USRE34293E - Ligament attachment method and apparatus - Google Patents
Ligament attachment method and apparatus Download PDFInfo
- Publication number
- USRE34293E USRE34293E US07/529,319 US52931990A USRE34293E US RE34293 E USRE34293 E US RE34293E US 52931990 A US52931990 A US 52931990A US RE34293 E USRE34293 E US RE34293E
- Authority
- US
- United States
- Prior art keywords
- ligament
- tunnel
- fem
- prosthetic
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000003041 ligament Anatomy 0.000 title claims abstract description 284
- 238000000034 method Methods 0.000 title claims abstract description 35
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 53
- 210000002303 tibia Anatomy 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 15
- 210000002414 leg Anatomy 0.000 claims abstract description 14
- 210000001264 anterior cruciate ligament Anatomy 0.000 claims abstract description 11
- 238000010521 absorption reaction Methods 0.000 claims abstract 4
- 210000003127 knee Anatomy 0.000 claims description 24
- 239000007943 implant Substances 0.000 claims description 13
- 210000000629 knee joint Anatomy 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000009434 installation Methods 0.000 claims description 9
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 238000001356 surgical procedure Methods 0.000 claims description 7
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 6
- 239000004626 polylactic acid Substances 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 2
- 238000012800 visualization Methods 0.000 claims description 2
- 210000004872 soft tissue Anatomy 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 210000000689 upper leg Anatomy 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000033001 locomotion Effects 0.000 description 13
- 230000035876 healing Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 6
- 238000005553 drilling Methods 0.000 description 4
- 210000002967 posterior cruciate ligament Anatomy 0.000 description 4
- 210000000968 fibrocartilage Anatomy 0.000 description 3
- 210000001699 lower leg Anatomy 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 230000000386 athletic effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241001347978 Major minor Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000037118 bone strength Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000004417 patella Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 238000007586 pull-out test Methods 0.000 description 1
- 238000002278 reconstructive surgery Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
- A61F2/0811—Fixation devices for tendons or ligaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/686—Plugs, i.e. elements forming interface between bone hole and implant or fastener, e.g. screw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0409—Instruments for applying suture anchors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/044—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0446—Means for attaching and blocking the suture in the suture anchor
- A61B2017/0458—Longitudinal through hole, e.g. suture blocked by a distal suture knot
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
- A61F2/0811—Fixation devices for tendons or ligaments
- A61F2002/0817—Structure of the anchor
- A61F2002/0823—Modular anchors comprising a plurality of separate parts
- A61F2002/0835—Modular anchors comprising a plurality of separate parts with deformation of anchor parts, e.g. expansion of dowel by set screw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
- A61F2/0811—Fixation devices for tendons or ligaments
- A61F2002/0847—Mode of fixation of anchor to tendon or ligament
- A61F2002/0864—Fixation of tendon or ligament between anchor elements, e.g. by additional screws in the anchor, anchor crimped around tendon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
- A61F2/0811—Fixation devices for tendons or ligaments
- A61F2002/0847—Mode of fixation of anchor to tendon or ligament
- A61F2002/087—Anchor integrated into tendons, e.g. bone blocks, integrated rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
- A61F2/0811—Fixation devices for tendons or ligaments
- A61F2002/0876—Position of anchor in respect to the bone
- A61F2002/0882—Anchor in or on top of a bone tunnel, i.e. a hole running through the entire bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30062—(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/3085—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
Definitions
- This invention relates to surgical implants and more particularly, to surgical procedures and appliances for intraarticular anterior and posterior ligament reconstruction.
- the mechanical actions that take place in such movement include a certain amount of gliding and rotation along with the hinge action such that the same part of one articular surface of the distal fem ur or proximal tibia will not always be applied to the same part of the other articular surface, and the axis of motion is not fixed.
- the posterior part of the articular surfaces of the tibia will be found to be in contact with the fem ur posterior around the extremities of the condyles.
- the axis around which the revolving movement of the tibia would occur should be in the back part of the condyle.
- the upper surface of the tibia will seem to glide over the condyle of the fem ur, such that the middlepart of the articular facets are in contact, and the axis of rotation is therefore shifted forward to near the center of the condyle.
- the leg is brought into the extended position, still further gliding takes place as does a further shifting forward of the axis of rotation.
- Knee joint flexure and extension is therefore not a simple movement but is accompanied by a certain amount of outward rotation around a vertical axis drawn through the center of the head of the tibia. This rotation is due to the greater length of the internal condyle, and to the fact that the anterior portion of its articular surface is inclined obliquely outward. In consequence, toward the close of the movement of extension, just before complete extension, the tibia will glide obliquely upward and outward over the oblique surface of the inner condyle, and the leg will be necessarily rotated outwardly.
- This patent is directed to an implant and kit therefore but does not, as does the present invention, provide an arrangement that is a near duplication for the patient's natural ligament.
- the Hunt, et al. patent is devoted to connectors and an implant that incorporates carbon fibers and, where tunnels are shown formed in the respective bones, such are apparently formed where access is convenient.
- the tunnels are not aligned and each is open to without the fem ur and tibia surfaces, their formation involves extensive opening of the knee to provide access to the bone surfaces.
- the present invention provides for ligament reconstruction using essentially an arthroscopic technique where a single incision only is made to the bone below the tibia tuberosity.
- a tunnel is formed into the bone that passes through the respective points of connection of a cruciate ligament between the proximal tibia and distal fem ur and into the fem ur cortex.
- the fem ur cortex is then prepared to receive a ligament end coupling fitted therein to secure one ligament end.
- the present invention provides for both fitting a ligament to extend across the knee so as to most nearly duplicate the natural ligament positioning and provides for internal coupling the one ligament within a bone cortex. Additionally, the present invention provides a convenient arrangement for adjusting the implanted ligament tensioning to most nearly duplicate a natural condition. The present invention therefore provides both a unique surgical approach and attachment devices to produce and implant that most nearly duplicates the patient's natural ligament arrangement tham has heretofore been possible.
- Still another object of the present invention is to provide an end coupling for the prosthetic ligament to secure it at the tunnel entrance at the tibial tuberosity and adjusting the ligament tensioning.
- Still another object of the present invention is to provide a surgical procedure for replacing a torn or damaged cruciate ligament with an allograft or prosthetic ligament that requires minimal patient trauma and minimizes the time required for healing.
- Still another object of the present invention is to provide an allograft or prosthetic ligament for replacement of a ruptured or damaged ligament that includes connectors made of a biodegradable material for maintaining the ligament in place and will be absorbed by the body in the healing process.
- the present invention is in an arthroscopic surgical procedure for installation of an allograft or prosthetic ligament as a replacement for a ruptured knee ligament, preferably either an anterior or posterior cruciate ligament.
- a patient's lower leg is maintained in approximately a ninety degree (90°) angle to their upper leg and a longitudinal incision is made medial to the tibial tuberosity, which incision is made to the bone.
- a stainless steel guidewire is driven in the anterior medial tibia at a point that is approximately two (2) centimeters distance to the medial tibial plateau.
- Guidewire insertion is conducted under flurorscopic and arthroscopic control.
- the guidewire after insertion, is thereby visualized as it is forced through the joint of the distal fem ur and proximal tibia, crossing the intercondylar notch area of the knee to engage the posterior and lateral femoral condyle.
- the preferred point of fem ur entry is deep within the inter-condylar notch, as identified under fluoroscopic visualization, approximately four (4) millimeters anterior to the junction of the fem ur posterior cortex and the inter-condylar seam as would be seen in a true lateral x-ray film of the distal fem ur.
- Guidewire travel is continued to pass through the fem ur cancellous bone, the medullary channel and into the anterior lateral cortex so as to be just proxim al to the metaphysical flare of the distal fem ur. So installed, the guidewire is then used to direct drill points of increasing drill sizes along its course, the drilling operation to sequentially increase the passage or tunnel diameter from the tunnel entry at the tibial tuberosity.
- the increasing size drills are stopped in the medullary channel.
- the tunnel end is drilled beyond the medullary channel into the fem ur anterior cortex where the guidepin has been lodged. This final hole is made in preparation for turning either a tap therein forming threads or a flaring drill to widen that tunnel end.
- the ligament femoral end connection is a threaded component to be turned into the threaded tunnel end.
- the ligament femoral end connector is arranged to be expanded or outwardly flared to fill the widened tunnel end.
- the ligament After tunnel formation, the ligament is inserted to where its end is secured in the fem ur cortex as by either turning or expanding the connector end therein. The ligament thereby extends from its cortex end to where it exits the tunnel at the tunnel point of entry on the tibial tuberosity. Where the ligament is an allograft, the ligament end can be bent at the tunnel end across the bone and stapled thereto. Where the ligament is a prosthetic ligament, a preferred end coupling involves forming threads in the ligament end to receive a flat disk that is center tapped and slopes outwardly from one face to the other around the circumference, the small diameter face to nest in the tunnel end. This connector arrangement provides a capability for ligament length adjustment to achieve a desired ligament tensioning. In both embodiments, the respective connectors can be formed of a biodegradable material, such as a polylactic acid that will be absorbed by the body during the healing process, the bone growing to either the prosthetic or allograft ligaments.
- a biodegradable material such as a
- Utilization of the above-described ligament and preferred connector installing procedure provides for ligament positioning to most nearly duplicate a damaged ligament and for setting a desired tensile stress in the ligament.
- FIG. 1 shows a patient's leg with their lower leg maintained at approximately a ninety (90°) angle to the upper leg, which positioning is to be maintained throughout a surgical procedure of the present invention
- FIG. 2 is an enlarged side elevation view exposing the proximal tibia and distal fem ur ends of the leg of FIG. 1, which distal fem ur is shown as having had a section removed to the bone cortex, exposing a tunnel formed therein that contains one embodiment of a prosthetic ligament and end connectors therefore of the present invention;
- FIG. 3 is a front elevation view of the distal fem ur and proximal tibia ends of FIG. 2 showing a portion of the fem ur cortex removed exposing the tunnel with the prosthetic ligament end secured therein;
- FIG. 4 shows an enlarged side elevation view of the prosthetic ligament of FIGS. 2 and 3 removed from the patient's knee, and shows the ligament femoral and tibial attachment ends as they appe ar before installation;
- FIG. 5A is an enlarged end view of the femoral attachment end of the prosthetic ligament of FIG. 4;
- FIG. 5B is a view like FIG. 5A except that it shows the femoral attachment end having been expanded to the flared configuration shown in FIGS. 2 and 3;
- FIG. 6 shows another embodiment of a prosthetic ligament that incorporates a deep threaded end as the femoral attachment end and includes the threaded tibial attachment end that is like shown in FIGS. 2 through 4;
- FIG. 7 is a side elevation view of a distal fem ur showing a section removed so as to expose the bone cortex and shows the ligament femoral attachment end of FIG. 6 turned into a tapped tunnel end;
- FIG. 8 shows a profile perspective view of a threaded cylindrical allograft ligament end connector that is for turning into a tapped tunnel end in the fem ur cortex
- FIG. 9 shows a sectional view taken along lines 9--9 of the end connector of FIG. 8;
- FIG. 10 shows the end connector of FIG. 9 being sewn onto the end of an allograft ligament and shows a hex-sided driver fitted into a like sided longitudinal hole in that end connector with the allograft ligament wrapped therearound;
- FIG. 11 shows a front elevation view of a fem ur that has a tunnel formed into the base cortex, showing a section of the bone removed to expose the end connector of FIGS. 8 through 10 turned therein.
- the present invention is in a surgical process or system whereby, from a single incision only made in a patient to their tibial tuberosity, a straight passage or tunnel is formed that will cross the proximal and distal fem ur surfaces and extend into the fem ur cortex.
- the tunnel is for receiving a ligament, either allograft or prosthetic, that is secured therein by one of several ligament end attachment embodiments of the invention.
- the process is primarily directed to but should be understood is not limited to replacement of a patient's damaged anterior or external cruciate ligament.
- the present procedure is described herein with respect to a replacement of the amterior cruciate ligament that is the ligament that is attached on its one end to the depression in front of the spine of the tibia and is part of the external semi-lunar fibrocartilage and is arranged to pass obliquely upwardly as well as backwardly and outwardly therefrom.
- the other ligament end is joined onto the inner and back part of the fem ur outer condyle.
- the anterior cruciate ligament, during leg rotation, is in a semi-flexed condition, and opposes inward rotation. It is this ligament that, in athletic play where the knee is subjected to an inward force, such as football, is most often dam aged.
- repair of the anterior cruciate ligament has involved an extensive surgical opening of the knee along with a release of the outer ligaments and cartilage that surround the tibia to effectively lay open the knee.
- the ruptured ligament has been repaired, if possible or replaced with an allograft or prosthetic ligament.
- the procedure has involved tunneling through the fem ur and tibia, the tunnel exiting both bone surfaces, and a stapling of the ligament ends of the bone surfaces.
- Such procedure has required that the patient's leg be immobilized for an extended period of time to allow for healing, and, generally a full restoration of the patient's knee has not been obtained.
- the present invention provides a reconstructive procedure for arthroscopic insertion of either an allograft or prosthetic ligament that involves a single sm all incision only and provides, with a successful completion of the procedure, a ligament that is essentially ready for use.
- FIG. 1 shows that in a practice of the arthroscopic procedure of the present invention for replacement of the amterior cruciate ligament, the patient's leg 10 is preferably maintained at approximately a ninety degree (90°) angle between the fem ur and tibia. W ith the leg 10 so maintained, a longitudinal incision of approximately five (5) centimeters is made in the lower leg just below the external semi-lunar fibrocartilage to open the skin to the tibial tuberosity. At this exposed bone section, the end of a stainless steel guidewire, not shown, is positioned on a point of the tibial tuberosity that is approximately two (2) centimeters distal to the medial tibial plateau.
- a ninety degree (90°) angle between the fem ur and tibia.
- the guidewire is then urged into that bone mass at that point by an application of a force thereto as by hammering the opposite guidewire end, or the like.
- This insertion process is made under fluoroscopic control to allow a surgeon to follow the guidewire progress through the bone so as to ensure that it will exit a point on the proximal tibia surface where the anterior crucial ligament is connected to the tibia and is blended with the semi-lunar fibrocartilage. This point will be approximately two (2) centimeters posterior to the most anterior border of the tibial plateau.
- Guidewire travel to verify its positioning as it enters the joint after piercing the tibial connection of the anterior cruciate ligament can also be visualized arthroscopically through an opening made in the knee cap area.
- Guidewire travel can thereby be observed both arthoscopically and fluoroscopically, insuring that it travels across the intercondylar notch area of the knee to engage the posterior and lateral femoral condyle at a point that is deep within the notch.
- This point is approximately where the opposite end of the anterior crucial ligament attaches to the fem ur at the intercondylar notch area. It is generally located approxim ately four (4) millimeters anterior to the junction of the fem ur posterior cortex and the intercondylar seam as would be seen in a true lateral x-ray film of the distal fem ur.
- the knee is maintained or fixed in a ninety degree (90°) position to ensure that the formed passage will be essentially straight and that points of engagement of the guidewire with the ends of the anterior crucial ligament will be optimal.
- the guidewire pointed end After verifying that the guidewire pointed end is properly located on the junction of the fem ur posterior cortex and the intercondylar seam, it is further forced into the bone mass.
- the guidewire is driven through the cancellous bone that surrounds the medullary channel to pass through that medullary channel and into the fem ur amterior lateral cortex to a point that is just proximal to the metaphysical flare.
- Guidewire positioning is again verified radiologically and is thereafter utilized to guide drill points of increasing sizes along the guidewire course. Such drilling begins at the entry point on the anterior medial tibia and terminates at the fem ur medullary channel before the anterior lateral cortex.
- the drill points that are selected for forming the tunnel to receive a prosthetic ligament preferably begin at five sixteenths of an inch (5/16") and are progressively increased in size by one sixteenth of an inch (1/16") increments to approximately seven sixteenths of an inch (7/16") in diameter.
- the tunnel is not drilled beyond the fem ur medullary channel so as not to dislodge the guidewire end lodged in the anterior cortex.
- the preferred drill sizes begin at six (6) millimeters and progress to eight (8) millimeters as the tunnel is enlarged.
- a final drilling step is the insertion of a one quarter of an inch (1/4") canulated drill into the tunnel to pierce the anterior lateral cortex of the fem ur.
- This step is in preparation for fitting a tap or flaring drill into that cortex.
- the guidewire is released and can be removed.
- the tunnel end in the fem ur anterior lateral cortex is then ready to be prepared to receive a femoral attachment end of either allograft or prosthetic ligament to be secured therein.
- the anterior lateral cortex will preferably be tapped to approximately a three eights of an inch (1/2") diameter. While, for a skirted end coupling as will be described later herein, the tunnel end receives a flaring drill turned therein.
- FIGS. 2 and 3 show tunnel 11 formed between the distal fem ur and proximal tibia ends and show a section of the fem ur removed therefrom.
- the Figs. illustrate the positioning of the respective bone ends and show a prosthesis ligament secured therein.
- Tunnel 11 exits the proximal tibia at a point 14 that is approximately two (2) centimeters posterior to the most anterior border of that tibial plateau 13 and is approximately the connection point of the end of the anterior cruciate ligament to the bone surf ace.
- the intercondylar notch area shown at 15 in FIG.
- tunnel 11 is the point of entry of tunnel 11 into the distal fem ur, the tunnel passing between the posterior and lateral femoral condyles 16 and 17.
- the preferred tunnel entry point is on the distal fem ur is determined radiologically and should be appropriately four (4) millimeters anterior of the juncture of the fem ur posterior cortex 18 and the intercondylar seam 19. From this point of entry the tunnel 11 passes through the cancellous bone 20 and through the medullary channel 21, as shown in broken lines, and terminates in the anterior lateral cortex 22.
- a practice of the above set out procedure therefore will produce a tunnel suitable for receiving a ligament to replace the anterior cruciate ligament as shown in FIGS. 2, 3, 7, and 11, with the tunnel end that terminates in the cortex to receive a ligament end connector secured therein, as will be discussed in detail hereinbelow. It should, however, be understood that, with appropriate changes to the tunnel point of entry and angle of travel therethrough it can be formed to pass through the junctions of the posterior cruciate ligament with the respective bone surfaces within the scope of this disclosure.
- FIGS. 2 and 3 illustrate a first embodiment of an expandable cone 26 as a femoral attachment end for a prosthetic ligament 25.
- the expandable cone 26 is cylindrical in shape and preferably includes longitudinal slots 27 formed at spaced intervals therearound. So arranged, the cone end can be expanded to the attitude shown in FIGS. 2 and 3 when an expansion anchor 33 is pulled therein, the cone end breaking at longitudinal slots 27 to form a skirt.
- the femoral end of tunnel 11 must also be outwardly flared at its most distant point. From the flared portion, the tunnel to taper a lesser radius or circumference that is essentially the ligament radius.
- a drill that is shown in an earlier application for U.S. patent application, Ser. No. 845,929, that the present inventor is a coinventor of, is preferred.
- Such drill includes sissoring blades that, at a certain depth of penetration of the drill end relative to a guide sleeve thereof, will pivot apart. With the sissoring blades flaring outwardly, the drill will then cut an inverted skirt shaped hole at the tunnel end to accommodate the prosthetic ligament expandable cone 26 after it has been flared outwardly therein. While a drill like that described in the aforesaid earlier application for U.S. patent is preferred, it should be understood that other drill arrangements for forming an inverted skirt or like enlarged femoral end of tunnel 11 can be so used within the scope of this disclosure.
- FIGS. 2, 3, and 4 show the prosthetic ligament 25, shown to be preferably formed from a braided fabric and includes as the femoral attachment end, the expandable cone 26.
- the expandable cone 26 is preferably attached to the prosthetic ligament 25 in the manufacturing process.
- the opposite end of ligament 25 is shown threaded therealong at 29 for receiving, as a tibial attachment end, a flattened cone 30.
- Flattened cone 30 is holed and threaded longitudinally therethrough to be turned over the threaded prosthetic ligament tibial end 29.
- the flattened cone outer circumference is shown to appear outwardly from the edge of one face to the edge of the other face with the lesser diameter cone face to wedge in tunnel 11 open end.
- the prosthetic ligament 25 includes a longitudinal passage that is open therethrough and receives an inner shaft 31 telescoped to slide therein.
- the expansion anchor 33 is shown to have, opposite to the flat face, a cylindrical nose and is flared or tapered outwardly back from the nose end into a cylindrical center section 34. Back therefrom the anchor tapers inwardly from an end edge 35 into a saddle 36 and then flares outwardly from 37 to terminate in a rear edge 38.
- the anchor rear edge 38 is aligned with the expanding cone 26 open end to travel therein.
- the cone 26 is tapered inwardly from a widest point at its open end, the opening therethrough reducing in diameter, as illustrated in broken lines at 26a in FIGS. 5A and 5B to a continuous groove 39 formed around the cone inner circumference at approximately the closed ends 27a of longitudinal slots 27.
- pulling the expansion anchor 33 into the expandable cone 26 causes that cone end to expand outwardly, flaring the cone at longitudinal slot ends 27a.
- the anchor rear edge 38 will engage and seat in groove 39 having flared the cone 26, as shown in broken lines in FIG. 5B, locking the expansion anchor therein.
- Shaft 31 travel to so move expansion anchor 33 into the expandable cone 26 is shown by the arrow B in FIG. 5B.
- FIG. 6 shows another embodiment of a prosthetic ligament 40 that includes, as a femoral attachment end, deep threads 41 that are formed in the ligament femoral end. These threads are preferably formed during the fabrication thereof as are smaller machine threads 42 that are formed in the ligament tibial attachment end. Threads 41, as illustrated, are preferably cut deep and wide to bite deeply into the tunnel femoral anterior cortex end, which threads are cut or formed therein, as set out hereinabove, as a last step in the tunnel formation process. As with the description of prosthetic ligament 25, the machine threads 42 that are formed as the tibial attachment end are to receive a flattened cone 43 turned thereover.
- the tibia attachment component is preferably the flattened cone shaped collar that is longitudinally center threaded therethrough for turning over the threaded prosthetic ligament threaded end such that the cone lesser diameter end will travel into the tibia tunnel 11 end.
- Flattened cone 43 turning is preferably accomplished by fitting a tool, not shown, into a hole or holes 43a that extend through the cone to the greater diameter face thereof, and turning the collar with that tool. This arrangement provides for adjusting ligament tension by appropriately turning the collar on the ligament to engage the tibia tunnel end.
- the tunnel 11 femoral end after it has been tapped or otherwise machined to form threads therein, accommodates the threaded end 41 of prosthetic ligament 40 turned therein.
- This tapping or threading can be accomplished by insertion of the canulated drill into the fem ur anterior lateral cortex end of tunnel 11, as described hereinabove, followed by a tap turned therein.
- Such tap is inserted along the prepared tunnel 11 and is turned to tap that fem ur anterior cortex at 44, as illustrated in FIG. 7.
- the prosthetic ligament 40 of FIG. 6 is turned into the tunnel end 44, as illustrated in FIG. 7, to where the ligament end butts against the tunnel end, locking the ligament therein.
- prosthetic ligament length and tension adjustment is accomplished, as set out above, by turning the flattened cone 43 on the prosthetic ligament thread end 41, to where it engages the tibia end of tunnel 11.
- Setting prosthetic ligament tension is preferably accomplished while maintaining the patient's leg 10 in the attitude shown in FIG. 1.
- FIG. 10 shows a threaded cylinder 50 that is a preferred configuration of a femoral attachment for an allograft ligament 49 for securing a ligament end in the femoral anterior cortex end of tunnel 11.
- Cylinder 50 is shown to have the appearance of a set screw, in that it is threaded at 51 along its entire length, as shown in FIG. 8 and 9, and includes a center hex-sided cavity 53.
- the cylinder 50 preferably includes longitudinal holes 5-2 that are radially formed therethrough around the center hex-sided cavity 53.
- the cavity 53 is formed in a ligament attaching end of cylinder 50 that is preferably dished below a circumferential lip 54.
- the cylinder 50 is preferably fabricated of a biodegradable material such as a polylactic acid plastic or like material, to be absorbed by the body in the healing process.
- FIG. 10 shows an end of allograft ligament 49 being attached to cylinder 50 by passing a suture 56 at spaced intervals around the ligament end, which suture is also selectively threaded through longitudinal passages 52 using a needle 57. The ligament end is then drawn tightly against the cylinder 50 dished out portion, fitting below the circumferential lip 54. Shown in FIGS. 10 and 10 A, for installation, the allograft ligament is unrolled and is wrapped around a hex-sided driver 58, which drive should be long enough to be turned from without the tunnel 11.
- the allograft ligament has an overlapping layered appearance, as shown in the sectional view of FIG. 10A.
- the allograft ligament is unwrapped so as to loosen it as the center wherethrough the hex-sided driver if fitted.
- the ligament and driver are then fitted into tunnel 11 and the cylinder 50 threads 51 are turned into a tapped fem ur end 60 of tunnel 11.
- the hex-sided driver 58 is removed and the allograft ligament 49 stretched out, as illustrated in FIG. 11.
- the cylinder threads 51 are preferably machine type threads, as shown in FIGS. 8 through 11, and therefore thread 51 depth is not as great as is the depth of threads 41 of the prosthetic ligament 40 of FIG. 6. It should, however, be understood that the threaded femoral attachment end of the prosthetic ligament 40 and cylinder 50 can have the same or different depth of thread within the scope of this disclosure.
- the allograft ligament 49 is pulled tight so as to achieve a certain tensile loading thereon.
- the ligament tibial end is then secured to the tibia as by bending the ligament 49 tibial end across the bone surface from the tunnel 11 entry and is fixed thereat as by driving staples into the bone that span the ligament.
- a tibial attachment device such as a collar arrangement, that could be pinched around the ligament, not shown, or the like, can be used for attaching the allograft ligament tibial end to the tibia within the scope of this disclosure.
- the present disclosure has, of course, been directed to both prosthetic and allograft ligaments.
- a prosthetic ligament manufactured by Zimmer U.S.A. is believed to be suitable for the described application. Approval for this ligament for use as an implant is currently being sought from the Food and Drug Administration for human implant. It should, however, be understood that the present invention is not limited to use with such particular prosthetic ligament only and that the end connection devices set out herein can be used with other prosthetic ligaments as may be now available or as may be developed in the future within the scope of this disclosure.
- allograft ligaments from cadavers are presently available for human implant.
- Table I shows the pull out strength of the femoral attachment component, the cylinder 50 that incorporates three (3) sutures 56 each threaded through and back through passage 52, securing the ligament end to the cylinder end.
- Each suture was capable of sustaining a twenty (20) pounds tensile load.
- the test standard thereby being that the attachment device, cylinder 50 and its suture connection would sustain at least a pull-out tensile stress of sixty (60) pounds.
- the test data in Table I shows that this criterior was met, the minimum sustained load shown as sixty seven (67) pounds.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Rheumatology (AREA)
- Rehabilitation Therapy (AREA)
- Surgery (AREA)
- Neurology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
TABLE I ______________________________________ SPECIMEN SPECIFICATIONS Material Threads Test Note Thread Major Minor Per Load Number Date Length Dia. Dia. Inch (Lbs.) ______________________________________ 1 7-29-86 .702 .374 .236 9 267 2 7-29-86 .702 .374 .236 9 129 3 7-29-86 .702 .374 .236 9 165 4 8-07-86 1.134 .373 .236 9 169 5 8-07-86 .594 .374 .236 9 133 6 9-04-86 .750 .328 .236 12 115 7 9-04-86 .750 .328 .236 12 67 8 9-04-86 .750 .328 .236 12 85 9 9-04-86 .750 .328 .236 12 142 14 9-12-86 .750 .375 .280 18 120 15 9-12-86 .750 .375 .280 18 220 16 9-12-86 .750 .375 .280 18 520 17 9-12-86 .750 .375 .280 18 120 ______________________________________ NOTE MATERIAL TEST NOTE NUMBER 10-13 INVOLVE TIBIAL ATTACHMENT DEVICES AND DO NOT APPLY
Claims (32)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07529319 USRE34293F1 (en) | 1987-02-17 | 1990-05-29 | Ligament attachment method and apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/015,432 US4772286A (en) | 1987-02-17 | 1987-02-17 | Ligament attachment method and apparatus |
CA000566630A CA1336058C (en) | 1987-02-17 | 1988-05-12 | Ligament attachment method and apparatus |
JP63135759A JPH01314559A (en) | 1987-02-17 | 1988-06-03 | Surgical system |
US07529319 USRE34293F1 (en) | 1987-02-17 | 1990-05-29 | Ligament attachment method and apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/015,432 Reissue US4772286A (en) | 1987-02-17 | 1987-02-17 | Ligament attachment method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
USRE34293E true USRE34293E (en) | 1993-06-22 |
USRE34293F1 USRE34293F1 (en) | 1998-04-07 |
Family
ID=27426544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07529319 Expired - Lifetime USRE34293F1 (en) | 1987-02-17 | 1990-05-29 | Ligament attachment method and apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE34293F1 (en) |
Cited By (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5507750A (en) * | 1993-09-16 | 1996-04-16 | Goble; E. Marlowe | Method and apparatus for tensioning grafts or ligaments |
US5531792A (en) * | 1994-06-14 | 1996-07-02 | Huene; Donald R. | Bone plug fixation assembly, expansible plug assembly therefor, and method of fixation |
WO1997010743A2 (en) | 1995-09-21 | 1997-03-27 | Medicinelodge, Inc. | Suture anchor system and method |
US5643321A (en) * | 1994-11-10 | 1997-07-01 | Innovasive Devices | Suture anchor assembly and methods |
US5643266A (en) * | 1995-06-05 | 1997-07-01 | Li Medical Technologies, Inc. | Method and apparatus for securing ligaments |
US5645589A (en) * | 1994-08-22 | 1997-07-08 | Li Medical Technologies, Inc. | Anchor and method for securement into a bore |
US5649963A (en) * | 1994-11-10 | 1997-07-22 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
WO1997030649A1 (en) * | 1996-02-20 | 1997-08-28 | Medicinelodge, Inc. | Ligament bone anchor and method for its use |
US5702215A (en) | 1995-06-05 | 1997-12-30 | Li Medical Technologies, Inc. | Retractable fixation device |
US5713897A (en) * | 1997-03-06 | 1998-02-03 | Goble; E. Marlowe | Anterior cruciate ligament tensioning device and method for its use |
US5725529A (en) * | 1990-09-25 | 1998-03-10 | Innovasive Devices, Inc. | Bone fastener |
US5741300A (en) | 1996-09-10 | 1998-04-21 | Li Medical Technologies, Inc. | Surgical anchor and package and cartridge for surgical anchor |
US5782835A (en) * | 1995-03-07 | 1998-07-21 | Innovasive Devices, Inc. | Apparatus and methods for articular cartilage defect repair |
US5814071A (en) * | 1994-11-10 | 1998-09-29 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5843127A (en) * | 1994-08-22 | 1998-12-01 | Le Medical Technologies, Inc. | Fixation device and method for installing same |
US5860978A (en) * | 1990-09-25 | 1999-01-19 | Innovasive Devices, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US5871504A (en) * | 1997-10-21 | 1999-02-16 | Eaton; Katulle Koco | Anchor assembly and method for securing ligaments to bone |
US5885293A (en) * | 1997-03-03 | 1999-03-23 | Innovasive Devices, Inc. | Apparatus and method for cutting a surface at a repeatable angle |
EP0919194A1 (en) | 1997-11-25 | 1999-06-02 | Piero Cerruti-Quara | Device for anchoring a suture to bone |
US5935129A (en) * | 1997-03-07 | 1999-08-10 | Innovasive Devices, Inc. | Methods and apparatus for anchoring objects to bone |
US6117161A (en) | 1995-06-06 | 2000-09-12 | Li Medical Tecnologies, Inc. | Fastener and fastening method, particularly for fastening sutures to bone |
US6146406A (en) | 1998-02-12 | 2000-11-14 | Smith & Nephew, Inc. | Bone anchor |
US6214050B1 (en) | 1999-05-11 | 2001-04-10 | Donald R. Huene | Expandable implant for inter-bone stabilization and adapted to extrude osteogenic material, and a method of stabilizing bones while extruding osteogenic material |
US6306138B1 (en) * | 1997-09-24 | 2001-10-23 | Ethicon, Inc. | ACL fixation pin and method |
US6306142B1 (en) | 1998-07-17 | 2001-10-23 | Johnson & Johnson | Method and apparatus for harvesting and implanting bone plugs |
US6482210B1 (en) | 1998-11-12 | 2002-11-19 | Orthopaedic Biosystems, Ltd., Inc. | Soft tissue/ligament to bone fixation device with inserter |
US6520980B1 (en) | 2000-11-02 | 2003-02-18 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a self-locking knotless suture anchoring device |
US6520991B2 (en) | 1999-05-11 | 2003-02-18 | Donald R. Huene | Expandable implant for inter-vertebral stabilization, and a method of stabilizing vertebrae |
US6585730B1 (en) | 2000-08-30 | 2003-07-01 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US6610079B1 (en) | 1999-12-14 | 2003-08-26 | Linvatec Corporation | Fixation system and method |
US6616694B1 (en) | 1996-11-21 | 2003-09-09 | Ethicon, Inc. | Apparatus for anchoring autologous or artificial tendon grafts in bone |
US20030191498A1 (en) * | 2001-06-06 | 2003-10-09 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device |
US6652561B1 (en) | 2000-10-13 | 2003-11-25 | Opus Medical, Inc | Method and apparatus for attaching connective tissues to bone using a perforated suture anchoring device |
US6660008B1 (en) | 2001-06-07 | 2003-12-09 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a suture anchoring device |
US6679889B1 (en) | 2000-11-13 | 2004-01-20 | Hs West Investments, Llc | Apparatus and methods for independently conditioning and pretensioning a plurality of ligament grafts during joint repair surgery |
US6689153B1 (en) | 1999-04-16 | 2004-02-10 | Orthopaedic Biosystems Ltd, Inc. | Methods and apparatus for a coated anchoring device and/or suture |
US20040073219A1 (en) * | 2002-10-15 | 2004-04-15 | Skiba Jeffry B. | Insertion instrument |
US6743233B1 (en) | 2000-08-02 | 2004-06-01 | Orthopaedic Biosystems, Ltd., Inc. | Medical screw and method of installation |
US20040153153A1 (en) * | 2001-05-31 | 2004-08-05 | Elson Robert J. | Anterior cruciate ligament reconstruction system and method of implementing same |
US20040176768A1 (en) * | 2002-11-05 | 2004-09-09 | Wamis Singhatat | Rotating ring ligament fixation |
US20040181234A1 (en) * | 2000-11-16 | 2004-09-16 | Mcdevitt Dennis | Apparatus and method for attaching soft tissue to bone |
US20040193063A1 (en) * | 2003-02-28 | 2004-09-30 | Teiyuu Kimura | Method and apparatus for measuring biological condition |
US20040210246A1 (en) * | 2001-10-23 | 2004-10-21 | Johanson Mark A. | Method and apparatus for harvesting and implanting bone plugs |
US20040243179A1 (en) * | 2001-02-12 | 2004-12-02 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US20050049598A1 (en) * | 2003-08-29 | 2005-03-03 | West Hugh S. | Suture pulley for use with graft tensioning device |
US20050049597A1 (en) * | 2003-08-29 | 2005-03-03 | West Hugh S. | Suture separation and organization devices for use with graft tensioning device |
US20050065533A1 (en) * | 2001-05-31 | 2005-03-24 | Magen Hugh E. | Apparatus for assembling anterior cruciate ligament reconstruction system |
US20050119698A1 (en) * | 2000-12-22 | 2005-06-02 | Jonathan Martinek | Suture screw |
US7074203B1 (en) | 1990-09-25 | 2006-07-11 | Depuy Mitek, Inc. | Bone anchor and deployment device therefor |
US20060200235A1 (en) * | 2005-03-04 | 2006-09-07 | Regeneration Technologies, Inc. | Assembled bone-tendon-bone grafts |
US20060212036A1 (en) * | 2005-03-04 | 2006-09-21 | Regeneration Technologies, Inc. | Bone block assemblies and their use in assembled bone-tendon-bone grafts |
US20060229722A1 (en) * | 2005-03-04 | 2006-10-12 | Bianchi John R | Adjustable and fixed assembled bone-tendon-bone graft |
US20060271192A1 (en) * | 2005-03-04 | 2006-11-30 | Olsen Raymond E | Self Fixing Assembled Bone-Tendon-Bone Graft |
US7144414B2 (en) | 2000-06-27 | 2006-12-05 | Smith & Nephew, Inc. | Surgical procedures and instruments |
US20060276841A1 (en) * | 2005-03-10 | 2006-12-07 | Barbieri Thomas J | Suture anchors |
US20060293689A1 (en) * | 2002-10-29 | 2006-12-28 | Stryker Endoscopy | Graft fixation device and method |
US20070213730A1 (en) * | 2006-03-09 | 2007-09-13 | Jonathan Martinek | Cannulated suture anchor system |
US20080027443A1 (en) * | 2006-07-26 | 2008-01-31 | Lambert Systms, L.L.C. | Biocompatible Anchoring Device For A Soft Tissue Graft, Method Of Making And Method Of Using |
US20080033460A1 (en) * | 2006-08-04 | 2008-02-07 | Depuy Mitek, Inc. | Suture Anchor System With Tension Relief Mechanism |
US7615061B2 (en) | 2006-02-28 | 2009-11-10 | Arthrocare Corporation | Bone anchor suture-loading system, method and apparatus |
US7637926B2 (en) | 2002-02-04 | 2009-12-29 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US7645293B2 (en) | 2004-04-21 | 2010-01-12 | United States Surgical Corporation | Suture anchor installation system and method |
US7682374B2 (en) | 2003-10-21 | 2010-03-23 | Arthrocare Corporation | Knotless suture lock and bone anchor implant method |
US20110015674A1 (en) * | 2009-07-16 | 2011-01-20 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US7896907B2 (en) | 1999-07-23 | 2011-03-01 | Ethicon, Inc. | System and method for attaching soft tissue to bone |
US7963972B2 (en) | 2007-09-12 | 2011-06-21 | Arthrocare Corporation | Implant and delivery system for soft tissue repair |
US20110208194A1 (en) * | 2009-08-20 | 2011-08-25 | Howmedica Osteonics Corp. | Flexible acl instrumentation, kit and method |
US8105343B2 (en) | 2008-06-30 | 2012-01-31 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
US8133258B2 (en) | 2006-08-03 | 2012-03-13 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US8137381B2 (en) | 2007-04-25 | 2012-03-20 | Arthrocare Corporation | Knotless suture anchor having discrete polymer components and related methods |
US8496705B2 (en) | 1996-11-21 | 2013-07-30 | DePuy Mitek, LLCR | Method of anchoring autologous or artificial tendon grafts in bone |
US8657854B2 (en) | 2001-02-12 | 2014-02-25 | Arthrocare Corporation | Knotless suture anchoring device having deforming section to accommodate sutures of various diameters |
US8821494B2 (en) | 2012-08-03 | 2014-09-02 | Howmedica Osteonics Corp. | Surgical instruments and methods of use |
US9023083B2 (en) | 2012-01-27 | 2015-05-05 | Arthrocare Corporation | Method for soft tissue repair with free floating suture locking member |
US9034014B2 (en) | 2012-01-27 | 2015-05-19 | Arthrocare Corporation | Free floating wedge suture anchor for soft tissue repair |
US9078740B2 (en) | 2013-01-21 | 2015-07-14 | Howmedica Osteonics Corp. | Instrumentation and method for positioning and securing a graft |
US9186133B2 (en) | 2001-12-06 | 2015-11-17 | Arthrocare Corporation | Bone anchor insertion device |
US9198649B2 (en) | 2012-01-27 | 2015-12-01 | Arthrocare Corporation | Rotating locking member suture anchor and method for soft tissue repair |
US9226742B2 (en) | 2012-01-27 | 2016-01-05 | Arthrocare Corporation | Restricted wedge suture anchor and method for soft tissue repair |
US9364210B2 (en) | 2012-01-27 | 2016-06-14 | Arthrocare Corporation | Biased wedge suture anchor and method for soft tissue repair |
US9402620B2 (en) | 2013-03-04 | 2016-08-02 | Howmedica Osteonics Corp. | Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use |
US9463013B2 (en) | 2013-03-13 | 2016-10-11 | Stryker Corporation | Adjustable continuous filament structure and method of manufacture and use |
US9510816B2 (en) | 1999-08-10 | 2016-12-06 | Depuy Mitek, Llc | Self-locking suture anchor |
US9636101B2 (en) | 2011-09-01 | 2017-05-02 | Arthrocare Corporation | Bone anchor having an integrated stress isolator |
US9788826B2 (en) | 2013-03-11 | 2017-10-17 | Howmedica Osteonics Corp. | Filamentary fixation device and assembly and method of assembly, manufacture and use |
US9788825B2 (en) | 2006-08-04 | 2017-10-17 | Depuy Mitek, Llc | Suture anchor with relief mechanism |
US9795398B2 (en) | 2011-04-13 | 2017-10-24 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
US9855028B2 (en) | 2012-04-06 | 2018-01-02 | Arthrocare Corporation | Multi-suture knotless anchor for attaching tissue to bone and related method |
US9986992B2 (en) | 2014-10-28 | 2018-06-05 | Stryker Corporation | Suture anchor and associated methods of use |
US10448944B2 (en) | 2011-11-23 | 2019-10-22 | Howmedica Osteonics Corp. | Filamentary fixation device |
US10568616B2 (en) | 2014-12-17 | 2020-02-25 | Howmedica Osteonics Corp. | Instruments and methods of soft tissue fixation |
US10610211B2 (en) | 2013-12-12 | 2020-04-07 | Howmedica Osteonics Corp. | Filament engagement system and methods of use |
USD902405S1 (en) | 2018-02-22 | 2020-11-17 | Stryker Corporation | Self-punching bone anchor inserter |
CN113303926A (en) * | 2021-07-07 | 2021-08-27 | 浙江大学 | Dilator is strengthened to anterior cruciate ligament stub |
US11331094B2 (en) | 2013-04-22 | 2022-05-17 | Stryker Corporation | Method and apparatus for attaching tissue to bone |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4301551A (en) * | 1979-05-24 | 1981-11-24 | Ecole Polythechnique | Deformable high energy storage tension spring |
US4467478A (en) * | 1982-09-20 | 1984-08-28 | Jurgutis John A | Human ligament replacement |
US4483023A (en) * | 1981-08-21 | 1984-11-20 | Meadox Medicals, Inc. | High-strength ligament prosthesis |
US4590928A (en) * | 1980-09-25 | 1986-05-27 | South African Invention Development Corporation | Surgical implant |
US4597766A (en) * | 1984-10-26 | 1986-07-01 | American Hospital Supply Corporation | Implantable bioprosthetic tendons and ligaments |
US4605414A (en) * | 1984-06-06 | 1986-08-12 | John Czajka | Reconstruction of a cruciate ligament |
US4712542A (en) * | 1986-06-30 | 1987-12-15 | Medmetric Corporation | System for establishing ligament graft orientation and isometry |
US4823780A (en) * | 1984-03-14 | 1989-04-25 | Odensten Magnus G | Drill guiding and aligning device |
-
1990
- 1990-05-29 US US07529319 patent/USRE34293F1/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4301551A (en) * | 1979-05-24 | 1981-11-24 | Ecole Polythechnique | Deformable high energy storage tension spring |
US4590928A (en) * | 1980-09-25 | 1986-05-27 | South African Invention Development Corporation | Surgical implant |
US4483023A (en) * | 1981-08-21 | 1984-11-20 | Meadox Medicals, Inc. | High-strength ligament prosthesis |
US4467478A (en) * | 1982-09-20 | 1984-08-28 | Jurgutis John A | Human ligament replacement |
US4823780A (en) * | 1984-03-14 | 1989-04-25 | Odensten Magnus G | Drill guiding and aligning device |
US4605414A (en) * | 1984-06-06 | 1986-08-12 | John Czajka | Reconstruction of a cruciate ligament |
US4597766A (en) * | 1984-10-26 | 1986-07-01 | American Hospital Supply Corporation | Implantable bioprosthetic tendons and ligaments |
US4712542A (en) * | 1986-06-30 | 1987-12-15 | Medmetric Corporation | System for establishing ligament graft orientation and isometry |
Cited By (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6830572B2 (en) * | 1990-09-24 | 2004-12-14 | Depuy Mitex, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US20100100128A1 (en) * | 1990-09-24 | 2010-04-22 | Ethicon, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US7651495B2 (en) | 1990-09-24 | 2010-01-26 | Ethicon, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US8062295B2 (en) | 1990-09-24 | 2011-11-22 | Depuy Mitek, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US20050038437A1 (en) * | 1990-09-24 | 2005-02-17 | Ethicon, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US6302886B1 (en) | 1990-09-24 | 2001-10-16 | Innovasive Devices, Inc. | Method and apparatus for preventing migration of sutures through transosseous tunnels |
US5860978A (en) * | 1990-09-25 | 1999-01-19 | Innovasive Devices, Inc. | Methods and apparatus for preventing migration of sutures through transosseous tunnels |
US7074203B1 (en) | 1990-09-25 | 2006-07-11 | Depuy Mitek, Inc. | Bone anchor and deployment device therefor |
US5725529A (en) * | 1990-09-25 | 1998-03-10 | Innovasive Devices, Inc. | Bone fastener |
US5507750A (en) * | 1993-09-16 | 1996-04-16 | Goble; E. Marlowe | Method and apparatus for tensioning grafts or ligaments |
US5531792A (en) * | 1994-06-14 | 1996-07-02 | Huene; Donald R. | Bone plug fixation assembly, expansible plug assembly therefor, and method of fixation |
US5843127A (en) * | 1994-08-22 | 1998-12-01 | Le Medical Technologies, Inc. | Fixation device and method for installing same |
US5645589A (en) * | 1994-08-22 | 1997-07-08 | Li Medical Technologies, Inc. | Anchor and method for securement into a bore |
US5797963A (en) * | 1994-11-10 | 1998-08-25 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5814071A (en) * | 1994-11-10 | 1998-09-29 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5649963A (en) * | 1994-11-10 | 1997-07-22 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
US5643321A (en) * | 1994-11-10 | 1997-07-01 | Innovasive Devices | Suture anchor assembly and methods |
US5782835A (en) * | 1995-03-07 | 1998-07-21 | Innovasive Devices, Inc. | Apparatus and methods for articular cartilage defect repair |
US5643266A (en) * | 1995-06-05 | 1997-07-01 | Li Medical Technologies, Inc. | Method and apparatus for securing ligaments |
US5702215A (en) | 1995-06-05 | 1997-12-30 | Li Medical Technologies, Inc. | Retractable fixation device |
US6117161A (en) | 1995-06-06 | 2000-09-12 | Li Medical Tecnologies, Inc. | Fastener and fastening method, particularly for fastening sutures to bone |
WO1997010743A2 (en) | 1995-09-21 | 1997-03-27 | Medicinelodge, Inc. | Suture anchor system and method |
US5665110A (en) * | 1995-09-21 | 1997-09-09 | Medicinelodge, Inc. | Suture anchor system and method |
WO1997030649A1 (en) * | 1996-02-20 | 1997-08-28 | Medicinelodge, Inc. | Ligament bone anchor and method for its use |
US5702397A (en) * | 1996-02-20 | 1997-12-30 | Medicinelodge, Inc. | Ligament bone anchor and method for its use |
US5741300A (en) | 1996-09-10 | 1998-04-21 | Li Medical Technologies, Inc. | Surgical anchor and package and cartridge for surgical anchor |
US7637949B2 (en) | 1996-11-21 | 2009-12-29 | Innovasive Devices, Inc. | Method for anchoring autologous or artificial tendon grafts in bone |
US8496705B2 (en) | 1996-11-21 | 2013-07-30 | DePuy Mitek, LLCR | Method of anchoring autologous or artificial tendon grafts in bone |
US20100121450A1 (en) * | 1996-11-21 | 2010-05-13 | Hart Rickey D | Method for anchoring autologous or artificial tendon grafts in bone |
US6616694B1 (en) | 1996-11-21 | 2003-09-09 | Ethicon, Inc. | Apparatus for anchoring autologous or artificial tendon grafts in bone |
US20040097943A1 (en) * | 1996-11-21 | 2004-05-20 | Hart Rickey D. | Apparatus for anchoring autologous or artificial tendon grafts in bone |
US8100969B2 (en) | 1996-11-21 | 2012-01-24 | Depuy Mitek, Inc. | Methods for anchoring autologous or artificial tendon grafts using first and second bone anchors |
US5885293A (en) * | 1997-03-03 | 1999-03-23 | Innovasive Devices, Inc. | Apparatus and method for cutting a surface at a repeatable angle |
US5713897A (en) * | 1997-03-06 | 1998-02-03 | Goble; E. Marlowe | Anterior cruciate ligament tensioning device and method for its use |
US5935129A (en) * | 1997-03-07 | 1999-08-10 | Innovasive Devices, Inc. | Methods and apparatus for anchoring objects to bone |
US6306138B1 (en) * | 1997-09-24 | 2001-10-23 | Ethicon, Inc. | ACL fixation pin and method |
US6780188B2 (en) | 1997-09-24 | 2004-08-24 | Ethicon, Inc. | ACL fixation pin |
US5871504A (en) * | 1997-10-21 | 1999-02-16 | Eaton; Katulle Koco | Anchor assembly and method for securing ligaments to bone |
EP0919194A1 (en) | 1997-11-25 | 1999-06-02 | Piero Cerruti-Quara | Device for anchoring a suture to bone |
US6146406A (en) | 1998-02-12 | 2000-11-14 | Smith & Nephew, Inc. | Bone anchor |
US6767354B2 (en) | 1998-07-17 | 2004-07-27 | Depuy Mitek, Inc. | Method and apparatus for harvesting and implanting bone plugs |
US6306142B1 (en) | 1998-07-17 | 2001-10-23 | Johnson & Johnson | Method and apparatus for harvesting and implanting bone plugs |
US6395011B1 (en) | 1998-07-17 | 2002-05-28 | Johnson & Johnson | Method and apparatus for harvesting and implanting bone plugs |
US6482210B1 (en) | 1998-11-12 | 2002-11-19 | Orthopaedic Biosystems, Ltd., Inc. | Soft tissue/ligament to bone fixation device with inserter |
US6689153B1 (en) | 1999-04-16 | 2004-02-10 | Orthopaedic Biosystems Ltd, Inc. | Methods and apparatus for a coated anchoring device and/or suture |
US6214050B1 (en) | 1999-05-11 | 2001-04-10 | Donald R. Huene | Expandable implant for inter-bone stabilization and adapted to extrude osteogenic material, and a method of stabilizing bones while extruding osteogenic material |
US6520991B2 (en) | 1999-05-11 | 2003-02-18 | Donald R. Huene | Expandable implant for inter-vertebral stabilization, and a method of stabilizing vertebrae |
US20110152929A1 (en) * | 1999-07-23 | 2011-06-23 | Depuy Mitek, Inc. | System and method for attaching soft tissue to bone |
US7896907B2 (en) | 1999-07-23 | 2011-03-01 | Ethicon, Inc. | System and method for attaching soft tissue to bone |
US20110152885A1 (en) * | 1999-07-23 | 2011-06-23 | Depuy Mitek, Inc. | System And Method For Attaching Soft Tissue To Bone |
US8491600B2 (en) | 1999-07-23 | 2013-07-23 | Depuy Mitek, Llc | System and method for attaching soft tissue to bone |
US8518091B2 (en) | 1999-07-23 | 2013-08-27 | Depuy Mitek, Llc | System and method for attaching soft tissue to bone |
US9510816B2 (en) | 1999-08-10 | 2016-12-06 | Depuy Mitek, Llc | Self-locking suture anchor |
US6610079B1 (en) | 1999-12-14 | 2003-08-26 | Linvatec Corporation | Fixation system and method |
US7144414B2 (en) | 2000-06-27 | 2006-12-05 | Smith & Nephew, Inc. | Surgical procedures and instruments |
US6743233B1 (en) | 2000-08-02 | 2004-06-01 | Orthopaedic Biosystems, Ltd., Inc. | Medical screw and method of installation |
US6585730B1 (en) | 2000-08-30 | 2003-07-01 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US6652561B1 (en) | 2000-10-13 | 2003-11-25 | Opus Medical, Inc | Method and apparatus for attaching connective tissues to bone using a perforated suture anchoring device |
US6520980B1 (en) | 2000-11-02 | 2003-02-18 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a self-locking knotless suture anchoring device |
US7118578B2 (en) | 2000-11-13 | 2006-10-10 | Hs West Investments, Llc | Apparatus and methods for independently conditioning and pre-tensioning a plurality of ligament grafts during joint repair surgery |
US6679889B1 (en) | 2000-11-13 | 2004-01-20 | Hs West Investments, Llc | Apparatus and methods for independently conditioning and pretensioning a plurality of ligament grafts during joint repair surgery |
US20040039389A1 (en) * | 2000-11-13 | 2004-02-26 | West Hugh S. | Apparatus and methods for independently conditioning and pre-tensioning a plurality of ligament grafts during joint repair surgery |
US9757114B2 (en) | 2000-11-16 | 2017-09-12 | Depuy Mitek, Llc | Apparatus and method for attaching soft tissue to bone |
US7867264B2 (en) | 2000-11-16 | 2011-01-11 | Ethicon, Inc. | Apparatus and method for attaching soft tissue to bone |
US8834543B2 (en) | 2000-11-16 | 2014-09-16 | Depuy Mitek, Llc | Apparatus and method for attaching soft tissue to bone |
US20040181234A1 (en) * | 2000-11-16 | 2004-09-16 | Mcdevitt Dennis | Apparatus and method for attaching soft tissue to bone |
US20050119698A1 (en) * | 2000-12-22 | 2005-06-02 | Jonathan Martinek | Suture screw |
US8685060B2 (en) | 2001-02-12 | 2014-04-01 | Arthrocare Corporation | Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device |
US8657854B2 (en) | 2001-02-12 | 2014-02-25 | Arthrocare Corporation | Knotless suture anchoring device having deforming section to accommodate sutures of various diameters |
US7695494B2 (en) | 2001-02-12 | 2010-04-13 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US20040243179A1 (en) * | 2001-02-12 | 2004-12-02 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US8444672B2 (en) | 2001-02-12 | 2013-05-21 | Arthrocare Corporation | Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device |
US7556640B2 (en) | 2001-02-12 | 2009-07-07 | Arthrocare Corporation | Bone anchor device having toggle member for attaching connective tissues to bone |
US20040153153A1 (en) * | 2001-05-31 | 2004-08-05 | Elson Robert J. | Anterior cruciate ligament reconstruction system and method of implementing same |
US20050065533A1 (en) * | 2001-05-31 | 2005-03-24 | Magen Hugh E. | Apparatus for assembling anterior cruciate ligament reconstruction system |
US7674274B2 (en) | 2001-06-06 | 2010-03-09 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device |
US20030191498A1 (en) * | 2001-06-06 | 2003-10-09 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device |
US6660008B1 (en) | 2001-06-07 | 2003-12-09 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a suture anchoring device |
US7819888B2 (en) | 2001-10-23 | 2010-10-26 | Innovasive Devices, Inc. | Method and apparatus for harvesting and implanting bone plugs |
US20040210246A1 (en) * | 2001-10-23 | 2004-10-21 | Johanson Mark A. | Method and apparatus for harvesting and implanting bone plugs |
US9186133B2 (en) | 2001-12-06 | 2015-11-17 | Arthrocare Corporation | Bone anchor insertion device |
US7637926B2 (en) | 2002-02-04 | 2009-12-29 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US20040073219A1 (en) * | 2002-10-15 | 2004-04-15 | Skiba Jeffry B. | Insertion instrument |
US7588595B2 (en) | 2002-10-29 | 2009-09-15 | Stryker Endoscopy | Graft fixation device and method |
US7988697B2 (en) | 2002-10-29 | 2011-08-02 | Stryker Endoscopy | Graft fixation device and method |
US20060293689A1 (en) * | 2002-10-29 | 2006-12-28 | Stryker Endoscopy | Graft fixation device and method |
US20040176768A1 (en) * | 2002-11-05 | 2004-09-09 | Wamis Singhatat | Rotating ring ligament fixation |
US7357803B2 (en) * | 2002-11-05 | 2008-04-15 | Linvatec Corporation | Rotating ring ligament fixation |
US20040193063A1 (en) * | 2003-02-28 | 2004-09-30 | Teiyuu Kimura | Method and apparatus for measuring biological condition |
US7686810B2 (en) | 2003-08-29 | 2010-03-30 | Hs West Investments, Llc | Suture separation and organization devices for use with graft tensioning device |
US20050049597A1 (en) * | 2003-08-29 | 2005-03-03 | West Hugh S. | Suture separation and organization devices for use with graft tensioning device |
US20050049598A1 (en) * | 2003-08-29 | 2005-03-03 | West Hugh S. | Suture pulley for use with graft tensioning device |
US7682374B2 (en) | 2003-10-21 | 2010-03-23 | Arthrocare Corporation | Knotless suture lock and bone anchor implant method |
US7645293B2 (en) | 2004-04-21 | 2010-01-12 | United States Surgical Corporation | Suture anchor installation system and method |
US20100179592A1 (en) * | 2004-04-21 | 2010-07-15 | United States Surgical Corporation | Suture anchor installation system and method |
US8317828B2 (en) | 2004-04-21 | 2012-11-27 | United States Surgical Corporation | Suture anchor installation system and method |
US7776089B2 (en) | 2005-03-04 | 2010-08-17 | Rti Biologics, Inc. | Assembled bone-tendon-bone grafts |
US9717586B2 (en) | 2005-03-04 | 2017-08-01 | Rti Surgical, Inc. | Adjustable and fixed assembled bone-tendon-bone graft |
US20060212036A1 (en) * | 2005-03-04 | 2006-09-21 | Regeneration Technologies, Inc. | Bone block assemblies and their use in assembled bone-tendon-bone grafts |
US7727278B2 (en) | 2005-03-04 | 2010-06-01 | Rti Biologics, Inc. | Self fixing assembled bone-tendon-bone graft |
US20060200235A1 (en) * | 2005-03-04 | 2006-09-07 | Regeneration Technologies, Inc. | Assembled bone-tendon-bone grafts |
US7763072B2 (en) | 2005-03-04 | 2010-07-27 | Rti Biologics, Inc. | Intermediate bone block and its use in bone block assemblies and assembled bone-tendon-bone grafts |
US7763071B2 (en) | 2005-03-04 | 2010-07-27 | Rti Biologics, Inc. | Bone block assemblies and their use in assembled bone-tendon-bone grafts |
US8470038B2 (en) | 2005-03-04 | 2013-06-25 | Rti Biologics, Inc. | Adjustable and fixed assembled bone-tendon-bone graft |
US20060229722A1 (en) * | 2005-03-04 | 2006-10-12 | Bianchi John R | Adjustable and fixed assembled bone-tendon-bone graft |
US20060271192A1 (en) * | 2005-03-04 | 2006-11-30 | Olsen Raymond E | Self Fixing Assembled Bone-Tendon-Bone Graft |
US20060200236A1 (en) * | 2005-03-04 | 2006-09-07 | Regeneration Technologies, Inc. | Intermediate bone block and its use in bone block assemblies and assembled bone-tendon-bone grafts |
US20060276841A1 (en) * | 2005-03-10 | 2006-12-07 | Barbieri Thomas J | Suture anchors |
US8277484B2 (en) | 2005-03-10 | 2012-10-02 | Tyco Healthcare Group Lp | Suture anchors |
US7588587B2 (en) | 2005-03-10 | 2009-09-15 | Tyco Healthcare Group Lp | Suture anchors |
US7615061B2 (en) | 2006-02-28 | 2009-11-10 | Arthrocare Corporation | Bone anchor suture-loading system, method and apparatus |
US20070213730A1 (en) * | 2006-03-09 | 2007-09-13 | Jonathan Martinek | Cannulated suture anchor system |
US20080243184A1 (en) * | 2006-03-09 | 2008-10-02 | Jonathan Martinek | Cannulated suture anchor system |
US8403957B2 (en) | 2006-03-09 | 2013-03-26 | Covidien Lp | Cannulated suture anchor system |
WO2008005090A2 (en) * | 2006-06-30 | 2008-01-10 | Regeneration Technologies, Inc. | Self fixing assembled bone-tendon-bone graft |
WO2008005090A3 (en) * | 2006-06-30 | 2008-05-02 | Regeneration Tech Inc | Self fixing assembled bone-tendon-bone graft |
US20080027443A1 (en) * | 2006-07-26 | 2008-01-31 | Lambert Systms, L.L.C. | Biocompatible Anchoring Device For A Soft Tissue Graft, Method Of Making And Method Of Using |
US8317829B2 (en) | 2006-08-03 | 2012-11-27 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US8133258B2 (en) | 2006-08-03 | 2012-03-13 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
US20080033460A1 (en) * | 2006-08-04 | 2008-02-07 | Depuy Mitek, Inc. | Suture Anchor System With Tension Relief Mechanism |
US10813633B2 (en) | 2006-08-04 | 2020-10-27 | DePuy Synthes Products, Inc. | Suture anchor system with tension relief mechanism |
US9788825B2 (en) | 2006-08-04 | 2017-10-17 | Depuy Mitek, Llc | Suture anchor with relief mechanism |
US9750492B2 (en) | 2006-08-04 | 2017-09-05 | Depuy Mitek, Llc | Suture anchor system with tension relief mechanism |
US10939902B2 (en) | 2006-08-04 | 2021-03-09 | DePuy Synthes Products, Inc. | Suture anchor with relief mechanism |
US8137381B2 (en) | 2007-04-25 | 2012-03-20 | Arthrocare Corporation | Knotless suture anchor having discrete polymer components and related methods |
US8425536B2 (en) | 2007-09-12 | 2013-04-23 | Arthrocare Corporation | Implant and delivery system for soft tissue repair |
US7963972B2 (en) | 2007-09-12 | 2011-06-21 | Arthrocare Corporation | Implant and delivery system for soft tissue repair |
US8105343B2 (en) | 2008-06-30 | 2012-01-31 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
US8828029B2 (en) | 2008-06-30 | 2014-09-09 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
US8834495B2 (en) | 2008-06-30 | 2014-09-16 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
US8617186B2 (en) | 2008-06-30 | 2013-12-31 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
US8911474B2 (en) | 2009-07-16 | 2014-12-16 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US10159478B2 (en) | 2009-07-16 | 2018-12-25 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US8439947B2 (en) | 2009-07-16 | 2013-05-14 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US12016548B2 (en) | 2009-07-16 | 2024-06-25 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US11304690B2 (en) | 2009-07-16 | 2022-04-19 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US20110015675A1 (en) * | 2009-07-16 | 2011-01-20 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US20110015674A1 (en) * | 2009-07-16 | 2011-01-20 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US9545252B2 (en) | 2009-07-16 | 2017-01-17 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
US10231744B2 (en) | 2009-08-20 | 2019-03-19 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
US20110208194A1 (en) * | 2009-08-20 | 2011-08-25 | Howmedica Osteonics Corp. | Flexible acl instrumentation, kit and method |
US10238404B2 (en) | 2009-08-20 | 2019-03-26 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
US11364041B2 (en) | 2009-08-20 | 2022-06-21 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
US9232954B2 (en) | 2009-08-20 | 2016-01-12 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
US9795398B2 (en) | 2011-04-13 | 2017-10-24 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
US9636101B2 (en) | 2011-09-01 | 2017-05-02 | Arthrocare Corporation | Bone anchor having an integrated stress isolator |
US11844508B2 (en) | 2011-11-23 | 2023-12-19 | Howmedica Osteonics Corp. | Filamentary fixation device |
US10448944B2 (en) | 2011-11-23 | 2019-10-22 | Howmedica Osteonics Corp. | Filamentary fixation device |
US9226742B2 (en) | 2012-01-27 | 2016-01-05 | Arthrocare Corporation | Restricted wedge suture anchor and method for soft tissue repair |
US9198649B2 (en) | 2012-01-27 | 2015-12-01 | Arthrocare Corporation | Rotating locking member suture anchor and method for soft tissue repair |
US9023083B2 (en) | 2012-01-27 | 2015-05-05 | Arthrocare Corporation | Method for soft tissue repair with free floating suture locking member |
US9034014B2 (en) | 2012-01-27 | 2015-05-19 | Arthrocare Corporation | Free floating wedge suture anchor for soft tissue repair |
US9364210B2 (en) | 2012-01-27 | 2016-06-14 | Arthrocare Corporation | Biased wedge suture anchor and method for soft tissue repair |
US9855028B2 (en) | 2012-04-06 | 2018-01-02 | Arthrocare Corporation | Multi-suture knotless anchor for attaching tissue to bone and related method |
US10123792B2 (en) | 2012-08-03 | 2018-11-13 | Howmedica Osteonics Corp. | Soft tissue fixation devices and methods |
US8821494B2 (en) | 2012-08-03 | 2014-09-02 | Howmedica Osteonics Corp. | Surgical instruments and methods of use |
US10653410B2 (en) | 2012-08-03 | 2020-05-19 | Howmedica Osteonics Corp. | Soft tissue fixation devices and methods |
US20140336654A1 (en) | 2012-08-03 | 2014-11-13 | Howmedica Osteonics Corp. | Surgical instruments and methods of use |
US9226744B2 (en) | 2012-08-03 | 2016-01-05 | Howmedica Osteonics Corp. | Surgical instruments and methods of use |
US9078740B2 (en) | 2013-01-21 | 2015-07-14 | Howmedica Osteonics Corp. | Instrumentation and method for positioning and securing a graft |
US10285685B2 (en) | 2013-03-04 | 2019-05-14 | Howmedica Osteonics Corp. | Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use |
US9402620B2 (en) | 2013-03-04 | 2016-08-02 | Howmedica Osteonics Corp. | Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use |
US9788826B2 (en) | 2013-03-11 | 2017-10-17 | Howmedica Osteonics Corp. | Filamentary fixation device and assembly and method of assembly, manufacture and use |
US9463013B2 (en) | 2013-03-13 | 2016-10-11 | Stryker Corporation | Adjustable continuous filament structure and method of manufacture and use |
US11331094B2 (en) | 2013-04-22 | 2022-05-17 | Stryker Corporation | Method and apparatus for attaching tissue to bone |
US12048427B2 (en) | 2013-04-22 | 2024-07-30 | Stryker Corporation | Method and apparatus for attaching tissue to bone |
US10610211B2 (en) | 2013-12-12 | 2020-04-07 | Howmedica Osteonics Corp. | Filament engagement system and methods of use |
US11006945B2 (en) | 2014-10-28 | 2021-05-18 | Stryker Corporation | Suture anchor and associated methods of use |
US9986992B2 (en) | 2014-10-28 | 2018-06-05 | Stryker Corporation | Suture anchor and associated methods of use |
US10568616B2 (en) | 2014-12-17 | 2020-02-25 | Howmedica Osteonics Corp. | Instruments and methods of soft tissue fixation |
USD958989S1 (en) | 2018-02-22 | 2022-07-26 | Stryker Corporation | Self-punching bone anchor inserter |
USD976405S1 (en) | 2018-02-22 | 2023-01-24 | Stryker Corporation | Self-punching bone anchor inserter |
USD902405S1 (en) | 2018-02-22 | 2020-11-17 | Stryker Corporation | Self-punching bone anchor inserter |
CN113303926A (en) * | 2021-07-07 | 2021-08-27 | 浙江大学 | Dilator is strengthened to anterior cruciate ligament stub |
Also Published As
Publication number | Publication date |
---|---|
USRE34293F1 (en) | 1998-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE34293E (en) | Ligament attachment method and apparatus | |
US4772286A (en) | Ligament attachment method and apparatus | |
US6273890B1 (en) | Intra-articular tendon sling fixation screw | |
US8465545B2 (en) | Devices, systems, and methods for material fixation | |
US5674224A (en) | Bone mulch screw assembly for endosteal fixation of soft tissue grafts and method for using same | |
US6616694B1 (en) | Apparatus for anchoring autologous or artificial tendon grafts in bone | |
US7651528B2 (en) | Devices, systems and methods for material fixation | |
JP4637506B2 (en) | Tissue fixing device | |
US8496705B2 (en) | Method of anchoring autologous or artificial tendon grafts in bone | |
AU8278198A (en) | Apparatus and methods for anchoring autologous or artificial tendon grafts in bone | |
US8795293B2 (en) | Flipp tack pusher | |
AU2013200756B2 (en) | Devices, systems, and methods for material fixation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: INNOVASIVE ACQUISITION CORP., MASSACHUSETTS Free format text: ASSIGNMENT OF PATENT LICENSES;ASSIGNOR:MEDICINE LODGE, INC.;REEL/FRAME:008650/0628 Effective date: 19970627 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: ZIMMER TECHNOLOGY, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZIMMER, INC.;REEL/FRAME:013862/0766 Effective date: 20020628 |