝固を速めるために、 ヒ ータの発熱量を下げる必要があるものの、 シ リ コ ンの 凝固熱 (430cal/g ) の単位時間当たりの発生量は増加 することから、 るつぼ内壁面側の温度は下がり気味に ならざる をえないことによる。 C Z法では、 融液のる つぼ半径方向の温度を制御しなければならないにも力、 かわらず、 その有効な技術がないため、 従来これが行 おれていなかったもので、 そのため従来は、 上記の温 度分布のパターンが Yから Zになる と、 引上げ速度を 低下させたり、 ヒータへの電力を上げたり して、 引上 げができなく なるのを逃げるのが普通であっ た。 これ は引上げられた単結晶の品質、 生産性に極めて悪い影
響を与えるものである。 The more the single crystal is pulled at a high speed, the more this temperature distribution pattern becomes more troublesome. Although it is necessary to reduce the calorific value of the heater in order to accelerate the solidification of silicon, the amount of silicon solidification heat (430 cal / g) generated per unit time increases. This is due to the fact that the temperature on the side of the wall must fall slightly. In the CZ method, it was necessary to control the temperature of the melt in the crucible radial direction, but despite the fact that there was no effective technology, this had not been done conventionally. When the temperature distribution pattern changed from Y to Z, it was common to reduce the pulling speed or increase the power to the heater to escape the inability to pull up. This has a very bad effect on the quality and productivity of the pulled single crystal. It has an impact.
発明の開示 . DISCLOSURE OF THE INVENTION.
本発明は、 こ う した従来技術の問題解決のために、 融液の半径方向の温度分布制御を可能にする新たな引 上げ技術を提供するもので、 るつぼ内に充填されて、 このるつぼを取 り 囲む外部加熱手段と しての ヒ ータ に よ り溶融状態にされた素材融液に、 種結晶を浸漬して 徐々 に これを引上げる こ と によ り 、 結晶を成長させる 技術において、 融液面の上方であっ て、 引上げ結晶を 取 り 囲む領域に温度制御板を設ける こ とで、 融液表面 の温度分布を、 結晶の引上げ中、 引上げ結晶下の固液 界面において最も低く なる よ う に、 同時に、 るつぼ内 壁面に向かう方向に次第に高 く なる よ う に常に維持す る方法及びその装置にある こ と を特徵と している。 The present invention provides a new pulling technique that enables control of the temperature distribution of the melt in the radial direction in order to solve the problems of the prior art, and the crucible is filled in the crucible. A technique for growing crystals by immersing a seed crystal in a material melt melted by a heater as an external heating means and gradually pulling it up. By providing a temperature control plate above the melt surface and in the area surrounding the pulled crystal, the temperature distribution on the melt surface is the lowest at the solid-liquid interface below the pulled crystal during pulling of the crystal. As a matter of fact, at the same time, it is a method and a device for constantly maintaining the height gradually in the direction toward the inner wall surface of the crucible.
さ ら に、 この温度制御板を、 結晶引上げ中、 融液面 からの距離が引上げ状況に応じて可変になる よ う移動 させる と、 融液表面の温度分布を、 前記の状態に制御 しゃす く なる。 Furthermore, when the temperature control plate is moved so that the distance from the melt surface during the crystal pulling is variable according to the pulling condition, the temperature distribution on the melt surface is controlled to the above-mentioned state. Become.
また、 温度制御板は、 結晶引上げ域に沿っ た保持部 と、 その下端部分に設けた、 外方向下向き又は水平に 開いてるつぼ内壁面付近に達する傘状部と を有してい る。 Further, the temperature control plate has a holding portion along the crystal pulling region, and an umbrella-shaped portion provided at a lower end portion thereof and extending to the vicinity of the inner wall surface of the crucible which opens downward or horizontally.
こ こで、 温度制御板の傘状部の傾き を、 水平面に対 して 1 5 ° 以下に設定する と融液表面の温度分布の状態 が良好になる。
図面の簡単な説明 Here, if the inclination of the umbrella-shaped portion of the temperature control plate is set to 15 ° or less with respect to the horizontal plane, the state of the temperature distribution on the melt surface becomes good. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の一実施例を示した単結晶成長装置 の縦新面図。 FIG. 1 is a vertical front view of a single crystal growth apparatus showing an embodiment of the present invention.
第 2図は本発明の異なる実施例を示した単結晶成長 装置の縦断面図。 FIG. 2 is a longitudinal sectional view of a single crystal growth apparatus showing a different embodiment of the present invention.
第 3図は本発明のさ らに異なる実施例を示した単結 晶成長装置の縱断面図。 FIG. 3 is a longitudinal sectional view of a single crystal growth apparatus showing still another embodiment of the present invention.
第 4 図は融液面の温度分布状態を示した模式図。 第 5図は従来の単結晶成長装置の縦断面図。 Fig. 4 is a schematic diagram showing the temperature distribution on the melt surface. FIG. 5 is a longitudinal sectional view of a conventional single crystal growth apparatus.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
【作用】 [Action]
本発明においては、 前記したよう にヒータ によ り加 熱溶融された素材融液の、 結晶直下の部分から、 るつ ぼ内壁と接する部分までの表面の温度分布状態を、 引 上げ途中のどの時点においても、 結晶直下部分が最も 低温で、 外側に向かう につれ高温となるよう制御して、 良好な品質をもった結晶の高速引上げを実現しょ う と するものである。 本発明がこ う した作用を用いる理由 は、 I C用の優れた品質の大径シ リ コ ン単結晶を得る には、 たとえば C Z法において、 最も重視しなければ ならないのが、 結晶が融液から固化する位置 A (第 4 図) を中心にして、 引上げられたシリ コン単結晶の温 度履歴を決定する、 いわゆる縦方向の温度分布状態と、 融液からの固化状態を左右する、 いおゆるるつぼ内壁 に向かう融液表面の横方向の温度分布状態とにあるか
らである。 In the present invention, as described above, the temperature distribution state of the surface of the material melt heated and melted by the heater from a portion immediately below the crystal to a portion in contact with the inner wall of the crucible is determined by the temperature distribution during the pulling. Even at this point, it is intended to realize a high-speed pulling of a crystal of good quality by controlling the temperature directly below the crystal to be the lowest, and increasing toward the outside. The reason that the present invention uses such an action is that, in order to obtain a large-diameter silicon single crystal of excellent quality for IC, for example, in the CZ method, the most important point is that the crystal is a melt. The temperature history of the pulled silicon single crystal is determined around the position A (Fig. 4) where it solidifies from the center, which affects the so-called vertical temperature distribution state and the solidification state from the melt. Is there a temperature distribution in the lateral direction of the melt surface toward the inner wall of the crucible? It is.
前者は、 固化完了直後の高温状態 ( 1 350 °C以下) か ら、 少し引上げが進んだやや上方の中温状態 (1 300〜 900 "ϋ )、 さ らに上方の低温状態 ( 900〜450 °C ) への推 移によ る、 単結晶内での固溶酸素の析出や、 あ る いは まだドナー化、 さ らに各種結晶欠陥の発生消滅等の、 ドラマティ ッ ク な生起を左右 している と推定されてい る。 In the former, the medium temperature state (1300-900 "ϋ) slightly raised from the high temperature state (1350 ° C or less) immediately after the solidification was completed, and the low temperature state (900-450 ° C) Due to the transition to (C), dramatic occurrences such as precipitation of dissolved oxygen in single crystals, or still forming donors, and annihilation of various crystal defects are affected. It is estimated that
一方後者は、 こ う した単結晶内での物理現象にはか かわらず、 いかに支障な く 結晶が引上がる かどう かを 左右している。 シ リ コ ン融液の適性温度は、 原理的に は単にシ リ コ ン単結晶直下の融液の温度のみでき ま る と考えられる が、 工業的に製造する と なる と、 るつぼ 内融液全体、 と りわけその表面の温度分布の制御が大 切になる。 The latter, on the other hand, determines how smoothly the crystal can be pulled, regardless of the physical phenomena in the single crystal. In principle, it is thought that the optimum temperature of a silicon melt can only be the temperature of the melt immediately below the silicon single crystal, but when it is manufactured industrially, the melt in the crucible is required. Control of the temperature distribution on the whole, especially on the surface, is important.
外周から ヒータ によ り加熱する方式が一般的な C Z 法では、 黒鉛るつぼ、 石英るつぼ及びシ リ コ ン融液等 の被加熱体からは常に、 伝導、 輻射あるいは対流によ り放熱が行なわれている。 結果的に、 望ま し い横方向 の温度分布は第 4 図に示した Yのよ う になる が、 もち ろ ん ヒ ータ への電力 を制御 して、 第 4 図の結晶直下 (符号 Aの部分)の温度が、 シ リ コ ンの凝固温度 (1 4 20 °C ) に維持される よ う 、 通常自動制御はなされている t これには、 シ リ コ ン単結晶の直径を光学的に計測 して 制御に用いる、 いわゆる 「光学式」 と、 シ リ コ ン単結
晶の直径の変動を重量で感知してこれを制御に用いる、 いわゆる 「重量式」 とがあるが、 いづれの方式であつ ても、 融液を加熱している ヒータの発熱量と、 単結晶 の引上げ速度と を、 同時に制御する手段が制御系に組 み込まれているのが一般的である。 しかし、 品質の良 い結晶を得るためには、 引上げ速度にその制御の割合 の多く を受けもたせることは良く ないと され、 したが つてシ リ コ ン融液への温度制御の割合を多くする こ と が望ま しい。 In the CZ method, in which heating is performed by a heater from the outer periphery, heat is always radiated from the object to be heated, such as a graphite crucible, a quartz crucible, or a silicon melt, by conduction, radiation, or convection. ing. As a result, the desired lateral temperature distribution becomes like Y shown in Fig. 4, but of course, by controlling the power to the heater, the temperature distribution just below the crystal in Fig. 4 (symbol A temperature of the part), shea cormorants I is maintained in re co down the solidification temperature (1 4 20 ° C), this is t which is usually automatically controlled have been made, the optical diameter of the sheet re co down monocrystal The so-called “optical” type, which is used for measurement and control, and a single silicon connection There is a so-called “gravity method”, which uses the weight to detect the fluctuation of the crystal diameter and uses it for control.In either case, the heating value of the heater that heats the melt and the single crystal Generally, means for simultaneously controlling the pulling speed and the pulling speed are incorporated in the control system. However, in order to obtain high-quality crystals, it is not good to give the pulling rate a large percentage of its control, and therefore the temperature control of the silicon melt is increased. This is desirable.
すなわち、 第 1 図乃至第 3図に示した本発明に係る 技術を採用する と、 温度制御板 7 、 7 7 の傘状部 9 、 9 9〃が、 融液表面の放熱を抑える と ともに、 結晶周囲の保持部 8 、 8 8 "は伝導によ り熱を上方 へと逃がし固液界面の冷却速度を速めることから、 融 液表面の半径方向の温度分布状態が第 4図中の: Xの理 想的パターンを保ち、 引上げ途中のあらゆる状況にお いて、 Yや Zの状態に陥ることがないものと考えられ る。 したがって、 この温度制御板を融液面水準の変動 に追従するよう に可動にすると、 この作用効果もさ ら に安定する。 That is, when the technology according to the present invention shown in FIGS. 1 to 3 is adopted, the umbrella-shaped portions 9, 99 の of the temperature control plates 7, 77 suppress heat dissipation on the melt surface, Since the holding parts 8 and 8 8 "around the crystal dissipate heat upward by conduction and increase the cooling rate at the solid-liquid interface, the temperature distribution in the radial direction of the melt surface is shown in FIG. It is considered that the temperature control plate will not fall into the state of Y or Z in any situation during the withdrawal, so that this temperature control plate can follow the fluctuation of the melt surface level. If it is made movable, this effect will be more stable.
【比較例】 [Comparative example]
第 5図に示した C Z法による単結晶成長装置の、 黒 鉛ルツボ 1 内に石英るつぼ ( 16イ ンチ) 2 を入れ、 あ らかじめセッ 卜されていた円筒状黒鉛ヒータ (内径 16 インチ) 3 内に設置し、 石英るつぼ中に素材のシリ コ
ンナゲジ ト を 45kg装填した。 装置内を真空引き し、 ァ ルゴンガス置換を行い、 黒鉛ヒータ 3 によ り素材を加 熱溶解して、 融液と したのち、 5 mm X 5 mmの種結晶 4 を この融液表面に浸して、 な じませた。 種結晶を徐々 に引上げる こ とで、 単結晶 5 の製造を開始し、 直径 6 イ ンチの太さ まで成長させた。 その後引上げスピー ド が 1 . 3mm/min .になるよ う に黒鉛ヒータ の発熱量を調整 し、 さ らに成長を続けた。 単結晶の成長長さ が、 400 mmにさ しかかる と、 るつぼの内壁 6 の一部から シ リ コ ン融液の一部が島状に凝固始めた。 その島はだんだん 大き く な り 、 るつぼの中心方向にのび、 結晶長 48 O ram の と こ ろで結晶と島と の接触の危険性がでてきたため、 引上げを断念した。 The quartz crucible (16 inches) 2 was placed in the graphite crucible 1 of the single crystal growth apparatus by the CZ method shown in Fig. 5, and the cylindrical graphite heater (16 inch inside diameter) that had been set in advance was used. 3 Place the silicon material inside the quartz crucible. 45kg of nannageite was loaded. The inside of the apparatus is evacuated, purged with argon gas, the material is heated and melted by the graphite heater 3 to form a melt, and a 5 mm X 5 mm seed crystal 4 is immersed in the melt surface. , Got accustomed. By gradually pulling the seed crystal, a single crystal 5 was started and grown to a diameter of 6 inches. After that, the calorific value of the graphite heater was adjusted so that the pulling speed was 1.3 mm / min., And the growth continued. When the growth length of the single crystal approached 400 mm, a part of the silicon melt began to solidify from a part of the inner wall 6 of the crucible into an island shape. The island gradually grew larger, extended toward the center of the crucible, and abandoned pulling because of the danger of contact between the crystal and the island at a crystal length of 48 ram.
実施例 1 Example 1
比較例と全く 同一装置をつかい、 素材シ リ コ ン を全 溶解後、 第 1 図に示 したよ う に、 引上装置内に温度制 御板 7 を装填した。 温度制御板 7 は、 円筒状の保持部 β と傘状部 9 と を有してお り 、 保持部 8 は、 引上げ予 定の単結晶の周囲を取 り 囲む。 さ ら に、 保持部 8 の中 間高さ には、 温度制御板を支えるための支承部 14が設 けられ、 単結晶成長装置の断熱筒 15の上部に固定され る。 また、 傘状部 9 の外緣 1 0は、 石英るつぼ内壁の融 液と の境界面付近に達 している。 保持部の内径は 2 29 mm φ , 傘状部の水平面に成す角度 α は 5 ° 、 融液面か らの最短距離は 25 mm、 外緣 1 0と石英るつぼ 2 と の間隔
は 25mmである。 傘状部 9 は、 融液面の保温を、 保持部 は伝惠によ リ固液界面の放熱をはかる。 Using the same apparatus as in the comparative example, the material silicon was completely dissolved, and as shown in FIG. 1, a temperature control plate 7 was loaded in the lifting apparatus. The temperature control plate 7 has a cylindrical holding portion β and an umbrella-shaped portion 9, and the holding portion 8 surrounds the periphery of the single crystal to be pulled. Further, a support portion 14 for supporting the temperature control plate is provided at an intermediate height of the holding portion 8, and is fixed to an upper portion of a heat insulating cylinder 15 of the single crystal growth apparatus. Further, the outer surface 10 of the umbrella-shaped portion 9 reaches near the boundary surface between the inner wall of the quartz crucible and the melt. The inner diameter of the holding part is 229 mm φ, the angle α formed on the horizontal plane of the umbrella-shaped part is 5 °, the shortest distance from the melt surface is 25 mm, and the distance between the outer diameter 10 and the quartz crucible 2 Is 25mm. The umbrella-shaped part 9 keeps the temperature of the melt surface, and the holding part radiates heat at the solid-liquid interface by transmission.
比較例と 同様の操作を行ない、 引上げ速度 1 · 3 πιπι/ mill .で、 直径 6イ ンチの単結晶引上げを開始した。 結 晶長 400mmになってもるつぼ内壁からの凝固島は現わ れず、 最後まで同一引上げ速度を維持し、 最終的に 640mm長のシ リ コ ン単結晶を得た。 The same operation as in the comparative example was performed, and pulling of a single crystal having a diameter of 6 inches was started at a pulling rate of 1.3ππππι / mill. No solidified islands appeared from the inner wall of the crucible even when the crystal length reached 400 mm. The same pulling speed was maintained until the end, and a 640 mm long silicon single crystal was finally obtained.
本実施例のよう に、 傘状部に若干の傾斜をもたせる と、 るつぼ内壁面と融液表面の円周状接点領域を固液 界面部分よ り効果的に保温することができるが、 傾斜 を水平面から 15 ° を越えて設定しても、 その効果には と く に顕著さは生じないことが判明した。 When the umbrella-shaped portion is slightly inclined as in this embodiment, the inner contact surface of the inner wall surface of the crucible and the circumferential contact region of the melt can be more effectively kept warm than the solid-liquid interface portion. It was found that the effect was not particularly noticeable when the angle was set more than 15 ° from the horizontal plane.
実施例 2 Example 2
単結晶の成長長さ 300mmまでは、 温度制御板 7の融 液面からの最短距離 (Hとする) を 100mmにセ ッ ト し、 その後、 400mmのと ころでは H = 50mm、 600mniのと ころ では、 H = 25mmにするよう徐々 に Z を変化させた点を 除けば、 他の条件等は実施例 1 と同様に してシ リ コン 単結晶の引上げを行なっ た。 引上げ速度は、 1 . 3 mm/ min .の一定で最後まで島の発生はなかった。 最終的に For the single crystal growth length of 300 mm, the shortest distance (H) from the melt surface of the temperature control plate 7 is set to 100 mm, and then H = 50 mm and 600 mni at 400 mm. Then, a silicon single crystal was pulled in the same manner as in Example 1 except that Z was gradually changed so that H = 25 mm. The pulling speed was constant at 1.3 mm / min. And there was no island until the end. Finally
642ιππι長のシ リ コン単結晶を得た。 A silicon single crystal with a length of 642ιππι was obtained.
温度制御板 7 'は、 第 2図に示したよう に保持部 8 ' 上端に固定された軸 1 1が、 引上装置チャ ンバ一内壁 1 2 に設けられてチャ ンバ一外からの齪動源 (図示せず) によ り回転する歯車 13、 に連動して上下方向に動く
JP91/01450 一 g一 実施例 3 As shown in FIG. 2, the temperature control plate 7 ′ has a shaft 11 fixed to the upper end of the holding portion 8 ′, which is provided on the inner wall 12 of the lifting device chamber 1, so that the temperature control plate 7 ′ can be swung from outside the chamber. The gear 13 rotates by a source (not shown), and moves up and down in conjunction with JP91 / 01450 1 g-1 Example 3
実施例 1 と全く 同 じよ う に したが、 温度制御板 7〃 の形状を第 3 図のよ う に した。 本実施例に採用 した温 度制御板の形状は、 傘状部 9 " が水平に設定されてお リ、 かつ保持部 8〃 は、 厚みを持たせてある。 融液表 面は、 傘状部 9〃の反射保温作用によ り高温に保たれ、 固液界面付近は、 逆に肉厚の保持部 8〃 の伝導作用に よ り効果的に放熱されて、 低温に維持される 。 加熱源 は、 るつぼ外にある から、 るつぼ中央から外側に向か つ て上昇する融液面の理想的温度勾配パタ ーンが形成 される。 In the same manner as in Example 1, the shape of the temperature control plate 7 was changed as shown in FIG. The temperature control plate employed in the present embodiment has an umbrella-shaped portion 9 "set horizontally and a holding portion 8 部 having a thickness. The surface of the melt is umbrella-shaped. The high temperature is maintained by the reflection and heat retaining action of the part 9〃, and the vicinity of the solid-liquid interface, on the contrary, is effectively radiated by the conduction action of the thick retaining part 8〃 and is maintained at a low temperature. Since the source is outside the crucible, an ideal temperature gradient pattern of the melt surface rising from the center of the crucible to the outside is formed.
本実施例に よ っ て も略同 じ効果が見 られ、 結晶長 644mm、 直径 6 イ ンチのシ リ コ ン単結晶を得る こ と が できた。 According to this example, substantially the same effect was obtained, and a silicon single crystal having a crystal length of 644 mm and a diameter of 6 inches was obtained.
なお、 実施例 1 乃至 3 によ り得られた単結晶につき、 その物性を調べたが、 従来法によ り製造 したもの と の 大きな差異は認め られなかっ た。 The physical properties of the single crystals obtained in Examples 1 to 3 were examined, but no significant difference from those produced by the conventional method was found.
いずれの実施例においても、 温度制御板の材質には グラ フ ア イ ト を用いたが、 もちろんこれ以外にも、 モ リ ブデン等の金属材料が用い られる。 また、 多層構造 に しても良い。 In each of the embodiments, graphite is used as the material of the temperature control plate. However, a metal material such as molybdenum may be used. Also, a multilayer structure may be used.
本発明によれば、 融液表面のるつぼ半径方向の温度 分布のパタ ーン を、 引上げ開始から終了までの どのよ う な段階においても、 固液界面部分から るつぼ内壁面 に向かっ て次第に上昇する よ う に維持する こ と ができ 、
一 10— このため単結晶の引上げ速度を上げても、 るつぼ側の 融液温度が下がるこ とはない。 したがって、 従来では、 融液上に凝固島を生じて引上げが不可能になっていた ような速度での結晶の引上げが可能にな り、 生産性の 向上をはかる ことができる。 According to the present invention, the pattern of the temperature distribution in the crucible radial direction on the surface of the melt gradually increases from the solid-liquid interface to the crucible inner wall surface at any stage from the start to the end of the pulling. Can be maintained Therefore, even if the pulling speed of the single crystal is increased, the melt temperature on the crucible side does not decrease. Therefore, it is possible to pull crystals at a speed at which solidification islands are conventionally formed on the melt and pulling is impossible, thereby improving the productivity.
産業上の利用可能性 Industrial applicability
本発明は半導体の単結晶引上げ技術に適用される。
The present invention is applied to semiconductor single crystal pulling technology.
Claims
( 1 ) 容器内に充填され、 外部加熱手段によ り溶融状 態と した素材融液中に、 種結晶を浸漬して徐々 に これ を引上げるこ とによ り、 結晶を成長させる方法におい て、 融液充填域上方の結晶引上げ域を取り囲む領域に 温度制御板を設ける こ と によ り 、 融液表面の温度分布 を、 結晶引上げ中引上げ結晶下の固液界面において最 も低く 、 容器内壁面に向かう方向に次第に高く常時維 持する こ と を特徴とする結晶成長方法。 (1) A method for growing a crystal by immersing a seed crystal in a material melt filled in a container and melted by an external heating means and gradually pulling the seed crystal. By providing a temperature control plate in an area surrounding the crystal pulling area above the melt filling area, the temperature distribution on the melt surface is minimized at the solid-liquid interface below the crystal pulled during the crystal pulling. A crystal growth method characterized in that it is kept constantly higher in the direction toward the inner wall surface.
( 2 ) 結晶引上げ中、 温度制御板の位置を融液面の変 位に応じて変動させる こ と によ り、 融液表面の温度分 布を、 結晶引上げ中引上げ結晶下の固液界面において 最も低く維持し、 容器内壁面に向かう方向に次第に髙 く維持する こ と を特徴とする請求の範囲第 1項記載の 結晶成長方法。 (2) During crystal pulling, the position of the temperature control plate is varied in accordance with the displacement of the melt surface, so that the temperature distribution on the melt surface is changed at the solid-liquid interface under the crystal being pulled during crystal pulling. 2. The crystal growth method according to claim 1, wherein the temperature is maintained at the lowest level and gradually maintained in a direction toward the inner wall surface of the container.
( 3 ) 容器内に充填され、 外部加熱手段によ り溶融状 態と して素材融液中に、 種結晶を浸漬して徐々 にこれ を引上げる こ と によ り 、 結晶を成長させるものにおい て、 融液充填域上方の結晶引上げ域を取り囲む領域に 温度制御板を設けたこ と を特徴とする結晶成長装置。 (3) Filled in a container, grown in a molten state by means of external heating means, immersed in a material melt and gradually pulling it up to grow the crystal A crystal growth apparatus, wherein a temperature control plate is provided in a region surrounding the crystal pulling region above the melt filling region.
(4 ) 温度制御板が、 結晶引上げ域に沿っ た保持部と、 その下端部分に設けた、 外方向下向き又は水平に開い て容器内壁面近傍に達する傘状部と を有する こ と を特 徴とする請求の範囲第 3項記載の結晶成長装置。 (4) The temperature control plate is characterized in that it has a holding part along the crystal pulling area and an umbrella-shaped part provided at the lower end thereof, which opens downward or horizontally and reaches near the inner wall surface of the container. 4. The crystal growth apparatus according to claim 3, wherein:
( 5 ) 温度制御板の傘状部の傾きが、 水平面に対して
15 ° 以下であるこ とを特徴とする請求の範囲第4項記 載の結晶成長装置。 (5) The inclination of the umbrella of the temperature control plate is 5. The crystal growth apparatus according to claim 4, wherein the angle is 15 ° or less.
(6) 温度制御板が上下可動に構成されている こ と を 特徴とする請求の範囲第 3項乃至第 5項のいずれかに 記載の結晶成長装置。
(6) The crystal growth apparatus according to any one of claims 3 to 5, wherein the temperature control plate is configured to be vertically movable.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3115236A JP2509477B2 (en) | 1991-04-20 | 1991-04-20 | Crystal growth method and crystal growth apparatus |
JP3/115236 | 1991-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992018672A1 true WO1992018672A1 (en) | 1992-10-29 |
Family
ID=14657715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1991/001450 WO1992018672A1 (en) | 1991-04-20 | 1991-10-23 | Device and method for growing crystal |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2509477B2 (en) |
WO (1) | WO1992018672A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0866150A1 (en) * | 1997-03-21 | 1998-09-23 | Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft | Apparatus and process for pulling a single crystal |
EP0890662A1 (en) * | 1997-07-09 | 1999-01-13 | Shin-Etsu Handotai Company Limited | Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same |
EP0926270A1 (en) * | 1997-12-18 | 1999-06-30 | Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft | Process and apparatus for producing a single crystal |
EP0964082A1 (en) * | 1998-06-11 | 1999-12-15 | Shin-Etsu Handotai Company Limited | Silicon single crystal wafer and a method for producing it |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3285111B2 (en) * | 1994-12-05 | 2002-05-27 | 信越半導体株式会社 | Method for producing silicon single crystal with few crystal defects |
US5824152A (en) * | 1996-07-09 | 1998-10-20 | Komatsu Electronic Metals Co., Ltd. | Semiconductor single-crystal pulling apparatus |
JP4736401B2 (en) * | 2004-11-02 | 2011-07-27 | 住友金属工業株式会社 | Method for producing silicon carbide single crystal |
JP4844127B2 (en) * | 2006-01-11 | 2011-12-28 | 株式会社Sumco | Single crystal manufacturing apparatus and manufacturing method |
CN106048723A (en) * | 2016-08-01 | 2016-10-26 | 中国电子科技集团公司第四十六研究所 | Solid-liquid interface control method for growing gallium oxide crystal by utilization of pulling method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168389A (en) * | 1984-09-06 | 1986-04-08 | Sony Corp | Apparatus for growing single crystal |
JPS6350391A (en) * | 1986-08-18 | 1988-03-03 | Sony Corp | Single crystal growth device |
JPH0297478A (en) * | 1988-10-05 | 1990-04-10 | Mitsubishi Metal Corp | Single crystal pulling device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6012318B2 (en) * | 1976-07-12 | 1985-04-01 | ソニー株式会社 | Single crystal pulling method and device |
DE3027262A1 (en) * | 1980-07-18 | 1982-02-11 | Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt | DRAWING PROCESSED, THIN-WALLED BEARING BUSHING |
NO148267C (en) * | 1981-06-16 | 1983-09-07 | Norsk Hydro As | Water electrolysis diaphragm |
JPS6461383A (en) * | 1987-08-31 | 1989-03-08 | Nippon Steel Corp | Method for pulling up single crystal rod and apparatus therefor |
JPH0639351B2 (en) * | 1987-09-05 | 1994-05-25 | 信越半導体株式会社 | Apparatus and method for manufacturing single crystal ingot |
JPH0231040A (en) * | 1988-07-20 | 1990-02-01 | Tokico Ltd | Hydraulic buffer |
JP2640683B2 (en) * | 1988-12-12 | 1997-08-13 | 信越半導体株式会社 | Single crystal rod pulling device |
-
1991
- 1991-04-20 JP JP3115236A patent/JP2509477B2/en not_active Expired - Lifetime
- 1991-10-23 WO PCT/JP1991/001450 patent/WO1992018672A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168389A (en) * | 1984-09-06 | 1986-04-08 | Sony Corp | Apparatus for growing single crystal |
JPS6350391A (en) * | 1986-08-18 | 1988-03-03 | Sony Corp | Single crystal growth device |
JPH0297478A (en) * | 1988-10-05 | 1990-04-10 | Mitsubishi Metal Corp | Single crystal pulling device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0866150A1 (en) * | 1997-03-21 | 1998-09-23 | Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft | Apparatus and process for pulling a single crystal |
US6153008A (en) * | 1997-03-21 | 2000-11-28 | Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag | Device and method for pulling a single crystal |
US6364947B1 (en) | 1997-07-09 | 2002-04-02 | Shin-Etsu Handotai Co., Ltd. | Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same |
EP0890662A1 (en) * | 1997-07-09 | 1999-01-13 | Shin-Etsu Handotai Company Limited | Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same |
JPH1179889A (en) * | 1997-07-09 | 1999-03-23 | Shin Etsu Handotai Co Ltd | Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby |
US5968264A (en) * | 1997-07-09 | 1999-10-19 | Shin-Etsu Handotai Co., Ltd. | Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same |
KR100558177B1 (en) * | 1997-07-09 | 2006-07-10 | 신에쯔 한도타이 가부시키가이샤 | Silicon single crystal manufacturing method and apparatus having no crystal defect, and silicon single crystal and silicon wafer manufactured thereby |
US6159438A (en) * | 1997-07-09 | 2000-12-12 | Shin-Etsu Handotai Co., Ltd. | Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same |
US6132507A (en) * | 1997-12-01 | 2000-10-17 | Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag | Process and device for the production of a single crystal |
EP0926270A1 (en) * | 1997-12-18 | 1999-06-30 | Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft | Process and apparatus for producing a single crystal |
US6238477B1 (en) | 1997-12-18 | 2001-05-29 | WACKER SILTRONIC GESELLSCHAFT FüR HALBLEITERMATERIALIEN AG | Process and device for the production of a single crystal |
US6190452B1 (en) | 1998-06-11 | 2001-02-20 | Shin-Etsu Handotai Co., Ltd. | Silicon single crystal wafer and method for producing it |
US6482260B2 (en) | 1998-06-11 | 2002-11-19 | Shin-Etsu Handotai Co., Ltd. | Silicon single crystal wafer and a method for producing it |
EP0964082A1 (en) * | 1998-06-11 | 1999-12-15 | Shin-Etsu Handotai Company Limited | Silicon single crystal wafer and a method for producing it |
Also Published As
Publication number | Publication date |
---|---|
JP2509477B2 (en) | 1996-06-19 |
JPH05279172A (en) | 1993-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5714004A (en) | Process for producing polycrystalline semiconductors | |
US5849080A (en) | Apparatus for producing polycrystalline semiconductors | |
KR20180101586A (en) | Manufacturing method of silicon single crystal | |
WO1992018672A1 (en) | Device and method for growing crystal | |
KR20110036896A (en) | Single crystal production device and single crystal production method | |
WO2001063023A1 (en) | Method for growing single crystal of semiconductor | |
US6755910B2 (en) | Method for pulling single crystal | |
EP1538242B1 (en) | Heater for crystal formation, apparatus for forming crystal and method for forming crystal | |
JP3533812B2 (en) | Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method | |
JPH11189488A (en) | Single crystal pulling method and single crystal pulling apparatus | |
JP6451478B2 (en) | Method for producing silicon single crystal | |
KR101596550B1 (en) | Apparutus and Method for Growing Ingot | |
JP4272449B2 (en) | Single crystal pulling method | |
JP3129187B2 (en) | Single crystal manufacturing apparatus and single crystal manufacturing method | |
JP2000007496A (en) | Single crystal pulling-up equipment and single crystal pulling-up method using the same | |
JP3079991B2 (en) | Single crystal manufacturing apparatus and manufacturing method | |
TW526299B (en) | Method for producing silicon single crystal | |
CN111379018A (en) | Method for growing semiconductor silicon crystal bar | |
JPH0497989A (en) | Production of single crystal and pulling up device for single crystal | |
US20240158952A1 (en) | Apparatus and Method for Regulating Hot Zone for Single Crystal Growth | |
JPH05294784A (en) | Single crystal growth device | |
JP2004277267A (en) | Apparatus for manufacturing compound semiconductor single crystal | |
JP2939603B2 (en) | Manufacturing method of semiconductor single crystal | |
JPH0881298A (en) | Production of single crystal and device for producing single crystal | |
JPH06279168A (en) | Single crystal manufacturing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |
Free format text: EUROPEAN PATENT(FR,IT) |
|
122 | Ep: pct application non-entry in european phase |