USRE40437E1 - Thermostat system with remote data averaging - Google Patents
Thermostat system with remote data averaging Download PDFInfo
- Publication number
- USRE40437E1 USRE40437E1 US11/804,324 US80432407A USRE40437E US RE40437 E1 USRE40437 E1 US RE40437E1 US 80432407 A US80432407 A US 80432407A US RE40437 E USRE40437 E US RE40437E
- Authority
- US
- United States
- Prior art keywords
- sensor
- environmental
- sensors
- occupancy
- central control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000012935 Averaging Methods 0.000 title claims description 43
- 230000007613 environmental effect Effects 0.000 claims abstract description 96
- 230000001143 conditioned effect Effects 0.000 claims abstract description 35
- 230000033001 locomotion Effects 0.000 claims abstract description 27
- 230000005540 biological transmission Effects 0.000 claims abstract description 21
- 230000003750 conditioning effect Effects 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 18
- 238000003860 storage Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 2
- 238000004891 communication Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 244000287680 Garcinia dulcis Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1927—Control of temperature characterised by the use of electric means using a plurality of sensors
- G05D23/193—Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
- G05D23/1931—Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
Definitions
- This invention relates to the art of thermostats and, more particularly, to a thermostat system incorporating a central control device receiving remote environmental sensing data from remote sensors.
- Thermostats have been used for many years as a temperature sensitive switch which controls heating and/or cooling equipment for conditioning a space in which the thermostat, or a temperature sensor connected to the thermostat, is placed.
- a simple thermostat can be adjusted to establish a temperature set point such that, when the temperature in the conditioned space reaches the set point, the thermostat interacts with the heating and/or/cooling equipment to take suitable action to heat or cool the conditioned space as may be appropriate for the season.
- Modern thermostat systems which take advantage of the ongoing rapid advances in electronic technology and circuit integration, have many features which provide more precise supervision of the heating and/or cooling equipment to achieve more economical and more comfortable management of the temperature of a conditioned space.
- Many modern thermostat systems include a real time clock, a memory and a data processor to run a process control program stored in the memory to accurately measure the temperature of a temperature sensor disposed in the conditioned space and to send control signals to the heating and/or cooling equipment to closely control the temperature of the conditioned space.
- Modern thermostat systems permit anticipating and minimizing hysterisis or overshoot of the temperature in the conditioned space.
- the program can specify different set points at different times of the day and week and may also include a “vacation” mode which employs different set points when the conditioned space is not occupied for an extended period.
- thermostat systems have a central control device or unit that receives environmental sensor data from sensors remote from the central control device. These sensors can detect temperature, humidity, or other parameters that may be used in a control program by the central control device to control environmental control equipment.
- the environmental control equipment (comprising HVAC equipment, among others) responds to signals from the central control device to affect the ambient comfort in rooms of a conditioned space.
- a remote sensor signal is received by the central control device and its value compared with that of a pre-set setpoint. If the sensor value is sufficiently different from the setpoint, environmental control equipment is activated or de-activated in response thereto.
- Remote sensors can be connected by wire directly to the central control device or by wireless connection so that the control program can store the output of each sensor and associate it with an identifier for the remote sensor where the output originated.
- Modern programmable thermostat systems also may act to control temperature in some rooms of out of all those in a conditioned space as a “zone”.
- zone control requires dedicated equipment for the zone or duct dampers or deflectors to direct conditioned air to the zone rooms. This requires complexity and additional cost to the system.
- One form of zone control uses storage in a central control device storing all the signals from multiple remote environmental sensors in the zone. The control program calculates an average value from the stored values of the remote sensors and uses that average value as a control value. The control value is compared with a setpoint, whereafter environmental control equipment is activated or de-activated. The control value established by prior art thermostat systems can easily over- or under-condition a room where a user most desires environmental control.
- zone control in a thermostat system where remote sensor values are averaged for occupied rooms at a central control device.
- the averaged sensor data establish a zone control value.
- This zone control value more accurately reflects environmental conditions of rooms where the user most desires control of those environmental conditions.
- a thermostat system includes: a central control device (typically a programmable thermostat with a processor having: a CPU, real time clock and a memory for storing a control program and data information), multiple rooms comprising a conditioned space, environmental control equipment, and multiple environmental sensors capable of sensing an environmental condition (such as temperature, humidity, or other condition).
- a central control device typically a programmable thermostat with a processor having: a CPU, real time clock and a memory for storing a control program and data information
- multiple rooms comprising a conditioned space, environmental control equipment, and multiple environmental sensors capable of sensing an environmental condition (such as temperature, humidity, or other condition).
- environmental sensors are located remote from the central control device.
- Remote as used herein means effectively remote from the central control device as to a sensed environmental condition.
- a remote sensor may be located in another room as compared with the central control device. Alternately, a remote sensor may be located some distance away from the central control device in a large room.
- a communications interface is adapted to
- the sensors are associated with transmission means, which control transmission of sensor signals, and occupancy sensors.
- Each sensor measures a local environmental condition.
- Occupancy sensors comprise infrared or other motion sensors, light detection sensors, door opening sensors, and other such sensors that detect the presence of humans in a room of the conditioned space where its associated sensor is located.
- transmission means enables transmission of environmental sensor signals to the central control device only upon input of signals from the occupancy detector.
- transmission means provide continuous transmissions from environmental sensor signals to a central control device, albeit where such signals are associated with indications of occupancy or non-occupancy of a room where the sensor is located sensing occupancy of a room or an area of a large room.
- Such remote sensor signals are transmitted to the central control device and stored in its memory as a table of data indicating environmental conditions only in occupied rooms. The values of this table are averaged in one of several selected modes to yield a control value. This control value more accurately reflects the desired environmental conditions of the rooms where user's are present.
- all sensor data may be stored at the central control device and associated with indications of occupancy or non-occupancy of a room where the sensor is located and a time of the sensing of the environmental condition and occupancy status of the room.
- remote sensors and occupancy detectors are associated as in the first embodiment.
- this second embodiment comprises transmission means that causes transmission of environmental sensor signals to the central control device with additional signals indicating whether the sensor signal originates from an occupied or non-occupied room.
- Transmission means may transmit continuously, periodically or upon the occurrence of a sensed event.
- the occupancy status of the room is determined by the input to the transmission means of the occupancy sensor.
- These remote sensor signals are transmitted to the central control device and stored in its memory as a table of data indicating environmental conditions of both occupied and un-occupied rooms. The values of this table are averaged in one of several selected modes to yield a control value. This control value more accurately reflects the overall desired environmental conditions of the rooms where user's are present.
- a user may optionally select from one of several forms of averaging of sensor data to derive a control value.
- the control program may cause a display screen connected with the CPU to provide a user with a list of averaging options, where by the user can select one of the options through a user interface with touch sensitive buttons or other well known means.
- the sensor data table may contain sensor data from sensors located at the central control devices as well as from remote sensors. Simple averaging of sensor data associated with room occupancy occurs when all environmental sensor data are added together and divided by the number of data items in the table.
- a second form of averaging uses weighting depending on square footage of the room where the sensor is located. Greater weighting is assigned to sensor data associated with occupancy in rooms with greater relative square footage.
- a third form of averaging uses sensor data from occupied and unoccupied rooms and assigns greater weight to sensor data from occupied rooms.
- a fourth form of averaging uses historical data to determine rooms most heavily occupied over a pre-determined period (such as a week or month) and averages current sensor data only from those heavily occupied rooms to arrive at a control value regardless of current occupancy status.
- Current thermostat systems can include mobile remote temperature sensors with wireless transmitters. These mobile temperature sensors send sensed, local temperature signals to a central control device and are usually battery powered and enclosed in a handheld housing.
- the mobile sensors can include a display of locally sensed temperature.
- mobile sensors detect room occupancy and also have means to detect motion of the device itself relative to its surroundings. Without such means, movement of the mobile sensor by a user would result in a false indication of occupancy to the occupancy sensor. For example, an infra-red motion detector in the mobile sensor would falsely interpret carrying the mobile sensor from one room to another as the presence of a person moving in a room. Instead, transmission means are connected to a device motion sensor.
- the device motion sensor in one form comprises a circuit that opens, closes or alternates between those states when the mobile sensor is picked up and moved.
- a set of fixed contacts for the circuit can be arranged so that rolling or sliding metallic pieces in an enclosed cavity break or complete the circuit when the device itself is picked up and carried to another room.
- the transmission means delays receipt of inputs from the occupancy sensor until the mobile sensor has come to rest and/or after a predetermined period of time.
- thermostats It is a feature of some modern thermostat systems to control duct dampers or diverters so that conditioned air from air handlers and fans is directed only to certain rooms of a conditioned space.
- occupancy sensed in a room creates a signal via the occupancy sensor which is transmitted from a remote device to the central control device.
- the central control device can act to average temperatures to calculate a control value and at the same time divert substantially all conditioned air only to the occupied rooms.
- environmental conditions in separated but occupied rooms may be quite different.
- a side of a building with its wall receiving full sun can dramatically heat a room on that side.
- a room on the opposite side of the building may be quite cool and have a temperature close to a desired setpoint.
- Simple averaging of local temperatures in those rooms may result in a control value near a desired setpoint for the central control device.
- a fifth form of averaging would cause the data table values of sensed environmental conditions to be subtracted from the setpoint to calculate a table of differences, some positive and some negative depending on the relationship of a sensor value to the setpoint.
- Differences beyond the setpoint value at which environmental control equipment is activated would be averaged and given greater weight than an average of differences outside of that activation range.
- temperature sensors might indicate degree Fahrenheit temperatures of 80, 79, 77 and 75. If the setpoint is 78 for air conditioning to be turned on, the differences would be 2, 1, ⁇ 1 and ⁇ 3. Simply averaging the sensor values would not result in the overheated rooms being cooled. In one scenario, the positive differences are weighted 70% and the negative differences at 30%. The resulting control value will be sufficient to activate the air conditioning at the cost of overcooling some occupied rooms.
- FIG. 1 is a plan view of a conditioned space with several rooms, a central control device and remote environmental sensors arranged in the rooms.
- FIG. 2 is a block diagram of a central control device and its relationship to environmental control equipment, the conditioned space, and remote sensors.
- FIG. 3 is a block diagram of a remote sensor.
- FIG. 4 is a high level process flow chart describing the operation of the remote sensor in a first embodiment.
- FIG. 5 is a high level process flow chart describing the operation of the remote sensor in a second embodiment.
- FIG. 6 is a high level process flow chart describing the operation of the central control device in the invention thermostat system.
- a structure 10 defines within its walls conditioned space for a thermostat system.
- Structure 10 comprises sides 11 and 12 , rooms 13 through 18 , lighting fixture 19 , fireplace 20 , and exemplary doors 21 and 22 .
- the thermostat system includes central control device 23 and remote sensors 23 A through 23 F.
- Remote sensors 23 A through 23 F are located respectively in rooms 13 through 18 .
- any of the remote sensors 23 A through 23 F may be mobile sensors capable of being moved to any room in structure 10 .
- central control device 23 is shown in a block diagram form with a processor 30 connected to an environmental temperature sensor S 1 and an occupancy sensor S 2 which are disposed with access to conditioned space 38 .
- the processor 30 and the sensors S 1 and S 2 may be situated in a common housing (not shown) or separated, all as very well known in the art, so that said sensors have effective access to the room in which the housing for processor 30 is located.
- the processor 30 includes a central processing unit (CPU) 31 in communication with a memory 32 which stores data and program information and also, via an input/output unit (I/O unit) 34 , an optional user interface 35 and a liquid crystal or other type display (LCD) 36 .
- the memory 32 may include a read-only part which is factory-programmed and a random-access part which stores data subject to change during operation.
- a settable real time clock 33 is used to keep time in the central control device to facilitate diverse operations, such as different temperature set points (desired temperatures), during different periods of the day cycle.
- the thermostat system may be suitably powered by a battery (not shown) and/or from equipment to which is connected.
- the I/O unit 34 includes a wired or wireless communications interface 41 for coordinating communications between the CPU 31 and one or more remote sensors.
- remote sensors 23 A through 23 F are shown in a block diagram form with a processor 50 connected to an environmental temperature sensor S 3 , an occupancy sensor S 4 , and device motion sensor S 5 which are disposed with access to conditioned space 56 .
- the processor 50 and the sensors S 3 , S 4 and S 5 may be situated in a common housing (not shown) or separated, all as very well known in the art, so that said sensors have effective access to the room in which the housing for processor 50 is located.
- the processor 50 includes a central processing unit (CPU) 51 in communication with a memory 52 which stores data and program information and also, via an input/output unit (I/O unit) 54 , and a liquid crystal or other type display (LCD) 55 .
- the memory 52 may include a read-only part which is factory-programmed and a random-access part which stores data subject to change during operation.
- a settable real time clock 53 is used to keep time in the remote sensor to facilitate diverse operations, such as receiving and transmitting sensor signals.
- the remote sensor may be suitably powered by a battery (not shown) and/or from power supply integral with structure 10 .
- the I/O unit 54 includes a wired or wireless communications interface 59 for coordinating communications between the CPU 50 and the central control device.
- one or more environmental sensors send an electrical signal (e.g., if the sensor S 1 is a simple thermistor, a resistance value; several types of temperature sensors are widely used) representative of the temperature within its local conditioned space (i.e., the room) which the processor can average to calculate a control value to compare against a previously entered set point to determine if control signals need to be sent to the space conditioning equipment 37 .
- the processor 31 signals the space conditioning equipment 38 circulate, through ducts 39 / 40 , air from/to the conditioned space 38 which is heated by the space conditioning equipment before return to the conditioned space.
- occupancy sensor S 4 determines whether or not its local conditioned space (i.e., a room) is occupied.
- An occupancy sensor S 4 may detect motion in the room, the opening of doors 21 or 22 , or the turning on of a light fixture 19 , all of which indicate presence of a human occupant.
- Processor 50 comprises a sensor control program that determines whether occupancy sensor S 4 has detected occupancy in conditioned space 56 .
- the control program optionally waits a predetermined period of time before evaluating input from occupancy sensor S 4 again or monitors such inputs continuously. If occupancy is detected, the sensor control program inquires to determine if an optional device motion sensor S 5 has detected movement of the remote sensor from a resting or installation location. If remote sensor movement is detected, the control program optionally waits a predetermined period of time before evaluating input from occupancy sensor S 4 again. If remote sensor movement is not detected, the control program receives input from environmental sensor S 3 and transmits its signal (or value) to the central control device 23 for storage in memory of processor 30 . Each remote sensor has a known data communications “address” so that a control program of the central control device can determine which remote sensor has transmitted sensor signals or values.
- occupancy sensor S 4 determines whether or not its local conditioned space (i.e., a room) is occupied.
- An occupancy sensor S 4 may detect motion in the room, the opening of doors 21 or 22 , or the turning on of a light fixture 19 , all of which indicate presence of a human occupant.
- Processor 50 comprises a sensor control program that determines whether occupancy sensor S 4 has detected occupancy in conditioned space 56 .
- the sensor control program receives and transmits to the central control device 23 the signals (or values) from environmental sensor S 3 with signals indicating that the sensor value is associated with a vacant room.
- the remote sensor optionally waits a predetermined period of time before evaluating input from occupancy sensor S 4 again. If occupancy is detected, the sensor control program inquires to determine if an optional device motion sensor S 5 has detected movement of the remote sensor from a resting or installation location. If remote sensor movement is detected, the control program optionally waits a predetermined period of time before evaluating input from occupancy sensor S 4 again.
- control program receives input from environmental sensor S 3 and transmits its signal (or value) to the central control device 23 for storage in memory of processor 30 with signals indicating that the sensor value is associated with occupied room.
- Each remote sensor has a known data communications “address” so that a control program of the central control device can determine which remote sensor has transmitted sensor signals or values.
- a user may select one of a set of averaging methods for environmental sensor values stored in memory 32 to generate a control value to compare with a setpoint for control of equipment 38 .
- the control program determines whether or not a user has selected an averaging method. If no averaging method is selected, a default method is used for averaging said environmental sensor values. In one form, the default averaging method adds together all stored sensor values in a data table and divides them by the number of sensor values to arrive at a control value. This form of averaging is referred to herein as the simple form.
- previously stored sensor values in the data table are erased and new sensor values are received and stored in the data table.
- previously stored values from the data table are stored with an associated current time and date so that historical occupancy and vacancy may be determined for a particular room of structure 10 .
- New values of sensors S 1 and/or S 3 are received into a data table in memory 32 of the central control device to be used for averaging environmental condition values detected in certain rooms of structure 10 .
- the averaging calculation results in a control value used in comparison with a previously input setpoint to control operation of equipment 38 for changing an environmental condition in the conditioned space of structure 10 .
- the control program installed during manufacture will provide for user entry of above user input following conventional instructions similar to those used in user-programming the climate control operation of the thermostat system.
- a second form of averaging uses weighting of values of environmental conditions detected by environmental sensors S 1 and S 3 in occupied rooms depending on square footage of the room where the sensor is located. Greater weighting is assigned to sensor data in rooms with greater relative square footage. For an example using the environmental condition of temperature, assume that room 13 is four times the size of room 15 in structure 10 . If rooms 13 and 15 are the only ones occupied, the second form of averaging would divide the sensed temperature at central control device 23 by 0.80 and the sensed temperature at remote sensor 23 C by 0.20 to arrive at the control value. The denominator in the divisions is arrived at by the pro rata amount of space or square footage of the rooms relative to each other.
- a third form of averaging uses weighting of values of environmental conditions detected by environmental sensors S 1 and S 3 in occupied and unoccupied rooms and assigns greater weight to sensor data from occupied rooms. For an example using the environmental condition of temperature, assume that rooms 13 through 15 are occupied and the rest vacant. The third form of averaging would divide the sensed temperatures at central control device 23 and remote sensors 23 B and 23 C by 0.90 and the sensed temperatures at the remained of the remote sensors by 0.10 to arrive at the control value. The denominator in the divisions is arrived at determining the value of conditioning the air in the unoccupied rooms.
- a fourth form of averaging uses historical data to determine rooms most heavily occupied over a pre-determined period (such as a week or month) and averages current sensor data only from those heavily occupied rooms to arrive at a control value that may or may not depend on current occupancy.
- Historical data would indicate that, for example, rooms 13 , 15 and 17 are occupied above a predetermined threshold level, i.e., three times per week or fifteen times per week.
- the environmental sensor data used to determine a control value would be those environmental conditions from occupied rooms and those environmental conditions from rooms where there is frequent occupancy regardless of current occupancy status. This form of averaging anticipates actual occupancy of a room.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Air Conditioning Control Device (AREA)
- Selective Calling Equipment (AREA)
Abstract
Description
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/804,324 USRE40437E1 (en) | 2004-11-23 | 2007-05-16 | Thermostat system with remote data averaging |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/995,574 US7058477B1 (en) | 2004-11-23 | 2004-11-23 | Thermostat system with remote data averaging |
US11/804,324 USRE40437E1 (en) | 2004-11-23 | 2007-05-16 | Thermostat system with remote data averaging |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/995,574 Reissue US7058477B1 (en) | 2004-11-23 | 2004-11-23 | Thermostat system with remote data averaging |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE40437E1 true USRE40437E1 (en) | 2008-07-15 |
Family
ID=36569025
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/995,574 Ceased US7058477B1 (en) | 2004-11-23 | 2004-11-23 | Thermostat system with remote data averaging |
US11/804,324 Active 2025-01-04 USRE40437E1 (en) | 2004-11-23 | 2007-05-16 | Thermostat system with remote data averaging |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/995,574 Ceased US7058477B1 (en) | 2004-11-23 | 2004-11-23 | Thermostat system with remote data averaging |
Country Status (1)
Country | Link |
---|---|
US (2) | US7058477B1 (en) |
Cited By (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100106575A1 (en) * | 2008-10-28 | 2010-04-29 | Earth Aid Enterprises Llc | Methods and systems for determining the environmental impact of a consumer's actual resource consumption |
USD648641S1 (en) | 2009-10-21 | 2011-11-15 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
USD648642S1 (en) | 2009-10-21 | 2011-11-15 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
US20110282937A1 (en) * | 2010-05-12 | 2011-11-17 | Deshpande Nikhil N | System and method for internet based service notification |
US8239066B2 (en) | 2008-10-27 | 2012-08-07 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8255086B2 (en) | 2008-10-27 | 2012-08-28 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8260444B2 (en) | 2010-02-17 | 2012-09-04 | Lennox Industries Inc. | Auxiliary controller of a HVAC system |
US8295981B2 (en) | 2008-10-27 | 2012-10-23 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
US8352080B2 (en) | 2008-10-27 | 2013-01-08 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8352081B2 (en) | 2008-10-27 | 2013-01-08 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8433446B2 (en) | 2008-10-27 | 2013-04-30 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8437877B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8437878B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8442693B2 (en) | 2008-10-27 | 2013-05-14 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8452906B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8452456B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8457796B2 (en) | 2009-03-11 | 2013-06-04 | Deepinder Singh Thind | Predictive conditioning in occupancy zones |
US8463443B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US8463442B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8478447B2 (en) | 2010-11-19 | 2013-07-02 | Nest Labs, Inc. | Computational load distribution in a climate control system having plural sensing microsystems |
US8510255B2 (en) | 2010-09-14 | 2013-08-13 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US8511577B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US8532827B2 (en) | 2011-10-21 | 2013-09-10 | Nest Labs, Inc. | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
US8543243B2 (en) | 2008-10-27 | 2013-09-24 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8548630B2 (en) | 2008-10-27 | 2013-10-01 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8554376B1 (en) | 2012-09-30 | 2013-10-08 | Nest Labs, Inc | Intelligent controller for an environmental control system |
US20130268129A1 (en) * | 2010-12-31 | 2013-10-10 | Nest Labs, Inc. | Hvac control system with interchangeable control units |
US8560125B2 (en) | 2008-10-27 | 2013-10-15 | Lennox Industries | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8564400B2 (en) | 2008-10-27 | 2013-10-22 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8600561B1 (en) | 2012-09-30 | 2013-12-03 | Nest Labs, Inc. | Radiant heating controls and methods for an environmental control system |
US8600558B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8600559B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | Method of controlling equipment in a heating, ventilation and air conditioning network |
US8606374B2 (en) | 2010-09-14 | 2013-12-10 | Nest Labs, Inc. | Thermodynamic modeling for enclosures |
US8615326B2 (en) | 2008-10-27 | 2013-12-24 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8620841B1 (en) | 2012-08-31 | 2013-12-31 | Nest Labs, Inc. | Dynamic distributed-sensor thermostat network for forecasting external events |
US8622314B2 (en) | 2011-10-21 | 2014-01-07 | Nest Labs, Inc. | Smart-home device that self-qualifies for away-state functionality |
US8630742B1 (en) | 2012-09-30 | 2014-01-14 | Nest Labs, Inc. | Preconditioning controls and methods for an environmental control system |
US8655490B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8655491B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8661165B2 (en) | 2008-10-27 | 2014-02-25 | Lennox Industries, Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8694164B2 (en) | 2008-10-27 | 2014-04-08 | Lennox Industries, Inc. | Interactive user guidance interface for a heating, ventilation and air conditioning system |
US8695888B2 (en) | 2004-10-06 | 2014-04-15 | Nest Labs, Inc. | Electronically-controlled register vent for zone heating and cooling |
US8725298B2 (en) | 2008-10-27 | 2014-05-13 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network |
US8727611B2 (en) | 2010-11-19 | 2014-05-20 | Nest Labs, Inc. | System and method for integrating sensors in thermostats |
US8744629B2 (en) | 2008-10-27 | 2014-06-03 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8754775B2 (en) | 2009-03-20 | 2014-06-17 | Nest Labs, Inc. | Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms |
US8761946B2 (en) | 2011-10-21 | 2014-06-24 | Nest Labs, Inc. | Intelligent controller providing time to target state |
US8762666B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries, Inc. | Backup and restoration of operation control data in a heating, ventilation and air conditioning network |
US8774210B2 (en) | 2008-10-27 | 2014-07-08 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8788100B2 (en) | 2008-10-27 | 2014-07-22 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US8798796B2 (en) | 2008-10-27 | 2014-08-05 | Lennox Industries Inc. | General control techniques in a heating, ventilation and air conditioning network |
US8802981B2 (en) | 2008-10-27 | 2014-08-12 | Lennox Industries Inc. | Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system |
US8855825B2 (en) | 2008-10-27 | 2014-10-07 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8874815B2 (en) | 2008-10-27 | 2014-10-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network |
US8892223B2 (en) | 2011-09-07 | 2014-11-18 | Honeywell International Inc. | HVAC controller including user interaction log |
US8892797B2 (en) | 2008-10-27 | 2014-11-18 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8902071B2 (en) | 2011-12-14 | 2014-12-02 | Honeywell International Inc. | HVAC controller with HVAC system fault detection |
WO2014144637A3 (en) * | 2013-03-15 | 2014-12-11 | Leeo, Inc. | Environmental measurement display |
US8950686B2 (en) | 2010-11-19 | 2015-02-10 | Google Inc. | Control unit with automatic setback capability |
US8963728B2 (en) | 2004-05-27 | 2015-02-24 | Google Inc. | System and method for high-sensitivity sensor |
US8977794B2 (en) | 2008-10-27 | 2015-03-10 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8994539B2 (en) | 2008-10-27 | 2015-03-31 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8994540B2 (en) | 2012-09-21 | 2015-03-31 | Google Inc. | Cover plate for a hazard detector having improved air flow and other characteristics |
US9002523B2 (en) | 2011-12-14 | 2015-04-07 | Honeywell International Inc. | HVAC controller with diagnostic alerts |
US9026232B2 (en) | 2010-11-19 | 2015-05-05 | Google Inc. | Thermostat user interface |
USRE45574E1 (en) | 2007-02-09 | 2015-06-23 | Honeywell International Inc. | Self-programmable thermostat |
US9070272B2 (en) | 2013-07-16 | 2015-06-30 | Leeo, Inc. | Electronic device with environmental monitoring |
US9081405B2 (en) | 2007-10-02 | 2015-07-14 | Google Inc. | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
US9091453B2 (en) | 2012-03-29 | 2015-07-28 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US9098096B2 (en) | 2012-04-05 | 2015-08-04 | Google Inc. | Continuous intelligent-control-system update using information requests directed to user devices |
US9115908B2 (en) | 2011-07-27 | 2015-08-25 | Honeywell International Inc. | Systems and methods for managing a programmable thermostat |
US9116137B1 (en) | 2014-07-15 | 2015-08-25 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9152155B2 (en) | 2008-10-27 | 2015-10-06 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US9170625B1 (en) | 2014-07-15 | 2015-10-27 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9189751B2 (en) | 2012-09-30 | 2015-11-17 | Google Inc. | Automated presence detection and presence-related control within an intelligent controller |
US9206993B2 (en) | 2011-12-14 | 2015-12-08 | Honeywell International Inc. | HVAC controller with utility saver switch diagnostic feature |
US9208676B2 (en) | 2013-03-14 | 2015-12-08 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US9213327B1 (en) | 2014-07-15 | 2015-12-15 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9256230B2 (en) | 2010-11-19 | 2016-02-09 | Google Inc. | HVAC schedule establishment in an intelligent, network-connected thermostat |
US9261888B2 (en) | 2008-10-27 | 2016-02-16 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9268345B2 (en) | 2008-10-27 | 2016-02-23 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9268344B2 (en) | 2010-11-19 | 2016-02-23 | Google Inc. | Installation of thermostat powered by rechargeable battery |
US9282590B2 (en) | 2011-04-15 | 2016-03-08 | Appleton Grp Llc | Self-adjusting thermostat for floor warming control systems and other applications |
US9298197B2 (en) | 2013-04-19 | 2016-03-29 | Google Inc. | Automated adjustment of an HVAC schedule for resource conservation |
US9298196B2 (en) | 2010-11-19 | 2016-03-29 | Google Inc. | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US9304590B2 (en) | 2014-08-27 | 2016-04-05 | Leen, Inc. | Intuitive thermal user interface |
US9325517B2 (en) | 2008-10-27 | 2016-04-26 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
WO2016073489A1 (en) * | 2014-11-03 | 2016-05-12 | Gary Franklin Bart | Thermostat technology |
US9342082B2 (en) | 2010-12-31 | 2016-05-17 | Google Inc. | Methods for encouraging energy-efficient behaviors based on a network connected thermostat-centric energy efficiency platform |
US9360229B2 (en) | 2013-04-26 | 2016-06-07 | Google Inc. | Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components |
US9366448B2 (en) | 2011-06-20 | 2016-06-14 | Honeywell International Inc. | Method and apparatus for configuring a filter change notification of an HVAC controller |
US9372477B2 (en) | 2014-07-15 | 2016-06-21 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9377768B2 (en) | 2008-10-27 | 2016-06-28 | Lennox Industries Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US9417637B2 (en) | 2010-12-31 | 2016-08-16 | Google Inc. | Background schedule simulations in an intelligent, network-connected thermostat |
US9432208B2 (en) | 2008-10-27 | 2016-08-30 | Lennox Industries Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US9429962B2 (en) | 2010-11-19 | 2016-08-30 | Google Inc. | Auto-configuring time-of day for building control unit |
US9445451B2 (en) | 2014-10-20 | 2016-09-13 | Leeo, Inc. | Communicating arbitrary attributes using a predefined characteristic |
US9442500B2 (en) | 2012-03-08 | 2016-09-13 | Honeywell International Inc. | Systems and methods for associating wireless devices of an HVAC system |
US9453655B2 (en) | 2011-10-07 | 2016-09-27 | Google Inc. | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
US9459018B2 (en) | 2010-11-19 | 2016-10-04 | Google Inc. | Systems and methods for energy-efficient control of an energy-consuming system |
US9477239B2 (en) | 2012-07-26 | 2016-10-25 | Honeywell International Inc. | HVAC controller with wireless network based occupancy detection and control |
US9488994B2 (en) | 2012-03-29 | 2016-11-08 | Honeywell International Inc. | Method and system for configuring wireless sensors in an HVAC system |
US9584119B2 (en) | 2013-04-23 | 2017-02-28 | Honeywell International Inc. | Triac or bypass circuit and MOSFET power steal combination |
US9595070B2 (en) | 2013-03-15 | 2017-03-14 | Google Inc. | Systems, apparatus and methods for managing demand-response programs and events |
US9628074B2 (en) | 2014-06-19 | 2017-04-18 | Honeywell International Inc. | Bypass switch for in-line power steal |
US9632490B2 (en) | 2008-10-27 | 2017-04-25 | Lennox Industries Inc. | System and method for zoning a distributed architecture heating, ventilation and air conditioning network |
US9645589B2 (en) | 2011-01-13 | 2017-05-09 | Honeywell International Inc. | HVAC control with comfort/economy management |
US9651925B2 (en) | 2008-10-27 | 2017-05-16 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US9673811B2 (en) | 2013-11-22 | 2017-06-06 | Honeywell International Inc. | Low power consumption AC load switches |
US9678486B2 (en) | 2008-10-27 | 2017-06-13 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US9683749B2 (en) | 2014-07-11 | 2017-06-20 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US9696735B2 (en) | 2013-04-26 | 2017-07-04 | Google Inc. | Context adaptive cool-to-dry feature for HVAC controller |
US9702582B2 (en) | 2015-10-12 | 2017-07-11 | Ikorongo Technology, LLC | Connected thermostat for controlling a climate system based on a desired usage profile in comparison to other connected thermostats controlling other climate systems |
US9714772B2 (en) | 2010-11-19 | 2017-07-25 | Google Inc. | HVAC controller configurations that compensate for heating caused by direct sunlight |
US9732979B2 (en) | 2010-12-31 | 2017-08-15 | Google Inc. | HVAC control system encouraging energy efficient user behaviors in plural interactive contexts |
US9801013B2 (en) | 2015-11-06 | 2017-10-24 | Leeo, Inc. | Electronic-device association based on location duration |
US9806705B2 (en) | 2013-04-23 | 2017-10-31 | Honeywell International Inc. | Active triac triggering circuit |
US9810442B2 (en) | 2013-03-15 | 2017-11-07 | Google Inc. | Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat |
US9857091B2 (en) | 2013-11-22 | 2018-01-02 | Honeywell International Inc. | Thermostat circuitry to control power usage |
US9857238B2 (en) | 2014-04-18 | 2018-01-02 | Google Inc. | Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics |
US9865016B2 (en) | 2014-09-08 | 2018-01-09 | Leeo, Inc. | Constrained environmental monitoring based on data privileges |
US9890970B2 (en) | 2012-03-29 | 2018-02-13 | Google Inc. | Processing and reporting usage information for an HVAC system controlled by a network-connected thermostat |
US9910449B2 (en) | 2013-04-19 | 2018-03-06 | Google Llc | Generating and implementing thermodynamic models of a structure |
US9952573B2 (en) | 2010-11-19 | 2018-04-24 | Google Llc | Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements |
US9983244B2 (en) | 2013-06-28 | 2018-05-29 | Honeywell International Inc. | Power transformation system with characterization |
US9998475B2 (en) | 2013-03-15 | 2018-06-12 | Google Llc | Streamlined utility portals for managing demand-response events |
US10026304B2 (en) | 2014-10-20 | 2018-07-17 | Leeo, Inc. | Calibrating an environmental monitoring device |
US20180259215A1 (en) * | 2015-09-17 | 2018-09-13 | Carrier Corporation | Building air conditioning control system and control method thereof |
US10094585B2 (en) | 2013-01-25 | 2018-10-09 | Honeywell International Inc. | Auto test for delta T diagnostics in an HVAC system |
US10101050B2 (en) | 2015-12-09 | 2018-10-16 | Google Llc | Dispatch engine for optimizing demand-response thermostat events |
US10139843B2 (en) | 2012-02-22 | 2018-11-27 | Honeywell International Inc. | Wireless thermostatic controlled electric heating system |
US10145577B2 (en) | 2012-03-29 | 2018-12-04 | Google Llc | User interfaces for HVAC schedule display and modification on smartphone or other space-limited touchscreen device |
US10162327B2 (en) | 2015-10-28 | 2018-12-25 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
US10330328B2 (en) | 2013-07-22 | 2019-06-25 | Trane International Inc. | Temperature control system |
US10346275B2 (en) | 2010-11-19 | 2019-07-09 | Google Llc | Attributing causation for energy usage and setpoint changes with a network-connected thermostat |
US10410300B2 (en) | 2015-09-11 | 2019-09-10 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
US10452084B2 (en) | 2012-03-14 | 2019-10-22 | Ademco Inc. | Operation of building control via remote device |
US10452083B2 (en) | 2010-11-19 | 2019-10-22 | Google Llc | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US10488062B2 (en) | 2016-07-22 | 2019-11-26 | Ademco Inc. | Geofence plus schedule for a building controller |
US10534383B2 (en) | 2011-12-15 | 2020-01-14 | Ademco Inc. | HVAC controller with performance log |
US10533761B2 (en) | 2011-12-14 | 2020-01-14 | Ademco Inc. | HVAC controller with fault sensitivity |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
WO2020068150A1 (en) * | 2018-09-27 | 2020-04-02 | Voysey Keith Stanley | System, apparatus and hybrid vav device with multiple heating coils |
US10627126B2 (en) | 2015-05-04 | 2020-04-21 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
US10684633B2 (en) | 2011-02-24 | 2020-06-16 | Google Llc | Smart thermostat with active power stealing an processor isolation from switching elements |
US10732651B2 (en) | 2010-11-19 | 2020-08-04 | Google Llc | Smart-home proxy devices with long-polling |
US10747243B2 (en) | 2011-12-14 | 2020-08-18 | Ademco Inc. | HVAC controller with HVAC system failure detection |
US10747242B2 (en) | 2010-11-19 | 2020-08-18 | Google Llc | Thermostat user interface |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
US10768589B2 (en) | 2013-12-11 | 2020-09-08 | Ademco Inc. | Building automation system with geo-fencing |
US10775814B2 (en) | 2013-04-17 | 2020-09-15 | Google Llc | Selective carrying out of scheduled control operations by an intelligent controller |
US10802459B2 (en) | 2015-04-27 | 2020-10-13 | Ademco Inc. | Geo-fencing with advanced intelligent recovery |
US10805775B2 (en) | 2015-11-06 | 2020-10-13 | Jon Castor | Electronic-device detection and activity association |
US10811892B2 (en) | 2013-06-28 | 2020-10-20 | Ademco Inc. | Source management for a power transformation system |
US10928087B2 (en) | 2012-07-26 | 2021-02-23 | Ademco Inc. | Method of associating an HVAC controller with an external web service |
US10969131B2 (en) | 2015-10-28 | 2021-04-06 | Johnson Controls Technology Company | Sensor with halo light system |
US11054448B2 (en) | 2013-06-28 | 2021-07-06 | Ademco Inc. | Power transformation self characterization mode |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
US11162698B2 (en) | 2017-04-14 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
US20220065704A1 (en) * | 2020-08-28 | 2022-03-03 | Google Llc | Temperature sensor isolation in smart-home devices |
US11334034B2 (en) | 2010-11-19 | 2022-05-17 | Google Llc | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US11713895B2 (en) | 2019-01-14 | 2023-08-01 | Research Products Corporation | Multi-zone environmental control system |
US11726507B2 (en) | 2020-08-28 | 2023-08-15 | Google Llc | Compensation for internal power dissipation in ambient room temperature estimation |
US11808467B2 (en) | 2022-01-19 | 2023-11-07 | Google Llc | Customized instantiation of provider-defined energy saving setpoint adjustments |
US11885838B2 (en) | 2020-08-28 | 2024-01-30 | Google Llc | Measuring dissipated electrical power on a power rail |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8136738B1 (en) * | 2004-04-27 | 2012-03-20 | Energy Eye, Inc. | Control system for electrical appliances |
US7545101B2 (en) * | 2005-05-05 | 2009-06-09 | Leviton Manufacturing Co., Inc. | Multi-zone closed loop daylight harvesting having at least one light sensor |
US20070045429A1 (en) * | 2005-08-31 | 2007-03-01 | Ranco Incorporated Of Delaware | Time of day zoning climate control system and method |
US8018166B2 (en) * | 2006-03-15 | 2011-09-13 | Leviton Manufacturing Co., Inc. | Lighting control system and three way occupancy sensor |
ES2532263T3 (en) * | 2006-07-13 | 2015-03-25 | Mitsubishi Electric Corporation | Air conditioning system |
US20080040187A1 (en) * | 2006-08-10 | 2008-02-14 | International Business Machines Corporation | System to relay meeting activity in electronic calendar applications and schedule enforcement agent for electronic meetings |
US8102799B2 (en) * | 2006-10-16 | 2012-01-24 | Assa Abloy Hospitality, Inc. | Centralized wireless network for multi-room large properties |
WO2009073034A1 (en) * | 2007-12-07 | 2009-06-11 | Carrier Corporation | Control of conditioned environment by remote sensor |
WO2009111489A2 (en) * | 2008-03-03 | 2009-09-11 | Federspiel Corporation | Methods and systems for coordinating the control of hvac units |
US8352296B2 (en) * | 2008-04-18 | 2013-01-08 | Microsoft Corporation | Managing real time meeting room status |
US20090302994A1 (en) * | 2008-06-10 | 2009-12-10 | Mellennial Net, Inc. | System and method for energy management |
US20090302996A1 (en) * | 2008-06-10 | 2009-12-10 | Millennial Net, Inc. | System and method for a management server |
GB0818867D0 (en) * | 2008-10-14 | 2008-11-19 | Hardman Steven J | Occupancy sensor/controller |
US8008802B2 (en) | 2009-03-03 | 2011-08-30 | Leonard Thomas W | Bi-level switching with power packs |
WO2011022696A1 (en) | 2009-08-21 | 2011-02-24 | Federspiel Corporation | Method and apparatus for efficiently coordinating data center cooling units |
US20110270446A1 (en) * | 2010-05-03 | 2011-11-03 | Energy Eye, Inc. | Systems and methods for an environmental control system including a motorized vent covering |
US9322569B2 (en) | 2010-05-03 | 2016-04-26 | Harmonic Design, Inc. | Systems and methods for a motorized vent covering in an environment control system |
US9031706B2 (en) * | 2010-07-28 | 2015-05-12 | Lg Electronics Inc. | Air conditioner and method for controlling the same |
WO2012024692A2 (en) | 2010-08-20 | 2012-02-23 | Federspiel Clifford C | Energy-optimal control decisions for hvac systems |
US8660702B2 (en) * | 2010-09-29 | 2014-02-25 | Online Energy Manager Llc | Central cooling and circulation energy management control system |
US10215436B1 (en) | 2011-05-02 | 2019-02-26 | John M. Rawski | Full spectrum universal controller |
PL2530273T3 (en) * | 2011-06-01 | 2020-11-16 | Joseph Vögele AG | Construction machine with automatic ventilator rotation speed regulator |
WO2013090146A1 (en) | 2011-12-12 | 2013-06-20 | Vigilent Corporation | Controlling air temperatures of hvac units |
US20130178989A1 (en) * | 2012-01-11 | 2013-07-11 | Hamilton Sundstrand Corporation | Air temperature controller |
US10050948B2 (en) | 2012-07-27 | 2018-08-14 | Assa Abloy Ab | Presence-based credential updating |
WO2014016705A2 (en) | 2012-07-27 | 2014-01-30 | Assa Abloy Ab | Setback controls based on out-of-room presence information |
CN102799205B (en) * | 2012-08-14 | 2015-01-07 | 深圳市华星光电技术有限公司 | Monitoring method and monitoring system thereof of temperature and humidity of warehouse |
JP2015531516A (en) * | 2012-09-12 | 2015-11-02 | パーティクルズ プラス インコーポレイテッド | Thermostatic device with particulate matter sensor |
US10352844B2 (en) | 2013-03-15 | 2019-07-16 | Particles Plus, Inc. | Multiple particle sensors in a particle counter |
US12044611B2 (en) | 2013-03-15 | 2024-07-23 | Particles Plus, Inc. | Particle counter with integrated bootloader |
US10983040B2 (en) | 2013-03-15 | 2021-04-20 | Particles Plus, Inc. | Particle counter with integrated bootloader |
US9677990B2 (en) | 2014-04-30 | 2017-06-13 | Particles Plus, Inc. | Particle counter with advanced features |
US11579072B2 (en) | 2013-03-15 | 2023-02-14 | Particles Plus, Inc. | Personal air quality monitoring system |
US9122283B2 (en) | 2013-04-19 | 2015-09-01 | Emerson Electric Co. | Battery power management in a thermostat with a wireless transceiver |
US10108154B2 (en) | 2013-05-08 | 2018-10-23 | Vigilent Corporation | Influence learning for managing physical conditions of an environmentally controlled space by utilizing a calibration override which constrains an actuator to a trajectory |
CA2864722C (en) * | 2013-09-23 | 2019-07-30 | Emerson Electric Co. | Energy management based on occupancy and occupant activity level |
WO2015171624A1 (en) | 2014-05-05 | 2015-11-12 | Vigilent Corporation | Point-based risk score for managing environmental systems |
US20150369508A1 (en) * | 2014-06-24 | 2015-12-24 | Howard Rosen | Method and Apparatus Providing Safety Improvement for Thermostat Devices That Provide Remote Control Features |
KR102412896B1 (en) * | 2014-12-18 | 2022-06-24 | 삼성전자 주식회사 | Method and apparatus for supporting facility control of terminal |
CN104914761A (en) * | 2015-05-13 | 2015-09-16 | 重庆邮电大学 | Internet-based remote environment detection and electrical appliance control system |
WO2017078941A1 (en) * | 2015-11-04 | 2017-05-11 | Carrier Corporation | Hvac management system and method |
CN109812929B (en) | 2017-11-20 | 2023-03-28 | 开利公司 | Air conditioning system |
US11570685B2 (en) * | 2018-10-24 | 2023-01-31 | Carrier Corporation | Power savings for wireless sensors |
US11274844B2 (en) | 2019-12-05 | 2022-03-15 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for controlling a single-zone climate conditioning system in a multi-zoned manner |
US11988591B2 (en) | 2020-07-01 | 2024-05-21 | Particles Plus, Inc. | Modular optical particle counter sensor and apparatus |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4205381A (en) * | 1977-08-31 | 1980-05-27 | United Technologies Corporation | Energy conservative control of heating, ventilating, and air conditioning (HVAC) systems |
US4522336A (en) * | 1982-12-09 | 1985-06-11 | Honeywell Inc. | Adaptive optimum start/stop control system |
US4860950A (en) * | 1988-06-24 | 1989-08-29 | Larry J. Reeser | Remote controlled thermostat |
US5170935A (en) * | 1991-11-27 | 1992-12-15 | Massachusetts Institute Of Technology | Adaptable control of HVAC systems |
US5197668A (en) * | 1991-12-20 | 1993-03-30 | Honeywell Inc. | Communicating thermostat |
US5341988A (en) * | 1991-10-01 | 1994-08-30 | American Standard Inc. | Wireless air balancing system |
US5407002A (en) * | 1994-05-09 | 1995-04-18 | Voll; Christopher J. | Multiple-zone air circulation control system |
US5644302A (en) * | 1994-12-27 | 1997-07-01 | Najib Hana | Device for remotely changing the set temperature of a thermostat |
US5801940A (en) * | 1995-01-19 | 1998-09-01 | Gas Research Institute | Fault-tolerant HVAC system |
US6338437B1 (en) * | 1999-05-13 | 2002-01-15 | Acutherm L.P. | Process and apparatus for individual adjustment of the temperature set points of a plurality of VAV devices through a network server |
US6536675B1 (en) * | 1999-03-04 | 2003-03-25 | Energyiq Systems, Inc. | Temperature determination in a controlled space in accordance with occupancy |
US20030216838A1 (en) * | 2002-05-17 | 2003-11-20 | Dudley Kevin F. | Location adjusted HVAC control |
-
2004
- 2004-11-23 US US10/995,574 patent/US7058477B1/en not_active Ceased
-
2007
- 2007-05-16 US US11/804,324 patent/USRE40437E1/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4205381A (en) * | 1977-08-31 | 1980-05-27 | United Technologies Corporation | Energy conservative control of heating, ventilating, and air conditioning (HVAC) systems |
US4522336A (en) * | 1982-12-09 | 1985-06-11 | Honeywell Inc. | Adaptive optimum start/stop control system |
US4860950A (en) * | 1988-06-24 | 1989-08-29 | Larry J. Reeser | Remote controlled thermostat |
US5341988A (en) * | 1991-10-01 | 1994-08-30 | American Standard Inc. | Wireless air balancing system |
US5170935A (en) * | 1991-11-27 | 1992-12-15 | Massachusetts Institute Of Technology | Adaptable control of HVAC systems |
US5197668A (en) * | 1991-12-20 | 1993-03-30 | Honeywell Inc. | Communicating thermostat |
US5407002A (en) * | 1994-05-09 | 1995-04-18 | Voll; Christopher J. | Multiple-zone air circulation control system |
US5644302A (en) * | 1994-12-27 | 1997-07-01 | Najib Hana | Device for remotely changing the set temperature of a thermostat |
US5801940A (en) * | 1995-01-19 | 1998-09-01 | Gas Research Institute | Fault-tolerant HVAC system |
US6536675B1 (en) * | 1999-03-04 | 2003-03-25 | Energyiq Systems, Inc. | Temperature determination in a controlled space in accordance with occupancy |
US6338437B1 (en) * | 1999-05-13 | 2002-01-15 | Acutherm L.P. | Process and apparatus for individual adjustment of the temperature set points of a plurality of VAV devices through a network server |
US20030216838A1 (en) * | 2002-05-17 | 2003-11-20 | Dudley Kevin F. | Location adjusted HVAC control |
Cited By (325)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8963726B2 (en) | 2004-05-27 | 2015-02-24 | Google Inc. | System and method for high-sensitivity sensor |
US8981950B1 (en) | 2004-05-27 | 2015-03-17 | Google Inc. | Sensor device measurements adaptive to HVAC activity |
US9019110B2 (en) | 2004-05-27 | 2015-04-28 | Google Inc. | System and method for high-sensitivity sensor |
US8963728B2 (en) | 2004-05-27 | 2015-02-24 | Google Inc. | System and method for high-sensitivity sensor |
US9007225B2 (en) | 2004-05-27 | 2015-04-14 | Google Inc. | Environmental sensing systems having independent notifications across multiple thresholds |
US8963727B2 (en) | 2004-05-27 | 2015-02-24 | Google Inc. | Environmental sensing systems having independent notifications across multiple thresholds |
US10663443B2 (en) | 2004-05-27 | 2020-05-26 | Google Llc | Sensor chamber airflow management systems and methods |
US9316407B2 (en) | 2004-10-06 | 2016-04-19 | Google Inc. | Multiple environmental zone control with integrated battery status communications |
US9618223B2 (en) | 2004-10-06 | 2017-04-11 | Google Inc. | Multi-nodal thermostat control system |
US9995497B2 (en) | 2004-10-06 | 2018-06-12 | Google Llc | Wireless zone control via mechanically adjustable airflow elements |
US9194599B2 (en) | 2004-10-06 | 2015-11-24 | Google Inc. | Control of multiple environmental zones based on predicted changes to environmental conditions of the zones |
US9273879B2 (en) | 2004-10-06 | 2016-03-01 | Google Inc. | Occupancy-based wireless control of multiple environmental zones via a central controller |
US9222692B2 (en) | 2004-10-06 | 2015-12-29 | Google Inc. | Wireless zone control via mechanically adjustable airflow elements |
US9353963B2 (en) | 2004-10-06 | 2016-05-31 | Google Inc. | Occupancy-based wireless control of multiple environmental zones with zone controller identification |
US8695888B2 (en) | 2004-10-06 | 2014-04-15 | Nest Labs, Inc. | Electronically-controlled register vent for zone heating and cooling |
US9194600B2 (en) | 2004-10-06 | 2015-11-24 | Google Inc. | Battery charging by mechanical impeller at forced air vent outputs |
US9303889B2 (en) | 2004-10-06 | 2016-04-05 | Google Inc. | Multiple environmental zone control via a central controller |
US9353964B2 (en) | 2004-10-06 | 2016-05-31 | Google Inc. | Systems and methods for wirelessly-enabled HVAC control |
US10126011B2 (en) | 2004-10-06 | 2018-11-13 | Google Llc | Multiple environmental zone control with integrated battery status communications |
US9182140B2 (en) | 2004-10-06 | 2015-11-10 | Google Inc. | Battery-operated wireless zone controllers having multiple states of power-related operation |
US10215437B2 (en) | 2004-10-06 | 2019-02-26 | Google Llc | Battery-operated wireless zone controllers having multiple states of power-related operation |
USRE45574E1 (en) | 2007-02-09 | 2015-06-23 | Honeywell International Inc. | Self-programmable thermostat |
USRE46236E1 (en) | 2007-02-09 | 2016-12-13 | Honeywell International Inc. | Self-programmable thermostat |
US10698434B2 (en) | 2007-10-02 | 2020-06-30 | Google Llc | Intelligent temperature management based on energy usage profiles and outside weather conditions |
US9500385B2 (en) | 2007-10-02 | 2016-11-22 | Google Inc. | Managing energy usage |
US10048712B2 (en) | 2007-10-02 | 2018-08-14 | Google Llc | Systems, methods and apparatus for overall load balancing by scheduled and prioritized reductions |
US9322565B2 (en) | 2007-10-02 | 2016-04-26 | Google Inc. | Systems, methods and apparatus for weather-based preconditioning |
US9523993B2 (en) | 2007-10-02 | 2016-12-20 | Google Inc. | Systems, methods and apparatus for monitoring and managing device-level energy consumption in a smart-home environment |
US9600011B2 (en) | 2007-10-02 | 2017-03-21 | Google Inc. | Intelligent temperature management based on energy usage profiles and outside weather conditions |
US9081405B2 (en) | 2007-10-02 | 2015-07-14 | Google Inc. | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
US11409315B2 (en) | 2008-09-30 | 2022-08-09 | Google Llc | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
US9507362B2 (en) | 2008-09-30 | 2016-11-29 | Google Inc. | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
US10108217B2 (en) | 2008-09-30 | 2018-10-23 | Google Llc | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
US9507363B2 (en) | 2008-09-30 | 2016-11-29 | Google Inc. | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
US8543243B2 (en) | 2008-10-27 | 2013-09-24 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8560125B2 (en) | 2008-10-27 | 2013-10-15 | Lennox Industries | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9651925B2 (en) | 2008-10-27 | 2017-05-16 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US9632490B2 (en) | 2008-10-27 | 2017-04-25 | Lennox Industries Inc. | System and method for zoning a distributed architecture heating, ventilation and air conditioning network |
US8655490B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8655491B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8661165B2 (en) | 2008-10-27 | 2014-02-25 | Lennox Industries, Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8694164B2 (en) | 2008-10-27 | 2014-04-08 | Lennox Industries, Inc. | Interactive user guidance interface for a heating, ventilation and air conditioning system |
US8615326B2 (en) | 2008-10-27 | 2013-12-24 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8725298B2 (en) | 2008-10-27 | 2014-05-13 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network |
US9152155B2 (en) | 2008-10-27 | 2015-10-06 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8744629B2 (en) | 2008-10-27 | 2014-06-03 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9261888B2 (en) | 2008-10-27 | 2016-02-16 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9268345B2 (en) | 2008-10-27 | 2016-02-23 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8761945B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
US8762666B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries, Inc. | Backup and restoration of operation control data in a heating, ventilation and air conditioning network |
US8600559B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | Method of controlling equipment in a heating, ventilation and air conditioning network |
US8239066B2 (en) | 2008-10-27 | 2012-08-07 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8774210B2 (en) | 2008-10-27 | 2014-07-08 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8788100B2 (en) | 2008-10-27 | 2014-07-22 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US8255086B2 (en) | 2008-10-27 | 2012-08-28 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8295981B2 (en) | 2008-10-27 | 2012-10-23 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
US8798796B2 (en) | 2008-10-27 | 2014-08-05 | Lennox Industries Inc. | General control techniques in a heating, ventilation and air conditioning network |
US8802981B2 (en) | 2008-10-27 | 2014-08-12 | Lennox Industries Inc. | Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system |
US8855825B2 (en) | 2008-10-27 | 2014-10-07 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8874815B2 (en) | 2008-10-27 | 2014-10-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network |
US8600558B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8892797B2 (en) | 2008-10-27 | 2014-11-18 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8564400B2 (en) | 2008-10-27 | 2013-10-22 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9678486B2 (en) | 2008-10-27 | 2017-06-13 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8548630B2 (en) | 2008-10-27 | 2013-10-01 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8463442B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US9325517B2 (en) | 2008-10-27 | 2016-04-26 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8463443B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US8352080B2 (en) | 2008-10-27 | 2013-01-08 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9432208B2 (en) | 2008-10-27 | 2016-08-30 | Lennox Industries Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8452456B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8977794B2 (en) | 2008-10-27 | 2015-03-10 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8452906B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8994539B2 (en) | 2008-10-27 | 2015-03-31 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9377768B2 (en) | 2008-10-27 | 2016-06-28 | Lennox Industries Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US8442693B2 (en) | 2008-10-27 | 2013-05-14 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8437878B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8437877B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8433446B2 (en) | 2008-10-27 | 2013-04-30 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8352081B2 (en) | 2008-10-27 | 2013-01-08 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US20100106575A1 (en) * | 2008-10-28 | 2010-04-29 | Earth Aid Enterprises Llc | Methods and systems for determining the environmental impact of a consumer's actual resource consumption |
US8457796B2 (en) | 2009-03-11 | 2013-06-04 | Deepinder Singh Thind | Predictive conditioning in occupancy zones |
US9454895B2 (en) | 2009-03-20 | 2016-09-27 | Google Inc. | Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms |
US9741240B2 (en) | 2009-03-20 | 2017-08-22 | Google Inc. | Use of optical reflectance proximity detector in battery-powered devices |
US8754775B2 (en) | 2009-03-20 | 2014-06-17 | Nest Labs, Inc. | Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms |
USD648641S1 (en) | 2009-10-21 | 2011-11-15 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
USD648642S1 (en) | 2009-10-21 | 2011-11-15 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
US9599359B2 (en) | 2010-02-17 | 2017-03-21 | Lennox Industries Inc. | Integrated controller an HVAC system |
US9574784B2 (en) | 2010-02-17 | 2017-02-21 | Lennox Industries Inc. | Method of starting a HVAC system having an auxiliary controller |
US8260444B2 (en) | 2010-02-17 | 2012-09-04 | Lennox Industries Inc. | Auxiliary controller of a HVAC system |
US8788104B2 (en) | 2010-02-17 | 2014-07-22 | Lennox Industries Inc. | Heating, ventilating and air conditioning (HVAC) system with an auxiliary controller |
US9329903B2 (en) * | 2010-05-12 | 2016-05-03 | Emerson Electric Co. | System and method for internet based service notification |
US20110282937A1 (en) * | 2010-05-12 | 2011-11-17 | Deshpande Nikhil N | System and method for internet based service notification |
US9612032B2 (en) | 2010-09-14 | 2017-04-04 | Google Inc. | User friendly interface for control unit |
US9245229B2 (en) | 2010-09-14 | 2016-01-26 | Google Inc. | Occupancy pattern detection, estimation and prediction |
US10107513B2 (en) | 2010-09-14 | 2018-10-23 | Google Llc | Thermodynamic modeling for enclosures |
US8788448B2 (en) | 2010-09-14 | 2014-07-22 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US9605858B2 (en) | 2010-09-14 | 2017-03-28 | Google Inc. | Thermostat circuitry for connection to HVAC systems |
US9026254B2 (en) | 2010-09-14 | 2015-05-05 | Google Inc. | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US8606374B2 (en) | 2010-09-14 | 2013-12-10 | Nest Labs, Inc. | Thermodynamic modeling for enclosures |
US9810590B2 (en) | 2010-09-14 | 2017-11-07 | Google Inc. | System and method for integrating sensors in thermostats |
US9702579B2 (en) | 2010-09-14 | 2017-07-11 | Google Inc. | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US10771868B2 (en) | 2010-09-14 | 2020-09-08 | Google Llc | Occupancy pattern detection, estimation and prediction |
US8510255B2 (en) | 2010-09-14 | 2013-08-13 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US9715239B2 (en) | 2010-09-14 | 2017-07-25 | Google Inc. | Computational load distribution in an environment having multiple sensing microsystems |
US9223323B2 (en) | 2010-09-14 | 2015-12-29 | Google Inc. | User friendly interface for control unit |
US9709290B2 (en) | 2010-09-14 | 2017-07-18 | Google Inc. | Control unit with automatic setback capability |
US9952573B2 (en) | 2010-11-19 | 2018-04-24 | Google Llc | Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements |
US10619876B2 (en) | 2010-11-19 | 2020-04-14 | Google Llc | Control unit with automatic setback capability |
US9104211B2 (en) | 2010-11-19 | 2015-08-11 | Google Inc. | Temperature controller with model-based time to target calculation and display |
US9261289B2 (en) | 2010-11-19 | 2016-02-16 | Google Inc. | Adjusting proximity thresholds for activating a device user interface |
US10747242B2 (en) | 2010-11-19 | 2020-08-18 | Google Llc | Thermostat user interface |
US9268344B2 (en) | 2010-11-19 | 2016-02-23 | Google Inc. | Installation of thermostat powered by rechargeable battery |
US10732651B2 (en) | 2010-11-19 | 2020-08-04 | Google Llc | Smart-home proxy devices with long-polling |
US9714772B2 (en) | 2010-11-19 | 2017-07-25 | Google Inc. | HVAC controller configurations that compensate for heating caused by direct sunlight |
US10241482B2 (en) | 2010-11-19 | 2019-03-26 | Google Llc | Thermostat user interface |
US11334034B2 (en) | 2010-11-19 | 2022-05-17 | Google Llc | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US11372433B2 (en) | 2010-11-19 | 2022-06-28 | Google Llc | Thermostat user interface |
US9298196B2 (en) | 2010-11-19 | 2016-03-29 | Google Inc. | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US9092040B2 (en) | 2010-11-19 | 2015-07-28 | Google Inc. | HVAC filter monitoring |
US8924027B2 (en) | 2010-11-19 | 2014-12-30 | Google Inc. | Computational load distribution in a climate control system having plural sensing microsystems |
US10030884B2 (en) | 2010-11-19 | 2018-07-24 | Google Llc | Auto-configuring time-of-day for building control unit |
US10191727B2 (en) | 2010-11-19 | 2019-01-29 | Google Llc | Installation of thermostat powered by rechargeable battery |
US10627791B2 (en) | 2010-11-19 | 2020-04-21 | Google Llc | Thermostat user interface |
US8478447B2 (en) | 2010-11-19 | 2013-07-02 | Nest Labs, Inc. | Computational load distribution in a climate control system having plural sensing microsystems |
US9026232B2 (en) | 2010-11-19 | 2015-05-05 | Google Inc. | Thermostat user interface |
US9256230B2 (en) | 2010-11-19 | 2016-02-09 | Google Inc. | HVAC schedule establishment in an intelligent, network-connected thermostat |
US9459018B2 (en) | 2010-11-19 | 2016-10-04 | Google Inc. | Systems and methods for energy-efficient control of an energy-consuming system |
US10606724B2 (en) | 2010-11-19 | 2020-03-31 | Google Llc | Attributing causation for energy usage and setpoint changes with a network-connected thermostat |
US10481780B2 (en) | 2010-11-19 | 2019-11-19 | Google Llc | Adjusting proximity thresholds for activating a device user interface |
US10078319B2 (en) | 2010-11-19 | 2018-09-18 | Google Llc | HVAC schedule establishment in an intelligent, network-connected thermostat |
US10452083B2 (en) | 2010-11-19 | 2019-10-22 | Google Llc | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US8727611B2 (en) | 2010-11-19 | 2014-05-20 | Nest Labs, Inc. | System and method for integrating sensors in thermostats |
US9127853B2 (en) | 2010-11-19 | 2015-09-08 | Google Inc. | Thermostat with ring-shaped control member |
US8950686B2 (en) | 2010-11-19 | 2015-02-10 | Google Inc. | Control unit with automatic setback capability |
US10082306B2 (en) | 2010-11-19 | 2018-09-25 | Google Llc | Temperature controller with model-based time to target calculation and display |
US10175668B2 (en) | 2010-11-19 | 2019-01-08 | Google Llc | Systems and methods for energy-efficient control of an energy-consuming system |
US10346275B2 (en) | 2010-11-19 | 2019-07-09 | Google Llc | Attributing causation for energy usage and setpoint changes with a network-connected thermostat |
US9429962B2 (en) | 2010-11-19 | 2016-08-30 | Google Inc. | Auto-configuring time-of day for building control unit |
US9766606B2 (en) | 2010-11-19 | 2017-09-19 | Google Inc. | Thermostat user interface |
US11549706B2 (en) | 2010-11-19 | 2023-01-10 | Google Llc | Control unit with automatic setback capabtility |
US20130268129A1 (en) * | 2010-12-31 | 2013-10-10 | Nest Labs, Inc. | Hvac control system with interchangeable control units |
US9417637B2 (en) | 2010-12-31 | 2016-08-16 | Google Inc. | Background schedule simulations in an intelligent, network-connected thermostat |
US10443879B2 (en) | 2010-12-31 | 2019-10-15 | Google Llc | HVAC control system encouraging energy efficient user behaviors in plural interactive contexts |
US9342082B2 (en) | 2010-12-31 | 2016-05-17 | Google Inc. | Methods for encouraging energy-efficient behaviors based on a network connected thermostat-centric energy efficiency platform |
US9732979B2 (en) | 2010-12-31 | 2017-08-15 | Google Inc. | HVAC control system encouraging energy efficient user behaviors in plural interactive contexts |
US9645589B2 (en) | 2011-01-13 | 2017-05-09 | Honeywell International Inc. | HVAC control with comfort/economy management |
US10684633B2 (en) | 2011-02-24 | 2020-06-16 | Google Llc | Smart thermostat with active power stealing an processor isolation from switching elements |
US8511577B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US9086703B2 (en) | 2011-02-24 | 2015-07-21 | Google Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US9952608B2 (en) | 2011-02-24 | 2018-04-24 | Google Llc | Thermostat with power stealing delay interval at transitions between power stealing states |
US8770491B2 (en) | 2011-02-24 | 2014-07-08 | Nest Labs Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US9282590B2 (en) | 2011-04-15 | 2016-03-08 | Appleton Grp Llc | Self-adjusting thermostat for floor warming control systems and other applications |
US9366448B2 (en) | 2011-06-20 | 2016-06-14 | Honeywell International Inc. | Method and apparatus for configuring a filter change notification of an HVAC controller |
US20150365249A1 (en) * | 2011-07-27 | 2015-12-17 | Honeywell International Inc. | Systems and methods for managing a programmable thermostat |
US9115908B2 (en) | 2011-07-27 | 2015-08-25 | Honeywell International Inc. | Systems and methods for managing a programmable thermostat |
US20180048483A1 (en) * | 2011-07-27 | 2018-02-15 | Honeywell International Inc. | Systems and methods for managing a programmable thermostat |
US10454702B2 (en) * | 2011-07-27 | 2019-10-22 | Ademco Inc. | Systems and methods for managing a programmable thermostat |
US9832034B2 (en) * | 2011-07-27 | 2017-11-28 | Honeywell International Inc. | Systems and methods for managing a programmable thermostat |
US8892223B2 (en) | 2011-09-07 | 2014-11-18 | Honeywell International Inc. | HVAC controller including user interaction log |
US9157647B2 (en) | 2011-09-07 | 2015-10-13 | Honeywell International Inc. | HVAC controller including user interaction log |
US10295974B2 (en) | 2011-10-07 | 2019-05-21 | Google Llc | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
US9453655B2 (en) | 2011-10-07 | 2016-09-27 | Google Inc. | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
US9395096B2 (en) | 2011-10-21 | 2016-07-19 | Google Inc. | Smart-home device that self-qualifies for away-state functionality |
US9234669B2 (en) | 2011-10-21 | 2016-01-12 | Google Inc. | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
US8998102B2 (en) | 2011-10-21 | 2015-04-07 | Google Inc. | Round thermostat with flanged rotatable user input member and wall-facing optical sensor that senses rotation |
US8622314B2 (en) | 2011-10-21 | 2014-01-07 | Nest Labs, Inc. | Smart-home device that self-qualifies for away-state functionality |
US8558179B2 (en) | 2011-10-21 | 2013-10-15 | Nest Labs, Inc. | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
US8761946B2 (en) | 2011-10-21 | 2014-06-24 | Nest Labs, Inc. | Intelligent controller providing time to target state |
US8766194B2 (en) | 2011-10-21 | 2014-07-01 | Nest Labs Inc. | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
US10678416B2 (en) | 2011-10-21 | 2020-06-09 | Google Llc | Occupancy-based operating state determinations for sensing or control systems |
US9291359B2 (en) | 2011-10-21 | 2016-03-22 | Google Inc. | Thermostat user interface |
US9910577B2 (en) | 2011-10-21 | 2018-03-06 | Google Llc | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit having a preconditioning feature |
US8942853B2 (en) | 2011-10-21 | 2015-01-27 | Google Inc. | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
US10048852B2 (en) | 2011-10-21 | 2018-08-14 | Google Llc | Thermostat user interface |
US10274914B2 (en) | 2011-10-21 | 2019-04-30 | Google Llc | Smart-home device that self-qualifies for away-state functionality |
US9720585B2 (en) | 2011-10-21 | 2017-08-01 | Google Inc. | User friendly interface |
US9448568B2 (en) | 2011-10-21 | 2016-09-20 | Google Inc. | Intelligent controller providing time to target state |
US9740385B2 (en) | 2011-10-21 | 2017-08-22 | Google Inc. | User-friendly, network-connected, smart-home controller and related systems and methods |
US9194598B2 (en) | 2011-10-21 | 2015-11-24 | Google Inc. | Thermostat user interface |
US9535589B2 (en) | 2011-10-21 | 2017-01-03 | Google Inc. | Round thermostat with rotatable user input member and temperature sensing element disposed in physical communication with a front thermostat cover |
US10241484B2 (en) | 2011-10-21 | 2019-03-26 | Google Llc | Intelligent controller providing time to target state |
US9857961B2 (en) | 2011-10-21 | 2018-01-02 | Google Inc. | Thermostat user interface |
US8532827B2 (en) | 2011-10-21 | 2013-09-10 | Nest Labs, Inc. | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
US8902071B2 (en) | 2011-12-14 | 2014-12-02 | Honeywell International Inc. | HVAC controller with HVAC system fault detection |
US9002523B2 (en) | 2011-12-14 | 2015-04-07 | Honeywell International Inc. | HVAC controller with diagnostic alerts |
US9206993B2 (en) | 2011-12-14 | 2015-12-08 | Honeywell International Inc. | HVAC controller with utility saver switch diagnostic feature |
US10533761B2 (en) | 2011-12-14 | 2020-01-14 | Ademco Inc. | HVAC controller with fault sensitivity |
US10747243B2 (en) | 2011-12-14 | 2020-08-18 | Ademco Inc. | HVAC controller with HVAC system failure detection |
US10534383B2 (en) | 2011-12-15 | 2020-01-14 | Ademco Inc. | HVAC controller with performance log |
US10139843B2 (en) | 2012-02-22 | 2018-11-27 | Honeywell International Inc. | Wireless thermostatic controlled electric heating system |
US9442500B2 (en) | 2012-03-08 | 2016-09-13 | Honeywell International Inc. | Systems and methods for associating wireless devices of an HVAC system |
US10452084B2 (en) | 2012-03-14 | 2019-10-22 | Ademco Inc. | Operation of building control via remote device |
US10443877B2 (en) | 2012-03-29 | 2019-10-15 | Google Llc | Processing and reporting usage information for an HVAC system controlled by a network-connected thermostat |
US9890970B2 (en) | 2012-03-29 | 2018-02-13 | Google Inc. | Processing and reporting usage information for an HVAC system controlled by a network-connected thermostat |
US9534805B2 (en) | 2012-03-29 | 2017-01-03 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US11781770B2 (en) | 2012-03-29 | 2023-10-10 | Google Llc | User interfaces for schedule display and modification on smartphone or other space-limited touchscreen device |
US9971364B2 (en) | 2012-03-29 | 2018-05-15 | Honeywell International Inc. | Method and system for configuring wireless sensors in an HVAC system |
US10635119B2 (en) | 2012-03-29 | 2020-04-28 | Ademco Inc. | Method and system for configuring wireless sensors in an HVAC system |
US9091453B2 (en) | 2012-03-29 | 2015-07-28 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US10145577B2 (en) | 2012-03-29 | 2018-12-04 | Google Llc | User interfaces for HVAC schedule display and modification on smartphone or other space-limited touchscreen device |
US9488994B2 (en) | 2012-03-29 | 2016-11-08 | Honeywell International Inc. | Method and system for configuring wireless sensors in an HVAC system |
US9098096B2 (en) | 2012-04-05 | 2015-08-04 | Google Inc. | Continuous intelligent-control-system update using information requests directed to user devices |
US11118803B2 (en) | 2012-04-05 | 2021-09-14 | Google Llc | Continuous intelligent-control-system update using information requests directed to user devices |
US10502444B2 (en) | 2012-04-05 | 2019-12-10 | Google Llc | Continuous intelligent-control-system update using information requests directed to user devices |
US10151503B2 (en) | 2012-04-05 | 2018-12-11 | Google Llc | Continuous intelligent-control-system update using information requests directed to user devices |
US11493224B2 (en) | 2012-07-26 | 2022-11-08 | Ademco Inc. | Method of associating an HVAC controller with an external web service |
US10928087B2 (en) | 2012-07-26 | 2021-02-23 | Ademco Inc. | Method of associating an HVAC controller with an external web service |
US9477239B2 (en) | 2012-07-26 | 2016-10-25 | Honeywell International Inc. | HVAC controller with wireless network based occupancy detection and control |
US10613555B2 (en) | 2012-07-26 | 2020-04-07 | Ademco Inc. | HVAC controller with wireless network based occupancy detection and control |
US10133283B2 (en) | 2012-07-26 | 2018-11-20 | Honeywell International Inc. | HVAC controller with wireless network based occupancy detection and control |
US8620841B1 (en) | 2012-08-31 | 2013-12-31 | Nest Labs, Inc. | Dynamic distributed-sensor thermostat network for forecasting external events |
US9286781B2 (en) | 2012-08-31 | 2016-03-15 | Google Inc. | Dynamic distributed-sensor thermostat network for forecasting external events using smart-home devices |
US10433032B2 (en) | 2012-08-31 | 2019-10-01 | Google Llc | Dynamic distributed-sensor network for crowdsourced event detection |
US9349273B2 (en) | 2012-09-21 | 2016-05-24 | Google Inc. | Cover plate for a hazard detector having improved air flow and other characteristics |
US8994540B2 (en) | 2012-09-21 | 2015-03-31 | Google Inc. | Cover plate for a hazard detector having improved air flow and other characteristics |
US10012407B2 (en) | 2012-09-30 | 2018-07-03 | Google Llc | Heating controls and methods for an environmental control system |
US8630742B1 (en) | 2012-09-30 | 2014-01-14 | Nest Labs, Inc. | Preconditioning controls and methods for an environmental control system |
US9470430B2 (en) | 2012-09-30 | 2016-10-18 | Google Inc. | Preconditioning controls and methods for an environmental control system |
US10690369B2 (en) | 2012-09-30 | 2020-06-23 | Google Llc | Automated presence detection and presence-related control within an intelligent controller |
US8554376B1 (en) | 2012-09-30 | 2013-10-08 | Nest Labs, Inc | Intelligent controller for an environmental control system |
US9189751B2 (en) | 2012-09-30 | 2015-11-17 | Google Inc. | Automated presence detection and presence-related control within an intelligent controller |
US10416627B2 (en) | 2012-09-30 | 2019-09-17 | Google Llc | HVAC control system providing user efficiency-versus-comfort settings that is adaptable for both data-connected and data-unconnected scenarios |
US9746198B2 (en) | 2012-09-30 | 2017-08-29 | Google Inc. | Intelligent environmental control system |
US11359831B2 (en) | 2012-09-30 | 2022-06-14 | Google Llc | Automated presence detection and presence-related control within an intelligent controller |
US8600561B1 (en) | 2012-09-30 | 2013-12-03 | Nest Labs, Inc. | Radiant heating controls and methods for an environmental control system |
US10030880B2 (en) | 2012-09-30 | 2018-07-24 | Google Llc | Automated presence detection and presence-related control within an intelligent controller |
US8965587B2 (en) | 2012-09-30 | 2015-02-24 | Google Inc. | Radiant heating controls and methods for an environmental control system |
US10094585B2 (en) | 2013-01-25 | 2018-10-09 | Honeywell International Inc. | Auto test for delta T diagnostics in an HVAC system |
US10853733B2 (en) | 2013-03-14 | 2020-12-01 | Google Llc | Devices, methods, and associated information processing for security in a smart-sensored home |
US9208676B2 (en) | 2013-03-14 | 2015-12-08 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US9798979B2 (en) | 2013-03-14 | 2017-10-24 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US12055905B2 (en) | 2013-03-14 | 2024-08-06 | Google Llc | Smart-home environment networking systems and methods |
US11308508B2 (en) | 2013-03-15 | 2022-04-19 | Google Llc | Utility portals for managing demand-response events |
US10832266B2 (en) | 2013-03-15 | 2020-11-10 | Google Llc | Streamlined utility portals for managing demand-response events |
US9998475B2 (en) | 2013-03-15 | 2018-06-12 | Google Llc | Streamlined utility portals for managing demand-response events |
US11282150B2 (en) | 2013-03-15 | 2022-03-22 | Google Llc | Systems, apparatus and methods for managing demand-response programs and events |
WO2014144637A3 (en) * | 2013-03-15 | 2014-12-11 | Leeo, Inc. | Environmental measurement display |
US10581862B2 (en) | 2013-03-15 | 2020-03-03 | Google Llc | Utility portals for managing demand-response events |
US9810442B2 (en) | 2013-03-15 | 2017-11-07 | Google Inc. | Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat |
US9595070B2 (en) | 2013-03-15 | 2017-03-14 | Google Inc. | Systems, apparatus and methods for managing demand-response programs and events |
US11739968B2 (en) | 2013-03-15 | 2023-08-29 | Google Llc | Controlling an HVAC system using an optimal setpoint schedule during a demand-response event |
US10438304B2 (en) | 2013-03-15 | 2019-10-08 | Google Llc | Systems, apparatus and methods for managing demand-response programs and events |
US10367819B2 (en) | 2013-03-15 | 2019-07-30 | Google Llc | Streamlined utility portals for managing demand-response events |
US10718539B2 (en) | 2013-03-15 | 2020-07-21 | Google Llc | Controlling an HVAC system in association with a demand-response event |
US10775814B2 (en) | 2013-04-17 | 2020-09-15 | Google Llc | Selective carrying out of scheduled control operations by an intelligent controller |
US10317104B2 (en) | 2013-04-19 | 2019-06-11 | Google Llc | Automated adjustment of an HVAC schedule for resource conservation |
US9910449B2 (en) | 2013-04-19 | 2018-03-06 | Google Llc | Generating and implementing thermodynamic models of a structure |
US10697662B2 (en) | 2013-04-19 | 2020-06-30 | Google Llc | Automated adjustment of an HVAC schedule for resource conservation |
US10545517B2 (en) | 2013-04-19 | 2020-01-28 | Google Llc | Generating and implementing thermodynamic models of a structure |
US9298197B2 (en) | 2013-04-19 | 2016-03-29 | Google Inc. | Automated adjustment of an HVAC schedule for resource conservation |
US10404253B2 (en) | 2013-04-23 | 2019-09-03 | Ademco Inc. | Triac or bypass circuit and MOSFET power steal combination |
US10396770B2 (en) | 2013-04-23 | 2019-08-27 | Ademco Inc. | Active triac triggering circuit |
US9584119B2 (en) | 2013-04-23 | 2017-02-28 | Honeywell International Inc. | Triac or bypass circuit and MOSFET power steal combination |
US9806705B2 (en) | 2013-04-23 | 2017-10-31 | Honeywell International Inc. | Active triac triggering circuit |
US9360229B2 (en) | 2013-04-26 | 2016-06-07 | Google Inc. | Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components |
US9696735B2 (en) | 2013-04-26 | 2017-07-04 | Google Inc. | Context adaptive cool-to-dry feature for HVAC controller |
US10132517B2 (en) | 2013-04-26 | 2018-11-20 | Google Llc | Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components |
US10811892B2 (en) | 2013-06-28 | 2020-10-20 | Ademco Inc. | Source management for a power transformation system |
US11054448B2 (en) | 2013-06-28 | 2021-07-06 | Ademco Inc. | Power transformation self characterization mode |
US9983244B2 (en) | 2013-06-28 | 2018-05-29 | Honeywell International Inc. | Power transformation system with characterization |
US9324227B2 (en) | 2013-07-16 | 2016-04-26 | Leeo, Inc. | Electronic device with environmental monitoring |
US9070272B2 (en) | 2013-07-16 | 2015-06-30 | Leeo, Inc. | Electronic device with environmental monitoring |
US9778235B2 (en) | 2013-07-17 | 2017-10-03 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US10330328B2 (en) | 2013-07-22 | 2019-06-25 | Trane International Inc. | Temperature control system |
US9673811B2 (en) | 2013-11-22 | 2017-06-06 | Honeywell International Inc. | Low power consumption AC load switches |
US9857091B2 (en) | 2013-11-22 | 2018-01-02 | Honeywell International Inc. | Thermostat circuitry to control power usage |
US10768589B2 (en) | 2013-12-11 | 2020-09-08 | Ademco Inc. | Building automation system with geo-fencing |
US9857238B2 (en) | 2014-04-18 | 2018-01-02 | Google Inc. | Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics |
US9628074B2 (en) | 2014-06-19 | 2017-04-18 | Honeywell International Inc. | Bypass switch for in-line power steal |
US10353411B2 (en) | 2014-06-19 | 2019-07-16 | Ademco Inc. | Bypass switch for in-line power steal |
US10088174B2 (en) | 2014-07-11 | 2018-10-02 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US9683749B2 (en) | 2014-07-11 | 2017-06-20 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US9170625B1 (en) | 2014-07-15 | 2015-10-27 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9213327B1 (en) | 2014-07-15 | 2015-12-15 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9372477B2 (en) | 2014-07-15 | 2016-06-21 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9116137B1 (en) | 2014-07-15 | 2015-08-25 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9304590B2 (en) | 2014-08-27 | 2016-04-05 | Leen, Inc. | Intuitive thermal user interface |
US9865016B2 (en) | 2014-09-08 | 2018-01-09 | Leeo, Inc. | Constrained environmental monitoring based on data privileges |
US10304123B2 (en) | 2014-09-08 | 2019-05-28 | Leeo, Inc. | Environmental monitoring device with event-driven service |
US10078865B2 (en) | 2014-09-08 | 2018-09-18 | Leeo, Inc. | Sensor-data sub-contracting during environmental monitoring |
US10043211B2 (en) | 2014-09-08 | 2018-08-07 | Leeo, Inc. | Identifying fault conditions in combinations of components |
US10102566B2 (en) | 2014-09-08 | 2018-10-16 | Leeo, Icnc. | Alert-driven dynamic sensor-data sub-contracting |
US10026304B2 (en) | 2014-10-20 | 2018-07-17 | Leeo, Inc. | Calibrating an environmental monitoring device |
US9445451B2 (en) | 2014-10-20 | 2016-09-13 | Leeo, Inc. | Communicating arbitrary attributes using a predefined characteristic |
US10782044B1 (en) | 2014-11-03 | 2020-09-22 | Alarm.Com Incorporated | Thermostat technology |
WO2016073489A1 (en) * | 2014-11-03 | 2016-05-12 | Gary Franklin Bart | Thermostat technology |
US10234163B1 (en) | 2014-11-03 | 2019-03-19 | Alarm.Com Incorporated | Thermostat technology |
US10802459B2 (en) | 2015-04-27 | 2020-10-13 | Ademco Inc. | Geo-fencing with advanced intelligent recovery |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
US10907844B2 (en) | 2015-05-04 | 2021-02-02 | Johnson Controls Technology Company | Multi-function home control system with control system hub and remote sensors |
US10627126B2 (en) | 2015-05-04 | 2020-04-21 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US10808958B2 (en) | 2015-05-04 | 2020-10-20 | Johnson Controls Technology Company | User control device with cantilevered display |
US10769735B2 (en) | 2015-09-11 | 2020-09-08 | Johnson Controls Technology Company | Thermostat with user interface features |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
US10510127B2 (en) | 2015-09-11 | 2019-12-17 | Johnson Controls Technology Company | Thermostat having network connected branding features |
US11080800B2 (en) | 2015-09-11 | 2021-08-03 | Johnson Controls Tyco IP Holdings LLP | Thermostat having network connected branding features |
US11087417B2 (en) | 2015-09-11 | 2021-08-10 | Johnson Controls Tyco IP Holdings LLP | Thermostat with bi-directional communications interface for monitoring HVAC equipment |
US10410300B2 (en) | 2015-09-11 | 2019-09-10 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
US10559045B2 (en) | 2015-09-11 | 2020-02-11 | Johnson Controls Technology Company | Thermostat with occupancy detection based on load of HVAC equipment |
US20180259215A1 (en) * | 2015-09-17 | 2018-09-13 | Carrier Corporation | Building air conditioning control system and control method thereof |
US10527309B2 (en) * | 2015-09-17 | 2020-01-07 | Carrier Corporation | Building air conditioning control system and control method thereof |
US10288308B2 (en) | 2015-10-12 | 2019-05-14 | Ikorongo Technology, LLC | Method and system for presenting comparative usage information at a thermostat device |
US10288309B2 (en) | 2015-10-12 | 2019-05-14 | Ikorongo Technology, LLC | Method and system for determining comparative usage information at a server device |
US9702582B2 (en) | 2015-10-12 | 2017-07-11 | Ikorongo Technology, LLC | Connected thermostat for controlling a climate system based on a desired usage profile in comparison to other connected thermostats controlling other climate systems |
US11054165B2 (en) | 2015-10-12 | 2021-07-06 | Ikorongo Technology, LLC | Multi zone, multi dwelling, multi user climate systems |
US10969131B2 (en) | 2015-10-28 | 2021-04-06 | Johnson Controls Technology Company | Sensor with halo light system |
US10310477B2 (en) | 2015-10-28 | 2019-06-04 | Johnson Controls Technology Company | Multi-function thermostat with occupant tracking features |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10162327B2 (en) | 2015-10-28 | 2018-12-25 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
US10805775B2 (en) | 2015-11-06 | 2020-10-13 | Jon Castor | Electronic-device detection and activity association |
US9801013B2 (en) | 2015-11-06 | 2017-10-24 | Leeo, Inc. | Electronic-device association based on location duration |
US10101050B2 (en) | 2015-12-09 | 2018-10-16 | Google Llc | Dispatch engine for optimizing demand-response thermostat events |
US10488062B2 (en) | 2016-07-22 | 2019-11-26 | Ademco Inc. | Geofence plus schedule for a building controller |
US11162698B2 (en) | 2017-04-14 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
WO2020068150A1 (en) * | 2018-09-27 | 2020-04-02 | Voysey Keith Stanley | System, apparatus and hybrid vav device with multiple heating coils |
US11859851B2 (en) | 2018-09-27 | 2024-01-02 | Albireo Energy, Llc | System, apparatus and hybrid VAV device with multiple heating coils |
US12033564B2 (en) | 2018-12-21 | 2024-07-09 | Johnson Controls Technology Company | Display device with halo |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
US11713895B2 (en) | 2019-01-14 | 2023-08-01 | Research Products Corporation | Multi-zone environmental control system |
US11761823B2 (en) * | 2020-08-28 | 2023-09-19 | Google Llc | Temperature sensor isolation in smart-home devices |
US11885838B2 (en) | 2020-08-28 | 2024-01-30 | Google Llc | Measuring dissipated electrical power on a power rail |
US11726507B2 (en) | 2020-08-28 | 2023-08-15 | Google Llc | Compensation for internal power dissipation in ambient room temperature estimation |
US20220065704A1 (en) * | 2020-08-28 | 2022-03-03 | Google Llc | Temperature sensor isolation in smart-home devices |
US11808467B2 (en) | 2022-01-19 | 2023-11-07 | Google Llc | Customized instantiation of provider-defined energy saving setpoint adjustments |
Also Published As
Publication number | Publication date |
---|---|
US7058477B1 (en) | 2006-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE40437E1 (en) | Thermostat system with remote data averaging | |
KR102435966B1 (en) | Method and apparatus for controlling temperature | |
EP2042816B1 (en) | Air conditioning system | |
JP6111499B2 (en) | Air conditioning system, indicating device | |
EP1932065B1 (en) | Arrangement of microsystems for comfort control | |
US20060097063A1 (en) | Modular HVAC control system | |
EP2985539B1 (en) | Air-conditioning system | |
US20090266904A1 (en) | Hvac system with energy saving modes set using a security system control panel | |
US20100250009A1 (en) | Control of conditioned environment by remote sensor | |
US20190309968A1 (en) | Thermal management system with thermographic sensing | |
CN109059222A (en) | Air conditioner and its control method, device and computer readable storage medium | |
US11969901B2 (en) | Security sentinel robot | |
JP3598769B2 (en) | Room-specific air-conditioning controller | |
US20240053044A1 (en) | Thermostat for conveying expected thermal responses to users | |
US10743523B1 (en) | Pet monitoring system | |
US10976066B2 (en) | Systems and methods for mitigating ice formation conditions in air conditioning systems | |
JP7126569B2 (en) | air conditioning control system | |
JP7456120B2 (en) | air conditioner | |
CN112113295A (en) | Heating, ventilation and air conditioning (HVAC) control system | |
JP2021063611A (en) | Air conditioning system | |
KR20200036978A (en) | Air conditioning control apparatus and method | |
JP6552711B2 (en) | Air conditioner and air conditioning system | |
JP7188106B2 (en) | air conditioner | |
JPH0783479A (en) | Air conditioner | |
CN109812929A (en) | Air handling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553) Year of fee payment: 12 |
|
AS | Assignment |
Owner name: IAED TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROSEN, HOWARD;REEL/FRAME:055449/0467 Effective date: 20210218 |
|
AS | Assignment |
Owner name: ROSEN TECHNOLOGIES LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IAED TECHNOLOGIES INC;REEL/FRAME:058779/0656 Effective date: 20211203 |
|
IPR | Aia trial proceeding filed before the patent and appeal board: inter partes review |
Free format text: TRIAL NO: IPR2023-01455 Opponent name: ECOBEE TECHNOLOGIES ULC, ECOBEE LTD., AND GENERAC HOLDINGS, INC. Effective date: 20230925 |