Nothing Special   »   [go: up one dir, main page]

USRE48412E1 - Balancing multiple computer models in a call center routing system - Google Patents

Balancing multiple computer models in a call center routing system Download PDF

Info

Publication number
USRE48412E1
USRE48412E1 US14/788,469 US201514788469A USRE48412E US RE48412 E1 USRE48412 E1 US RE48412E1 US 201514788469 A US201514788469 A US 201514788469A US RE48412 E USRE48412 E US RE48412E
Authority
US
United States
Prior art keywords
agent
contact
caller
measurement
agents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/788,469
Inventor
Zia Chishti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afiniti Ltd
Orix Growth Capital LLC
Original Assignee
Afiniti Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/266,461 external-priority patent/US8472611B2/en
Priority to US14/788,469 priority Critical patent/USRE48412E1/en
Application filed by Afiniti Ltd filed Critical Afiniti Ltd
Assigned to ORIX VENTURES, LLC reassignment ORIX VENTURES, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SATMAP INTERNATIONAL HOLDINGS, LTD.
Assigned to AFINITI INTERNATIONAL HOLDINGS, LTD. reassignment AFINITI INTERNATIONAL HOLDINGS, LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SATMAP INTERNATIONAL HOLDINGS, LTD.
Assigned to ORIX VENTURES, LLC reassignment ORIX VENTURES, LLC CORRECTIVE ASSIGNMENT TO CORRECT TO REMOVE PATENT NUMBER 6996948 PREVIOUSLY RECORDED AT REEL: 036917 FRAME: 0627. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: SATMAP INTERNATIONAL HOLDINGS, LTD.
Assigned to AFINITI, LTD. (F/K/A SATMAP INTERNATIONAL HOLDINGS, LTD.) reassignment AFINITI, LTD. (F/K/A SATMAP INTERNATIONAL HOLDINGS, LTD.) RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ORIX GROWTH CAPITAL, LLC (F/K/A ORIX VENTURES, LLC)
Assigned to Afiniti, Ltd. reassignment Afiniti, Ltd. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AFINITI INTERNATIONAL HOLDINGS, LTD.
Publication of USRE48412E1 publication Critical patent/USRE48412E1/en
Application granted granted Critical
Assigned to VCP CAPITAL MARKETS, LLC reassignment VCP CAPITAL MARKETS, LLC PATENT SECURITY AGREEMENT Assignors: Afiniti, Ltd.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/50Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
    • H04M3/51Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing
    • H04M3/523Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing
    • H04M3/5238Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing with waiting time or load prediction arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/50Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
    • H04M3/51Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing
    • H04M3/523Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing
    • H04M3/5232Call distribution algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/50Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
    • H04M3/51Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing
    • H04M3/523Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing
    • H04M3/5232Call distribution algorithms
    • H04M3/5233Operator skill based call distribution

Definitions

  • the present invention relates generally to the field of routing phone calls and other telecommunications in a contact center system.
  • the typical contact center consists of a number of human agents, with each assigned to a telecommunication device, such as a phone or a computer for conducting email or Internet chat sessions, that is connected to a central switch. Using these devices, the agents are generally used to provide sales, customer service, or technical support to the customers or prospective customers of a contact center or a contact center's clients.
  • a contact center or client will advertise to its customers, prospective customers, or other third parties a number of different contact numbers or addresses for a particular service, such as for billing questions or for technical support.
  • the customers, prospective customers, or third parties seeking a particular service will then use this contact information, and the incoming caller will be routed at one or more routing points to a human agent at a contact center who can provide the appropriate service.
  • Contact centers that respond to such incoming contacts are typically referred to as “inbound contact centers.”
  • a contact center can make outgoing contacts to current or prospective customers or third parties. Such contacts may be made to encourage sales of a product, provide technical support or billing information, survey consumer preferences, or to assist in collecting debts. Contact centers that make such outgoing contacts are referred to as “outbound contact centers.”
  • caller the individuals that interact with contact center agents using a telecommunication device
  • agent the individuals acquired by the contact center to interact with callers.
  • a contact center operation includes a switch system that connects callers to agents.
  • these switches route incoming callers to a particular agent in a contact center, or, if multiple contact centers are deployed, to a particular contact center for further routing.
  • dialers are typically employed in addition to a switch system. The dialer is used to automatically dial a phone number from a list of phone numbers, and to determine whether a live caller has been reached from the phone number called (as opposed to obtaining no answer, a busy signal, an error message, or an answering machine). When the dialer obtains a live caller, the switch system routes the caller to a particular agent in the contact center.
  • U.S. Pat. No. 7,236,584 describes a telephone system for equalizing caller waiting times across multiple telephone switches, regardless of the general variations in performance that may exist among those switches.
  • Contact routing in an inbound contact center is a process that is generally structured to connect callers to agents that have been idle for the longest period of time. In the case of an inbound caller where only one agent may be available, that agent is generally selected for the caller without further analysis. In another example, if there are eight agents at a contact center, and seven are occupied with contacts, the switch will generally route the inbound caller to the one agent that is available.
  • the switch will typically put the contact on hold and then route it to the next agent that becomes available. More generally, the contact center will set up a queue of incoming callers and preferentially route the longest-waiting callers to the agents that become available over time. Such a pattern of routing contacts to either the first available agent or the longest-waiting agent is referred to as “round-robin” contact routing. In round robin contact routing, eventual matches and connections between a caller and an agent are essentially random.
  • U.S. Pat. No. 7,209,549 describes a telephone routing system wherein an incoming caller's language preference is collected and used to route their telephone call to a particular contact center or agent that can provide service in that language.
  • language preference is the primary driver of matching and connecting a caller to an agent, although once such a preference has been made, callers are almost always routed in “round-robin” fashion.
  • a method for routing callers to agents in a call-center routing system includes using a multi-layer processing approach to matching a caller to an agent, where a first layer of processing includes two or more different computer models or methods for matching callers to agents.
  • the output of the first layer e.g., the output of the different methods for matching the callers to agents, is received by a second layer of processing for balancing or weighting the outputs and selecting a final caller-agent match for routing.
  • the two or more models or methods may include conventional queue based routing, performance based matching (e.g., ranking a set of agents based on performance and preferentially matching callers to the agents based on a performance ranking or score), pattern matching algorithms (e.g., comparing agent caller data associated with a set of callers to agent data associated with a set of agents and determining a suitability score of different caller-agent pairs), affinity data matching, and other models for matching callers to agents.
  • the methods may therefore operate to output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on).
  • the output or scores of the two or more methods may be processed to select a caller-agent pair and cause the caller to be routed to a particular agent.
  • the output of the two or more methods may be balanced or weighted against each other to determine a matching agent-caller pair.
  • the output of the different methods may be balanced equally to determine routing instructions (e.g., the scores can be standardized and weighted evenly to determine a “best” matching agent-caller pair from the different methods).
  • the methods may be unbalanced, e.g., weighting a pattern matching algorithm output greater than a performance based routing output and so on.
  • an interface may be presented to a user allowing for adjustment of the balancing of the methods, e.g., a slider or selector for adjusting the balance in real-time or a predetermined time.
  • the interface may allow a user to turn certain methods on and off, change desired optimizations, and may display an estimated effect of the balancing or a change in balancing of the different routing methods.
  • an adaptive algorithm (such as a neural network or genetic algorithm) may be used to receive, as input, the outputs of the two or more models to output a caller-agent pair.
  • the adaptive algorithm may compare performance over time and adapt to pick the best model for a desired outcome variable.
  • apparatus comprising logic for mapping and routing callers to agents.
  • the apparatus may include logic for receiving input data associated with callers and agents at a first layer of processing, the first layer of processing including at least two models for matching callers to agents, each model outputting output data for at least one caller-agent pair.
  • the apparatus may further include logic for receiving the output data from each processing model at a second layer of processing, the second layer of processing operable to balance the output data of the at least two models and map a caller to an agent based on the received outputs.
  • each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system.
  • the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.
  • FIG. 1 is a diagram reflecting the general setup of a contact center operation.
  • FIG. 2 illustrates an exemplary routing system having a routing engine for routing callers based on performance and/or pattern matching algorithms.
  • FIG. 3 illustrates an exemplary routing system having a mapping engine for routing callers based on performance and/or pattern matching algorithms.
  • FIG. 4 illustrates an exemplary multi-layer approach to selecting a caller-agent pair based on multiple matching methods.
  • FIG. 5 illustrates an exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
  • FIG. 6 illustrates another exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
  • FIG. 7 illustrates an exemplary method or computer model for matching callers to agents based on performance.
  • FIG. 8 illustrates an exemplary method or computer model for matching callers to agents based on caller data and agent data.
  • FIG. 9 illustrates a typical computing system that may be employed to implement some or all processing functionality in certain embodiments of the invention.
  • a method includes using a first layer of processing, the first layer including two or more methods or models for determining caller-agent pairs.
  • the two or more methods may include conventional queue based routing, performance based matching (e.g., ranking a set of agents based on performance and preferentially matching callers to the agents based on a performance ranking or score), pattern matching algorithms (e.g., comparing agent data associated with a set of callers to agent data associated a set of agents and determine a suitability score of different caller-agent pairs), affinity data matching, and other models for matching callers to agents.
  • the methods may therefore operate to output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on) to a second layer of processing.
  • the second layer of processing may receive the output of the first layer and determine an agent-caller pair based on the output of different methods of the first layer of processing.
  • the second layer of processing includes a computer model to balance or weight the different outputs, which may be altered by a user.
  • exemplary call routing systems and methods utilizing performance and/or pattern matching algorithms (either of which may be used within generated computer models for predicting the chances of desired outcomes) are described for routing callers to available agents. This description is followed by exemplary systems and methods for multi-layer processing of input data to select a caller-agent pairing.
  • FIG. 1 is a diagram reflecting the general setup of a contact center operation 100 .
  • the network cloud 101 reflects a specific or regional telecommunications network designed to receive incoming callers or to support contacts made to outgoing callers.
  • the network cloud 101 can comprise a single contact address, such as a telephone number or email address, or multiple contract addresses.
  • the central router 102 reflects contact routing hardware and software designed to help route contacts among call centers 103 .
  • the central router 102 may not be needed where there is only a single contact center deployed. Where multiple contact centers are deployed, more routers may be needed to route contacts to another router for a specific contact center 103 .
  • a contact center router 104 will route a contact to an agent 105 with an individual telephone or other telecommunications equipment 105 .
  • agents 105 there are multiple agents 105 at a contact center 103 , though there are certainly embodiments where only one agent 105 is at the contact center 103 , in which case a contact center router 104 may prove to be unnecessary.
  • FIG. 2 illustrates an exemplary contact center routing system 200 (which may be included with contact center router 104 of FIG. 1 ).
  • routing system 200 is operable to match callers and agents based, at least in part, on agent performance or pattern matching algorithms using caller data and/or agent data.
  • Routing system 200 may include a communication server 202 and a routing engine 204 (referred to at times as “SatMap” or “Satisfaction Mapping”) for receiving and matching callers to agents (referred to at times as “mapping” callers to agents).
  • Routing engine 204 may operate in various manners to match callers to agents based on performance data of agents, pattern matching algorithms, and computer models, which may adapt over time based on the performance or outcomes of previous caller-agent matches.
  • the routing engine 204 includes a neural network based adaptive pattern matching engine.
  • Various other exemplary pattern matching and computer model systems and methods which may be included with content routing system and/or routing engine 204 are described, for example, in U.S. Ser. No. 12/021,251, filed Jan. 28, 2008, and U.S. Ser. No. U.S. patent application Ser. No. 12/202,091, filed Aug. 29, 2008, both of which are hereby incorporated by reference in their entirety.
  • other performance based or pattern matching algorithms and methods may be used alone or in combination with those described here.
  • Routing system 200 may further include other components such as collector 206 for collecting caller data of incoming callers, data regarding caller-agent pairs, outcomes of caller-agent pairs, agent data of agents, and the like. Further, routing system 200 may include a reporting engine 208 for generating reports of performance and operation of routing system 200 .
  • Various other servers, components, and functionality are possible for inclusion with routing system 200 . Further, although shown as a single hardware device, it will be appreciated that various components may be located remotely from each other (e.g., communication server 202 and routing engine 204 need not be included with a common hardware/server system or included at a common location). Additionally, various other components and functionality may be included with routing system 200 , but have been omitted here for clarity.
  • FIG. 3 illustrates detail of exemplary routing engine 204 .
  • Routing engine 204 includes a main mapping engine 304 , which receives caller data and agent data from databases 310 and 312 .
  • routing engine 204 may route callers based solely or in part on performance data associated with agents.
  • routing engine 204 may make routing decisions based solely or in part on comparing various caller data and agent data, which may include, e.g., performance based data, demographic data, psychographic data, and other business-relevant data.
  • affinity databases may be used and such information received by routing engine 204 for making routing decisions.
  • routing engine 204 includes or is in communication with one or more neural network engines 306 .
  • Neural network engines 306 may receive caller and agent data directly or via routing engine 204 and operate to match and route callers based on pattern matching algorithms and computer models generated to increase the changes of desired outcomes. Further, as indicated in FIG. 3 , call history data (including, e.g., caller-agent pair outcomes with respect to cost, revenue, customer satisfaction, etc.) may be used to retrain or modify the neural network engine 306 .
  • Routing engine 204 further includes or is in communication with hold queue 308 , which may store or access hold or idle times of callers and agents, and operates to map callers to agents based on queue order of the callers (and/or agents).
  • Mapping engine 304 may operate, for example, to map callers based on a pattern matching algorithm, e.g., as included with neural network engine 306 , or based on queue order, e.g., as retrieved from hold queue 308 .
  • FIG. 4 illustrates an exemplary mapping system 406 .
  • Mapping system 406 includes two layers of processing - a first layer includes at least two processing engines or computer models as indicated by 420 - 1 , 420 - 2 , and 420 - 3 .
  • the processing engines 420 - 1 , 420 - 2 , and 420 - 3 may each operate on different data and/or according to a different model or method for matching callers to agents.
  • processing engine 420 - 1 may receive agent grade data, e.g., data associated with agent performance for a particular desired performance. As will be described in further detail with respect to FIG.
  • performance based routing may include ranking or scoring a set of agents based on performance for a particular outcome (such as revenue generation, cost, customer satisfaction, combinations thereof, and the like) and preferentially routing callers to agents based on a performance ranking or score.
  • processing engine 420 - 1 may receive agent grades or agent history data and output one or more rankings of agents based on one or more desired outcome variables.
  • Processing engine 420 - 2 includes one or more pattern matching algorithms, which may operate to compare agent data associated with a set of callers to agent data associated a set of agents and determine a suitability score of each caller-agent pair.
  • Processing engine 420 - 2 may receive caller data and agent data from various databases and output caller-agent pair scores or a ranking of caller-agent pairs, for example.
  • the pattern matching algorithm may include a neural network algorithm, genetic algorithm, or other adaptive algorithms.
  • different processing engines may be used with different pattern matching algorithms operating on the same or different input data, e.g., a first processing engine utilizing a neural network algorithm and a second processing engine utilizing a different algorithm such as a genetic algorithm or other pattern matching algorithm.
  • first and second processing engines may include similar pattern matching algorithms operable to maximize different output variables; for example, a first neural network algorithm operable to maximize revenue and a second neural network algorithm operable to maximize customer satisfaction.
  • Processing engine 420 - 3 includes one or more affinity matching algorithms, which operate to receive affinity data associated with the callers and/or agents.
  • Processing engine 420 - 3 may receive affinity data from various databases and output caller-agent pairs or a ranking of caller-agent pairs based, at least in part, on the affinity data.
  • various other methods or models may be used in the first layer of processing, and further that the first layer of processing may include multiple sub-layers of processing (e.g., processing engine 420 - 1 outputting to processing engine 420 - 2 and so on).
  • a processing engine may include conventional queue based routing, e.g., routing agents and callers based on queue order.
  • the processing engines 420 - 1 , 420 - 2 , and 420 - 3 each output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on).
  • the output or scores of the two or more methods may then be processed by balancing manager 410 , e.g., at the second level of processing, to select a caller-agent pair.
  • the output of processing engines 420 - 1 , 420 - 2 , and 420 - 3 is received by balancing manager 410 and may be weighted against each other to determine a matching agent-caller pair.
  • the outputs of processing engines 420 - 1 , 420 - 2 , and 420 - 3 are balanced equally to determine routing instructions (e.g., the scores can be standardized and weighted evenly to determine a “best” matching agent-caller pair).
  • the methods may be unbalanced, e.g., weighting a pattern matching algorithm method output greater than a performance based routing method, turning certain processing engines “off”, and so on.
  • an interface may be presented to a user allowing for adjustment of balancing manager 410 , e.g., a slider or selector for adjusting the balance of the processing engines in real-time or at a predetermined time. Additionally, the interface may allow a user to turn certain methods on and off, and may display an estimated effect of the balancing or a change in the balancing. For instance, an interface may display the probable change in one or more of cost, revenue generation, or customer satisfaction by changing the operation of balancing manager 410 .
  • Various estimation methods and algorithms for estimating outcome variables are described, for example, in copending U.S. provisional Patent application Ser. No. 61/084,201, filed on Jul. 28, 2008, and which is incorporated herein by reference in its entirety.
  • the estimate includes evaluating a past time period of the same (or similar) set of agents and constructing a distribution of agent/caller pairs. Using each pair, an expected success rate can be computed via the performance based matching, pattern matching algorithm, etc., and applied to current information to estimate current performance (e.g., with respect to one or more of sales, cost, customer satisfaction, etc.). Accordingly, taking historical call data and agent information the system can compute estimates of changing the balance or weighting of the level one processing methods. It is noted that a comparable time (e.g., time of day, day of the week etc.) for the historical information may be important as performance will likely vary with time.
  • a comparable time e.g., time of day, day of the week etc.
  • balancing manager 410 may include an adaptive algorithm (such as a neural network or genetic algorithm) for receiving, as input, the outputs of the two or more models to output a caller-agent pair. Accordingly, balancing manger 410 via an adaptive algorithm may compare performance over time and adapt to pick or weight the level one processing engines to increase the chances of a desired outcome.
  • an adaptive algorithm such as a neural network or genetic algorithm
  • FIG. 5 illustrates an exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different computer models or methods and matching a caller to an agent based on a balancing of the at least two different models.
  • a caller, agent, or caller-agent pair is scored based on at least first input data at 502 .
  • the input data may include agent performance grades, caller data and/or agent data, queue order of the callers and agents, combinations thereof, and so on.
  • the score may include a raw score, normalized score, ranking relative to other callers, agents, and/or caller-agent pairs, and so on.
  • the method further includes scoring callers, agents, or caller-agent pairs at 504 according to a second model for mapping callers to agents, the second model different than the first model.
  • the second model may use some or all of the same first input data as used in 502 or may rely on different input data, e.g., at least a second input data.
  • the scoring may include a raw score, normalized score, ranking relative to other callers, agents, and/or caller-agent pairs, and so on.
  • the scores determined in 502 and 504 may be balanced at 506 to determine routing instructions for a caller.
  • the balancing may include weighting scores from 502 and 504 equally or unequally, and may be adjusted over time by a user or in response to adaptive feedback of the system. It will also be recognized that the scores output from 502 and 504 may be normalized in any suitable fashion, e.g., computing a Z-score or the like as described in co-pending U.S. patent application Ser. No. 12/202,091, filed on Aug. 29, 2008, which is incorporated herein by reference in its entirety.
  • the final selection or mapping of a caller to an agent may then be passed to a routing engine or router for causing the caller to be routed to the agent at 508 .
  • a routing engine or router for causing the caller to be routed to the agent at 508 .
  • the described actions do not need to occur in the order in which they are stated and some acts may be performed in parallel (for example, the first layer processing of 502 and 504 may be performed partially or wholly in parallel).
  • additional models for scoring and mapping callers to agents may be used and output to the balancing at 506 for determining a final selection of a caller-agent pair.
  • FIG. 6 illustrates another exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
  • a first model operates to score a set of agents based on performance at 602 , and may output a ranking or score associated with the performance of the agents.
  • Such a method for ranking agents based on performance is described in greater detail with respect to FIG. 7 below.
  • the method further includes scoring caller-agent pairs at 604 according to a second model for mapping callers to agents, in particular, according to a pattern matching algorithm.
  • the pattern matching algorithm may include comparing caller data and agent data for each caller-agent pair and computing a suitability score or ranking of caller-agent pairs for a desired outcome variable (or weighting of outcome variables).
  • a pattern matching algorithm is described in greater detail with respect to FIG. 8 below, and may include a neural network algorithm.
  • the method further includes scoring caller-agent pairs at 606 according to a third model for mapping callers to agents based on affinity data.
  • affinity data and affinity databases alone or in combination with pattern matching algorithms is described in greater detail below.
  • the scores (or rankings) determined in 602 , 604 , and 606 may be balanced at 608 to determine the routing instructions for a caller.
  • the balancing may include weighting scores from 602 , 604 , and 606 equally or unequally, and may be adjusted by a user or in response to adaptive feedback of the system. It will also be recognized that the scores output from 602 , 604 , and 60 may be normalized in any suitable fashion as described with respect to FIG. 5 .
  • the final selection or mapping of a caller to an agent may then be passed to a routing engine or router for causing the caller to be routed to the agent. It is again noted that the described actions do not need to occur in the order in which they are stated and some acts may be performed in parallel (for example, the first layer processing of 602 , 604 , and 606 may be performed partially or wholly in parallel). Further, additional (or fewer) matching models for scoring and mapping callers to agents may be used and output to the balancing at 608 for determining a final selection of a caller-agent pair.
  • FIG. 7 illustrates a flowchart of an exemplary method or model for matching callers to agents based on performance.
  • the method includes grading two agents on an optimal interaction and matching a caller with at least one of the two graded agents to increase the chance of the optimal interaction.
  • agents are graded on an optimal interaction, such as increasing revenue, decreasing costs, or increasing customer satisfaction.
  • Grading can be accomplished by collating the performance of a contact center agent over a period of time on their ability to achieve an optimal interaction, such as a period of at least 10 days. However, the period of time can be as short as the immediately prior contact to a period extending as long as the agent's first interaction with a caller.
  • the method of grading agent can be as simple as ranking each agent on a scale of 1 to N for a particular optimal interaction, with N being the total number of agents.
  • the method of grading can also comprise determining the average contact handle time of each agent to grade the agents on cost, determining the total sales revenue or number of sales generated by each agent to grade the agents on sales, or conducting customer surveys at the end of contacts with callers to grade the agents on customer satisfaction.
  • a caller uses contact information, such as a telephone number or email address, to initiate a contact with the contact center.
  • the caller is matched with an agent or group of agents such that the chance of an optimal interaction is increased, as opposed to just using the round robin matching methods of the prior art.
  • the method may further include grading a group of at least two agents on two optimal interactions, weighting one optimal interaction against another optional interaction, and matching the caller with one of the two graded agents to increase the chance of a more heavily-weighted optimal interaction.
  • agents may be graded on two or more optimal interactions, such as increasing revenue, decreasing costs, or increasing customer satisfaction, which may then be weighted against each other.
  • the weighting can be as simple as assigning to each optimal interaction a percentage weight factor, with all such factors totaling to 100 percent. Any comparative weighting method can be used, however.
  • the weightings placed on the various optimal interactions can take place in real-time in a manner controlled by the contact center, its clients, or in line with pre-determined rules.
  • the contact center or its clients may control the weighting over the internet or some another data transfer system.
  • a client of the contact center could access the weightings currently in use over an internet browser and modify these remotely. Such a modification may be set to take immediate effect and, immediately after such a modification, subsequent caller routings occur in line with the newly establishing weightings.
  • An instance of such an example may arise in a case where a contact center client decides that the most important strategic priority in their business at present is the maximization of revenues.
  • the client would remotely set the weightings to favor the selection of agents that would generate the greatest probability of a sale in a given contact.
  • the client may take the view that maximization of customer satisfaction is more important for their business.
  • they can remotely set the weightings of the present invention such that callers are routed to agents most likely to maximize their level of satisfaction.
  • the change in weighting may be set to take effect at a subsequent time, for instance, commencing the following morning
  • FIG. 8 illustrate another exemplary model or method for matching a caller to an agent, and which may combine agent grades, agent demographic data, agent psychographic data, and other business-relevant data about the agent (individually or collectively referred to in this application as “agent data”), along with demographic, psychographic, and other business-relevant data about callers (individually or collectively referred to in this application as “caller data”).
  • Agent and caller demographic data can comprise any of: gender, race, age, education, accent, income, nationality, ethnicity, area code, zip code, marital status, job status, and credit score.
  • Agent and caller psychographic data can comprise any of introversion, sociability, desire for financial success, and film and television preferences. It will be appreciated that the acts outlined in the flowchart of FIG. 8 need not occur in that exact order.
  • This exemplary model or method includes determining at least one caller data for a caller, determining at least one agent data for each of two agents, using the agent data and the caller data in a pattern matching algorithm, and matching the caller to one of the two agents to increase the chance of an optimal interaction.
  • at least one caller data (such as a caller demographic or psychographic data) is determined.
  • Available databases include, but are not limited to, those that are publicly available, those that are commercially available, or those created by a contact center or a contact center client. In an outbound contact center environment, the caller's contact information is known beforehand.
  • the caller's contact information can be retrieved by examining the caller's CallerID information or by requesting this information of the caller at the outset of the contact, such as through entry of a caller account number or other caller-identifying information.
  • Other business-relevant data such as historic purchase behavior, current level of satisfaction as a customer, or volunteered level of interest in a product may also be retrieved from available databases.
  • At 802 at least one agent data for each of two agents is determined.
  • One method of determining agent demographic or psychographic data can involve surveying agents at the time of their employment or periodically throughout their employment. Such a survey process can be manual, such as through a paper or oral survey, or automated with the survey being conducted over a computer system, such as by deployment over a web-browser.
  • this advanced embodiment preferably uses agent grades, demographic, psychographic, and other business-relevant data, along with caller demographic, psychographic, and other business-relevant data
  • other embodiments of the present invention can eliminate one or more types or categories of caller or agent data to minimize the computing power or storage necessary to employ the present invention.
  • agent data and caller data have been collected, this data is passed to a computational system.
  • the computational system uses this data in a pattern matching algorithm at 803 to create a computer model that matches each agent with the caller and estimates the probable outcome of each matching along a number of optimal interactions, such as the generation of a sale, the duration of contact, or the likelihood of generating an interaction that a customer finds satisfying.
  • the pattern matching algorithm to be used in the present invention can comprise any correlation algorithm, such as a neural network algorithm or a genetic algorithm.
  • a correlation algorithm such as a neural network algorithm or a genetic algorithm.
  • actual contact results (as measured for an optimal interaction) are compared against the actual agent and caller data for each contact that occurred.
  • the pattern matching algorithm can then learn, or improve its learning of, how matching certain callers with certain agents will change the chance of an optimal interaction.
  • the pattern matching algorithm can then be used to predict the chance of an optimal interaction in the context of matching a caller with a particular set of caller data, with an agent of a particular set of agent data.
  • the pattern matching algorithm is periodically refined as more actual data on caller interactions becomes available to it, such as periodically training the algorithm every night after a contact center has finished operating for the day.
  • the pattern matching algorithm is used to create a computer model reflecting the predicted chances of an optimal interaction for each agent and caller matching.
  • the computer model will comprise the predicted chances for a set of optimal interactions for every agent that is logged in to the contact center as matched against every available caller.
  • the computer model can comprise subsets of these, or sets containing the aforementioned sets. For example, instead of matching every agent logged into the contact center with every available caller, the present invention can match every available agent with every available caller, or even a narrower subset of agents or callers. Likewise, the present invention can match every agent that ever worked on a particular campaign—whether available or logged in or not—with every available caller.
  • the computer model can comprise predicted chances for one optimal interaction or a number of optimal interactions.
  • the computer model can also be further refined to comprise a suitability score for each matching of an agent and a caller.
  • the suitability score can be determined by taking the chances of a set of optimal interactions as predicted by the pattern matching algorithm, and weighting those chances to place more or less emphasis on a particular optimal interaction as related to another optimal interaction. The suitability score can then be used in the present invention to determine which agents should be connected to which callers.
  • exemplary models or methods may utilize affinity data associated with callers and/or agents.
  • affinity data may relate to an individual caller's contact outcomes (referred to in this application as “caller affinity data”), independent of their demographic, psychographic, or other business-relevant information.
  • caller affinity data can include the caller's purchase history, contact time history, or customer satisfaction history. These histories can be general, such as the caller's general history for purchasing products, average contact time with an agent, or average customer satisfaction ratings. These histories can also be agent specific, such as the caller's purchase, contact time, or customer satisfaction history when connected to a particular agent.
  • a certain caller may be identified by their caller affinity data as one highly likely to make a purchase, because in the last several instances in which the caller was contacted, the caller elected to purchase a product or service.
  • This purchase history can then be used to appropriately refine matches such that the caller is preferentially matched with an agent deemed suitable for the caller to increase the chances of an optimal interaction.
  • a contact center could preferentially match the caller with an agent who does not have a high grade for generating revenue or who would not otherwise be an acceptable match, because the chance of a sale is still likely given the caller's past purchase behavior. This strategy for matching would leave available other agents who could have otherwise been occupied with a contact interaction with the caller.
  • the contact center may instead seek to guarantee that the caller is matched with an agent with a high grade for generating revenue, irrespective of what the matches generated using caller data and agent demographic or psychographic data may indicate.
  • affinity data and an affinity database developed by the described examples may be one in which a caller's contact outcomes are tracked across the various agent data. Such an analysis might indicate, for example, that the caller is most likely to be satisfied with a contact if they are matched to an agent of similar gender, race, age, or even with a specific agent.
  • the present invention could preferentially match a caller with a specific agent or type of agent that is known from the caller affinity data to have generated an acceptable optimal interaction.
  • Affinity databases can provide particularly actionable information about a caller when commercial, client, or publicly-available database sources may lack information about the caller.
  • This database development can also be used to further enhance contact routing and agent-to-caller matching even in the event that there is available data on the caller, as it may drive the conclusion that the individual caller's contact outcomes may vary from what the commercial databases might imply.
  • the present invention was to rely solely on commercial databases in order to match a caller and agent, it may predict that the caller would be best matched to an agent of the same gender to achieve optimal customer satisfaction.
  • affinity database information developed from prior interactions with the caller the present invention might more accurately predict that the caller would be best matched to an agent of the opposite gender to achieve optimal customer satisfaction.
  • affinity databases that comprise revenue generation, cost, and customer satisfaction performance data of individual agents as matched with specific caller demographic, psychographic, or other business-relevant characteristics (referred to in this application as “agent affinity data”).
  • An affinity database such as this may, for example, result in the present invention predicting that a specific agent performs best in interactions with callers of a similar age, and less well in interactions with a caller of a significantly older or younger age.
  • this type of affinity database may result in the present invention predicting that an agent with certain agent affinity data handles callers originating from a particular geography much better than the agent handles callers from other geographies.
  • the present invention may predict that a particular agent performs well in circumstances in which that agent is connected to an irate caller.
  • affinity databases are preferably used in combination with agent data and caller data that pass through a pattern matching algorithm to generate matches
  • information stored in affinity databases can also be used independently of agent data and caller data such that the affinity information is the only information used to generate matches.
  • the first level of processing may include a first computer model that relies on both a pattern matching algorithm and affinity data, and a second computer model that relies on affinity data alone.
  • each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system.
  • the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.
  • Each such computer program is preferably stored on a storage medium or device (e.g., CD-ROM, hard disk or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform the procedures described.
  • a storage medium or device e.g., CD-ROM, hard disk or magnetic diskette
  • the system also may be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner.
  • FIG. 9 illustrates a typical computing system 900 that may be employed to implement processing functionality in embodiments of the invention.
  • Computing systems of this type may be used in clients and servers, for example.
  • Computing system 900 may represent, for example, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc.), mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment.
  • Computing system 900 can include one or more processors, such as a processor 904 .
  • Processor 904 can be implemented using a general or special purpose processing engine such as, for example, a microprocessor, microcontroller or other control logic.
  • processor 904 is connected to a bus 902 or other communication medium.
  • Computing system 900 can also include a main memory 908 , such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by processor 904 .
  • Main memory 908 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 904 .
  • Computing system 900 may likewise include a read only memory (“ROM”) or other static storage device coupled to bus 902 for storing static information and instructions for processor 904 .
  • ROM read only memory
  • the computing system 900 may also include information storage system 910 , which may include, for example, a media drive 912 and a removable storage interface 920 .
  • the media drive 912 may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a CD or DVD drive (R or RW), or other removable or fixed media drive.
  • Storage media 918 may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive 912 .
  • the storage media 918 may include a computer-readable storage medium having stored therein particular computer software or data.
  • information storage system 910 may include other similar components for allowing computer programs or other instructions or data to be loaded into computing system 900 .
  • Such components may include, for example, a removable storage unit 922 and an interface 920 , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units 922 and interfaces 920 that allow software and data to be transferred from the removable storage unit 918 to computing system 900 .
  • Computing system 900 can also include a communications interface 924 .
  • Communications interface 924 can be used to allow software and data to be transferred between computing system 900 and external devices.
  • Examples of communications interface 924 can include a modem, a network interface (such as an Ethernet or other NIC card), a communications port (such as for example, a USB port), a PCMCIA slot and card, etc.
  • Software and data transferred via communications interface 924 are in the form of signals which can be electronic, electromagnetic, optical or other signals capable of being received by communications interface 924 . These signals are provided to communications interface 924 via a channel 928 .
  • This channel 928 may carry signals and may be implemented using a wireless medium, wire or cable, fiber optics, or other communications medium.
  • Some examples of a channel include a phone line, a cellular phone link, an RF link, a network interface, a local or wide area network, and other communications channels.
  • computer program product may be used generally to refer to physical, tangible media such as, for example, memory 908 , storage media 918 , or storage unit 922 .
  • These and other forms of computer-readable media may be involved in storing one or more instructions for use by processor 904 , to cause the processor to perform specified operations.
  • Such instructions generally referred to as “computer program code” (which may be grouped in the form of computer programs or other groupings), when executed, enable the computing system 900 to perform features or functions of embodiments of the present invention.
  • the code may directly cause the processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
  • the software may be stored in a computer-readable medium and loaded into computing system 900 using, for example, removable storage media 918 , drive 912 or communications interface 924 .
  • the control logic in this example, software instructions or computer program code, when executed by the processor 904 , causes the processor 904 to perform the functions of the invention as described herein,

Landscapes

  • Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)

Abstract

Systems and methods are disclosed for routing callers to agents in a contact center utilizing a multi-layer processing approach to matching a caller to an agent. A first layer of processing may include two or more different computer models or methods for scoring or determining caller-agent pairs in a routing center. The output of the first layer may be received by a second layer of processing for balancing or weighting the outputs and selecting a final caller-agent match. The two or more methods may include conventional queue based routing, performance based routing, pattern matching algorithms, affinity matching, and the like. The output or scores of the two or more methods may be processed be the second layer of processing to select a caller-agent pair and cause the caller to be routed to a particular agent.

Description

Note: More than one reissue patent application has been filed for the reissue of U.S. Pat. No. 8,472,611. The reissue patent applications are U.S. Reissue patent application Ser. No. 14/750,965, filed Jun. 25, 2015, and the present U.S. Reissue patent application Ser. No. 14/788,469, filed Jun. 30, 2015, which is a continuation reissue application of U.S. Reissue patent application Ser. No. 14/750,965, which is an application for reissue of U.S. Pat. No. 8,472,611.
CROSS REFERENCE TO RELATED APPLICATION
This application is related to U.S. patent application Ser. No. 12/021,251, filed Jan. 28, 2008, which is hereby incorporated by reference in its entirety.
BACKGROUND
1. Field
The present invention relates generally to the field of routing phone calls and other telecommunications in a contact center system.
2. Related Art
The typical contact center consists of a number of human agents, with each assigned to a telecommunication device, such as a phone or a computer for conducting email or Internet chat sessions, that is connected to a central switch. Using these devices, the agents are generally used to provide sales, customer service, or technical support to the customers or prospective customers of a contact center or a contact center's clients.
Typically, a contact center or client will advertise to its customers, prospective customers, or other third parties a number of different contact numbers or addresses for a particular service, such as for billing questions or for technical support. The customers, prospective customers, or third parties seeking a particular service will then use this contact information, and the incoming caller will be routed at one or more routing points to a human agent at a contact center who can provide the appropriate service. Contact centers that respond to such incoming contacts are typically referred to as “inbound contact centers.”
Similarly, a contact center can make outgoing contacts to current or prospective customers or third parties. Such contacts may be made to encourage sales of a product, provide technical support or billing information, survey consumer preferences, or to assist in collecting debts. Contact centers that make such outgoing contacts are referred to as “outbound contact centers.”
In both inbound contact centers and outbound contact centers, the individuals (such as customers, prospective customers, survey participants, or other third parties) that interact with contact center agents using a telecommunication device are referred to in this application as a “caller.” The individuals acquired by the contact center to interact with callers are referred to in this application as an “agent.”
Conventionally, a contact center operation includes a switch system that connects callers to agents. In an inbound contact center, these switches route incoming callers to a particular agent in a contact center, or, if multiple contact centers are deployed, to a particular contact center for further routing. In an outbound contact center employing telephone devices, dialers are typically employed in addition to a switch system. The dialer is used to automatically dial a phone number from a list of phone numbers, and to determine whether a live caller has been reached from the phone number called (as opposed to obtaining no answer, a busy signal, an error message, or an answering machine). When the dialer obtains a live caller, the switch system routes the caller to a particular agent in the contact center.
Routing technologies have accordingly been developed to optimize the caller experience. For example, U.S. Pat. No. 7,236,584 describes a telephone system for equalizing caller waiting times across multiple telephone switches, regardless of the general variations in performance that may exist among those switches. Contact routing in an inbound contact center, however, is a process that is generally structured to connect callers to agents that have been idle for the longest period of time. In the case of an inbound caller where only one agent may be available, that agent is generally selected for the caller without further analysis. In another example, if there are eight agents at a contact center, and seven are occupied with contacts, the switch will generally route the inbound caller to the one agent that is available. If all eight agents are occupied with contacts, the switch will typically put the contact on hold and then route it to the next agent that becomes available. More generally, the contact center will set up a queue of incoming callers and preferentially route the longest-waiting callers to the agents that become available over time. Such a pattern of routing contacts to either the first available agent or the longest-waiting agent is referred to as “round-robin” contact routing. In round robin contact routing, eventual matches and connections between a caller and an agent are essentially random.
Some attempts have been made to improve upon these standard yet essentially random processes for connecting a caller to an agent. For example, U.S. Pat. No. 7,209,549 describes a telephone routing system wherein an incoming caller's language preference is collected and used to route their telephone call to a particular contact center or agent that can provide service in that language. In this manner, language preference is the primary driver of matching and connecting a caller to an agent, although once such a preference has been made, callers are almost always routed in “round-robin” fashion.
BRIEF SUMMARY
Systems and methods of the present invention can be used to improve or optimize the routing of callers to agents in a contact center. According to one aspect of the present invention, a method for routing callers to agents in a call-center routing system includes using a multi-layer processing approach to matching a caller to an agent, where a first layer of processing includes two or more different computer models or methods for matching callers to agents. The output of the first layer, e.g., the output of the different methods for matching the callers to agents, is received by a second layer of processing for balancing or weighting the outputs and selecting a final caller-agent match for routing.
In one example, the two or more models or methods may include conventional queue based routing, performance based matching (e.g., ranking a set of agents based on performance and preferentially matching callers to the agents based on a performance ranking or score), pattern matching algorithms (e.g., comparing agent caller data associated with a set of callers to agent data associated with a set of agents and determining a suitability score of different caller-agent pairs), affinity data matching, and other models for matching callers to agents. The methods may therefore operate to output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on).
The output or scores of the two or more methods may be processed to select a caller-agent pair and cause the caller to be routed to a particular agent. For instance, the output of the two or more methods may be balanced or weighted against each other to determine a matching agent-caller pair. In one example, the output of the different methods may be balanced equally to determine routing instructions (e.g., the scores can be standardized and weighted evenly to determine a “best” matching agent-caller pair from the different methods). In other examples, the methods may be unbalanced, e.g., weighting a pattern matching algorithm output greater than a performance based routing output and so on.
Additionally, an interface may be presented to a user allowing for adjustment of the balancing of the methods, e.g., a slider or selector for adjusting the balance in real-time or a predetermined time. The interface may allow a user to turn certain methods on and off, change desired optimizations, and may display an estimated effect of the balancing or a change in balancing of the different routing methods.
In some examples, an adaptive algorithm (such as a neural network or genetic algorithm) may be used to receive, as input, the outputs of the two or more models to output a caller-agent pair. The adaptive algorithm may compare performance over time and adapt to pick the best model for a desired outcome variable.
According to another aspect, apparatus is provided comprising logic for mapping and routing callers to agents. The apparatus may include logic for receiving input data associated with callers and agents at a first layer of processing, the first layer of processing including at least two models for matching callers to agents, each model outputting output data for at least one caller-agent pair. The apparatus may further include logic for receiving the output data from each processing model at a second layer of processing, the second layer of processing operable to balance the output data of the at least two models and map a caller to an agent based on the received outputs.
Many of the techniques described here may be implemented in hardware, firmware, software, or combinations thereof. In one example, the techniques are implemented in computer programs executing on programmable computers that each includes a processor, a storage medium readable by the processor (including volatile and nonvolatile memory and/or storage elements), and suitable input and output devices. Program code is applied to data entered using an input device to perform the functions described and to generate output information. The output information is applied to one or more output devices. Moreover, each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram reflecting the general setup of a contact center operation.
FIG. 2 illustrates an exemplary routing system having a routing engine for routing callers based on performance and/or pattern matching algorithms.
FIG. 3 illustrates an exemplary routing system having a mapping engine for routing callers based on performance and/or pattern matching algorithms.
FIG. 4 illustrates an exemplary multi-layer approach to selecting a caller-agent pair based on multiple matching methods.
FIG. 5 illustrates an exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
FIG. 6 illustrates another exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
FIG. 7 illustrates an exemplary method or computer model for matching callers to agents based on performance.
FIG. 8 illustrates an exemplary method or computer model for matching callers to agents based on caller data and agent data.
FIG. 9 illustrates a typical computing system that may be employed to implement some or all processing functionality in certain embodiments of the invention.
DETAILED DESCRIPTION OF THE INVENTION
The following description is presented to enable a person of ordinary skill in the art to make and use the invention, and is provided in the context of particular applications and their requirements. Various modifications to the embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Moreover, in the following description, numerous details are set forth for the purpose of explanation. However, one of ordinary skill in the art will realize that the invention might be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
While the invention is described in terms of particular examples and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the examples or figures described. Those skilled in the art will recognize that the operations of the various embodiments may be implemented using hardware, software, firmware, or combinations thereof, as appropriate. For example, some processes can be carried out using processors or other digital circuitry under the control of software, firmware, or hardwired logic. (The term “logic” herein refers to fixed hardware, programmable logic and/or an appropriate combination thereof, as would be recognized by one skilled in the art to carry out the recited functions.) Software and firmware can be stored on computer-readable storage media. Some other processes can be implemented using analog circuitry, as is well known to one of ordinary skill in the art. Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the invention.
According to one aspect of the present invention systems, methods, and displayed computer interfaces are provided for routing callers to agents within a call center. In one example, a method includes using a first layer of processing, the first layer including two or more methods or models for determining caller-agent pairs. For example, the two or more methods may include conventional queue based routing, performance based matching (e.g., ranking a set of agents based on performance and preferentially matching callers to the agents based on a performance ranking or score), pattern matching algorithms (e.g., comparing agent data associated with a set of callers to agent data associated a set of agents and determine a suitability score of different caller-agent pairs), affinity data matching, and other models for matching callers to agents. The methods may therefore operate to output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on) to a second layer of processing. The second layer of processing may receive the output of the first layer and determine an agent-caller pair based on the output of different methods of the first layer of processing. In one example, the second layer of processing includes a computer model to balance or weight the different outputs, which may be altered by a user.
Initially, exemplary call routing systems and methods utilizing performance and/or pattern matching algorithms (either of which may be used within generated computer models for predicting the chances of desired outcomes) are described for routing callers to available agents. This description is followed by exemplary systems and methods for multi-layer processing of input data to select a caller-agent pairing.
FIG. 1 is a diagram reflecting the general setup of a contact center operation 100. The network cloud 101 reflects a specific or regional telecommunications network designed to receive incoming callers or to support contacts made to outgoing callers. The network cloud 101 can comprise a single contact address, such as a telephone number or email address, or multiple contract addresses. The central router 102 reflects contact routing hardware and software designed to help route contacts among call centers 103. The central router 102 may not be needed where there is only a single contact center deployed. Where multiple contact centers are deployed, more routers may be needed to route contacts to another router for a specific contact center 103. At the contact center level 103, a contact center router 104 will route a contact to an agent 105 with an individual telephone or other telecommunications equipment 105. Typically, there are multiple agents 105 at a contact center 103, though there are certainly embodiments where only one agent 105 is at the contact center 103, in which case a contact center router 104 may prove to be unnecessary.
FIG. 2 illustrates an exemplary contact center routing system 200 (which may be included with contact center router 104 of FIG. 1). Broadly speaking, routing system 200 is operable to match callers and agents based, at least in part, on agent performance or pattern matching algorithms using caller data and/or agent data. Routing system 200 may include a communication server 202 and a routing engine 204 (referred to at times as “SatMap” or “Satisfaction Mapping”) for receiving and matching callers to agents (referred to at times as “mapping” callers to agents).
Routing engine 204 may operate in various manners to match callers to agents based on performance data of agents, pattern matching algorithms, and computer models, which may adapt over time based on the performance or outcomes of previous caller-agent matches. In one example, the routing engine 204 includes a neural network based adaptive pattern matching engine. Various other exemplary pattern matching and computer model systems and methods which may be included with content routing system and/or routing engine 204 are described, for example, in U.S. Ser. No. 12/021,251, filed Jan. 28, 2008, and U.S. Ser. No. U.S. patent application Ser. No. 12/202,091, filed Aug. 29, 2008, both of which are hereby incorporated by reference in their entirety. Of course, it will be recognized that other performance based or pattern matching algorithms and methods may be used alone or in combination with those described here.
Routing system 200 may further include other components such as collector 206 for collecting caller data of incoming callers, data regarding caller-agent pairs, outcomes of caller-agent pairs, agent data of agents, and the like. Further, routing system 200 may include a reporting engine 208 for generating reports of performance and operation of routing system 200. Various other servers, components, and functionality are possible for inclusion with routing system 200. Further, although shown as a single hardware device, it will be appreciated that various components may be located remotely from each other (e.g., communication server 202 and routing engine 204 need not be included with a common hardware/server system or included at a common location). Additionally, various other components and functionality may be included with routing system 200, but have been omitted here for clarity.
FIG. 3 illustrates detail of exemplary routing engine 204. Routing engine 204 includes a main mapping engine 304, which receives caller data and agent data from databases 310 and 312. In some examples, routing engine 204 may route callers based solely or in part on performance data associated with agents. In other examples, routing engine 204 may make routing decisions based solely or in part on comparing various caller data and agent data, which may include, e.g., performance based data, demographic data, psychographic data, and other business-relevant data. Additionally, affinity databases (not shown) may be used and such information received by routing engine 204 for making routing decisions.
In one example, routing engine 204 includes or is in communication with one or more neural network engines 306. Neural network engines 306 may receive caller and agent data directly or via routing engine 204 and operate to match and route callers based on pattern matching algorithms and computer models generated to increase the changes of desired outcomes. Further, as indicated in FIG. 3, call history data (including, e.g., caller-agent pair outcomes with respect to cost, revenue, customer satisfaction, etc.) may be used to retrain or modify the neural network engine 306.
Routing engine 204 further includes or is in communication with hold queue 308, which may store or access hold or idle times of callers and agents, and operates to map callers to agents based on queue order of the callers (and/or agents). Mapping engine 304 may operate, for example, to map callers based on a pattern matching algorithm, e.g., as included with neural network engine 306, or based on queue order, e.g., as retrieved from hold queue 308.
FIG. 4 illustrates an exemplary mapping system 406. Mapping system 406 includes two layers of processing - a first layer includes at least two processing engines or computer models as indicated by 420-1, 420-2, and 420-3. The processing engines 420-1, 420-2, and 420-3 may each operate on different data and/or according to a different model or method for matching callers to agents. In this particular example, processing engine 420-1 may receive agent grade data, e.g., data associated with agent performance for a particular desired performance. As will be described in further detail with respect to FIG. 7 below, performance based routing may include ranking or scoring a set of agents based on performance for a particular outcome (such as revenue generation, cost, customer satisfaction, combinations thereof, and the like) and preferentially routing callers to agents based on a performance ranking or score. Accordingly, processing engine 420-1 may receive agent grades or agent history data and output one or more rankings of agents based on one or more desired outcome variables.
Processing engine 420-2, in this example, includes one or more pattern matching algorithms, which may operate to compare agent data associated with a set of callers to agent data associated a set of agents and determine a suitability score of each caller-agent pair. Processing engine 420-2 may receive caller data and agent data from various databases and output caller-agent pair scores or a ranking of caller-agent pairs, for example. The pattern matching algorithm may include a neural network algorithm, genetic algorithm, or other adaptive algorithms. Further, in some examples, different processing engines may be used with different pattern matching algorithms operating on the same or different input data, e.g., a first processing engine utilizing a neural network algorithm and a second processing engine utilizing a different algorithm such as a genetic algorithm or other pattern matching algorithm. Additionally, first and second processing engines may include similar pattern matching algorithms operable to maximize different output variables; for example, a first neural network algorithm operable to maximize revenue and a second neural network algorithm operable to maximize customer satisfaction.
Processing engine 420-3, in this example, includes one or more affinity matching algorithms, which operate to receive affinity data associated with the callers and/or agents. Processing engine 420-3 may receive affinity data from various databases and output caller-agent pairs or a ranking of caller-agent pairs based, at least in part, on the affinity data. It should be noted that various other methods or models may be used in the first layer of processing, and further that the first layer of processing may include multiple sub-layers of processing (e.g., processing engine 420-1 outputting to processing engine 420-2 and so on). Further, in some examples a processing engine may include conventional queue based routing, e.g., routing agents and callers based on queue order.
As described, the processing engines 420-1, 420-2, and 420-3 each output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on). The output or scores of the two or more methods may then be processed by balancing manager 410, e.g., at the second level of processing, to select a caller-agent pair. For instance, the output of processing engines 420-1, 420-2, and 420-3 is received by balancing manager 410 and may be weighted against each other to determine a matching agent-caller pair. In one example, the outputs of processing engines 420-1, 420-2, and 420-3 are balanced equally to determine routing instructions (e.g., the scores can be standardized and weighted evenly to determine a “best” matching agent-caller pair). In other examples, the methods may be unbalanced, e.g., weighting a pattern matching algorithm method output greater than a performance based routing method, turning certain processing engines “off”, and so on.
Additionally, an interface may be presented to a user allowing for adjustment of balancing manager 410, e.g., a slider or selector for adjusting the balance of the processing engines in real-time or at a predetermined time. Additionally, the interface may allow a user to turn certain methods on and off, and may display an estimated effect of the balancing or a change in the balancing. For instance, an interface may display the probable change in one or more of cost, revenue generation, or customer satisfaction by changing the operation of balancing manager 410. Various estimation methods and algorithms for estimating outcome variables are described, for example, in copending U.S. provisional Patent application Ser. No. 61/084,201, filed on Jul. 28, 2008, and which is incorporated herein by reference in its entirety. In one example, the estimate includes evaluating a past time period of the same (or similar) set of agents and constructing a distribution of agent/caller pairs. Using each pair, an expected success rate can be computed via the performance based matching, pattern matching algorithm, etc., and applied to current information to estimate current performance (e.g., with respect to one or more of sales, cost, customer satisfaction, etc.). Accordingly, taking historical call data and agent information the system can compute estimates of changing the balance or weighting of the level one processing methods. It is noted that a comparable time (e.g., time of day, day of the week etc.) for the historical information may be important as performance will likely vary with time.
In some examples, balancing manager 410 may include an adaptive algorithm (such as a neural network or genetic algorithm) for receiving, as input, the outputs of the two or more models to output a caller-agent pair. Accordingly, balancing manger 410 via an adaptive algorithm may compare performance over time and adapt to pick or weight the level one processing engines to increase the chances of a desired outcome.
FIG. 5 illustrates an exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different computer models or methods and matching a caller to an agent based on a balancing of the at least two different models. In this example, a caller, agent, or caller-agent pair is scored based on at least first input data at 502. The input data may include agent performance grades, caller data and/or agent data, queue order of the callers and agents, combinations thereof, and so on. Further, the score may include a raw score, normalized score, ranking relative to other callers, agents, and/or caller-agent pairs, and so on.
The method further includes scoring callers, agents, or caller-agent pairs at 504 according to a second model for mapping callers to agents, the second model different than the first model. Note, however, the second model may use some or all of the same first input data as used in 502 or may rely on different input data, e.g., at least a second input data. Similarly, the scoring may include a raw score, normalized score, ranking relative to other callers, agents, and/or caller-agent pairs, and so on.
The scores determined in 502 and 504 may be balanced at 506 to determine routing instructions for a caller. The balancing may include weighting scores from 502 and 504 equally or unequally, and may be adjusted over time by a user or in response to adaptive feedback of the system. It will also be recognized that the scores output from 502 and 504 may be normalized in any suitable fashion, e.g., computing a Z-score or the like as described in co-pending U.S. patent application Ser. No. 12/202,091, filed on Aug. 29, 2008, which is incorporated herein by reference in its entirety.
The final selection or mapping of a caller to an agent may then be passed to a routing engine or router for causing the caller to be routed to the agent at 508. It is noted that the described actions do not need to occur in the order in which they are stated and some acts may be performed in parallel (for example, the first layer processing of 502 and 504 may be performed partially or wholly in parallel). Further, additional models for scoring and mapping callers to agents may be used and output to the balancing at 506 for determining a final selection of a caller-agent pair.
FIG. 6 illustrates another exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods. In this particular example, a first model operates to score a set of agents based on performance at 602, and may output a ranking or score associated with the performance of the agents. Such a method for ranking agents based on performance is described in greater detail with respect to FIG. 7 below.
The method further includes scoring caller-agent pairs at 604 according to a second model for mapping callers to agents, in particular, according to a pattern matching algorithm. The pattern matching algorithm may include comparing caller data and agent data for each caller-agent pair and computing a suitability score or ranking of caller-agent pairs for a desired outcome variable (or weighting of outcome variables). Such a pattern matching algorithm is described in greater detail with respect to FIG. 8 below, and may include a neural network algorithm.
The method further includes scoring caller-agent pairs at 606 according to a third model for mapping callers to agents based on affinity data. The use of affinity data and affinity databases alone or in combination with pattern matching algorithms is described in greater detail below.
The scores (or rankings) determined in 602, 604, and 606 may be balanced at 608 to determine the routing instructions for a caller. The balancing may include weighting scores from 602, 604, and 606 equally or unequally, and may be adjusted by a user or in response to adaptive feedback of the system. It will also be recognized that the scores output from 602, 604, and 60 may be normalized in any suitable fashion as described with respect to FIG. 5.
The final selection or mapping of a caller to an agent may then be passed to a routing engine or router for causing the caller to be routed to the agent. It is again noted that the described actions do not need to occur in the order in which they are stated and some acts may be performed in parallel (for example, the first layer processing of 602, 604, and 606 may be performed partially or wholly in parallel). Further, additional (or fewer) matching models for scoring and mapping callers to agents may be used and output to the balancing at 608 for determining a final selection of a caller-agent pair.
FIG. 7 illustrates a flowchart of an exemplary method or model for matching callers to agents based on performance. The method includes grading two agents on an optimal interaction and matching a caller with at least one of the two graded agents to increase the chance of the optimal interaction. At the initial block 701, agents are graded on an optimal interaction, such as increasing revenue, decreasing costs, or increasing customer satisfaction. Grading can be accomplished by collating the performance of a contact center agent over a period of time on their ability to achieve an optimal interaction, such as a period of at least 10 days. However, the period of time can be as short as the immediately prior contact to a period extending as long as the agent's first interaction with a caller. Moreover, the method of grading agent can be as simple as ranking each agent on a scale of 1 to N for a particular optimal interaction, with N being the total number of agents. The method of grading can also comprise determining the average contact handle time of each agent to grade the agents on cost, determining the total sales revenue or number of sales generated by each agent to grade the agents on sales, or conducting customer surveys at the end of contacts with callers to grade the agents on customer satisfaction. The foregoing, however, are only examples of how agents may be graded; many other methods may be used.
At block 702 a caller uses contact information, such as a telephone number or email address, to initiate a contact with the contact center. At block 703, the caller is matched with an agent or group of agents such that the chance of an optimal interaction is increased, as opposed to just using the round robin matching methods of the prior art. The method may further include grading a group of at least two agents on two optimal interactions, weighting one optimal interaction against another optional interaction, and matching the caller with one of the two graded agents to increase the chance of a more heavily-weighted optimal interaction. In particular, agents may be graded on two or more optimal interactions, such as increasing revenue, decreasing costs, or increasing customer satisfaction, which may then be weighted against each other. The weighting can be as simple as assigning to each optimal interaction a percentage weight factor, with all such factors totaling to 100 percent. Any comparative weighting method can be used, however. The weightings placed on the various optimal interactions can take place in real-time in a manner controlled by the contact center, its clients, or in line with pre-determined rules. Optionally, the contact center or its clients may control the weighting over the internet or some another data transfer system. As an example, a client of the contact center could access the weightings currently in use over an internet browser and modify these remotely. Such a modification may be set to take immediate effect and, immediately after such a modification, subsequent caller routings occur in line with the newly establishing weightings. An instance of such an example may arise in a case where a contact center client decides that the most important strategic priority in their business at present is the maximization of revenues. In such a case, the client would remotely set the weightings to favor the selection of agents that would generate the greatest probability of a sale in a given contact. Subsequently the client may take the view that maximization of customer satisfaction is more important for their business. In this event, they can remotely set the weightings of the present invention such that callers are routed to agents most likely to maximize their level of satisfaction. Alternatively the change in weighting may be set to take effect at a subsequent time, for instance, commencing the following morning
FIG. 8 illustrate another exemplary model or method for matching a caller to an agent, and which may combine agent grades, agent demographic data, agent psychographic data, and other business-relevant data about the agent (individually or collectively referred to in this application as “agent data”), along with demographic, psychographic, and other business-relevant data about callers (individually or collectively referred to in this application as “caller data”). Agent and caller demographic data can comprise any of: gender, race, age, education, accent, income, nationality, ethnicity, area code, zip code, marital status, job status, and credit score. Agent and caller psychographic data can comprise any of introversion, sociability, desire for financial success, and film and television preferences. It will be appreciated that the acts outlined in the flowchart of FIG. 8 need not occur in that exact order.
This exemplary model or method includes determining at least one caller data for a caller, determining at least one agent data for each of two agents, using the agent data and the caller data in a pattern matching algorithm, and matching the caller to one of the two agents to increase the chance of an optimal interaction. At 801, at least one caller data (such as a caller demographic or psychographic data) is determined. One way of accomplishing this is by retrieving this from available databases by using the caller's contact information as an index. Available databases include, but are not limited to, those that are publicly available, those that are commercially available, or those created by a contact center or a contact center client. In an outbound contact center environment, the caller's contact information is known beforehand. In an inbound contact center environment, the caller's contact information can be retrieved by examining the caller's CallerID information or by requesting this information of the caller at the outset of the contact, such as through entry of a caller account number or other caller-identifying information. Other business-relevant data such as historic purchase behavior, current level of satisfaction as a customer, or volunteered level of interest in a product may also be retrieved from available databases.
At 802, at least one agent data for each of two agents is determined. One method of determining agent demographic or psychographic data can involve surveying agents at the time of their employment or periodically throughout their employment. Such a survey process can be manual, such as through a paper or oral survey, or automated with the survey being conducted over a computer system, such as by deployment over a web-browser.
Though this advanced embodiment preferably uses agent grades, demographic, psychographic, and other business-relevant data, along with caller demographic, psychographic, and other business-relevant data, other embodiments of the present invention can eliminate one or more types or categories of caller or agent data to minimize the computing power or storage necessary to employ the present invention.
Once agent data and caller data have been collected, this data is passed to a computational system. The computational system then, in turn, uses this data in a pattern matching algorithm at 803 to create a computer model that matches each agent with the caller and estimates the probable outcome of each matching along a number of optimal interactions, such as the generation of a sale, the duration of contact, or the likelihood of generating an interaction that a customer finds satisfying.
The pattern matching algorithm to be used in the present invention can comprise any correlation algorithm, such as a neural network algorithm or a genetic algorithm. To generally train or otherwise refine the algorithm, actual contact results (as measured for an optimal interaction) are compared against the actual agent and caller data for each contact that occurred. The pattern matching algorithm can then learn, or improve its learning of, how matching certain callers with certain agents will change the chance of an optimal interaction. In this manner, the pattern matching algorithm can then be used to predict the chance of an optimal interaction in the context of matching a caller with a particular set of caller data, with an agent of a particular set of agent data. Preferably, the pattern matching algorithm is periodically refined as more actual data on caller interactions becomes available to it, such as periodically training the algorithm every night after a contact center has finished operating for the day.
At 804, the pattern matching algorithm is used to create a computer model reflecting the predicted chances of an optimal interaction for each agent and caller matching. Preferably, the computer model will comprise the predicted chances for a set of optimal interactions for every agent that is logged in to the contact center as matched against every available caller. Alternatively, the computer model can comprise subsets of these, or sets containing the aforementioned sets. For example, instead of matching every agent logged into the contact center with every available caller, the present invention can match every available agent with every available caller, or even a narrower subset of agents or callers. Likewise, the present invention can match every agent that ever worked on a particular campaign—whether available or logged in or not—with every available caller. Similarly, the computer model can comprise predicted chances for one optimal interaction or a number of optimal interactions.
The computer model can also be further refined to comprise a suitability score for each matching of an agent and a caller. The suitability score can be determined by taking the chances of a set of optimal interactions as predicted by the pattern matching algorithm, and weighting those chances to place more or less emphasis on a particular optimal interaction as related to another optimal interaction. The suitability score can then be used in the present invention to determine which agents should be connected to which callers.
In other examples, exemplary models or methods may utilize affinity data associated with callers and/or agents. For example, affinity data may relate to an individual caller's contact outcomes (referred to in this application as “caller affinity data”), independent of their demographic, psychographic, or other business-relevant information. Such caller affinity data can include the caller's purchase history, contact time history, or customer satisfaction history. These histories can be general, such as the caller's general history for purchasing products, average contact time with an agent, or average customer satisfaction ratings. These histories can also be agent specific, such as the caller's purchase, contact time, or customer satisfaction history when connected to a particular agent.
As an example, a certain caller may be identified by their caller affinity data as one highly likely to make a purchase, because in the last several instances in which the caller was contacted, the caller elected to purchase a product or service. This purchase history can then be used to appropriately refine matches such that the caller is preferentially matched with an agent deemed suitable for the caller to increase the chances of an optimal interaction. Using this embodiment, a contact center could preferentially match the caller with an agent who does not have a high grade for generating revenue or who would not otherwise be an acceptable match, because the chance of a sale is still likely given the caller's past purchase behavior. This strategy for matching would leave available other agents who could have otherwise been occupied with a contact interaction with the caller. Alternatively, the contact center may instead seek to guarantee that the caller is matched with an agent with a high grade for generating revenue, irrespective of what the matches generated using caller data and agent demographic or psychographic data may indicate.
In one example, affinity data and an affinity database developed by the described examples may be one in which a caller's contact outcomes are tracked across the various agent data. Such an analysis might indicate, for example, that the caller is most likely to be satisfied with a contact if they are matched to an agent of similar gender, race, age, or even with a specific agent. Using this embodiment, the present invention could preferentially match a caller with a specific agent or type of agent that is known from the caller affinity data to have generated an acceptable optimal interaction.
Affinity databases can provide particularly actionable information about a caller when commercial, client, or publicly-available database sources may lack information about the caller. This database development can also be used to further enhance contact routing and agent-to-caller matching even in the event that there is available data on the caller, as it may drive the conclusion that the individual caller's contact outcomes may vary from what the commercial databases might imply. As an example, if the present invention was to rely solely on commercial databases in order to match a caller and agent, it may predict that the caller would be best matched to an agent of the same gender to achieve optimal customer satisfaction. However, by including affinity database information developed from prior interactions with the caller, the present invention might more accurately predict that the caller would be best matched to an agent of the opposite gender to achieve optimal customer satisfaction.
Another aspect of the present invention is that it may develop affinity databases that comprise revenue generation, cost, and customer satisfaction performance data of individual agents as matched with specific caller demographic, psychographic, or other business-relevant characteristics (referred to in this application as “agent affinity data”). An affinity database such as this may, for example, result in the present invention predicting that a specific agent performs best in interactions with callers of a similar age, and less well in interactions with a caller of a significantly older or younger age. Similarly this type of affinity database may result in the present invention predicting that an agent with certain agent affinity data handles callers originating from a particular geography much better than the agent handles callers from other geographies. As another example, the present invention may predict that a particular agent performs well in circumstances in which that agent is connected to an irate caller.
Though affinity databases are preferably used in combination with agent data and caller data that pass through a pattern matching algorithm to generate matches, information stored in affinity databases can also be used independently of agent data and caller data such that the affinity information is the only information used to generate matches. For instance, in some examples, the first level of processing may include a first computer model that relies on both a pattern matching algorithm and affinity data, and a second computer model that relies on affinity data alone.
Many of the techniques described here may be implemented in hardware or software, or a combination of the two. Preferably, the techniques are implemented in computer programs executing on programmable computers that each includes a processor, a storage medium readable by the processor (including volatile and nonvolatile memory and/or storage elements), and suitable input and output devices. Program code is applied to data entered using an input device to perform the functions described and to generate output information. The output information is applied to one or more output devices. Moreover, each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.
Each such computer program is preferably stored on a storage medium or device (e.g., CD-ROM, hard disk or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform the procedures described. The system also may be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner.
FIG. 9 illustrates a typical computing system 900 that may be employed to implement processing functionality in embodiments of the invention. Computing systems of this type may be used in clients and servers, for example. Those skilled in the relevant art will also recognize how to implement the invention using other computer systems or architectures. Computing system 900 may represent, for example, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc.), mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment. Computing system 900 can include one or more processors, such as a processor 904. Processor 904 can be implemented using a general or special purpose processing engine such as, for example, a microprocessor, microcontroller or other control logic. In this example, processor 904 is connected to a bus 902 or other communication medium.
Computing system 900 can also include a main memory 908, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by processor 904. Main memory 908 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 904. Computing system 900 may likewise include a read only memory (“ROM”) or other static storage device coupled to bus 902 for storing static information and instructions for processor 904.
The computing system 900 may also include information storage system 910, which may include, for example, a media drive 912 and a removable storage interface 920. The media drive 912 may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a CD or DVD drive (R or RW), or other removable or fixed media drive. Storage media 918 may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive 912. As these examples illustrate, the storage media 918 may include a computer-readable storage medium having stored therein particular computer software or data.
In alternative embodiments, information storage system 910 may include other similar components for allowing computer programs or other instructions or data to be loaded into computing system 900. Such components may include, for example, a removable storage unit 922 and an interface 920, such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units 922 and interfaces 920 that allow software and data to be transferred from the removable storage unit 918 to computing system 900.
Computing system 900 can also include a communications interface 924. Communications interface 924 can be used to allow software and data to be transferred between computing system 900 and external devices. Examples of communications interface 924 can include a modem, a network interface (such as an Ethernet or other NIC card), a communications port (such as for example, a USB port), a PCMCIA slot and card, etc. Software and data transferred via communications interface 924 are in the form of signals which can be electronic, electromagnetic, optical or other signals capable of being received by communications interface 924. These signals are provided to communications interface 924 via a channel 928. This channel 928 may carry signals and may be implemented using a wireless medium, wire or cable, fiber optics, or other communications medium. Some examples of a channel include a phone line, a cellular phone link, an RF link, a network interface, a local or wide area network, and other communications channels.
In this document, the terms “computer program product,” “computer-readable medium” and the like may be used generally to refer to physical, tangible media such as, for example, memory 908, storage media 918, or storage unit 922. These and other forms of computer-readable media may be involved in storing one or more instructions for use by processor 904, to cause the processor to perform specified operations. Such instructions, generally referred to as “computer program code” (which may be grouped in the form of computer programs or other groupings), when executed, enable the computing system 900 to perform features or functions of embodiments of the present invention. Note that the code may directly cause the processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
In an embodiment where the elements are implemented using software, the software may be stored in a computer-readable medium and loaded into computing system 900 using, for example, removable storage media 918, drive 912 or communications interface 924. The control logic (in this example, software instructions or computer program code), when executed by the processor 904, causes the processor 904 to perform the functions of the invention as described herein,
It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processors or domains may be used without detracting from the invention. For example, functionality illustrated to be performed by separate processors or controllers may be performed by the same processor or controller. Hence, references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
The above-described embodiments of the present invention are merely meant to be illustrative and not limiting. Various changes and modifications may be made without departing from the invention in its broader aspects. The appended claims encompass such changes and modifications within the spirit and scope of the invention.

Claims (62)

I claim:
1. A method for routing callers to agents in a call-center routing environment, the method comprising the acts of:
receiving, by one or more computers, input data associated with callers in a set of callers and agents in a set of agents at a first layer of processing;
processing, by the one or more computers, the input data associated with the callers in the set of callers and the agents in the set of agents using a first measurement algorithm in a pair-wise fashion in the first layer of processing, to output respective measurement data for each of a first set of caller-agent pairs;
processing, by the one or more computers, the input data associated with the callers in the set of callers and the agents in the set of agents using a second measurement algorithm in a pair-wise fashion in the first layer of processing, to output respective measurement data for each of the first set of caller-agent pairs;
receiving, by the one or more computers, the output measurement data from each of the first measurement algorithm and the second measurement algorithm at a second layer of processing;
processing, by the one or more computers, the caller-agent pair output measurement data from each of the first measurement algorithm and the second measurement algorithm by an algorithm to weight the caller-agent pair output measurement data of one of the measurement algorithms relative to the other of the measurement algorithms in the second layer of processing;
selecting, by the one or more computers, a caller-agent pair based at least in part on weighted caller-agent pair output data; and
mapping, by the one or more computers, the caller in the caller-agent pair selected to the agent in the caller-agent pair selected.
2. The method of claim 1,
wherein the processing the input data steps comprises scoring each of the caller-agent pairs using the respective algorithm for the respective processing step,
wherein the output measurement data from the first measurement algorithm comprises a respective score for each of the first set of caller-agent pairs and is based on at least a first data associated with one or both of the set of the callers and the set of the agents; and
wherein the output measurement data from the second measurement algorithm comprises a respective score,
wherein the scores from the first and second measurement algorithms for each of the caller-agent pairs are output to the second layer of processing.
3. The method of claim 2, wherein scoring the caller-agent pairs according to the second measurement algorithm is based on at least a second data associated with one or both of the set of callers and the set of agents.
4. The method of claim 2, wherein scoring the caller-agent pairs comprises ranking agents based on performance.
5. The method of claim 2, wherein scoring the caller-agent pairs comprises determining a suitability score for a desired output performance.
6. The method of claim 2, wherein one of the measurement algorithms comprises a multi-data element pattern matching algorithm utilizing caller data associated with multiple callers in the set of callers and agent data associated with multiple agents in the set of agents.
7. The method of claim 1, wherein one of the measurement algorithms comprises a performance based matching algorithm based on performance data of at least two of the agents.
8. The method of claim 1, wherein one of the measurement algorithms comprises a multi-data element pattern matching algorithm utilizing caller data associated with multiple callers from the set of callers and agent data associated with multiple agents from the set of agents.
9. The method of claim 1, wherein one of the measurement algorithms utilizes affinity data associated with one or both of the agents and callers.
10. The method of claim 1, wherein at least one of the at least two measurement algorithms comprises a neural network algorithm.
11. The method of claim 1, wherein the second layer of processing comprises a neural network algorithm.
12. The method of claim 1, further comprising:
providing an electronic interface, by the one or more computers, to change the weighting of the output measurement data from one of the measurement algorithms relative to the other of the measurement algorithms in the second layer of processing; and
generating, by the one or more computers, display data for a display interface, with the display data comprising an estimated effect of the change of the weighting on one or more selected from the group of cost, revenue generation, and customer satisfaction.
13. The method of claim 1, wherein the caller-agent pair output measurement data from the first measurement algorithm and from the second measurement algorithm are weighted equally.
14. The method of claim 1, wherein the caller-agent pair output measurement data from the first measurement algorithm and from the second measurement algorithm are weighted unequally.
15. A system for routing callers to agents in a call-center routing environment, comprising:
one or more computers configured with computer-readable program code to perform, when executed, the steps of:
receiving, by the one or more computers, input data associated with callers in a set of callers and agents in a set of agents at a first layer of processing;
processing, by the one or more computers communicatively coupled to and configured to operate in the call-center routing environment, the input data associated with the callers in the a set of callers and the agents in the a set of agents using a first measurement algorithm in a pair-wise fashion in the a first layer of processing, to output respective first measurement data for each caller-agent pair of a first set of caller-agent pairs;
processing, by the one or more computers, the input data associated with the callers in the set of callers and the agents in the set of agents using a second measurement algorithm in a pair-wise fashion in the first layer of processing, to output respective second measurement data for each caller-agent pair of the first set of caller-agent pairs;
receiving, by the one or more computers, the output measurement data from each of the first measurement algorithm and the second measurement algorithm at a second layer of processing, the first measurement data and the second measurement data for each caller-agent pair of the set of caller-agent pairs;
processing, by the one or more computers, the caller-agent pair output measurement data from each of the first measurement algorithm and the second measurement algorithm by an first measurement data and the second measurement data for each caller-agent pair of the set of caller-agent pairs by a weighting algorithm to weight the caller-agent pair output first measurement data of one of the measurement algorithms for each caller-agent pair of the set of caller-agent pairs relative to the other of the measurement algorithms second measurement data for each caller-agent pair of the set of caller-agent pairs in the second layer of processing, to output a weighted caller-agent pair output measurement data;
selecting, by the one or more computers, a caller-agent pair based at least in part on weighted caller-agent pair output measurement data; and
mapping, by the one or more computers, the caller in the caller-agent pair selected to the agent in the caller-agent pair selected
establishing, by the one or more computers, in a switch module of the call-center routing environment, a communication channel between the caller and the agent in the selected agent-pair to optimize performance of the call-center routing environment attributable to the weighted caller-agent pair output measurement data.
16. The system of claim 15,
wherein the program code for processing the input data steps comprises program code for scoring each of the caller-agent pairs using the respective algorithm for the respective processing step,
wherein the output measurement data from the first measurement algorithm comprises a respective score for each of the first set of caller-agent pairs and is based on at least a first data associated with one or both of the set of the callers and the set of the agents; and
wherein the output measurement data from the second measurement algorithm comprises a respective score for each of the first set of caller-agent pairs,
wherein the scores from the first and second measurement algorithms are output to the second layer of processing.
17. The system of claim 16, wherein scoring the caller-agent pairs according to the second measurement algorithm is based on at least a second data associated with one or both of the set of callers and the set of agents.
18. The system of claim 16, wherein scoring the caller-agent pairs comprises ranking agents based on performance.
19. The system of claim 16, wherein scoring the caller-agent pairs comprises determining a suitability score for a desired output performance.
20. The system of claim 16, wherein one of the measurement algorithms comprises a multi-data element pattern matching algorithm utilizing caller data associated with multiple callers in the set of callers and agent data associated with multiple agents in the set of agents.
21. The system of claim 15, wherein one of the measurement algorithms comprises a performance based matching algorithm based on performance data of at least two of the agents.
22. The system of claim 15, wherein one of the measurement algorithms comprises a pattern matching algorithm utilizing caller data associated with multiple callers from the set of callers and agent data associated with multiple agents from the set of agents.
23. The system of claim 15, wherein one of the measurement algorithms utilizes affinity data associated with one or both of the agents and callers.
24. The system of claim 15, wherein at least one of the at least two measurement algorithms comprises a neural network algorithm.
25. The system of claim 15, wherein the second layer of processing comprises a neural network algorithm.
26. The system of claim 15, further comprising the one or more computers configured with program code to perform the steps:
providing an electronic interface, by the one or more computers, to change the weighting of the output measurement data from one of the measurement algorithms relative to the other of the measurement algorithms in the second layer of processing; and
generating, by the one or more computers, display data for a display interface, with the display data comprising an estimated effect of the change of the weighting on one or more selected from the group of cost, revenue generation, and customer satisfaction.
27. The system of claim 15, wherein the caller-agent pair output measurement data from the first measurement algorithm and from the second measurement algorithm are weighted equally.
28. The system of claim 15, wherein the caller-agent pair output measurement data from the first measurement algorithm and from the second measurement algorithm are weighted unequally.
29. A non-transitory computer readable storage medium comprising computer readable program code for carrying out, when executed by one or more computers, the steps:
receiving, by the one or more computers, input data associated with callers in a set of callers and agents in a set of agents at a first layer of processing;
processing, by the one or more computers, the input data associated with the callers in the set of callers and the agents in the set of agents using a first measurement algorithm in a pair-wise fashion in the first layer of processing, to output respective measurement data for each of a first set of caller-agent pairs;
processing, by the one or more computers, the input data associated with the callers in the set of callers and the agents in the set of agents using a second measurement algorithm in a pair-wise fashion in the first layer of processing, to output respective measurement data for each of the first set of caller-agent pairs;
receiving, by the one or more computers, the output measurement data from each of the first measurement algorithm and the second measurement algorithm at a second layer of processing;
processing, by the one or more computers, the caller-agent pair output measurement data from each of the first measurement algorithm and the second measurement algorithm by an algorithm to weight the caller-agent pair output measurement data of one of the measurement algorithms relative to the other of the measurement algorithms in the second layer of processing;
selecting, by the one or more computers, a caller-agent pair based at least in part on weighted caller-agent pair output data; and
mapping, by the one or more computers, the caller in the caller-agent pair selected to the agent in the caller-agent pair selected.
30. The computer readable storage medium of claim 29,
wherein the program code for processing the input data steps comprises program code for scoring each of the caller-agent pairs using the respective algorithm for the respective processing step,
wherein the output measurement data from the first measurement algorithm comprises a respective score for each of the first set of caller-agent pairs and is based on at least a first data associated with one or both of the set of the callers and the set of the agents; and
wherein the output measurement data from the second measurement algorithm comprises a respective score for each of the first set of caller-agent pairs,
wherein the scores from the first and second measurement algorithms are output to the second layer of processing.
31. The computer readable storage medium of claim 30, wherein scoring the caller-agent pairs according to the second measurement algorithm is based on at least a second data associated with one or both of the set of callers and the set of agents.
32. The computer readable storage medium of claim 30, wherein scoring the caller-agent pairs comprises ranking agents based on performance.
33. The computer readable storage medium of claim 30, wherein scoring the caller-agent pairs comprises determining a suitability score for a desired output performance.
34. The computer readable storage medium of claim 30, wherein one of the measurement algorithms comprises a multi-data element pattern matching algorithm utilizing caller data associated with multiple callers in the set of callers and agent data associated with multiple agents in the set of agents.
35. The computer readable storage medium of claim 29, wherein one of the measurement algorithms comprises a performance based matching algorithm based on performance data of at least two of the agents.
36. The computer readable storage medium of claim 29, wherein one of the measurement algorithms comprises a pattern matching algorithm utilizing caller data associated with multiple callers from the set of callers and agent data associated with multiple agents from the set of agents.
37. The computer readable storage medium of claim 29, wherein one of the measurement algorithms utilizes affinity data associated with one or both of the agents and callers.
38. The computer readable storage medium of claim 29, wherein at least one of the at least two measurement algorithms comprises a neural network algorithm.
39. The computer readable storage medium of claim 29, wherein the second layer of processing comprises a neural network algorithm.
40. The computer readable storage medium of claim 29, further comprising program code to perform the steps:
providing an electronic interface, by the one or more computers, to change the weighting of the output measurement data from one of the measurement algorithms relative to the other of the measurement algorithms in the second layer of processing; and
generating, by the one or more computers, display data for a display interface, with the display data comprising an estimated effect of the change of the weighting on one or more selected from the group of cost, revenue generation, and customer satisfaction.
41. The computer readable storage medium of claim 29, wherein the caller-agent pair output measurement data from the first measurement algorithm and from the second measurement algorithm are weighted equally.
42. The computer readable storage medium of claim 29, wherein the caller-agent pair output measurement data from the first measurement algorithm and from the second measurement algorithm are weighted unequally.
43. A method for handling contacts and agents in a contact center system comprising:
determining, by at least one computer processor communicatively coupled to and configured to operate in the contact center system, if a first contact has previously interacted with a first agent, wherein determining the previous interaction is based at least in part upon:
processing, by the at least one computer processor, input data associated with contacts in a set of contacts and agents in a set of agents using a first measurement algorithm in a pair-wise fashion in a first layer of processing, to output first measurement data for each caller-agent pair of a set of contact-agent pairs;
processing, by the at least one computer processor, the input data associated with the contacts in the set of contacts and the agents in the set of agents using a second measurement algorithm in a pair-wise fashion in the first layer of processing, to output second measurement data for each caller-agent pair of the set of contact-agent pairs;
receiving, by the at least one computer processor, at a second layer of processing, the first measurement data and the second measurement data for each caller-agent pair of the set of caller-agent pairs;
processing, by the at least one computer processor, the first measurement data and the second measurement data for each contact-agent pair of the set of contact-agent pairs by a weighting algorithm to weight the first measurement data for each contact-agent pair of the set of contact-agent pairs relative to the second measurement data for each contact-agent pair of the set of contact-agent pairs in the second layer of processing, to output a weighted contact-agent pair output measurement data; and
selecting, by the at least one computer processor, a contact-agent pair based at least in part on the weighted contact-agent pair output measurement data;
matching, by the at least one computer processor, the first contact with the first agent based at least in part upon a previous interaction between the first contact and the first agent; and
establishing, by the at least one computer processor, in a switch module of the contact center system, a communication channel between the first agent and the first contact to optimize performance of the contact center system attributable to the previous interaction between the first contact and the first agent.
44. The method of claim 43, wherein contact outcome information about a previous interaction between the first contact and the first agent is stored in an affinity database.
45. The method of claim 43, wherein a round-robin contact routing algorithm matches the first agent with a second contact waiting in a queue of contacts.
46. The method of claim 43, wherein a pattern-matching algorithm matches the first agent with a second contact waiting in a queue of contacts.
47. The method of claim 43, wherein a round-robin contact routing algorithm matches the first contact with a second agent available for connection with a contact.
48. The method of claim 43, wherein a pattern-matching algorithm matches the first contact with a second agent available for connection with a contact.
49. The method of claim 43, further comprising:
determining, by the at least one computer processor, a first expected outcome based on matching the first contact with the first agent;
determining, by the at least one computer processor, a second expected outcome based on matching the first contact with a second agent selected by a pattern-matching algorithm; and
comparing, by the at least one computer processor, the first expected outcome with the second expected outcome.
50. A system for handling contacts and agents in a contact center system comprising:
at least one computer processor communicatively coupled to and configured to operate in the contact center system, wherein the at least one computer processor is configured to:
determine if a first contact has previously interacted with a first agent, wherein determining the previous interaction is based at least in part upon:
processing, by the at least one computer processor, input data associated with contacts in a set of contacts and agents in a set of agents using a first measurement algorithm in a pair-wise fashion in a first layer of processing, to output first measurement data for each contact-agent pair of a set of contact-agent pairs;
processing, by the at least one computer processor, the input data associated with the contacts in the set of contacts and the agents in the set of agents using a second measurement algorithm in a pair-wise fashion in the first layer of processing, to output second measurement data for each contact-agent pair of the set of contact-agent pairs;
receiving, by the at least one computer processor, at a second layer of processing, the first measurement data and the second measurement data for each contact-agent pair of the set of contact-agent pairs;
processing, by the at least one computer processor, the first measurement data and the second measurement data for each contact-agent pair of the set of contact-agent pairs by a weighting algorithm to weight the first measurement data for each contact-agent pair of the set of contact-agent pairs relative to the second measurement data for each contact-agent pair of the set of contact-agent pairs in the second layer of processing, to output a weighted contact-agent pair output measurement data; and
selecting, by the at least one computer processor, a contact-agent pair based at least in part on the weighted contact-agent pair output measurement data;
match the first contact with the first agent based at least in part upon a previous interaction between the first contact and the first agent; and
establish, in a switch module of the contact center system, a communication channel between the first agent and the first contact to optimize performance of the contact center system attributable to the previous interaction between the first contact and the first agent.
51. The system of claim 50, wherein contact outcome information about a previous interaction between the first contact and the first agent is stored in an affinity database.
52. The system of claim 50, wherein a round-robin contact routing algorithm matches the first agent with a second contact waiting in a queue of contacts.
53. The system of claim 50, wherein a pattern-matching algorithm matches the first agent with a second contact waiting in a queue of contacts.
54. The system of claim 50, wherein a round-robin contact routing algorithm matches the first contact with a second agent available for connection with a contact.
55. The system of claim 50, wherein a pattern-matching algorithm matches the first contact with a second agent available for connection with a contact.
56. The system of claim 50, wherein the at least one computer processor is further configured to:
determine a first expected outcome based on matching the first contact with the first agent;
determine a second expected outcome based on matching the first contact with a second agent selected by a pattern-matching algorithm; and
compare the first expected outcome with the second expected outcome.
57. An article of manufacture for handling contacts and agents in a contact center system comprising:
a non-transitory processor readable medium; and
instructions stored on the medium;
wherein the instructions are configured to be readable from the medium by at least one computer processor communicatively coupled to and configured to operate in the contact center system and thereby cause the at least one computer processor to operate so as to:
determine if a first contact has previously interacted with a first agent, wherein determining the previous interaction is based at least in part upon:
processing, by the at least one computer processor, input data associated with contacts in a set of contacts and agents in a set of agents using a first measurement algorithm in a pair-wise fashion in a first layer of processing, to output first measurement data for each contact-agent pair of a set of contact-agent pairs;
processing, by the at least one computer processor, the input data associated with the contacts in the set of contacts and the agents in the set of agents using a second measurement algorithm in a pair-wise fashion in the first layer of processing, to output second measurement data for each contact-agent pair of the set of contact-agent pairs;
receiving, by the at least one computer processor, at a second layer of processing, the first measurement data and the second measurement data for each contact-agent pair of the set of contact-agent pairs;
processing, by the at least one computer processor, the first measurement data and the second measurement data for each contact-agent pair of the set of contact-agent pairs by a weighting algorithm to weight the first measurement data for each contact-agent pair of the set of contact-agent pairs relative to the second measurement data for each contact-agent pair of the set of contact-agent pairs in the second layer of processing, to output a weighted contact-agent pair output measurement data; and
selecting, by the at least one computer processor, a contact-agent pair based at least in part on the weighted contact-agent pair output measurement data;
match the first contact with the first agent based at least in part upon a previous interaction between the first contact and the first agent; and
establish, in a switch module of the contact center system, a communication channel between the first agent and the first contact to optimize performance of the contact center system attributable to the previous interaction between the first contact and the first agent.
58. The article of manufacture of claim 57, wherein contact outcome information about a previous interaction between the first contact and the first agent is stored in an affinity database.
59. The article of manufacture of claim 57, wherein a round-robin contact routing algorithm matches the first agent with a second contact waiting in a queue of contacts.
60. The article of manufacture of claim 57, wherein a pattern-matching algorithm matches the first agent with a second contact waiting in a queue of contacts.
61. The article of manufacture of claim 57, wherein a round-robin contact routing algorithm matches the first contact with a second agent available for connection with a contact.
62. The article of manufacture of claim 57, wherein a pattern-matching algorithm matches the first contact with a second agent available for connection with a contact.
US14/788,469 2008-11-06 2015-06-30 Balancing multiple computer models in a call center routing system Active 2032-03-26 USRE48412E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/788,469 USRE48412E1 (en) 2008-11-06 2015-06-30 Balancing multiple computer models in a call center routing system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/266,461 US8472611B2 (en) 2008-11-06 2008-11-06 Balancing multiple computer models in a call center routing system
US14/750,965 USRE48476E1 (en) 2008-11-06 2015-06-25 Balancing multiple computer models in a call center routing system
US14/788,469 USRE48412E1 (en) 2008-11-06 2015-06-30 Balancing multiple computer models in a call center routing system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/266,461 Reissue US8472611B2 (en) 2008-11-06 2008-11-06 Balancing multiple computer models in a call center routing system

Publications (1)

Publication Number Publication Date
USRE48412E1 true USRE48412E1 (en) 2021-01-26

Family

ID=74185534

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/788,469 Active 2032-03-26 USRE48412E1 (en) 2008-11-06 2015-06-30 Balancing multiple computer models in a call center routing system

Country Status (1)

Country Link
US (1) USRE48412E1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257022B2 (en) * 2020-03-31 2022-02-22 Citrix Systems, Inc. Computing system and methods providing support session assignment between support agent client devices and customer client devices

Citations (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493292A2 (en) * 1990-12-11 1992-07-01 International Business Machines Corporation Look-ahead method and apparatus for predictive dialing using a neural network
US5206903A (en) 1990-12-26 1993-04-27 At&T Bell Laboratories Automatic call distribution based on matching required skills with agents skills
US5327490A (en) 1991-02-19 1994-07-05 Intervoice, Inc. System and method for controlling call placement rate for telephone communication systems
US5452350A (en) * 1992-03-09 1995-09-19 Advantis Subscriber call routing processing system
US5537470A (en) 1994-04-06 1996-07-16 At&T Corp. Method and apparatus for handling in-bound telemarketing calls
US5594791A (en) * 1994-10-05 1997-01-14 Inventions, Inc. Method and apparatus for providing result-oriented customer service
US5702253A (en) 1995-07-10 1997-12-30 Bryce; Nathan K. Personality testing apparatus and method
EP0863651A2 (en) 1997-03-07 1998-09-09 Lucent Technologies Inc. Waiting-call selection based on objectives
US5825869A (en) 1995-04-24 1998-10-20 Siemens Business Communication Systems, Inc. Call management method and system for skill-based routing
WO1999017517A1 (en) 1997-09-30 1999-04-08 Genesys Telecommunications Laboratories, Inc. Metadata-based network routing
JPH1198252A (en) 1997-09-19 1999-04-09 Fujitsu Ltd Operator connection system and method therefor and record medium
US5903641A (en) 1997-01-28 1999-05-11 Lucent Technologies Inc. Automatic dynamic changing of agents' call-handling assignments
US5907601A (en) 1995-05-26 1999-05-25 Eis International Inc. Call pacing method
US5926538A (en) 1997-02-11 1999-07-20 Genesys Telecommunications Labs, Inc Method for routing calls to call centers based on statistical modeling of call behavior
EP0949793A1 (en) * 1998-04-09 1999-10-13 Lucent Technologies Inc. Optimizing call-center performance by using predictive data to distribute agents among calls
JP2000078291A (en) 1998-04-09 2000-03-14 Lucent Technol Inc Method and device for optimizing operation of call center by using prediction data for distribution call to agent
JP2000092213A (en) 1998-08-27 2000-03-31 Lucent Technol Inc Method and system for processing communication requiring skill for processing using queue
US6049603A (en) 1997-09-24 2000-04-11 Call-A-Guide, Inc. Method for eliminating telephone hold time
US6052460A (en) 1997-12-17 2000-04-18 Lucent Technologies Inc. Arrangement for equalizing levels of service among skills
US6064731A (en) 1998-10-29 2000-05-16 Lucent Technologies Inc. Arrangement for improving retention of call center's customers
US6088444A (en) 1997-04-11 2000-07-11 Walker Asset Management Limited Partnership Method and apparatus for value-based queuing of telephone calls
JP2000236393A (en) 1999-02-02 2000-08-29 Lucent Technol Inc Request distribution method and its device
US6222919B1 (en) 1994-09-12 2001-04-24 Rockwell International Corporation Method and system for routing incoming telephone calls to available agents based on agent skills
EP1107557A2 (en) 1999-12-06 2001-06-13 Avaya Technology Corp. System for automatically routing calls to call center agents in an agent surplus condition based on delay probabilities
WO2001063894A2 (en) 2000-02-24 2001-08-30 Siemens Information And Communication Networks, Inc. Wait time estimation in automatic call distribution queues
US20010024497A1 (en) * 2000-01-07 2001-09-27 Alasdhair Campbell Customer communication service system
US20010032120A1 (en) 2000-03-21 2001-10-18 Stuart Robert Oden Individual call agent productivity method and system
JP2001292236A (en) 2000-01-18 2001-10-19 Avaya Technology Corp Method and device for multivariate work assignment to be used inside call center
US6324282B1 (en) 2000-03-02 2001-11-27 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US6333979B1 (en) 1998-12-17 2001-12-25 At&T Corp. Method and apparatus for assigning incoming communications to communications processing centers
US20020018554A1 (en) 2000-01-27 2002-02-14 Jensen Roy A. Call management system using fast response dynamic threshold adjustment
US20020046030A1 (en) 2000-05-18 2002-04-18 Haritsa Jayant Ramaswamy Method and apparatus for improved call handling and service based on caller's demographic information
US6389400B1 (en) 1998-08-20 2002-05-14 Sbc Technology Resources, Inc. System and methods for intelligent routing of customer requests using customer and agent models
US6389132B1 (en) 1999-10-13 2002-05-14 Avaya Technology Corp. Multi-tasking, web-based call center
US20020059164A1 (en) 1999-12-01 2002-05-16 Yuri Shtivelman Method and apparatus for auto-assisting agents in agent-hosted communications sessions
US6408066B1 (en) 1999-12-15 2002-06-18 Lucent Technologies Inc. ACD skill-based routing
US6411687B1 (en) 1997-11-11 2002-06-25 Mitel Knowledge Corporation Call routing based on the caller's mood
US20020082736A1 (en) 2000-12-27 2002-06-27 Lech Mark Matthew Quality management system
US6424709B1 (en) 1999-03-22 2002-07-23 Rockwell Electronic Commerce Corp. Skill-based call routing
US20020111172A1 (en) 2001-02-14 2002-08-15 Dewolf Frederik M. Location based profiling
US20020131399A1 (en) 1998-02-17 2002-09-19 Laurent Philonenko Queue prioritization based on competitive user input
US20020138285A1 (en) 2001-03-22 2002-09-26 Decotiis Allen R. System, method and article of manufacture for generating a model to analyze a propensity of customers to purchase products and services
US20020143599A1 (en) 2001-04-02 2002-10-03 Illah Nourbakhsh Method and apparatus for long-range planning
JP2002297900A (en) 2001-03-30 2002-10-11 Ibm Japan Ltd Control system for reception by businesses, user side terminal device, reception side terminal device, management server queue monitoring device, method of allocating reception side terminals, and storage medium
US20020161765A1 (en) 2001-04-30 2002-10-31 Kundrot Andrew Joseph System and methods for standardizing data for design review comparisons
US6496580B1 (en) 1999-02-22 2002-12-17 Aspect Communications Corp. Method and apparatus for servicing queued requests
US20020196845A1 (en) 2001-06-13 2002-12-26 Richards James L. Method and apparatus for improving received signal quality in an impluse radio system
US20030002653A1 (en) 2001-06-27 2003-01-02 Serdar Uckun Graphical method and system for visualizing performance levels in time-varying environment
US6504920B1 (en) 1999-06-18 2003-01-07 Shmuel Okon Method and system for initiating conversations between callers having common interests
US6519335B1 (en) 1999-04-08 2003-02-11 Lucent Technologies Inc. Apparatus, method and system for personal telecommunication incoming call screening and alerting for call waiting applications
US20030081757A1 (en) 2001-09-24 2003-05-01 Mengshoel Ole J. Contact center autopilot architecture
US6570980B1 (en) 1999-10-11 2003-05-27 Alcatel Method of distributing telephone calls to ordered agents
US6577727B1 (en) * 1999-03-01 2003-06-10 Rockwell Electronic Commerce Corp. ACD tier based routing
US6587556B1 (en) 2000-02-25 2003-07-01 Teltronics, Inc. Skills based routing method and system for call center
JP2003187061A (en) 2001-12-19 2003-07-04 Fuji Mach Mfg Co Ltd User support system, server device of user support system, operator selecting program and operator selecting method of user support system
US6603854B1 (en) 2000-02-25 2003-08-05 Teltronics, Inc. System and method for evaluating agents in call center
US20030169870A1 (en) 2002-03-05 2003-09-11 Michael Stanford Automatic call distribution
US20030174830A1 (en) 2002-03-15 2003-09-18 Boyer David G. Topical dynamic chat
US6639976B1 (en) 2001-01-09 2003-10-28 Bellsouth Intellectual Property Corporation Method for parity analysis and remedy calculation
US20030217016A1 (en) 2002-04-29 2003-11-20 Pericle Anthony J. Pricing model system and method
US20040028211A1 (en) 2002-08-08 2004-02-12 Rockwell Electronic Commerce Technologies, Llc Method and apparatus for determining a real time average speed of answer in an automatic call distribution system
JP2004056517A (en) 2002-07-19 2004-02-19 Fujitsu Ltd Transaction distribution program
US6704410B1 (en) 1998-06-03 2004-03-09 Avaya Inc. System for automatically assigning skill levels to multiple skilled agents in call center agent assignment applications
US6707904B1 (en) 2000-02-25 2004-03-16 Teltronics, Inc. Method and system for collecting reports for call center monitoring by supervisor
US20040057416A1 (en) 2002-09-19 2004-03-25 Mccormack Tony Determining statistics about the behaviour of a call center at a past time instant
US20040098274A1 (en) 2002-11-15 2004-05-20 Dezonno Anthony J. System and method for predicting customer contact outcomes
US20040096050A1 (en) 2002-11-19 2004-05-20 Das Sharmistha Sarkar Accent-based matching of a communicant with a call-center agent
US20040101127A1 (en) 2002-11-26 2004-05-27 Dezonno Anthony J. Personality based routing
US20040109555A1 (en) 2002-12-06 2004-06-10 Bellsouth Intellectual Property Method and system for improved routing of repair calls to a call center
US6763104B1 (en) 2000-02-24 2004-07-13 Teltronics, Inc. Call center IVR and ACD scripting method and graphical user interface
US6774932B1 (en) 2000-09-26 2004-08-10 Ewing Golf Associates, Llc System for enhancing the televised broadcast of a golf game
US6775378B1 (en) 1999-10-25 2004-08-10 Concerto Software, Inc Blended agent contact center
JP2004227228A (en) 2003-01-22 2004-08-12 Kazunori Fujisawa Order accepting system by portable telephone
US6798876B1 (en) 1998-12-29 2004-09-28 At&T Corp. Method and apparatus for intelligent routing of incoming calls to representatives in a call center
US20040210475A1 (en) 2002-11-25 2004-10-21 Starnes S. Renee Variable compensation tool and system for customer service agents
US20040230438A1 (en) 2003-05-13 2004-11-18 Sbc Properties, L.P. System and method for automated customer feedback
US6829348B1 (en) 1999-07-30 2004-12-07 Convergys Cmg Utah, Inc. System for customer contact information management and methods for using same
US6832203B1 (en) 1999-11-05 2004-12-14 Cim, Ltd. Skills based contact routing
US20040267816A1 (en) 2003-04-07 2004-12-30 Russek David J. Method, system and software for digital media narrative personalization
US20050013428A1 (en) 2003-07-17 2005-01-20 Walters James Frederick Contact center optimization program
US6859529B2 (en) 2000-04-12 2005-02-22 Austin Logistics Incorporated Method and system for self-service scheduling of inbound inquiries
US20050043986A1 (en) 2003-08-20 2005-02-24 Mcconnell Matthew G.A. Method and system for selecting a preferred contact center agent based on agent proficiency and performance and contact center state
US20050047582A1 (en) 2003-08-25 2005-03-03 Cisco Technology, Inc. Method and system for utilizing proxy designation in a call system
US20050047581A1 (en) 2003-08-25 2005-03-03 Shmuel Shaffer Method and system for managing calls of an automatic call distributor
US20050129212A1 (en) 2003-12-12 2005-06-16 Parker Jane S. Workforce planning system incorporating historic call-center related data
US20050135596A1 (en) 2000-12-26 2005-06-23 Aspect Communications Corporation Method and system for providing personalized service over different contact channels
US20050135593A1 (en) 2003-06-13 2005-06-23 Manuel Becerra Call processing system
US6922466B1 (en) 2001-03-05 2005-07-26 Verizon Corporate Services Group Inc. System and method for assessing a call center
US20050187802A1 (en) * 2004-02-13 2005-08-25 Koeppel Harvey R. Method and system for conducting customer needs, staff development, and persona-based customer routing analysis
US6937715B2 (en) 2002-09-26 2005-08-30 Nortel Networks Limited Contact center management
US20050195960A1 (en) 2004-03-03 2005-09-08 Cisco Technology, Inc. Method and system for automatic call distribution based on location information for call center agents
US6970821B1 (en) 2000-09-26 2005-11-29 Rockwell Electronic Commerce Technologies, Llc Method of creating scripts by translating agent/customer conversations
US6978006B1 (en) 2000-10-12 2005-12-20 Intervoice Limited Partnership Resource management utilizing quantified resource attributes
US20050286709A1 (en) 2004-06-28 2005-12-29 Steve Horton Customer service marketing
US20060062376A1 (en) * 2004-09-22 2006-03-23 Dale Pickford Call center services system and method
US7023979B1 (en) 2002-03-07 2006-04-04 Wai Wu Telephony control system with intelligent call routing
US7039166B1 (en) 2001-03-05 2006-05-02 Verizon Corporate Services Group Inc. Apparatus and method for visually representing behavior of a user of an automated response system
US20060098803A1 (en) 2003-12-18 2006-05-11 Sbc Knowledge Ventures, L.P. Intelligently routing customer communications
US7050567B1 (en) 2000-01-27 2006-05-23 Avaya Technology Corp. Call management system using dynamic queue position
US20060110052A1 (en) 2002-11-29 2006-05-25 Graham Finlayson Image signal processing
US20060124113A1 (en) 2004-12-10 2006-06-15 Roberts Forest G Sr Marine engine fuel cooling system
US7068775B1 (en) 1998-12-02 2006-06-27 Concerto Software, Inc. System and method for managing a hold queue based on customer information retrieved from a customer database
US7092509B1 (en) 1999-09-21 2006-08-15 Microlog Corporation Contact center system capable of handling multiple media types of contacts and method for using the same
US20060184040A1 (en) 2004-12-09 2006-08-17 Keller Kurtis P Apparatus, system and method for optically analyzing a substrate
US7103172B2 (en) 2001-12-12 2006-09-05 International Business Machines Corporation Managing caller profiles across multiple hold queues according to authenticated caller identifiers
US20060222164A1 (en) 2005-04-04 2006-10-05 Saeed Contractor Simultaneous usage of agent and service parameters
US20060233346A1 (en) 1999-11-16 2006-10-19 Knowlagent, Inc. Method and system for prioritizing performance interventions
US20060262922A1 (en) 2005-05-17 2006-11-23 Telephony@Work, Inc. Dynamic customer satisfaction routing
US20060262918A1 (en) 2005-05-18 2006-11-23 Sbc Knowledge Ventures L.P. VPN PRI OSN independent authorization levels
JP2006345132A (en) 2005-06-08 2006-12-21 Fujitsu Ltd Incoming distributing program
US20070036323A1 (en) 2005-07-07 2007-02-15 Roger Travis Call center routing
US20070071222A1 (en) 2005-09-16 2007-03-29 Avaya Technology Corp. Method and apparatus for the automated delivery of notifications to contacts based on predicted work prioritization
US7209549B2 (en) 2002-01-18 2007-04-24 Sbc Technology Resources, Inc. Method and system for routing calls based on a language preference
US20070121829A1 (en) 2005-11-30 2007-05-31 On-Q Telecom Systems Co., Inc Virtual personal assistant for handling calls in a communication system
US20070121602A1 (en) 2005-11-18 2007-05-31 Cisco Technology VoIP CALL ROUTING
US7231034B1 (en) 2003-10-21 2007-06-12 Acqueon Technologies, Inc. “Pull” architecture contact center
US7231032B2 (en) 1997-02-10 2007-06-12 Genesys Telecommunications Laboratories, Inc. Negotiated routing in telephony systems
US7236584B2 (en) 1999-06-17 2007-06-26 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing fair access to agents in a communication center
US20070154007A1 (en) 2005-12-22 2007-07-05 Michael Bernhard Method and device for agent-optimized operation of a call center
US7245719B2 (en) 2000-06-30 2007-07-17 Matsushita Electric Industrial Co., Ltd. Recording method and apparatus, optical disk, and computer-readable storage medium
US7245716B2 (en) 2001-12-12 2007-07-17 International Business Machines Corporation Controlling hold queue position adjustment
US20070174111A1 (en) 2006-01-24 2007-07-26 International Business Machines Corporation Evaluating a performance of a customer support resource in the context of a peer group
US20070198322A1 (en) 2006-02-22 2007-08-23 John Bourne Systems and methods for workforce optimization
US7266251B2 (en) 2001-11-23 2007-09-04 Simon Michael Rowe Method and apparatus for generating models of individuals
US20070274502A1 (en) 2006-05-04 2007-11-29 Brown Donald E System and method for providing a baseline for quality metrics in a contact center
JP2007324708A (en) 2006-05-30 2007-12-13 Nec Corp Telephone answering method, call center system, program for call center, and program recording medium
US20080002823A1 (en) 2006-05-01 2008-01-03 Witness Systems, Inc. System and Method for Integrated Workforce and Quality Management
US20080008309A1 (en) 2004-12-07 2008-01-10 Dezonno Anthony J Method and apparatus for customer key routing
US20080046386A1 (en) 2006-07-03 2008-02-21 Roberto Pieraccinii Method for making optimal decisions in automated customer care
US20080065476A1 (en) 2006-09-07 2008-03-13 Loyalty Builders, Inc. Online direct marketing system
US20080118052A1 (en) 2006-11-17 2008-05-22 Mounire El Houmaidi Methods, systems, and computer program products for rule-based direction of customer service calls
US20080152122A1 (en) * 2006-12-20 2008-06-26 Nice Systems Ltd. Method and system for automatic quality evaluation
US7398224B2 (en) 2005-03-22 2008-07-08 Kim A. Cooper Performance motivation systems and methods for contact centers
US20080181389A1 (en) 2006-02-22 2008-07-31 John Bourne Systems and methods for workforce optimization and integration
US20080199000A1 (en) 2007-02-21 2008-08-21 Huawei Technologies Co., Ltd. System and method for monitoring agents' performance in a call center
US20080267386A1 (en) 2005-03-22 2008-10-30 Cooper Kim A Performance Motivation Systems and Methods for Contact Centers
US20080273687A1 (en) 2003-03-06 2008-11-06 At&T Intellectual Property I, L.P. System and Method for Providing Customer Activities While in Queue
US20090043670A1 (en) 2006-09-14 2009-02-12 Henrik Johansson System and method for network-based purchasing
US20090086933A1 (en) 2007-10-01 2009-04-02 Labhesh Patel Call routing using voice signature and hearing characteristics
US20090190743A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Separate matching models based on type of phone associated with a caller
US20090190744A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Routing callers from a set of callers based on caller data
US20090190749A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Jumping callers held in queue for a call center routing system
US20090190745A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Pooling callers for a call center routing system
US20090190750A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Routing callers out of queue order for a call center routing system
US20090190747A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Call routing methods and systems based on multiple variable standardized scoring
WO2009097210A1 (en) 2008-01-28 2009-08-06 The Resource Group International, Ltd. Routing callers from a set of callers in an out of order sequence
US20090232294A1 (en) * 2008-01-28 2009-09-17 Qiaobing Xie Skipping a caller in queue for a call routing center
US20090234710A1 (en) 2006-07-17 2009-09-17 Asma Belgaied Hassine Customer centric revenue management
US20090245493A1 (en) 2008-03-28 2009-10-01 Avaya Inc. System and Method for Displaying Call Flows and Call Statistics
US20090318111A1 (en) 2008-06-19 2009-12-24 Verizon Data Services Llc Voice portal to voice portal voip transfer
US20090323921A1 (en) 2008-01-28 2009-12-31 The Resource Group International Ltd Probability multiplier process for call center routing
US20100020961A1 (en) 2008-07-28 2010-01-28 The Resource Group International Ltd Routing callers to agents based on time effect data
US20100054431A1 (en) 2008-08-29 2010-03-04 International Business Machines Corporation Optimized method to select and retrieve a contact center transaction from a set of transactions stored in a queuing mechanism
US20100054452A1 (en) 2008-08-29 2010-03-04 Afzal Hassan Agent satisfaction data for call routing based on pattern matching alogrithm
US20100054453A1 (en) 2008-08-29 2010-03-04 Stewart Randall R Shadow queue for callers in a performance/pattern matching based call routing system
US7676034B1 (en) * 2003-03-07 2010-03-09 Wai Wu Method and system for matching entities in an auction
US20100086120A1 (en) * 2008-10-02 2010-04-08 Compucredit Intellectual Property Holdings Corp. Ii Systems and methods for call center routing
US20100111287A1 (en) * 2008-11-06 2010-05-06 The Resource Group International Ltd Pooling callers for matching to agents based on pattern matching algorithms
US20100111288A1 (en) 2008-11-06 2010-05-06 Afzal Hassan Time to answer selector and advisor for call routing center
US20100111285A1 (en) 2008-11-06 2010-05-06 Zia Chishti Balancing multiple computer models in a call center routing system
US20100111286A1 (en) 2008-11-06 2010-05-06 Zia Chishti Selective mapping of callers in a call center routing system
WO2010053701A2 (en) 2008-11-06 2010-05-14 The Resource Group International Ltd Systems and methods in a call center routing system
US7725339B1 (en) 2003-07-07 2010-05-25 Ac2 Solutions, Inc. Contact center scheduling using integer programming
US7734032B1 (en) 2004-03-31 2010-06-08 Avaya Inc. Contact center and method for tracking and acting on one and done customer contacts
US20100142698A1 (en) * 2008-12-09 2010-06-10 The Resource Group International Ltd Separate pattern matching algorithms and computer models based on available caller data
US20100183138A1 (en) 2009-01-16 2010-07-22 Spottiswoode S James P Selective mapping of callers in a call-center routing system based on individual agent settings
US7826597B2 (en) 2005-12-09 2010-11-02 At&T Intellectual Property I, L.P. Methods and apparatus to handle customer support requests
US7864944B2 (en) 2005-11-29 2011-01-04 Cisco Technology, Inc. Optimal call speed for call center agents
US20110022357A1 (en) 1994-11-21 2011-01-27 Nike, Inc. Location determining system
US20110031112A1 (en) 2005-05-25 2011-02-10 Manoocher Birang In-situ profile measurement in an electroplating process
US7899177B1 (en) 2004-01-12 2011-03-01 Sprint Communications Company L.P. Call-routing system and method
US20110069821A1 (en) 2009-09-21 2011-03-24 Nikolay Korolev System for Creation and Dynamic Management of Incoming Interactions
US7916858B1 (en) 2001-06-25 2011-03-29 Toby Heller Agent training sensitive call routing system
US7940917B2 (en) 2007-01-24 2011-05-10 International Business Machines Corporation Managing received calls
US20110125048A1 (en) 2005-08-02 2011-05-26 Brainscope Company, Inc. Method for assessing brain function and portable automatic brain function assessment apparatus
US7961866B1 (en) 2006-06-02 2011-06-14 West Corporation Method and computer readable medium for geographic agent routing
WO2011081514A1 (en) 2009-12-31 2011-07-07 Petroliam Nasional Berhad (Petronas) Method and apparatus for monitoring performance and anticipate failures of plant instrumentation
US7995717B2 (en) 2005-05-18 2011-08-09 Mattersight Corporation Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto
US8000989B1 (en) 2004-03-31 2011-08-16 Avaya Inc. Using true value in routing work items to resources
US8010607B2 (en) 2003-08-21 2011-08-30 Nortel Networks Limited Management of queues in contact centres
US8094790B2 (en) 2005-05-18 2012-01-10 Mattersight Corporation Method and software for training a customer service representative by analysis of a telephonic interaction between a customer and a contact center
US8126133B1 (en) * 2004-04-01 2012-02-28 Liveops, Inc. Results-based routing of electronic communications
US20120051536A1 (en) * 2010-08-26 2012-03-01 The Resource Group International Ltd Estimating agent performance in a call routing center system
US20120051537A1 (en) * 2010-08-26 2012-03-01 The Resource Group International Ltd Precalculated caller-agent pairs for a call center routing system
US8140441B2 (en) 2008-10-20 2012-03-20 International Business Machines Corporation Workflow management in a global support organization
US8175253B2 (en) 2005-07-07 2012-05-08 At&T Intellectual Property I, L.P. System and method for automated performance monitoring for a call servicing system
US8249245B2 (en) 2007-11-13 2012-08-21 Amazon Technologies, Inc. System and method for automated call distribution
US20120224680A1 (en) * 2010-08-31 2012-09-06 The Resource Group International Ltd Predicted call time as routing variable in a call routing center system
US8300798B1 (en) 2006-04-03 2012-10-30 Wai Wu Intelligent communication routing system and method
US20120278136A1 (en) 2004-09-27 2012-11-01 Avaya Inc. Dynamic work assignment strategies based on multiple aspects of agent proficiency
US20130251137A1 (en) * 2012-03-26 2013-09-26 The Resource Group International, Ltd. Call mapping systems and methods using variance algorithm (va) and/or distribution compensation
NZ591486A (en) 2008-08-29 2013-10-25 Resource Group International Ltd Call routing methods and systems based on multiple variable standardized scoring and shadow queue
US20140044246A1 (en) 2012-08-10 2014-02-13 Avaya Inc. System and method for determining call importance using social network context
US20140079210A1 (en) 2012-09-20 2014-03-20 Avaya Inc. Risks for waiting for well-matched
US20140086404A1 (en) * 2012-09-24 2014-03-27 The Resource Group International, Ltd. Matching using agent/caller sensitivity to performance
US20140119531A1 (en) 2012-10-30 2014-05-01 Kenneth D. Tuchman Method for providing support using answer engine and dialog rules
US20140119533A1 (en) * 2012-03-26 2014-05-01 The Resource Group International, Ltd. Call mapping systems and methods using variance algorithm (va) and/or distribution compensation
US20150055772A1 (en) 2013-08-20 2015-02-26 Avaya Inc. Facilitating a contact center agent to select a contact in a contact center queue
US8995647B2 (en) 2013-05-20 2015-03-31 Xerox Corporation Method and apparatus for routing a call using a hybrid call routing scheme with real-time automatic adjustment
US9300802B1 (en) * 2008-01-28 2016-03-29 Satmap International Holdings Limited Techniques for behavioral pairing in a contact center system
US20170064081A1 (en) * 2008-01-28 2017-03-02 Satmap International Holdings Limited Techniques for hybrid behavioral pairing in a contact center system
US20170064080A1 (en) * 2008-01-28 2017-03-02 Satmap International Holdings Limited Techniques for hybrid behavioral pairing in a contact center system

Patent Citations (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155763A (en) 1990-12-11 1992-10-13 International Business Machines Corp. Look ahead method and apparatus for predictive dialing using a neural network
EP0493292A2 (en) * 1990-12-11 1992-07-01 International Business Machines Corporation Look-ahead method and apparatus for predictive dialing using a neural network
US5206903A (en) 1990-12-26 1993-04-27 At&T Bell Laboratories Automatic call distribution based on matching required skills with agents skills
US5327490A (en) 1991-02-19 1994-07-05 Intervoice, Inc. System and method for controlling call placement rate for telephone communication systems
US5452350A (en) * 1992-03-09 1995-09-19 Advantis Subscriber call routing processing system
US5537470A (en) 1994-04-06 1996-07-16 At&T Corp. Method and apparatus for handling in-bound telemarketing calls
US6222919B1 (en) 1994-09-12 2001-04-24 Rockwell International Corporation Method and system for routing incoming telephone calls to available agents based on agent skills
US5963635A (en) * 1994-10-05 1999-10-05 Inventions, Inc. Method and apparatus for providing result-oriented customer service
US5594791A (en) * 1994-10-05 1997-01-14 Inventions, Inc. Method and apparatus for providing result-oriented customer service
US20040133434A1 (en) 1994-10-05 2004-07-08 Inventions, Inc. Method and apparatus for providing result-oriented customer service
US20110022357A1 (en) 1994-11-21 2011-01-27 Nike, Inc. Location determining system
US5825869A (en) 1995-04-24 1998-10-20 Siemens Business Communication Systems, Inc. Call management method and system for skill-based routing
US5907601A (en) 1995-05-26 1999-05-25 Eis International Inc. Call pacing method
US5702253A (en) 1995-07-10 1997-12-30 Bryce; Nathan K. Personality testing apparatus and method
JP3366565B2 (en) 1997-01-28 2003-01-14 ルーセント テクノロジーズ インコーポレーテッド Apparatus and method for automatically assigning call center agents to skills in a call center
US5903641A (en) 1997-01-28 1999-05-11 Lucent Technologies Inc. Automatic dynamic changing of agents' call-handling assignments
US7231032B2 (en) 1997-02-10 2007-06-12 Genesys Telecommunications Laboratories, Inc. Negotiated routing in telephony systems
US5926538A (en) 1997-02-11 1999-07-20 Genesys Telecommunications Labs, Inc Method for routing calls to call centers based on statistical modeling of call behavior
EP0863651A2 (en) 1997-03-07 1998-09-09 Lucent Technologies Inc. Waiting-call selection based on objectives
US20020110234A1 (en) 1997-04-11 2002-08-15 Walker Jay S. Method and apparatus for value-based queuing of telephone calls
US6088444A (en) 1997-04-11 2000-07-11 Walker Asset Management Limited Partnership Method and apparatus for value-based queuing of telephone calls
JPH1198252A (en) 1997-09-19 1999-04-09 Fujitsu Ltd Operator connection system and method therefor and record medium
US6292555B1 (en) 1997-09-19 2001-09-18 Fujitsu Limited System, method and storage medium for connection to operator
US6049603A (en) 1997-09-24 2000-04-11 Call-A-Guide, Inc. Method for eliminating telephone hold time
JP2001518753A (en) 1997-09-30 2001-10-16 ジェネシス・テレコミュニケーションズ・ラボラトリーズ・インコーポレーテッド Metadatabase network routing
WO1999017517A1 (en) 1997-09-30 1999-04-08 Genesys Telecommunications Laboratories, Inc. Metadata-based network routing
US6411687B1 (en) 1997-11-11 2002-06-25 Mitel Knowledge Corporation Call routing based on the caller's mood
US6052460A (en) 1997-12-17 2000-04-18 Lucent Technologies Inc. Arrangement for equalizing levels of service among skills
US20020131399A1 (en) 1998-02-17 2002-09-19 Laurent Philonenko Queue prioritization based on competitive user input
JP2000078292A (en) 1998-04-09 2000-03-14 Lucent Technol Inc Method and device for optimizing performance of call center by distributing call to agents by using prediction data
US6163607A (en) 1998-04-09 2000-12-19 Avaya Technology Corp. Optimizing call-center performance by using predictive data to distribute agents among calls
JP2000078291A (en) 1998-04-09 2000-03-14 Lucent Technol Inc Method and device for optimizing operation of call center by using prediction data for distribution call to agent
EP0949793A1 (en) * 1998-04-09 1999-10-13 Lucent Technologies Inc. Optimizing call-center performance by using predictive data to distribute agents among calls
US6704410B1 (en) 1998-06-03 2004-03-09 Avaya Inc. System for automatically assigning skill levels to multiple skilled agents in call center agent assignment applications
US6389400B1 (en) 1998-08-20 2002-05-14 Sbc Technology Resources, Inc. System and methods for intelligent routing of customer requests using customer and agent models
US6535601B1 (en) 1998-08-27 2003-03-18 Avaya Technology Corp. Skill-value queuing in a call center
JP2000092213A (en) 1998-08-27 2000-03-31 Lucent Technol Inc Method and system for processing communication requiring skill for processing using queue
US6064731A (en) 1998-10-29 2000-05-16 Lucent Technologies Inc. Arrangement for improving retention of call center's customers
US7068775B1 (en) 1998-12-02 2006-06-27 Concerto Software, Inc. System and method for managing a hold queue based on customer information retrieved from a customer database
US6333979B1 (en) 1998-12-17 2001-12-25 At&T Corp. Method and apparatus for assigning incoming communications to communications processing centers
US6798876B1 (en) 1998-12-29 2004-09-28 At&T Corp. Method and apparatus for intelligent routing of incoming calls to representatives in a call center
US6434230B1 (en) 1999-02-02 2002-08-13 Avaya Technology Corp. Rules-based queuing of calls to call-handling resources
EP1032188A1 (en) * 1999-02-02 2000-08-30 Lucent Technologies Inc. Rules-based queuing of calls to call-handling resources
JP2000236393A (en) 1999-02-02 2000-08-29 Lucent Technol Inc Request distribution method and its device
US6496580B1 (en) 1999-02-22 2002-12-17 Aspect Communications Corp. Method and apparatus for servicing queued requests
US6577727B1 (en) * 1999-03-01 2003-06-10 Rockwell Electronic Commerce Corp. ACD tier based routing
US6424709B1 (en) 1999-03-22 2002-07-23 Rockwell Electronic Commerce Corp. Skill-based call routing
US6519335B1 (en) 1999-04-08 2003-02-11 Lucent Technologies Inc. Apparatus, method and system for personal telecommunication incoming call screening and alerting for call waiting applications
US7236584B2 (en) 1999-06-17 2007-06-26 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing fair access to agents in a communication center
US6504920B1 (en) 1999-06-18 2003-01-07 Shmuel Okon Method and system for initiating conversations between callers having common interests
US6829348B1 (en) 1999-07-30 2004-12-07 Convergys Cmg Utah, Inc. System for customer contact information management and methods for using same
US7092509B1 (en) 1999-09-21 2006-08-15 Microlog Corporation Contact center system capable of handling multiple media types of contacts and method for using the same
US6570980B1 (en) 1999-10-11 2003-05-27 Alcatel Method of distributing telephone calls to ordered agents
US6389132B1 (en) 1999-10-13 2002-05-14 Avaya Technology Corp. Multi-tasking, web-based call center
US6775378B1 (en) 1999-10-25 2004-08-10 Concerto Software, Inc Blended agent contact center
US6832203B1 (en) 1999-11-05 2004-12-14 Cim, Ltd. Skills based contact routing
US20060233346A1 (en) 1999-11-16 2006-10-19 Knowlagent, Inc. Method and system for prioritizing performance interventions
US20020059164A1 (en) 1999-12-01 2002-05-16 Yuri Shtivelman Method and apparatus for auto-assisting agents in agent-hosted communications sessions
EP1107557A2 (en) 1999-12-06 2001-06-13 Avaya Technology Corp. System for automatically routing calls to call center agents in an agent surplus condition based on delay probabilities
US6408066B1 (en) 1999-12-15 2002-06-18 Lucent Technologies Inc. ACD skill-based routing
US20010024497A1 (en) * 2000-01-07 2001-09-27 Alasdhair Campbell Customer communication service system
JP2001292236A (en) 2000-01-18 2001-10-19 Avaya Technology Corp Method and device for multivariate work assignment to be used inside call center
US6661889B1 (en) 2000-01-18 2003-12-09 Avaya Technology Corp. Methods and apparatus for multi-variable work assignment in a call center
US7050567B1 (en) 2000-01-27 2006-05-23 Avaya Technology Corp. Call management system using dynamic queue position
US20020018554A1 (en) 2000-01-27 2002-02-14 Jensen Roy A. Call management system using fast response dynamic threshold adjustment
US6714643B1 (en) * 2000-02-24 2004-03-30 Siemens Information & Communication Networks, Inc. System and method for implementing wait time estimation in automatic call distribution queues
WO2001063894A2 (en) 2000-02-24 2001-08-30 Siemens Information And Communication Networks, Inc. Wait time estimation in automatic call distribution queues
US6763104B1 (en) 2000-02-24 2004-07-13 Teltronics, Inc. Call center IVR and ACD scripting method and graphical user interface
US6587556B1 (en) 2000-02-25 2003-07-01 Teltronics, Inc. Skills based routing method and system for call center
US6603854B1 (en) 2000-02-25 2003-08-05 Teltronics, Inc. System and method for evaluating agents in call center
US6707904B1 (en) 2000-02-25 2004-03-16 Teltronics, Inc. Method and system for collecting reports for call center monitoring by supervisor
US6324282B1 (en) 2000-03-02 2001-11-27 Knowlagent, Inc. Method and system for delivery of individualized training to call center agents
US20010032120A1 (en) 2000-03-21 2001-10-18 Stuart Robert Oden Individual call agent productivity method and system
US6859529B2 (en) 2000-04-12 2005-02-22 Austin Logistics Incorporated Method and system for self-service scheduling of inbound inquiries
US6956941B1 (en) 2000-04-12 2005-10-18 Austin Logistics Incorporated Method and system for scheduling inbound inquiries
US20020046030A1 (en) 2000-05-18 2002-04-18 Haritsa Jayant Ramaswamy Method and apparatus for improved call handling and service based on caller's demographic information
US7245719B2 (en) 2000-06-30 2007-07-17 Matsushita Electric Industrial Co., Ltd. Recording method and apparatus, optical disk, and computer-readable storage medium
US6774932B1 (en) 2000-09-26 2004-08-10 Ewing Golf Associates, Llc System for enhancing the televised broadcast of a golf game
US6970821B1 (en) 2000-09-26 2005-11-29 Rockwell Electronic Commerce Technologies, Llc Method of creating scripts by translating agent/customer conversations
US6978006B1 (en) 2000-10-12 2005-12-20 Intervoice Limited Partnership Resource management utilizing quantified resource attributes
US20050135596A1 (en) 2000-12-26 2005-06-23 Aspect Communications Corporation Method and system for providing personalized service over different contact channels
US20020082736A1 (en) 2000-12-27 2002-06-27 Lech Mark Matthew Quality management system
US6639976B1 (en) 2001-01-09 2003-10-28 Bellsouth Intellectual Property Corporation Method for parity analysis and remedy calculation
US20020111172A1 (en) 2001-02-14 2002-08-15 Dewolf Frederik M. Location based profiling
US7039166B1 (en) 2001-03-05 2006-05-02 Verizon Corporate Services Group Inc. Apparatus and method for visually representing behavior of a user of an automated response system
US6922466B1 (en) 2001-03-05 2005-07-26 Verizon Corporate Services Group Inc. System and method for assessing a call center
US20020138285A1 (en) 2001-03-22 2002-09-26 Decotiis Allen R. System, method and article of manufacture for generating a model to analyze a propensity of customers to purchase products and services
JP2002297900A (en) 2001-03-30 2002-10-11 Ibm Japan Ltd Control system for reception by businesses, user side terminal device, reception side terminal device, management server queue monitoring device, method of allocating reception side terminals, and storage medium
US20130003959A1 (en) 2001-03-30 2013-01-03 International Business Machines Corporation Reception management system and method of handling transactions
US20020143599A1 (en) 2001-04-02 2002-10-03 Illah Nourbakhsh Method and apparatus for long-range planning
US20020161765A1 (en) 2001-04-30 2002-10-31 Kundrot Andrew Joseph System and methods for standardizing data for design review comparisons
US20020196845A1 (en) 2001-06-13 2002-12-26 Richards James L. Method and apparatus for improving received signal quality in an impluse radio system
US7916858B1 (en) 2001-06-25 2011-03-29 Toby Heller Agent training sensitive call routing system
US20030002653A1 (en) 2001-06-27 2003-01-02 Serdar Uckun Graphical method and system for visualizing performance levels in time-varying environment
US20030081757A1 (en) 2001-09-24 2003-05-01 Mengshoel Ole J. Contact center autopilot architecture
US20030095652A1 (en) 2001-09-24 2003-05-22 Mengshoel Ole J. Contact center autopilot algorithms
US7266251B2 (en) 2001-11-23 2007-09-04 Simon Michael Rowe Method and apparatus for generating models of individuals
US7245716B2 (en) 2001-12-12 2007-07-17 International Business Machines Corporation Controlling hold queue position adjustment
US7103172B2 (en) 2001-12-12 2006-09-05 International Business Machines Corporation Managing caller profiles across multiple hold queues according to authenticated caller identifiers
JP2003187061A (en) 2001-12-19 2003-07-04 Fuji Mach Mfg Co Ltd User support system, server device of user support system, operator selecting program and operator selecting method of user support system
US7209549B2 (en) 2002-01-18 2007-04-24 Sbc Technology Resources, Inc. Method and system for routing calls based on a language preference
US20030169870A1 (en) 2002-03-05 2003-09-11 Michael Stanford Automatic call distribution
US7269253B1 (en) 2002-03-07 2007-09-11 Wai Wu Telephony control system with intelligent call routing
US7023979B1 (en) 2002-03-07 2006-04-04 Wai Wu Telephony control system with intelligent call routing
US20030174830A1 (en) 2002-03-15 2003-09-18 Boyer David G. Topical dynamic chat
US20030217016A1 (en) 2002-04-29 2003-11-20 Pericle Anthony J. Pricing model system and method
JP2004056517A (en) 2002-07-19 2004-02-19 Fujitsu Ltd Transaction distribution program
US20040028211A1 (en) 2002-08-08 2004-02-12 Rockwell Electronic Commerce Technologies, Llc Method and apparatus for determining a real time average speed of answer in an automatic call distribution system
US20040057416A1 (en) 2002-09-19 2004-03-25 Mccormack Tony Determining statistics about the behaviour of a call center at a past time instant
US6937715B2 (en) 2002-09-26 2005-08-30 Nortel Networks Limited Contact center management
US20040098274A1 (en) 2002-11-15 2004-05-20 Dezonno Anthony J. System and method for predicting customer contact outcomes
US20040096050A1 (en) 2002-11-19 2004-05-20 Das Sharmistha Sarkar Accent-based matching of a communicant with a call-center agent
US20040210475A1 (en) 2002-11-25 2004-10-21 Starnes S. Renee Variable compensation tool and system for customer service agents
US7184540B2 (en) 2002-11-26 2007-02-27 Rockwell Electronic Commerce Technologies, Llc Personality based matching of callers to agents in a communication system
US20040101127A1 (en) 2002-11-26 2004-05-27 Dezonno Anthony J. Personality based routing
US20060110052A1 (en) 2002-11-29 2006-05-25 Graham Finlayson Image signal processing
US20040109555A1 (en) 2002-12-06 2004-06-10 Bellsouth Intellectual Property Method and system for improved routing of repair calls to a call center
JP2004227228A (en) 2003-01-22 2004-08-12 Kazunori Fujisawa Order accepting system by portable telephone
US8229102B2 (en) 2003-03-06 2012-07-24 At&T Intellectual Property I, L.P. System and method for providing customer activities while in queue
US20080273687A1 (en) 2003-03-06 2008-11-06 At&T Intellectual Property I, L.P. System and Method for Providing Customer Activities While in Queue
US7676034B1 (en) * 2003-03-07 2010-03-09 Wai Wu Method and system for matching entities in an auction
US20040267816A1 (en) 2003-04-07 2004-12-30 Russek David J. Method, system and software for digital media narrative personalization
US20040230438A1 (en) 2003-05-13 2004-11-18 Sbc Properties, L.P. System and method for automated customer feedback
US20090304172A1 (en) 2003-06-13 2009-12-10 Manuel Becerra Call processing system
US20050135593A1 (en) 2003-06-13 2005-06-23 Manuel Becerra Call processing system
US7593521B2 (en) 2003-06-13 2009-09-22 Assurant, Inc. Call processing system
US7050566B2 (en) 2003-06-13 2006-05-23 Assurant, Inc. Call processing system
US7062031B2 (en) 2003-06-13 2006-06-13 Assurant, Inc. Call processing system
US7725339B1 (en) 2003-07-07 2010-05-25 Ac2 Solutions, Inc. Contact center scheduling using integer programming
US20050013428A1 (en) 2003-07-17 2005-01-20 Walters James Frederick Contact center optimization program
US7158628B2 (en) 2003-08-20 2007-01-02 Knowlagent, Inc. Method and system for selecting a preferred contact center agent based on agent proficiency and performance and contact center state
US20050043986A1 (en) 2003-08-20 2005-02-24 Mcconnell Matthew G.A. Method and system for selecting a preferred contact center agent based on agent proficiency and performance and contact center state
US8010607B2 (en) 2003-08-21 2011-08-30 Nortel Networks Limited Management of queues in contact centres
US20050047581A1 (en) 2003-08-25 2005-03-03 Shmuel Shaffer Method and system for managing calls of an automatic call distributor
US20050047582A1 (en) 2003-08-25 2005-03-03 Cisco Technology, Inc. Method and system for utilizing proxy designation in a call system
US7231034B1 (en) 2003-10-21 2007-06-12 Acqueon Technologies, Inc. “Pull” architecture contact center
US20050129212A1 (en) 2003-12-12 2005-06-16 Parker Jane S. Workforce planning system incorporating historic call-center related data
US20060098803A1 (en) 2003-12-18 2006-05-11 Sbc Knowledge Ventures, L.P. Intelligently routing customer communications
US7899177B1 (en) 2004-01-12 2011-03-01 Sprint Communications Company L.P. Call-routing system and method
US20050187802A1 (en) * 2004-02-13 2005-08-25 Koeppel Harvey R. Method and system for conducting customer needs, staff development, and persona-based customer routing analysis
US20050195960A1 (en) 2004-03-03 2005-09-08 Cisco Technology, Inc. Method and system for automatic call distribution based on location information for call center agents
US7734032B1 (en) 2004-03-31 2010-06-08 Avaya Inc. Contact center and method for tracking and acting on one and done customer contacts
US8000989B1 (en) 2004-03-31 2011-08-16 Avaya Inc. Using true value in routing work items to resources
US8126133B1 (en) * 2004-04-01 2012-02-28 Liveops, Inc. Results-based routing of electronic communications
US20050286709A1 (en) 2004-06-28 2005-12-29 Steve Horton Customer service marketing
US20060062376A1 (en) * 2004-09-22 2006-03-23 Dale Pickford Call center services system and method
US20120278136A1 (en) 2004-09-27 2012-11-01 Avaya Inc. Dynamic work assignment strategies based on multiple aspects of agent proficiency
US20080008309A1 (en) 2004-12-07 2008-01-10 Dezonno Anthony J Method and apparatus for customer key routing
US20060184040A1 (en) 2004-12-09 2006-08-17 Keller Kurtis P Apparatus, system and method for optically analyzing a substrate
US20060124113A1 (en) 2004-12-10 2006-06-15 Roberts Forest G Sr Marine engine fuel cooling system
US7398224B2 (en) 2005-03-22 2008-07-08 Kim A. Cooper Performance motivation systems and methods for contact centers
US20080267386A1 (en) 2005-03-22 2008-10-30 Cooper Kim A Performance Motivation Systems and Methods for Contact Centers
US20060222164A1 (en) 2005-04-04 2006-10-05 Saeed Contractor Simultaneous usage of agent and service parameters
WO2006124113A2 (en) 2005-05-17 2006-11-23 Telephony@Work, Inc. Dynamic customer satisfaction routing
US20060262922A1 (en) 2005-05-17 2006-11-23 Telephony@Work, Inc. Dynamic customer satisfaction routing
US8885812B2 (en) * 2005-05-17 2014-11-11 Oracle International Corporation Dynamic customer satisfaction routing
US20060262918A1 (en) 2005-05-18 2006-11-23 Sbc Knowledge Ventures L.P. VPN PRI OSN independent authorization levels
US8094790B2 (en) 2005-05-18 2012-01-10 Mattersight Corporation Method and software for training a customer service representative by analysis of a telephonic interaction between a customer and a contact center
US7995717B2 (en) 2005-05-18 2011-08-09 Mattersight Corporation Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto
US20110031112A1 (en) 2005-05-25 2011-02-10 Manoocher Birang In-situ profile measurement in an electroplating process
JP2006345132A (en) 2005-06-08 2006-12-21 Fujitsu Ltd Incoming distributing program
US8175253B2 (en) 2005-07-07 2012-05-08 At&T Intellectual Property I, L.P. System and method for automated performance monitoring for a call servicing system
US20070036323A1 (en) 2005-07-07 2007-02-15 Roger Travis Call center routing
US20110125048A1 (en) 2005-08-02 2011-05-26 Brainscope Company, Inc. Method for assessing brain function and portable automatic brain function assessment apparatus
US20070071222A1 (en) 2005-09-16 2007-03-29 Avaya Technology Corp. Method and apparatus for the automated delivery of notifications to contacts based on predicted work prioritization
US20070121602A1 (en) 2005-11-18 2007-05-31 Cisco Technology VoIP CALL ROUTING
US7864944B2 (en) 2005-11-29 2011-01-04 Cisco Technology, Inc. Optimal call speed for call center agents
US20070121829A1 (en) 2005-11-30 2007-05-31 On-Q Telecom Systems Co., Inc Virtual personal assistant for handling calls in a communication system
US7826597B2 (en) 2005-12-09 2010-11-02 At&T Intellectual Property I, L.P. Methods and apparatus to handle customer support requests
US20070154007A1 (en) 2005-12-22 2007-07-05 Michael Bernhard Method and device for agent-optimized operation of a call center
US20070174111A1 (en) 2006-01-24 2007-07-26 International Business Machines Corporation Evaluating a performance of a customer support resource in the context of a peer group
US20080181389A1 (en) 2006-02-22 2008-07-31 John Bourne Systems and methods for workforce optimization and integration
US20070198322A1 (en) 2006-02-22 2007-08-23 John Bourne Systems and methods for workforce optimization
US8300798B1 (en) 2006-04-03 2012-10-30 Wai Wu Intelligent communication routing system and method
US20080002823A1 (en) 2006-05-01 2008-01-03 Witness Systems, Inc. System and Method for Integrated Workforce and Quality Management
US20070274502A1 (en) 2006-05-04 2007-11-29 Brown Donald E System and method for providing a baseline for quality metrics in a contact center
JP2007324708A (en) 2006-05-30 2007-12-13 Nec Corp Telephone answering method, call center system, program for call center, and program recording medium
US7961866B1 (en) 2006-06-02 2011-06-14 West Corporation Method and computer readable medium for geographic agent routing
US20080046386A1 (en) 2006-07-03 2008-02-21 Roberto Pieraccinii Method for making optimal decisions in automated customer care
US20090234710A1 (en) 2006-07-17 2009-09-17 Asma Belgaied Hassine Customer centric revenue management
US20080065476A1 (en) 2006-09-07 2008-03-13 Loyalty Builders, Inc. Online direct marketing system
US20090043670A1 (en) 2006-09-14 2009-02-12 Henrik Johansson System and method for network-based purchasing
US20080118052A1 (en) 2006-11-17 2008-05-22 Mounire El Houmaidi Methods, systems, and computer program products for rule-based direction of customer service calls
US20080152122A1 (en) * 2006-12-20 2008-06-26 Nice Systems Ltd. Method and system for automatic quality evaluation
US7940917B2 (en) 2007-01-24 2011-05-10 International Business Machines Corporation Managing received calls
US20080199000A1 (en) 2007-02-21 2008-08-21 Huawei Technologies Co., Ltd. System and method for monitoring agents' performance in a call center
US20090086933A1 (en) 2007-10-01 2009-04-02 Labhesh Patel Call routing using voice signature and hearing characteristics
US8249245B2 (en) 2007-11-13 2012-08-21 Amazon Technologies, Inc. System and method for automated call distribution
US20090190743A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Separate matching models based on type of phone associated with a caller
US20130216036A1 (en) * 2008-01-28 2013-08-22 The Resource Group International, Ltd. Systems and methods for routing callers to an agent in a contact center
US9413894B2 (en) * 2008-01-28 2016-08-09 Afiniti International Holdings, Ltd. Systems and methods for routing callers to an agent in a contact center
US20090232294A1 (en) * 2008-01-28 2009-09-17 Qiaobing Xie Skipping a caller in queue for a call routing center
US9288325B2 (en) * 2008-01-28 2016-03-15 Satmap International Holdings Limited Systems and methods for routing callers to an agent in a contact center
US9288326B2 (en) * 2008-01-28 2016-03-15 Satmap International Holdings Limited Systems and methods for routing a contact to an agent in a contact center
WO2009097210A1 (en) 2008-01-28 2009-08-06 The Resource Group International, Ltd. Routing callers from a set of callers in an out of order sequence
US20090190748A1 (en) 2008-01-28 2009-07-30 Zia Chishti Systems and methods for routing callers to an agent in a contact center
US20090190740A1 (en) 2008-01-28 2009-07-30 Zia Chishti Systems and Methods for Routing Callers to an Agent in a Contact Center
US20090190747A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Call routing methods and systems based on multiple variable standardized scoring
US20090190750A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Routing callers out of queue order for a call center routing system
US9215323B2 (en) * 2008-01-28 2015-12-15 Satmap International Holdings, Ltd. Selective mapping of callers in a call center routing system
US20090190746A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Systems and methods for routing callers to an agent in a contact center
JP2011511533A (en) 2008-01-28 2011-04-07 ザ リソース グループ インターナショナル, リミテッド System and method for routing callers to contact center agents
JP2011511536A (en) 2008-01-28 2011-04-07 ザ リソース グループ インターナショナル, リミテッド Route determination with out-of-order queue of callers from a set of callers
CN102017591A (en) 2008-01-28 2011-04-13 资源集团国际有限公司 Routing callers from a set of callers in an out of order sequence
US9426296B2 (en) * 2008-01-28 2016-08-23 Afiniti International Holdings, Ltd. Systems and methods for routing callers to an agent in a contact center
US20090190745A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Pooling callers for a call center routing system
US20170064081A1 (en) * 2008-01-28 2017-03-02 Satmap International Holdings Limited Techniques for hybrid behavioral pairing in a contact center system
US20150237208A1 (en) * 2008-01-28 2015-08-20 Satmap International Holdings Ltd. Systems and methods for routing callers to an agent in a contact center
US20090190749A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Jumping callers held in queue for a call center routing system
US20090190744A1 (en) 2008-01-28 2009-07-30 The Resource Group International Ltd Routing callers from a set of callers based on caller data
US8712821B2 (en) * 2008-01-28 2014-04-29 Satmap International Holdings Limited Separate matching models based on type of phone associated with a caller
US20150237213A1 (en) * 2008-01-28 2015-08-20 Satmap International Holdings Ltd. Systems and methods for routing callers to an agent in a contact center
US20170064080A1 (en) * 2008-01-28 2017-03-02 Satmap International Holdings Limited Techniques for hybrid behavioral pairing in a contact center system
AU2008349500C1 (en) 2008-01-28 2014-05-01 Afiniti, Ltd. Systems and methods for routing callers to an agent in a contact center
US20150237211A1 (en) * 2008-01-28 2015-08-20 Satmap International Holdings Ltd. Systems and methods for routing callers to an agent in a contact center
US20150237212A1 (en) * 2008-01-28 2015-08-20 Satmap International Holdings Ltd. Systems and methods for routing callers to an agent in a contact center
US8670548B2 (en) * 2008-01-28 2014-03-11 Satmap International Holdings Limited Jumping callers held in queue for a call center routing system
JP5421928B2 (en) 2008-01-28 2014-02-19 ザ リソース グループ インターナショナル, リミテッド System and method for routing callers to contact center agents
US8718271B2 (en) * 2008-01-28 2014-05-06 Satmap International Holdings Limited Call routing methods and systems based on multiple variable standardized scoring
US8731178B2 (en) * 2008-01-28 2014-05-20 Satmap International Holdings Limited Systems and methods for routing callers to an agent in a contact center
US20150237209A1 (en) * 2008-01-28 2015-08-20 Satmap International Holdings Ltd. Systems and methods for routing callers to an agent in a contact center
AU2009209317B2 (en) 2008-01-28 2014-01-30 Afiniti, Ltd. Routing callers from a set of callers in an out of order sequence
US8737595B2 (en) * 2008-01-28 2014-05-27 Satmap International Holdings Limited Systems and methods for routing callers to an agent in a contact center
US8781100B2 (en) * 2008-01-28 2014-07-15 Satmap International Holdings Limited Probability multiplier process for call center routing
US20090323921A1 (en) 2008-01-28 2009-12-31 The Resource Group International Ltd Probability multiplier process for call center routing
US8359219B2 (en) * 2008-01-28 2013-01-22 The Resource Group International Ltd Systems and methods for routing callers to an agent in a contact center
US20130101109A1 (en) * 2008-01-28 2013-04-25 The Resource Group International Ltd Systems and methods for routing callers to an agent in a contact center
US8433597B2 (en) * 2008-01-28 2013-04-30 The Resource Group International Ltd. Systems and methods for routing callers to an agent in a contact center
US8903079B2 (en) * 2008-01-28 2014-12-02 Satmap International Holdings Limited Routing callers from a set of callers based on caller data
NZ587101A (en) 2008-01-28 2013-07-26 Resource Group International Ltd Matching call centre agents with callers by using a pattern matching algorithm and a potential for a selected interaction for each agent-caller match
NZ587100A (en) 2008-01-28 2013-07-26 Resource Group International Ltd Matching call centre agents with callers by using a pattern matching algorithm and determining a probability score
US9300802B1 (en) * 2008-01-28 2016-03-29 Satmap International Holdings Limited Techniques for behavioral pairing in a contact center system
US20090245493A1 (en) 2008-03-28 2009-10-01 Avaya Inc. System and Method for Displaying Call Flows and Call Statistics
US20090318111A1 (en) 2008-06-19 2009-12-24 Verizon Data Services Llc Voice portal to voice portal voip transfer
US20100020961A1 (en) 2008-07-28 2010-01-28 The Resource Group International Ltd Routing callers to agents based on time effect data
US20100020959A1 (en) 2008-07-28 2010-01-28 The Resource Group International Ltd Routing callers to agents based on personality data of agents
JP5649575B2 (en) 2008-08-29 2015-01-07 サットマップ インターナショナル ホールディングス リミテッド Call routing method and system based on multiple variable standardization scores and shadow queues
US20100054431A1 (en) 2008-08-29 2010-03-04 International Business Machines Corporation Optimized method to select and retrieve a contact center transaction from a set of transactions stored in a queuing mechanism
US8781106B2 (en) * 2008-08-29 2014-07-15 Satmap International Holdings Limited Agent satisfaction data for call routing based on pattern matching algorithm
US8644490B2 (en) * 2008-08-29 2014-02-04 Satmap International Holdings Limited Shadow queue for callers in a performance/pattern matching based call routing system
US20100054452A1 (en) 2008-08-29 2010-03-04 Afzal Hassan Agent satisfaction data for call routing based on pattern matching alogrithm
US20100054453A1 (en) 2008-08-29 2010-03-04 Stewart Randall R Shadow queue for callers in a performance/pattern matching based call routing system
NZ591486A (en) 2008-08-29 2013-10-25 Resource Group International Ltd Call routing methods and systems based on multiple variable standardized scoring and shadow queue
US20100086120A1 (en) * 2008-10-02 2010-04-08 Compucredit Intellectual Property Holdings Corp. Ii Systems and methods for call center routing
US8140441B2 (en) 2008-10-20 2012-03-20 International Business Machines Corporation Workflow management in a global support organization
US8824658B2 (en) 2008-11-06 2014-09-02 Satmap International Holdings Limited Selective mapping of callers in a call center routing system
NZ592781A (en) 2008-11-06 2013-12-20 Satmap Int Holdings Ltd Two step routing procedure in a call center
US20100111287A1 (en) * 2008-11-06 2010-05-06 The Resource Group International Ltd Pooling callers for matching to agents based on pattern matching algorithms
US20100111288A1 (en) 2008-11-06 2010-05-06 Afzal Hassan Time to answer selector and advisor for call routing center
AU2009311534B2 (en) 2008-11-06 2014-04-24 Afiniti, Ltd. Two step routing procedure in a call center
US20100111285A1 (en) 2008-11-06 2010-05-06 Zia Chishti Balancing multiple computer models in a call center routing system
US20100111286A1 (en) 2008-11-06 2010-05-06 Zia Chishti Selective mapping of callers in a call center routing system
WO2010053701A2 (en) 2008-11-06 2010-05-14 The Resource Group International Ltd Systems and methods in a call center routing system
US20150264178A1 (en) * 2008-11-06 2015-09-17 Satmap International Holdings Ltd. Selective mapping of callers in a call center routing system
US20150264179A1 (en) * 2008-11-06 2015-09-17 Satmap International Holdings Ltd. Selective mapping of callers in a call center routing system
CN102301688A (en) 2008-11-06 2011-12-28 资源集团国际有限公司 Systems And Methods In A Call Center Routing System
US8472611B2 (en) * 2008-11-06 2013-06-25 The Resource Group International Ltd. Balancing multiple computer models in a call center routing system
JP5631326B2 (en) 2008-11-06 2014-11-26 サットマップ インターナショナル ホールディングス リミテッド Two-step routing procedure at the call center
US8634542B2 (en) * 2008-12-09 2014-01-21 Satmap International Holdings Limited Separate pattern matching algorithms and computer models based on available caller data
US20100142698A1 (en) * 2008-12-09 2010-06-10 The Resource Group International Ltd Separate pattern matching algorithms and computer models based on available caller data
US20100183138A1 (en) 2009-01-16 2010-07-22 Spottiswoode S James P Selective mapping of callers in a call-center routing system based on individual agent settings
US8295471B2 (en) 2009-01-16 2012-10-23 The Resource Group International Selective mapping of callers in a call-center routing system based on individual agent settings
US20110069821A1 (en) 2009-09-21 2011-03-24 Nikolay Korolev System for Creation and Dynamic Management of Incoming Interactions
WO2011081514A1 (en) 2009-12-31 2011-07-07 Petroliam Nasional Berhad (Petronas) Method and apparatus for monitoring performance and anticipate failures of plant instrumentation
US8699694B2 (en) * 2010-08-26 2014-04-15 Satmap International Holdings Limited Precalculated caller-agent pairs for a call center routing system
US8724797B2 (en) * 2010-08-26 2014-05-13 Satmap International Holdings Limited Estimating agent performance in a call routing center system
US20120051536A1 (en) * 2010-08-26 2012-03-01 The Resource Group International Ltd Estimating agent performance in a call routing center system
US20120051537A1 (en) * 2010-08-26 2012-03-01 The Resource Group International Ltd Precalculated caller-agent pairs for a call center routing system
US20120224680A1 (en) * 2010-08-31 2012-09-06 The Resource Group International Ltd Predicted call time as routing variable in a call routing center system
US8750488B2 (en) * 2010-08-31 2014-06-10 Satmap International Holdings Limited Predicted call time as routing variable in a call routing center system
US8929537B2 (en) * 2012-03-26 2015-01-06 Satmap International Holdings Limited Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation
US20150271332A1 (en) * 2012-03-26 2015-09-24 Satmap International Holdings Ltd. Call mapping systems and methods using bayesian mean regression (bmr)
US9025757B2 (en) * 2012-03-26 2015-05-05 Satmap International Holdings Limited Call mapping systems and methods using bayesian mean regression (BMR)
US8565410B2 (en) * 2012-03-26 2013-10-22 The Resource Group International, Ltd. Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation
US20150381810A1 (en) * 2012-03-26 2015-12-31 Satmap International Holdings Ltd. Call mapping systems and methods using variance algorithm (va) and/or distribution compensation
US20140044255A1 (en) * 2012-03-26 2014-02-13 The Resource Group International, Ltd. Call mapping systems and methods using variance algorithm (va) and/or distribution compensation
US20130251138A1 (en) * 2012-03-26 2013-09-26 The Resource Group International, Ltd. Call mapping systems and methods using bayesian mean regression (bmr)
US20130251137A1 (en) * 2012-03-26 2013-09-26 The Resource Group International, Ltd. Call mapping systems and methods using variance algorithm (va) and/or distribution compensation
US8879715B2 (en) * 2012-03-26 2014-11-04 Satmap International Holdings Limited Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation
US20140119533A1 (en) * 2012-03-26 2014-05-01 The Resource Group International, Ltd. Call mapping systems and methods using variance algorithm (va) and/or distribution compensation
US9277055B2 (en) * 2012-03-26 2016-03-01 Satmap International Holdings Limited Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation
US20150304497A1 (en) * 2012-03-26 2015-10-22 Satmap International Holdings Ltd. Call mapping systems and methods using variance algorithm (va) and/or distribution compensation
US20140044246A1 (en) 2012-08-10 2014-02-13 Avaya Inc. System and method for determining call importance using social network context
US20140079210A1 (en) 2012-09-20 2014-03-20 Avaya Inc. Risks for waiting for well-matched
US20140086402A1 (en) * 2012-09-24 2014-03-27 The Resource Group International, Ltd. Matching using agent/caller sensitivity to performance
US9020137B2 (en) * 2012-09-24 2015-04-28 Satmap International Holdings Limited Matching using agent/caller sensitivity to performance
US8792630B2 (en) * 2012-09-24 2014-07-29 Satmap International Holdings Limited Use of abstracted data in pattern matching system
US20140086404A1 (en) * 2012-09-24 2014-03-27 The Resource Group International, Ltd. Matching using agent/caller sensitivity to performance
US20140086403A1 (en) * 2012-09-24 2014-03-27 The Resource Group International, Ltd. Use of abstracted data in pattern matching system
US20140119531A1 (en) 2012-10-30 2014-05-01 Kenneth D. Tuchman Method for providing support using answer engine and dialog rules
US8995647B2 (en) 2013-05-20 2015-03-31 Xerox Corporation Method and apparatus for routing a call using a hybrid call routing scheme with real-time automatic adjustment
US20150055772A1 (en) 2013-08-20 2015-02-26 Avaya Inc. Facilitating a contact center agent to select a contact in a contact center queue

Non-Patent Citations (87)

* Cited by examiner, † Cited by third party
Title
Anonymous. (2006) "Performance Based Routing in Profit Call Centers," The Decision Makers' Direct, located at www.decisioncraft.com, Issue Jan. 6, 2012 (3 pages).
Anonymous. (2006). "Performance Based Routing in Profit Call Centers," The Decision Makers' Direct, located at www.decisioncraft.com, Issue 12/06/1, three pages.
BusinessDictionary.com "Definition of Algorithm", downloaded from Internet Archive, Oct. 26, 2008. (Year: 2008). *
Cleveland, William S., "Robust Locally Weighted Regression and Smoothing Scatterplots," Journal of the American Statistical Association, vol. 74, No. 368, pp. 829-836 (Dec. 1979).
European Office Action issued by the European Patent Office for Application No. 09752022.5 dated Dec. 18, 2015 (7 pages).
Gans, N. et al. (2003), "Telephone Call Centers: Tutorial, Review and Research Prospects," Manufacturing & Service Operations Management, vol. 5, No. 2, pp. 79-141.
Gans, N. et al. (2003). "Telephone Call Centers: Tutorial, Review and Research Prospects," Manuscript, pp. 1-81.
Indian Office Action issued by the Government of India for Indian Application No. 3748/CHENP/2011 dated Feb. 1, 2018 (7 pages).
International Preliminary Report on Patentability issued in connection with PCT Application No. PCT/US2009/066254 dated Jun. 14, 2011 (6 pages).
International Search Report issued in connection with International Application No. PCT/US13/33268 dated May 31, 2013 (2 pages).
International Search Report issued in connection with PCT/US2009/061537 dated Jun. 7, 2010 (5 pages).
International Search Report issued in connection with PCT/US2013/033261 dated Jun. 14, 2013 (3 pages).
International Search Report issued in connection with PCT/US2013/33265 dated Jul. 9, 2013 (2 pages).
International Search Report mailed Jul. 6, 2010 issued in connection with PCT/US2009/061537.
International Search Report mailed on Feb. 24, 2010, for PCT Application No. PCT/US2009/066254, filed on Dec. 1, 2009, 4 pages.
International Search Report mailed on Jun. 3, 2009, for PCT Application No. PCT/US2009/031611, filed on Jan. 21, 2009, 8 pages.
International Search Report mailed on Mar. 12, 2010, for PCT Application No. PCT/US2009/054352, filed on Aug. 19, 2009, 5 pages.
International Search Report mailed on Mar. 13, 2009, for PCT Application No. PCT/US2008/077042, filed on Sep. 19, 2008, 6 pages.
Japanese Office Action issued by the Japan Patent Office for Application No. 2015-503396 dated Jun. 29, 2016 (7 pages).
Koole, G. (2004). "Performance Analysis and Optimization in Customer Contact Centers," Proceedings of the Quantitative Evaluation of Systems, First International Conference, Sep. 27-30, 2004, four pages.
Koole, G. et al. (Mar. 6, 2006). "An Overview of Routing and Staffing Algorithms in Multi-Skill Customer Contact Centers," Manuscript, 42 pages.
Notice of Allowance dated Jun. 29, 2012 issued in connection with U.S. Appl. No. 12/355,618.
Notice of Allowance dated Sep. 19, 2012 issued in connection with U.S. Appl. No. 12/180,382.
Office Action dated Apr. 16, 2012 issued in connection with U.S. Appl. No. 12/331,210.
Office Action dated Apr. 18, 2012 issued in connection with U.S. Appl. No. 12/266,418.
Office Action dated Apr. 6, 2012 issued in connection with U.S. Appl. No. 12/021,251.
Office Action dated Aug. 19, 2011 issued in connection with U.S. Appl. No. 12/202,097.
Office Action dated Aug. 19, 2011 issued in connection with U.S. Appl. No. 12/331,186.
Office Action dated Aug. 23, 2011 issued in connection with U.S. Appl. No. 12/180,382.
Office Action dated Aug. 31, 2012 issued in connection with Mexican Patent Application No. MX/a/2011/004815.
Office Action dated Aug. 4, 2011 issued in connection with U.S. Appl. No. 12/267,459.
Office Action dated Aug. 9, 2011 issued in connection with U.S. Appl. No. 12/202,101.
Office Action dated Dec. 31, 2012 issued in connection with U.S. Appl. No. 12/869,645.
Office Action dated Dec. 31, 2012 issued in connection with U.S. Appl. No. 12/869,654.
Office Action dated Feb. 3, 2012 issued in connection with U.S. Appl. No. 12/202,091.
Office Action dated Feb. 3, 2012 issued in connection with U.S. Appl. No. 12/202,097.
Office Action dated Jan. 19, 2012 issued in connection with U.S. Appl. No. 12/266,415.
Office Action dated Jan. 23, 2012 issued in connection with U.S. Appl. No. 12/331,186.
Office Action dated Jun. 18, 2012 issued in connection with U.S. Appl. No. 12/331,201.
Office Action dated Jun. 29, 2012 issued in connection with U.S. Appl. No. 12/331,153.
Office Action dated Jun. 7, 2012 issued in connection with U.S. Appl. No. 12/331,181.
Office Action dated Jun. 7, 2012 issued in connection with U.S. Appl. No. 12/355,602.
Office Action dated Jun. 8, 2012 issued in connection with U.S. Appl. No. 12/266,446.
Office Action dated Mar. 1, 2012 issued in connection with U.S. Appl. No. 12/180,382.
Office Action dated Mar. 15, 2012 issued in connection with U.S. Appl. No. 12/202,101.
Office Action dated Mar. 19, 2012 issued in connection with U.S. Appl. No. 12/490,949.
Office Action dated Mar. 2, 2012 issued in connection with U.S. Appl. No. 12/267,459.
Office Action dated Mar. 30, 2012 issued in connection with U.S. Appl. No. 12/267,471.
Office Action dated May 11, 2012 issued in connection with U.S. Appl. No. 12/266,415.
Office Action dated May 11, 2012 issued in connection with U.S. Appl. No. 12/331,195.
Office Action dated Oct. 11, 2012 issued in connection with U.S. Appl. No. 12/267,459.
Office Action dated Oct. 29, 2012 issued in connection with U.S. Appl. No. 12/490,949.
Office Action dated Oct. 7, 2011 issued in connection with U.S. Appl. No. 12/331,195.
Office Action dated Oct. 7, 2011 issued in connection with U.S. Appl. No. 12/331,210.
Office Action dated Oct. 9, 2012 issued in connection with U.S. Appl. No. 12/202,101.
Office Action dated Sep. 12, 2011 issued in connection with U.S. Appl. No. 12/266,446.
Office Action dated Sep. 13, 2011 issued in connection with U.S. Appl. No. 12/331,181.
Office Action dated Sep. 15, 2011 issued in connection with U.S. Appl. No. 12/266,418.
Office Action dated Sep. 19, 2011 issued in connection with U.S. Appl. No. 12/021,251.
Office Action dated Sep. 23, 2011 issued in connection with U.S. Appl. No. 12/355,602.
Office Action dated Sep. 26, 2011 issued in connection with U.S. Appl. No. 12/331,153.
Office Action dated Sep. 26, 2011 issued in connection with U.S. Appl. No. 12/355,618.
Office Action dated Sep. 6, 2011 issued in connection with U.S. Appl. No. 12/202,091.
Press, W. H. and Rybicki, G. B., "Fast Algorithm for Spectral Analysis of Unevenly Sampled Data," The Astrophysical Journal, vol. 338, pp. 277-280 (Mar. 1, 1989).
Riedmiller, M. et al. (1993). "A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm," 1993 IEEE International Conference on Neural Networks, San Francisco, CA, Mar. 28-Apr. 1, 1993, 1:586-591.
Stanley et al., "Improving call center operations using performance-based routing strategies," Calif. Journal of Operations Management, 6(1), 24-32, Feb. 2008; retrieved from http://userwww.sfsu.edu/saltzman/Publist.html.
Stanley, J., R. Saltzman and V. Mehrotra "Call Center Operations Using Performance-Based Routing Strategies", California Journal of Operations Management, vol. 6, No. 1, pp. 24-32, Feb. 2008. *
Subsequent Substantive Examination Report issued in connection with Philippines Application No. 1-2010-501705 dated Jul. 14, 2014 (1 page).
Substantive Examination Report issued in connection with Philippines Application No. 1/2011/500868 dated May 2, 2014 (1 page).
U.S. Appl. No. 12/266,415, filed Nov. 6, 2008, Afzal et al.
U.S. Appl. No. 12/266,418, filed Nov. 6, 2008, Xie et al.
U.S. Appl. No. 12/266,446, filed Nov. 6, 2008, Chishti.
U.S. Appl. No. 12/331,153, filed Dec. 9, 2008, Spottiswoode et al.
U.S. Appl. No. 12/355,602, filed Jan. 16, 2009, Xie et al.
U.S. Appl. No. 12/869,645, filed Aug. 26, 2010, Chishti et al.
U.S. Appl. No. 12/869,654, filed Aug. 26, 2010, Chishti et al.
U.S. Appl. No. 13/221,692, filed Aug. 30, 2011, Spottiswoode et al.
Written Opinion mailed Jul. 6, 2010 issued in connection with PCT/US2009/061537.
Written Opinion mailed on Feb. 24, 2010, for PCT Application No. PCT/US2009/066254, filed on Dec. 1, 2009, 6 pages.
Written Opinion mailed on Jun. 3, 2009, for PCT Application No. PCT/US2009/031611, filed on Jan. 21, 2009, 8 pages.
Written Opinion mailed on Mar. 12, 2010, for PCT Application No. PCT/US2009/054352, filed on Aug. 19, 2009, 6 pages.
Written Opinion mailed on Mar. 13, 2009, for PCT Application No. PCT/US2008/077042, filed on Sep. 19, 2008, 6 pages.
Written Opinion of the International Searching Authority issued in connection with International Application No. PCT/US13/33268 dated May 31, 2013, 7 pages.
Written Opinion of the International Searching Authority issued in connection with PCT Application No. PCT/US2008/077042 dated Mar. 13, 2009, 6 pages.
Written Opinion of the International Searching Authority issued in connection with PCT/US2009/061537 dated Jun. 7, 2010, 10 pages.
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/033261 dated Jun. 14, 2013, 7 pages.
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/33265 dated Jul. 9, 2013, 7 pages.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257022B2 (en) * 2020-03-31 2022-02-22 Citrix Systems, Inc. Computing system and methods providing support session assignment between support agent client devices and customer client devices

Similar Documents

Publication Publication Date Title
USRE48476E1 (en) Balancing multiple computer models in a call center routing system
US8634542B2 (en) Separate pattern matching algorithms and computer models based on available caller data
EP2364545B1 (en) Two step routing procedure in a call center
US8712821B2 (en) Separate matching models based on type of phone associated with a caller
US10320986B2 (en) Selective mapping of callers in a call center routing system
CA2713476C (en) Routing callers from a set of callers in an out of order sequence
US8750488B2 (en) Predicted call time as routing variable in a call routing center system
US10567586B2 (en) Pooling callers for matching to agents based on pattern matching algorithms
US20090190744A1 (en) Routing callers from a set of callers based on caller data
US20090190750A1 (en) Routing callers out of queue order for a call center routing system
US20090190749A1 (en) Jumping callers held in queue for a call center routing system
US20090232294A1 (en) Skipping a caller in queue for a call routing center
USRE48412E1 (en) Balancing multiple computer models in a call center routing system
CA3071165C (en) Routing callers from a set of callers in an out of order sequence

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORIX VENTURES, LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:SATMAP INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:036917/0627

Effective date: 20151028

AS Assignment

Owner name: AFINITI INTERNATIONAL HOLDINGS, LTD., BERMUDA

Free format text: CHANGE OF NAME;ASSIGNOR:SATMAP INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:038664/0965

Effective date: 20160331

AS Assignment

Owner name: ORIX VENTURES, LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT TO REMOVE PATENT NUMBER 6996948 PREVIOUSLY RECORDED AT REEL: 036917 FRAME: 0627. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:SATMAP INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:043452/0193

Effective date: 20151028

AS Assignment

Owner name: AFINITI, LTD. (F/K/A SATMAP INTERNATIONAL HOLDINGS, LTD.), BERMUDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ORIX GROWTH CAPITAL, LLC (F/K/A ORIX VENTURES, LLC);REEL/FRAME:049444/0836

Effective date: 20190611

AS Assignment

Owner name: AFINITI, LTD., BERMUDA

Free format text: CHANGE OF NAME;ASSIGNOR:AFINITI INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:054046/0775

Effective date: 20170403

AS Assignment

Owner name: VCP CAPITAL MARKETS, LLC, CALIFORNIA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AFINITI, LTD.;REEL/FRAME:068793/0261

Effective date: 20240823