USRE48412E1 - Balancing multiple computer models in a call center routing system - Google Patents
Balancing multiple computer models in a call center routing system Download PDFInfo
- Publication number
- USRE48412E1 USRE48412E1 US14/788,469 US201514788469A USRE48412E US RE48412 E1 USRE48412 E1 US RE48412E1 US 201514788469 A US201514788469 A US 201514788469A US RE48412 E USRE48412 E US RE48412E
- Authority
- US
- United States
- Prior art keywords
- agent
- contact
- caller
- measurement
- agents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000005094 computer simulation Methods 0.000 title abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 110
- 238000000034 method Methods 0.000 claims abstract description 97
- 230000003993 interaction Effects 0.000 claims description 46
- 238000004891 communication Methods 0.000 claims description 20
- 238000013528 artificial neural network Methods 0.000 claims description 19
- 238000013507 mapping Methods 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims 143
- 238000004519 manufacturing process Methods 0.000 claims 6
- 238000013459 approach Methods 0.000 abstract description 3
- 239000003795 chemical substances by application Substances 0.000 description 230
- 238000004590 computer program Methods 0.000 description 9
- 230000003044 adaptive effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 241001522296 Erithacus rubecula Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002620 method output Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/50—Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
- H04M3/51—Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing
- H04M3/523—Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing
- H04M3/5238—Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing with waiting time or load prediction arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/50—Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
- H04M3/51—Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing
- H04M3/523—Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing
- H04M3/5232—Call distribution algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/50—Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
- H04M3/51—Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing
- H04M3/523—Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing with call distribution or queueing
- H04M3/5232—Call distribution algorithms
- H04M3/5233—Operator skill based call distribution
Definitions
- the present invention relates generally to the field of routing phone calls and other telecommunications in a contact center system.
- the typical contact center consists of a number of human agents, with each assigned to a telecommunication device, such as a phone or a computer for conducting email or Internet chat sessions, that is connected to a central switch. Using these devices, the agents are generally used to provide sales, customer service, or technical support to the customers or prospective customers of a contact center or a contact center's clients.
- a contact center or client will advertise to its customers, prospective customers, or other third parties a number of different contact numbers or addresses for a particular service, such as for billing questions or for technical support.
- the customers, prospective customers, or third parties seeking a particular service will then use this contact information, and the incoming caller will be routed at one or more routing points to a human agent at a contact center who can provide the appropriate service.
- Contact centers that respond to such incoming contacts are typically referred to as “inbound contact centers.”
- a contact center can make outgoing contacts to current or prospective customers or third parties. Such contacts may be made to encourage sales of a product, provide technical support or billing information, survey consumer preferences, or to assist in collecting debts. Contact centers that make such outgoing contacts are referred to as “outbound contact centers.”
- caller the individuals that interact with contact center agents using a telecommunication device
- agent the individuals acquired by the contact center to interact with callers.
- a contact center operation includes a switch system that connects callers to agents.
- these switches route incoming callers to a particular agent in a contact center, or, if multiple contact centers are deployed, to a particular contact center for further routing.
- dialers are typically employed in addition to a switch system. The dialer is used to automatically dial a phone number from a list of phone numbers, and to determine whether a live caller has been reached from the phone number called (as opposed to obtaining no answer, a busy signal, an error message, or an answering machine). When the dialer obtains a live caller, the switch system routes the caller to a particular agent in the contact center.
- U.S. Pat. No. 7,236,584 describes a telephone system for equalizing caller waiting times across multiple telephone switches, regardless of the general variations in performance that may exist among those switches.
- Contact routing in an inbound contact center is a process that is generally structured to connect callers to agents that have been idle for the longest period of time. In the case of an inbound caller where only one agent may be available, that agent is generally selected for the caller without further analysis. In another example, if there are eight agents at a contact center, and seven are occupied with contacts, the switch will generally route the inbound caller to the one agent that is available.
- the switch will typically put the contact on hold and then route it to the next agent that becomes available. More generally, the contact center will set up a queue of incoming callers and preferentially route the longest-waiting callers to the agents that become available over time. Such a pattern of routing contacts to either the first available agent or the longest-waiting agent is referred to as “round-robin” contact routing. In round robin contact routing, eventual matches and connections between a caller and an agent are essentially random.
- U.S. Pat. No. 7,209,549 describes a telephone routing system wherein an incoming caller's language preference is collected and used to route their telephone call to a particular contact center or agent that can provide service in that language.
- language preference is the primary driver of matching and connecting a caller to an agent, although once such a preference has been made, callers are almost always routed in “round-robin” fashion.
- a method for routing callers to agents in a call-center routing system includes using a multi-layer processing approach to matching a caller to an agent, where a first layer of processing includes two or more different computer models or methods for matching callers to agents.
- the output of the first layer e.g., the output of the different methods for matching the callers to agents, is received by a second layer of processing for balancing or weighting the outputs and selecting a final caller-agent match for routing.
- the two or more models or methods may include conventional queue based routing, performance based matching (e.g., ranking a set of agents based on performance and preferentially matching callers to the agents based on a performance ranking or score), pattern matching algorithms (e.g., comparing agent caller data associated with a set of callers to agent data associated with a set of agents and determining a suitability score of different caller-agent pairs), affinity data matching, and other models for matching callers to agents.
- the methods may therefore operate to output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on).
- the output or scores of the two or more methods may be processed to select a caller-agent pair and cause the caller to be routed to a particular agent.
- the output of the two or more methods may be balanced or weighted against each other to determine a matching agent-caller pair.
- the output of the different methods may be balanced equally to determine routing instructions (e.g., the scores can be standardized and weighted evenly to determine a “best” matching agent-caller pair from the different methods).
- the methods may be unbalanced, e.g., weighting a pattern matching algorithm output greater than a performance based routing output and so on.
- an interface may be presented to a user allowing for adjustment of the balancing of the methods, e.g., a slider or selector for adjusting the balance in real-time or a predetermined time.
- the interface may allow a user to turn certain methods on and off, change desired optimizations, and may display an estimated effect of the balancing or a change in balancing of the different routing methods.
- an adaptive algorithm (such as a neural network or genetic algorithm) may be used to receive, as input, the outputs of the two or more models to output a caller-agent pair.
- the adaptive algorithm may compare performance over time and adapt to pick the best model for a desired outcome variable.
- apparatus comprising logic for mapping and routing callers to agents.
- the apparatus may include logic for receiving input data associated with callers and agents at a first layer of processing, the first layer of processing including at least two models for matching callers to agents, each model outputting output data for at least one caller-agent pair.
- the apparatus may further include logic for receiving the output data from each processing model at a second layer of processing, the second layer of processing operable to balance the output data of the at least two models and map a caller to an agent based on the received outputs.
- each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system.
- the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.
- FIG. 1 is a diagram reflecting the general setup of a contact center operation.
- FIG. 2 illustrates an exemplary routing system having a routing engine for routing callers based on performance and/or pattern matching algorithms.
- FIG. 3 illustrates an exemplary routing system having a mapping engine for routing callers based on performance and/or pattern matching algorithms.
- FIG. 4 illustrates an exemplary multi-layer approach to selecting a caller-agent pair based on multiple matching methods.
- FIG. 5 illustrates an exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
- FIG. 6 illustrates another exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
- FIG. 7 illustrates an exemplary method or computer model for matching callers to agents based on performance.
- FIG. 8 illustrates an exemplary method or computer model for matching callers to agents based on caller data and agent data.
- FIG. 9 illustrates a typical computing system that may be employed to implement some or all processing functionality in certain embodiments of the invention.
- a method includes using a first layer of processing, the first layer including two or more methods or models for determining caller-agent pairs.
- the two or more methods may include conventional queue based routing, performance based matching (e.g., ranking a set of agents based on performance and preferentially matching callers to the agents based on a performance ranking or score), pattern matching algorithms (e.g., comparing agent data associated with a set of callers to agent data associated a set of agents and determine a suitability score of different caller-agent pairs), affinity data matching, and other models for matching callers to agents.
- the methods may therefore operate to output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on) to a second layer of processing.
- the second layer of processing may receive the output of the first layer and determine an agent-caller pair based on the output of different methods of the first layer of processing.
- the second layer of processing includes a computer model to balance or weight the different outputs, which may be altered by a user.
- exemplary call routing systems and methods utilizing performance and/or pattern matching algorithms (either of which may be used within generated computer models for predicting the chances of desired outcomes) are described for routing callers to available agents. This description is followed by exemplary systems and methods for multi-layer processing of input data to select a caller-agent pairing.
- FIG. 1 is a diagram reflecting the general setup of a contact center operation 100 .
- the network cloud 101 reflects a specific or regional telecommunications network designed to receive incoming callers or to support contacts made to outgoing callers.
- the network cloud 101 can comprise a single contact address, such as a telephone number or email address, or multiple contract addresses.
- the central router 102 reflects contact routing hardware and software designed to help route contacts among call centers 103 .
- the central router 102 may not be needed where there is only a single contact center deployed. Where multiple contact centers are deployed, more routers may be needed to route contacts to another router for a specific contact center 103 .
- a contact center router 104 will route a contact to an agent 105 with an individual telephone or other telecommunications equipment 105 .
- agents 105 there are multiple agents 105 at a contact center 103 , though there are certainly embodiments where only one agent 105 is at the contact center 103 , in which case a contact center router 104 may prove to be unnecessary.
- FIG. 2 illustrates an exemplary contact center routing system 200 (which may be included with contact center router 104 of FIG. 1 ).
- routing system 200 is operable to match callers and agents based, at least in part, on agent performance or pattern matching algorithms using caller data and/or agent data.
- Routing system 200 may include a communication server 202 and a routing engine 204 (referred to at times as “SatMap” or “Satisfaction Mapping”) for receiving and matching callers to agents (referred to at times as “mapping” callers to agents).
- Routing engine 204 may operate in various manners to match callers to agents based on performance data of agents, pattern matching algorithms, and computer models, which may adapt over time based on the performance or outcomes of previous caller-agent matches.
- the routing engine 204 includes a neural network based adaptive pattern matching engine.
- Various other exemplary pattern matching and computer model systems and methods which may be included with content routing system and/or routing engine 204 are described, for example, in U.S. Ser. No. 12/021,251, filed Jan. 28, 2008, and U.S. Ser. No. U.S. patent application Ser. No. 12/202,091, filed Aug. 29, 2008, both of which are hereby incorporated by reference in their entirety.
- other performance based or pattern matching algorithms and methods may be used alone or in combination with those described here.
- Routing system 200 may further include other components such as collector 206 for collecting caller data of incoming callers, data regarding caller-agent pairs, outcomes of caller-agent pairs, agent data of agents, and the like. Further, routing system 200 may include a reporting engine 208 for generating reports of performance and operation of routing system 200 .
- Various other servers, components, and functionality are possible for inclusion with routing system 200 . Further, although shown as a single hardware device, it will be appreciated that various components may be located remotely from each other (e.g., communication server 202 and routing engine 204 need not be included with a common hardware/server system or included at a common location). Additionally, various other components and functionality may be included with routing system 200 , but have been omitted here for clarity.
- FIG. 3 illustrates detail of exemplary routing engine 204 .
- Routing engine 204 includes a main mapping engine 304 , which receives caller data and agent data from databases 310 and 312 .
- routing engine 204 may route callers based solely or in part on performance data associated with agents.
- routing engine 204 may make routing decisions based solely or in part on comparing various caller data and agent data, which may include, e.g., performance based data, demographic data, psychographic data, and other business-relevant data.
- affinity databases may be used and such information received by routing engine 204 for making routing decisions.
- routing engine 204 includes or is in communication with one or more neural network engines 306 .
- Neural network engines 306 may receive caller and agent data directly or via routing engine 204 and operate to match and route callers based on pattern matching algorithms and computer models generated to increase the changes of desired outcomes. Further, as indicated in FIG. 3 , call history data (including, e.g., caller-agent pair outcomes with respect to cost, revenue, customer satisfaction, etc.) may be used to retrain or modify the neural network engine 306 .
- Routing engine 204 further includes or is in communication with hold queue 308 , which may store or access hold or idle times of callers and agents, and operates to map callers to agents based on queue order of the callers (and/or agents).
- Mapping engine 304 may operate, for example, to map callers based on a pattern matching algorithm, e.g., as included with neural network engine 306 , or based on queue order, e.g., as retrieved from hold queue 308 .
- FIG. 4 illustrates an exemplary mapping system 406 .
- Mapping system 406 includes two layers of processing - a first layer includes at least two processing engines or computer models as indicated by 420 - 1 , 420 - 2 , and 420 - 3 .
- the processing engines 420 - 1 , 420 - 2 , and 420 - 3 may each operate on different data and/or according to a different model or method for matching callers to agents.
- processing engine 420 - 1 may receive agent grade data, e.g., data associated with agent performance for a particular desired performance. As will be described in further detail with respect to FIG.
- performance based routing may include ranking or scoring a set of agents based on performance for a particular outcome (such as revenue generation, cost, customer satisfaction, combinations thereof, and the like) and preferentially routing callers to agents based on a performance ranking or score.
- processing engine 420 - 1 may receive agent grades or agent history data and output one or more rankings of agents based on one or more desired outcome variables.
- Processing engine 420 - 2 includes one or more pattern matching algorithms, which may operate to compare agent data associated with a set of callers to agent data associated a set of agents and determine a suitability score of each caller-agent pair.
- Processing engine 420 - 2 may receive caller data and agent data from various databases and output caller-agent pair scores or a ranking of caller-agent pairs, for example.
- the pattern matching algorithm may include a neural network algorithm, genetic algorithm, or other adaptive algorithms.
- different processing engines may be used with different pattern matching algorithms operating on the same or different input data, e.g., a first processing engine utilizing a neural network algorithm and a second processing engine utilizing a different algorithm such as a genetic algorithm or other pattern matching algorithm.
- first and second processing engines may include similar pattern matching algorithms operable to maximize different output variables; for example, a first neural network algorithm operable to maximize revenue and a second neural network algorithm operable to maximize customer satisfaction.
- Processing engine 420 - 3 includes one or more affinity matching algorithms, which operate to receive affinity data associated with the callers and/or agents.
- Processing engine 420 - 3 may receive affinity data from various databases and output caller-agent pairs or a ranking of caller-agent pairs based, at least in part, on the affinity data.
- various other methods or models may be used in the first layer of processing, and further that the first layer of processing may include multiple sub-layers of processing (e.g., processing engine 420 - 1 outputting to processing engine 420 - 2 and so on).
- a processing engine may include conventional queue based routing, e.g., routing agents and callers based on queue order.
- the processing engines 420 - 1 , 420 - 2 , and 420 - 3 each output scores or rankings of the callers, agents, and/or caller-agent pairs for a desired optimization (e.g., for optimizing cost, revenue, customer satisfaction, and so on).
- the output or scores of the two or more methods may then be processed by balancing manager 410 , e.g., at the second level of processing, to select a caller-agent pair.
- the output of processing engines 420 - 1 , 420 - 2 , and 420 - 3 is received by balancing manager 410 and may be weighted against each other to determine a matching agent-caller pair.
- the outputs of processing engines 420 - 1 , 420 - 2 , and 420 - 3 are balanced equally to determine routing instructions (e.g., the scores can be standardized and weighted evenly to determine a “best” matching agent-caller pair).
- the methods may be unbalanced, e.g., weighting a pattern matching algorithm method output greater than a performance based routing method, turning certain processing engines “off”, and so on.
- an interface may be presented to a user allowing for adjustment of balancing manager 410 , e.g., a slider or selector for adjusting the balance of the processing engines in real-time or at a predetermined time. Additionally, the interface may allow a user to turn certain methods on and off, and may display an estimated effect of the balancing or a change in the balancing. For instance, an interface may display the probable change in one or more of cost, revenue generation, or customer satisfaction by changing the operation of balancing manager 410 .
- Various estimation methods and algorithms for estimating outcome variables are described, for example, in copending U.S. provisional Patent application Ser. No. 61/084,201, filed on Jul. 28, 2008, and which is incorporated herein by reference in its entirety.
- the estimate includes evaluating a past time period of the same (or similar) set of agents and constructing a distribution of agent/caller pairs. Using each pair, an expected success rate can be computed via the performance based matching, pattern matching algorithm, etc., and applied to current information to estimate current performance (e.g., with respect to one or more of sales, cost, customer satisfaction, etc.). Accordingly, taking historical call data and agent information the system can compute estimates of changing the balance or weighting of the level one processing methods. It is noted that a comparable time (e.g., time of day, day of the week etc.) for the historical information may be important as performance will likely vary with time.
- a comparable time e.g., time of day, day of the week etc.
- balancing manager 410 may include an adaptive algorithm (such as a neural network or genetic algorithm) for receiving, as input, the outputs of the two or more models to output a caller-agent pair. Accordingly, balancing manger 410 via an adaptive algorithm may compare performance over time and adapt to pick or weight the level one processing engines to increase the chances of a desired outcome.
- an adaptive algorithm such as a neural network or genetic algorithm
- FIG. 5 illustrates an exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different computer models or methods and matching a caller to an agent based on a balancing of the at least two different models.
- a caller, agent, or caller-agent pair is scored based on at least first input data at 502 .
- the input data may include agent performance grades, caller data and/or agent data, queue order of the callers and agents, combinations thereof, and so on.
- the score may include a raw score, normalized score, ranking relative to other callers, agents, and/or caller-agent pairs, and so on.
- the method further includes scoring callers, agents, or caller-agent pairs at 504 according to a second model for mapping callers to agents, the second model different than the first model.
- the second model may use some or all of the same first input data as used in 502 or may rely on different input data, e.g., at least a second input data.
- the scoring may include a raw score, normalized score, ranking relative to other callers, agents, and/or caller-agent pairs, and so on.
- the scores determined in 502 and 504 may be balanced at 506 to determine routing instructions for a caller.
- the balancing may include weighting scores from 502 and 504 equally or unequally, and may be adjusted over time by a user or in response to adaptive feedback of the system. It will also be recognized that the scores output from 502 and 504 may be normalized in any suitable fashion, e.g., computing a Z-score or the like as described in co-pending U.S. patent application Ser. No. 12/202,091, filed on Aug. 29, 2008, which is incorporated herein by reference in its entirety.
- the final selection or mapping of a caller to an agent may then be passed to a routing engine or router for causing the caller to be routed to the agent at 508 .
- a routing engine or router for causing the caller to be routed to the agent at 508 .
- the described actions do not need to occur in the order in which they are stated and some acts may be performed in parallel (for example, the first layer processing of 502 and 504 may be performed partially or wholly in parallel).
- additional models for scoring and mapping callers to agents may be used and output to the balancing at 506 for determining a final selection of a caller-agent pair.
- FIG. 6 illustrates another exemplary method for scoring or ranking agents, callers, and/or agent-caller pairs according to at least two different methods and matching a caller to an agent based on a balancing of the at least two different methods.
- a first model operates to score a set of agents based on performance at 602 , and may output a ranking or score associated with the performance of the agents.
- Such a method for ranking agents based on performance is described in greater detail with respect to FIG. 7 below.
- the method further includes scoring caller-agent pairs at 604 according to a second model for mapping callers to agents, in particular, according to a pattern matching algorithm.
- the pattern matching algorithm may include comparing caller data and agent data for each caller-agent pair and computing a suitability score or ranking of caller-agent pairs for a desired outcome variable (or weighting of outcome variables).
- a pattern matching algorithm is described in greater detail with respect to FIG. 8 below, and may include a neural network algorithm.
- the method further includes scoring caller-agent pairs at 606 according to a third model for mapping callers to agents based on affinity data.
- affinity data and affinity databases alone or in combination with pattern matching algorithms is described in greater detail below.
- the scores (or rankings) determined in 602 , 604 , and 606 may be balanced at 608 to determine the routing instructions for a caller.
- the balancing may include weighting scores from 602 , 604 , and 606 equally or unequally, and may be adjusted by a user or in response to adaptive feedback of the system. It will also be recognized that the scores output from 602 , 604 , and 60 may be normalized in any suitable fashion as described with respect to FIG. 5 .
- the final selection or mapping of a caller to an agent may then be passed to a routing engine or router for causing the caller to be routed to the agent. It is again noted that the described actions do not need to occur in the order in which they are stated and some acts may be performed in parallel (for example, the first layer processing of 602 , 604 , and 606 may be performed partially or wholly in parallel). Further, additional (or fewer) matching models for scoring and mapping callers to agents may be used and output to the balancing at 608 for determining a final selection of a caller-agent pair.
- FIG. 7 illustrates a flowchart of an exemplary method or model for matching callers to agents based on performance.
- the method includes grading two agents on an optimal interaction and matching a caller with at least one of the two graded agents to increase the chance of the optimal interaction.
- agents are graded on an optimal interaction, such as increasing revenue, decreasing costs, or increasing customer satisfaction.
- Grading can be accomplished by collating the performance of a contact center agent over a period of time on their ability to achieve an optimal interaction, such as a period of at least 10 days. However, the period of time can be as short as the immediately prior contact to a period extending as long as the agent's first interaction with a caller.
- the method of grading agent can be as simple as ranking each agent on a scale of 1 to N for a particular optimal interaction, with N being the total number of agents.
- the method of grading can also comprise determining the average contact handle time of each agent to grade the agents on cost, determining the total sales revenue or number of sales generated by each agent to grade the agents on sales, or conducting customer surveys at the end of contacts with callers to grade the agents on customer satisfaction.
- a caller uses contact information, such as a telephone number or email address, to initiate a contact with the contact center.
- the caller is matched with an agent or group of agents such that the chance of an optimal interaction is increased, as opposed to just using the round robin matching methods of the prior art.
- the method may further include grading a group of at least two agents on two optimal interactions, weighting one optimal interaction against another optional interaction, and matching the caller with one of the two graded agents to increase the chance of a more heavily-weighted optimal interaction.
- agents may be graded on two or more optimal interactions, such as increasing revenue, decreasing costs, or increasing customer satisfaction, which may then be weighted against each other.
- the weighting can be as simple as assigning to each optimal interaction a percentage weight factor, with all such factors totaling to 100 percent. Any comparative weighting method can be used, however.
- the weightings placed on the various optimal interactions can take place in real-time in a manner controlled by the contact center, its clients, or in line with pre-determined rules.
- the contact center or its clients may control the weighting over the internet or some another data transfer system.
- a client of the contact center could access the weightings currently in use over an internet browser and modify these remotely. Such a modification may be set to take immediate effect and, immediately after such a modification, subsequent caller routings occur in line with the newly establishing weightings.
- An instance of such an example may arise in a case where a contact center client decides that the most important strategic priority in their business at present is the maximization of revenues.
- the client would remotely set the weightings to favor the selection of agents that would generate the greatest probability of a sale in a given contact.
- the client may take the view that maximization of customer satisfaction is more important for their business.
- they can remotely set the weightings of the present invention such that callers are routed to agents most likely to maximize their level of satisfaction.
- the change in weighting may be set to take effect at a subsequent time, for instance, commencing the following morning
- FIG. 8 illustrate another exemplary model or method for matching a caller to an agent, and which may combine agent grades, agent demographic data, agent psychographic data, and other business-relevant data about the agent (individually or collectively referred to in this application as “agent data”), along with demographic, psychographic, and other business-relevant data about callers (individually or collectively referred to in this application as “caller data”).
- Agent and caller demographic data can comprise any of: gender, race, age, education, accent, income, nationality, ethnicity, area code, zip code, marital status, job status, and credit score.
- Agent and caller psychographic data can comprise any of introversion, sociability, desire for financial success, and film and television preferences. It will be appreciated that the acts outlined in the flowchart of FIG. 8 need not occur in that exact order.
- This exemplary model or method includes determining at least one caller data for a caller, determining at least one agent data for each of two agents, using the agent data and the caller data in a pattern matching algorithm, and matching the caller to one of the two agents to increase the chance of an optimal interaction.
- at least one caller data (such as a caller demographic or psychographic data) is determined.
- Available databases include, but are not limited to, those that are publicly available, those that are commercially available, or those created by a contact center or a contact center client. In an outbound contact center environment, the caller's contact information is known beforehand.
- the caller's contact information can be retrieved by examining the caller's CallerID information or by requesting this information of the caller at the outset of the contact, such as through entry of a caller account number or other caller-identifying information.
- Other business-relevant data such as historic purchase behavior, current level of satisfaction as a customer, or volunteered level of interest in a product may also be retrieved from available databases.
- At 802 at least one agent data for each of two agents is determined.
- One method of determining agent demographic or psychographic data can involve surveying agents at the time of their employment or periodically throughout their employment. Such a survey process can be manual, such as through a paper or oral survey, or automated with the survey being conducted over a computer system, such as by deployment over a web-browser.
- this advanced embodiment preferably uses agent grades, demographic, psychographic, and other business-relevant data, along with caller demographic, psychographic, and other business-relevant data
- other embodiments of the present invention can eliminate one or more types or categories of caller or agent data to minimize the computing power or storage necessary to employ the present invention.
- agent data and caller data have been collected, this data is passed to a computational system.
- the computational system uses this data in a pattern matching algorithm at 803 to create a computer model that matches each agent with the caller and estimates the probable outcome of each matching along a number of optimal interactions, such as the generation of a sale, the duration of contact, or the likelihood of generating an interaction that a customer finds satisfying.
- the pattern matching algorithm to be used in the present invention can comprise any correlation algorithm, such as a neural network algorithm or a genetic algorithm.
- a correlation algorithm such as a neural network algorithm or a genetic algorithm.
- actual contact results (as measured for an optimal interaction) are compared against the actual agent and caller data for each contact that occurred.
- the pattern matching algorithm can then learn, or improve its learning of, how matching certain callers with certain agents will change the chance of an optimal interaction.
- the pattern matching algorithm can then be used to predict the chance of an optimal interaction in the context of matching a caller with a particular set of caller data, with an agent of a particular set of agent data.
- the pattern matching algorithm is periodically refined as more actual data on caller interactions becomes available to it, such as periodically training the algorithm every night after a contact center has finished operating for the day.
- the pattern matching algorithm is used to create a computer model reflecting the predicted chances of an optimal interaction for each agent and caller matching.
- the computer model will comprise the predicted chances for a set of optimal interactions for every agent that is logged in to the contact center as matched against every available caller.
- the computer model can comprise subsets of these, or sets containing the aforementioned sets. For example, instead of matching every agent logged into the contact center with every available caller, the present invention can match every available agent with every available caller, or even a narrower subset of agents or callers. Likewise, the present invention can match every agent that ever worked on a particular campaign—whether available or logged in or not—with every available caller.
- the computer model can comprise predicted chances for one optimal interaction or a number of optimal interactions.
- the computer model can also be further refined to comprise a suitability score for each matching of an agent and a caller.
- the suitability score can be determined by taking the chances of a set of optimal interactions as predicted by the pattern matching algorithm, and weighting those chances to place more or less emphasis on a particular optimal interaction as related to another optimal interaction. The suitability score can then be used in the present invention to determine which agents should be connected to which callers.
- exemplary models or methods may utilize affinity data associated with callers and/or agents.
- affinity data may relate to an individual caller's contact outcomes (referred to in this application as “caller affinity data”), independent of their demographic, psychographic, or other business-relevant information.
- caller affinity data can include the caller's purchase history, contact time history, or customer satisfaction history. These histories can be general, such as the caller's general history for purchasing products, average contact time with an agent, or average customer satisfaction ratings. These histories can also be agent specific, such as the caller's purchase, contact time, or customer satisfaction history when connected to a particular agent.
- a certain caller may be identified by their caller affinity data as one highly likely to make a purchase, because in the last several instances in which the caller was contacted, the caller elected to purchase a product or service.
- This purchase history can then be used to appropriately refine matches such that the caller is preferentially matched with an agent deemed suitable for the caller to increase the chances of an optimal interaction.
- a contact center could preferentially match the caller with an agent who does not have a high grade for generating revenue or who would not otherwise be an acceptable match, because the chance of a sale is still likely given the caller's past purchase behavior. This strategy for matching would leave available other agents who could have otherwise been occupied with a contact interaction with the caller.
- the contact center may instead seek to guarantee that the caller is matched with an agent with a high grade for generating revenue, irrespective of what the matches generated using caller data and agent demographic or psychographic data may indicate.
- affinity data and an affinity database developed by the described examples may be one in which a caller's contact outcomes are tracked across the various agent data. Such an analysis might indicate, for example, that the caller is most likely to be satisfied with a contact if they are matched to an agent of similar gender, race, age, or even with a specific agent.
- the present invention could preferentially match a caller with a specific agent or type of agent that is known from the caller affinity data to have generated an acceptable optimal interaction.
- Affinity databases can provide particularly actionable information about a caller when commercial, client, or publicly-available database sources may lack information about the caller.
- This database development can also be used to further enhance contact routing and agent-to-caller matching even in the event that there is available data on the caller, as it may drive the conclusion that the individual caller's contact outcomes may vary from what the commercial databases might imply.
- the present invention was to rely solely on commercial databases in order to match a caller and agent, it may predict that the caller would be best matched to an agent of the same gender to achieve optimal customer satisfaction.
- affinity database information developed from prior interactions with the caller the present invention might more accurately predict that the caller would be best matched to an agent of the opposite gender to achieve optimal customer satisfaction.
- affinity databases that comprise revenue generation, cost, and customer satisfaction performance data of individual agents as matched with specific caller demographic, psychographic, or other business-relevant characteristics (referred to in this application as “agent affinity data”).
- An affinity database such as this may, for example, result in the present invention predicting that a specific agent performs best in interactions with callers of a similar age, and less well in interactions with a caller of a significantly older or younger age.
- this type of affinity database may result in the present invention predicting that an agent with certain agent affinity data handles callers originating from a particular geography much better than the agent handles callers from other geographies.
- the present invention may predict that a particular agent performs well in circumstances in which that agent is connected to an irate caller.
- affinity databases are preferably used in combination with agent data and caller data that pass through a pattern matching algorithm to generate matches
- information stored in affinity databases can also be used independently of agent data and caller data such that the affinity information is the only information used to generate matches.
- the first level of processing may include a first computer model that relies on both a pattern matching algorithm and affinity data, and a second computer model that relies on affinity data alone.
- each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system.
- the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.
- Each such computer program is preferably stored on a storage medium or device (e.g., CD-ROM, hard disk or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform the procedures described.
- a storage medium or device e.g., CD-ROM, hard disk or magnetic diskette
- the system also may be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner.
- FIG. 9 illustrates a typical computing system 900 that may be employed to implement processing functionality in embodiments of the invention.
- Computing systems of this type may be used in clients and servers, for example.
- Computing system 900 may represent, for example, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc.), mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment.
- Computing system 900 can include one or more processors, such as a processor 904 .
- Processor 904 can be implemented using a general or special purpose processing engine such as, for example, a microprocessor, microcontroller or other control logic.
- processor 904 is connected to a bus 902 or other communication medium.
- Computing system 900 can also include a main memory 908 , such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by processor 904 .
- Main memory 908 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 904 .
- Computing system 900 may likewise include a read only memory (“ROM”) or other static storage device coupled to bus 902 for storing static information and instructions for processor 904 .
- ROM read only memory
- the computing system 900 may also include information storage system 910 , which may include, for example, a media drive 912 and a removable storage interface 920 .
- the media drive 912 may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a CD or DVD drive (R or RW), or other removable or fixed media drive.
- Storage media 918 may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive 912 .
- the storage media 918 may include a computer-readable storage medium having stored therein particular computer software or data.
- information storage system 910 may include other similar components for allowing computer programs or other instructions or data to be loaded into computing system 900 .
- Such components may include, for example, a removable storage unit 922 and an interface 920 , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units 922 and interfaces 920 that allow software and data to be transferred from the removable storage unit 918 to computing system 900 .
- Computing system 900 can also include a communications interface 924 .
- Communications interface 924 can be used to allow software and data to be transferred between computing system 900 and external devices.
- Examples of communications interface 924 can include a modem, a network interface (such as an Ethernet or other NIC card), a communications port (such as for example, a USB port), a PCMCIA slot and card, etc.
- Software and data transferred via communications interface 924 are in the form of signals which can be electronic, electromagnetic, optical or other signals capable of being received by communications interface 924 . These signals are provided to communications interface 924 via a channel 928 .
- This channel 928 may carry signals and may be implemented using a wireless medium, wire or cable, fiber optics, or other communications medium.
- Some examples of a channel include a phone line, a cellular phone link, an RF link, a network interface, a local or wide area network, and other communications channels.
- computer program product may be used generally to refer to physical, tangible media such as, for example, memory 908 , storage media 918 , or storage unit 922 .
- These and other forms of computer-readable media may be involved in storing one or more instructions for use by processor 904 , to cause the processor to perform specified operations.
- Such instructions generally referred to as “computer program code” (which may be grouped in the form of computer programs or other groupings), when executed, enable the computing system 900 to perform features or functions of embodiments of the present invention.
- the code may directly cause the processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
- the software may be stored in a computer-readable medium and loaded into computing system 900 using, for example, removable storage media 918 , drive 912 or communications interface 924 .
- the control logic in this example, software instructions or computer program code, when executed by the processor 904 , causes the processor 904 to perform the functions of the invention as described herein,
Landscapes
- Business, Economics & Management (AREA)
- Marketing (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Telephonic Communication Services (AREA)
Abstract
Description
Claims (62)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/788,469 USRE48412E1 (en) | 2008-11-06 | 2015-06-30 | Balancing multiple computer models in a call center routing system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/266,461 US8472611B2 (en) | 2008-11-06 | 2008-11-06 | Balancing multiple computer models in a call center routing system |
US14/750,965 USRE48476E1 (en) | 2008-11-06 | 2015-06-25 | Balancing multiple computer models in a call center routing system |
US14/788,469 USRE48412E1 (en) | 2008-11-06 | 2015-06-30 | Balancing multiple computer models in a call center routing system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/266,461 Reissue US8472611B2 (en) | 2008-11-06 | 2008-11-06 | Balancing multiple computer models in a call center routing system |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE48412E1 true USRE48412E1 (en) | 2021-01-26 |
Family
ID=74185534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/788,469 Active 2032-03-26 USRE48412E1 (en) | 2008-11-06 | 2015-06-30 | Balancing multiple computer models in a call center routing system |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE48412E1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11257022B2 (en) * | 2020-03-31 | 2022-02-22 | Citrix Systems, Inc. | Computing system and methods providing support session assignment between support agent client devices and customer client devices |
Citations (202)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0493292A2 (en) * | 1990-12-11 | 1992-07-01 | International Business Machines Corporation | Look-ahead method and apparatus for predictive dialing using a neural network |
US5206903A (en) | 1990-12-26 | 1993-04-27 | At&T Bell Laboratories | Automatic call distribution based on matching required skills with agents skills |
US5327490A (en) | 1991-02-19 | 1994-07-05 | Intervoice, Inc. | System and method for controlling call placement rate for telephone communication systems |
US5452350A (en) * | 1992-03-09 | 1995-09-19 | Advantis | Subscriber call routing processing system |
US5537470A (en) | 1994-04-06 | 1996-07-16 | At&T Corp. | Method and apparatus for handling in-bound telemarketing calls |
US5594791A (en) * | 1994-10-05 | 1997-01-14 | Inventions, Inc. | Method and apparatus for providing result-oriented customer service |
US5702253A (en) | 1995-07-10 | 1997-12-30 | Bryce; Nathan K. | Personality testing apparatus and method |
EP0863651A2 (en) | 1997-03-07 | 1998-09-09 | Lucent Technologies Inc. | Waiting-call selection based on objectives |
US5825869A (en) | 1995-04-24 | 1998-10-20 | Siemens Business Communication Systems, Inc. | Call management method and system for skill-based routing |
WO1999017517A1 (en) | 1997-09-30 | 1999-04-08 | Genesys Telecommunications Laboratories, Inc. | Metadata-based network routing |
JPH1198252A (en) | 1997-09-19 | 1999-04-09 | Fujitsu Ltd | Operator connection system and method therefor and record medium |
US5903641A (en) | 1997-01-28 | 1999-05-11 | Lucent Technologies Inc. | Automatic dynamic changing of agents' call-handling assignments |
US5907601A (en) | 1995-05-26 | 1999-05-25 | Eis International Inc. | Call pacing method |
US5926538A (en) | 1997-02-11 | 1999-07-20 | Genesys Telecommunications Labs, Inc | Method for routing calls to call centers based on statistical modeling of call behavior |
EP0949793A1 (en) * | 1998-04-09 | 1999-10-13 | Lucent Technologies Inc. | Optimizing call-center performance by using predictive data to distribute agents among calls |
JP2000078291A (en) | 1998-04-09 | 2000-03-14 | Lucent Technol Inc | Method and device for optimizing operation of call center by using prediction data for distribution call to agent |
JP2000092213A (en) | 1998-08-27 | 2000-03-31 | Lucent Technol Inc | Method and system for processing communication requiring skill for processing using queue |
US6049603A (en) | 1997-09-24 | 2000-04-11 | Call-A-Guide, Inc. | Method for eliminating telephone hold time |
US6052460A (en) | 1997-12-17 | 2000-04-18 | Lucent Technologies Inc. | Arrangement for equalizing levels of service among skills |
US6064731A (en) | 1998-10-29 | 2000-05-16 | Lucent Technologies Inc. | Arrangement for improving retention of call center's customers |
US6088444A (en) | 1997-04-11 | 2000-07-11 | Walker Asset Management Limited Partnership | Method and apparatus for value-based queuing of telephone calls |
JP2000236393A (en) | 1999-02-02 | 2000-08-29 | Lucent Technol Inc | Request distribution method and its device |
US6222919B1 (en) | 1994-09-12 | 2001-04-24 | Rockwell International Corporation | Method and system for routing incoming telephone calls to available agents based on agent skills |
EP1107557A2 (en) | 1999-12-06 | 2001-06-13 | Avaya Technology Corp. | System for automatically routing calls to call center agents in an agent surplus condition based on delay probabilities |
WO2001063894A2 (en) | 2000-02-24 | 2001-08-30 | Siemens Information And Communication Networks, Inc. | Wait time estimation in automatic call distribution queues |
US20010024497A1 (en) * | 2000-01-07 | 2001-09-27 | Alasdhair Campbell | Customer communication service system |
US20010032120A1 (en) | 2000-03-21 | 2001-10-18 | Stuart Robert Oden | Individual call agent productivity method and system |
JP2001292236A (en) | 2000-01-18 | 2001-10-19 | Avaya Technology Corp | Method and device for multivariate work assignment to be used inside call center |
US6324282B1 (en) | 2000-03-02 | 2001-11-27 | Knowlagent, Inc. | Method and system for delivery of individualized training to call center agents |
US6333979B1 (en) | 1998-12-17 | 2001-12-25 | At&T Corp. | Method and apparatus for assigning incoming communications to communications processing centers |
US20020018554A1 (en) | 2000-01-27 | 2002-02-14 | Jensen Roy A. | Call management system using fast response dynamic threshold adjustment |
US20020046030A1 (en) | 2000-05-18 | 2002-04-18 | Haritsa Jayant Ramaswamy | Method and apparatus for improved call handling and service based on caller's demographic information |
US6389400B1 (en) | 1998-08-20 | 2002-05-14 | Sbc Technology Resources, Inc. | System and methods for intelligent routing of customer requests using customer and agent models |
US6389132B1 (en) | 1999-10-13 | 2002-05-14 | Avaya Technology Corp. | Multi-tasking, web-based call center |
US20020059164A1 (en) | 1999-12-01 | 2002-05-16 | Yuri Shtivelman | Method and apparatus for auto-assisting agents in agent-hosted communications sessions |
US6408066B1 (en) | 1999-12-15 | 2002-06-18 | Lucent Technologies Inc. | ACD skill-based routing |
US6411687B1 (en) | 1997-11-11 | 2002-06-25 | Mitel Knowledge Corporation | Call routing based on the caller's mood |
US20020082736A1 (en) | 2000-12-27 | 2002-06-27 | Lech Mark Matthew | Quality management system |
US6424709B1 (en) | 1999-03-22 | 2002-07-23 | Rockwell Electronic Commerce Corp. | Skill-based call routing |
US20020111172A1 (en) | 2001-02-14 | 2002-08-15 | Dewolf Frederik M. | Location based profiling |
US20020131399A1 (en) | 1998-02-17 | 2002-09-19 | Laurent Philonenko | Queue prioritization based on competitive user input |
US20020138285A1 (en) | 2001-03-22 | 2002-09-26 | Decotiis Allen R. | System, method and article of manufacture for generating a model to analyze a propensity of customers to purchase products and services |
US20020143599A1 (en) | 2001-04-02 | 2002-10-03 | Illah Nourbakhsh | Method and apparatus for long-range planning |
JP2002297900A (en) | 2001-03-30 | 2002-10-11 | Ibm Japan Ltd | Control system for reception by businesses, user side terminal device, reception side terminal device, management server queue monitoring device, method of allocating reception side terminals, and storage medium |
US20020161765A1 (en) | 2001-04-30 | 2002-10-31 | Kundrot Andrew Joseph | System and methods for standardizing data for design review comparisons |
US6496580B1 (en) | 1999-02-22 | 2002-12-17 | Aspect Communications Corp. | Method and apparatus for servicing queued requests |
US20020196845A1 (en) | 2001-06-13 | 2002-12-26 | Richards James L. | Method and apparatus for improving received signal quality in an impluse radio system |
US20030002653A1 (en) | 2001-06-27 | 2003-01-02 | Serdar Uckun | Graphical method and system for visualizing performance levels in time-varying environment |
US6504920B1 (en) | 1999-06-18 | 2003-01-07 | Shmuel Okon | Method and system for initiating conversations between callers having common interests |
US6519335B1 (en) | 1999-04-08 | 2003-02-11 | Lucent Technologies Inc. | Apparatus, method and system for personal telecommunication incoming call screening and alerting for call waiting applications |
US20030081757A1 (en) | 2001-09-24 | 2003-05-01 | Mengshoel Ole J. | Contact center autopilot architecture |
US6570980B1 (en) | 1999-10-11 | 2003-05-27 | Alcatel | Method of distributing telephone calls to ordered agents |
US6577727B1 (en) * | 1999-03-01 | 2003-06-10 | Rockwell Electronic Commerce Corp. | ACD tier based routing |
US6587556B1 (en) | 2000-02-25 | 2003-07-01 | Teltronics, Inc. | Skills based routing method and system for call center |
JP2003187061A (en) | 2001-12-19 | 2003-07-04 | Fuji Mach Mfg Co Ltd | User support system, server device of user support system, operator selecting program and operator selecting method of user support system |
US6603854B1 (en) | 2000-02-25 | 2003-08-05 | Teltronics, Inc. | System and method for evaluating agents in call center |
US20030169870A1 (en) | 2002-03-05 | 2003-09-11 | Michael Stanford | Automatic call distribution |
US20030174830A1 (en) | 2002-03-15 | 2003-09-18 | Boyer David G. | Topical dynamic chat |
US6639976B1 (en) | 2001-01-09 | 2003-10-28 | Bellsouth Intellectual Property Corporation | Method for parity analysis and remedy calculation |
US20030217016A1 (en) | 2002-04-29 | 2003-11-20 | Pericle Anthony J. | Pricing model system and method |
US20040028211A1 (en) | 2002-08-08 | 2004-02-12 | Rockwell Electronic Commerce Technologies, Llc | Method and apparatus for determining a real time average speed of answer in an automatic call distribution system |
JP2004056517A (en) | 2002-07-19 | 2004-02-19 | Fujitsu Ltd | Transaction distribution program |
US6704410B1 (en) | 1998-06-03 | 2004-03-09 | Avaya Inc. | System for automatically assigning skill levels to multiple skilled agents in call center agent assignment applications |
US6707904B1 (en) | 2000-02-25 | 2004-03-16 | Teltronics, Inc. | Method and system for collecting reports for call center monitoring by supervisor |
US20040057416A1 (en) | 2002-09-19 | 2004-03-25 | Mccormack Tony | Determining statistics about the behaviour of a call center at a past time instant |
US20040098274A1 (en) | 2002-11-15 | 2004-05-20 | Dezonno Anthony J. | System and method for predicting customer contact outcomes |
US20040096050A1 (en) | 2002-11-19 | 2004-05-20 | Das Sharmistha Sarkar | Accent-based matching of a communicant with a call-center agent |
US20040101127A1 (en) | 2002-11-26 | 2004-05-27 | Dezonno Anthony J. | Personality based routing |
US20040109555A1 (en) | 2002-12-06 | 2004-06-10 | Bellsouth Intellectual Property | Method and system for improved routing of repair calls to a call center |
US6763104B1 (en) | 2000-02-24 | 2004-07-13 | Teltronics, Inc. | Call center IVR and ACD scripting method and graphical user interface |
US6774932B1 (en) | 2000-09-26 | 2004-08-10 | Ewing Golf Associates, Llc | System for enhancing the televised broadcast of a golf game |
US6775378B1 (en) | 1999-10-25 | 2004-08-10 | Concerto Software, Inc | Blended agent contact center |
JP2004227228A (en) | 2003-01-22 | 2004-08-12 | Kazunori Fujisawa | Order accepting system by portable telephone |
US6798876B1 (en) | 1998-12-29 | 2004-09-28 | At&T Corp. | Method and apparatus for intelligent routing of incoming calls to representatives in a call center |
US20040210475A1 (en) | 2002-11-25 | 2004-10-21 | Starnes S. Renee | Variable compensation tool and system for customer service agents |
US20040230438A1 (en) | 2003-05-13 | 2004-11-18 | Sbc Properties, L.P. | System and method for automated customer feedback |
US6829348B1 (en) | 1999-07-30 | 2004-12-07 | Convergys Cmg Utah, Inc. | System for customer contact information management and methods for using same |
US6832203B1 (en) | 1999-11-05 | 2004-12-14 | Cim, Ltd. | Skills based contact routing |
US20040267816A1 (en) | 2003-04-07 | 2004-12-30 | Russek David J. | Method, system and software for digital media narrative personalization |
US20050013428A1 (en) | 2003-07-17 | 2005-01-20 | Walters James Frederick | Contact center optimization program |
US6859529B2 (en) | 2000-04-12 | 2005-02-22 | Austin Logistics Incorporated | Method and system for self-service scheduling of inbound inquiries |
US20050043986A1 (en) | 2003-08-20 | 2005-02-24 | Mcconnell Matthew G.A. | Method and system for selecting a preferred contact center agent based on agent proficiency and performance and contact center state |
US20050047582A1 (en) | 2003-08-25 | 2005-03-03 | Cisco Technology, Inc. | Method and system for utilizing proxy designation in a call system |
US20050047581A1 (en) | 2003-08-25 | 2005-03-03 | Shmuel Shaffer | Method and system for managing calls of an automatic call distributor |
US20050129212A1 (en) | 2003-12-12 | 2005-06-16 | Parker Jane S. | Workforce planning system incorporating historic call-center related data |
US20050135596A1 (en) | 2000-12-26 | 2005-06-23 | Aspect Communications Corporation | Method and system for providing personalized service over different contact channels |
US20050135593A1 (en) | 2003-06-13 | 2005-06-23 | Manuel Becerra | Call processing system |
US6922466B1 (en) | 2001-03-05 | 2005-07-26 | Verizon Corporate Services Group Inc. | System and method for assessing a call center |
US20050187802A1 (en) * | 2004-02-13 | 2005-08-25 | Koeppel Harvey R. | Method and system for conducting customer needs, staff development, and persona-based customer routing analysis |
US6937715B2 (en) | 2002-09-26 | 2005-08-30 | Nortel Networks Limited | Contact center management |
US20050195960A1 (en) | 2004-03-03 | 2005-09-08 | Cisco Technology, Inc. | Method and system for automatic call distribution based on location information for call center agents |
US6970821B1 (en) | 2000-09-26 | 2005-11-29 | Rockwell Electronic Commerce Technologies, Llc | Method of creating scripts by translating agent/customer conversations |
US6978006B1 (en) | 2000-10-12 | 2005-12-20 | Intervoice Limited Partnership | Resource management utilizing quantified resource attributes |
US20050286709A1 (en) | 2004-06-28 | 2005-12-29 | Steve Horton | Customer service marketing |
US20060062376A1 (en) * | 2004-09-22 | 2006-03-23 | Dale Pickford | Call center services system and method |
US7023979B1 (en) | 2002-03-07 | 2006-04-04 | Wai Wu | Telephony control system with intelligent call routing |
US7039166B1 (en) | 2001-03-05 | 2006-05-02 | Verizon Corporate Services Group Inc. | Apparatus and method for visually representing behavior of a user of an automated response system |
US20060098803A1 (en) | 2003-12-18 | 2006-05-11 | Sbc Knowledge Ventures, L.P. | Intelligently routing customer communications |
US7050567B1 (en) | 2000-01-27 | 2006-05-23 | Avaya Technology Corp. | Call management system using dynamic queue position |
US20060110052A1 (en) | 2002-11-29 | 2006-05-25 | Graham Finlayson | Image signal processing |
US20060124113A1 (en) | 2004-12-10 | 2006-06-15 | Roberts Forest G Sr | Marine engine fuel cooling system |
US7068775B1 (en) | 1998-12-02 | 2006-06-27 | Concerto Software, Inc. | System and method for managing a hold queue based on customer information retrieved from a customer database |
US7092509B1 (en) | 1999-09-21 | 2006-08-15 | Microlog Corporation | Contact center system capable of handling multiple media types of contacts and method for using the same |
US20060184040A1 (en) | 2004-12-09 | 2006-08-17 | Keller Kurtis P | Apparatus, system and method for optically analyzing a substrate |
US7103172B2 (en) | 2001-12-12 | 2006-09-05 | International Business Machines Corporation | Managing caller profiles across multiple hold queues according to authenticated caller identifiers |
US20060222164A1 (en) | 2005-04-04 | 2006-10-05 | Saeed Contractor | Simultaneous usage of agent and service parameters |
US20060233346A1 (en) | 1999-11-16 | 2006-10-19 | Knowlagent, Inc. | Method and system for prioritizing performance interventions |
US20060262922A1 (en) | 2005-05-17 | 2006-11-23 | Telephony@Work, Inc. | Dynamic customer satisfaction routing |
US20060262918A1 (en) | 2005-05-18 | 2006-11-23 | Sbc Knowledge Ventures L.P. | VPN PRI OSN independent authorization levels |
JP2006345132A (en) | 2005-06-08 | 2006-12-21 | Fujitsu Ltd | Incoming distributing program |
US20070036323A1 (en) | 2005-07-07 | 2007-02-15 | Roger Travis | Call center routing |
US20070071222A1 (en) | 2005-09-16 | 2007-03-29 | Avaya Technology Corp. | Method and apparatus for the automated delivery of notifications to contacts based on predicted work prioritization |
US7209549B2 (en) | 2002-01-18 | 2007-04-24 | Sbc Technology Resources, Inc. | Method and system for routing calls based on a language preference |
US20070121829A1 (en) | 2005-11-30 | 2007-05-31 | On-Q Telecom Systems Co., Inc | Virtual personal assistant for handling calls in a communication system |
US20070121602A1 (en) | 2005-11-18 | 2007-05-31 | Cisco Technology | VoIP CALL ROUTING |
US7231034B1 (en) | 2003-10-21 | 2007-06-12 | Acqueon Technologies, Inc. | “Pull” architecture contact center |
US7231032B2 (en) | 1997-02-10 | 2007-06-12 | Genesys Telecommunications Laboratories, Inc. | Negotiated routing in telephony systems |
US7236584B2 (en) | 1999-06-17 | 2007-06-26 | Genesys Telecommunications Laboratories, Inc. | Method and apparatus for providing fair access to agents in a communication center |
US20070154007A1 (en) | 2005-12-22 | 2007-07-05 | Michael Bernhard | Method and device for agent-optimized operation of a call center |
US7245719B2 (en) | 2000-06-30 | 2007-07-17 | Matsushita Electric Industrial Co., Ltd. | Recording method and apparatus, optical disk, and computer-readable storage medium |
US7245716B2 (en) | 2001-12-12 | 2007-07-17 | International Business Machines Corporation | Controlling hold queue position adjustment |
US20070174111A1 (en) | 2006-01-24 | 2007-07-26 | International Business Machines Corporation | Evaluating a performance of a customer support resource in the context of a peer group |
US20070198322A1 (en) | 2006-02-22 | 2007-08-23 | John Bourne | Systems and methods for workforce optimization |
US7266251B2 (en) | 2001-11-23 | 2007-09-04 | Simon Michael Rowe | Method and apparatus for generating models of individuals |
US20070274502A1 (en) | 2006-05-04 | 2007-11-29 | Brown Donald E | System and method for providing a baseline for quality metrics in a contact center |
JP2007324708A (en) | 2006-05-30 | 2007-12-13 | Nec Corp | Telephone answering method, call center system, program for call center, and program recording medium |
US20080002823A1 (en) | 2006-05-01 | 2008-01-03 | Witness Systems, Inc. | System and Method for Integrated Workforce and Quality Management |
US20080008309A1 (en) | 2004-12-07 | 2008-01-10 | Dezonno Anthony J | Method and apparatus for customer key routing |
US20080046386A1 (en) | 2006-07-03 | 2008-02-21 | Roberto Pieraccinii | Method for making optimal decisions in automated customer care |
US20080065476A1 (en) | 2006-09-07 | 2008-03-13 | Loyalty Builders, Inc. | Online direct marketing system |
US20080118052A1 (en) | 2006-11-17 | 2008-05-22 | Mounire El Houmaidi | Methods, systems, and computer program products for rule-based direction of customer service calls |
US20080152122A1 (en) * | 2006-12-20 | 2008-06-26 | Nice Systems Ltd. | Method and system for automatic quality evaluation |
US7398224B2 (en) | 2005-03-22 | 2008-07-08 | Kim A. Cooper | Performance motivation systems and methods for contact centers |
US20080181389A1 (en) | 2006-02-22 | 2008-07-31 | John Bourne | Systems and methods for workforce optimization and integration |
US20080199000A1 (en) | 2007-02-21 | 2008-08-21 | Huawei Technologies Co., Ltd. | System and method for monitoring agents' performance in a call center |
US20080267386A1 (en) | 2005-03-22 | 2008-10-30 | Cooper Kim A | Performance Motivation Systems and Methods for Contact Centers |
US20080273687A1 (en) | 2003-03-06 | 2008-11-06 | At&T Intellectual Property I, L.P. | System and Method for Providing Customer Activities While in Queue |
US20090043670A1 (en) | 2006-09-14 | 2009-02-12 | Henrik Johansson | System and method for network-based purchasing |
US20090086933A1 (en) | 2007-10-01 | 2009-04-02 | Labhesh Patel | Call routing using voice signature and hearing characteristics |
US20090190743A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Separate matching models based on type of phone associated with a caller |
US20090190744A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Routing callers from a set of callers based on caller data |
US20090190749A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Jumping callers held in queue for a call center routing system |
US20090190745A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Pooling callers for a call center routing system |
US20090190750A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Routing callers out of queue order for a call center routing system |
US20090190747A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Call routing methods and systems based on multiple variable standardized scoring |
WO2009097210A1 (en) | 2008-01-28 | 2009-08-06 | The Resource Group International, Ltd. | Routing callers from a set of callers in an out of order sequence |
US20090232294A1 (en) * | 2008-01-28 | 2009-09-17 | Qiaobing Xie | Skipping a caller in queue for a call routing center |
US20090234710A1 (en) | 2006-07-17 | 2009-09-17 | Asma Belgaied Hassine | Customer centric revenue management |
US20090245493A1 (en) | 2008-03-28 | 2009-10-01 | Avaya Inc. | System and Method for Displaying Call Flows and Call Statistics |
US20090318111A1 (en) | 2008-06-19 | 2009-12-24 | Verizon Data Services Llc | Voice portal to voice portal voip transfer |
US20090323921A1 (en) | 2008-01-28 | 2009-12-31 | The Resource Group International Ltd | Probability multiplier process for call center routing |
US20100020961A1 (en) | 2008-07-28 | 2010-01-28 | The Resource Group International Ltd | Routing callers to agents based on time effect data |
US20100054431A1 (en) | 2008-08-29 | 2010-03-04 | International Business Machines Corporation | Optimized method to select and retrieve a contact center transaction from a set of transactions stored in a queuing mechanism |
US20100054452A1 (en) | 2008-08-29 | 2010-03-04 | Afzal Hassan | Agent satisfaction data for call routing based on pattern matching alogrithm |
US20100054453A1 (en) | 2008-08-29 | 2010-03-04 | Stewart Randall R | Shadow queue for callers in a performance/pattern matching based call routing system |
US7676034B1 (en) * | 2003-03-07 | 2010-03-09 | Wai Wu | Method and system for matching entities in an auction |
US20100086120A1 (en) * | 2008-10-02 | 2010-04-08 | Compucredit Intellectual Property Holdings Corp. Ii | Systems and methods for call center routing |
US20100111287A1 (en) * | 2008-11-06 | 2010-05-06 | The Resource Group International Ltd | Pooling callers for matching to agents based on pattern matching algorithms |
US20100111288A1 (en) | 2008-11-06 | 2010-05-06 | Afzal Hassan | Time to answer selector and advisor for call routing center |
US20100111285A1 (en) | 2008-11-06 | 2010-05-06 | Zia Chishti | Balancing multiple computer models in a call center routing system |
US20100111286A1 (en) | 2008-11-06 | 2010-05-06 | Zia Chishti | Selective mapping of callers in a call center routing system |
WO2010053701A2 (en) | 2008-11-06 | 2010-05-14 | The Resource Group International Ltd | Systems and methods in a call center routing system |
US7725339B1 (en) | 2003-07-07 | 2010-05-25 | Ac2 Solutions, Inc. | Contact center scheduling using integer programming |
US7734032B1 (en) | 2004-03-31 | 2010-06-08 | Avaya Inc. | Contact center and method for tracking and acting on one and done customer contacts |
US20100142698A1 (en) * | 2008-12-09 | 2010-06-10 | The Resource Group International Ltd | Separate pattern matching algorithms and computer models based on available caller data |
US20100183138A1 (en) | 2009-01-16 | 2010-07-22 | Spottiswoode S James P | Selective mapping of callers in a call-center routing system based on individual agent settings |
US7826597B2 (en) | 2005-12-09 | 2010-11-02 | At&T Intellectual Property I, L.P. | Methods and apparatus to handle customer support requests |
US7864944B2 (en) | 2005-11-29 | 2011-01-04 | Cisco Technology, Inc. | Optimal call speed for call center agents |
US20110022357A1 (en) | 1994-11-21 | 2011-01-27 | Nike, Inc. | Location determining system |
US20110031112A1 (en) | 2005-05-25 | 2011-02-10 | Manoocher Birang | In-situ profile measurement in an electroplating process |
US7899177B1 (en) | 2004-01-12 | 2011-03-01 | Sprint Communications Company L.P. | Call-routing system and method |
US20110069821A1 (en) | 2009-09-21 | 2011-03-24 | Nikolay Korolev | System for Creation and Dynamic Management of Incoming Interactions |
US7916858B1 (en) | 2001-06-25 | 2011-03-29 | Toby Heller | Agent training sensitive call routing system |
US7940917B2 (en) | 2007-01-24 | 2011-05-10 | International Business Machines Corporation | Managing received calls |
US20110125048A1 (en) | 2005-08-02 | 2011-05-26 | Brainscope Company, Inc. | Method for assessing brain function and portable automatic brain function assessment apparatus |
US7961866B1 (en) | 2006-06-02 | 2011-06-14 | West Corporation | Method and computer readable medium for geographic agent routing |
WO2011081514A1 (en) | 2009-12-31 | 2011-07-07 | Petroliam Nasional Berhad (Petronas) | Method and apparatus for monitoring performance and anticipate failures of plant instrumentation |
US7995717B2 (en) | 2005-05-18 | 2011-08-09 | Mattersight Corporation | Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto |
US8000989B1 (en) | 2004-03-31 | 2011-08-16 | Avaya Inc. | Using true value in routing work items to resources |
US8010607B2 (en) | 2003-08-21 | 2011-08-30 | Nortel Networks Limited | Management of queues in contact centres |
US8094790B2 (en) | 2005-05-18 | 2012-01-10 | Mattersight Corporation | Method and software for training a customer service representative by analysis of a telephonic interaction between a customer and a contact center |
US8126133B1 (en) * | 2004-04-01 | 2012-02-28 | Liveops, Inc. | Results-based routing of electronic communications |
US20120051536A1 (en) * | 2010-08-26 | 2012-03-01 | The Resource Group International Ltd | Estimating agent performance in a call routing center system |
US20120051537A1 (en) * | 2010-08-26 | 2012-03-01 | The Resource Group International Ltd | Precalculated caller-agent pairs for a call center routing system |
US8140441B2 (en) | 2008-10-20 | 2012-03-20 | International Business Machines Corporation | Workflow management in a global support organization |
US8175253B2 (en) | 2005-07-07 | 2012-05-08 | At&T Intellectual Property I, L.P. | System and method for automated performance monitoring for a call servicing system |
US8249245B2 (en) | 2007-11-13 | 2012-08-21 | Amazon Technologies, Inc. | System and method for automated call distribution |
US20120224680A1 (en) * | 2010-08-31 | 2012-09-06 | The Resource Group International Ltd | Predicted call time as routing variable in a call routing center system |
US8300798B1 (en) | 2006-04-03 | 2012-10-30 | Wai Wu | Intelligent communication routing system and method |
US20120278136A1 (en) | 2004-09-27 | 2012-11-01 | Avaya Inc. | Dynamic work assignment strategies based on multiple aspects of agent proficiency |
US20130251137A1 (en) * | 2012-03-26 | 2013-09-26 | The Resource Group International, Ltd. | Call mapping systems and methods using variance algorithm (va) and/or distribution compensation |
NZ591486A (en) | 2008-08-29 | 2013-10-25 | Resource Group International Ltd | Call routing methods and systems based on multiple variable standardized scoring and shadow queue |
US20140044246A1 (en) | 2012-08-10 | 2014-02-13 | Avaya Inc. | System and method for determining call importance using social network context |
US20140079210A1 (en) | 2012-09-20 | 2014-03-20 | Avaya Inc. | Risks for waiting for well-matched |
US20140086404A1 (en) * | 2012-09-24 | 2014-03-27 | The Resource Group International, Ltd. | Matching using agent/caller sensitivity to performance |
US20140119531A1 (en) | 2012-10-30 | 2014-05-01 | Kenneth D. Tuchman | Method for providing support using answer engine and dialog rules |
US20140119533A1 (en) * | 2012-03-26 | 2014-05-01 | The Resource Group International, Ltd. | Call mapping systems and methods using variance algorithm (va) and/or distribution compensation |
US20150055772A1 (en) | 2013-08-20 | 2015-02-26 | Avaya Inc. | Facilitating a contact center agent to select a contact in a contact center queue |
US8995647B2 (en) | 2013-05-20 | 2015-03-31 | Xerox Corporation | Method and apparatus for routing a call using a hybrid call routing scheme with real-time automatic adjustment |
US9300802B1 (en) * | 2008-01-28 | 2016-03-29 | Satmap International Holdings Limited | Techniques for behavioral pairing in a contact center system |
US20170064081A1 (en) * | 2008-01-28 | 2017-03-02 | Satmap International Holdings Limited | Techniques for hybrid behavioral pairing in a contact center system |
US20170064080A1 (en) * | 2008-01-28 | 2017-03-02 | Satmap International Holdings Limited | Techniques for hybrid behavioral pairing in a contact center system |
-
2015
- 2015-06-30 US US14/788,469 patent/USRE48412E1/en active Active
Patent Citations (292)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155763A (en) | 1990-12-11 | 1992-10-13 | International Business Machines Corp. | Look ahead method and apparatus for predictive dialing using a neural network |
EP0493292A2 (en) * | 1990-12-11 | 1992-07-01 | International Business Machines Corporation | Look-ahead method and apparatus for predictive dialing using a neural network |
US5206903A (en) | 1990-12-26 | 1993-04-27 | At&T Bell Laboratories | Automatic call distribution based on matching required skills with agents skills |
US5327490A (en) | 1991-02-19 | 1994-07-05 | Intervoice, Inc. | System and method for controlling call placement rate for telephone communication systems |
US5452350A (en) * | 1992-03-09 | 1995-09-19 | Advantis | Subscriber call routing processing system |
US5537470A (en) | 1994-04-06 | 1996-07-16 | At&T Corp. | Method and apparatus for handling in-bound telemarketing calls |
US6222919B1 (en) | 1994-09-12 | 2001-04-24 | Rockwell International Corporation | Method and system for routing incoming telephone calls to available agents based on agent skills |
US5963635A (en) * | 1994-10-05 | 1999-10-05 | Inventions, Inc. | Method and apparatus for providing result-oriented customer service |
US5594791A (en) * | 1994-10-05 | 1997-01-14 | Inventions, Inc. | Method and apparatus for providing result-oriented customer service |
US20040133434A1 (en) | 1994-10-05 | 2004-07-08 | Inventions, Inc. | Method and apparatus for providing result-oriented customer service |
US20110022357A1 (en) | 1994-11-21 | 2011-01-27 | Nike, Inc. | Location determining system |
US5825869A (en) | 1995-04-24 | 1998-10-20 | Siemens Business Communication Systems, Inc. | Call management method and system for skill-based routing |
US5907601A (en) | 1995-05-26 | 1999-05-25 | Eis International Inc. | Call pacing method |
US5702253A (en) | 1995-07-10 | 1997-12-30 | Bryce; Nathan K. | Personality testing apparatus and method |
JP3366565B2 (en) | 1997-01-28 | 2003-01-14 | ルーセント テクノロジーズ インコーポレーテッド | Apparatus and method for automatically assigning call center agents to skills in a call center |
US5903641A (en) | 1997-01-28 | 1999-05-11 | Lucent Technologies Inc. | Automatic dynamic changing of agents' call-handling assignments |
US7231032B2 (en) | 1997-02-10 | 2007-06-12 | Genesys Telecommunications Laboratories, Inc. | Negotiated routing in telephony systems |
US5926538A (en) | 1997-02-11 | 1999-07-20 | Genesys Telecommunications Labs, Inc | Method for routing calls to call centers based on statistical modeling of call behavior |
EP0863651A2 (en) | 1997-03-07 | 1998-09-09 | Lucent Technologies Inc. | Waiting-call selection based on objectives |
US20020110234A1 (en) | 1997-04-11 | 2002-08-15 | Walker Jay S. | Method and apparatus for value-based queuing of telephone calls |
US6088444A (en) | 1997-04-11 | 2000-07-11 | Walker Asset Management Limited Partnership | Method and apparatus for value-based queuing of telephone calls |
JPH1198252A (en) | 1997-09-19 | 1999-04-09 | Fujitsu Ltd | Operator connection system and method therefor and record medium |
US6292555B1 (en) | 1997-09-19 | 2001-09-18 | Fujitsu Limited | System, method and storage medium for connection to operator |
US6049603A (en) | 1997-09-24 | 2000-04-11 | Call-A-Guide, Inc. | Method for eliminating telephone hold time |
JP2001518753A (en) | 1997-09-30 | 2001-10-16 | ジェネシス・テレコミュニケーションズ・ラボラトリーズ・インコーポレーテッド | Metadatabase network routing |
WO1999017517A1 (en) | 1997-09-30 | 1999-04-08 | Genesys Telecommunications Laboratories, Inc. | Metadata-based network routing |
US6411687B1 (en) | 1997-11-11 | 2002-06-25 | Mitel Knowledge Corporation | Call routing based on the caller's mood |
US6052460A (en) | 1997-12-17 | 2000-04-18 | Lucent Technologies Inc. | Arrangement for equalizing levels of service among skills |
US20020131399A1 (en) | 1998-02-17 | 2002-09-19 | Laurent Philonenko | Queue prioritization based on competitive user input |
JP2000078292A (en) | 1998-04-09 | 2000-03-14 | Lucent Technol Inc | Method and device for optimizing performance of call center by distributing call to agents by using prediction data |
US6163607A (en) | 1998-04-09 | 2000-12-19 | Avaya Technology Corp. | Optimizing call-center performance by using predictive data to distribute agents among calls |
JP2000078291A (en) | 1998-04-09 | 2000-03-14 | Lucent Technol Inc | Method and device for optimizing operation of call center by using prediction data for distribution call to agent |
EP0949793A1 (en) * | 1998-04-09 | 1999-10-13 | Lucent Technologies Inc. | Optimizing call-center performance by using predictive data to distribute agents among calls |
US6704410B1 (en) | 1998-06-03 | 2004-03-09 | Avaya Inc. | System for automatically assigning skill levels to multiple skilled agents in call center agent assignment applications |
US6389400B1 (en) | 1998-08-20 | 2002-05-14 | Sbc Technology Resources, Inc. | System and methods for intelligent routing of customer requests using customer and agent models |
US6535601B1 (en) | 1998-08-27 | 2003-03-18 | Avaya Technology Corp. | Skill-value queuing in a call center |
JP2000092213A (en) | 1998-08-27 | 2000-03-31 | Lucent Technol Inc | Method and system for processing communication requiring skill for processing using queue |
US6064731A (en) | 1998-10-29 | 2000-05-16 | Lucent Technologies Inc. | Arrangement for improving retention of call center's customers |
US7068775B1 (en) | 1998-12-02 | 2006-06-27 | Concerto Software, Inc. | System and method for managing a hold queue based on customer information retrieved from a customer database |
US6333979B1 (en) | 1998-12-17 | 2001-12-25 | At&T Corp. | Method and apparatus for assigning incoming communications to communications processing centers |
US6798876B1 (en) | 1998-12-29 | 2004-09-28 | At&T Corp. | Method and apparatus for intelligent routing of incoming calls to representatives in a call center |
US6434230B1 (en) | 1999-02-02 | 2002-08-13 | Avaya Technology Corp. | Rules-based queuing of calls to call-handling resources |
EP1032188A1 (en) * | 1999-02-02 | 2000-08-30 | Lucent Technologies Inc. | Rules-based queuing of calls to call-handling resources |
JP2000236393A (en) | 1999-02-02 | 2000-08-29 | Lucent Technol Inc | Request distribution method and its device |
US6496580B1 (en) | 1999-02-22 | 2002-12-17 | Aspect Communications Corp. | Method and apparatus for servicing queued requests |
US6577727B1 (en) * | 1999-03-01 | 2003-06-10 | Rockwell Electronic Commerce Corp. | ACD tier based routing |
US6424709B1 (en) | 1999-03-22 | 2002-07-23 | Rockwell Electronic Commerce Corp. | Skill-based call routing |
US6519335B1 (en) | 1999-04-08 | 2003-02-11 | Lucent Technologies Inc. | Apparatus, method and system for personal telecommunication incoming call screening and alerting for call waiting applications |
US7236584B2 (en) | 1999-06-17 | 2007-06-26 | Genesys Telecommunications Laboratories, Inc. | Method and apparatus for providing fair access to agents in a communication center |
US6504920B1 (en) | 1999-06-18 | 2003-01-07 | Shmuel Okon | Method and system for initiating conversations between callers having common interests |
US6829348B1 (en) | 1999-07-30 | 2004-12-07 | Convergys Cmg Utah, Inc. | System for customer contact information management and methods for using same |
US7092509B1 (en) | 1999-09-21 | 2006-08-15 | Microlog Corporation | Contact center system capable of handling multiple media types of contacts and method for using the same |
US6570980B1 (en) | 1999-10-11 | 2003-05-27 | Alcatel | Method of distributing telephone calls to ordered agents |
US6389132B1 (en) | 1999-10-13 | 2002-05-14 | Avaya Technology Corp. | Multi-tasking, web-based call center |
US6775378B1 (en) | 1999-10-25 | 2004-08-10 | Concerto Software, Inc | Blended agent contact center |
US6832203B1 (en) | 1999-11-05 | 2004-12-14 | Cim, Ltd. | Skills based contact routing |
US20060233346A1 (en) | 1999-11-16 | 2006-10-19 | Knowlagent, Inc. | Method and system for prioritizing performance interventions |
US20020059164A1 (en) | 1999-12-01 | 2002-05-16 | Yuri Shtivelman | Method and apparatus for auto-assisting agents in agent-hosted communications sessions |
EP1107557A2 (en) | 1999-12-06 | 2001-06-13 | Avaya Technology Corp. | System for automatically routing calls to call center agents in an agent surplus condition based on delay probabilities |
US6408066B1 (en) | 1999-12-15 | 2002-06-18 | Lucent Technologies Inc. | ACD skill-based routing |
US20010024497A1 (en) * | 2000-01-07 | 2001-09-27 | Alasdhair Campbell | Customer communication service system |
JP2001292236A (en) | 2000-01-18 | 2001-10-19 | Avaya Technology Corp | Method and device for multivariate work assignment to be used inside call center |
US6661889B1 (en) | 2000-01-18 | 2003-12-09 | Avaya Technology Corp. | Methods and apparatus for multi-variable work assignment in a call center |
US7050567B1 (en) | 2000-01-27 | 2006-05-23 | Avaya Technology Corp. | Call management system using dynamic queue position |
US20020018554A1 (en) | 2000-01-27 | 2002-02-14 | Jensen Roy A. | Call management system using fast response dynamic threshold adjustment |
US6714643B1 (en) * | 2000-02-24 | 2004-03-30 | Siemens Information & Communication Networks, Inc. | System and method for implementing wait time estimation in automatic call distribution queues |
WO2001063894A2 (en) | 2000-02-24 | 2001-08-30 | Siemens Information And Communication Networks, Inc. | Wait time estimation in automatic call distribution queues |
US6763104B1 (en) | 2000-02-24 | 2004-07-13 | Teltronics, Inc. | Call center IVR and ACD scripting method and graphical user interface |
US6587556B1 (en) | 2000-02-25 | 2003-07-01 | Teltronics, Inc. | Skills based routing method and system for call center |
US6603854B1 (en) | 2000-02-25 | 2003-08-05 | Teltronics, Inc. | System and method for evaluating agents in call center |
US6707904B1 (en) | 2000-02-25 | 2004-03-16 | Teltronics, Inc. | Method and system for collecting reports for call center monitoring by supervisor |
US6324282B1 (en) | 2000-03-02 | 2001-11-27 | Knowlagent, Inc. | Method and system for delivery of individualized training to call center agents |
US20010032120A1 (en) | 2000-03-21 | 2001-10-18 | Stuart Robert Oden | Individual call agent productivity method and system |
US6859529B2 (en) | 2000-04-12 | 2005-02-22 | Austin Logistics Incorporated | Method and system for self-service scheduling of inbound inquiries |
US6956941B1 (en) | 2000-04-12 | 2005-10-18 | Austin Logistics Incorporated | Method and system for scheduling inbound inquiries |
US20020046030A1 (en) | 2000-05-18 | 2002-04-18 | Haritsa Jayant Ramaswamy | Method and apparatus for improved call handling and service based on caller's demographic information |
US7245719B2 (en) | 2000-06-30 | 2007-07-17 | Matsushita Electric Industrial Co., Ltd. | Recording method and apparatus, optical disk, and computer-readable storage medium |
US6774932B1 (en) | 2000-09-26 | 2004-08-10 | Ewing Golf Associates, Llc | System for enhancing the televised broadcast of a golf game |
US6970821B1 (en) | 2000-09-26 | 2005-11-29 | Rockwell Electronic Commerce Technologies, Llc | Method of creating scripts by translating agent/customer conversations |
US6978006B1 (en) | 2000-10-12 | 2005-12-20 | Intervoice Limited Partnership | Resource management utilizing quantified resource attributes |
US20050135596A1 (en) | 2000-12-26 | 2005-06-23 | Aspect Communications Corporation | Method and system for providing personalized service over different contact channels |
US20020082736A1 (en) | 2000-12-27 | 2002-06-27 | Lech Mark Matthew | Quality management system |
US6639976B1 (en) | 2001-01-09 | 2003-10-28 | Bellsouth Intellectual Property Corporation | Method for parity analysis and remedy calculation |
US20020111172A1 (en) | 2001-02-14 | 2002-08-15 | Dewolf Frederik M. | Location based profiling |
US7039166B1 (en) | 2001-03-05 | 2006-05-02 | Verizon Corporate Services Group Inc. | Apparatus and method for visually representing behavior of a user of an automated response system |
US6922466B1 (en) | 2001-03-05 | 2005-07-26 | Verizon Corporate Services Group Inc. | System and method for assessing a call center |
US20020138285A1 (en) | 2001-03-22 | 2002-09-26 | Decotiis Allen R. | System, method and article of manufacture for generating a model to analyze a propensity of customers to purchase products and services |
JP2002297900A (en) | 2001-03-30 | 2002-10-11 | Ibm Japan Ltd | Control system for reception by businesses, user side terminal device, reception side terminal device, management server queue monitoring device, method of allocating reception side terminals, and storage medium |
US20130003959A1 (en) | 2001-03-30 | 2013-01-03 | International Business Machines Corporation | Reception management system and method of handling transactions |
US20020143599A1 (en) | 2001-04-02 | 2002-10-03 | Illah Nourbakhsh | Method and apparatus for long-range planning |
US20020161765A1 (en) | 2001-04-30 | 2002-10-31 | Kundrot Andrew Joseph | System and methods for standardizing data for design review comparisons |
US20020196845A1 (en) | 2001-06-13 | 2002-12-26 | Richards James L. | Method and apparatus for improving received signal quality in an impluse radio system |
US7916858B1 (en) | 2001-06-25 | 2011-03-29 | Toby Heller | Agent training sensitive call routing system |
US20030002653A1 (en) | 2001-06-27 | 2003-01-02 | Serdar Uckun | Graphical method and system for visualizing performance levels in time-varying environment |
US20030081757A1 (en) | 2001-09-24 | 2003-05-01 | Mengshoel Ole J. | Contact center autopilot architecture |
US20030095652A1 (en) | 2001-09-24 | 2003-05-22 | Mengshoel Ole J. | Contact center autopilot algorithms |
US7266251B2 (en) | 2001-11-23 | 2007-09-04 | Simon Michael Rowe | Method and apparatus for generating models of individuals |
US7245716B2 (en) | 2001-12-12 | 2007-07-17 | International Business Machines Corporation | Controlling hold queue position adjustment |
US7103172B2 (en) | 2001-12-12 | 2006-09-05 | International Business Machines Corporation | Managing caller profiles across multiple hold queues according to authenticated caller identifiers |
JP2003187061A (en) | 2001-12-19 | 2003-07-04 | Fuji Mach Mfg Co Ltd | User support system, server device of user support system, operator selecting program and operator selecting method of user support system |
US7209549B2 (en) | 2002-01-18 | 2007-04-24 | Sbc Technology Resources, Inc. | Method and system for routing calls based on a language preference |
US20030169870A1 (en) | 2002-03-05 | 2003-09-11 | Michael Stanford | Automatic call distribution |
US7269253B1 (en) | 2002-03-07 | 2007-09-11 | Wai Wu | Telephony control system with intelligent call routing |
US7023979B1 (en) | 2002-03-07 | 2006-04-04 | Wai Wu | Telephony control system with intelligent call routing |
US20030174830A1 (en) | 2002-03-15 | 2003-09-18 | Boyer David G. | Topical dynamic chat |
US20030217016A1 (en) | 2002-04-29 | 2003-11-20 | Pericle Anthony J. | Pricing model system and method |
JP2004056517A (en) | 2002-07-19 | 2004-02-19 | Fujitsu Ltd | Transaction distribution program |
US20040028211A1 (en) | 2002-08-08 | 2004-02-12 | Rockwell Electronic Commerce Technologies, Llc | Method and apparatus for determining a real time average speed of answer in an automatic call distribution system |
US20040057416A1 (en) | 2002-09-19 | 2004-03-25 | Mccormack Tony | Determining statistics about the behaviour of a call center at a past time instant |
US6937715B2 (en) | 2002-09-26 | 2005-08-30 | Nortel Networks Limited | Contact center management |
US20040098274A1 (en) | 2002-11-15 | 2004-05-20 | Dezonno Anthony J. | System and method for predicting customer contact outcomes |
US20040096050A1 (en) | 2002-11-19 | 2004-05-20 | Das Sharmistha Sarkar | Accent-based matching of a communicant with a call-center agent |
US20040210475A1 (en) | 2002-11-25 | 2004-10-21 | Starnes S. Renee | Variable compensation tool and system for customer service agents |
US7184540B2 (en) | 2002-11-26 | 2007-02-27 | Rockwell Electronic Commerce Technologies, Llc | Personality based matching of callers to agents in a communication system |
US20040101127A1 (en) | 2002-11-26 | 2004-05-27 | Dezonno Anthony J. | Personality based routing |
US20060110052A1 (en) | 2002-11-29 | 2006-05-25 | Graham Finlayson | Image signal processing |
US20040109555A1 (en) | 2002-12-06 | 2004-06-10 | Bellsouth Intellectual Property | Method and system for improved routing of repair calls to a call center |
JP2004227228A (en) | 2003-01-22 | 2004-08-12 | Kazunori Fujisawa | Order accepting system by portable telephone |
US8229102B2 (en) | 2003-03-06 | 2012-07-24 | At&T Intellectual Property I, L.P. | System and method for providing customer activities while in queue |
US20080273687A1 (en) | 2003-03-06 | 2008-11-06 | At&T Intellectual Property I, L.P. | System and Method for Providing Customer Activities While in Queue |
US7676034B1 (en) * | 2003-03-07 | 2010-03-09 | Wai Wu | Method and system for matching entities in an auction |
US20040267816A1 (en) | 2003-04-07 | 2004-12-30 | Russek David J. | Method, system and software for digital media narrative personalization |
US20040230438A1 (en) | 2003-05-13 | 2004-11-18 | Sbc Properties, L.P. | System and method for automated customer feedback |
US20090304172A1 (en) | 2003-06-13 | 2009-12-10 | Manuel Becerra | Call processing system |
US20050135593A1 (en) | 2003-06-13 | 2005-06-23 | Manuel Becerra | Call processing system |
US7593521B2 (en) | 2003-06-13 | 2009-09-22 | Assurant, Inc. | Call processing system |
US7050566B2 (en) | 2003-06-13 | 2006-05-23 | Assurant, Inc. | Call processing system |
US7062031B2 (en) | 2003-06-13 | 2006-06-13 | Assurant, Inc. | Call processing system |
US7725339B1 (en) | 2003-07-07 | 2010-05-25 | Ac2 Solutions, Inc. | Contact center scheduling using integer programming |
US20050013428A1 (en) | 2003-07-17 | 2005-01-20 | Walters James Frederick | Contact center optimization program |
US7158628B2 (en) | 2003-08-20 | 2007-01-02 | Knowlagent, Inc. | Method and system for selecting a preferred contact center agent based on agent proficiency and performance and contact center state |
US20050043986A1 (en) | 2003-08-20 | 2005-02-24 | Mcconnell Matthew G.A. | Method and system for selecting a preferred contact center agent based on agent proficiency and performance and contact center state |
US8010607B2 (en) | 2003-08-21 | 2011-08-30 | Nortel Networks Limited | Management of queues in contact centres |
US20050047581A1 (en) | 2003-08-25 | 2005-03-03 | Shmuel Shaffer | Method and system for managing calls of an automatic call distributor |
US20050047582A1 (en) | 2003-08-25 | 2005-03-03 | Cisco Technology, Inc. | Method and system for utilizing proxy designation in a call system |
US7231034B1 (en) | 2003-10-21 | 2007-06-12 | Acqueon Technologies, Inc. | “Pull” architecture contact center |
US20050129212A1 (en) | 2003-12-12 | 2005-06-16 | Parker Jane S. | Workforce planning system incorporating historic call-center related data |
US20060098803A1 (en) | 2003-12-18 | 2006-05-11 | Sbc Knowledge Ventures, L.P. | Intelligently routing customer communications |
US7899177B1 (en) | 2004-01-12 | 2011-03-01 | Sprint Communications Company L.P. | Call-routing system and method |
US20050187802A1 (en) * | 2004-02-13 | 2005-08-25 | Koeppel Harvey R. | Method and system for conducting customer needs, staff development, and persona-based customer routing analysis |
US20050195960A1 (en) | 2004-03-03 | 2005-09-08 | Cisco Technology, Inc. | Method and system for automatic call distribution based on location information for call center agents |
US7734032B1 (en) | 2004-03-31 | 2010-06-08 | Avaya Inc. | Contact center and method for tracking and acting on one and done customer contacts |
US8000989B1 (en) | 2004-03-31 | 2011-08-16 | Avaya Inc. | Using true value in routing work items to resources |
US8126133B1 (en) * | 2004-04-01 | 2012-02-28 | Liveops, Inc. | Results-based routing of electronic communications |
US20050286709A1 (en) | 2004-06-28 | 2005-12-29 | Steve Horton | Customer service marketing |
US20060062376A1 (en) * | 2004-09-22 | 2006-03-23 | Dale Pickford | Call center services system and method |
US20120278136A1 (en) | 2004-09-27 | 2012-11-01 | Avaya Inc. | Dynamic work assignment strategies based on multiple aspects of agent proficiency |
US20080008309A1 (en) | 2004-12-07 | 2008-01-10 | Dezonno Anthony J | Method and apparatus for customer key routing |
US20060184040A1 (en) | 2004-12-09 | 2006-08-17 | Keller Kurtis P | Apparatus, system and method for optically analyzing a substrate |
US20060124113A1 (en) | 2004-12-10 | 2006-06-15 | Roberts Forest G Sr | Marine engine fuel cooling system |
US7398224B2 (en) | 2005-03-22 | 2008-07-08 | Kim A. Cooper | Performance motivation systems and methods for contact centers |
US20080267386A1 (en) | 2005-03-22 | 2008-10-30 | Cooper Kim A | Performance Motivation Systems and Methods for Contact Centers |
US20060222164A1 (en) | 2005-04-04 | 2006-10-05 | Saeed Contractor | Simultaneous usage of agent and service parameters |
WO2006124113A2 (en) | 2005-05-17 | 2006-11-23 | Telephony@Work, Inc. | Dynamic customer satisfaction routing |
US20060262922A1 (en) | 2005-05-17 | 2006-11-23 | Telephony@Work, Inc. | Dynamic customer satisfaction routing |
US8885812B2 (en) * | 2005-05-17 | 2014-11-11 | Oracle International Corporation | Dynamic customer satisfaction routing |
US20060262918A1 (en) | 2005-05-18 | 2006-11-23 | Sbc Knowledge Ventures L.P. | VPN PRI OSN independent authorization levels |
US8094790B2 (en) | 2005-05-18 | 2012-01-10 | Mattersight Corporation | Method and software for training a customer service representative by analysis of a telephonic interaction between a customer and a contact center |
US7995717B2 (en) | 2005-05-18 | 2011-08-09 | Mattersight Corporation | Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto |
US20110031112A1 (en) | 2005-05-25 | 2011-02-10 | Manoocher Birang | In-situ profile measurement in an electroplating process |
JP2006345132A (en) | 2005-06-08 | 2006-12-21 | Fujitsu Ltd | Incoming distributing program |
US8175253B2 (en) | 2005-07-07 | 2012-05-08 | At&T Intellectual Property I, L.P. | System and method for automated performance monitoring for a call servicing system |
US20070036323A1 (en) | 2005-07-07 | 2007-02-15 | Roger Travis | Call center routing |
US20110125048A1 (en) | 2005-08-02 | 2011-05-26 | Brainscope Company, Inc. | Method for assessing brain function and portable automatic brain function assessment apparatus |
US20070071222A1 (en) | 2005-09-16 | 2007-03-29 | Avaya Technology Corp. | Method and apparatus for the automated delivery of notifications to contacts based on predicted work prioritization |
US20070121602A1 (en) | 2005-11-18 | 2007-05-31 | Cisco Technology | VoIP CALL ROUTING |
US7864944B2 (en) | 2005-11-29 | 2011-01-04 | Cisco Technology, Inc. | Optimal call speed for call center agents |
US20070121829A1 (en) | 2005-11-30 | 2007-05-31 | On-Q Telecom Systems Co., Inc | Virtual personal assistant for handling calls in a communication system |
US7826597B2 (en) | 2005-12-09 | 2010-11-02 | At&T Intellectual Property I, L.P. | Methods and apparatus to handle customer support requests |
US20070154007A1 (en) | 2005-12-22 | 2007-07-05 | Michael Bernhard | Method and device for agent-optimized operation of a call center |
US20070174111A1 (en) | 2006-01-24 | 2007-07-26 | International Business Machines Corporation | Evaluating a performance of a customer support resource in the context of a peer group |
US20080181389A1 (en) | 2006-02-22 | 2008-07-31 | John Bourne | Systems and methods for workforce optimization and integration |
US20070198322A1 (en) | 2006-02-22 | 2007-08-23 | John Bourne | Systems and methods for workforce optimization |
US8300798B1 (en) | 2006-04-03 | 2012-10-30 | Wai Wu | Intelligent communication routing system and method |
US20080002823A1 (en) | 2006-05-01 | 2008-01-03 | Witness Systems, Inc. | System and Method for Integrated Workforce and Quality Management |
US20070274502A1 (en) | 2006-05-04 | 2007-11-29 | Brown Donald E | System and method for providing a baseline for quality metrics in a contact center |
JP2007324708A (en) | 2006-05-30 | 2007-12-13 | Nec Corp | Telephone answering method, call center system, program for call center, and program recording medium |
US7961866B1 (en) | 2006-06-02 | 2011-06-14 | West Corporation | Method and computer readable medium for geographic agent routing |
US20080046386A1 (en) | 2006-07-03 | 2008-02-21 | Roberto Pieraccinii | Method for making optimal decisions in automated customer care |
US20090234710A1 (en) | 2006-07-17 | 2009-09-17 | Asma Belgaied Hassine | Customer centric revenue management |
US20080065476A1 (en) | 2006-09-07 | 2008-03-13 | Loyalty Builders, Inc. | Online direct marketing system |
US20090043670A1 (en) | 2006-09-14 | 2009-02-12 | Henrik Johansson | System and method for network-based purchasing |
US20080118052A1 (en) | 2006-11-17 | 2008-05-22 | Mounire El Houmaidi | Methods, systems, and computer program products for rule-based direction of customer service calls |
US20080152122A1 (en) * | 2006-12-20 | 2008-06-26 | Nice Systems Ltd. | Method and system for automatic quality evaluation |
US7940917B2 (en) | 2007-01-24 | 2011-05-10 | International Business Machines Corporation | Managing received calls |
US20080199000A1 (en) | 2007-02-21 | 2008-08-21 | Huawei Technologies Co., Ltd. | System and method for monitoring agents' performance in a call center |
US20090086933A1 (en) | 2007-10-01 | 2009-04-02 | Labhesh Patel | Call routing using voice signature and hearing characteristics |
US8249245B2 (en) | 2007-11-13 | 2012-08-21 | Amazon Technologies, Inc. | System and method for automated call distribution |
US20090190743A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Separate matching models based on type of phone associated with a caller |
US20130216036A1 (en) * | 2008-01-28 | 2013-08-22 | The Resource Group International, Ltd. | Systems and methods for routing callers to an agent in a contact center |
US9413894B2 (en) * | 2008-01-28 | 2016-08-09 | Afiniti International Holdings, Ltd. | Systems and methods for routing callers to an agent in a contact center |
US20090232294A1 (en) * | 2008-01-28 | 2009-09-17 | Qiaobing Xie | Skipping a caller in queue for a call routing center |
US9288325B2 (en) * | 2008-01-28 | 2016-03-15 | Satmap International Holdings Limited | Systems and methods for routing callers to an agent in a contact center |
US9288326B2 (en) * | 2008-01-28 | 2016-03-15 | Satmap International Holdings Limited | Systems and methods for routing a contact to an agent in a contact center |
WO2009097210A1 (en) | 2008-01-28 | 2009-08-06 | The Resource Group International, Ltd. | Routing callers from a set of callers in an out of order sequence |
US20090190748A1 (en) | 2008-01-28 | 2009-07-30 | Zia Chishti | Systems and methods for routing callers to an agent in a contact center |
US20090190740A1 (en) | 2008-01-28 | 2009-07-30 | Zia Chishti | Systems and Methods for Routing Callers to an Agent in a Contact Center |
US20090190747A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Call routing methods and systems based on multiple variable standardized scoring |
US20090190750A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Routing callers out of queue order for a call center routing system |
US9215323B2 (en) * | 2008-01-28 | 2015-12-15 | Satmap International Holdings, Ltd. | Selective mapping of callers in a call center routing system |
US20090190746A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Systems and methods for routing callers to an agent in a contact center |
JP2011511533A (en) | 2008-01-28 | 2011-04-07 | ザ リソース グループ インターナショナル, リミテッド | System and method for routing callers to contact center agents |
JP2011511536A (en) | 2008-01-28 | 2011-04-07 | ザ リソース グループ インターナショナル, リミテッド | Route determination with out-of-order queue of callers from a set of callers |
CN102017591A (en) | 2008-01-28 | 2011-04-13 | 资源集团国际有限公司 | Routing callers from a set of callers in an out of order sequence |
US9426296B2 (en) * | 2008-01-28 | 2016-08-23 | Afiniti International Holdings, Ltd. | Systems and methods for routing callers to an agent in a contact center |
US20090190745A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Pooling callers for a call center routing system |
US20170064081A1 (en) * | 2008-01-28 | 2017-03-02 | Satmap International Holdings Limited | Techniques for hybrid behavioral pairing in a contact center system |
US20150237208A1 (en) * | 2008-01-28 | 2015-08-20 | Satmap International Holdings Ltd. | Systems and methods for routing callers to an agent in a contact center |
US20090190749A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Jumping callers held in queue for a call center routing system |
US20090190744A1 (en) | 2008-01-28 | 2009-07-30 | The Resource Group International Ltd | Routing callers from a set of callers based on caller data |
US8712821B2 (en) * | 2008-01-28 | 2014-04-29 | Satmap International Holdings Limited | Separate matching models based on type of phone associated with a caller |
US20150237213A1 (en) * | 2008-01-28 | 2015-08-20 | Satmap International Holdings Ltd. | Systems and methods for routing callers to an agent in a contact center |
US20170064080A1 (en) * | 2008-01-28 | 2017-03-02 | Satmap International Holdings Limited | Techniques for hybrid behavioral pairing in a contact center system |
AU2008349500C1 (en) | 2008-01-28 | 2014-05-01 | Afiniti, Ltd. | Systems and methods for routing callers to an agent in a contact center |
US20150237211A1 (en) * | 2008-01-28 | 2015-08-20 | Satmap International Holdings Ltd. | Systems and methods for routing callers to an agent in a contact center |
US20150237212A1 (en) * | 2008-01-28 | 2015-08-20 | Satmap International Holdings Ltd. | Systems and methods for routing callers to an agent in a contact center |
US8670548B2 (en) * | 2008-01-28 | 2014-03-11 | Satmap International Holdings Limited | Jumping callers held in queue for a call center routing system |
JP5421928B2 (en) | 2008-01-28 | 2014-02-19 | ザ リソース グループ インターナショナル, リミテッド | System and method for routing callers to contact center agents |
US8718271B2 (en) * | 2008-01-28 | 2014-05-06 | Satmap International Holdings Limited | Call routing methods and systems based on multiple variable standardized scoring |
US8731178B2 (en) * | 2008-01-28 | 2014-05-20 | Satmap International Holdings Limited | Systems and methods for routing callers to an agent in a contact center |
US20150237209A1 (en) * | 2008-01-28 | 2015-08-20 | Satmap International Holdings Ltd. | Systems and methods for routing callers to an agent in a contact center |
AU2009209317B2 (en) | 2008-01-28 | 2014-01-30 | Afiniti, Ltd. | Routing callers from a set of callers in an out of order sequence |
US8737595B2 (en) * | 2008-01-28 | 2014-05-27 | Satmap International Holdings Limited | Systems and methods for routing callers to an agent in a contact center |
US8781100B2 (en) * | 2008-01-28 | 2014-07-15 | Satmap International Holdings Limited | Probability multiplier process for call center routing |
US20090323921A1 (en) | 2008-01-28 | 2009-12-31 | The Resource Group International Ltd | Probability multiplier process for call center routing |
US8359219B2 (en) * | 2008-01-28 | 2013-01-22 | The Resource Group International Ltd | Systems and methods for routing callers to an agent in a contact center |
US20130101109A1 (en) * | 2008-01-28 | 2013-04-25 | The Resource Group International Ltd | Systems and methods for routing callers to an agent in a contact center |
US8433597B2 (en) * | 2008-01-28 | 2013-04-30 | The Resource Group International Ltd. | Systems and methods for routing callers to an agent in a contact center |
US8903079B2 (en) * | 2008-01-28 | 2014-12-02 | Satmap International Holdings Limited | Routing callers from a set of callers based on caller data |
NZ587101A (en) | 2008-01-28 | 2013-07-26 | Resource Group International Ltd | Matching call centre agents with callers by using a pattern matching algorithm and a potential for a selected interaction for each agent-caller match |
NZ587100A (en) | 2008-01-28 | 2013-07-26 | Resource Group International Ltd | Matching call centre agents with callers by using a pattern matching algorithm and determining a probability score |
US9300802B1 (en) * | 2008-01-28 | 2016-03-29 | Satmap International Holdings Limited | Techniques for behavioral pairing in a contact center system |
US20090245493A1 (en) | 2008-03-28 | 2009-10-01 | Avaya Inc. | System and Method for Displaying Call Flows and Call Statistics |
US20090318111A1 (en) | 2008-06-19 | 2009-12-24 | Verizon Data Services Llc | Voice portal to voice portal voip transfer |
US20100020961A1 (en) | 2008-07-28 | 2010-01-28 | The Resource Group International Ltd | Routing callers to agents based on time effect data |
US20100020959A1 (en) | 2008-07-28 | 2010-01-28 | The Resource Group International Ltd | Routing callers to agents based on personality data of agents |
JP5649575B2 (en) | 2008-08-29 | 2015-01-07 | サットマップ インターナショナル ホールディングス リミテッド | Call routing method and system based on multiple variable standardization scores and shadow queues |
US20100054431A1 (en) | 2008-08-29 | 2010-03-04 | International Business Machines Corporation | Optimized method to select and retrieve a contact center transaction from a set of transactions stored in a queuing mechanism |
US8781106B2 (en) * | 2008-08-29 | 2014-07-15 | Satmap International Holdings Limited | Agent satisfaction data for call routing based on pattern matching algorithm |
US8644490B2 (en) * | 2008-08-29 | 2014-02-04 | Satmap International Holdings Limited | Shadow queue for callers in a performance/pattern matching based call routing system |
US20100054452A1 (en) | 2008-08-29 | 2010-03-04 | Afzal Hassan | Agent satisfaction data for call routing based on pattern matching alogrithm |
US20100054453A1 (en) | 2008-08-29 | 2010-03-04 | Stewart Randall R | Shadow queue for callers in a performance/pattern matching based call routing system |
NZ591486A (en) | 2008-08-29 | 2013-10-25 | Resource Group International Ltd | Call routing methods and systems based on multiple variable standardized scoring and shadow queue |
US20100086120A1 (en) * | 2008-10-02 | 2010-04-08 | Compucredit Intellectual Property Holdings Corp. Ii | Systems and methods for call center routing |
US8140441B2 (en) | 2008-10-20 | 2012-03-20 | International Business Machines Corporation | Workflow management in a global support organization |
US8824658B2 (en) | 2008-11-06 | 2014-09-02 | Satmap International Holdings Limited | Selective mapping of callers in a call center routing system |
NZ592781A (en) | 2008-11-06 | 2013-12-20 | Satmap Int Holdings Ltd | Two step routing procedure in a call center |
US20100111287A1 (en) * | 2008-11-06 | 2010-05-06 | The Resource Group International Ltd | Pooling callers for matching to agents based on pattern matching algorithms |
US20100111288A1 (en) | 2008-11-06 | 2010-05-06 | Afzal Hassan | Time to answer selector and advisor for call routing center |
AU2009311534B2 (en) | 2008-11-06 | 2014-04-24 | Afiniti, Ltd. | Two step routing procedure in a call center |
US20100111285A1 (en) | 2008-11-06 | 2010-05-06 | Zia Chishti | Balancing multiple computer models in a call center routing system |
US20100111286A1 (en) | 2008-11-06 | 2010-05-06 | Zia Chishti | Selective mapping of callers in a call center routing system |
WO2010053701A2 (en) | 2008-11-06 | 2010-05-14 | The Resource Group International Ltd | Systems and methods in a call center routing system |
US20150264178A1 (en) * | 2008-11-06 | 2015-09-17 | Satmap International Holdings Ltd. | Selective mapping of callers in a call center routing system |
US20150264179A1 (en) * | 2008-11-06 | 2015-09-17 | Satmap International Holdings Ltd. | Selective mapping of callers in a call center routing system |
CN102301688A (en) | 2008-11-06 | 2011-12-28 | 资源集团国际有限公司 | Systems And Methods In A Call Center Routing System |
US8472611B2 (en) * | 2008-11-06 | 2013-06-25 | The Resource Group International Ltd. | Balancing multiple computer models in a call center routing system |
JP5631326B2 (en) | 2008-11-06 | 2014-11-26 | サットマップ インターナショナル ホールディングス リミテッド | Two-step routing procedure at the call center |
US8634542B2 (en) * | 2008-12-09 | 2014-01-21 | Satmap International Holdings Limited | Separate pattern matching algorithms and computer models based on available caller data |
US20100142698A1 (en) * | 2008-12-09 | 2010-06-10 | The Resource Group International Ltd | Separate pattern matching algorithms and computer models based on available caller data |
US20100183138A1 (en) | 2009-01-16 | 2010-07-22 | Spottiswoode S James P | Selective mapping of callers in a call-center routing system based on individual agent settings |
US8295471B2 (en) | 2009-01-16 | 2012-10-23 | The Resource Group International | Selective mapping of callers in a call-center routing system based on individual agent settings |
US20110069821A1 (en) | 2009-09-21 | 2011-03-24 | Nikolay Korolev | System for Creation and Dynamic Management of Incoming Interactions |
WO2011081514A1 (en) | 2009-12-31 | 2011-07-07 | Petroliam Nasional Berhad (Petronas) | Method and apparatus for monitoring performance and anticipate failures of plant instrumentation |
US8699694B2 (en) * | 2010-08-26 | 2014-04-15 | Satmap International Holdings Limited | Precalculated caller-agent pairs for a call center routing system |
US8724797B2 (en) * | 2010-08-26 | 2014-05-13 | Satmap International Holdings Limited | Estimating agent performance in a call routing center system |
US20120051536A1 (en) * | 2010-08-26 | 2012-03-01 | The Resource Group International Ltd | Estimating agent performance in a call routing center system |
US20120051537A1 (en) * | 2010-08-26 | 2012-03-01 | The Resource Group International Ltd | Precalculated caller-agent pairs for a call center routing system |
US20120224680A1 (en) * | 2010-08-31 | 2012-09-06 | The Resource Group International Ltd | Predicted call time as routing variable in a call routing center system |
US8750488B2 (en) * | 2010-08-31 | 2014-06-10 | Satmap International Holdings Limited | Predicted call time as routing variable in a call routing center system |
US8929537B2 (en) * | 2012-03-26 | 2015-01-06 | Satmap International Holdings Limited | Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation |
US20150271332A1 (en) * | 2012-03-26 | 2015-09-24 | Satmap International Holdings Ltd. | Call mapping systems and methods using bayesian mean regression (bmr) |
US9025757B2 (en) * | 2012-03-26 | 2015-05-05 | Satmap International Holdings Limited | Call mapping systems and methods using bayesian mean regression (BMR) |
US8565410B2 (en) * | 2012-03-26 | 2013-10-22 | The Resource Group International, Ltd. | Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation |
US20150381810A1 (en) * | 2012-03-26 | 2015-12-31 | Satmap International Holdings Ltd. | Call mapping systems and methods using variance algorithm (va) and/or distribution compensation |
US20140044255A1 (en) * | 2012-03-26 | 2014-02-13 | The Resource Group International, Ltd. | Call mapping systems and methods using variance algorithm (va) and/or distribution compensation |
US20130251138A1 (en) * | 2012-03-26 | 2013-09-26 | The Resource Group International, Ltd. | Call mapping systems and methods using bayesian mean regression (bmr) |
US20130251137A1 (en) * | 2012-03-26 | 2013-09-26 | The Resource Group International, Ltd. | Call mapping systems and methods using variance algorithm (va) and/or distribution compensation |
US8879715B2 (en) * | 2012-03-26 | 2014-11-04 | Satmap International Holdings Limited | Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation |
US20140119533A1 (en) * | 2012-03-26 | 2014-05-01 | The Resource Group International, Ltd. | Call mapping systems and methods using variance algorithm (va) and/or distribution compensation |
US9277055B2 (en) * | 2012-03-26 | 2016-03-01 | Satmap International Holdings Limited | Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation |
US20150304497A1 (en) * | 2012-03-26 | 2015-10-22 | Satmap International Holdings Ltd. | Call mapping systems and methods using variance algorithm (va) and/or distribution compensation |
US20140044246A1 (en) | 2012-08-10 | 2014-02-13 | Avaya Inc. | System and method for determining call importance using social network context |
US20140079210A1 (en) | 2012-09-20 | 2014-03-20 | Avaya Inc. | Risks for waiting for well-matched |
US20140086402A1 (en) * | 2012-09-24 | 2014-03-27 | The Resource Group International, Ltd. | Matching using agent/caller sensitivity to performance |
US9020137B2 (en) * | 2012-09-24 | 2015-04-28 | Satmap International Holdings Limited | Matching using agent/caller sensitivity to performance |
US8792630B2 (en) * | 2012-09-24 | 2014-07-29 | Satmap International Holdings Limited | Use of abstracted data in pattern matching system |
US20140086404A1 (en) * | 2012-09-24 | 2014-03-27 | The Resource Group International, Ltd. | Matching using agent/caller sensitivity to performance |
US20140086403A1 (en) * | 2012-09-24 | 2014-03-27 | The Resource Group International, Ltd. | Use of abstracted data in pattern matching system |
US20140119531A1 (en) | 2012-10-30 | 2014-05-01 | Kenneth D. Tuchman | Method for providing support using answer engine and dialog rules |
US8995647B2 (en) | 2013-05-20 | 2015-03-31 | Xerox Corporation | Method and apparatus for routing a call using a hybrid call routing scheme with real-time automatic adjustment |
US20150055772A1 (en) | 2013-08-20 | 2015-02-26 | Avaya Inc. | Facilitating a contact center agent to select a contact in a contact center queue |
Non-Patent Citations (87)
Title |
---|
Anonymous. (2006) "Performance Based Routing in Profit Call Centers," The Decision Makers' Direct, located at www.decisioncraft.com, Issue Jan. 6, 2012 (3 pages). |
Anonymous. (2006). "Performance Based Routing in Profit Call Centers," The Decision Makers' Direct, located at www.decisioncraft.com, Issue 12/06/1, three pages. |
BusinessDictionary.com "Definition of Algorithm", downloaded from Internet Archive, Oct. 26, 2008. (Year: 2008). * |
Cleveland, William S., "Robust Locally Weighted Regression and Smoothing Scatterplots," Journal of the American Statistical Association, vol. 74, No. 368, pp. 829-836 (Dec. 1979). |
European Office Action issued by the European Patent Office for Application No. 09752022.5 dated Dec. 18, 2015 (7 pages). |
Gans, N. et al. (2003), "Telephone Call Centers: Tutorial, Review and Research Prospects," Manufacturing & Service Operations Management, vol. 5, No. 2, pp. 79-141. |
Gans, N. et al. (2003). "Telephone Call Centers: Tutorial, Review and Research Prospects," Manuscript, pp. 1-81. |
Indian Office Action issued by the Government of India for Indian Application No. 3748/CHENP/2011 dated Feb. 1, 2018 (7 pages). |
International Preliminary Report on Patentability issued in connection with PCT Application No. PCT/US2009/066254 dated Jun. 14, 2011 (6 pages). |
International Search Report issued in connection with International Application No. PCT/US13/33268 dated May 31, 2013 (2 pages). |
International Search Report issued in connection with PCT/US2009/061537 dated Jun. 7, 2010 (5 pages). |
International Search Report issued in connection with PCT/US2013/033261 dated Jun. 14, 2013 (3 pages). |
International Search Report issued in connection with PCT/US2013/33265 dated Jul. 9, 2013 (2 pages). |
International Search Report mailed Jul. 6, 2010 issued in connection with PCT/US2009/061537. |
International Search Report mailed on Feb. 24, 2010, for PCT Application No. PCT/US2009/066254, filed on Dec. 1, 2009, 4 pages. |
International Search Report mailed on Jun. 3, 2009, for PCT Application No. PCT/US2009/031611, filed on Jan. 21, 2009, 8 pages. |
International Search Report mailed on Mar. 12, 2010, for PCT Application No. PCT/US2009/054352, filed on Aug. 19, 2009, 5 pages. |
International Search Report mailed on Mar. 13, 2009, for PCT Application No. PCT/US2008/077042, filed on Sep. 19, 2008, 6 pages. |
Japanese Office Action issued by the Japan Patent Office for Application No. 2015-503396 dated Jun. 29, 2016 (7 pages). |
Koole, G. (2004). "Performance Analysis and Optimization in Customer Contact Centers," Proceedings of the Quantitative Evaluation of Systems, First International Conference, Sep. 27-30, 2004, four pages. |
Koole, G. et al. (Mar. 6, 2006). "An Overview of Routing and Staffing Algorithms in Multi-Skill Customer Contact Centers," Manuscript, 42 pages. |
Notice of Allowance dated Jun. 29, 2012 issued in connection with U.S. Appl. No. 12/355,618. |
Notice of Allowance dated Sep. 19, 2012 issued in connection with U.S. Appl. No. 12/180,382. |
Office Action dated Apr. 16, 2012 issued in connection with U.S. Appl. No. 12/331,210. |
Office Action dated Apr. 18, 2012 issued in connection with U.S. Appl. No. 12/266,418. |
Office Action dated Apr. 6, 2012 issued in connection with U.S. Appl. No. 12/021,251. |
Office Action dated Aug. 19, 2011 issued in connection with U.S. Appl. No. 12/202,097. |
Office Action dated Aug. 19, 2011 issued in connection with U.S. Appl. No. 12/331,186. |
Office Action dated Aug. 23, 2011 issued in connection with U.S. Appl. No. 12/180,382. |
Office Action dated Aug. 31, 2012 issued in connection with Mexican Patent Application No. MX/a/2011/004815. |
Office Action dated Aug. 4, 2011 issued in connection with U.S. Appl. No. 12/267,459. |
Office Action dated Aug. 9, 2011 issued in connection with U.S. Appl. No. 12/202,101. |
Office Action dated Dec. 31, 2012 issued in connection with U.S. Appl. No. 12/869,645. |
Office Action dated Dec. 31, 2012 issued in connection with U.S. Appl. No. 12/869,654. |
Office Action dated Feb. 3, 2012 issued in connection with U.S. Appl. No. 12/202,091. |
Office Action dated Feb. 3, 2012 issued in connection with U.S. Appl. No. 12/202,097. |
Office Action dated Jan. 19, 2012 issued in connection with U.S. Appl. No. 12/266,415. |
Office Action dated Jan. 23, 2012 issued in connection with U.S. Appl. No. 12/331,186. |
Office Action dated Jun. 18, 2012 issued in connection with U.S. Appl. No. 12/331,201. |
Office Action dated Jun. 29, 2012 issued in connection with U.S. Appl. No. 12/331,153. |
Office Action dated Jun. 7, 2012 issued in connection with U.S. Appl. No. 12/331,181. |
Office Action dated Jun. 7, 2012 issued in connection with U.S. Appl. No. 12/355,602. |
Office Action dated Jun. 8, 2012 issued in connection with U.S. Appl. No. 12/266,446. |
Office Action dated Mar. 1, 2012 issued in connection with U.S. Appl. No. 12/180,382. |
Office Action dated Mar. 15, 2012 issued in connection with U.S. Appl. No. 12/202,101. |
Office Action dated Mar. 19, 2012 issued in connection with U.S. Appl. No. 12/490,949. |
Office Action dated Mar. 2, 2012 issued in connection with U.S. Appl. No. 12/267,459. |
Office Action dated Mar. 30, 2012 issued in connection with U.S. Appl. No. 12/267,471. |
Office Action dated May 11, 2012 issued in connection with U.S. Appl. No. 12/266,415. |
Office Action dated May 11, 2012 issued in connection with U.S. Appl. No. 12/331,195. |
Office Action dated Oct. 11, 2012 issued in connection with U.S. Appl. No. 12/267,459. |
Office Action dated Oct. 29, 2012 issued in connection with U.S. Appl. No. 12/490,949. |
Office Action dated Oct. 7, 2011 issued in connection with U.S. Appl. No. 12/331,195. |
Office Action dated Oct. 7, 2011 issued in connection with U.S. Appl. No. 12/331,210. |
Office Action dated Oct. 9, 2012 issued in connection with U.S. Appl. No. 12/202,101. |
Office Action dated Sep. 12, 2011 issued in connection with U.S. Appl. No. 12/266,446. |
Office Action dated Sep. 13, 2011 issued in connection with U.S. Appl. No. 12/331,181. |
Office Action dated Sep. 15, 2011 issued in connection with U.S. Appl. No. 12/266,418. |
Office Action dated Sep. 19, 2011 issued in connection with U.S. Appl. No. 12/021,251. |
Office Action dated Sep. 23, 2011 issued in connection with U.S. Appl. No. 12/355,602. |
Office Action dated Sep. 26, 2011 issued in connection with U.S. Appl. No. 12/331,153. |
Office Action dated Sep. 26, 2011 issued in connection with U.S. Appl. No. 12/355,618. |
Office Action dated Sep. 6, 2011 issued in connection with U.S. Appl. No. 12/202,091. |
Press, W. H. and Rybicki, G. B., "Fast Algorithm for Spectral Analysis of Unevenly Sampled Data," The Astrophysical Journal, vol. 338, pp. 277-280 (Mar. 1, 1989). |
Riedmiller, M. et al. (1993). "A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm," 1993 IEEE International Conference on Neural Networks, San Francisco, CA, Mar. 28-Apr. 1, 1993, 1:586-591. |
Stanley et al., "Improving call center operations using performance-based routing strategies," Calif. Journal of Operations Management, 6(1), 24-32, Feb. 2008; retrieved from http://userwww.sfsu.edu/saltzman/Publist.html. |
Stanley, J., R. Saltzman and V. Mehrotra "Call Center Operations Using Performance-Based Routing Strategies", California Journal of Operations Management, vol. 6, No. 1, pp. 24-32, Feb. 2008. * |
Subsequent Substantive Examination Report issued in connection with Philippines Application No. 1-2010-501705 dated Jul. 14, 2014 (1 page). |
Substantive Examination Report issued in connection with Philippines Application No. 1/2011/500868 dated May 2, 2014 (1 page). |
U.S. Appl. No. 12/266,415, filed Nov. 6, 2008, Afzal et al. |
U.S. Appl. No. 12/266,418, filed Nov. 6, 2008, Xie et al. |
U.S. Appl. No. 12/266,446, filed Nov. 6, 2008, Chishti. |
U.S. Appl. No. 12/331,153, filed Dec. 9, 2008, Spottiswoode et al. |
U.S. Appl. No. 12/355,602, filed Jan. 16, 2009, Xie et al. |
U.S. Appl. No. 12/869,645, filed Aug. 26, 2010, Chishti et al. |
U.S. Appl. No. 12/869,654, filed Aug. 26, 2010, Chishti et al. |
U.S. Appl. No. 13/221,692, filed Aug. 30, 2011, Spottiswoode et al. |
Written Opinion mailed Jul. 6, 2010 issued in connection with PCT/US2009/061537. |
Written Opinion mailed on Feb. 24, 2010, for PCT Application No. PCT/US2009/066254, filed on Dec. 1, 2009, 6 pages. |
Written Opinion mailed on Jun. 3, 2009, for PCT Application No. PCT/US2009/031611, filed on Jan. 21, 2009, 8 pages. |
Written Opinion mailed on Mar. 12, 2010, for PCT Application No. PCT/US2009/054352, filed on Aug. 19, 2009, 6 pages. |
Written Opinion mailed on Mar. 13, 2009, for PCT Application No. PCT/US2008/077042, filed on Sep. 19, 2008, 6 pages. |
Written Opinion of the International Searching Authority issued in connection with International Application No. PCT/US13/33268 dated May 31, 2013, 7 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT Application No. PCT/US2008/077042 dated Mar. 13, 2009, 6 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT/US2009/061537 dated Jun. 7, 2010, 10 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/033261 dated Jun. 14, 2013, 7 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/33265 dated Jul. 9, 2013, 7 pages. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11257022B2 (en) * | 2020-03-31 | 2022-02-22 | Citrix Systems, Inc. | Computing system and methods providing support session assignment between support agent client devices and customer client devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE48476E1 (en) | Balancing multiple computer models in a call center routing system | |
US8634542B2 (en) | Separate pattern matching algorithms and computer models based on available caller data | |
EP2364545B1 (en) | Two step routing procedure in a call center | |
US8712821B2 (en) | Separate matching models based on type of phone associated with a caller | |
US10320986B2 (en) | Selective mapping of callers in a call center routing system | |
CA2713476C (en) | Routing callers from a set of callers in an out of order sequence | |
US8750488B2 (en) | Predicted call time as routing variable in a call routing center system | |
US10567586B2 (en) | Pooling callers for matching to agents based on pattern matching algorithms | |
US20090190744A1 (en) | Routing callers from a set of callers based on caller data | |
US20090190750A1 (en) | Routing callers out of queue order for a call center routing system | |
US20090190749A1 (en) | Jumping callers held in queue for a call center routing system | |
US20090232294A1 (en) | Skipping a caller in queue for a call routing center | |
USRE48412E1 (en) | Balancing multiple computer models in a call center routing system | |
CA3071165C (en) | Routing callers from a set of callers in an out of order sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ORIX VENTURES, LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:SATMAP INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:036917/0627 Effective date: 20151028 |
|
AS | Assignment |
Owner name: AFINITI INTERNATIONAL HOLDINGS, LTD., BERMUDA Free format text: CHANGE OF NAME;ASSIGNOR:SATMAP INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:038664/0965 Effective date: 20160331 |
|
AS | Assignment |
Owner name: ORIX VENTURES, LLC, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT TO REMOVE PATENT NUMBER 6996948 PREVIOUSLY RECORDED AT REEL: 036917 FRAME: 0627. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:SATMAP INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:043452/0193 Effective date: 20151028 |
|
AS | Assignment |
Owner name: AFINITI, LTD. (F/K/A SATMAP INTERNATIONAL HOLDINGS, LTD.), BERMUDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ORIX GROWTH CAPITAL, LLC (F/K/A ORIX VENTURES, LLC);REEL/FRAME:049444/0836 Effective date: 20190611 |
|
AS | Assignment |
Owner name: AFINITI, LTD., BERMUDA Free format text: CHANGE OF NAME;ASSIGNOR:AFINITI INTERNATIONAL HOLDINGS, LTD.;REEL/FRAME:054046/0775 Effective date: 20170403 |
|
AS | Assignment |
Owner name: VCP CAPITAL MARKETS, LLC, CALIFORNIA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AFINITI, LTD.;REEL/FRAME:068793/0261 Effective date: 20240823 |