Nothing Special   »   [go: up one dir, main page]

USRE44444E1 - Method of joining pipes in end to end relation - Google Patents

Method of joining pipes in end to end relation Download PDF

Info

Publication number
USRE44444E1
USRE44444E1 US13/532,902 US201213532902A USRE44444E US RE44444 E1 USRE44444 E1 US RE44444E1 US 201213532902 A US201213532902 A US 201213532902A US RE44444 E USRE44444 E US RE44444E
Authority
US
United States
Prior art keywords
pipe elements
segments
keys
pipe
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/532,902
Inventor
Douglas R. Dole
Anthony J. Cuvo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victaulic Co
Original Assignee
Victaulic Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victaulic Co filed Critical Victaulic Co
Priority to US13/532,902 priority Critical patent/USRE44444E1/en
Application granted granted Critical
Publication of USRE44444E1 publication Critical patent/USRE44444E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/06Joints with sleeve or socket with a divided sleeve or ring clamping around the pipe-ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L25/00Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means
    • F16L25/12Joints for pipes being spaced apart axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D17/00Forming single grooves in sheet metal or tubular or hollow articles
    • B21D17/04Forming single grooves in sheet metal or tubular or hollow articles by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • F16L17/02Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket
    • F16L17/025Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket the sealing rings having radially directed ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • F16L17/02Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket
    • F16L17/04Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket with longitudinally split or divided sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/02Joints with sleeve or socket with elastic sealing rings between pipe and sleeve or between pipe and socket, e.g. with rolling or other prefabricated profiled rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/06Joints with sleeve or socket with a divided sleeve or ring clamping around the pipe-ends
    • F16L21/065Joints with sleeve or socket with a divided sleeve or ring clamping around the pipe-ends tightened by tangentially-arranged threaded pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/04Flanged joints the flanges being connected by members tensioned in the radial plane
    • F16L23/08Flanged joints the flanges being connected by members tensioned in the radial plane connection by tangentially arranged pin and nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • F16L23/18Flanged joints characterised by the sealing means the sealing means being rings
    • F16L23/22Flanged joints characterised by the sealing means the sealing means being rings made exclusively of a material other than metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49948Multipart cooperating fastener [e.g., bolt and nut]

Definitions

  • the invention concerns a method of using couplings for joining pipes in end to end relation and effecting a substantially rigid or a flexible fluid tight joint therebetween.
  • Couplings for joining pipes together end to end comprise arcuate segments that circumferentially surround co-axially aligned pipes and engage circumferential grooves positioned proximate to the ends of each pipe.
  • the couplings are also used to connect pipes to fluid control components such as valves, reducers, strainers, restrictors, pressure regulators, as well as components to components.
  • fluid control components such as valves, reducers, strainers, restrictors, pressure regulators, as well as components to components.
  • the segments comprising the couplings have circumferential keys that extend radially inwardly toward the pipes and fit within the grooves around the pipes.
  • the keys are typically somewhat narrower than the grooves to permit them to fit within the grooves and bear against the shoulders formed by the grooves to hold the pipes together against internal pressure and external forces that may be applied to the pipes.
  • External forces may arise due to thermal expansion or contraction of the pipes due to changes in temperature as well as the weight of the pipes or components such as valves attached to the pipes, which can be significant for large diameter pipes and valves. Wind loads and seismic loads may also be a factor.
  • pipe couplings be substantially rigid, i.e., resist rotation of the pipes relative to one another about their longitudinal axes, resist axial motion of the pipes relatively to one another due to internal pressure, and resist angular deflection of pipes relative to one another.
  • a rigid coupling will be less likely to leak, requiring less maintenance, and will simplify the design of piping networks by eliminating or at least reducing the need for engineers to account for axial motion of pipes in the network when subjected to significant internal pressure.
  • Pipes joined by rigid couplings require fewer supports to limit unwanted deflection.
  • valves and other components which may tend to rotate out of position because their center of gravity is eccentric to the pipe axis will tend to remain in position and not rotate about the longitudinal axis under the pull of gravity when the pipe couplings are substantially rigid.
  • the invention concerns a method for connecting pipe elements together end-to-end.
  • the pipe elements have circumferential grooves proximate to each end.
  • the method comprises:
  • FIG. 1 is a perspective view of a coupling for connecting two pipes end to end, the pipes being shown in phantom line;
  • FIG. 1A is a perspective view showing a detail of the coupling depicted in FIG. 1 ;
  • FIG. 2 is an exploded perspective view of the pipe coupling shown in FIG. 1 ;
  • FIG. 2A is an exploded perspective view of an alternate embodiment of a pipe coupling according to the invention.
  • FIG. 2B is a perspective view of a portion of FIG. 2 shown on an enlarged scale
  • FIG. 3 is a side view of a segment comprising the coupling shown in FIG. 1 ;
  • FIG. 4 is a bottom view of the segment shown in FIG. 3 ;
  • FIG. 4A is a side view of an alternate embodiment of a segment having one key and a flange for mating with flanged pipes or fittings;
  • FIG. 5 is a cross-sectional view taken at line 5 - 5 of FIG. 1 ;
  • FIGS. 5A and 5B are cross sectional views taken at line 5 - 5 of FIG. 1 showing alternate embodiments of the coupling according to the invention
  • FIGS. 6 and 7 are side views of a roller tool forming a groove in a pipe
  • FIGS. 7A-7G show side views of various embodiments of roller tools for forming a groove in a pipe
  • FIG. 8 is a cross-sectional view of an alternate embodiment of the coupling
  • FIG. 9 is a partial perspective view of an alternate embodiment of a coupling according to the invention.
  • FIGS. 10-15 are longitudinal sectional views of embodiments of pipes having circumferential grooves according to the invention.
  • FIGS. 16-21 illustrate various fittings and components having circumferential grooves according to the invention.
  • FIG. 1 shows a pipe coupling 10 for connecting two pipes 12 and 14 co-axially end to end.
  • coupling 10 is comprised of at least two segments 16 and 18 .
  • Each segment 16 and 18 has lugs 20 and 22 respectively, the lugs being positioned at or proximate to each end of the segments.
  • the lugs 20 at each end of segment 16 align with the lugs 22 at each end of segment 18 .
  • Lugs 20 and 22 are adapted to receive fasteners, preferably in the form of bolts 24 and nuts 26 for joining the segments to one another end to end surrounding the pipes 12 and 14 .
  • fasteners preferably in the form of bolts 24 and nuts 26 for joining the segments to one another end to end surrounding the pipes 12 and 14 .
  • the lugs 20 engage the lugs 22 in what is known as “pad-to-pad engagement” with the lugs contacting one another when the segments 16 and 18 are properly engaged with the pipes 12 and 14 as explained below.
  • the lugs may also be attached to each other in spaced apart relation when the segments 16 and 18 are properly engaged with the pipes 12 and 14 , as illustrated in FIG. 1A .
  • lugs are the preferred means for attaching the segments to one another end to end, it is recognized that there are other attachment means, such as circumferential bands, axial pins, and latching handles. These means are disclosed in U.S. Pat. Nos. 1,541,601, 2,014,313, 2,362,454, 2,673,102, 2,752,174, 3,113,791, and 4,561,678, all of which are hereby incorporated by reference.
  • pipe coupling 10 comprises segments 16 a and 16 b joined to each other and to segments 18 a and 18 b, also joined to one another.
  • Each segment again preferably has lugs 20 and 22 at each end thereof, the segments being joined to one another end to end by fasteners such as bolts 24 and nuts 26 .
  • the following description of the coupling 10 is provided by way of example, and is based upon a coupling having two segments with lugs at either end. Various aspects of the description are applicable to alternate embodiments regardless of the number of segments comprising the coupling or the manner in which the segments are attached to one another.
  • each segment 16 and 18 has an arcuate surface 28 facing inwardly toward pipes 12 and 14 .
  • a pair keys 30 project radially inwardly from the arcuate surface 28 .
  • Keys 30 on each segment are in spaced apart relation to one another and define a space 32 between them.
  • keys 30 engage grooves 34 and 36 extending circumferentially around pipes 12 and 14 respectively. Engagement of keys 30 with grooves 34 and 36 substantially rigidly connect the pipes 12 and 14 coaxially to one another and maintain them at a predetermined separation as indicated by the gap 38 .
  • a sealing member 40 is positioned within space 32 and between the arcuate surfaces 28 of segments 16 and 18 and the pipes 12 and 14 .
  • the gap 38 between the pipes 12 and 14 provides tolerance facilitating mounting of the coupling and allows pressurized fluid to apply hydraulic pressure to the sealing member 40 and ensure a fluid tight seal between the pipes 12 and 14 .
  • each key 30 preferably has a pair of camming surfaces 42 positioned adjacent to lugs 20 and 22 or otherwise near the ends of the segments.
  • Camming surfaces 42 preferably face outwardly away from space 32 and are angularly oriented, as shown in FIG. 2B , with respect to an axis 43 oriented substantially tangential to the key 30 .
  • the camming surfaces have an angular orientation 45 that forms a wedge 46 adjacent to each lug, also shown in FIG. 4 .
  • the camming surfaces 42 are the first surfaces to engage the grooves 34 and 36 .
  • the wedge 46 formed by the camming surfaces 42 provides a mechanical advantage which forces the pipes 12 and 14 apart from one another as the lugs 20 and 22 of segments 16 and 18 are brought toward one another, preferably into pad-to-pad engagement. This wedging action ensures that a separation gap 38 between the pipe ends (see FIG. 5 ) will be achieved when the connection between the pipes 12 and 14 is effected while reducing the force required to bring the lugs 20 and 22 toward each other. Lugs 20 and 22 are normally drawn toward each other by tightening nuts 26 (see FIG. 1 ).
  • the mechanical advantage obtained by the use of wedge 46 significantly reduces the torque applied to nuts 26 needed to bring the lugs 20 and 22 into pad-to-pad engagement to separate the pipes 12 and 14 by the gap 38 , and thereby allows large diameter, heavy pipes to be manually connected, even when stacked vertically above one another.
  • Such configurations are a particular problem as the insertion of the keys 30 into the grooves 34 and 36 must lift the entire weight of the pipe to form the gap 38 .
  • the wedge 46 makes this effort significantly easier.
  • the angular orientation 45 of camming surfaces 42 is preferably about 5°, but may be up to about 10° for practical designs.
  • FIG. 4A shows a coupling segment 51 used in conjunction with a similar coupling segment to attach grooved pipe to flanged pipe.
  • Coupling segment 51 has an arcuate key 30 with camming surfaces 42 at either end. As described above, the camming surfaces may be angularly oriented tangentially with respect to the key 30 and form a wedge 46 as shown in FIG. 4 .
  • the key is a flange 53 adapted to engage a mating flange on a flanged pipe.
  • the flanges are secured via fasteners that pass though bolt holes 55 as is understood for flanged connections.
  • the coupling segment 51 is attached end to end to its associated coupling segment by attachment means, preferably lugs 20 positioned near the ends of the segment that align and are engaged by fasteners as is understood in the art and described above.
  • keys 30 preferably have a shape that will effect a wedging action when they engage grooves 34 and 36 .
  • FIG. 5 illustrates one configuration wherein keys 30 have a wedge-shaped cross section.
  • the keys 30 are defined by an inner surface 50 facing space 32 , an outer surface 52 facing outwardly away from space 32 , and a radial surface 54 positioned between the inner and outer surfaces and facing radially inwardly toward the pipes engaged by the coupling.
  • the inner surface 50 is oriented substantially perpendicularly to the axis 48 and outer surface 52 is oriented angularly relative to the axis 48 so as to form the wedge-shaped cross section of keys 30 .
  • the relative angle 56 measured radially with respect to the key between the outer surface 52 and an axis 48 oriented substantially co-axially with the longitudinal axes of pipes 12 and 14 , ranges up to about 70°, although 50° is preferred (see also FIG. 1 ).
  • surfaces 52 and 54 in FIG. 5 are shown in cross-section as having a straight profile, they may be, for example, convex, concave or have some other profile shape and still effect a wedging action when engaged with grooves 34 and 36 .
  • An alternate embodiment of keys 30 is illustrated in FIG. 5A wherein surface 50 has a curved cross sectional profile in the form of a convex radius that substantially blends into radial surface 54 .
  • the radial angular orientation 44 of camming surfaces 42 be substantially equal to the radial angular orientation 56 of the key outer surface 52 as measured relatively to the longitudinal axis 48 . It is advantageous to match the radial orientation angles of the camming surfaces 42 and the key outer surfaces 52 with one another to avoid point contact when the surfaces engage facing surfaces of the grooves 34 and 36 as the coupling is installed in order to mitigate gouging between the surfaces that results from point to point contact.
  • the grooves 34 and 36 that keys 30 engage have a shape that is complementary to the wedge-shape cross section of the keys.
  • the keys have a cross sectional shape that substantially fills the grooves even when the shapes of the groove and key are not exactly complementary.
  • Groove 36 is described in detail hereafter, groove 34 being substantially similar and not requiring a separate description.
  • Groove 36 is defined by a first side surface 58 positioned proximate to end 14 a of pipe 14 , a second side surface 60 positioned in spaced apart relation to the first side surface 58 and distally from the end 14 a, and a floor surface 62 that extends between the first and second side surfaces.
  • the complementary shape of the groove 36 to the keys 30 is achieved by orienting the floor surface 62 substantially parallel to the radial surface 54 , orienting the first side surface 58 substantially perpendicularly to the floor surface 62 (and thus substantially parallel to the inner surface 50 ), and orienting the second side surface 60 substantially parallel to the outer surface 52 (and thus angularly to the floor surface 62 ).
  • the keys 30 and the lugs 20 and 22 are sized and toleranced so that when the lugs 20 are in pad-to-pad engagement with the lugs 22 , i.e., in contact with each other as shown in FIG. 1 , the keys 30 engage the grooves 34 such that the keys' outer surface 52 is either just contacting the second side surface 60 in what is called “line-on-line clearance” (see the left halt of FIG. 5 ), or is in spaced relation to the second side surface 60 of the groove, as defined by a gap 64 no greater than 0.035 inches (shown on the right half of FIG. 5 . Furthermore, the radial surface 54 is also in either line on line clearance with the floor surface 62 (left half, FIG.
  • the inner surface 50 is nominally in contact with the first side surface 58 as shown in FIG. 5 , but there may be a gap there as well for certain tolerance conditions.
  • Joint rigidity may be further augmented by the use of teeth 31 that project outwardly from the various surfaces of keys 30 as best shown in FIG. 2 .
  • Teeth 31 bite into the groove surfaces of the pipes, augmenting friction to help prevent rotational displacement of the pipes relatively to the couplings.
  • the same relationships between the various surfaces mentioned above may also be achieved when the lugs are attached to one another in spaced apart relation as shown in FIG. 1A .
  • Analogous relationships between the key surfaces and the surfaces comprising the grooves are contemplated even when the keys do not have a shape complementary to that of the groove, as shown in FIG. 5A .
  • Couplings having such keys for example, the convex shaped key 30 , may have surfaces 52 that just contact the second side surface 60 in line on line clearance (left side, FIG. 5A ), or be in spaced relation to surface 60 (right side, FIG. 5A ), having a gap 64 between the surfaces 52 and 60 of about 0.035 inches.
  • surfaces 54 and 66 may also be in line on line clearance or may be separated by a gap 62 , preferably no greater than 0.030 inches.
  • FIG. 5B wedging action of keys 30 may also be ensured when inner surface 50 and outer surface 52 contact groove surfaces 58 and 60 , respectively, but radial surface 54 is in spaced relation to the groove's floor surface 62 with a gap 66 .
  • the right side of FIG. 5B shows various straight sided key surfaces 50 , 52 and 54 and counterpart straight sided groove surfaces 58 , 60 and 62 giving the groove and the key substantially complementary shapes.
  • the left side of FIG. 5B shows a convexly curved outer surface 52 engaging a straight surface 60 , as an example wherein the shape of the key and the groove are not substantially complementary. Note that groove floor surface 62 is shown on the left side to be angularly oriented with respect to the surface of pipe 12 .
  • gaps 64 at one or both ends of the coupling may be made larger than the aforementioned limit of 0.035 inches.
  • gap 64 between surfaces 52 and 60 preferably be 1 ⁇ 2 of the size of gap 38 between the ends of pipes 12 and 14 as shown in FIG. 5 .
  • groove 36 is advantageously formed by cold working the material forming pipe 14 .
  • groove 36 comprises a first side surface 37 positioned proximate to the end of pipe 14 , a second side surface 60 positioned in spaced apart relation to the first side surface and distally to the end of the pipe, and a floor 41 that extends between the first and second side surfaces.
  • the second side surface is angularly oriented relatively to the floor at an angle 43 that is than 90 degrees.
  • a roller tool 68 is used having a cross sectional shape at its periphery substantially identical to the desired shape of the groove.
  • the roller tool 68 is forcibly engaged with the outer surface 70 of pipe 14 around its circumference, either by moving the roller tool around the pipe or moving the pipe about its longitudinal axis 48 relatively to a roller tool.
  • a back-up roller 72 engages the inner surface 74 of the pipe 14 opposite to the roller tool 68 .
  • the pipe wall 76 is compressed between the roller tool 68 and the back-up roller 72 .
  • Use of the back-up roller 72 provides a reaction surface for the roller tool.
  • the back-up roller also helps ensure that accurate groove shapes are achieved by facilitating material flow during roll grooving.
  • the roller tool 82 shown in FIG. 7 , is used to form a groove 84 in pipe 14 .
  • the second side surface 86 has a first surface portion 88 oriented angularly relative to the floor surface 90 , and a second surface portion 92 , positioned adjacent to the floor surface 90 and oriented substantially perpendicular to it, thereby reducing the size of the angularly oriented second side surface 86 .
  • the first surface portion 88 being angularly oriented, still provides the advantages as described above for the second side surface 60 .
  • An example of a coupling 10 engaging a groove 84 is shown in FIG. 8 .
  • the roller tool 82 has a circumferential surface 94 with a cross sectional shape complementary to groove 84 , the shape comprising a first perimetral surface 99 oriented substantially perpendicularly to the axis of rotation 80 of roller tool 82 , a second perimetral surface 98 positioned in spaced relation to the first perimetral surface 96 and oriented substantially perpendicular to the axis 80 , a radial surface 100 extending between the first and second perimetral surfaces and oriented substantially parallel to axis 80 , and an angled surface 102 positioned adjacent to perimetral surface 100 and oriented angularly to the axis 80 .
  • the angled surface 102 is preferably oriented up to about 70° relatively to axis 80 , and most preferably at about 50°. Surface 102 slopes away from the second perimetral surface, thereby making contact with the pipe when forming the groove 84 .
  • FIGS. 10-15 show various groove configurations meeting this criteria.
  • FIG. 10 shows a groove 114 partially defined by a side portion 116 having a concave cross sectional shape.
  • FIG. 11 shows a groove 118 partially defined by a side portion 120 having a convex cross-sectional shape.
  • the groove 122 is partially defined by a side portion 124 having first and second angled portions 124 a and 124 b, the first angled portion 124 a having a greater slope than the second angled portion 124 b.
  • FIG. 13 shows a groove 126 partially defined by a side portion 128 having a first angled portion 128 a with a slope less than the second angled portion 128 b. Combinations of radius and angled portions are also feasible, as shown in FIG. 14 , wherein groove 130 has a radius portion 132 and an angled portion 134 .
  • FIG. 15 illustrates an example of a groove 136 having a wedge-shaped cross sectional profile, there being no floor portion of any significance as compared with the other example grooves.
  • the groove 136 is defined by side portions 136 a and 136 b oriented angularly with respect to one another. Common to all of the designs is the characteristic that the width 138 of the groove at the surface of the pipe is greater than the width 140 of the groove at the floor of the groove. Note that, although it is preferred that the floor be substantially parallel to the pipe surface, it may also be curved, as shown in FIG. 10 , or non-existent, as shown in FIG. 15 , which has no floor, the floor width being essentially zero. The floor may also be angularly oriented as shown in FIG. 5B .
  • roller tools for creating grooves as described above are shown in FIGS. 7A-7G .
  • roller tool 101 is rotatable about axis 80 and has a radially facing surface portion 103 flanked by a first surface portion 105 and a second surface portion 107 .
  • Roller surface portion 105 is preferably oriented perpendicularly to axis 80 and results in the formation of a substantially vertical groove side surface.
  • Roller surface portion is concave and results in the convex groove side surface 120 as shown in FIG. 11 .
  • roller tool 109 shown in FIG. 7B , has a radially facing surface portion 111 extending between a perpendicular surface portion 113 and a convex surface portion 115 .
  • Such a roller produces a groove with a concave side surface 116 as shown in FIG. 10 .
  • Additional roller embodiments 117 and 119 shown in FIGS. 7C and 7D , each have a surface portion 121 with a first face 123 angularly oriented with respect to axis 80 , and a second face 125 , also angularly oriented with respect to axis 80 , but at a different angle.
  • the slope of the first surface portion is greater than the slope of the second surface portion, and this roller produces a groove 122 as shown in FIG. 12 .
  • roller tool 119 the slope of the first surface portion is less than the slope of the second surface portion, and this roller produces a groove 126 , having an angularly oriented side surface 124 as shown in FIG. 13 .
  • Roller tool 127 shown in FIG. 7E , has no radially facing surface, an angled surface 129 intersects with a surface portion 131 that is substantially perpendicular to the axis of rotation 80 . Roller tool 127 is useful for creating the groove shown in FIG. 15 .
  • Roller tool 133 shown in FIG. 7F , has a curved radially facing surface 135 and an angularly oriented surface 135 as well as a perpendicular surface 137 .
  • the curved surface may be convex, concave, sinusoidal, hyperbolic, or irregularly curved.
  • the roller 139 may have a radially facing surface 141 that is angularly oriented with respect to the axis of rotation 80 .
  • a groove as shown in FIG. 5B is produced by such a tool.
  • FIG. 16 shows an elbow fitting 140 having circumferential grooves 142 at either end. Grooves 142 may have any of the cross sectional profiles illustrated in FIGS. 5 and 10 - 15 or their variations as described above.
  • the Tee fitting 144 shown in FIG. 17 has grooves 146 , preferably adjacent to each of its ends, the grooves being adapted to develop wedging action to couple the fitting to pipes or other fittings as described herein.
  • FIG. 18 shows a fitting 148 having a wedging groove 150 adjacent to one end and a flange 152 at the opposite end.
  • Fitting 148 allows a piping network using mechanical couplings to be joined to another network coupled using flanges. Furthermore, as illustrated in FIGS. 19 and 20 , other types of fittings such as a reducer 154 ( FIG. 19 ) used to join pipes having different diameters, or a nipple 156 ( FIG. 20 ) may also benefit from having respective grooves 158 and 160 that are like those illustrated and described above that increase the wedging action between the coupling and the groove to ensure either a stiffer or more flexible joint, depending upon the tolerances of the coupling as described above.
  • a reducer 154 FIG. 19
  • a nipple 156 FIG. 20
  • components related to control of fluid flow such as a valve 162 may also have grooves 164 that are like those described above to couple the valve to pipes, fittings or other components using mechanical couplings as described herein.
  • Pipe couplings according to the invention incorporate the advantages of a rigid or flexible connection with a reliable visual indicator for confirming that the coupling properly engages the pipes to effect a fluid tight joint.
  • the couplings provide a mechanical advantage which allows manual assembly of piping networks of substantial diameter despite their weight.
  • the couplings have tolerances allowing them to be economically produced and still yield a substantially rigid joint between pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Joints With Sleeves (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)
  • Earth Drilling (AREA)
  • Flanged Joints, Insulating Joints, And Other Joints (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

A method for connecting pipe elements together end to end. The method includes providing a coupling having a plurality of segments with at least one camming surface, the segments being joined end to end by a plurality of adjustably tightenable fasteners, positioning a first and a second of the pipe elements in end to end relation, positioning the segments surrounding the ends of the pipe elements, engaging the camming surfaces on the segments with grooves on the pipe elements and tightening the fasteners so as to draw the segments toward one another. The camming surfaces slide into the grooves and move the first and second pipe elements away from one another.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. application Ser. No. 11/091,216 filed Mar. 28, 2005 now abandoned, which claims priority to U.S. Provisional Application No. 60/556,962, filed Mar. 26, 2004.
FIELD OF THE INVENTION
The invention concerns a method of using couplings for joining pipes in end to end relation and effecting a substantially rigid or a flexible fluid tight joint therebetween.
BACKGROUND OF THE INVENTION
Couplings for joining pipes together end to end comprise arcuate segments that circumferentially surround co-axially aligned pipes and engage circumferential grooves positioned proximate to the ends of each pipe. The couplings are also used to connect pipes to fluid control components such as valves, reducers, strainers, restrictors, pressure regulators, as well as components to components. Although in the description which follows pipes are described, they are used by way of example only, the invention herein not being limited for use only with pipes per se. It should also be noted that the term “pipe” as used herein refers to straight pipes as well as elbows, tees and other types of fittings.
The segments comprising the couplings have circumferential keys that extend radially inwardly toward the pipes and fit within the grooves around the pipes. The keys are typically somewhat narrower than the grooves to permit them to fit within the grooves and bear against the shoulders formed by the grooves to hold the pipes together against internal pressure and external forces that may be applied to the pipes. External forces may arise due to thermal expansion or contraction of the pipes due to changes in temperature as well as the weight of the pipes or components such as valves attached to the pipes, which can be significant for large diameter pipes and valves. Wind loads and seismic loads may also be a factor.
It is advantageous that pipe couplings be substantially rigid, i.e., resist rotation of the pipes relative to one another about their longitudinal axes, resist axial motion of the pipes relatively to one another due to internal pressure, and resist angular deflection of pipes relative to one another. A rigid coupling will be less likely to leak, requiring less maintenance, and will simplify the design of piping networks by eliminating or at least reducing the need for engineers to account for axial motion of pipes in the network when subjected to significant internal pressure. Pipes joined by rigid couplings require fewer supports to limit unwanted deflection. Furthermore, valves and other components which may tend to rotate out of position because their center of gravity is eccentric to the pipe axis will tend to remain in position and not rotate about the longitudinal axis under the pull of gravity when the pipe couplings are substantially rigid.
Many couplings according to the prior art do not reliably provide the desired degree of rigidity mainly because they use keys having rectangular cross-sections that are narrower than the width of the grooves that they engage. This condition may result in inconsistent contact between the coupling and the pipes which allows too much free play and relative movement, for example, axially, rotationally or angularly, between the pipes. It is also difficult to ensure that such keys properly engage the grooves. Couplings which provide a more rigid connection may be ineffective to force the pipe ends apart at a desired distance from one another so that the keys and grooves are in proper alignment and the pipes are properly spaced. When properly spaced apart, the pipe ends and the coupling cooperate with a sealing member positioned between the coupling and the pipe ends to ensure a fluid tight seal. The movement of the pipes, although small, is effected as the couplings are engaged with each other and the pipe and may require that significant torque be exerted upon the fasteners used to clamp the coupling to the pipes. This is especially acute when pipes to be joined are stacked vertically one above another, and the action of engaging the coupling with the pipes must lift one of the pipes upwardly relatively to the other in order to effect the proper spacing between the pipe ends. For such couplings, it is also difficult to reliably visibly ensure that the couplings have been properly installed so that the keys engage the grooves and the pipes are spaced apart as required to ensure a fluid tight seal.
It would be advantageous to provide a coupling that provides increased rigidity while also reducing the force necessary to engage the coupling with the pipe ends to effect their proper spacing, and also provides a reliable visual indication that the couplings are properly installed on the pipes.
SUMMARY OF THE INVENTION
The invention concerns a method for connecting pipe elements together end-to-end. The pipe elements have circumferential grooves proximate to each end. The method comprises:
    • providing a coupling comprising a plurality of segments joined end-to-end by a plurality of adjustably tightenable fasteners, each of the segments having a pair of keys projecting radially inwardly, the keys being positioned in spaced apart relation from one another and defining a space therebetween, at least one of the keys on one of the segments having a first camming surface positioned adjacent to one end of the segment, the first camming surface facing away from the space between the keys and being angularly oriented relatively thereto;
    • positioning a first and a second of the pipe elements in end-to-end relation;
    • positioning the plurality of segments surrounding ends of the first and second pipe elements;
    • engaging the first camming surface with the groove in one of the first and second pipe elements;
    • applying the fasteners to the segments; and
    • tightening the fasteners so as to draw the segments toward one another, the first camming surface sliding into the groove and thereby moving the first and second pipe elements away from one another.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a coupling for connecting two pipes end to end, the pipes being shown in phantom line;
FIG. 1A is a perspective view showing a detail of the coupling depicted in FIG. 1;
FIG. 2 is an exploded perspective view of the pipe coupling shown in FIG. 1;
FIG. 2A is an exploded perspective view of an alternate embodiment of a pipe coupling according to the invention;
FIG. 2B is a perspective view of a portion of FIG. 2 shown on an enlarged scale;
FIG. 3 is a side view of a segment comprising the coupling shown in FIG. 1;
FIG. 4 is a bottom view of the segment shown in FIG. 3;
FIG. 4A is a side view of an alternate embodiment of a segment having one key and a flange for mating with flanged pipes or fittings;
FIG. 5 is a cross-sectional view taken at line 5-5 of FIG. 1;
FIGS. 5A and 5B are cross sectional views taken at line 5-5 of FIG. 1 showing alternate embodiments of the coupling according to the invention;
FIGS. 6 and 7 are side views of a roller tool forming a groove in a pipe;
FIGS. 7A-7G show side views of various embodiments of roller tools for forming a groove in a pipe;
FIG. 8 is a cross-sectional view of an alternate embodiment of the coupling;
FIG. 9 is a partial perspective view of an alternate embodiment of a coupling according to the invention;
FIGS. 10-15 are longitudinal sectional views of embodiments of pipes having circumferential grooves according to the invention; and
FIGS. 16-21 illustrate various fittings and components having circumferential grooves according to the invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
FIG. 1 shows a pipe coupling 10 for connecting two pipes 12 and 14 co-axially end to end. As shown in FIG. 2, coupling 10 is comprised of at least two segments 16 and 18. Each segment 16 and 18 has lugs 20 and 22 respectively, the lugs being positioned at or proximate to each end of the segments. The lugs 20 at each end of segment 16 align with the lugs 22 at each end of segment 18. Lugs 20 and 22 are adapted to receive fasteners, preferably in the form of bolts 24 and nuts 26 for joining the segments to one another end to end surrounding the pipes 12 and 14. In one embodiment, shown in FIG. 1, the lugs 20 engage the lugs 22 in what is known as “pad-to-pad engagement” with the lugs contacting one another when the segments 16 and 18 are properly engaged with the pipes 12 and 14 as explained below. The lugs may also be attached to each other in spaced apart relation when the segments 16 and 18 are properly engaged with the pipes 12 and 14, as illustrated in FIG. 1A.
Although lugs are the preferred means for attaching the segments to one another end to end, it is recognized that there are other attachment means, such as circumferential bands, axial pins, and latching handles. These means are disclosed in U.S. Pat. Nos. 1,541,601, 2,014,313, 2,362,454, 2,673,102, 2,752,174, 3,113,791, and 4,561,678, all of which are hereby incorporated by reference.
For large diameter pipes, it is sometimes advantageous to form the coupling 10 from more than two segments. As shown in FIG. 2A, pipe coupling 10 comprises segments 16a and 16b joined to each other and to segments 18a and 18b, also joined to one another. Each segment again preferably has lugs 20 and 22 at each end thereof, the segments being joined to one another end to end by fasteners such as bolts 24 and nuts 26. The following description of the coupling 10 is provided by way of example, and is based upon a coupling having two segments with lugs at either end. Various aspects of the description are applicable to alternate embodiments regardless of the number of segments comprising the coupling or the manner in which the segments are attached to one another.
As shown in FIG. 2, each segment 16 and 18 has an arcuate surface 28 facing inwardly toward pipes 12 and 14. A pair keys 30 project radially inwardly from the arcuate surface 28. Keys 30 on each segment are in spaced apart relation to one another and define a space 32 between them. As best shown in FIG. 5, to effect the connection between pipes 12 and 14, keys 30 engage grooves 34 and 36 extending circumferentially around pipes 12 and 14 respectively. Engagement of keys 30 with grooves 34 and 36 substantially rigidly connect the pipes 12 and 14 coaxially to one another and maintain them at a predetermined separation as indicated by the gap 38. A sealing member 40 is positioned within space 32 and between the arcuate surfaces 28 of segments 16 and 18 and the pipes 12 and 14. The gap 38 between the pipes 12 and 14 provides tolerance facilitating mounting of the coupling and allows pressurized fluid to apply hydraulic pressure to the sealing member 40 and ensure a fluid tight seal between the pipes 12 and 14.
As best shown in FIGS. 2 and 3, each key 30 preferably has a pair of camming surfaces 42 positioned adjacent to lugs 20 and 22 or otherwise near the ends of the segments. Camming surfaces 42 preferably face outwardly away from space 32 and are angularly oriented, as shown in FIG. 2B, with respect to an axis 43 oriented substantially tangential to the key 30. The camming surfaces have an angular orientation 45 that forms a wedge 46 adjacent to each lug, also shown in FIG. 4. As the segments 16 and 18 are brought into engagement with grooves 34 and 36 to connect pipe 12 to pipe 14 as illustrated in FIG. 5, the camming surfaces 42 (see FIG. 2) are the first surfaces to engage the grooves 34 and 36. The wedge 46 formed by the camming surfaces 42 provides a mechanical advantage which forces the pipes 12 and 14 apart from one another as the lugs 20 and 22 of segments 16 and 18 are brought toward one another, preferably into pad-to-pad engagement. This wedging action ensures that a separation gap 38 between the pipe ends (see FIG. 5) will be achieved when the connection between the pipes 12 and 14 is effected while reducing the force required to bring the lugs 20 and 22 toward each other. Lugs 20 and 22 are normally drawn toward each other by tightening nuts 26 (see FIG. 1). The mechanical advantage obtained by the use of wedge 46 significantly reduces the torque applied to nuts 26 needed to bring the lugs 20 and 22 into pad-to-pad engagement to separate the pipes 12 and 14 by the gap 38, and thereby allows large diameter, heavy pipes to be manually connected, even when stacked vertically above one another. Such configurations are a particular problem as the insertion of the keys 30 into the grooves 34 and 36 must lift the entire weight of the pipe to form the gap 38. The wedge 46 makes this effort significantly easier. Preferably, as shown in FIG. 2B, the angular orientation 45 of camming surfaces 42, as measured with respect to axis 43, is preferably about 5°, but may be up to about 10° for practical designs.
The use of keys having camming surfaces is not confined to couplings for joining grooved pipes to one another, but may be used on practically any coupling arrangement having at least one key. FIG. 4A shows a coupling segment 51 used in conjunction with a similar coupling segment to attach grooved pipe to flanged pipe. Coupling segment 51 has an arcuate key 30 with camming surfaces 42 at either end. As described above, the camming surfaces may be angularly oriented tangentially with respect to the key 30 and form a wedge 46 as shown in FIG. 4. Opposite the key is a flange 53 adapted to engage a mating flange on a flanged pipe. The flanges are secured via fasteners that pass though bolt holes 55 as is understood for flanged connections. The coupling segment 51 is attached end to end to its associated coupling segment by attachment means, preferably lugs 20 positioned near the ends of the segment that align and are engaged by fasteners as is understood in the art and described above.
As best shown in FIGS. 5 and 5A, keys 30 preferably have a shape that will effect a wedging action when they engage grooves 34 and 36. FIG. 5 illustrates one configuration wherein keys 30 have a wedge-shaped cross section. The keys 30 are defined by an inner surface 50 facing space 32, an outer surface 52 facing outwardly away from space 32, and a radial surface 54 positioned between the inner and outer surfaces and facing radially inwardly toward the pipes engaged by the coupling. Preferably, the inner surface 50 is oriented substantially perpendicularly to the axis 48 and outer surface 52 is oriented angularly relative to the axis 48 so as to form the wedge-shaped cross section of keys 30. The relative angle 56, measured radially with respect to the key between the outer surface 52 and an axis 48 oriented substantially co-axially with the longitudinal axes of pipes 12 and 14, ranges up to about 70°, although 50° is preferred (see also FIG. 1).
Although surfaces 52 and 54 in FIG. 5 are shown in cross-section as having a straight profile, they may be, for example, convex, concave or have some other profile shape and still effect a wedging action when engaged with grooves 34 and 36. An alternate embodiment of keys 30 is illustrated in FIG. 5A wherein surface 50 has a curved cross sectional profile in the form of a convex radius that substantially blends into radial surface 54.
As shown in FIG. 4, it is preferred that the radial angular orientation 44 of camming surfaces 42 be substantially equal to the radial angular orientation 56 of the key outer surface 52 as measured relatively to the longitudinal axis 48. It is advantageous to match the radial orientation angles of the camming surfaces 42 and the key outer surfaces 52 with one another to avoid point contact when the surfaces engage facing surfaces of the grooves 34 and 36 as the coupling is installed in order to mitigate gouging between the surfaces that results from point to point contact.
Preferably, the grooves 34 and 36 that keys 30 engage have a shape that is complementary to the wedge-shape cross section of the keys. In general, it is advantageous that the keys have a cross sectional shape that substantially fills the grooves even when the shapes of the groove and key are not exactly complementary. Groove 36 is described in detail hereafter, groove 34 being substantially similar and not requiring a separate description. Groove 36 is defined by a first side surface 58 positioned proximate to end 14a of pipe 14, a second side surface 60 positioned in spaced apart relation to the first side surface 58 and distally from the end 14a, and a floor surface 62 that extends between the first and second side surfaces. The complementary shape of the groove 36 to the keys 30 is achieved by orienting the floor surface 62 substantially parallel to the radial surface 54, orienting the first side surface 58 substantially perpendicularly to the floor surface 62 (and thus substantially parallel to the inner surface 50), and orienting the second side surface 60 substantially parallel to the outer surface 52 (and thus angularly to the floor surface 62).
Preferably, the keys 30 and the lugs 20 and 22 are sized and toleranced so that when the lugs 20 are in pad-to-pad engagement with the lugs 22, i.e., in contact with each other as shown in FIG. 1, the keys 30 engage the grooves 34 such that the keys' outer surface 52 is either just contacting the second side surface 60 in what is called “line-on-line clearance” (see the left halt of FIG. 5), or is in spaced relation to the second side surface 60 of the groove, as defined by a gap 64 no greater than 0.035 inches (shown on the right half of FIG. 5. Furthermore, the radial surface 54 is also in either line on line clearance with the floor surface 62 (left half, FIG. 5), or in spaced relation to floor surface 62, as defined by a gap 66 no greater than 0.030 inches (right half, FIG. 5). The inner surface 50 is nominally in contact with the first side surface 58 as shown in FIG. 5, but there may be a gap there as well for certain tolerance conditions. As a practical matter, however, it is difficult and costly to make pipes and couplings perfectly round and to the exact dimensions desired, so that there will be intermittent contact between various surfaces of the keys 30 and grooves 34 and 36 circumferentially around any pipe joint, creating an effectively rigid joint. Joint rigidity may be further augmented by the use of teeth 31 that project outwardly from the various surfaces of keys 30 as best shown in FIG. 2. Teeth 31 bite into the groove surfaces of the pipes, augmenting friction to help prevent rotational displacement of the pipes relatively to the couplings. The same relationships between the various surfaces mentioned above may also be achieved when the lugs are attached to one another in spaced apart relation as shown in FIG. 1A.
Analogous relationships between the key surfaces and the surfaces comprising the grooves are contemplated even when the keys do not have a shape complementary to that of the groove, as shown in FIG. 5A. Couplings having such keys, for example, the convex shaped key 30, may have surfaces 52 that just contact the second side surface 60 in line on line clearance (left side, FIG. 5A), or be in spaced relation to surface 60 (right side, FIG. 5A), having a gap 64 between the surfaces 52 and 60 of about 0.035 inches. Again, surfaces 54 and 66 may also be in line on line clearance or may be separated by a gap 62, preferably no greater than 0.030 inches.
Alternately, as shown in FIG. 5B, wedging action of keys 30 may also be ensured when inner surface 50 and outer surface 52 contact groove surfaces 58 and 60, respectively, but radial surface 54 is in spaced relation to the groove's floor surface 62 with a gap 66. The right side of FIG. 5B shows various straight sided key surfaces 50, 52 and 54 and counterpart straight sided groove surfaces 58, 60 and 62 giving the groove and the key substantially complementary shapes. The left side of FIG. 5B shows a convexly curved outer surface 52 engaging a straight surface 60, as an example wherein the shape of the key and the groove are not substantially complementary. Note that groove floor surface 62 is shown on the left side to be angularly oriented with respect to the surface of pipe 12.
It is found that the preferred configuration defined by pad-to-pad engagement of lugs 20 and 22 in conjunction with the tolerance conditions as describe above provides several advantages. The engagement of inner surface 50 with first side surface 58 forces pipes 12 and 14 into substantially precise axial position relative to one another. Because these surfaces bear against one another when the coupling is installed on the pipes they will not shift axially when internal fluid pressure is applied. Thus, designers need not take into account lengthening of the piping network due to internal pressure during use, thereby simplifying the design. The relatively small gaps 64 and 66 (which could be zero) ensure adequate rigidity and prevent excessive angular displacement between the pipes and the couplings, while the tolerances necessary to limit the gaps within the desired limits allow the coupling 10 to be manufactured economically. It also allows the grooves in the pipes, valves or other fittings to be manufactured economically. The gaps work advantageously in conjunction with the normally encountered out of roundness of practical pipes to provide a rigid joint. The pad-to-pad engagement of lugs 20 and 22 provides a reliable visual indication that the coupling 10 is properly engaged with the pipes 12 and 14.
If it is desired to have a more flexible coupling 10 to allow greater angular deflection, then the gaps 64 at one or both ends of the coupling may be made larger than the aforementioned limit of 0.035 inches. For flexible couplings, it is found advantageous to have gap 64 between surfaces 52 and 60 preferably be ½ of the size of gap 38 between the ends of pipes 12 and 14 as shown in FIG. 5.
It is also feasible to have keys 30 engage grooves 34 and 36 without a gap under all tolerance conditions. This configuration takes advantage of the wedging action of the keys to provide a rigid joint. It is not practical, however, to have this configuration and also maintain pad to pad engagement of lugs 20 and 22 because it is very difficult to economically manufacture couplings and pipes to the necessary tolerances to ensure both pad to pad engagement and full contact circumferential wedging engagement of the keys and grooves. For the configuration wherein pad-to-pad engagement is not nominally held, as shown in FIG. 9, it is preferred to employ a tongue 110 adjacent to the lug 20 on segment 16 that fits into a recess 112 adjacent to lug 22 on segment 18. The tongue prevents sealing member 40 from blowing out through a gap between the lugs 20 and 22 when the joint is subjected to high internal pressure.
As illustrated in FIG. 6, groove 36 is advantageously formed by cold working the material forming pipe 14. In a preferred embodiment, groove 36 comprises a first side surface 37 positioned proximate to the end of pipe 14, a second side surface 60 positioned in spaced apart relation to the first side surface and distally to the end of the pipe, and a floor 41 that extends between the first and second side surfaces. Preferably, the second side surface is angularly oriented relatively to the floor at an angle 43 that is than 90 degrees.
A roller tool 68 is used having a cross sectional shape at its periphery substantially identical to the desired shape of the groove. The roller tool 68 is forcibly engaged with the outer surface 70 of pipe 14 around its circumference, either by moving the roller tool around the pipe or moving the pipe about its longitudinal axis 48 relatively to a roller tool. Preferably, a back-up roller 72 engages the inner surface 74 of the pipe 14 opposite to the roller tool 68. The pipe wall 76 is compressed between the roller tool 68 and the back-up roller 72. Use of the back-up roller 72 provides a reaction surface for the roller tool. The back-up roller also helps ensure that accurate groove shapes are achieved by facilitating material flow during roll grooving.
During cold working to form the groove 36 having the angularly oriented second side surface 60, it is found that significant friction is developed between the roller tool 68 and the pipe 14. The friction is caused by the contact between the angled surface 78 on the roller tool 68 that forms the angularly oriented second side surface 60 of groove 36. Because it is angled, points along angled surface 78 are at different distances from the axis of rotation 80 of roller tool 68. Due to their different distances from the axis 80, each of the points on the surface 78 will move relative to one another at a different linear speed for a particular angular velocity of the roller tool 68. The points farthest from the axis 80 move the fastest and the points closest to the axis move the slowest. Thus, there is a velocity differential along the angled surface 78 which causes the surface to slip relatively to the second side surface 60 of groove 36 as the roller tool 68 rotates relatively to the pipe 14 to form the groove. The relative slipping between the roller tool and the pipe causes the friction. Excessive heat caused by the friction can result in a break down of the roller tool bearing lubricants and make the roller tool too hot to handle when changing tools for a different size pipe. The roller tool must be allowed to cool before it can be changed, resulting in lost time.
To mitigate the generation of excessive heat, the roller tool 82, shown in FIG. 7, is used to form a groove 84 in pipe 14. In groove 84, the second side surface 86 has a first surface portion 88 oriented angularly relative to the floor surface 90, and a second surface portion 92, positioned adjacent to the floor surface 90 and oriented substantially perpendicular to it, thereby reducing the size of the angularly oriented second side surface 86. By reducing the size of the angled surface regions on both the roller tool 82 and the groove 84 the friction caused during cold working to form the groove is reduced. The first surface portion 88, being angularly oriented, still provides the advantages as described above for the second side surface 60. An example of a coupling 10 engaging a groove 84 is shown in FIG. 8.
The roller tool 82 has a circumferential surface 94 with a cross sectional shape complementary to groove 84, the shape comprising a first perimetral surface 99 oriented substantially perpendicularly to the axis of rotation 80 of roller tool 82, a second perimetral surface 98 positioned in spaced relation to the first perimetral surface 96 and oriented substantially perpendicular to the axis 80, a radial surface 100 extending between the first and second perimetral surfaces and oriented substantially parallel to axis 80, and an angled surface 102 positioned adjacent to perimetral surface 100 and oriented angularly to the axis 80. The angled surface 102 is preferably oriented up to about 70° relatively to axis 80, and most preferably at about 50°. Surface 102 slopes away from the second perimetral surface, thereby making contact with the pipe when forming the groove 84.
Wedging action between the keys 30 and grooves in the pipes can be achieved for groove cross sectional shapes other than those described above. The main criterion for wedging action is that the width of the groove at the surface of the pipe be greater than the width of the groove at the floor of the groove. FIGS. 10-15 show various groove configurations meeting this criteria. FIG. 10 shows a groove 114 partially defined by a side portion 116 having a concave cross sectional shape. FIG. 11 shows a groove 118 partially defined by a side portion 120 having a convex cross-sectional shape. In FIG. 12, the groove 122 is partially defined by a side portion 124 having first and second angled portions 124a and 124b, the first angled portion 124a having a greater slope than the second angled portion 124b. FIG. 13 shows a groove 126 partially defined by a side portion 128 having a first angled portion 128a with a slope less than the second angled portion 128b. Combinations of radius and angled portions are also feasible, as shown in FIG. 14, wherein groove 130 has a radius portion 132 and an angled portion 134. FIG. 15 illustrates an example of a groove 136 having a wedge-shaped cross sectional profile, there being no floor portion of any significance as compared with the other example grooves. The groove 136 is defined by side portions 136a and 136b oriented angularly with respect to one another. Common to all of the designs is the characteristic that the width 138 of the groove at the surface of the pipe is greater than the width 140 of the groove at the floor of the groove. Note that, although it is preferred that the floor be substantially parallel to the pipe surface, it may also be curved, as shown in FIG. 10, or non-existent, as shown in FIG. 15, which has no floor, the floor width being essentially zero. The floor may also be angularly oriented as shown in FIG. 5B.
Roller tools for creating grooves as described above are shown in FIGS. 7A-7G. In FIG. 7A, roller tool 101 is rotatable about axis 80 and has a radially facing surface portion 103 flanked by a first surface portion 105 and a second surface portion 107. Roller surface portion 105 is preferably oriented perpendicularly to axis 80 and results in the formation of a substantially vertical groove side surface. Roller surface portion is concave and results in the convex groove side surface 120 as shown in FIG. 11.
Similarly, roller tool 109, shown in FIG. 7B, has a radially facing surface portion 111 extending between a perpendicular surface portion 113 and a convex surface portion 115. Such a roller produces a groove with a concave side surface 116 as shown in FIG. 10.
Additional roller embodiments 117 and 119, shown in FIGS. 7C and 7D, each have a surface portion 121 with a first face 123 angularly oriented with respect to axis 80, and a second face 125, also angularly oriented with respect to axis 80, but at a different angle. In roller tool 117, the slope of the first surface portion is greater than the slope of the second surface portion, and this roller produces a groove 122 as shown in FIG. 12. In roller tool 119, the slope of the first surface portion is less than the slope of the second surface portion, and this roller produces a groove 126, having an angularly oriented side surface 124 as shown in FIG. 13.
Roller tool 127, shown in FIG. 7E, has no radially facing surface, an angled surface 129 intersects with a surface portion 131 that is substantially perpendicular to the axis of rotation 80. Roller tool 127 is useful for creating the groove shown in FIG. 15.
Roller tool 133, shown in FIG. 7F, has a curved radially facing surface 135 and an angularly oriented surface 135 as well as a perpendicular surface 137. The curved surface may be convex, concave, sinusoidal, hyperbolic, or irregularly curved.
As shown in FIG. 7G, the roller 139 may have a radially facing surface 141 that is angularly oriented with respect to the axis of rotation 80. A groove as shown in FIG. 5B is produced by such a tool.
While grooves adapted to achieve significant wedging action with the keys of a coupling have been described applied to pipe ends, such grooves may also be used in conjunction with pipe fittings as well. For example, FIG. 16 shows an elbow fitting 140 having circumferential grooves 142 at either end. Grooves 142 may have any of the cross sectional profiles illustrated in FIGS. 5 and 10-15 or their variations as described above. Similarly, the Tee fitting 144 shown in FIG. 17 has grooves 146, preferably adjacent to each of its ends, the grooves being adapted to develop wedging action to couple the fitting to pipes or other fittings as described herein. FIG. 18 shows a fitting 148 having a wedging groove 150 adjacent to one end and a flange 152 at the opposite end. Fitting 148 allows a piping network using mechanical couplings to be joined to another network coupled using flanges. Furthermore, as illustrated in FIGS. 19 and 20, other types of fittings such as a reducer 154 (FIG. 19) used to join pipes having different diameters, or a nipple 156 (FIG. 20) may also benefit from having respective grooves 158 and 160 that are like those illustrated and described above that increase the wedging action between the coupling and the groove to ensure either a stiffer or more flexible joint, depending upon the tolerances of the coupling as described above.
As further shown in FIG. 21, components related to control of fluid flow, such as a valve 162 may also have grooves 164 that are like those described above to couple the valve to pipes, fittings or other components using mechanical couplings as described herein.
Pipe couplings according to the invention incorporate the advantages of a rigid or flexible connection with a reliable visual indicator for confirming that the coupling properly engages the pipes to effect a fluid tight joint. The couplings provide a mechanical advantage which allows manual assembly of piping networks of substantial diameter despite their weight. The couplings have tolerances allowing them to be economically produced and still yield a substantially rigid joint between pipes.

Claims (22)

What is claimed is:
1. A method for connecting pipe elements together end-to-end, said method comprising:
using a pair of pipe elements, each having a circumferential groove therein, each said groove being positioned proximate to an end of a respective one of said pipe elements, each said groove having an angularly oriented side surface facing said end of said respective one of said pipe elements;
using a coupling comprising a plurality of segments joined end-to-end by a plurality of adjustably tightenable fasteners, each of said segments having a pair of keys projecting radially inwardly, said keys being positioned in spaced apart relation from one another and defining a space therebetween, at least one of said keys on one of said segments having a first camming surface positioned adjacent to one end of said segment, said first camming surface facing away from said space between said keys and being angularly oriented relatively thereto and having a radial orientation angle substantially the same as said angularly oriented side surface of one of said grooves;
positioning a first and a second of said pipe elements in end-to-end relation;
positioning said plurality of segments surrounding ends of said first and second pipe elements;
engaging said first camming surface with said angularly oriented side surface of said groove in one of said first and second pipe elements;
applying said fasteners to said segments; and
tightening said fasteners so as to draw said segments toward one another, said first camming surface sliding into said groove against said angularly oriented side surface and thereby moving said first and second pipe elements away from one another.
2. The method according to claim 1, further comprising positioning a sealing member surrounding said ends of said first and said second pipe elements.
3. The method according to claim 1, further comprising placing ends of said first and second pipe elements in abutting relationship.
4. The method according to claim 1, further comprising forming a groove in each of said first and second pipe elements by forming a first side surface proximate to an end of said pipe elements, forming a second side surface positioned in spaced relation to said first side surface and distal to said end of said pipe, forming a floor that extends between said first and second side surfaces, said second side surface of said one groove comprising said angularly oriented side surface.
5. The method according to claim 4, further comprising forming said first side surface substantially perpendicularly to a long axis of said pipe element.
6. The method according to claim 5, further comprising further tightening said fasteners and thereby forcing said keys into said grooves.
7. The method according to claim 6, further comprising contacting said first side surfaces in each of said grooves with said keys.
8. The method according to claim 7, wherein said segments further comprise lugs positioned at each end thereof, said lugs being adapted to receive said fasteners, one of said lugs on each of said segments being in facing relation with one of said lugs on another of said segments, said method further including tightening said fasteners so as to bring said lugs in facing relation into contact with one another thereby forming a rigid joint.
9. A method for connecting pipe elements together end-to-end, said method comprising:
using a pair of pipe elements, each having a circumferential groove therein, each said groove being positioned proximate to an end of a respective one of said pipe elements, each said groove having an angularly oriented side surface facing said end of said respective one of said pipe elements;
using a coupling comprising first and second segments joined end-to-end by a plurality of adjustably tightenable fasteners, each of said segments having a pair of keys projecting radially inwardly, said keys being positioned in spaced apart relation from one another and defining a space therebetween, each of said keys having a first camming surface positioned adjacent to one end of said segment, and a second camming surface positioned adjacent to an opposite end of said segment, said camming surfaces facing away from said space between said keys and being angularly oriented relatively thereto and having a radial orientation angle substantially the same as said angularly oriented side surface of one of said grooves;
positioning a first and a second of said pipe elements in end-to-end relation;
positioning said first and second segments surrounding ends of said first and second pipe elements;
engaging said camming surfaces with said angularly oriented side surfaces of said grooves in said first and second pipe elements;
applying said fasteners to said segments; and
tightening said fasteners so as to draw said segments toward one another, said camming surfaces sliding into said grooves against said angularly oriented side surfaces and thereby moving said first and second pipe elements away from one another.
10. The method according to claim 9, further comprising positioning a sealing member surrounding said ends of said first and said second pipe elements.
11. The method according to claim 9, further comprising placing ends of said first and second pipe elements in abutting relationship.
12. The method according to claim 9, further comprising forming a groove in each of said first and second pipe elements by forming a first side surface proximate to an end of said pipe elements, forming a second side surface positioned in spaced relation to said first side surface and distal to said end of said pipe, forming a floor that extends between said first and second side surfaces, said second side surface comprising said angularly oriented side surface.
13. The method according to claim 12, further comprising forming said first side surfaces substantially perpendicularly to a long axis of said pipe element.
14. The method according to claim 13, further comprising further tightening said fasteners and thereby forcing said keys into said grooves.
15. The method according to claim 14, further comprising contacting said first side surfaces in each of said grooves with said keys.
16. The method according to claim 15, wherein said segments further comprise lugs positioned at each end thereof, said lugs being adapted to receive said fasteners, one of said lugs on each of said segments being in facing relation with one of said lugs on another of said segments, said method further including tightening said fasteners so as to bring said lugs in facing relation into contact with one another thereby forming a rigid joint.
17. A method for connecting pipe elements together end-to-end, said method comprising:
using a pair of pipe elements, each having a circumferential groove therein, each said groove being positioned proximate to an end of a respective one of said pipe elements, at least one of said grooves having an angularly oriented side surface facing said end of said respective one of said pipe elements;
using a coupling comprising a plurality of segments joined end-to-end by a plurality of adjustably tightenable fasteners, each of said segments having a pair of keys projecting radially inwardly, said keys being positioned in spaced apart relation from one another and defining a space therebetween, at least one of said keys on one of said segments having a first camming surface positioned adjacent to one end of said segment, said first camming surface facing away from said space between said keys and being angularly oriented relatively thereto and having a radial orientation angle substantially the same as said angularly oriented side surface of said at least one of said grooves;
positioning a first and a second of said pipe elements in end-to-end relation;
positioning said plurality of segments surrounding ends of said first and second pipe elements;
engaging said first camming surface with said angularly oriented side surface of said at least one of said grooves in one of said first and second pipe elements;
applying said fasteners to said segments; and
tightening said fasteners so as to draw said segments toward one another, said first camming surface sliding into said at least one of said grooves against said angularly oriented side surface and thereby moving said first and second pipe elements away from one another.
18. The method according to claim 17, further comprising forming said at least one groove in at least one pipe element of said first and second pipe elements by forming a first side surface proximate to an end of said at least one pipe element, forming a second side surface positioned in spaced relation to said first side surface and distal to said end of said at least one pipe element, forming a floor that extends between said first and second side surfaces, said second side surface comprising said angularly oriented side surface.
19. The method according to claim 18, further comprising forming said first side surface substantially perpendicularly to a long axis of said at least one pipe element.
20. A method for connecting pipe elements together end-to-end, said method comprising:
using a pair of pipe elements, each having a circumferential groove therein, each said groove being positioned proximate to an end of a respective one of said pipe elements, at least one of said grooves having an angularly oriented side surface facing said end of said respective one of said pipe elements;
using a coupling comprising first and second segments joined end-to-end by a plurality of adjustably tightenable fasteners, each of said segments having a pair of keys projecting radially inwardly, said keys being positioned in spaced apart relation from one another and defining a space therebetween, at least one of said keys having a first camming surface positioned adjacent to one end of said segment, said first camming surface facing away from said space between said keys and being angularly oriented relatively thereto and having a radial orientation angle substantially the same as said angularly oriented side surface of said at least one of said grooves;
positioning a first and a second of said pipe elements in end-to-end relation;
positioning said first and second segments surrounding ends of said first and second pipe elements;
engaging said first camming surface with said angularly oriented side surface of said at least one of said grooves in said first and second pipe elements;
applying said fasteners to said segments; and
tightening said fasteners so as to draw said segments toward one another, said first camming surface sliding into said at least one groove against said angularly oriented side surface and thereby moving said first and second pipe elements away from one another.
21. The method according to claim 20, further comprising forming said at least one groove in at least one pipe element of said first and second pipe elements by forming a first side surface proximate to an end of said at least one pipe element, forming a second side surface positioned in spaced relation to said first side surface and distal to said end of said at least one pipe element, forming a floor that extends between said first and second side surfaces, said second side surface comprising said angularly oriented side surface.
22. The method according to claim 21, further comprising forming said first side surface substantially perpendicularly to a long axis of said at least one pipe element.
US13/532,902 2004-03-26 2012-06-26 Method of joining pipes in end to end relation Active 2026-02-19 USRE44444E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/532,902 USRE44444E1 (en) 2004-03-26 2012-06-26 Method of joining pipes in end to end relation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US55696204P 2004-03-26 2004-03-26
US11/091,216 US20050242585A1 (en) 2004-03-26 2005-03-28 Pipe coupling having keys with camming surfaces
US12/271,992 US7996981B2 (en) 2004-03-26 2008-11-17 Method of joining pipes in end to end relation
US13/532,902 USRE44444E1 (en) 2004-03-26 2012-06-26 Method of joining pipes in end to end relation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/271,992 Reissue US7996981B2 (en) 2004-03-26 2008-11-17 Method of joining pipes in end to end relation

Publications (1)

Publication Number Publication Date
USRE44444E1 true USRE44444E1 (en) 2013-08-20

Family

ID=35064271

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/091,147 Abandoned US20050212296A1 (en) 2004-03-26 2005-03-28 Pipes having wedging circumferential grooves
US11/091,460 Active US7296451B2 (en) 2004-03-26 2005-03-28 Roller tool for forming grooves in pipes
US11/091,146 Abandoned US20050212284A1 (en) 2004-03-26 2005-03-28 Pipe coupling having wedge shaped keys
US11/091,216 Abandoned US20050242585A1 (en) 2004-03-26 2005-03-28 Pipe coupling having keys with camming surfaces
US12/116,618 Active US7516636B2 (en) 2004-03-26 2008-05-07 Roller tool for forming grooves in pipes
US12/271,992 Ceased US7996981B2 (en) 2004-03-26 2008-11-17 Method of joining pipes in end to end relation
US13/532,902 Active 2026-02-19 USRE44444E1 (en) 2004-03-26 2012-06-26 Method of joining pipes in end to end relation

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US11/091,147 Abandoned US20050212296A1 (en) 2004-03-26 2005-03-28 Pipes having wedging circumferential grooves
US11/091,460 Active US7296451B2 (en) 2004-03-26 2005-03-28 Roller tool for forming grooves in pipes
US11/091,146 Abandoned US20050212284A1 (en) 2004-03-26 2005-03-28 Pipe coupling having wedge shaped keys
US11/091,216 Abandoned US20050242585A1 (en) 2004-03-26 2005-03-28 Pipe coupling having keys with camming surfaces
US12/116,618 Active US7516636B2 (en) 2004-03-26 2008-05-07 Roller tool for forming grooves in pipes
US12/271,992 Ceased US7996981B2 (en) 2004-03-26 2008-11-17 Method of joining pipes in end to end relation

Country Status (9)

Country Link
US (7) US20050212296A1 (en)
EP (4) EP1749166A4 (en)
JP (5) JP2007530288A (en)
KR (1) KR20060135838A (en)
CN (4) CN1997847B (en)
AU (4) AU2005228378B2 (en)
CA (4) CA2560856C (en)
HK (1) HK1098809A1 (en)
WO (4) WO2005094295A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD737412S1 (en) * 2014-06-16 2015-08-25 Victaulic Company Pipe coupling segment
USD740921S1 (en) * 2014-06-16 2015-10-13 Victaulic Company Pipe coupling segment
USD754307S1 (en) * 2014-06-16 2016-04-19 Victaulic Company Pipe coupling segment
US11434737B2 (en) 2017-12-05 2022-09-06 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US11451016B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US11454170B2 (en) 2012-11-16 2022-09-27 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11454079B2 (en) 2018-09-14 2022-09-27 U.S. Well Services Llc Riser assist for wellsites
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11674352B2 (en) 2012-11-16 2023-06-13 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11713661B2 (en) 2012-11-16 2023-08-01 U.S. Well Services, LLC Electric powered pump down
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11850563B2 (en) 2012-11-16 2023-12-26 U.S. Well Services, LLC Independent control of auger and hopper assembly in electric blender system
US11959533B2 (en) 2017-12-05 2024-04-16 U.S. Well Services Holdings, Llc Multi-plunger pumps and associated drive systems
US12078110B2 (en) 2015-11-20 2024-09-03 Us Well Services, Llc System for gas compression on electric hydraulic fracturing fleets
US12092095B2 (en) 2016-12-02 2024-09-17 Us Well Services, Llc Constant voltage power distribution system for use with an electric hydraulic fracturing system
US12116875B2 (en) 2018-10-09 2024-10-15 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform
US12142928B2 (en) 2023-06-14 2024-11-12 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS207802A0 (en) * 2002-05-02 2002-06-06 Tyco Water Pty Limited Pipe coupling
CA2560856C (en) * 2004-03-26 2014-12-09 Victaulic Company Pipe coupling having wedge shaped keys
US8267432B2 (en) * 2004-03-26 2012-09-18 Victaulic Company Coupling having angularly oriented key surfaces
US7712796B2 (en) * 2004-05-14 2010-05-11 Victaulic Company Deformable mechanical pipe coupling
US7726703B2 (en) 2006-06-07 2010-06-01 Victaulic Company Deformable pipe coupling having multiple radii of curvature
US8267438B2 (en) * 2007-03-01 2012-09-18 Tyco Fire Products Lp Two-piece flange adapter
US20080224464A1 (en) * 2007-03-12 2008-09-18 Eliezer Krausz Pipe coupling
US7798535B2 (en) * 2007-09-17 2010-09-21 Westinghouse Electric Co. Llc Pipe clamp
US7997112B2 (en) * 2007-09-27 2011-08-16 Langdon Incorporated Flange-forming system for tube and related methods
FR2922984B1 (en) * 2007-10-31 2013-09-27 Saint Gobain Performance Plast VALVE HAVING RIGID SEAL
FR2922988B1 (en) * 2007-10-31 2012-10-12 Saint Gobain Performance Plast PIPE ASSEMBLIES
US8348236B2 (en) 2007-10-31 2013-01-08 Saint-Gobain Performance Plastics Corporation Butterfly valve with a rigid seal
WO2009102698A1 (en) * 2008-02-12 2009-08-20 Victaulic Company Couplings having stiffening ribs and keys with oppositely disposed camming surfaces
US20090243289A1 (en) * 2008-02-12 2009-10-01 Victaulic Company Couplings Having Stiffening Ribs and Keys with Oppositely Disposed Camming Surfaces
US8282136B2 (en) 2008-06-30 2012-10-09 Mueller International, Llc Slip on groove coupling with multiple sealing gasket
DE102008046677A1 (en) * 2008-09-10 2010-03-11 Josef Zimmermann Pipe section with at least one inner peripheral seal
WO2010106369A2 (en) * 2009-03-19 2010-09-23 Coupling Technology Limited Pipe coupling
US8783360B2 (en) * 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
JP4500882B1 (en) * 2009-12-14 2010-07-14 日本ヴィクトリック株式会社 Housing type pipe fitting
CN102597591B (en) * 2009-12-14 2014-12-17 日本维多利克股份有限公司 Housing type pipe joint
KR101190838B1 (en) * 2010-06-30 2012-10-12 지원건설(주) Seperated pressure wheel
JP2012037050A (en) * 2010-07-12 2012-02-23 Ihara Science Corp Fluid system
CN101972806B (en) * 2010-10-22 2012-10-31 佛山市南海力丰机床有限公司 Rolling wheel device of spiral air pipe machine
JP2012117622A (en) * 2010-12-01 2012-06-21 Ihara Science Corp Pipe connection structure
EP2643625B1 (en) * 2010-12-02 2017-09-20 Victaulic Company Pipe element having shoulder, groove and bead and methods and apparatus for manufacture thereof
SG191141A1 (en) * 2010-12-16 2013-07-31 Amiad Water Systems Ltd Filtration system and components there for
US10458577B2 (en) * 2011-03-11 2019-10-29 Us Groove And Fittings, Llc Grooved forged carbon steel fitting apparatus
WO2013033134A1 (en) * 2011-09-02 2013-03-07 Victaulic Company Spin forming method
DE102011116768A1 (en) * 2011-10-22 2013-04-25 Norma Germany Gmbh Clamp with sealing element
USD696751S1 (en) 2011-10-27 2013-12-31 Mueller International, Llc Slip-on gasket
US20130125373A1 (en) * 2011-11-21 2013-05-23 Philip W. Bancroft Coupling with projections having angularly oriented surface portions
USD680630S1 (en) 2011-11-21 2013-04-23 Mueller International, Llc Slip-on coupling assembly
USD680629S1 (en) 2011-11-21 2013-04-23 Mueller International, Llc Slip-on coupling segment
US9039046B2 (en) 2012-01-20 2015-05-26 Mueller International, Llc Coupling with tongue and groove
US9194516B2 (en) 2012-01-20 2015-11-24 Mueller International, Llc Slip-on coupling
US9534715B2 (en) 2012-01-20 2017-01-03 Mueller International, Llc Coupling gasket with multiple sealing surfaces
US9500307B2 (en) 2012-01-20 2016-11-22 Mueller International, Llc Slip-on coupling gasket
US8887372B2 (en) * 2012-06-01 2014-11-18 Adva Optical Networking Se Injection mechanism for modules, and method of using the same
CN102699168B (en) * 2012-06-04 2015-10-21 杨岩顺 The hydraulic channeling machine of processing metal bend pipe groove
CN102797923A (en) * 2012-08-29 2012-11-28 北京韩建河山管业股份有限公司 Steel-structured replacement pipe with sliding joint
US9168585B2 (en) 2012-11-02 2015-10-27 Mueller International, Llc Coupling with extending parting line
CN103032431A (en) * 2012-12-20 2013-04-10 苏州萃智新技术开发有限公司 Adjustable surface pipe connecting assembly
US9523451B1 (en) * 2013-02-15 2016-12-20 Elkhart Products Corporation, C/O Aalberts Industries N.V. Utilizing a visual indicator to determine security of a pipe fitting
DE102013003401A1 (en) * 2013-02-28 2014-08-28 Klinger Ag Flat gasket for flange connections
US10571054B2 (en) * 2013-03-07 2020-02-25 Tyco Fire Products Lp Three piece pipe coupling
JP6068245B2 (en) * 2013-04-22 2017-01-25 日本ヴィクトリック株式会社 How to assemble pipe fittings
US10578234B2 (en) 2013-05-02 2020-03-03 Victaulic Company Coupling having arcuate stiffness ribs
US9333548B2 (en) 2013-08-12 2016-05-10 Victaulic Company Method and device for forming grooves in pipe elements
CN103447770B (en) * 2013-09-06 2016-03-09 中联重科股份有限公司 Method for manufacturing pipe clamp, pipe clamp and pipeline
US9358639B2 (en) * 2013-09-16 2016-06-07 Markem-Imaje Corporation Connector for adjustable configurations
CN103486371B (en) * 2013-09-17 2016-03-16 南车二七车辆有限公司 A kind of railway wagon brake pipe system connection set and attaching method thereof
USD750957S1 (en) * 2013-09-25 2016-03-08 Victaulic Company Pipe coupling segment
USD756212S1 (en) * 2013-09-25 2016-05-17 Victaulic Company Pipe coupling segment
USD755621S1 (en) * 2013-09-25 2016-05-10 Victaulic Company Pipe coupling segment
US9638227B2 (en) 2014-02-20 2017-05-02 GE-Hitachi Nuclear Energry Americas LLC Apparatuses and methods for structurally replacing cracked welds in nuclear power plants
KR101488337B1 (en) * 2014-05-12 2015-01-30 연우지에스티 주식회사 Coupling
US10245631B2 (en) 2014-10-13 2019-04-02 Victaulic Company Roller set and pipe elements
US10948008B2 (en) 2014-10-17 2021-03-16 Thyssenkrupp Presta Ag Steering shaft and method for producing a profiled hollow shaft for a telescopic steering shaft of a motor vehicle
JP6029798B1 (en) * 2015-03-18 2016-11-24 日新製鋼株式会社 Rolling processing equipment
CN105202298A (en) * 2015-10-14 2015-12-30 镇江市神龙电器管件有限公司 Plastic pipe fitting
US9903515B2 (en) * 2015-12-09 2018-02-27 Victaulic Company Seal with lip projections
ES2804798T3 (en) 2015-12-28 2021-02-09 Victaulic Co Of America Adapter coupling
WO2017132036A1 (en) 2016-01-26 2017-08-03 Victaulic Company Pipe element having wedging groove
US10604851B1 (en) 2016-03-02 2020-03-31 Galvotec Alloys, Inc. Sacrificial anodes for cathodic protection for production vessels, storage vessels and other steel structures
US10605394B2 (en) 2016-05-16 2020-03-31 Victaulic Company Fitting having tabbed retainer and observation apertures
US10533688B2 (en) 2016-05-16 2020-01-14 Victaulic Company Coupling having tabbed retainer
US10859190B2 (en) * 2016-05-16 2020-12-08 Victaulic Company Sprung coupling
KR101864484B1 (en) * 2016-07-13 2018-06-04 주식회사 하이스텐 Coupling
CN108167333B (en) * 2016-12-07 2023-12-08 汕头市东方科技有限公司 Tank body groove type processing device
DE102016124487A1 (en) * 2016-12-15 2018-06-21 Mv Pipe Technologies Gmbh Apparatus and method for producing a circumferential groove in an end portion of a metal pipe
PE20240516A1 (en) * 2017-01-24 2024-03-18 Victaulic Co Of America COUPLING AND CIRCUMFERENTIAL GROOVE SHAPE
USD828748S1 (en) * 2017-01-27 2018-09-18 Victaulic Company Pipe coupling
US11035505B2 (en) 2017-02-06 2021-06-15 North American Pipe Corporation System, method and apparatus for in-line removable pipe assembly
AU201715622S (en) * 2017-03-16 2017-10-11 Bio Pure Tech Limited Clamp
USD819435S1 (en) 2017-03-30 2018-06-05 Victaulic Company Pipe coupling
USD820074S1 (en) * 2017-03-30 2018-06-12 Victaulic Company Pipe coupling
USD820076S1 (en) * 2017-03-30 2018-06-12 Victaulic Company Pipe coupling
JP2018179296A (en) * 2017-04-18 2018-11-15 日本ヴィクトリック株式会社 Pipe joint structure
CN110691935B (en) * 2017-05-30 2022-03-11 泰科消防产品有限合伙公司 Preassembled pipe coupling having an insertion boundary for axially receiving a pipe end
TWI726211B (en) * 2017-05-30 2021-05-01 美商泰科防火產品有限合夥公司 Pre-assembled pipe coupling for insertion of pipe ends and method of joining a pair of pipe ends in an axial arrangement with a pre-assembled coupling
US11215301B2 (en) 2017-07-28 2022-01-04 ASC Engineered Solutions, LLC Pre-assembled coupling assembly with flexible hose adapter
US11268638B2 (en) 2017-07-28 2022-03-08 ASC Engineered Solutions, LLC Pre-assembled coupling assemblies with pipe fitting
USD859136S1 (en) * 2017-07-31 2019-09-10 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD858264S1 (en) * 2017-07-31 2019-09-03 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD865507S1 (en) * 2017-07-31 2019-11-05 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD859137S1 (en) * 2017-07-31 2019-09-10 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD867867S1 (en) * 2017-07-31 2019-11-26 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD867119S1 (en) * 2017-07-31 2019-11-19 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD859970S1 (en) * 2017-07-31 2019-09-17 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD858265S1 (en) * 2017-07-31 2019-09-03 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD859971S1 (en) * 2017-07-31 2019-09-17 Ge Healthcare Bio-Sciences Corp. Tubing clamp
USD856123S1 (en) * 2017-08-08 2019-08-13 Victaulic Company Coupling
DE202018103220U1 (en) 2018-01-19 2018-06-14 Röhrenwerk Kupferdreh Carl Hamm GmbH Pipe coupling system
DE102018101163B4 (en) 2018-01-19 2022-03-31 Röhrenwerk Kupferdreh Carl Hamm GmbH pipe coupling system
JP7186996B2 (en) * 2018-03-20 2022-12-12 日本ヴィクトリック株式会社 Pipe joint structure
WO2020021497A1 (en) * 2018-07-25 2020-01-30 Mohammad Durali Installing pipeline segments within a conduit
US10913099B2 (en) * 2018-11-08 2021-02-09 Zekelman Industries, Inc. End grooving system and process for tubing
PL244786B1 (en) * 2019-03-14 2024-03-04 Hyper Poland Spolka Z Ograniczona Odpowiedzialnoscia Method of transforming the tracks of a conventional rail wheel system or integrated maglev into a vacuum, pressure maglev system and method of tight expansion joint connection of tunnel segments
USD961374S1 (en) * 2019-05-23 2022-08-23 Comalander Fabrication and Services, LLC Insert for a saddle for a pipe support system
USD968946S1 (en) * 2019-05-23 2022-11-08 Comalander Fabrication and Services, LLC Combination saddle and insert for a pipe support system
USD968945S1 (en) * 2019-05-23 2022-11-08 Comalander Fabrication and Services, LLC Combination saddle and insert for a pipe support system
US11421804B2 (en) 2019-04-19 2022-08-23 Aalberts integrated piping systems APAC, Inc. Quick installation coupling
CA188984S (en) * 2019-07-30 2020-11-13 Shur Fit Products Ltd Coupling covering
US11725757B2 (en) * 2019-09-30 2023-08-15 Victaulic Company Outlet coupling
KR102137991B1 (en) * 2019-10-15 2020-07-27 (주) 금강씨에스 joint assembly for pipe joint having convenience in construction
US11781683B2 (en) 2019-11-15 2023-10-10 Victaulic Company Shrouded coupling
US10781941B1 (en) 2019-12-18 2020-09-22 Trinity Bay Equipment Holdings, LLC Pipeline retainer stake systems and methods
EP4241007A4 (en) * 2020-11-06 2024-09-18 Victaulic Co Of America Coupling having rotation limited segments
US20220260188A1 (en) * 2020-11-06 2022-08-18 Victaulic Company Coupling Having Visual Installation Indicators
CN113757461A (en) * 2021-02-07 2021-12-07 上海威逊机械连接件有限公司 Quick-assembling joint
USD1035432S1 (en) * 2021-11-12 2024-07-16 Rmh Tech Llc Pipe clamp with a threaded extension
US20240027004A1 (en) * 2022-07-21 2024-01-25 Applied System Technologies, Inc. Pipe coupling
KR102542909B1 (en) * 2022-08-25 2023-06-14 (주)뉴아세아 Stainless steel coupling assembly for connecting pipes
KR102551523B1 (en) * 2022-11-30 2023-07-05 (주)뉴아세아 Coupling assembly for connecting pipes and manufacturing method thereof

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1331986A (en) 1919-08-04 1920-02-24 American Steam Conveyor Corp Ash-conveyer
US2283583A (en) 1941-10-10 1942-05-19 Charles Edison Ludin Amusement device
US2821415A (en) 1953-04-09 1958-01-28 Race & Race Inc Grooved and internally reinforced pipe end
US3006663A (en) 1958-08-11 1961-10-31 Lee Clay Products Company Pipe clamp with resilient member
US3015502A (en) 1957-11-29 1962-01-02 Victaulic Co Of America Grooved tubing for connection with sleeve type coupling
US3024046A (en) 1958-05-29 1962-03-06 Victaulic Co Of America Couplings with pipe gripping means for plain end pipe
US3054629A (en) 1958-09-04 1962-09-18 Victaulic Co Of America Pipe couplings
US3086797A (en) 1958-11-13 1963-04-23 Ernest C Webb Coupling device
US3201149A (en) 1961-12-01 1965-08-17 Parker Hannifin Corp Tube coupling
US3283553A (en) 1963-07-31 1966-11-08 British Aluminium Co Ltd Multi-purpose tools
US3291506A (en) 1966-12-13 Pipe joints and the oasketing thereof
US3351352A (en) 1962-02-27 1967-11-07 Victaulic Co Of America Gasket for pipe joint
US3362730A (en) 1965-06-07 1968-01-09 Victaulic Co Of America Side outlet coupling
US3403931A (en) 1964-08-11 1968-10-01 Gray Tool Co Clamp
US3648503A (en) 1970-03-27 1972-03-14 Veeder Industries Inc Beading machine and method
US3696885A (en) 1971-08-19 1972-10-10 Electronic Res Ass Decorative loudspeakers
US3977705A (en) 1975-08-20 1976-08-31 Aeroquip Corporation Reducing type coupling
US4114414A (en) 1977-04-29 1978-09-19 E.G. Sprinkler Corporation Backup roll for thin walled pipe grooving device
US4144733A (en) 1977-09-27 1979-03-20 Whitten Billy L Pipe grooving apparatus
US4163571A (en) 1977-07-18 1979-08-07 Durapipe Limited Pipe couplings
US4311248A (en) 1974-11-04 1982-01-19 Construction Forms, Inc. High pressure coupling apparatus
US4408788A (en) 1981-09-23 1983-10-11 Grinnell Fire Protection Systems Company, Inc. Hingeable split pipe collar
US4432558A (en) 1978-01-03 1984-02-21 Westerlund Robert E Concrete pumping swivel coupling apparatus with seal
US4460201A (en) 1980-02-18 1984-07-17 Hunting Oilfield Services (Uk) Limited Pipe connectors
US4522433A (en) 1982-05-14 1985-06-11 Stanley Aviation Corporation Spherical seat flexible O-ring coupling
US4643461A (en) 1985-12-20 1987-02-17 Victaulic Company Of America Fire resistant seal
US4702500A (en) 1985-12-20 1987-10-27 Victaulic Company Of America Fire resistant seal
US4915418A (en) 1989-05-19 1990-04-10 Urdan Industries (Usa), Inc. Hinged pipe coupling
US5018768A (en) 1990-07-19 1991-05-28 Quikcoup, Incorporated Pipe coupling hinge
US5058931A (en) 1988-11-28 1991-10-22 Gustin-Bacon Division, A Division Of Tyler Pipe Clamp with teeth for grooved pipes
US5149143A (en) 1989-07-20 1992-09-22 National-Oilwell Connector assembly with detachable sleeve
US5246256A (en) 1991-12-19 1993-09-21 Victaulic Company Of America Roll grooved pipe
US5249829A (en) 1992-07-06 1993-10-05 Quikcoup, Inc. Pipe coupling gasket insert
US5282654A (en) 1993-04-26 1994-02-01 Quikcoup, Inc. Pipe coupling sleeve
US5291769A (en) 1991-05-16 1994-03-08 Kabushiki Kaisha Milano Apparatus for forming end portion of pipe
US5443581A (en) 1992-12-03 1995-08-22 Wood George & Co., Inc. Clamp assembly for clamp hub connectors and a method of installing the same
US5450738A (en) 1993-08-31 1995-09-19 Grinnell Corporation Method and apparatus for forming piping element connections having multiple outward steps
JPH07310871A (en) 1994-05-18 1995-11-28 Kubota Corp Pipe connecting structure in fluid piping
US5603508A (en) 1996-05-20 1997-02-18 Victaulic Company Of America Gasket for lateral outlet segmented pipe coupling
US5778715A (en) 1996-11-05 1998-07-14 Grinnell Corporation Cold rolling positioning roller assembly
JPH11207411A (en) 1998-01-27 1999-08-03 Hitachi Metals Ltd Tool for grooving tube
US5951066A (en) 1998-02-23 1999-09-14 Erc Industries, Inc. Connecting system for wellhead components
US5974848A (en) 1996-06-19 1999-11-02 Moore; Boyd B. Rolled-formed seat and retainer for a fluid-tight ferrule seal on a rigid metal tube which is harder than the ferrule, method and apparatus
US5979202A (en) 1997-05-29 1999-11-09 Blakeley Engineering Ltd. Method and apparatus for making pipe line steel grooved-end fittings
US6070914A (en) 1998-05-20 2000-06-06 Rasmussen Gmbh Pipe coupling
JP2000352486A (en) 1999-06-14 2000-12-19 Nippon Kokan Pipe Fittings Mfg Co Ltd Combined structure of bayonet joint and pipe
US6196039B1 (en) 1999-03-25 2001-03-06 Anvil International, Inc. Groove rolling of piping elements
US6227577B1 (en) 1997-12-25 2001-05-08 Victaulic Co., Of Japan, Ltd. Housing type pipe coupling
JP2001227680A (en) 2000-02-18 2001-08-24 Bantekku Kk Pipe body with peripheral groove
US20010054820A1 (en) 2000-06-19 2001-12-27 Starita Joseph M. Corrugated plastic pipe sections having flanged ends and structurally tight joints thereof
US6371684B2 (en) 1997-02-14 2002-04-16 Bodenseewerk Geratetechnik Gmbh Clamping ring for connecting cylindrical units of missiles
US6375228B1 (en) 1999-03-25 2002-04-23 Construction Forms, Inc. Coupling units connecting tubular members having a hardened inner wall for carrying mechanically abrasive fluid concrete
US6393885B1 (en) 2000-11-07 2002-05-28 Hegenscheidt Mfd Corporation Tooling for deep rolling fillets of crankshaft journals
JP2003055985A (en) 2001-08-10 2003-02-26 East Japan Railway Co Connecting method of column to pile
US6606893B2 (en) 2001-07-13 2003-08-19 Emerson Electric Co. Roll grooving apparatus
US20050034499A1 (en) 2003-08-13 2005-02-17 Shinsuke Matsumoto Processing method of forming a concavity in a pipe member and an apparatus thereof
US6935152B2 (en) 2002-04-16 2005-08-30 Victaulic Company Of America Orbiting roller groover for pipe
US20050212296A1 (en) 2004-03-26 2005-09-29 Victaulic Company Of America Pipes having wedging circumferential grooves

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA659303A (en) * 1963-03-12 Victaulic Company Of America Pipe couplings and methods
US1541601A (en) 1919-07-07 1925-06-09 Victaulic Company Ltd Pipe joint
US2014313A (en) 1933-03-02 1935-09-10 William B Damsel Pipe coupling
US2362454A (en) 1941-07-16 1944-11-14 Damsel Nelle Hood Pipe coupling
US2673102A (en) 1950-10-30 1954-03-23 Victaulic Co Of America Toggle type pipe coupling
US2752174A (en) 1953-06-16 1956-06-26 Victaulic Co Of America Hinged pipe coupling and method of making the same
US3113791A (en) 1959-01-21 1963-12-10 Victaulic Co Of America Hinged pipe couplings
JPS5652466Y2 (en) * 1975-11-14 1981-12-07
JPS51136195A (en) * 1976-01-14 1976-11-25 Toyokon Kaihatsu Kk Linkage band
SE7811904L (en) * 1978-08-23 1980-05-18 Viktor Prestor SET AND DEVICE FOR FOUNDING SAVINGS IN THE ROUND WORK PIECE
JPS5623784U (en) * 1979-07-31 1981-03-03
US4471979A (en) * 1982-03-15 1984-09-18 Victaulic Company Of Canada Limited Quick-connect coupling for thin-walled pipes
US4561678A (en) 1983-05-04 1985-12-31 Victaulic Company Of America Pipe coupling
JPH0355985U (en) * 1989-10-03 1991-05-29
JPH0729354Y2 (en) * 1989-10-18 1995-07-05 株式会社リケン Pipe fitting
US5359529A (en) * 1992-05-15 1994-10-25 Zexel Corporation Route guidance on/off-route state filter
CN2208652Y (en) * 1994-09-24 1995-09-27 吴阳曙 Pipe fixing ring with automatic adjusting function
US5758907A (en) * 1996-07-26 1998-06-02 Victaulic Company Of America Mis-adjustment limiting segmented pipe coupling
CN2374723Y (en) * 1999-05-14 2000-04-19 黄鸿图 Improved structure of mechanical union joint

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291506A (en) 1966-12-13 Pipe joints and the oasketing thereof
US1331986A (en) 1919-08-04 1920-02-24 American Steam Conveyor Corp Ash-conveyer
US2283583A (en) 1941-10-10 1942-05-19 Charles Edison Ludin Amusement device
US2821415A (en) 1953-04-09 1958-01-28 Race & Race Inc Grooved and internally reinforced pipe end
US3015502A (en) 1957-11-29 1962-01-02 Victaulic Co Of America Grooved tubing for connection with sleeve type coupling
US3024046A (en) 1958-05-29 1962-03-06 Victaulic Co Of America Couplings with pipe gripping means for plain end pipe
US3006663A (en) 1958-08-11 1961-10-31 Lee Clay Products Company Pipe clamp with resilient member
US3054629A (en) 1958-09-04 1962-09-18 Victaulic Co Of America Pipe couplings
US3086797A (en) 1958-11-13 1963-04-23 Ernest C Webb Coupling device
US3201149A (en) 1961-12-01 1965-08-17 Parker Hannifin Corp Tube coupling
US3351352A (en) 1962-02-27 1967-11-07 Victaulic Co Of America Gasket for pipe joint
US3283553A (en) 1963-07-31 1966-11-08 British Aluminium Co Ltd Multi-purpose tools
US3403931A (en) 1964-08-11 1968-10-01 Gray Tool Co Clamp
US3362730A (en) 1965-06-07 1968-01-09 Victaulic Co Of America Side outlet coupling
US3648503A (en) 1970-03-27 1972-03-14 Veeder Industries Inc Beading machine and method
US3696885A (en) 1971-08-19 1972-10-10 Electronic Res Ass Decorative loudspeakers
US4311248A (en) 1974-11-04 1982-01-19 Construction Forms, Inc. High pressure coupling apparatus
US3977705A (en) 1975-08-20 1976-08-31 Aeroquip Corporation Reducing type coupling
US4114414A (en) 1977-04-29 1978-09-19 E.G. Sprinkler Corporation Backup roll for thin walled pipe grooving device
US4163571A (en) 1977-07-18 1979-08-07 Durapipe Limited Pipe couplings
US4144733A (en) 1977-09-27 1979-03-20 Whitten Billy L Pipe grooving apparatus
US4432558A (en) 1978-01-03 1984-02-21 Westerlund Robert E Concrete pumping swivel coupling apparatus with seal
US4460201A (en) 1980-02-18 1984-07-17 Hunting Oilfield Services (Uk) Limited Pipe connectors
US4408788A (en) 1981-09-23 1983-10-11 Grinnell Fire Protection Systems Company, Inc. Hingeable split pipe collar
US4522433A (en) 1982-05-14 1985-06-11 Stanley Aviation Corporation Spherical seat flexible O-ring coupling
US4643461A (en) 1985-12-20 1987-02-17 Victaulic Company Of America Fire resistant seal
US4702500A (en) 1985-12-20 1987-10-27 Victaulic Company Of America Fire resistant seal
US5058931A (en) 1988-11-28 1991-10-22 Gustin-Bacon Division, A Division Of Tyler Pipe Clamp with teeth for grooved pipes
US4915418A (en) 1989-05-19 1990-04-10 Urdan Industries (Usa), Inc. Hinged pipe coupling
US5149143A (en) 1989-07-20 1992-09-22 National-Oilwell Connector assembly with detachable sleeve
US5018768A (en) 1990-07-19 1991-05-28 Quikcoup, Incorporated Pipe coupling hinge
US5291769A (en) 1991-05-16 1994-03-08 Kabushiki Kaisha Milano Apparatus for forming end portion of pipe
US5246256A (en) 1991-12-19 1993-09-21 Victaulic Company Of America Roll grooved pipe
US5249829A (en) 1992-07-06 1993-10-05 Quikcoup, Inc. Pipe coupling gasket insert
US5443581A (en) 1992-12-03 1995-08-22 Wood George & Co., Inc. Clamp assembly for clamp hub connectors and a method of installing the same
US5282654A (en) 1993-04-26 1994-02-01 Quikcoup, Inc. Pipe coupling sleeve
US5450738A (en) 1993-08-31 1995-09-19 Grinnell Corporation Method and apparatus for forming piping element connections having multiple outward steps
JPH07310871A (en) 1994-05-18 1995-11-28 Kubota Corp Pipe connecting structure in fluid piping
US5603508A (en) 1996-05-20 1997-02-18 Victaulic Company Of America Gasket for lateral outlet segmented pipe coupling
US5974848A (en) 1996-06-19 1999-11-02 Moore; Boyd B. Rolled-formed seat and retainer for a fluid-tight ferrule seal on a rigid metal tube which is harder than the ferrule, method and apparatus
US5778715A (en) 1996-11-05 1998-07-14 Grinnell Corporation Cold rolling positioning roller assembly
US6371684B2 (en) 1997-02-14 2002-04-16 Bodenseewerk Geratetechnik Gmbh Clamping ring for connecting cylindrical units of missiles
US5979202A (en) 1997-05-29 1999-11-09 Blakeley Engineering Ltd. Method and apparatus for making pipe line steel grooved-end fittings
US6227577B1 (en) 1997-12-25 2001-05-08 Victaulic Co., Of Japan, Ltd. Housing type pipe coupling
JPH11207411A (en) 1998-01-27 1999-08-03 Hitachi Metals Ltd Tool for grooving tube
US5951066A (en) 1998-02-23 1999-09-14 Erc Industries, Inc. Connecting system for wellhead components
US6070914A (en) 1998-05-20 2000-06-06 Rasmussen Gmbh Pipe coupling
US6375228B1 (en) 1999-03-25 2002-04-23 Construction Forms, Inc. Coupling units connecting tubular members having a hardened inner wall for carrying mechanically abrasive fluid concrete
US6196039B1 (en) 1999-03-25 2001-03-06 Anvil International, Inc. Groove rolling of piping elements
JP2000352486A (en) 1999-06-14 2000-12-19 Nippon Kokan Pipe Fittings Mfg Co Ltd Combined structure of bayonet joint and pipe
JP2001227680A (en) 2000-02-18 2001-08-24 Bantekku Kk Pipe body with peripheral groove
US20010054820A1 (en) 2000-06-19 2001-12-27 Starita Joseph M. Corrugated plastic pipe sections having flanged ends and structurally tight joints thereof
US6393885B1 (en) 2000-11-07 2002-05-28 Hegenscheidt Mfd Corporation Tooling for deep rolling fillets of crankshaft journals
US6606893B2 (en) 2001-07-13 2003-08-19 Emerson Electric Co. Roll grooving apparatus
JP2003055985A (en) 2001-08-10 2003-02-26 East Japan Railway Co Connecting method of column to pile
US6935152B2 (en) 2002-04-16 2005-08-30 Victaulic Company Of America Orbiting roller groover for pipe
US20050034499A1 (en) 2003-08-13 2005-02-17 Shinsuke Matsumoto Processing method of forming a concavity in a pipe member and an apparatus thereof
US20050212296A1 (en) 2004-03-26 2005-09-29 Victaulic Company Of America Pipes having wedging circumferential grooves
US20050242585A1 (en) 2004-03-26 2005-11-03 Victaulic Company Of America Pipe coupling having keys with camming surfaces
US7296451B2 (en) 2004-03-26 2007-11-20 Victaulic Company Roller tool for forming grooves in pipes

Non-Patent Citations (41)

* Cited by examiner, † Cited by third party
Title
Butz-Olsen, A.; Singapore Examination Report from related Singapore patent application No. 200903550-2; Danish Patent and Trademark Office; Feb. 28, 2011; pp. 1-9.
Butz-Olsen, A.; Singapore Search Report from related Singapore patent application No. 200903550-2; Danish Patent and Trademark Office; Feb. 28, 2011; pp. 1-7.
Chionchio, John A., Appeal Brief from related U.S. Appl. No. 11/091,146; pp. 1-18; Jul. 27, 2007.
Chionchio, John A., Request for Continued Examination and Amendment from related U.S. Appl. No. 11/091,216; pp. 1-14; Oct. 31, 2007.
Chionchio, John A., Response to Final Office action from related U.S. Appl. No. 11/091,146; pp. 1-16; Jul. 25, 2007.
Chionchio, John A., Response to Final Office Action from related U.S. Appl. No. 11/091,460; pp. 1-4; Jan. 22, 2007.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,146; pp. 1-12; Dec. 22, 2006.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,146; pp. 1-9; Jan. 16, 2008.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,147; pp. 1-5; Apr. 17, 2007.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,216; pp. 1-16; Jun. 8, 2007.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,216; pp. 1-20; Nov. 20, 2006.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,216; pp. 1-8; Jul. 11, 2008.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,460; pp. 1-1-14; Jul. 17, 2006.
Chionchio, John A., Response to Non-Final Office Action from related U.S. Appl. No. 12/116,618; pp. 1-9; Dec. 23, 2008.
Chionchio, John M., Response to Non-Final Office Action from related U.S. Appl. No. 11/091,147; pp. 1-7; Dec. 10, 2007.
Chionichio, John A., Statement of Substance of Interview Pursuant to 37 CFR 1.333 from related U.S. Appl. No. 11/091,460; 1 page; Aug. 29, 2007.
Dunwoody, Aaron M., Advisory Action from related U.S. Appl. No. 11/091,146; United States Patent and Trademark Office; pp. 1-3; Aug. 2, 2007.
Dunwoody, Aaron M., Final Office Action from related U.S. Appl. No. 11/091,146; United States Patent and Trademark Office; pp. 1-10; Mar. 7, 2007.
Dunwoody, Aaron M., Final Office Action from related U.S. Appl. No. 11/091,146; United States Patent and Trademark Office; pp. 1-8; Apr. 10, 2008.
Dunwoody, Aaron M., Non-Final Office Action from related U.S. Appl. No. 11/091,146; United States Patent and Trademark Office; pp. 1-12; Sep. 22, 2006.
Dunwoody, Aaron M., Non-Final Office Action from related U.S. Appl. No. 11/091,146; United States Patent and Trademark Office; pp. 1-8; Oct. 18, 2007.
Dunwoody, Aaron M., Non-Final Office Action from related U.S. Appl. No. 11/091,216; United States Patent and Trademark Office; pp. 1-12; Sep. 26, 2006.
Dunwoody, Arron M., Final Office Action from related U.S. Appl. No. 11/091,216; United States Patent and Trademark Office; pp. 1-12; Aug. 22, 2007.
Dunwoody, Arron M., Final Office Action from related U.S. Appl. No. 11/091,216; United States Patent and Trademark Office; pp. 1-5; Aug. 15, 2008.
Dunwoody, Arron M., Non-Final Office Action from related U.S. Appl. No. 11/091,216; United States Patent and Trademark Office; pp. 1-10; Feb. 9, 2007.
Dunwoody, Arron M., Non-Final Office Action from related U.S. Appl. No. 11/091,216; United States Patent and Trademark Office; pp. 1-11; Feb. 11, 2008.
EP 05 73 1364-European Search Report dated Oct. 7, 2010.
EP 05 73 1364—European Search Report dated Oct. 7, 2010.
Hewitt, James M., Final Office Action from related U.S. Appl. No. 11/091,147; United States Patent and Trademark Office; pp. 1-5; Mar. 17, 2008.
Hewitt, James M., Non-Final Office Action from related U.S. Appl. No. 11/091,147; United States Patent and Trademark Office; pp. 1-4, Apr. 6, 2007.
Hewitt, James M., Non-Final Office Action from related U.S. Appl. No. 11/091,147; United States Patent and Trademark Office; pp. 1-5; Jun. 19, 2007.
Kepka, Maciek; Supplementary European Search Report from related European patent application No. 05 73 1364; European Patent Office; Sep. 30, 2010, pp. 1-2.
Tolan, Edward Thomas, Non-Final Office Action from related U.S. Appl. No. 12/116,618; United States Patent and Trademark Office; pp. 1-4; Sep. 17, 2008.
Tolan, Edward Thomas, Notice of Allowance from related U.S. Appl. No. 12/166,618; United States Patent and Trademark Office; pp. 1-4; Feb. 13, 2009.
Victaulic IPS Carbon Steel Pipe Grooved Couplings, Style 07 Zero-Flex® Rigid Coupling (2 pages); dated Apr. 1999.
Victaulic IPS Carbon Steel Pipe Grooved Couplings. Style HP-70 Rigid Coupling (2 pages); dated Nov. 1996.
Victaulic IPS Carbon Steel Pipe-Grooved Couplings, Style 77 Standard Flexible Coupling (2 pages); copyright 2003.
Victaulic IPS Carbon Steel Pipe—Grooved Couplings, Style 77 Standard Flexible Coupling (2 pages); copyright 2003.
Wolfe, Debra M., Final Office Action from related U.S. Appl. No. 11/091,460; United States Patent and Trademark Office; pp. 1-6; Oct. 24, 2006.
Wolfe, Debra M., Non-Final Office Action from related U.S. Appl. No. 11/091,460; United States Patent and Trademark Office; pp. 1-8; Apr. 17, 2006.
Wolfe, Debra M., Notice of Allowance from related U.S. Appl. No. 11/091,460; United States Patent and Trademark Office; pp. 1-9; Aug. 23, 2007.

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454170B2 (en) 2012-11-16 2022-09-27 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11674352B2 (en) 2012-11-16 2023-06-13 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11850563B2 (en) 2012-11-16 2023-12-26 U.S. Well Services, LLC Independent control of auger and hopper assembly in electric blender system
US11713661B2 (en) 2012-11-16 2023-08-01 U.S. Well Services, LLC Electric powered pump down
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US11451016B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
USD754306S1 (en) * 2014-06-16 2016-04-19 Victaulic Company Pipe coupling segment
USD737412S1 (en) * 2014-06-16 2015-08-25 Victaulic Company Pipe coupling segment
USD754307S1 (en) * 2014-06-16 2016-04-19 Victaulic Company Pipe coupling segment
USD740921S1 (en) * 2014-06-16 2015-10-13 Victaulic Company Pipe coupling segment
US12085017B2 (en) 2015-11-20 2024-09-10 Us Well Services, Llc System for gas compression on electric hydraulic fracturing fleets
US12078110B2 (en) 2015-11-20 2024-09-03 Us Well Services, Llc System for gas compression on electric hydraulic fracturing fleets
US12092095B2 (en) 2016-12-02 2024-09-17 Us Well Services, Llc Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11959533B2 (en) 2017-12-05 2024-04-16 U.S. Well Services Holdings, Llc Multi-plunger pumps and associated drive systems
US11434737B2 (en) 2017-12-05 2022-09-06 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US11454079B2 (en) 2018-09-14 2022-09-27 U.S. Well Services Llc Riser assist for wellsites
US12116875B2 (en) 2018-10-09 2024-10-15 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
US11905806B2 (en) 2019-10-03 2024-02-20 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US12084952B2 (en) 2019-10-03 2024-09-10 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US12142928B2 (en) 2023-06-14 2024-11-12 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing

Also Published As

Publication number Publication date
CA2560856C (en) 2014-12-09
CN101002047A (en) 2007-07-18
US20050223770A1 (en) 2005-10-13
CN1997847B (en) 2011-06-22
JP2012026578A (en) 2012-02-09
CN101022900A (en) 2007-08-22
CN100549489C (en) 2009-10-14
CA2561272C (en) 2014-02-18
WO2005094292A2 (en) 2005-10-13
EP1749166A4 (en) 2014-03-05
AU2005228378A1 (en) 2005-10-13
AU2005228380A1 (en) 2005-10-13
US20050212284A1 (en) 2005-09-29
JP2008501092A (en) 2008-01-17
WO2005094293A3 (en) 2006-10-26
EP1751455A4 (en) 2010-11-10
KR20060135838A (en) 2006-12-29
WO2005094292A3 (en) 2007-02-22
CA2561098A1 (en) 2005-10-13
JP4950023B2 (en) 2012-06-13
US7516636B2 (en) 2009-04-14
EP1751458B1 (en) 2015-03-25
US20080202185A1 (en) 2008-08-28
EP1751458A2 (en) 2007-02-14
US20090127846A1 (en) 2009-05-21
AU2005228380B2 (en) 2010-07-15
EP1751458A4 (en) 2011-02-16
CA2561272A1 (en) 2005-10-13
CN1997847A (en) 2007-07-11
JP2007530886A (en) 2007-11-01
EP1749166A2 (en) 2007-02-07
CA2560856A1 (en) 2005-10-13
AU2005228378B2 (en) 2010-07-15
CA2560861A1 (en) 2005-10-13
US20050212296A1 (en) 2005-09-29
EP1751455A2 (en) 2007-02-14
CA2560861C (en) 2013-10-29
US7996981B2 (en) 2011-08-16
JP2007530887A (en) 2007-11-01
JP2007530288A (en) 2007-11-01
AU2005228388A1 (en) 2005-10-13
AU2005228211A1 (en) 2005-10-13
HK1098809A1 (en) 2007-07-27
EP1727631A2 (en) 2006-12-06
WO2005094293A2 (en) 2005-10-13
US20050242585A1 (en) 2005-11-03
WO2005094295A2 (en) 2005-10-13
CN101427063A (en) 2009-05-06
WO2005094303A2 (en) 2005-10-13
US7296451B2 (en) 2007-11-20
WO2005094303A3 (en) 2009-04-16
WO2005094295A3 (en) 2007-02-22
EP1727631A4 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
USRE44444E1 (en) Method of joining pipes in end to end relation
AU2006346032B2 (en) Coupling having angularly oriented cavity
KR20070017343A (en) Pipe coupling having wedge shaped keys
KR20070015925A (en) Roller tool for forming grooves in pipes
KR20070017344A (en) Pipes having wedging circumferential grooves

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12