WO1983001675A1 - High frequency heating device - Google Patents
High frequency heating device Download PDFInfo
- Publication number
- WO1983001675A1 WO1983001675A1 PCT/JP1982/000165 JP8200165W WO8301675A1 WO 1983001675 A1 WO1983001675 A1 WO 1983001675A1 JP 8200165 W JP8200165 W JP 8200165W WO 8301675 A1 WO8301675 A1 WO 8301675A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- heating
- humidity
- frequency
- relative humidity
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/642—Cooling of the microwave components and related air circulation systems
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6402—Aspects relating to the microwave cavity
- H05B6/6405—Self-cleaning cavity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6447—Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
- H05B6/645—Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6447—Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
- H05B6/6458—Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using humidity or vapor sensors
Definitions
- the present invention relates to a high-frequency heating apparatus for automatically performing cooking by detecting a change in the humidity of the atmosphere in the refrigerator caused by heating of food, in particular, relative humidity and temperature are detected by a single detector. It relates to a high-frequency heating device that performs heating cooking by automatically controlling the heating time by detecting changes in absolute humidity by converting it into humidity.
- microwave ovens that can perform automatic cooking have emerged and are in the limelight.
- a temperature sensor and a humidity sensor are provided, and the temperature of the atmosphere in the heating cabinet or the exhaust section is detected by the temperature sensor, and the detection signal is output.
- the heating heater By controlling the heating heater to keep the temperature of the intake air into the heating chamber constant, the atmosphere in the heating tongue is kept at a constant temperature, and in this state, a humidity sensor is used.
- a configuration is considered in which the amount of change in 0 is detected and the oscillation output of the magnetron is controlled by the detection signal.
- FIG. 1 The principle of a general high-frequency heating device that performs automatic cooking in this manner will be described with reference to FIGS. 1 and 2.
- FIG. 1 The principle of a general high-frequency heating device that performs automatic cooking in this manner will be described with reference to FIGS. 1 and 2.
- FIG. 1 The principle of a general high-frequency heating device that performs automatic cooking in this manner will be described with reference to FIGS. 1 and 2.
- FIG. 1 The principle of a general high-frequency heating device that performs automatic cooking in this manner will be described with reference to FIGS. 1 and 2.
- Rh ' is the relative humidity change due to heating.
- T is the temperature rise
- a h is the change in absolute humidity obtained from and T
- t is the heating time.
- the steam generated by heating food gradually rises with heating. Then, the amount of steam generated after the food reaches 1 oo ° c is determined by the heating heat. This is for the following reason.
- O is a heating room
- Y is a container
- W is water
- Q is air volume.
- a container Y containing water W is placed in a heating chamber O that forcibly sucks and exhausts the air volume Q, and when the heating heat P is added, the water W eventually boils.
- the amount of steam is 0.0133 U / mi. O If the amount of heat applied is constant, the amount of steam generated per unit time is also constant.
- the absolute humidity of the heating inception converts the relative humidity R h from the value of the relative humidity sensor and a temperature sensor in the vicinity of the first drawing by] ?, exhaust port absolute humidity A h Similarly, the relative humidity is converted into absolute humidity from the relative humidity Rh and temperature ⁇ that change with heating, and the difference between the absolute humidity at the start of heating and the temperature at the start of heating depends on the amount of heating heat and food type.
- 0MPI Detects the time when the set value, which is the change in absolute humidity, is reached.
- the counting time until the detection of ⁇ ⁇ is multiplied by the food-specific heating coefficient ⁇ , and the product time is continuously heated after the lapse of time. This is because the time is already considered to be approximately proportional to the quantity of food, so it can be heated automatically, regardless of the quantity of food. If the detection of this time "3 ⁇ " is performed only by relative humidity, the detection error will be generated due to the heat generated by the supply of heating heat (magnetron, high pressure, etc. in the electron range).
- each sensor In order to determine the amount of change between 1 and humidity based on relative humidity and temperature, each sensor is required to be highly accurate and expensive.
- the present invention detects exhaust gas temperature and humidity and produces water vapor generated from food.
- Another object of the present invention is to reduce the probability of occurrence of a failure by forming a temperature sensor and a humidity sensor with a single element.
- Still another object of the present invention is to provide a high-frequency heating apparatus having high cooking performance by eliminating the detection errors by bringing the detection positions of a temperature sensor and a humidity sensor very close to each other.
- the high-frequency heating device of the present invention is to provide a high-frequency heating apparatus having high cooking performance by eliminating the detection errors by bringing the detection positions of a temperature sensor and a humidity sensor very close to each other.
- a heating chamber for storing hot food for storing hot food, a high-frequency oscillator for supplying high-frequency power to the heating chamber, a control circuit including a micro-converter for controlling the high-frequency oscillator, and communication with the heating chamber or the heating chamber And a temperature / humidity detector configured with a single sensing element that detects temperature and humidity, and is connected to the heating chamber or the heating chamber by the temperature / 0 humidity detector.
- a temperature / humidity detector configured with a single sensing element that detects temperature and humidity, and is connected to the heating chamber or the heating chamber by the temperature / 0 humidity detector.
- the circuit is configured to control the high-frequency oscillator for automatic cooking.
- FIG. 1 (a), (b), and (c) are characteristic diagrams of each factor to show the principle of the automatic heating control method based on absolute humidity detection
- Fig. 2 is a cutaway view for explaining the principle.
- FIG. 3 is an external perspective view of a sensing element used in the high-frequency heating device of the present invention
- FIG. 4 is an equivalent circuit diagram of the sensing element
- FIG. 5 is a temperature-sensitive characteristic diagram of the sensing element
- FIG. 8 is a block diagram of a circuit for measuring temperature and relative humidity from the temperature- and humidity-sensitive characteristics of the sensing element
- FIG. 8 is an embodiment of the present invention.
- FIGS. 9 (a) to 9 (g) are output waveform diagrams of each block shown in FIG. S
- FIG. 10 is a block diagram of the device.
- FIG. 11 is an external perspective view of a temperature / relative humidity detector
- FIG. 11 is an external perspective view showing another embodiment of the detector
- FIG. 12 is a control circuit of a high-frequency heating device according to another embodiment of the present invention Q.
- Block diagram, the first 3 view (a) ⁇ (g) is an output waveform diagram of each block shown in the first 2 FIG. BEST MODE FOR CARRYING OUT THE INVENTION
- the first embodiment uses a porous dielectric ceramic, which is a metal oxide based on barium titanate ⁇ -nitium, as a sensor material. Will be described.
- the sensing element 1 is a porous dielectric ceramic; electrodes 3 are applied to both sides of the sensing element 1; and a lead wire 4 is bonded to the electrode 3 o
- FIG. 4 shows an equivalent circuit of the sensing element 1.
- C is the capacitance of the bulk of the porous dielectric ceramic 2 at a certain temperature, which occurs in the capacitor 5, and R is the value of the capacitance in an atmosphere with a certain relative humidity.
- the time constant is obtained by measuring the time required for the divided voltage to reach a predetermined reference voltage Vref. That is, at the same time that the pulse voltage is applied, the time measurement unit 1O starts counting the clock signal from the clock source oscillation unit 9 and determines whether the divided voltage has reached the base voltage ⁇ ef. The judgment signal is input to the time measuring unit 10 by the voltage comparator 11 and the counting is stopped. As a result, the time constant is obtained, and the capacitance C of the detection element 1 can be measured.
- the minute EE voltage and time constant are input to computing unit 12 and Degree is required.
- Figure 8 shows a microwave oven using the above-mentioned temperature and humidity measurement system.
- FIG. 9 (a) and 9 (b) the output of the temperature / relative humidity measuring unit 18 is shown as i o, and FIG. 9 (a) shows the temperature and FIG. 9 (b) shows the relative humidity. Also
- Figure (c) shows the output of the absolute humidity converter 19
- Figure (d) shows the output of the initial value holder SO
- Figure (e) shows the output of the subtractor 21
- Figure (f) shows the comparator.
- the output of 23 and the output of the heating control circuit 24 are shown in FIG.
- the heating time 5 control circuit 24 operates and starts counting time. This allows
- the magnetron drive circuit 25 is operated to oscillate the magnetron 16 to start heating. At the same time, the relative humidity is converted to absolute humidity from the temperature and relative humidity at that time, and the value is held in the initial value holder SO (Fig. 9-d).
- the heating time control circuit 24 receives the signal of the comparator 23, the heating time control circuit 24 detects the detection time from the start of heating to the output of Vf and the heating time coefficient ⁇ ⁇ ⁇ ⁇ ⁇ previously determined according to the type of food and the type of cooking. Multiplied by
- the temperature and humidity detector of the present embodiment has the following functions to accurately detect the temperature.
- the temperature / relative humidity detector 17 is always exposed to the steam, oil, and oil fumes generated by the heated food 14 due to heating, so the surface of the detection element 1 becomes dirty. .
- the elements are heated to 4 °° C or more, the elements are decomposed and recovered to the initial state.
- the temperature and relative humidity detector 1 ⁇ in this embodiment is 3 ⁇ 4 configuration Remind as to the 1 O FIG. 1 is a sensing element, 2a is a heater, 28 is a heater electrode, and 29 is an electrode of the sensing element 1.
- Uni heater 2 7 by surrounding the sensing element 1 is fixed to the support plate 3 Rei_5 of 1 'sheets provided. Another embodiment of this sensing element 1 is shown in FIG.
- a surface heater 31 is provided on one surface of the detection element 1 .
- Heater electrode 3 2 Ru configuration der which is fixed to the support plate 3 4 of one serves likewise the hand electrode sensing element 1.
- the support plate 3 4 is grounded by the ground terminal 3 5.
- the temperature and relative humidity detector 17 is composed of a single sensing element 1 , the measurement error due to the detection position can be almost reduced, and more accurate cooking can be performed. .
- the sensing element 1 can be heated by conduction heat, and the heating is performed with less power so as to be heated by radiant heat. be able to.
- the steam generated from 14 is always exhausted through the exhaust section 26, so that the change in relative humidity due to the steam generated from the food 14 to be heated can be surely catched.
- V Ah depends on the type of food to be heated and the type of cooking! )
- This embodiment is different from the above-described embodiment in that the heating chamber is controlled to a predetermined temperature while detecting the amount of change in the absolute humidity and controlling the oscillation output.
- 20 26 is an exhaust unit, 38 is an intake unit, 37 is a resistance element, and 36 is a resistance element control unit.
- FIGS. 13 (a) and 13 (b) show the respective output waveforms in FIG. 12 ⁇
- FIGS. 13 (a) and 13 (b) show the outputs of the temperature / relative humidity measuring unit 18].
- (a) shows the temperature
- (b) shows the relative humidity.
- Figure (c) shows the absolute humidity change.
- FIG. (d) shows output of the initial value retainer 2 O, force
- FIG. (E) is
- the output of the subtracter 21 is shown in FIG. 3 (f), the output of the comparator 23 is shown, and the diagram (g) is the output of the heating time control circuit 24.
- resistive element 3 ⁇ of O-off controls row heating chamber 1 3 inside thus set temperature the temperature of the exhaust to the input signal, the initial value storage unit A signal is output to the 2 O and heating time control section 24.
- the relative humidity at the start of heating is determined by the absolute humidity converter 19 together with the preset temperature.
- the initial absolute humidity is obtained and stored in the initial value holder 2 O (Fig. 13 -d) o Relative temperature gradually changes as heating progresses and is successively converted to absolute temperature value V Ail (Fig. 13- c) o Converted absolute humidity value V All to initial value V Ail Is subtracted by the subtractor 21.
- the output of the subtractor 2 is compared with a set value V Ah output from set value generator 2 2. (First 3 Figure - e) 0 At this time, setting heating heat, food etc. in good more numerical You can choose from
- a signal V f is output from the comparator 23 (FIG. 13—f).
- the heating time control circuit 24 Upon receiving the signal Vf of the comparison 23, the heating time control circuit 24 detects the detection time 1 ⁇ from the start of heating to the output of the signal and a heating time coefficient determined in advance according to the type of food and the type of cooking. Continue heating the time multiplied by K ' ⁇ (Fig. 13-g) o At the end of the ⁇ ⁇ time_, stop the magnet opening / closing circuit 25. This stops oscillation and ends automatic heating. .
- Absolute humidity is related to temperature and relative humidity as described above. Therefore, to calculate the absolute humidity,
- a function is required to calculate the sum of vapor pressures and the relative humidity in accordance with the formula to determine the sum vapor pressure and to calculate the sum.
- U the saturated vapor pressures for each temperature must be stored. Obviously, this requires a large number of storage elements. Therefore, if the temperature in the vicinity of the temperature and relative humidity detector 17 is controlled at a predetermined constant temperature, the saturated steam E to be stored can be stored at the predetermined temperature. Only saturated steam AE at. Therefore, the number of storage elements is drastically reduced. Therefore, a very simple control circuit configuration can be achieved.
- a configuration in which the temperature control is performed by an infrared lamp instead of the resistor 3 may be used. This makes the inside of the heating chamber 13 sufficiently illuminated.] The lamp for lighting can be omitted. Further, the infrared rays are absorbed by the food, and the food can be heated, so that the same effect can be obtained in the above-mentioned mouth beef or the like.
- the flow rate of the cooling air from the magnetron 16 and the flow rate of the air outside the high-frequency heating device were controlled. By adjusting the temperature, it is possible to utilize the energy previously discarded, and it is possible to achieve an energy-saving and low-cost configuration.
- the sensing element "! And the resistance element 3 are arranged close to each other and the temperature is adjusted by controlling the heat generation of the resistance element 37, a small amount of power can be obtained.
- the temperature can be controlled, it can be shared with a heater that heats and cleans the sensing element 1, resulting in an energy-saving and inexpensive configuration-Industrial applicability
- the heating chamber since the temperature and the relative humidity are detected by a single sensing element, the heating chamber
- OMPI Temperature and relative humidity inside can be measured more accurately. In other words, when measuring temperature and relative humidity with separate sensing elements, the mounting position of each sensing element should be as small as possible]? Even if they are close to each other, there is a limit i), and measurement errors due to the sensing position should be prevented. But the same detection
- the measurement error described above can be almost generated.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electric Ovens (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
A high frequency heating device which detects variations in moisture and temperature in the vapor produced by heating food (14) in a heating chamber (13) by using a temperature and relative humidity detector (17), converts them into relative and absolute humidities to determine whether the variation in the absolute humidity has reached a predetermined level, thereby automatically heating or cooling the food. Since this device has a single detector, it produces less error due to detecting errors and changes with time, thereby performing an accurate detection.
Description
• 明 細 書 • Specification
発明の名称 ' Title of invention ''
高周波加熱装置 技術分野 High frequency heating equipment Technical field
5 この発明は食品の加熱によって生ずる庫内雰囲気の湿度変化 を検出する ことによって自動的に加熱調理を行う高周波加熱装 置に関し特に相対湿度と温度を単一の検出器によ 検知 し、 絶 対湿度に変換して絶対湿度の変化を検出する ことによって自動 的に加熱時間を制御し加熱調理を行う高周波加熱装置に関する l O ものである 0 5 The present invention relates to a high-frequency heating apparatus for automatically performing cooking by detecting a change in the humidity of the atmosphere in the refrigerator caused by heating of food, in particular, relative humidity and temperature are detected by a single detector. It relates to a high-frequency heating device that performs heating cooking by automatically controlling the heating time by detecting changes in absolute humidity by converting it into humidity.
背景技術 Background art
近年マイ.ク ロ コ ン ピュータの発展 , 低廉化や、 各種センサの In recent years, the development of micro-computers, cost reduction, and various sensors
.開発に伴 い自動調理を '行な う ことができ る電子レンジが出現 し脚光を浴びて る。 かでも食品からの蒸気を検知して自動 1 5 調理を行 ¾ う ものでは、 温度センサと湿度センサを備え、 加熱 庫内あるいは排気部の雰囲気の温度を温度センサによつて検知 しその検出信号によ 加熱庫内への吸気'温度を一定に保つ加熱 ヒ ータを制御する ことによ ]?、 加熱廩内の雰囲気を恒温化し、 この状態において湿度センサによ ]?食品から発せられる水蒸気 0 の変化量を検知し、 その検出信号によ ]? 、 マグネ ト ロ ンの発振 出力を制御する構成が考えられている。 With the development, microwave ovens that can perform automatic cooking have emerged and are in the limelight. However, if cooking is performed automatically by detecting steam from food, a temperature sensor and a humidity sensor are provided, and the temperature of the atmosphere in the heating cabinet or the exhaust section is detected by the temperature sensor, and the detection signal is output. By controlling the heating heater to keep the temperature of the intake air into the heating chamber constant, the atmosphere in the heating tongue is kept at a constant temperature, and in this state, a humidity sensor is used. A configuration is considered in which the amount of change in 0 is detected and the oscillation output of the magnetron is controlled by the detection signal.
このよ う 自動調理を行なう高周波加熱装置の一般的 ¾ 自動 加熱制御方式の原理について第 1 図および第 2図に基づき説明 する。 The principle of a general high-frequency heating device that performs automatic cooking in this manner will be described with reference to FIGS. 1 and 2. FIG.
5 図 a , b , cにおいて Rh' は加熱にと もな う相対湿度変 5 In Figures a, b, and c, Rh 'is the relative humidity change due to heating.
0MPI
• 化 , Tは温度上昇 , Ah は および Tから求めた絶対湿度の 変化 , tは加熱時間である。 0MPI •, T is the temperature rise, A h is the change in absolute humidity obtained from and T, and t is the heating time.
一般に食品を加熱することによつて生ずる水蒸気は加熱にと もない徐々に上昇する。 そして食品が1 o o °cに達した後の発 生蒸気量は加熱熱量によって定まる。 これは下記の理由による。 Generally, the steam generated by heating food gradually rises with heating. Then, the amount of steam generated after the food reaches 1 oo ° c is determined by the heating heat. This is for the following reason.
第 2図において、 Oは加熱室、 Yは容器、 Wは水、 Qは風量 In Fig. 2, O is a heating room, Y is a container, W is water, and Q is air volume.
Pは加熱熱量、 QE は潜熱、 Qc は放熱量である。 '図中、 風量 Qを強制的に吸排気する加熱室 Oの内に水 Wを入れた容器 Yを 置き、 加熱熱量 Pを加えると、 水 Wはやがて沸縢する。 P is heated heat, Q E is the latent heat, the Q c is the heat radiation amount. 'In the figure, a container Y containing water W is placed in a heating chamber O that forcibly sucks and exhausts the air volume Q, and when the heating heat P is added, the water W eventually boils.
この時の熱量の関係は下記のように表わされる。 The relation of the calorific value at this time is expressed as follows.
近似的に P QE - とすれば、 水 Wよ ])発生する水蒸気量 Gは Approximately, PQ E- , water W!]
P.〔KWatt〕 X 860〔teal〕= 1 O O "Cの潜熱〔 ¾ xG〔K£/ti〕 P. [KWatt] X 860 [teal] = 1 O O "C latent heat [¾ xG [K £ / ti]
= 86 O X P /539 X 6 O ¾ Z1^-〕 = 86 OXP / 539 X 6 O ¾ Z 1 ^-]
で表わされる。 例えば加熱熱量が 700Wならば 0.0186 Is represented by For example, if the heating heat is 700W, 0.0186
, 5 O O Wならば 0.0133 U/mi の蒸気量に る o 故に 加える熱量が一定 らば、 単位時間に発生する蒸気量も一定で ¾)る α , 5 O O W, the amount of steam is 0.0133 U / mi. O If the amount of heat applied is constant, the amount of steam generated per unit time is also constant.
故に第 1 図よ ]?、 排気口付近の相対湿度センサと温度センサ の値 と とから相対湿度 Rhを絶対湿度 Ah に変換し加熱開 始時の絶対湿度
記憶し、 加熱とともに変化する相対湿度 Rh と温度 τ とから同様に相対湿度 を絶対湿度に変換し、 加熱開始時との絶対湿度の差が加熱熱量や食品の種類などによ Therefore the absolute humidity of the heating inception converts the relative humidity R h from the value of the relative humidity sensor and a temperature sensor in the vicinity of the first drawing by] ?, exhaust port absolute humidity A h Similarly, the relative humidity is converted into absolute humidity from the relative humidity Rh and temperature τ that change with heating, and the difference between the absolute humidity at the start of heating and the temperature at the start of heating depends on the amount of heating heat and food type.
0MPI
つて定められた絶対湿度の変化量である設定値 に達した 時間 を検出する。 この ^ ΑΙ を検出するまでの計数時間 に食品固有の加熱係数 Κを乗じ、 その積である時間 を時 間 経過後から引き続き加熱する。 これは時間 がすでに 食品の量に近似的に比例すると考えられるので、 食品の量に関 係るく、 自動的に加熱することができる。 この時間 " 3^ の検出 を相対湿度のみで行るう場合、 加熱熱量の供給にともなう発熱 ( 電子レン ジではマグネ ト ロ ン , 高圧.ト ラ ンス ¾ど) によって 検出誤差が生じゃすい。 0MPI Detects the time when the set value, which is the change in absolute humidity, is reached. The counting time until the detection of ^ ΑΙ is multiplied by the food-specific heating coefficient Κ, and the product time is continuously heated after the lapse of time. This is because the time is already considered to be approximately proportional to the quantity of food, so it can be heated automatically, regardless of the quantity of food. If the detection of this time "3 ^" is performed only by relative humidity, the detection error will be generated due to the heat generated by the supply of heating heat (magnetron, high pressure, etc. in the electron range).
これは空気線図 (図示せず) よ 明らかなように、 同じ蒸気 量の増加でも、 周囲温度の違いによって上昇相対湿度値が大き く異なるからである。 This is because, as is evident from the psychrometric chart (not shown), the relative humidity rise greatly differs depending on the ambient temperature even with the same increase in the amount of steam.
以上述べたよう ¾原理によ 、 絶対湿度を検知することによ つて自動加熱を行 う 。 この構成においてはセ ンサの精度 , 信 頼性および耐久性が装置そのものの性能を大き く左右するもの であるがセ ンサを別々に設けていたため次の欠点があった。 As described above, according to the principle, automatic heating is performed by detecting the absolute humidity. In this configuration, the accuracy, reliability, and durability of the sensor greatly affect the performance of the device itself, but the following disadvantages arise because the sensor is provided separately.
(1 ) 相対湿度と温度よ 1?湿度の変化量を求めるため、 それぞ れのセンサは精度の高いものが要求され高価となっていた。 (1) In order to determine the amount of change between 1 and humidity based on relative humidity and temperature, each sensor is required to be highly accurate and expensive.
(2) センサ,機能を持つ部品が二つ必要と ¾ 、 センサ部の部 品故障率の増加を招 ていた。 (2) Two components with sensors and functions are required. This has led to an increase in the component failure rate of the sensor unit.
(3) 相対湿度セ ンサと温度セ ンサはそれぞれ経年変化の進行 は全く関連性が いため、 長時間使用した後の絶対湿度の検 知が不正確となっていた。 (3) The relative humidity sensor and the temperature sensor are not related to the progress of aging at all, and the detection of the absolute humidity after long-term use was inaccurate.
(4) 排気経路の空気の流れは乱流と っていると考えられる。 したがって排気経路内の各部での温度差はかな あるため、 (4) It is considered that the air flow in the exhaust path is turbulent. Therefore, since there is a considerable temperature difference between each part in the exhaust path,
0 PI
温度センサと相対湿度センサのそれぞれの位置は同一では いため、 絶対湿度の検知に誤差が生じて た。 0 PI Since the positions of the temperature sensor and the relative humidity sensor were not the same, an error occurred in the detection of the absolute humidity.
発明の開示 Disclosure of the invention
本発明は排気温度および湿度を検知し、 食品から発する水蒸 The present invention detects exhaust gas temperature and humidity and produces water vapor generated from food.
5 気の一定の湿度変化量に達するまでの時間を正確に検出するこ とができ、 食品の自動調理や自動解凍を行なう ことを目的とす O 5 It is possible to accurately detect the time required to reach a certain amount of change in air humidity, and to automatically cook and thaw foods.
また本発明の他の目的は、 温度センサと湿度センサとを単一 素子で形成することによ ί 故障発生の確率を低下することに t o ある。 Another object of the present invention is to reduce the probability of occurrence of a failure by forming a temperature sensor and a humidity sensor with a single element.
さらに本発明の他の目的の一つは温度センサと湿度センサと の検出位置をごく近接することによつてそれぞれの検出誤差を なく し、 調理性能の高い高周波加熱装置を提供することにある。 上記目的を達成するため、 本発明の高周波加熱装置は、 被加 Still another object of the present invention is to provide a high-frequency heating apparatus having high cooking performance by eliminating the detection errors by bringing the detection positions of a temperature sensor and a humidity sensor very close to each other. To achieve the above object, the high-frequency heating device of the present invention
1 5 熱食品を収容する加熱室と、 記加熱室内に高周波を給電する 高周波発振器と、 前記高周波発振器を制御するマイ ク ロ コ ンビ タを含む制御回路と、 前記加熱室内あるいは前記加熱室内 に連通する位置に設けられかつ温度と湿度とを検知する単一の 検知素子で構成された温度 ·湿度検出器とを備え、 前記温度 · 0 湿度検出器によ 9前記加熱室内あるいは前記加熱室内に連通す る位置の温度および相対湿度を検出するとともに前記相対湿度 を絶対湿度に変換しこの絶対湿度が予め定められた一定の変化 量に達するまでの時間を計測しこの時間を関数と して前記制御 回路によ ]?前記高周波発振器を制御する構成であ 、 自動調理1 5 A heating chamber for storing hot food, a high-frequency oscillator for supplying high-frequency power to the heating chamber, a control circuit including a micro-converter for controlling the high-frequency oscillator, and communication with the heating chamber or the heating chamber And a temperature / humidity detector configured with a single sensing element that detects temperature and humidity, and is connected to the heating chamber or the heating chamber by the temperature / 0 humidity detector. In addition to detecting the temperature and relative humidity at the passing position, converting the relative humidity into absolute humidity, measuring the time until the absolute humidity reaches a predetermined constant change amount, and using the time as a function to perform the control. The circuit is configured to control the high-frequency oscillator for automatic cooking.
25 および自動解凍が可能であるとともに調理性能にすぐれたもの
である o 25 and can be automatically thawed and have excellent cooking performance O
図面の簡単 説明 Brief description of drawings
第 1 図 (a) ,(b) , (c)は絶対湿度検知による自動加熱制御方式の 原理を示すための各因子の特性図、 第 2図は同原理を示すため の説明用斬面図、 第 3図は本発明の高周波加熱装置に使用され る検知素子の外観斜視図、 第 4図は同検知素子の等価回路図、 第 5図は同検知素子の感温特性図、 第 6図は同検知素子の感湿 特性図、 第ァ図は同検知素子の感温特性および感湿特性から温 度及び相対湿度を計測する回路のプロ ッ ク図、 第 8図は本発明 の一実施例である '高周波加熱装置の制御回路のプロ ック図、 第 9図 (a)〜(g)は第 S図に示される各プロ ックの出力波形図、第 1 0 図は同装置の温度 ·相対湿度検出器の外観斜視図、 第 1 1 図は 同検出器の他の実施例を示す外観斜視図、 第 1 2図は本発明 Q 他の実施例である高周波加熱装置の制御回路のブロ ッ ク図、 第 1 3図(a)〜 (g)は第 1 2図に示す各ブロ ッ クの出力波形図である。 発明を実施するための最良の形態 Fig. 1 (a), (b), and (c) are characteristic diagrams of each factor to show the principle of the automatic heating control method based on absolute humidity detection, and Fig. 2 is a cutaway view for explaining the principle. FIG. 3 is an external perspective view of a sensing element used in the high-frequency heating device of the present invention, FIG. 4 is an equivalent circuit diagram of the sensing element, FIG. 5 is a temperature-sensitive characteristic diagram of the sensing element, and FIG. Is a humidity-sensitive characteristic diagram of the sensing element, FIG. 8 is a block diagram of a circuit for measuring temperature and relative humidity from the temperature- and humidity-sensitive characteristics of the sensing element, and FIG. 8 is an embodiment of the present invention. An example is a block diagram of the control circuit of the high-frequency heating device, FIGS. 9 (a) to 9 (g) are output waveform diagrams of each block shown in FIG. S, and FIG. 10 is a block diagram of the device. FIG. 11 is an external perspective view of a temperature / relative humidity detector, FIG. 11 is an external perspective view showing another embodiment of the detector, and FIG. 12 is a control circuit of a high-frequency heating device according to another embodiment of the present invention Q. Block diagram, the first 3 view (a) ~ (g) is an output waveform diagram of each block shown in the first 2 FIG. BEST MODE FOR CARRYING OUT THE INVENTION
まず第 1 の実施例と してセ ンサ用材料と してチタ ン酸バ リ ウ ム ース ト π ンチウ ム系の金属酸化物系である多孔質誘電体セ ラ ミ ッ クを用いたものを説明する。 First, the first embodiment uses a porous dielectric ceramic, which is a metal oxide based on barium titanate π-nitium, as a sensor material. Will be described.
第 3図において検知素子 1 は多孔質誘電体セラ ミ ック; 2の両 面に電極 3が塗布され、 電極 3には リ ― ド線 4が接着される構 成である o In FIG. 3, the sensing element 1 is a porous dielectric ceramic; electrodes 3 are applied to both sides of the sensing element 1; and a lead wire 4 is bonded to the electrode 3 o
第 4図において検知素子 1 の等価回路を示す。 Cはある一定 温度における多孔質誘電体セラ ミ ッ ク 2 のバルクの静電容量で コ.ンデンサ 5に生 じ、 Rはある一定相対湿度の雰囲気中での多 FIG. 4 shows an equivalent circuit of the sensing element 1. C is the capacitance of the bulk of the porous dielectric ceramic 2 at a certain temperature, which occurs in the capacitor 5, and R is the value of the capacitance in an atmosphere with a certain relative humidity.
0MPI
孔質誘電体セラミ ック 2の粒子の表面での水分吸着によって生 じる電気抵抗で抵抗体 6に生ずるものである。 第 5図に温度と 静電容量 Cの関係す ¾わち感温特性を、 また第6図に相対湿度 と電気抵抗 Rの関係すなわち感湿特性を示す。 これらの図示さ れる闋係よ j?静電容量 Cと電気抵抗 Rを検出する単一の検知素 子 1 によ!)庫内温変と相対湿度とを求めることができる。 第了図はマ イ ク ロ コ ン ピュ ー タを含む温度および相対湿度検 知回路の一例を示すブロック図である。 検知素子1 と基準抵抗 素子 R s Tの直列回路にパルス制御部 8から発生するパルス電 圧が印加される。 これよ i?、 分圧電圧と時定数が求められる。 つま i?分圧電圧マ は = R +R ' QC 0MPI This is generated in the resistor 6 by electric resistance generated by moisture adsorption on the surface of the porous dielectric ceramic 2 particles. Fig. 5 shows the relationship between temperature and capacitance C, that is, temperature-sensitive characteristics, and Fig. 6 shows the relationship between relative humidity and electrical resistance R, that is, the moisture-sensitive characteristics. According to these figures, j? A single sensing element 1 that detects the capacitance C and the electrical resistance R! ) The temperature change in the refrigerator and the relative humidity can be obtained. FIG. 6 is a block diagram showing an example of a temperature and relative humidity detection circuit including a micro computer. A pulse voltage generated from the pulse control unit 8 is applied to a series circuit of the detection element 1 and the reference resistance element R s T. This is i? The divided voltage and the time constant are determined. That is, i? Divided voltage is = R + R 'QC
S 直列抵抗 S Series resistance
R 検知素子 1 の抵抗値 R Resistance value of sensing element 1
V, V,
CC 印加電圧 CC applied voltage
と る。 したがって分圧電圧 よ ]?検知素子 1 の抵抗値 Rが 計測される。 Take. Therefore, the resistance value of sensing element 1 is measured.
時定数は分圧電圧 が所定の基準電圧 V r e f に達するまで の時間を計測することによって求められる。 つま パルス電圧 が印加されると同時にクロ ック源発振部 9からのクロ ック信号 を時間計測部 1 Oが計数を開始し、 分圧電圧マ が基隼電圧 ^ e f に達したかどうかを電圧比較器 1 1 で判定信号を時間計 測部 1 Oに入力し計数を停止する。 これによ 時定数が求めら れ、 検知素子 1 の静電容量 Cを計測することができる。 分 EE電圧および時定数は演算器 1 2に入力され相対湿度と温
度が求められる。 The time constant is obtained by measuring the time required for the divided voltage to reach a predetermined reference voltage Vref. That is, at the same time that the pulse voltage is applied, the time measurement unit 1O starts counting the clock signal from the clock source oscillation unit 9 and determines whether the divided voltage has reached the base voltage ^ ef. The judgment signal is input to the time measuring unit 10 by the voltage comparator 11 and the counting is stopped. As a result, the time constant is obtained, and the capacitance C of the detection element 1 can be measured. The minute EE voltage and time constant are input to computing unit 12 and Degree is required.
第 8図に前述の温度 · 湿度計測システ ムを用いた電子レンジ を示す。 1 3は加熱室、 1 4は被加熱食品、 1 5はフ ァ ン、1 6 はマグネ ト ロ ン、 1 ァは温度 ·相対湿度検知器、 1 Sは第ァ図 Figure 8 shows a microwave oven using the above-mentioned temperature and humidity measurement system. 1 3 heating chamber, 1 4 to be heated food, 1 5 fan, 1 6 Magne collected by filtration down, 1 § temperature and a relative humidity detector, 1 S the first § Figure
5 に示す温度 ··相対湿度計測部、 1 9は絶対湿度変換器、 2 0は Temperature shown in 5Relative humidity measurement part, 19 is absolute humidity converter, 20 is
初期値保持器、 2 1 は減算器、 2 2は設定値発生器、 2 3は比 較器、 2 4は加熱時間制御回路、 2 5はマグネ ト ロ ン駆動回路、 2 6は排気部である。 Initial values cage 2 1 subtractors, 2 2 setpoint generator, 2 3 ratio較器, 2 4 heating time control circuit, 2 5 magnetic collected by filtration down driving circuit, 2 6 in the exhaust section is there.
第 9図 (a) , (b)において、 温度 ·相対湿度計測部 1 8の出力を i o 示し、 同図 (a)に温度、 同図 (b)に相対湿度をそれぞれ示す。 また 9 (a) and 9 (b), the output of the temperature / relative humidity measuring unit 18 is shown as i o, and FIG. 9 (a) shows the temperature and FIG. 9 (b) shows the relative humidity. Also
同図 (c)に絶対湿度変換器 1 9の出力、 同図 (d)に初期値保持器 SO の出力、 同図 (e)に減算器 2 1 の出力、 同図(f)に比較器 2 3の出 力、 同図 (g)に加熱制御回路 2 4の出力をそれぞれ示す。 Figure (c) shows the output of the absolute humidity converter 19, Figure (d) shows the output of the initial value holder SO, Figure (e) shows the output of the subtractor 21, and Figure (f) shows the comparator. The output of 23 and the output of the heating control circuit 24 are shown in FIG.
次に動作を説明する。 加熱開始信号を入力すると、 加熱時間 5 制御回路 2 4が作動し時間の計数を開始する。 これによ 、 マ Next, the operation will be described. When the heating start signal is input, the heating time 5 control circuit 24 operates and starts counting time. This allows
グネ ト ロン駆動回路 2 5を動作させ、 マグネ ト ロ ン 1 6を発振 させ加熱を開始する。 同時に、 その時の温度と相対湿度とから 相対湿度は絶対湿度に変換されその値 を初期値保持器 SO が保持する (第 9図 - d ) o 加熱が進むに従い、 温度および相 The magnetron drive circuit 25 is operated to oscillate the magnetron 16 to start heating. At the same time, the relative humidity is converted to absolute humidity from the temperature and relative humidity at that time, and the value is held in the initial value holder SO (Fig. 9-d).
0 '対湿度は徐々に変化し (第 9図— a , b ) 、 絶対湿度値 VAhに 0 'The relative humidity changes gradually (Fig. 9-a, b) and the absolute humidity value V Ah
変換される (第 9図 - σ ;) 。 相対湿度及び温度と絶対湿度の関 係を下記に示す。 It is transformed (Fig. 9-σ;). The relationship between relative humidity and temperature and absolute humidity is shown below.
0 . 6 2 2 ίό Ρ„ 0. 6 2 2 ίό Ρ „
P - P s 5 Φ ; 相対湿度 ( Ps ; ある温度 t の飽和水蒸気圧〔1¾ 〕 P-P s 5 Φ; Relative humidity (P s ; Saturated water vapor pressure at a certain temperature t [1¾])
ΟΛ1ΡΙ il W1P0 '
• P ; 標準気圧 (通常 P = 1 ) 〔¾ / 〕 ΟΛ1ΡΙ il W1P0 ' • P; standard pressure (usually P = 1) [¾ /]
変換後の絶対湿度値 VAh から初期値 が減算器2 1 によ The initial value from the absolute humidity value V Ah after conversion to the subtracter 2 1
. j?減算される (第9図一 e )。 この減算器2 1 の出力 VAh - は設定値発生器 2 2から出力される設定値 VA]l と比較 される o この時、 設定値は加熱熱量、 食品などによ ]?多数の数 値から選ばれる。 絶対湿度値の上昇分 ( VAh
) が VAH に達すると比較器 2 3から V f が出力される (第 9図一 f ) 。 j? is subtracted (Fig. 9 e). The output of the subtracter 2 1 V Ah -? When this o which is compared with the set value V A] l output from the set value generator 2 2, setting the heating amount of heat, such as by the food] multiple number Selected from values. Absolute humidity rise (VAh ) Reaches VAH, the comparator 23 outputs Vf (FIG. 9, 1f).
比較器 2 3の信号を受け、 加熱時間制御回路 2 4は加熱開始か . ら Vf が出力されるまでの検出時間 とあらかじめ食品の種類, 調理の種類によつて定められた加熱時間係数 Κとを乗じた時間 Receiving the signal of the comparator 23, the heating time control circuit 24 detects the detection time from the start of heating to the output of Vf and the heating time coefficient あ ら か じ め previously determined according to the type of food and the type of cooking. Multiplied by
Τ を継続して加熱する (第 9図一 g ) o Tn時間終了によつ てマグネ ト ロ ン駆動回路 2 5を停止する。 これによ ])発振を停 止し加熱を終了する。 -Continuously heating Te cowpea to the end (FIG. 9 one g) o T n time to stop the magnetic collected by filtration down driving circuit 2 5 T. This stops oscillation and ends heating. -
·¾上のよ うな動作によ ]?調理がなされるのであ が、 本実施 例の温度 ·湿度検知器は、 よ ]?検知を正確にするため次のよう な機能を備えている。 · By the operation as described above, cooking is performed. However, the temperature and humidity detector of the present embodiment has the following functions to accurately detect the temperature.
温度 ·相対湿度検知器 1 7は常に加熱によ 被加熱食品 1 4 よ 発生した蒸気 , 油 , 油煙にさらされるため検知素子 1 の表 面が汚れこれによ ]?、 感湿表面積が低下する。 これらの汚れは 検知素子 1 を 4 O O °C以上に加熱すれば汚れは分解され初期状 態に回復する。 このため本実施例における温度 · 相対湿度検知 器 1 ァは第 1 O図に示すよ う ¾構成である。 1 は検知素子、 2ァ はヒータ、 2 8はヒータ電極、 2 9は検知素子 1 の電極である。 The temperature / relative humidity detector 17 is always exposed to the steam, oil, and oil fumes generated by the heated food 14 due to heating, so the surface of the detection element 1 becomes dirty. . When these elements are heated to 4 °° C or more, the elements are decomposed and recovered to the initial state. Thus the temperature and relative humidity detector 1 § in this embodiment is ¾ configuration Remind as to the 1 O FIG. 1 is a sensing element, 2a is a heater, 28 is a heater electrode, and 29 is an electrode of the sensing element 1.
検知素子 1 を囲むよ うにヒータ 2 7が設けられ1 '枚の支持板 3〇5 に固定されている。 この検知素子 1 の他の実施例を第 1 1 図に Uni heater 2 7 by surrounding the sensing element 1 is fixed to the support plate 3 Rei_5 of 1 'sheets provided. Another embodiment of this sensing element 1 is shown in FIG.
OMPI _
• 示す。 1 は検知素子、 3 1 は面ヒ ー タ、 3 2はヒ ー タ電極、OMPI _ • Show. 1 is a sensing element, 3 1 is a surface heater, 3 2 is a heater electrode,
3 3は検知素子 1 の素子電極である。 検知素子1 の片面に面ヒ ータ 3 1 が設けられている。 ヒータ電極3 2は検知素子 1 の一 方の電極を兼ね同様に 1 枚の支持板 3 4に固定される構成であ る。 この支持板3 4はアース端子3 5によ アースされる。 以上のよ うに上記実施例によれば次の効果を生ずる。 33 is a device electrode of the detection device 1. A surface heater 31 is provided on one surface of the detection element 1 . Heater electrode 3 2 Ru configuration der which is fixed to the support plate 3 4 of one serves likewise the hand electrode sensing element 1. The support plate 3 4 is grounded by the ground terminal 3 5. As described above, the following effects are obtained according to the above embodiment.
(1) 温度 ·相対湿度検知器 1 7を単一の検知素子1 で構成す ることから、 検知位置によ-る計測誤差を殆どるくすことがで き、 よ 精度の高い加熱調理ができる。 (1) Since the temperature and relative humidity detector 17 is composed of a single sensing element 1 , the measurement error due to the detection position can be almost reduced, and more accurate cooking can be performed. .
(2) 多孔質の誘電体セラ ミ ッ ク 2を用いることによ 、 水蒸 気は細孔を通して検知素子 1 内部まで吸着され短い時間で吸 - 脱着の平衡状態が得られる。 このため極やて鋭敏に電気伝導 が変化する。 , · (2) By using the porous dielectric ceramic 2 , water vapor is adsorbed to the inside of the sensing element 1 through the pores, and an equilibrium state of adsorption / desorption can be obtained in a short time. As a result, the electrical conduction changes very quickly. , ·
(3) 検知素子 1 の周囲にヒ ータ 2ァを設け輻射熱によ 加熱 し 4 5 O °C程度にすれば、 検知素子 1 の表面の汚れは二酸化 炭素と水に分解される。 これによ 常に正確な温度及び湿度 検知ができる。 (3) If a heater 2 is provided around the sensing element 1 and heated by radiant heat to about 45 O ° C, dirt on the surface of the sensing element 1 is decomposed into carbon dioxide and water. This enables accurate temperature and humidity detection at all times.
(4) 検知素子 1 と一体に面ヒ ータ 3 1 を構成することによ J 、 伝導熱で検知素子 1 を加熱するととができ、 輻射熱によ 加 熱するよ 少'ない電力で加熱することができる。 (4) By forming the surface heater 31 integrally with the sensing element 1, the sensing element 1 can be heated by conduction heat, and the heating is performed with less power so as to be heated by radiant heat. be able to.
(5) 被加熱食品 1 4から発生した蒸気は排気部 2 6付近に集 まるためこの近傍に温度 ·相対湿度検出器 1 ァを配置すれば 被加熱食品 1 4から発生した蒸気による相対湿度の変化を正 (5) The steam generated from the food 14 to be heated gathers near the exhaust unit 26, so if a temperature and relative humidity detector 1 is placed near this, the relative humidity due to the steam generated from the food 14 to be heated can be reduced. Change positive
• 確にキ ャ ッ チできる。 • You can catch exactly.
(6) 温度, 相対湿度検出器 1 ァを排気部 2 6内に配置するこ
• とによ ]?電磁波から十分遮へいできるとともに、 被加熱食品(6) Arrange the temperature and relative humidity detector 1 in the exhaust section 26. • Toyo] can be sufficiently shielded from electromagnetic waves and can be heated
1 4から発生した蒸気は必ず、 排気部 2 6を通って排気され るため被加熱食品 1 4から発生した蒸気によ-る相対湿度の変 化を確実にキ ヤ ツチできる。 The steam generated from 14 is always exhausted through the exhaust section 26, so that the change in relative humidity due to the steam generated from the food 14 to be heated can be surely catched.
5 (7) 被加熱食品 1 4から発生する蒸気の量は、 被加熱食品 5 (7) The amount of steam generated from the heated food 14
の種類や調理の種類に応じて制御される加熱熱量によって変 化する。 したがって、 設定値 VAhを被加熱食品 1 4の種類 や調理の種類によ!)変えることによ ]?、 よ ]?良好 調理を行 う ことができる。 It varies depending on the amount of heating heat controlled according to the type of cooking and the type of cooking. Therefore, the set value V Ah depends on the type of food to be heated and the type of cooking! ) By changing] ?, yo]? Good cooking can be done.
t o 次に本発明の第 2の実施例について第 1 2図および第 1 3図 (a)〜(g)に基づき説明する。 t o Next, a second embodiment of the present invention will be described with reference to FIGS. 12 and 13 (a) to (g).
この実施例では、 加熱室内を所定温度に制御しるがら絶対湿 度の変化量を検出し発振出力を制御するもので前記所定温度に 制御する構成が前述の実施例と違う点である。 This embodiment is different from the above-described embodiment in that the heating chamber is controlled to a predetermined temperature while detecting the amount of change in the absolute humidity and controlling the oscillation output.
1 5 第 1 2図において 1 3は加熱室、 1 4は被加熱食品、 1 5は フ ァ ン、 1 6はマグネ ト ロ ン、 1 7は温度 ·相対湿度検知器、 1 8は温度,相対湿度計測部 1 9は絶対湿度変換器、 2 0は初 期値保持器、 2 1 は減算器、 2 2は設定値発生器、 2 3は比較 器、 2 4は加熱時間制御回路、 2 5はマグネ ト ロ ン駆動回路、1 3 heating chamber at 1 5 first 2 FIG, 1 4 to be heated food, 1 5 fan, 1 6 Magne collected by filtration down, 1 7 Temperature, Relative Humidity detector 1 8 Temperature, Relative humidity measurement unit 19 is absolute humidity converter, 20 is initial value holder, 21 is subtractor, 22 is set value generator, 23 is comparator, 24 is heating time control circuit, 2 5 is a magnetron drive circuit,
20 2 6は排気部、 3 8は吸気部、 3 7は抵抗素子、 3 6は抵抗素 子制御部である。 20 26 is an exhaust unit, 38 is an intake unit, 37 is a resistance element, and 36 is a resistance element control unit.
第1 3図(a)〜(g)において第1 2図中の各々の出力波形を^ 同図 (a) , (b)は温度 ·相対湿度計測部 1 8の出力であ ]?同図 (a)に 温度、 同図 (b)に相対湿度をそれぞれ示す。 同図 (c)は絶対湿度変 13 (a) to 13 (g) show the respective output waveforms in FIG. 12 ^ FIGS. 13 (a) and 13 (b) show the outputs of the temperature / relative humidity measuring unit 18]. (a) shows the temperature, and (b) shows the relative humidity. Figure (c) shows the absolute humidity change.
25 換器1 9の出力、 同図 (d)は初期値保持器 2 Oの出、力、 同図 (e)は 25 equipment 1 9 output, FIG (d) shows output of the initial value retainer 2 O, force, FIG. (E) is
― 0A1PI
減算器 2 1 の出力、 同図(f)は比較器 2 3の出力、 同図 (g)は加熱 時間制御回路 2 4の出力を示す。 ― 0A1PI The output of the subtracter 21 is shown in FIG. 3 (f), the output of the comparator 23 is shown, and the diagram (g) is the output of the heating time control circuit 24.
この入力信号によつて抵抗素子制御部 3 6は抵抗素子 3ァのォ ンオフ制御を行 加熱室 1 3内ひいては排気の温度を設定温 度にコン ト π—ルし始めるとともに、 初期値保持器 2 Oおよび 加熱時間制御部 2 4に信号が出力される。 これによ 加熱開始 時の相対湿度はあらかじめ設定された温度とともに絶対湿度変 換器 1 9によ ]?初期の絶対湿度 が求められ、 初期値保持器 2 Oに保持される (第 1 3図 - d ) o 加熱が進むに従い相対温 度は徐々に変化し、 遂次絶対温度値 VAilに変換される (第1 3 図 - c ) o 変換後の絶対湿度値 VAllから初期値 VAilが減算器 21 によ ]?減算される。 減算器 2 の出力は設定値発生器 2 2から 出力される設定値 VAhと比較される (第 1 3図 - e ) 0 .この 時、 設定値は加熱熱量、 食品 どによ 複数の数値の中から選 ばれる。 絶対湿度の上昇分 ( vAh - )が J に達する と比較器 2 3から信号 Vf が出力される (第 1 3図— f ) 。 比 較 2 3の信号 Vf を受け、 加熱時間制御回路 2 4は加熱開始か ら信号 が出力されるまでの検出時間 1^ と食品の種類 , 調理 の種類によつてあらかじめ定められた加熱時間係数 Kとを乗じ た時間 ΚΊ^を継続して加熱する '(第 1 3図 - g ) o ΚΊ^時間終_ 了によってマグネ ト 口ン驟動回路 2 5を停止する。 これによ 発振を停止し自動加熱を終了する。 . Together begin to con preparative π- Le to by connexion resistive element control unit 3-6 resistive element 3 § of O-off controls row heating chamber 1 3 inside thus set temperature the temperature of the exhaust to the input signal, the initial value storage unit A signal is output to the 2 O and heating time control section 24. Thus, the relative humidity at the start of heating is determined by the absolute humidity converter 19 together with the preset temperature.] The initial absolute humidity is obtained and stored in the initial value holder 2 O (Fig. 13 -d) o Relative temperature gradually changes as heating progresses and is successively converted to absolute temperature value V Ail (Fig. 13- c) o Converted absolute humidity value V All to initial value V Ail Is subtracted by the subtractor 21. The output of the subtractor 2 is compared with a set value V Ah output from set value generator 2 2. (First 3 Figure - e) 0 At this time, setting heating heat, food etc. in good more numerical You can choose from When the rise in the absolute humidity (v Ah- ) reaches J, a signal V f is output from the comparator 23 (FIG. 13—f). Upon receiving the signal Vf of the comparison 23, the heating time control circuit 24 detects the detection time 1 ^ from the start of heating to the output of the signal and a heating time coefficient determined in advance according to the type of food and the type of cooking. Continue heating the time multiplied by K '^ (Fig. 13-g) o At the end of the ΚΊ ^ time_, stop the magnet opening / closing circuit 25. This stops oscillation and ends automatic heating. .
以上のよ うに上記第 2実施例におい は次の効果を生ずる。 As described above, the following effects are obtained in the second embodiment.
(1 ) 絶対湿度は前述のよ うに温度及び相対湿度の関係となつ ている。 従って絶対湿度を'算出するには各温度に対応する飽 (1) Absolute humidity is related to temperature and relative humidity as described above. Therefore, to calculate the absolute humidity,
ΟΛ1ΡΙ
和蒸気圧を求め公式に従って前記飽和蒸気圧及び相対湿度を 代入し計算する機能が要求される。 このように、 絶対湿度を 算出するには各温度に対する飽和蒸気圧を求める必要があ U それには、 各温度に対する飽和蒸気圧をすベて記憶させ ¾け れば ¾ら¾い。 これには、 大量の記憶素子が必要となること は明らかである。 そこで、 温度,相対湿度検出器 1 7の近傍 の温度をあらかじめ設定された一定の温度でコン ト ロ ールす れば、 記憶しなければならない飽和蒸気 Eは前記のあらかじ め設定された温度での飽和蒸気 AEのみである。 従って、 記憶 素子の数は激減する。 従って、 非常に簡単な制御回路構成に できる。 ΟΛ1ΡΙ A function is required to calculate the sum of vapor pressures and the relative humidity in accordance with the formula to determine the sum vapor pressure and to calculate the sum. As described above, to calculate the absolute humidity, it is necessary to find the saturated vapor pressure for each temperature. U To do so, all the saturated vapor pressures for each temperature must be stored. Obviously, this requires a large number of storage elements. Therefore, if the temperature in the vicinity of the temperature and relative humidity detector 17 is controlled at a predetermined constant temperature, the saturated steam E to be stored can be stored at the predetermined temperature. Only saturated steam AE at. Therefore, the number of storage elements is drastically reduced. Therefore, a very simple control circuit configuration can be achieved.
(2) 抵抗素子を吸気部 3 S内に配置することによ ]?温度 ·相 対湿度検出器 1 ァ近傍の温度がコン ト ロ ールされるとともに 当然加熱室 1 3内の温度もコ ン ト ロ ー ルされる。 (2) By disposing the resistance element in the intake section 3S], the temperature in the vicinity of the temperature and relative humidity detector 1 is controlled and the temperature in the heating chamber 13 is naturally controlled. Controlled.
一方、 この高周波加熱装置の使用環境が非常に高湿で例え ば相対湿度' 9 5 %である場合、 高周波加熱によ ])被加熱食品 1 4から蒸気が発生すれば、 短時間に飽和してしまい、 その 後いかに被加熱食品 1 4から蒸気が発生しても、 加熱室 1 3 の壁面に結露するのみであ 、 温度 · 相対湿度検出器 1 7は 相対湿度の変化をキ ャ ッ チすることが不可能と る。 ところ が、 前述のように使用環境が 9 5 %の相対湿度であっても加 熱室 1 3内は、 よ 高い温度にコ ン ト ロールされるので相対 湿度は低下する。 従って、 被加熱食品 1 4から蒸気発生して も鉋和するまでには十分余裕ができ、 相対湿度の変化を十分 にキ ャ ッ チすることができる。 つま D天侯ある は使用環境 On the other hand, if the operating environment of this high-frequency heating device is extremely high and the relative humidity is '95%, for example, the high-frequency heating is used.) No matter how much steam is generated from the food to be heated 14 thereafter, only dew forms on the wall of the heating chamber 13 and the temperature and relative humidity detector 17 catches changes in relative humidity. It is impossible to do it. However, as described above, even if the use environment is at a relative humidity of 95%, the inside of the heating chamber 13 is controlled to a higher temperature, so that the relative humidity decreases. Accordingly, even if steam is generated from the food 14 to be heated, there is a sufficient margin before the plane is flattened, and a change in the relative humidity can be sufficiently caught. Tsuma D
0MPJ
に左右されにくい装置を提供できる。 0MPJ A device that is not easily influenced by the
上記第 2実施例のさらに展開と して抵抗素子 3 7を加熱室13 内に配置することによ 被加熱食品 1 4の表面を輻射熱によ D 直接加熱する構成と しても よい。 これは被加熱食品 1 4の表面 を適度に乾燥させた ]?、 焦がした することができ、 口 —ス ト ビーフなどにおいては高周波加熱であ Uるがらヒータ加熱と同 様の調理性能が得られる。 It may be further expanded and to heat the surface of the heated food 1 4 by the radiant heat D directly by the placing the resistive element 3 7 into the heating chamber 13 configuration of the second embodiment. This dried the surface of the food to be heated 14 moderately.], And it could be burnt. In the case of a beef, the cooking performance was the same as that of the heater heating, although high frequency heating was used. Can be
また同様に抵抗素子 3 ァにかえて、 赤外線ラ ンプによ j?温度 コ ン ト ロ ールする構成でも よ 。 これは加熱室 1 3内が十分明 る く ¾ ]?照明用のラ ンプを省く ことができる。 また、 赤外線は 食品に吸収され、 食品を加熱することができるため、 上述の口 一ス ト ビー フなどにおいて同様'の効果も得られる。 Similarly, a configuration in which the temperature control is performed by an infrared lamp instead of the resistor 3 may be used. This makes the inside of the heating chamber 13 sufficiently illuminated.] The lamp for lighting can be omitted. Further, the infrared rays are absorbed by the food, and the food can be heated, so that the same effect can be obtained in the above-mentioned mouth beef or the like.
さらに第 2実施例において、 マグネ ト ロ ン 1 6の冷却風と高 周波加熱装置外の空気の流量をコ ン ト ロ ールすることによ ]?、 温度 · 相対湿度検出器 1 7近傍の温度を調節することによ 、 従来、 棄てていたエネルギーを活用することが可能と ¾ 省ェ ネルギ一でしかも安価 ¾構成とすることができる。 Further, in the second embodiment, the flow rate of the cooling air from the magnetron 16 and the flow rate of the air outside the high-frequency heating device were controlled. By adjusting the temperature, it is possible to utilize the energy previously discarded, and it is possible to achieve an energy-saving and low-cost configuration.
さらにまた、 第 2実施例に いて、 検知素子 "! と抵抗素子 3 とを近接して配置し、 この抵抗素子 3 7の発熱を制御すること によ 温度を調節する構成とすれば小さな電力そ'温度を制御で きる一方、 検知素子 1 を加熱してク リ 一ユングするヒータ と共 用でき、 省エネルギーで安価 構成とすることができる。 - 産業上の利用可能性 Furthermore, in the second embodiment, if the sensing element "!" And the resistance element 3 are arranged close to each other and the temperature is adjusted by controlling the heat generation of the resistance element 37, a small amount of power can be obtained. 'While the temperature can be controlled, it can be shared with a heater that heats and cleans the sensing element 1, resulting in an energy-saving and inexpensive configuration-Industrial applicability
以上説明 したよ うにこの発明の高周波加熱装置によれば、 温 度及び相対湿度が単一の検知素子によ 検出されるので加熱室 As described above, according to the high-frequency heating device of the present invention, since the temperature and the relative humidity are detected by a single sensing element, the heating chamber
-BU EAU -BU EAU
OMPI
• 内の温度及び相対湿度がよ 正確に計測できる。 つま ])、 温度 及び相対湿度を別々の検知素子で計測する場合は、 それぞれの 検知素子の取付位置はできる限]?近接するにしても限度があ i)、 検知位置による測定誤差は防ぐことができ いが、 同一の検知OMPI • Temperature and relative humidity inside can be measured more accurately. In other words, when measuring temperature and relative humidity with separate sensing elements, the mounting position of each sensing element should be as small as possible]? Even if they are close to each other, there is a limit i), and measurement errors due to the sensing position should be prevented. But the same detection
5 素子によれば上記の測定誤差は殆ど発生することが 。 According to the five elements, the measurement error described above can be almost generated.
また、 温度及び相対湿度を別々の検知素子で計測する場合、 そ れそれの検知素子の経年変化は固有の特性を示し、 これによ ]3 温度及び相対湿度を計測し絶対湿度に変換した場合大きな測定 誤差と ¾つて表われる。 ところが、 同一の検知素子によれば経 i o 年変化の特性は一定の関係を持って変化するため大き ¾誤差が 表われにくいなどのすぐれた効果を発攆する。 Also, when temperature and relative humidity are measured by separate sensing elements, the aging of each sensing element shows its own characteristic. 3) When temperature and relative humidity are measured and converted to absolute humidity Large measurement errors appear. However, according to the same sensing element, the characteristics of the aging over time change with a certain relationship, so that an excellent effect such as a small error is less likely to appear.
OMPI
OMPI
Claims
1 . 被加熱食品を収容する加熱室と、 前記加熱室内に高周波を 給電する高周波発振器と、 前記高周波発振器を制御するマィク π コ ン ピュ ータを含む制御回路と、 前記加熱室内あるいは前記 1. A heating chamber for accommodating the food to be heated, a high-frequency oscillator for supplying high-frequency power to the heating chamber, a control circuit including a π-computer for controlling the high-frequency oscillator,
5 加熱室内に連通する位置に設けられかつ温度と湿度とを検知す る単一の検知素子で構成された温度 ·湿度検出器とを備え、 前 記温度 · 湿度検出器によ ]?前記加熱室内あるいは前記加熱室内 に連通する位置の温度および相対湿度を検出するととも.に前記 相対湿度を絶対湿度に変換しこの絶対湿度が予め定められた変 l O 化量に達するまでの時間を計測しこの時間を関数と して前記制 御回路によ D前記高周波発振器を制御することを特徵とする高 周波加熱装置。 -5 A temperature / humidity detector, which is provided at a position communicating with the heating chamber and is composed of a single sensing element that detects temperature and humidity, is provided by the aforementioned temperature / humidity detector. In addition to detecting the temperature and relative humidity of the room or the position communicating with the heating room, the relative humidity is converted into absolute humidity, and the time required for the absolute humidity to reach a predetermined amount of change in O is measured. A high-frequency heating device characterized in that the control circuit controls the high-frequency oscillator as a function of this time. -
2 . 請求の範囲第 1 項にお て、 加熱室内の温度を温度 · 湿度 検出器の検出信号によ ]9所定の一定温度に制御することを特徵2. The method according to claim 1, wherein the temperature in the heating chamber is controlled to a predetermined constant temperature by a detection signal of a temperature / humidity detector.
1 5 とする高周波加熱装置。 A high-frequency heating device to be referred to as 15.
3 . 請求の範囲第 1 項において、 相対湿度は検知素子の抵抗値 によ 検出するとと もに温度は検知素子の静電容量によ 検出 する温度 ·湿度検出器を備えることを特徵とする高周波加熱装 I . o 3. The high-frequency wave according to claim 1, wherein a relative humidity is detected by a resistance value of the detection element, and a temperature is detected by a capacitance and humidity of the detection element. Heating device I. o
0 4 . 請求の範囲第 1 項において、 温度 ·湿度検出器の検知素子 を金属酸化物系の多孔質誘電体セラ ミ ッ クで構成することを特 徵とする高周波加熱装置。 04. The high-frequency heating apparatus according to claim 1 , wherein the detection element of the temperature / humidity detector is made of a metal oxide-based porous dielectric ceramic.
5 . 請求の範囲第 1 項において、 温度 ·湿度検出器の検知素子 を加熱し検知素子のク リ 一二ングを行なう ヒータを近傍にある5 いは一体的に設けることを特徵とする高周波加熱装置。 5. The high-frequency heating device according to claim 1, characterized in that a heater for heating the temperature / humidity detector and cleaning the temperature detector is provided nearby or integrally. apparatus.
OMPI
• 6 . 請求の範囲第 2項において、 温度 ·湿度検出器の検出信号 によ 制御される抵抗素子を備え、 前記抵抗素子によ ]?加熱室 内の温度を所定の一定温度に加熱することを特徵とする高周波 < カロ熱装置。 OMPI • 6. The method according to claim 2, further comprising: a resistance element controlled by a detection signal of a temperature / humidity detector, wherein the temperature in the heating chamber is heated to a predetermined constant temperature by the resistance element. High frequency <Karo heat device.
5 T . 請求の範囲第 1 項または第 2項において、 温度 ·湿度検出 器を加熱室内の排気部に配置することを特徵とする高周波加熱 o 5 T. High-frequency heating according to claim 1 or 2, characterized in that the temperature / humidity detector is arranged in the exhaust part of the heating chamber.
8 . 請求の範囲第1 項または第 2項にお て、 加熱開始時の絶 対湿度値と加熱にとも ¾う絶対湿度値の差が、 あらかじめ定め l O られた設定値に達する時間 と、 食品の種類及び調理の種類 によつて定められた加熱時間係数 Kを乗じた時間 KT^を前述の 設定値に達した時間 に継続して加熱制御する構成としたこ とを特徵とする高周波加熱装置。 8. According to claim 1 or 2, the time required for the difference between the absolute humidity value at the start of heating and the absolute humidity value due to heating to reach a predetermined set value, and High-frequency heating characterized by a configuration in which heating control is performed continuously from the time KT ^ multiplied by the heating time coefficient K determined by the type of food and the type of cooking to the time when the above-mentioned set value is reached. apparatus.
ΟΛ1ΡΙ
ΟΛ1ΡΙ
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU83966/82A AU8396682A (en) | 1981-11-06 | 1982-05-13 | High frequency heating device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56/178832811106 | 1981-11-06 | ||
JP17883281A JPS5880426A (en) | 1981-11-06 | 1981-11-06 | High-frequency wave heating device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1983001675A1 true WO1983001675A1 (en) | 1983-05-11 |
Family
ID=16055440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1982/000165 WO1983001675A1 (en) | 1981-11-06 | 1982-05-13 | High frequency heating device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0093173A4 (en) |
JP (1) | JPS5880426A (en) |
WO (1) | WO1983001675A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5078048A (en) * | 1988-08-03 | 1992-01-07 | Matsushita Electric Industrial Co., Ltd. | Cooking apparatus including a pyroelectric vapor sensor |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60131793A (en) * | 1983-12-20 | 1985-07-13 | 松下電器産業株式会社 | Automatic high frequency heater |
AU551298B2 (en) * | 1984-02-07 | 1986-04-24 | Matsushita Electric Industrial Co., Ltd. | High frequency heating apparatus |
US4771156A (en) * | 1986-10-20 | 1988-09-13 | Micro Dry Incorporated | Method and apparatus for heating and drying moist articles |
US4970359A (en) * | 1987-09-30 | 1990-11-13 | Ki Tae Oh | Automatic cooking control systems for a microwave oven |
KR900002206B1 (en) * | 1987-10-13 | 1990-04-04 | 주식회사 금성사 | Automatic cooking method for microwave range |
KR900003965B1 (en) * | 1987-12-22 | 1990-06-05 | 주식회사 금성사 | Cooking method of electronic range |
KR900003967B1 (en) * | 1987-12-22 | 1990-06-05 | 주식회사 금성사 | Cooking method of electronic range |
DE3804678A1 (en) * | 1988-02-15 | 1989-08-24 | Buderus Kuechentechnik | Method for operating a baking oven with microwaves and electrical resistance heating |
JP2996766B2 (en) * | 1991-05-28 | 2000-01-11 | 株式会社東芝 | Cooking device |
JPH06137561A (en) * | 1992-10-26 | 1994-05-17 | Toshiba Corp | Heating cooker |
EP0673182B1 (en) * | 1994-03-18 | 2000-03-29 | Lg Electronics Inc. | Method for automatic control of a microwave oven |
KR0154635B1 (en) * | 1995-09-18 | 1998-11-16 | 배순훈 | Control method of container for microwave oven |
FI20011786A (en) * | 2001-09-10 | 2003-03-11 | Dieta Oy | Measurement method and apparatus for water content in a baking pan |
KR100436266B1 (en) * | 2002-04-13 | 2004-06-16 | 삼성전자주식회사 | Method and apparatus for controlling a microwave oven |
ITMO20050159A1 (en) * | 2005-06-22 | 2006-12-23 | Angelo Grandi Cucine Societa P | SYSTEM FOR HUMIDITY CONTROL. |
CN100437119C (en) * | 2006-01-05 | 2008-11-26 | 厦门大学 | Microwave ceramic element detection clamp and device, and detection method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5369940A (en) * | 1976-12-01 | 1978-06-21 | Matsushita Electric Ind Co Ltd | Cooling oven |
JPS5483148A (en) * | 1977-12-15 | 1979-07-03 | Matsushita Electric Ind Co Ltd | Cooking oven |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1545918A (en) * | 1975-05-20 | 1979-05-16 | Matsushita Electric Ind Co Ltd | Apparatus for controlling heating time utilising humidity sensing |
DE2706367C3 (en) * | 1976-02-17 | 1980-12-04 | Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan) | Device for regulating the heating for an oven, in particular a microwave oven |
JPS5341459A (en) * | 1976-09-22 | 1978-04-14 | Sanei Kagaku Kogyo Kk | Base material for instant ice confection |
AU520661B2 (en) * | 1977-08-30 | 1982-02-18 | Litton Systems, Inc | Cooking thin meats ina microwave oven |
US4319485A (en) * | 1978-12-28 | 1982-03-16 | Matsushita Electric Industrial Co., Ltd. | Temperature·humidity detecting apparatus |
JPS55155239A (en) * | 1979-05-22 | 1980-12-03 | Toshiba Corp | Temperature/humidity detector |
JPS5691716A (en) * | 1979-12-24 | 1981-07-24 | Matsushita Electric Ind Co Ltd | Automatic electronic range |
US4419021A (en) * | 1980-02-04 | 1983-12-06 | Matsushita Electric Industrial Co., Ltd. | Multi-functional sensing or measuring system |
-
1981
- 1981-11-06 JP JP17883281A patent/JPS5880426A/en active Pending
-
1982
- 1982-05-13 WO PCT/JP1982/000165 patent/WO1983001675A1/en not_active Application Discontinuation
- 1982-05-13 EP EP19820901429 patent/EP0093173A4/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5369940A (en) * | 1976-12-01 | 1978-06-21 | Matsushita Electric Ind Co Ltd | Cooling oven |
JPS5483148A (en) * | 1977-12-15 | 1979-07-03 | Matsushita Electric Ind Co Ltd | Cooking oven |
Non-Patent Citations (2)
Title |
---|
National Technical Report, Vol. 26, No. 3 (June 1980) Matsushita Electric Industrial Co., Ltd., TERADA JIRO and Three Others "Takino Sensor "Ceramic Ondo.Shitsudo Sensor" "Humiserum II"", p. 433-441 * |
See also references of EP0093173A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5078048A (en) * | 1988-08-03 | 1992-01-07 | Matsushita Electric Industrial Co., Ltd. | Cooking apparatus including a pyroelectric vapor sensor |
Also Published As
Publication number | Publication date |
---|---|
JPS5880426A (en) | 1983-05-14 |
EP0093173A4 (en) | 1984-04-27 |
EP0093173A1 (en) | 1983-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1983001675A1 (en) | High frequency heating device | |
EP0009825B1 (en) | Humidity variation detecting apparatus | |
EP0031156B1 (en) | Cooking oven with a ceramic humidity sensor | |
EP0022366B1 (en) | A sensor circuit including a sensing device | |
US5445009A (en) | Apparatus and method for detecting humidity in a microwave oven | |
Nitta | Development and application of ceramic humidity sensors | |
JPS6237624A (en) | Electronic cooking range with piezoelectric element sensor | |
JP2885661B2 (en) | microwave | |
US6835920B2 (en) | Microwave oven | |
JP4176491B2 (en) | Electromagnetic induction heating cooker | |
KR920005819B1 (en) | Automatic cooking method for microwave oven | |
KR940004978B1 (en) | Heat control system for a microwave range | |
JPS6152939B2 (en) | ||
JP2004225921A (en) | Temperature sensor for microwave oven and microwave oven | |
KR950001227B1 (en) | Automatic heating apparatus for a range | |
JPS60222A (en) | Heating cooker | |
JP2521689B2 (en) | Cooking device | |
JP2548369B2 (en) | Heating cooker | |
JP2502724B2 (en) | Cooking oven | |
JPH05149547A (en) | Cooker | |
JP2931378B2 (en) | Cooking device | |
JPS62113381A (en) | Microwave oven with sensor | |
JPS62112929A (en) | Electronic range equipped with piezoelectric element sensor | |
WO1983000374A1 (en) | Heater with sensor | |
JP2004257716A (en) | Boiling detection sensor and oven using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): AU |
|
AL | Designated countries for regional patents |
Designated state(s): CH DE FR GB NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1982901429 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1982901429 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1982901429 Country of ref document: EP |