Nothing Special   »   [go: up one dir, main page]

WO1992017598A1 - Production d'especes de soja transgeniques - Google Patents

Production d'especes de soja transgeniques Download PDF

Info

Publication number
WO1992017598A1
WO1992017598A1 PCT/US1992/002226 US9202226W WO9217598A1 WO 1992017598 A1 WO1992017598 A1 WO 1992017598A1 US 9202226 W US9202226 W US 9202226W WO 9217598 A1 WO9217598 A1 WO 9217598A1
Authority
WO
WIPO (PCT)
Prior art keywords
protoplasts
medium
plants
protoplast
calli
Prior art date
Application number
PCT/US1992/002226
Other languages
English (en)
Inventor
Jack M. Widholm
Sarwan K. Dhir
Original Assignee
The Board Of Trustees Of The University Of Illinois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Board Of Trustees Of The University Of Illinois filed Critical The Board Of Trustees Of The University Of Illinois
Publication of WO1992017598A1 publication Critical patent/WO1992017598A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated

Definitions

  • the present invention relates to a process for transforming soybean plant cells and the regeneration of said cells to produce transgenic soybean plants. BACKGROUND OF THE INVENTION
  • gene transfer techniques for plant species is of great interest and value to plant breeders because it can be used for the rapid transfer of beneficial genetic traits to plants.
  • gene transfer techniques for leguminous plants is of commercial interest because they facilitate the development of new cultivars with improved disease resistance, tolerance to specific herbicides and increased nutritional value.
  • Recombinant DNA techniques are being used to transfer foreign genes into agronomically important crops and to study the expression and regulation of genes in plant systems. The meaningful application of these techniques is dependent upon efficient transfer of genes into cells capable of regenerating into fertile plants. Numerous methods have been developed for transferring genes into plant tissues including Agrobacterium-mediated transfer, direct DNA uptake, microinjec- tion, high-velocity microprojectiles and electroporation.
  • Agrobacterium-mediated gene transfers are by far the most widely used gene transfer techniques.
  • the use of Agrobacterium strains for gene transfers can be limited.
  • dicotyledonous species such as leguminous plants are susceptible to Agrobacterium infections, its use for transformation is limited due to the lack of efficient regeneration procedures for transformed tissues.
  • Patent Number 4,945,050 ('050 patent) issued July 31, 1990 to Sanford et al., which is incorporated herein by reference, provides a review of the mechanisms and limitations of direct DNA uptake, cell fusions and microinjection as methods of introducing foreign genes into cells.
  • the '050 patent relates to a method of introducing foreign substances into living cells using microprojectiles. While the '050 patent teaches a method of transforming many cells simultaneously, problems associated with microprojectile transformation include: the high mortality of transformed cells; the complexity of equipment needed; and, the difficulties in operating the equipment to efficiently perform the method.
  • the present invention relates to transgenic soybean plants.
  • Soybean species have been transformed at low frequency using the Agrobacterium or by particle bombardment method described above.
  • Electroporation one of the direct DNA transfer techniques, has been used to stably transform a number of plants. Soybean transformation using electroporation and stable integration of genes in the calli have been reported, but efforts to regenerate plants are unsuccessful.
  • Wei and Xu Plant Cell Reports 7:348-351 (1988) reported plant regeneration from soybean protoplasts. However, the efficiency reported is low and did not use commercially important strains that are transformed by electroporation.
  • the present invention relates to an improved method of producing transgenic soybean plants by transforming soybean plant cells by electroporation and regenerating the transformed cells into mature soybean plants.
  • cells of commercially important soybean varieties can be transformed by electroporation in a stable and highly efficient manner to introduce important genetic material and the resulting transformed cells can be regenerated at high efficiency to mature soybean plants.
  • many cells can be transformed simultaneously using relatively simple techniques requiring relatively simple equipment resulting in a high survivability of transformed cells which can be regenerated into mature transgenic soybean plants at high efficiencies.
  • the present invention relates to a method of generating transgenic soybean plants comprising the steps of: preparing protoplasts from soybean cotyledons; inserting foreign DNA into the prepared protoplasts by electroporation, the foreign DNA comprising a useful gene; culturing the electroplated protoplasts in medium to induce cell growth, colony formation and calli generation; and regenerating plants from calli.
  • electroporation mediated DNA transfer into protoplasts prepared from immature cotyledons is a highly efficient transformation method for soybean.
  • Previous reports on soybean transformation showed the presence of chimeric sectors in the transgenic plants produced by Agrobacterium and particle acceleration methods. This may be either due to cross protection of non-transformed tissues by transformed ones or multiple transformation events within a cell population that gives rise to callus or plants.
  • the protoplast-electroporation system allows for the selection of the transformed single cells which can divide and give rise to regenerable callus forming transgenic shoots. Based on the total number of microcalli formed with and without selection, a relative transformation frequency of 21.4-23.0% can be obtained, corresponding to an absolute transformation frequency of 5.7-6.8 x 10 .
  • the transformation frequency achieved for the soybean variety Glycine max is higher than that reported earlier for other protoplast culture systems. Only with two other plant systems, N. tabacum and Oryza sativa have higher transformation frequencies (up to 1 x 10 ]) been achieved by using a combination of PEG and electroporation or by electroporation only.
  • Plating and selection methods along with several other factors are important criteria in the development of a stable transformation and regeneration system.
  • an agarose-embedding system is employed to immobilize the transformed cells and therefore essentially eliminate the possibility of multiple recovery of single events or recovery of 'false positives' due to inadequate selection pressure.
  • Another element of the present invention is use of a selection marker which confers sufficient sensitivity to transformed cells carrying the chimeric gene construction.
  • hygromycin is employed as the selection agent.
  • Hygromycin as a selection agent has been used in other systems, i.e. Arbidopsis, orchardgrase and rise.
  • a transgene construct according to the present invention comprises a desired gene which confers a desired trait on the transgenic soybean plants which contain it.
  • the present invention embodies the successful transformation of soybean protoplasts via electroporation and recovery of transgenic shoots. Additionally, a plant regeneration system from protoplast derived transformed calli is disclosed.
  • plasmids which contain the genes to be introduced are constructed. Plasmids must contain the necessary genetic elements for expression in plant cells. These elements include an operably linked promoter and polyadenylation addition signal.
  • the construct optionally contains a gene which encodes a selectable marker.
  • Immature pods are collected from 60-80 day old soybean plants and surface sterilized. Cotyledons, 2-7 x 2-3 mm size are cut transversely into 0.5-2 mm thick sections, preferably 1-2 mm thick sections, and preplasmolyzed in CPW 13M. Preplasmolysis of the tissue in CPW 13M makes the plasma membrane shrink away from the cell wall, thus leaving space for enzyme to enter and act; the enzymatic treatment thereby becomes more effective. Washing the tissue helps in removing the damaged tissue thus the ultimate protoplast preparation is cleaner. The tissue is incubated in enzyme solution for about 4-6 hr in the dark.
  • the enzyme solution consists of 1.5% (w/v) Cellulase "Onozuka” RIO, 0.2% Pectolyase Y23 dissolved in CPW 9M (pH 5.8).
  • CPW 9M CPW 9M
  • the combination of Cellulase "Onozuka” R10 (1.5%) and Pectolyase Y23 (0.2%) has been found to be the optimum, because the viability of protoplasts was highest (about 85- 93%), and the yield adequate (5-6 x 10 6 per gm fresh wt.).
  • Use of Pectolyase Y23 seems to be necessary to obtain high yields of viable protoplasts.
  • Protoplasts vary in size from 20-35 ⁇ m in diameter. Protoplasts are rarely released within the first two hours and incubation longer than six hours reduces the viability of protoplasts greatly. The most suitable duration of incubation is 4-6 hr. Enzyme combination used for preparing protoplasts is somewhat critical. Higher concentration of enzyme and longer incubation period are usually deleterious to protoplast preparations and may affect plating efficiency and plant regeneration. A much lower concentration of cellulose (1.5%) and use of Pectolyase Y23, in particular seems to be helpful in isolating protoplasts and in a relatively much shorter 4-6 hr compared to 18 hr time period. Cotyledon age and size are important factors influencing protoplast yield and viability. Optimum protoplast yield and viability is obtained from cotyledons of 3-4 x 2 mm in size. Protoplast release is poor from cotyledons of very large size (6-7 x 3 mm).
  • the released protoplasts are filtered through sieves and pelleted by centrifugation. At least 43 ⁇ m sieve is used. Preferably an additional step is to filter with a 74 ⁇ m sieve also because it makes the process of removing debris more efficient.
  • the purpose of centrifugation is to get a pellet of living, uniform protoplasts. Protoplasts are washed twice by resuspending in either CPW 9M or KP8 medium. The washed protoplasts are then purified by floating over 23% (w/v) sucrose overlaid with 2.0 ml of KP8 medium and centrifuged. Protoplasts can be gently removed with a Pasteur pipette from the interface.
  • KP8 medium for washing and purification.
  • protoplasts are floated on sucrose (23%) there is no deleterious effect on viability.
  • Ficoll (13%) is used, 100% of the protoplasts burst within a few hours.
  • Sucrose concentration can be varied from 21-23%, without any major effect, washing after flotation is necessary to remove sucrose otherwise it can change the osmoticum and have deleterious effect on protoplast preparation.
  • Protoplasts are resuspended at the density of 1-2 x 10 6 /ml in electroporation buffer (10 mM HEPES (pH 7.2), 150 mM NaCl, 5 mM CaCl 2 2H 2 O and 0.2 M nannitol).
  • electroporation buffer 10 mM HEPES (pH 7.2), 150 mM NaCl, 5 mM CaCl 2 2H 2 O and 0.2 M nannitol.
  • HBM and HBS which are the same as the buffer described above except with 1 mM Hepes and 29 mM Hepes, respectively.
  • KP8 and 14 mM CaCl 2 7H 2 O and sodium phosphate buffer also work.
  • the samples are transferred to precooled, presterilized electroporation vessels fitted with electrodes.
  • An electric field of 500 V/cm is applied by a single discharge of a 1000 ⁇ F capacitor that is precharged with an electrophoresis power supply.
  • Aliquots electroporated without DNA and aliqouts treated with plasmid DNA without electroporation serve as controls.
  • Heat shock treatment given to freshly isolated protoplasts prior to electroporation increases the percentage of dividing protoplasts observed by day 14. The stimulatory effect of heat shock on protoplast division is reflected in the increased number of colonies in control cultures and of the resistant colonies which develop following exposure of protoplast derived cells to selection medium.
  • protoplasts are cultured for about 2 weeks without selection if selection is to be performed.
  • Protoplast density is adjusted to 2.5 x 10 5 protoplasts/ml in KP8 medium containing 2% Ficoll (Type 400-DL), 40 mM MES.
  • Use of 2% ficoll (type 400 DL) in the liquid culture medium prevents the protoplasts from adhering to the surface of the petri dish. Otherwise along with the dead protoplasts the dividing ones also settle down and the toxic substances released by the dead ones may affect the growth of dividing colonies.
  • Use of 40 mM MES buffer in the liquid medium helps in stabilizing the pH of the liquid medium (which usually drops down from 5.8 to 3.9) in the first 7 days of culture.
  • selection medium refers to medium supplemented with compounds that are lethal to all cells except those having the protein produced by the expression of the selection marker.
  • the protoplast derived transformed cells are selected by applying either liquid K8/selection medium, i.e., K8 medium supplemented with compounds which are lethal to all cells except those transformed with the selection marker, or the cells are resuspended in an equal volume of 1.2% Sea-plaque agarose (LMT, FMC Corp., ME, USA) gelled K8/selection medium. Solidified agarose cultures are cut into small beads and submerged in liquid K8/selection medium. In liquid medium, the influence of initial protoplast density reveals that at densities lower than 2.5 x lO ⁇ ml, cell budding can be frequently observed. Plating efficiencies of 38-50% can be observed after 7 days in culture.
  • liquid K8/selection medium i.e., K8 medium supplemented with compounds which are lethal to all cells except those transformed with the selection marker
  • the resistant colonies continue to grow and reach a size of 100- 200 ⁇ m or more after 4 weeks in culture.
  • visible colonies develop in agarose beads and also in the surrounding liquid medium (released from the beads).
  • Transformed colonies are also recovered when selection medium is used only in the liquid medium indicating that both the selection methods can yield large numbers of resistant colonies.
  • the advantage of embedding the protoplasts in an agarose bead over the liquid selection method is that the culture medium can be replaced without disturbing the developing colonies.
  • the resistant colonies are easily distinguishable microscopically after about 4 weeks of selection (6 weeks after electroporation) and can be scored visually after about 6 weeks.
  • Gradual dilution of KP8 medium with K8 using this time table is important, as it helps in gradually lowering the osmoticum.
  • agarose bead technique which immobilizes the transformants, replacement of liquid culture medium at regular intervals not only provides fresh culture medium (changing liquid is relatively easy) but also helps in removing the phenolic substances released by the dead cells.
  • the use of 1.2% agarose instead of 0.6% agarose gives slightly higher plating efficiency, but the main purpose of agarose immobilization is to prevent protoplast lysis during the initial culture period.
  • Transformation frequency can determined by counting the number of colonies in the agarose blocks.
  • the -native transformation frequency (RTF) is described as the ratio between the number of resistant colonies in the selected cultures and the developing colonies in the unselected cultures.
  • the absolute transformation frequency (ATF) is calculated on the basis of number of resistant colonies produced after 8 weeks from the initial number of protoplasts plated after electroporation.
  • microcalli about 1-2 mm in size can be observed.
  • the microcalli are transferred onto MSB medium supplemented with 0.5 mg mg/1 each of 2,4- D, BA, Kn, 500 mg/1 CH, 3% sucrose and 0.6% agar (with or without millipore 0.45 mm pore size filters). Where the colonies grow (to 3-5 mm) within 3-4 weeks and proliferate as light green calli. When grown on millipore filter paper the calli can grow faster and are more compact than the calli that are grown directly on culture medium. When the fast growing green calli are selectively transferred onto fresh medium of the same composition, green compact calli form after 3-4 subcultures.
  • MSB + BA + Kn + Z + NAA CA 3 + CH medium containing asparagine and glutamine. After repeated subculture, small shoots are formed but these shoots do not elongate on this medium.
  • MSB medium containing 3% sucrose and 0.5 mg/1 each of BA, Kn, ZT, 0.1 mg/1 NAA and 500 mg/1 CH and incubated under high light intensity (2,000 bu) dark green nodular structures appear on the surface and periphery of the calli.
  • shoots are transferred in 1/2 strength MS minerals containing 1.0 gm/1 KNO 3 , 0.01 mg/1 TH with or without 0.5-1.0 mg/1 GA 3 .
  • Shoots (0.5-1.0 cm) are transferred to several different media for elongation.
  • Elongation rate is significantly affected by growing the shoots on 1/2 strength MS minerals containing 1.0 gm/1 KNO3, 0.01 mg/1 TH and 1.0 mg/1 GA 3 . In two or three weeks approximately 60% of the cultures produce 2-3 cm long shoots.
  • Protoplasts are isolated several times from the immature cotyledons obtained from greenhouse as well as field grown plants and from each experiment plating efficiencies in excess of 60% are obtained. Regenerable callus with multiple shoots and plants are recovered from most of the experiments. The calli seem to retain regeneration potential even after several months. In general, it took 4-5 months to regenerate plants from isolated protoplasts including rooting of the shoots.
  • Protoplast derived resistant calli are usually subcultured once every 2 weeks on MSB medium containing 0.5 mg/1 each of 2,4-D, BA, Kn and 500 mg/1 CH. After 4 subcultures, calli started becoming nodular. Selective subculturing of the nodular calli on MSB medium supplemented with 0.5 mg "1 each of BA, KN, ZT, 0.1 mg/1 of NAA, 0.2 mg/1 of GA 3 and 50 mg/1 of asparagine and glutamine, triggered the differentiation of green buds and leafy shoots after 4-6 or more subcultures.
  • a reproducible plant regeneration method from immature cotyledon protoplasts of a commercial Glycine max genotype has been established. It is used in combination with high efficiency stable transformation of protoplast derived soybean cells via electroporation using a chimeric gene encoding hygromycin resistance and /3-glucuronidase and subsequent recovery of transformed shoots to generate transgenic soybean plants.
  • Stable transformation of soybean immature cotyledon protoplasts is achieved following electroporation with plasmid DNA carrying a chimeric gene for j8-glucuronidase (GUS) and hygromycin phosphotransferase (Hpt) under the control of the cauliflower mosaic virus (CaMV) 35S promoter.
  • GUS j8-glucuronidase
  • Hpt hygromycin phosphotransferase
  • Transformed colonies are stringently selected by growing 15-day old protoplast derived cells in the presence of 40 ⁇ g/ml of hygromycin-B for 6 weeks. Over 93% of the resistant cells and colonies exhibited GUS activity, indicating that the two marker genes borne on a single plasmid are co-introduced and co-expressed at a very high frequency.
  • Cotyledons 3-4 x 2 mm size are cut transversely into 1-2 mm thick sections and plasmolyzed for 1 hr in CPW 13M. After two washings with CPW 13M approximately 1 gm of tissue is incubated in 15 ml of enzyme solution in two 60 x 15 mm plastic petri dishes for 4-6 hr in the dark with shaking at 50 rpm.
  • the enzyme solution consisted of 1.5% (w/v) Cellulase "Onozuka" R10, 0.2% Pectolyase Y23 dissolved in CPW 9M (pH 5.8) which is filter sterilized with a 0.2 ⁇ m pore size Nalgene filter unit.
  • Protoplasts varied in size from 20-35 ⁇ m in diameter.
  • the released protoplasts are filtered through 74 and 43 ⁇ m sieves and pelleted by centrifugation at 100 x g for 10 min.
  • Protoplasts are washed twice by resuspending in KP8 medium and then purified by floating over 23% (w/v) sucrose or 13% Ficoll in CPW salts (pH 5.8) overlaid with 2.0 ml of KP8 medium and centrifuged at 80 x g for 10 min.
  • Protoplasts are gently removed with a Pasteur pipette from the interface and washed once again with KP8 medium.
  • Protoplast viability is determined with fluorescein diacetate (FDA; 24) test. When protoplasts are floated on sucrose (23%) there is no deleterious effect on viability but when Ficoll (13%) is used, 100% of the protoplasts burst within a few hours.
  • Plasmid construct
  • the plasmid pZA300 contains a hygromycin phosphotransferase gene, known to confer hygromycin ⁇ resistance to plant cells together with the ⁇ -glucuronidase gene from pBI121 (Clonetech Laboratory, CA, USA). This chimeric gene is driven by the CaMV 35S promoter and has the nopaline synthase polyadenylation signal of pCaMVNeo. The plasmid is multiplied in the E. coli vector pTZlSR. Electroporation
  • Protoplasts are resuspended at the density of 1-2 x 10 6 /ml in electroporation buffer (10 mM HEPES (pH 7.2), 150 mM NaCl, 5 mM CaCl 2 2H 2 O and 0.2 M nannitol).
  • electroporation buffer 10 mM HEPES (pH 7.2), 150 mM NaCl, 5 mM CaCl 2 2H 2 O and 0.2 M nannitol.
  • One ml of protoplast suspension is chilled briefly in ice water, then heat-shocked at 45°C for 5 min prior to addition of 20 ⁇ g/ml supercoiled plasmid DNA.
  • polyethylene glycol (PEG, 6000 MW; 200 ⁇ l of 28% stock) dissolved in KP8 medium containing 120 mM MgCl 2 is mixed with the protoplast:DNA suspension.
  • the samples are transferred to precooled, presterilized 0.4 cm plastic cuvettes fitted with aluminum foil electrodes.
  • An electric field of 500 V/cm is applied by a single discharge of a 1000 ⁇ F capacitor that has been previously charged with an electrophoresis power supply.
  • Four aliquots are treated with plasmid DNA and other aliquots are either electroporated without DNA or treated with plasmid DNA without electroporation to serve as controls.
  • Hygromycin sensitivity is determined by adding varying concentrations of hygromycin at different time intervals, starting 2 hr after culture initiation to 20 days after culture. The selection pressure is maintained for 4 weeks by replacing the liquid medium containing the antibiotic periodically (after every 7 days).
  • Protoplast density is adjusted to 2.5 x 10 5 protoplasts/ml in KP8 medium containing 2% Ficoll (Type 400-DL), 40 mM MES and 2.5 ml aliquots are dispensed in each 60 x 15 mm plastic petri dish.
  • protoplasts are cultured in 25 ⁇ l drops (10 drops/petri dish).
  • the osmolarity of the medium is progressively reduced by addition of 0.25 ml or 10 ⁇ l drops of a 1:1 mixture of KP8 : K8 medium to each dish at day 7 and addition of an equal volume of a 1:2 mixture of KP8 : K8 at day 10.
  • Protoplasts are resuspended in molten KP8 medium containing 0.6 or 1.2% (w/v) Sea Plaque agarose (at a final density of 2 x 10 5 protoplasts/ml and 4 ml is plated in each 60 x 15 mm petri dish or dispensed as 25 ⁇ l droplets on die bottom of petri-dishes (10 drops/dish). After 6-8 hr each layer is cut into 4 sectors which are transferred to 90 x 15 mm petri dishes. The agarose sectors and droplets are bathed in 5.0 ml of KP8 liquid medium in each dish.
  • the developing protoplasts are allowed to grow for 2 weeks without selection.
  • the protoplast derived cells at the 2-4 cell stage, are washed with K8 medium and the selection is applied either in liquid K8 medium containing 40 ⁇ g/ml of hygromycin or the cells are resuspended in an equal volume of 1.2% Sea-plaque agarose (LMT, FMC Corp., ME, USA) gelled K8 medium containing 50 ⁇ g/ml hygromycin.
  • the solidified agarose cultures cut into small beads are submerged in 10 ml of K8 liquid medium containing 40 ⁇ g/ml hygromycin and kept on a gyratory shaker at 40 rpm.
  • the liquid selection medium is replaced every 7 days over a period of 6 weeks with K8 and MSB medium (MS basal salts + B 6 organics, using different volumes of each containing 40 ⁇ g/ml hygromycin.
  • the resistant colonies continued to grow and reached a size of 100-200 ⁇ m or more after 4 weeks in culture.
  • visible colonies developed in agarose beads and also in the surrounding liquid medium (released from the beads).
  • Transformed colonies are also recovered when hygromycin is applied only in the liquid medium indicating that both the selection methods can yield large number of resistant colonies.
  • the advantage of embedding the protoplasts in an agarose bead over the liquid selection method is that the culture medium can be replaced without disturbing the developing colonies.
  • the resistant colonies are easily distinguishable microscopically after 4 weeks of selection (6 weeks after electroporation) and could be scored visually after 6 weeks.
  • the maximum number of hygromycin resistant colonies (570-685) are recovered from 1-2 x 10 5 protoplasts electroporated with plasmid DNA.
  • Hygromycin resistant is maintained for at least four subcultures on selective medium and is not lost after growing on hygromycin lacking medium for two subcultures (14 days each) and then replating on hygromycin-containing medium. Regeneration
  • the resistant calli grew to 1-2 mm in size they are transferred to different media for callus reformation and shoot regeneration as follows.
  • the microcalli grew to 1-2 mm in size, they are transferred onto MSB medium supplemented with 0.5 mg/1 each of 2,4-D, BA, Kn, 500 mg/1 CH, 3% sucrose and 0.6% agar (with or without millipore 0.45 mm pore size filters).
  • MSB medium supplemented with 0.5 mg/1 each of 2,4-D, BA, Kn, 500 mg/1 CH, 3% sucrose and 0.6% agar (with or without millipore 0.45 mm pore size filters).
  • the dark green callus pieces with nodular structures are selectively transferred to MSB medium with various combinations of auxins and cytokinins for shoot formation.
  • Protoplasts are isolated several times from the immature cotyledons obtained from greenhouse as well as field grown plants and from each experiment plating efficiencies in excess of 60% are obtained. Regenerable callus with multiple shoots and plants are recovered from most of the experiments. The calli seem to retain regeneration potential even after several months. In general, it took us 4-5 months to regenerate plants from isolated protoplasts including rooting of the shoots.
  • the protoplast development reported here is similar to that reported earlier with other Glycine max genotypes where protoplast division occurred after 3-5 days with plating efficiencies of 37-41 % recorded after 7 days of culture.
  • the reasons for the enhanced protoplast development in the present communication with another commercial genotype remains unclear, but may be caused by the combined effects of modifications in protoplast culture methods as described in this report: (i) use of 40 mM MES buffer in the culture medium to stabilize the pH in the initial stages (the pH normally dropped from 5.8 to 3.9), (ii) use of 2% Ficoll (type 400 DL) in the culture medium to prevent protoplasts from adhering to the surface of petri dishes, (iii) immobilization of the protoplasts in 1.2% agarose and initial incubation in the dark, since protoplasts placed immediately after isolation in the light bleached and many burst after 3-5 days, (iv) plating small colonies on agar solidified MSB medium with millipore filter paper to possibly adsorb phenolic substances and to facilitate gas
  • GUS activity is measured by in situ staining of electroporated and non-electroporated protoplast derived cells or calli.
  • the GUS assay buffer solution contained 100 mM sodium phosphate (pH 7.0), 0.4% X-gluc, 5 mM potassium ferrocyanide, 5 mM potassium ferrocyanide and 0.1-1.0% triton X-100. Incubation is carried out at room temperature for 12- 24 hr.
  • DNA is prepared from twelve hygromycin resistant, GUS positive callus lines and from transgenic shoots from four of these clones by a hot phenol-lithium chloride procedure. At the LiCl precipitation step, the soluble fraction is saved and precipitated twice with ethanol. The DNA pellet is resuspended in distilled water and treated with 10 ⁇ g of RNAse to remove RNA from the sample.
  • DNA is digested with Hindlll or EcoRI, fractionated on 0.8% agarose and transferred to nitrocellulose filters.
  • the filters are hybridized with 32 P labelled 2 kb HindDI or 3 kb EcoRI fragment from pZA300 containing Hpt or GUS genes.
  • the filters are washed twice at room temperature in 2 x SSPE, 0.2% (w/v) SDS, once at 65°C and subsequently with 0.3 x SSPE, 0.1% (w/v) SDS for 1 hr at 65°C.
  • Hybridization is visualized by exposure of the membranes to Kodak XAR-5 film at -70°C with intensifying screens.
  • Protoplasts were isolated from immature cotyledons of Glycine max (L.) Merr. cv. Clark 63 and purified as described in Example 1. Protoplast viability was determined by staining with fluorescein diacetate (FDA; 29). Electroporation
  • the BAMHI - Kpnl T R fragment from pSaK5 (pSa4 vector containing Kpnl fragment 5 from pTil5955, S.K. Farrand, unpublished data) was cloned between the unique BAMHI - Kpnl sites of pUCD2001, resulting in the T-DNA vector pMAS2.
  • the insert includes T R , R c and part of the T L - region of pTil5955 (Baker, R.F. et al., (1983) Plant Mol. Biol. 2:335-350).
  • the T R -region contains ORFs 24, 25 and 26 corresponding to transcripts 2', 1' and 0', which are necessary for the biosynthesis of the mannityl opines (Ellis, J.G. et al., (1984) Mol. Gen. Genet. 195:466-473).
  • An NPTII gene fused to the 24S promoter of the CaMV was cloned into the Xbal site located in T R ORF 21 of pMAS2 (Baker, et al. supra).
  • Plasmid pUSD2001 also contains an Xbal site located in the pTAR par region (Galli, D.R.
  • Electroporated protoplasts were resuspended in Kp8 medium at densities from 2-4 x 10 5 /ml and were allowed to grow for two weeks without selection.
  • protoplast-derived cells On day 15 protoplast-derived cells, at the 2-4 cell stage, were washed with K8 medium and resuspended in an equal volume of 1.2% agarose medium (5 ml) containing 50 ⁇ g/ml kanamycin sulfate (Sigma).
  • the agarose cultures were cut into slices and allowed to grow for 6 weeks under the antibiotic selection in K8 and MSB medium as described in Example 1.
  • Neomycin phosphotransferase II (MPTII. assay
  • NPTII enzymatic activity was qualitatively detected in callus and leaves from individual transformed clones by a dot blot procedure. Tissue (100 mg fresh weight) extracts were made in 50 ⁇ l of extraction buffer. (See McDonnell, R.E. et al., (1987) Plant Mol. Biol.
  • mannityl opines For the detection of mannityl opines, 30-50 mg fresh weight of kanamycin-resistant callus, leaf or root tissue from individual plants was homogenized in 50 ⁇ l of 70% ethanol containing 5 ⁇ l of electrophoresis running buffer (formic acid:acetic acid: water, 3:6:91, v/v/v, pH 1.9). Tissue extract was spotted onto Whatman No. 3 filter paper and opine were separated and visualized as described by Savka et al., (1990) Phytopathology 80:503-508.
  • DNA was extracted from callus or leaf tissue essentially as described by Dellaporta et al., (1983) Plant Mol. Biol. Rep. 1:19-21. Ten ⁇ g of DNA digested with Xbal was electrophoresed in a 1.0% w/v agarose gel. The DNA was blotted onto a nitrocellulose filter and hybridized with the 32 P-labelled 1.7 kb Xbal fragment containing the NP ⁇ I gene from pMAS4. The filter was washed twice with a solution of 2X SSPE and 0.5% w/v SDS for 15 min at room temperature followed by 15 min at 68°C.
  • the filter was washed with 0.2X SSPE and 0.2% SDS for 15 min at 68°C with agitation, dried and exposed to X-ray film using an intensifying screen for 24 to 72 hr at -70°C.
  • the viability and division frequency of protoplasts subjected to electroporation was generally lower (55-60%) than that of untreated control protoplasts (10).
  • Electroporated protoplasts plated in agarose readily formed microcolonies within 8-10 days after transfer of the agarose slices to liquid medium containing 50 ⁇ g/ml kanamycin. On selection medium, the resistant colonies continued to proliferate and were easily distinguishable visually from the non-transformed cells after 6 weeks.
  • the maxiumum number of kanamycin resistant colonies recovered varied from 370 to 460 from 1 x 10 ⁇ protoplasts/ml in four experiments with each two individual treatments.
  • the concentration of selectable marker pCaMVNeo was increased from lO ⁇ g to 50 ⁇ g/ml in combination with lO ⁇ g/ml pMAS2 (in 50 ⁇ l TE buffer) this resulted in a slightly increased number of transformed colonies (185 to 245 recovered from 10 6 protoplasts upon selection on kanamycin medium).
  • the number of NPTII expressing colonies also increased (in one assay 18 of 20 colonies were NP ⁇ I positive showing 90% expression) but the fraction of opine expressing colonies did not change, remain nearly 65% of the selected cell clones.
  • NA molecule leads to a higher transformation frequency (85%) in comparison to co- transformation of two unlinked genes on separate plasmids (65% efficiency).
  • the co- transformation frequency reported here is higher than the frequencies of 25-59% described with other genes in Arabidopsis, maize and rice using PEG mediated transformation.
  • Example 1 the expression of linked chimeric genes (hygromycin phosphotransferase and jS-glucuronidase from the 7.7 kb plasmid pZA300, using 20 ⁇ g/ml) at the rate of more than 93%, by selecting the transformants with 40 g/ml of hygromycin in soybean is reported. However, using a larger plasmid (1" .
  • Kanamycin resistant plants were regenerated from Glycine max protoplasts electroporated with a plasmid vector containing linked chimeric genes with 85% co-expression. However, if the genes are on separate plasmids the efficiency of co-expression is reduced to about 65%. In selection of microcalli, we found that 75 ⁇ g/ml kanamycin should be used to prevent escapes. Both NPTII and all the genes from mannityl opine biosynthetic region of pMAS4 plasmids were present in different organs of transgenic plants as shown by enzyme and opine assays and by Southern hybridization indicating that nonchimerial plants are produced. EXAMPLE 3 Plant Material
  • Plants of fourteen cultivated Glycine max genotypes were grown in the field or under greenhouse conditions (16 hr supplemented light per day, 26+2°C).
  • Protoplasts were readily isolated from all fourteen soybean genotypes included in this study using 1.5% Cellulase and 0.2% Pectolyase within 4-6 hr of incubation. Usually about 5 x 10 6 protoplasts were released from one gm fresh weight of immature cotyledon tissue. However, the yield varied with the genotype and ranged from 1-8 x 10 6 protoplasts per gm fresh weight of tissue (Table 1). Viability of isolated protoplasts varied among experiments and genotypes, but was generally over 70% as indicated by FDA staining and protoplast morphology, except in Burlison and XP 3015 where the viability was 60-70% (Table 1).
  • the cultures were diluted with the D1-D9 medium, optimal for each genotype and K8 medium at a 1:1 ratio on day 8 and 14, 1:2 on days 21, and 28 and then K8 medium alone was added after 5 weeks as reported in Example 1.
  • K8 medium alone was added after 5 weeks as reported in Example 1.
  • cells of the genotype Jack divided faster than other genotypes and grew to 64 or more cells in 3 weeks of culture. Colonies that formed in agarose from all genotypes were organized and compact, whereas those formed in liquid medium were loose, unorganized and slow growing. After 5-6 weeks of culture, green microcalli (1-2 mm in size) could be observed.
  • Protoplasts of all the fourteen genotypes were resuspended at 1-5 x 10 5 protoplasts per ml and cultured in D1-D9 medium using liquid medium or embedding the protoplasts in 1.2% L P agarose. Plating efficiency was determined as the % o dividing protoplasts after 7 days of culture.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Un procédé de production d'espèces de soja transgéniques comprend les étapes suivantes: préparation de protoplastes à partir de cotylédons de soja; insertion par électroporation d'un ADN étranger dans les protoplastes préparés, ledit ADN comprenant un gène utile; culture des protoplastes électroplaqués dans un milieu pour induire la croissance des cellules, la formation de colonies et la génération de cal; et regénération de plantes à partir dudit cal.
PCT/US1992/002226 1991-03-29 1992-03-26 Production d'especes de soja transgeniques WO1992017598A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67739891A 1991-03-29 1991-03-29
US677,398 1991-03-29

Publications (1)

Publication Number Publication Date
WO1992017598A1 true WO1992017598A1 (fr) 1992-10-15

Family

ID=24718540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/002226 WO1992017598A1 (fr) 1991-03-29 1992-03-26 Production d'especes de soja transgeniques

Country Status (2)

Country Link
AU (1) AU1871492A (fr)
WO (1) WO1992017598A1 (fr)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1108058A1 (fr) * 1998-07-15 2001-06-20 Maxygen, Inc. Evolution de cellules et d'organismes entiers par recombinaison recursive de sequences
US6307127B1 (en) 1994-06-10 2001-10-23 Danisco A/S Transformation of guar
US6580019B1 (en) 2000-03-09 2003-06-17 Dekalb Genetics Corporation Non-reciprocal recombination-mediated transgene deletion in transgenic plants
WO2003099216A2 (fr) 2002-05-22 2003-12-04 Monsanto Technology Llc Desaturases d'acides gras provenant des champignons
US6750379B2 (en) 2000-03-09 2004-06-15 Dekalb Genetics Corporation Homologous recombination-mediated transgene alterations in plants
WO2005047479A2 (fr) 2003-11-12 2005-05-26 E.I. Dupont De Nemours And Company $g(d)-15 desaturases appropriees pour modifier les niveaux d'acides gras polyinsatures dans des plantes a graines oleagineuses et de la levure oleagineuse
WO2006012325A1 (fr) 2004-06-25 2006-02-02 E.I. Dupont De Nemours And Company Desaturase delta-8 et son utilisation dans la fabrication d'acides gras polyinsatures
US7148054B2 (en) 1997-01-17 2006-12-12 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
WO2007061742A1 (fr) 2005-11-23 2007-05-31 E. I. Du Pont De Nemours And Company Delta-9 elongases et leur utilisation pour produire de acides gras polyinsatures
WO2007127381A2 (fr) 2006-04-28 2007-11-08 E. I. Du Pont De Nemours And Company Delta-8 désaturase et son utilisation dans la fabrication d'acides gras polyinsaturés
WO2008014484A1 (fr) 2006-07-27 2008-01-31 University Of Maryland, Baltimore Récepteur cellulaire du facteur antiprolifération
WO2008063340A2 (fr) 2006-10-23 2008-05-29 E.I. Du Pont De Nemours And Company Delta-8 désaturases et utilisation de ces dernières dans la préparation d'acides gras polyinsaturés
WO2008128240A1 (fr) 2007-04-16 2008-10-23 E. I. Du Pont De Nemours And Company Delta 9 élongases et leur utilisation pour produire des acides gras polyinsaturés
WO2008147935A2 (fr) 2007-05-24 2008-12-04 E. I. Du Pont De Nemours And Company Genes dgat issus de yarrowia lipolytica permettant d'obtenir une production de lipides de reserve de graines accrue et des profils d'acides gras modifies dans du soja
EP2123764A1 (fr) 1999-05-14 2009-11-25 Dekalb Genetics Corporation Promoteur 2 et intron de l'actine du riz et procédés pour son utilisation
CN1995362B (zh) * 2006-12-28 2010-06-23 浙江工业大学 一种藤仓赤霉的电穿孔遗传转化方法
WO2010129347A2 (fr) 2009-04-28 2010-11-11 Vanderbilt University Compositions et procédés pour le traitement de troubles mettant en jeu une apoptose de cellules épithéliales
WO2011008510A2 (fr) 2009-06-30 2011-01-20 E. I. Du Pont De Nemours And Company Graines de plante avec niveaux de composé de stockage altérés, produits de construction apparentés et procédés mettant en jeu des gènes codant pour la pyrophosphatase cytosolique
WO2011050271A1 (fr) 2009-10-23 2011-04-28 Monsanto Technology Llc Méthodes et compositions pour l'expression de transgènes chez des plantes
WO2011053898A2 (fr) 2009-10-30 2011-05-05 E. I. Du Pont De Nemours And Company Plantes et graines ayant des taux modifiés de composés de stockage, produits de recombinaison apparentés et procédés faisant intervenir des gènes codant des protéines ayant une similarité avec des protéines bactériennes aldolase de type classe ii de l'acide 2,4-dihydroxy-hept-2-ene-1,7-dioïque
EP2336333A1 (fr) 2004-10-21 2011-06-22 Venganza Inc. Procédés et matériaux pour conférer de la résistance aux parasites et pathogènes de plantes
WO2011079005A1 (fr) 2009-12-24 2011-06-30 E.I. Dupont De Nemours And Company Séquences de protéines de la famille des o-acyl transférases liées à la membrane végétale et leurs utilisations pour modifier les compositions en acides gras
WO2011109618A2 (fr) 2010-03-03 2011-09-09 E. I. Du Pont De Nemours And Company Graines de plantes ayant des niveaux de composés de stockage modifiés, constructions apparentées et procédé mettant en œuvre des gènes qui codent pour des polypeptides à motif oxydoréductase
US8034791B2 (en) 2001-04-06 2011-10-11 The University Of Chicago Activation of Egr-1 promoter by DNA damaging chemotherapeutics
WO2011146754A1 (fr) 2010-05-19 2011-11-24 The Samuel Roberts Noble Foundation, Inc. Morphologie modifiée des feuilles et propriétés agronomiques améliorées dans des plantes
WO2012003207A2 (fr) 2010-07-01 2012-01-05 E. I. Du Pont De Nemours And Company Graines végétales aux taux modifiés de composé de stockage, constructions associées et procédés entraînant des gènes codant pour polypeptides pae et de type pae
WO2012009548A2 (fr) 2010-07-14 2012-01-19 E.I. Du Pont De Nemours And Company Produits protéiques mélangés de soja ayant des caractéristiques modifiées
WO2012027698A1 (fr) 2010-08-26 2012-03-01 E.I. Du Pont De Nemours And Company Delta-5 désaturases à motif hpgg et à motif hdash mutés et leur utilisation dans la fabrication d'acides gras polyinsaturés
US8158858B2 (en) 2007-04-04 2012-04-17 E I Du Pont De Nemours And Company Soybean promoters and flower-preferred expression thereof in transgenic plants
EP2441842A1 (fr) 2007-02-12 2012-04-18 E. I. du Pont de Nemours and Company Production d'acide arachidonique dans les plantes oléagineuses
WO2012061615A1 (fr) 2010-11-03 2012-05-10 The Samuel Roberts Noble Foundation, Inc. Facteurs de transcription pour la modification de la teneur en lignine dans des plantes
EP2471928A1 (fr) 2007-05-03 2012-07-04 E. I. du Pont de Nemours and Company Méthode d'obtention d'huile comprenant des acides gras polyinsaturés à base de semences trangéniques comprenant la désaturases delta-5 .
US8304616B2 (en) 2009-04-07 2012-11-06 University Of Georgia Research Foundation, Inc. Soybean variety G00-3209
EP2522216A1 (fr) 2003-02-12 2012-11-14 E. I. du Pont de Nemours and Company Production d'acides gras polyinsaturés à très longue chaîne dans des plantes à graines oléagineuses
WO2013026015A1 (fr) 2011-08-18 2013-02-21 Dana-Farber Cancer Institute, Inc. Pièges de ligand de muc1 pour l'utilisation dans le traitement de cancers
WO2013040213A1 (fr) 2011-09-13 2013-03-21 E. I. Du Pont De Nemours And Company Promoteur atps du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des végétaux
WO2013040259A1 (fr) 2011-09-13 2013-03-21 E. I. Du Pont De Nemours And Company Promoteur bbi3 du soja et son utilisation dans l'expression spécifique de l'embryon de gènes transgéniques dans des végétaux
EP2620502A2 (fr) 2008-05-23 2013-07-31 E. I. du Pont de Nemours and Company Gènes DGAT issus d'organismes oléagineux permettant une production accrue des lipides stockés dans les graines et une modification des profils d'acides gras dans les plantes oléagineuses
WO2013173535A2 (fr) 2012-05-18 2013-11-21 E. I. Du Pont De Nemours And Company Séquences de promoteur inductible pour expression régulée et procédés d'utilisation
WO2014007832A1 (fr) 2012-07-03 2014-01-09 E. I. Du Pont De Nemours And Company Huiles de friture respectueuses de l'environnement
WO2014025858A1 (fr) 2012-08-10 2014-02-13 E. I. Du Pont De Nemours And Company Promoteur adf1 du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des plantes
WO2014025860A1 (fr) 2012-08-10 2014-02-13 E. I. Du Pont De Nemours And Company Promoteur ccp1 du soja et son utilisation dans l'expression constitutive de gènes transgéniques chez des plantes
WO2014047653A2 (fr) 2012-09-24 2014-03-27 Seminis Vegetable Seeds, Inc. Procédés et compositions pour prolonger la durée de conservation de produits végétaux
US8759612B2 (en) 2007-05-17 2014-06-24 E. I. Du Pont De Nemours And Company Soybean promoters LTP2 and flower-preferred expression thereof in transgenic plants
WO2014150721A1 (fr) 2013-03-15 2014-09-25 E. I. Du Pont De Nemours And Company Promoteur d'agb1 du soja et son utilisation dans l'expression spécifique d'un tissu de gènes transgéniques dans des plantes
WO2014159477A1 (fr) 2013-03-14 2014-10-02 E. I. Du Pont De Nemours And Company Promoteur hrp1 du soja et son utilisation dans l'expression spécifique au tissu des gènes transgéniques dans des végétaux
US8993861B2 (en) 2007-05-17 2015-03-31 E I Du Pont De Nemours And Company Soybean promoters SC194 and flower-preferred expression thereof in transgenic plants
WO2015061158A1 (fr) 2013-10-21 2015-04-30 E. I. Du Pont De Nemours And Company Promoteur pip1 du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des végétaux
WO2015070009A2 (fr) 2013-11-08 2015-05-14 The Board Of Regents Of The University Of Texas System Anticorps vh4 dirigés contre les astrocytes et les neurones de la matière grise
WO2015070050A1 (fr) 2013-11-08 2015-05-14 Baylor Research Institute La localisation nucléaire de glp-1 stimule la régénération myocardique et entraîne la régression d'une insuffisance cardiaque
WO2015116753A1 (fr) 2014-01-29 2015-08-06 Dana-Farber Cancer Institute, Inc. Anticorps contre le domaine extracellulaire de muc1-c (muc1-c/ecd)
EP2944649A1 (fr) 2008-01-10 2015-11-18 Research Development Foundation Vaccins et diagnostics pour les ehrlichioses
WO2016044090A1 (fr) 2014-09-19 2016-03-24 E. I. Du Pont De Nemours And Company Promoteur if5a du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des végétaux
WO2016077624A1 (fr) 2014-11-12 2016-05-19 Nmc, Inc. Plantes transgéniques ayant une modulation sensible à l'oxydoréduction modifiée de pigments complexes d'antenne photosynthétique et leurs procédés de fabrication
WO2016134293A1 (fr) 2015-02-20 2016-08-25 Baylor College Of Medicine Inactivation de p63 pour le traitement de l'insuffisance cardiaque
WO2016160389A1 (fr) 2015-03-27 2016-10-06 E I Du Pont De Nemours And Company Promoteurs de gène d'arn nucléaire de petite taille u6 de soja et leur utilisation dans l'expression constitutive de gènes d'arn de petite taille dans des plantes
EP3115459A2 (fr) 2008-05-23 2017-01-11 E. I. du Pont de Nemours and Company Nouveaux gènes dgat permettant d'augmenter la production de lipides de stockage de semences et profils d'acides gras modifiés dans des plantes à graines oléagineuses
WO2017168348A1 (fr) 2016-03-31 2017-10-05 Baylor Research Institute Protéine 8 de type angiopoïétine (angptl8)
WO2018183878A1 (fr) 2017-03-31 2018-10-04 Pioneer Hi-Bred International, Inc. Éléments de modulation d'expression et leur utilisation
WO2019173125A1 (fr) 2018-03-09 2019-09-12 Pioneer Hi-Bred International, Inc. Compositions et procédés de modification d'acides gras du soja
WO2019226984A2 (fr) 2018-05-25 2019-11-28 Pioneer Hi-Bred International, Inc. Systèmes et procédés de sélection améliorée par modulation de taux de recombinaison
US12004476B2 (en) 2022-01-26 2024-06-11 Monsanto Technology Llc. Cotton variety 20R750B3XF

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU670316B2 (en) * 1992-07-27 1996-07-11 Pioneer Hi-Bred International, Inc. An improved method of (agrobacterium)-mediated transformation of cultured soybean cells

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Biological Abstracts BR39:75540 *
Biological Abstracts vol.86, 1988,ref.35775 *
Biological Abstracts vol.92,1991,ref.60363 *
BIOTECHNOLOGY vol. 3, no. 12, December 1985, pages 1099 - 1103; SHILLITO, R. D., ET AL.: 'High efficiency direct gene transfer to plants' *
CHEMICAL ABSTRACTS, vol. 99, 1983, Columbus, Ohio, US; abstract no. 209211, LU, D. Y., ET AL.: 'Isolation and sustained division of protoplasts from cotyledons of seedlings and immature seeds of Glycine max L.' *
PLANT CELL REPORTS vol. 10, no. 1, 1991, pages 39 - 43; DHIR, S.K., ET AL.: 'Plantlet regeneration from immature cotyledon protoplasts of soybean Glycine-max L.' *
PLANT CELL REPORTS vol. 10, no. 2, 1991, pages 97 - 101; DHIR, S. K., ET AL.: 'Regeneration of transformed shoots from electroporated soybean Glycine-max L. merr. protoplasts' *
PLANT CELL REPORTS vol. 7, no. 5, 1988, pages 348 - 351; WEI, Z-M, ET AL.: 'Plant regeneration from protoplasts of soybean Glycine-max L.' *
PLANT PHYSIOLOGY. vol. 99, May 1992, ROCKVILLE, MD, USA. pages 81 - 88; DHIR, S. K., ET AL.: 'Regeneration of transgenic soybean (Glycine max) plants from electroporated protoplasts' *
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 84, June 1987, WASHINGTON US pages 3962 - 3966; CHRISTOU, P., ET AL.: 'Stable transformation of soybean by electroporation and root formation from transformed cells' *

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307127B1 (en) 1994-06-10 2001-10-23 Danisco A/S Transformation of guar
US7148054B2 (en) 1997-01-17 2006-12-12 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
US6716631B1 (en) 1997-01-17 2004-04-06 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
US8076138B2 (en) 1997-01-17 2011-12-13 Codexis Mayflower Holdings, Llc Evolution of whole cells and organisms by recursive sequence recombination
US7629170B2 (en) 1997-01-17 2009-12-08 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
US8377681B2 (en) 1998-01-16 2013-02-19 Codexis Mayflower Holdings, Llc Evolution of whole cells and organisms by recursive sequence recombination
EP1707641A3 (fr) * 1998-07-15 2006-12-27 Maxygen, Inc. Evolution de cellules et d'organismes entiers par recombinaison récursive de séquences
EP1707641A2 (fr) * 1998-07-15 2006-10-04 Maxygen, Inc. Evolution de cellules et d'organismes entiers par recombinaison récursive de séquences
EP1108058A4 (fr) * 1998-07-15 2003-03-05 Maxygen Inc Evolution de cellules et d'organismes entiers par recombinaison recursive de sequences
EP1108058A1 (fr) * 1998-07-15 2001-06-20 Maxygen, Inc. Evolution de cellules et d'organismes entiers par recombinaison recursive de sequences
EP2123764A1 (fr) 1999-05-14 2009-11-25 Dekalb Genetics Corporation Promoteur 2 et intron de l'actine du riz et procédés pour son utilisation
US6750379B2 (en) 2000-03-09 2004-06-15 Dekalb Genetics Corporation Homologous recombination-mediated transgene alterations in plants
US6580019B1 (en) 2000-03-09 2003-06-17 Dekalb Genetics Corporation Non-reciprocal recombination-mediated transgene deletion in transgenic plants
US7919679B2 (en) 2000-03-09 2011-04-05 Monsanto Technology Llc Homologous recombination-mediated transgene deletion in plant cells
US8247232B2 (en) 2000-03-09 2012-08-21 Monsanto Technology Llc Homologous recombination-mediated transgene deletion in plant cells
US7838295B2 (en) 2000-03-09 2010-11-23 Monsanto Technology Llc Homologous recombination mediated transgene deletion in plant cells
US8034791B2 (en) 2001-04-06 2011-10-11 The University Of Chicago Activation of Egr-1 promoter by DNA damaging chemotherapeutics
WO2003099216A2 (fr) 2002-05-22 2003-12-04 Monsanto Technology Llc Desaturases d'acides gras provenant des champignons
EP2522216A1 (fr) 2003-02-12 2012-11-14 E. I. du Pont de Nemours and Company Production d'acides gras polyinsaturés à très longue chaîne dans des plantes à graines oléagineuses
WO2005047479A2 (fr) 2003-11-12 2005-05-26 E.I. Dupont De Nemours And Company $g(d)-15 desaturases appropriees pour modifier les niveaux d'acides gras polyinsatures dans des plantes a graines oleagineuses et de la levure oleagineuse
WO2006012325A1 (fr) 2004-06-25 2006-02-02 E.I. Dupont De Nemours And Company Desaturase delta-8 et son utilisation dans la fabrication d'acides gras polyinsatures
EP2336333A1 (fr) 2004-10-21 2011-06-22 Venganza Inc. Procédés et matériaux pour conférer de la résistance aux parasites et pathogènes de plantes
WO2007061742A1 (fr) 2005-11-23 2007-05-31 E. I. Du Pont De Nemours And Company Delta-9 elongases et leur utilisation pour produire de acides gras polyinsatures
WO2007127381A2 (fr) 2006-04-28 2007-11-08 E. I. Du Pont De Nemours And Company Delta-8 désaturase et son utilisation dans la fabrication d'acides gras polyinsaturés
EP2405012A1 (fr) 2006-04-28 2012-01-11 E.I. Du Pont De Nemours And Company Désaturase delta-8 et son utilisation dans la fabrication d'acides gras polyinsaturés
WO2008014484A1 (fr) 2006-07-27 2008-01-31 University Of Maryland, Baltimore Récepteur cellulaire du facteur antiprolifération
WO2008063340A2 (fr) 2006-10-23 2008-05-29 E.I. Du Pont De Nemours And Company Delta-8 désaturases et utilisation de ces dernières dans la préparation d'acides gras polyinsaturés
EP2390338A1 (fr) 2006-10-23 2011-11-30 E. I. du Pont de Nemours and Company Delta-8-désaturases et leur utilisation dans la fabrication d'acides gras polyinsaturés
EP2390339A1 (fr) 2006-10-23 2011-11-30 E. I. du Pont de Nemours and Company Delta-8-désaturases et leur utilisation dans la fabrication d'acides gras polyinsaturés
CN1995362B (zh) * 2006-12-28 2010-06-23 浙江工业大学 一种藤仓赤霉的电穿孔遗传转化方法
EP2441843A1 (fr) 2007-02-12 2012-04-18 E. I. du Pont de Nemours and Company Production d'acide arachidonique dans les plantes oléagineuses
EP2441842A1 (fr) 2007-02-12 2012-04-18 E. I. du Pont de Nemours and Company Production d'acide arachidonique dans les plantes oléagineuses
US8158858B2 (en) 2007-04-04 2012-04-17 E I Du Pont De Nemours And Company Soybean promoters and flower-preferred expression thereof in transgenic plants
WO2008128240A1 (fr) 2007-04-16 2008-10-23 E. I. Du Pont De Nemours And Company Delta 9 élongases et leur utilisation pour produire des acides gras polyinsaturés
EP2471928A1 (fr) 2007-05-03 2012-07-04 E. I. du Pont de Nemours and Company Méthode d'obtention d'huile comprenant des acides gras polyinsaturés à base de semences trangéniques comprenant la désaturases delta-5 .
US8993861B2 (en) 2007-05-17 2015-03-31 E I Du Pont De Nemours And Company Soybean promoters SC194 and flower-preferred expression thereof in transgenic plants
US8759612B2 (en) 2007-05-17 2014-06-24 E. I. Du Pont De Nemours And Company Soybean promoters LTP2 and flower-preferred expression thereof in transgenic plants
EP2730656A1 (fr) 2007-05-24 2014-05-14 E. I. du Pont de Nemours and Company Farine de soja de semences avec gènes DGAT isus de yarrowia lipolytica pour une production accrue des lipides de stockage dans une graine et des profils d'acides gras modifiés dans le soja
WO2008147935A2 (fr) 2007-05-24 2008-12-04 E. I. Du Pont De Nemours And Company Genes dgat issus de yarrowia lipolytica permettant d'obtenir une production de lipides de reserve de graines accrue et des profils d'acides gras modifies dans du soja
EP2944649A1 (fr) 2008-01-10 2015-11-18 Research Development Foundation Vaccins et diagnostics pour les ehrlichioses
EP3115459A2 (fr) 2008-05-23 2017-01-11 E. I. du Pont de Nemours and Company Nouveaux gènes dgat permettant d'augmenter la production de lipides de stockage de semences et profils d'acides gras modifiés dans des plantes à graines oléagineuses
EP2620500A2 (fr) 2008-05-23 2013-07-31 E. I. du Pont de Nemours and Company Gènes DGAT issus d'organismes oléagineux permettant une production accrue des lipides stockés dans les graines et une modification des profils d'acides gras dans les plantes oléagineuses
EP2620501A2 (fr) 2008-05-23 2013-07-31 E. I. du Pont de Nemours and Company Gènes DGAT issus d'organismes oléagineux permettant une production accrue des lipides stockés dans les graines et une modification des profils d'acides gras dans les plantes oléagineuses
EP2620502A2 (fr) 2008-05-23 2013-07-31 E. I. du Pont de Nemours and Company Gènes DGAT issus d'organismes oléagineux permettant une production accrue des lipides stockés dans les graines et une modification des profils d'acides gras dans les plantes oléagineuses
US8304616B2 (en) 2009-04-07 2012-11-06 University Of Georgia Research Foundation, Inc. Soybean variety G00-3209
WO2010129347A2 (fr) 2009-04-28 2010-11-11 Vanderbilt University Compositions et procédés pour le traitement de troubles mettant en jeu une apoptose de cellules épithéliales
EP3061766A1 (fr) 2009-04-28 2016-08-31 Vanderbilt University Compositions et procédés pour le traitement de troubles associés à l'apoptose des cellules épithéliales
WO2011008510A2 (fr) 2009-06-30 2011-01-20 E. I. Du Pont De Nemours And Company Graines de plante avec niveaux de composé de stockage altérés, produits de construction apparentés et procédés mettant en jeu des gènes codant pour la pyrophosphatase cytosolique
WO2011050271A1 (fr) 2009-10-23 2011-04-28 Monsanto Technology Llc Méthodes et compositions pour l'expression de transgènes chez des plantes
WO2011053898A2 (fr) 2009-10-30 2011-05-05 E. I. Du Pont De Nemours And Company Plantes et graines ayant des taux modifiés de composés de stockage, produits de recombinaison apparentés et procédés faisant intervenir des gènes codant des protéines ayant une similarité avec des protéines bactériennes aldolase de type classe ii de l'acide 2,4-dihydroxy-hept-2-ene-1,7-dioïque
WO2011079005A1 (fr) 2009-12-24 2011-06-30 E.I. Dupont De Nemours And Company Séquences de protéines de la famille des o-acyl transférases liées à la membrane végétale et leurs utilisations pour modifier les compositions en acides gras
WO2011109618A2 (fr) 2010-03-03 2011-09-09 E. I. Du Pont De Nemours And Company Graines de plantes ayant des niveaux de composés de stockage modifiés, constructions apparentées et procédé mettant en œuvre des gènes qui codent pour des polypeptides à motif oxydoréductase
EP2860254A1 (fr) 2010-03-03 2015-04-15 E. I. du Pont de Nemours and Company Graines de plantes avec des niveaux de composé de stockage modifiés, constructions associées et procédés impliquant des gènes codant pour des polypeptides de motif d'oxydoréductase
EP2865761A1 (fr) 2010-03-03 2015-04-29 E. I. Du Pont de Nemours and Company Graines de plantes avec des niveaux de composé de stockage modifiés, constructions associées et procédés impliquant des gènes codant pour des polypeptides de motif d'oxydoréductase
WO2011146754A1 (fr) 2010-05-19 2011-11-24 The Samuel Roberts Noble Foundation, Inc. Morphologie modifiée des feuilles et propriétés agronomiques améliorées dans des plantes
WO2012003207A2 (fr) 2010-07-01 2012-01-05 E. I. Du Pont De Nemours And Company Graines végétales aux taux modifiés de composé de stockage, constructions associées et procédés entraînant des gènes codant pour polypeptides pae et de type pae
WO2012009548A2 (fr) 2010-07-14 2012-01-19 E.I. Du Pont De Nemours And Company Produits protéiques mélangés de soja ayant des caractéristiques modifiées
WO2012027698A1 (fr) 2010-08-26 2012-03-01 E.I. Du Pont De Nemours And Company Delta-5 désaturases à motif hpgg et à motif hdash mutés et leur utilisation dans la fabrication d'acides gras polyinsaturés
WO2012061615A1 (fr) 2010-11-03 2012-05-10 The Samuel Roberts Noble Foundation, Inc. Facteurs de transcription pour la modification de la teneur en lignine dans des plantes
WO2013026015A1 (fr) 2011-08-18 2013-02-21 Dana-Farber Cancer Institute, Inc. Pièges de ligand de muc1 pour l'utilisation dans le traitement de cancers
WO2013040259A1 (fr) 2011-09-13 2013-03-21 E. I. Du Pont De Nemours And Company Promoteur bbi3 du soja et son utilisation dans l'expression spécifique de l'embryon de gènes transgéniques dans des végétaux
WO2013040213A1 (fr) 2011-09-13 2013-03-21 E. I. Du Pont De Nemours And Company Promoteur atps du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des végétaux
WO2013173535A2 (fr) 2012-05-18 2013-11-21 E. I. Du Pont De Nemours And Company Séquences de promoteur inductible pour expression régulée et procédés d'utilisation
WO2014007832A1 (fr) 2012-07-03 2014-01-09 E. I. Du Pont De Nemours And Company Huiles de friture respectueuses de l'environnement
WO2014025858A1 (fr) 2012-08-10 2014-02-13 E. I. Du Pont De Nemours And Company Promoteur adf1 du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des plantes
WO2014025860A1 (fr) 2012-08-10 2014-02-13 E. I. Du Pont De Nemours And Company Promoteur ccp1 du soja et son utilisation dans l'expression constitutive de gènes transgéniques chez des plantes
WO2014047653A2 (fr) 2012-09-24 2014-03-27 Seminis Vegetable Seeds, Inc. Procédés et compositions pour prolonger la durée de conservation de produits végétaux
EP3622810A1 (fr) 2012-09-24 2020-03-18 Seminis Vegetable Seeds, Inc. Procédés et compositions pour prolonger la durée de conservation de produits végétaux
WO2014159477A1 (fr) 2013-03-14 2014-10-02 E. I. Du Pont De Nemours And Company Promoteur hrp1 du soja et son utilisation dans l'expression spécifique au tissu des gènes transgéniques dans des végétaux
WO2014150721A1 (fr) 2013-03-15 2014-09-25 E. I. Du Pont De Nemours And Company Promoteur d'agb1 du soja et son utilisation dans l'expression spécifique d'un tissu de gènes transgéniques dans des plantes
WO2015061158A1 (fr) 2013-10-21 2015-04-30 E. I. Du Pont De Nemours And Company Promoteur pip1 du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des végétaux
WO2015070050A1 (fr) 2013-11-08 2015-05-14 Baylor Research Institute La localisation nucléaire de glp-1 stimule la régénération myocardique et entraîne la régression d'une insuffisance cardiaque
WO2015070009A2 (fr) 2013-11-08 2015-05-14 The Board Of Regents Of The University Of Texas System Anticorps vh4 dirigés contre les astrocytes et les neurones de la matière grise
WO2015116753A1 (fr) 2014-01-29 2015-08-06 Dana-Farber Cancer Institute, Inc. Anticorps contre le domaine extracellulaire de muc1-c (muc1-c/ecd)
WO2016044090A1 (fr) 2014-09-19 2016-03-24 E. I. Du Pont De Nemours And Company Promoteur if5a du soja et son utilisation dans l'expression constitutive de gènes transgéniques dans des végétaux
WO2016077624A1 (fr) 2014-11-12 2016-05-19 Nmc, Inc. Plantes transgéniques ayant une modulation sensible à l'oxydoréduction modifiée de pigments complexes d'antenne photosynthétique et leurs procédés de fabrication
US11111497B2 (en) 2014-11-12 2021-09-07 Nmc, Inc. Transgenic plants with engineered redox sensitive modulation of photosynthetic antenna complex pigments and methods for making the same
US10745708B2 (en) 2014-11-12 2020-08-18 Nmc, Inc. Transgenic plants with engineered redox sensitive modulation of photosynthetic antenna complex pigments and methods for making the same
WO2016134293A1 (fr) 2015-02-20 2016-08-25 Baylor College Of Medicine Inactivation de p63 pour le traitement de l'insuffisance cardiaque
WO2016160389A1 (fr) 2015-03-27 2016-10-06 E I Du Pont De Nemours And Company Promoteurs de gène d'arn nucléaire de petite taille u6 de soja et leur utilisation dans l'expression constitutive de gènes d'arn de petite taille dans des plantes
EP3553178A1 (fr) 2015-03-27 2019-10-16 E. I. du Pont de Nemours and Company Promoteurs de petit gène d'arn nucléaire u6 de graines de soja et leur utilisation dans l'expression de constitutive de petits gènes dans des plantes
WO2017168348A1 (fr) 2016-03-31 2017-10-05 Baylor Research Institute Protéine 8 de type angiopoïétine (angptl8)
WO2018183878A1 (fr) 2017-03-31 2018-10-04 Pioneer Hi-Bred International, Inc. Éléments de modulation d'expression et leur utilisation
WO2019173125A1 (fr) 2018-03-09 2019-09-12 Pioneer Hi-Bred International, Inc. Compositions et procédés de modification d'acides gras du soja
WO2019226984A2 (fr) 2018-05-25 2019-11-28 Pioneer Hi-Bred International, Inc. Systèmes et procédés de sélection améliorée par modulation de taux de recombinaison
US12004476B2 (en) 2022-01-26 2024-06-11 Monsanto Technology Llc. Cotton variety 20R750B3XF

Also Published As

Publication number Publication date
AU1871492A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
WO1992017598A1 (fr) Production d'especes de soja transgeniques
Mathur et al. Gene identification with sequenced T‐DNA tags generated by transformation of Arabidopsis cell suspension
DK175510B1 (da) Fremgangsmåde til transformation af plantearveanlæg
Cabrera-Ponce et al. Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method
Rotino et al. Transformation of eggplant (Solanum melongena L.) using a binary Agrobacterium tumefaciens vector
Vergne et al. Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush
ZA200105743B (en) Soybean transformation method.
Mathur et al. A simple method for isolation, liquid culture, transformation and regeneration of Arabidopsis thaliana protoplasts
Taylor et al. Production of embryogenic tissues and regeneration of transgenic plants in cassava (Manihot esculenta Crantz)
Kim et al. Highly efficient plant regeneration and Agrobacterium-mediated transformation of Helianthus tuberosus L.
Soh et al. Morphogenesis in plant tissue cultures
Komari et al. Efficient selection of somatic hybrids in Nicotiana tabacum L. using a combination of drug-resistance markers introduced by transformation
US6133035A (en) Method of genetically transforming banana plants
WO1998013503A1 (fr) Une plante, et technique de modification
Davey et al. Transformation of Solarium and Nicotiana Species using an Ri Plasmid Vector
US6459017B1 (en) Iris transformation method
EP0262666A1 (fr) Procédé de fusion de protoplastes de tomates et régéneration de plantes hybrides en résultant
Hodges et al. Transformation and Regeneration of Rice
Curtis et al. A stable transformation system for the ornamental plant, Datura meteloides DC
Pugliesi et al. Genetic transformation by Agrobacterium tumefaciens in the interspecific hybrid Helianthus annuus× Helianthus tuberosus
US7057090B1 (en) Agrobacterium-mediated transformation of turfgrass
WO1997042332A2 (fr) Cellules de manioc transformees genetiquement et regeneration des plants de manioc transgeniques
Peng et al. Co-transformation of Indica rice via polyethylene glycol-mediated DNA uptake
Widholm et al. Leguminous plants
US20240376484A1 (en) Transforming cannabaceae cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA CS FI HU JP KP KR LK MG MN MW NO PL RO RU SD US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU MC ML MR NL SE SN TD TG

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase