USH693H - PYX twister with superconducting confinement - Google Patents
PYX twister with superconducting confinement Download PDFInfo
- Publication number
- USH693H USH693H US07/316,374 US31637489A USH693H US H693 H USH693 H US H693H US 31637489 A US31637489 A US 31637489A US H693 H USH693 H US H693H
- Authority
- US
- United States
- Prior art keywords
- superconducting
- structures
- magnetic field
- hcfs
- flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241001589086 Bellapiscis medius Species 0.000 title description 10
- 230000005291 magnetic effect Effects 0.000 claims abstract description 30
- 230000004907 flux Effects 0.000 claims abstract description 16
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/02—Electrodes; Magnetic control means; Screens
- H01J23/08—Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
- H01J23/087—Magnetic focusing arrangements
Definitions
- the present invention relates to the utilization of permanent magnets to produce helically oriented magnetic fields which are particularly useful in high power broad-band radiation sources for microwave and millimeter-wave radars.
- Twister designed magnetic field generators have been provided by current carrying coils of very high amperage adapted to produce helically varying transverse magnetic fields of the magnetization desired.
- permanent magnets have been designed and arranged in certain specific ways to form structures which produce desirable helical or "twisted" fields obviating the need for commonly used current carrying coils with their attendant weight and space problems. These structures are based upon the hollow cylindrical flux source (HCFS) principle described by K. Halbach in "Proceedings of the Eighth International workshop on Rare Earth Cobolt Permanent Magnets", Univ. of Dayton, Dayton, Ohio, 1985 (pp. 123-136).
- a HCFS also referred to sometimes as a "magic ring”
- HCFS is essentially a cylindrical permanent magnet shell that produces an internal magnetic field which is relatively constant in magnitude.
- the field which is perpendicular to the axis of the cylinder, (transverse) possesses a strength which can be greater than the remanence of the magnetic material from which the ring is made.
- the HCFS is an infinitely long annular cylindrical shell with a circular cross section, which produces an intense magnetic field in its interior working space. No magnetic flux extends to the exterior of the ring structure (except at ends of a finite cylinder).
- a HCFS is not limited to the ideal cylindrical structure, but may be represented by octagonal, sixteen sided, thirty-two-sided, and even higher order polygonal-sided structures which approximate the ideal HCFS structure.
- a multiplicity of similarly magnetized octagonal hollow cylindrical flux source structures are arranged concentrically on an elongate axis with said holes defining an elongate axial passage extending through said structure, each octagonal structure rotated radially on the axial center line so as to displace its magnetization along a helical locus, thus giving the entire array the capacity to define a twisted or helically oriented magnetic field through the axially extending center passage.
- Superconducting sheets are interspersed between adjacent octagonal structures and also cover the end faces of the array.
- each octagonal structure confines the flux or magnetic filed to the interior of each structure, establish a uniform field in the interior, and isolate each structure from its nearest neighbors thereby preventing distortion of the field by neighbor-induced counterfields. Furthermore, high frequency may be maintained without the presence of a longitudinal magnetic field due to this isolation.
- FIG. 1 shows an actual magnet array comprising a series of octagonal HCFS structures with an angular displacement between successive structures
- FIG. 2 shows an abbreviated magnet array comprising a series of octagonal HCFS structures with an angular displacement between successive structures, further including interspersing superconducting sheets between successive segments.
- FIG. 1 shows a multiplicity of octagonal HCFS structures 10, each having a generally centrally disposed hole 11 arranged in longitudinal array with the respective holes 11 concentrically in registration, and with each respective structure 10 displaced radially a preselected amount from its adjacent structure so that the magnetic orientation of the respective segments as the field is defined longitudinally through the extended passage goes through a twisting locus from the proximal end towards and to the distal end.
- the net effect of the arrangement is the production of a helically varying or twisting magnetic field through the array of holes 11 and the array can be termed a "twister".
- this transverse magnetic field denoted by the arrow, 12 there exists a longitudinal component of magnetic field which results from the twisting, thereby weakening the transverse magnetic field.
- FIG. 2 displays a preferred embodiment of the invention wherein a multiplicity of octagonal HCFS structures 10, each having a generally centrally disclosed hole 11 arranged in longitudinal array with the respective holes 11 concentrically in registration, and with each respective structure 10 displaced radially a preselected amount from its adjacent segment, are separated by superconducting sheets 13.
- the sheets 13 as shown in the figure are at least peripherally coextensive with the HCFS structures and can extend beyond the flux source structures, 10, in one or more directions. It is necessary that they be not less in extent than the structures 10. This figure represents a close approximation of the ideal HCFS array (which is not feasible to construct).
- the superconducting sheets shown in the figure are typically quite thin. In practice, the essential requirement is that the sheets be thicker than the penetration depth of the specific superconducting material used. Materials such as tin, lead, niobium, tantalum among others are known to be superconducting below a distinct critical temperature. New ceramic-type materials have been recently developed in the field of superconductivity and are capable of achieving the superconducting state at critical temperatures above 77° K., the boiling point of liquid nitrogen. One such compound RBa 2 Cu 3 O 9-y (where R stands for a transition metal or rare earth ion and y is a number less than 9, preferable 2.1 ⁇ 0.05) has demonstrated superconductive properties above 90° K. Forming techniques include plasma spraying, sputtering, epitaxial film growing, etc. These materials and forming processes are merely exemplary and in no way limit the superconductivity material selected for the sheets, and the manner thereof in which the material is formed.
- a bore hole is drilled through each superconducting sheet 13 along the central axis of the array thereby providing a passage in the working central cavities of the HCFS array through which an electron beam can travel.
- the array can be termed a "pyx twister".
- a superconducting surface prevents the penetration of a magnetic field.
- the addition of the superconducting sheets confines outward flux leakage from each working cavity of the array preventing flux penetration from neighboring cavities and not permitting the bending of the field lines at the end faces which would have occurred without the addition of the sheets. In this manner, the effect of interference from adjacent segments is eliminated, leaving the field within each pyx cavity unaffected by its neighbors.
- Each cavity thereby acts separately as one extremely long cavity, producing an intense transverse magnetic field, the longitudinal component becoming essentially nil. Consequently, the field is made substantially uniform.
- octagonal HCFS structures are figuratively shown with interspersed superconducting sheets, rectangular shaped structures may also be employed in the present invention. More complex structures of HCFS design having cross sections of circles, sixteen sides, thirtytwo sides etc., may also be used in accordance with the present invention. Other components of the twister well known to those skilled in the art of design of such devices have been eliminated from the discussion. Also, greater or fewer magnetic pyxes may be desirable in any given application with no limit on the number of degrees of the angle of displacement nor the frequency of twist.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Permanent magnet structures are fabricated from a plurality of hollow cylrical flux sources, the sources displaced radially from each other progressively along the structures' elongate axes so as to produce a heliform magnetic field extending centrally in a passage through the structures. Superconducting plates are interspersed between adjacent flux sources and also cover the end faces of the array.
Description
The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalties thereon.
The present invention relates to the utilization of permanent magnets to produce helically oriented magnetic fields which are particularly useful in high power broad-band radiation sources for microwave and millimeter-wave radars.
Twister designed magnetic field generators have been provided by current carrying coils of very high amperage adapted to produce helically varying transverse magnetic fields of the magnetization desired. In recent developments, notably U.S. Pat. No. 4,764,773, incorporated herein by reference, permanent magnets have been designed and arranged in certain specific ways to form structures which produce desirable helical or "twisted" fields obviating the need for commonly used current carrying coils with their attendant weight and space problems. These structures are based upon the hollow cylindrical flux source (HCFS) principle described by K. Halbach in "Proceedings of the Eighth International workshop on Rare Earth Cobolt Permanent Magnets", Univ. of Dayton, Dayton, Ohio, 1985 (pp. 123-136). A HCFS, also referred to sometimes as a "magic ring", is essentially a cylindrical permanent magnet shell that produces an internal magnetic field which is relatively constant in magnitude. The field, which is perpendicular to the axis of the cylinder, (transverse) possesses a strength which can be greater than the remanence of the magnetic material from which the ring is made.
Ideally, the HCFS is an infinitely long annular cylindrical shell with a circular cross section, which produces an intense magnetic field in its interior working space. No magnetic flux extends to the exterior of the ring structure (except at ends of a finite cylinder). A HCFS is not limited to the ideal cylindrical structure, but may be represented by octagonal, sixteen sided, thirty-two-sided, and even higher order polygonal-sided structures which approximate the ideal HCFS structure.
In "twister" structures there also exists an undesirable longitudinal component of the magnetic field in combination with the transverse component, arising from the high helical motion, i.e. "frequency". As the frequency increases, the longitudinal component increases, weakening the transverse component. Therefore, it has been of increasing concern to produce stronger transverse magnetic fields in "twister" configurations.
It is therefore an object of this invention to provide a permanent magnet structure possessing a high transverse magnetic field strength with little or no longitudinal field strength.
It is a further object of this invention to provide a permanent magnet structure possessing a high transverse magnetic field at high operating frequency.
It is another object of this invention to provide a permanent magnet structure with minimal internal field distortion and minimal external flux leakage.
It is still another object of this invention to provide a permanent magnet structure with uniform interior magnetic flux.
The above and other objects are achieved in accordance with the present invention, which makes advantageous use of the HCFS twister structure uniquely combined with superconducting plates or sheets.
In an embodiment of the invention, a multiplicity of similarly magnetized octagonal hollow cylindrical flux source structures, each having a generally disposed hole therethrough, are arranged concentrically on an elongate axis with said holes defining an elongate axial passage extending through said structure, each octagonal structure rotated radially on the axial center line so as to displace its magnetization along a helical locus, thus giving the entire array the capacity to define a twisted or helically oriented magnetic field through the axially extending center passage. Superconducting sheets are interspersed between adjacent octagonal structures and also cover the end faces of the array. The superconducting sheets abutting the end faces of each octagonal structure confine the flux or magnetic filed to the interior of each structure, establish a uniform field in the interior, and isolate each structure from its nearest neighbors thereby preventing distortion of the field by neighbor-induced counterfields. Furthermore, high frequency may be maintained without the presence of a longitudinal magnetic field due to this isolation.
The objects, features, and details of the invention will become more readily apparent in light of the detailed description and disclosure in connection with the accompanying drawings wherein:
FIG. 1 shows an actual magnet array comprising a series of octagonal HCFS structures with an angular displacement between successive structures; and
FIG. 2 shows an abbreviated magnet array comprising a series of octagonal HCFS structures with an angular displacement between successive structures, further including interspersing superconducting sheets between successive segments.
FIG. 1 shows a multiplicity of octagonal HCFS structures 10, each having a generally centrally disposed hole 11 arranged in longitudinal array with the respective holes 11 concentrically in registration, and with each respective structure 10 displaced radially a preselected amount from its adjacent structure so that the magnetic orientation of the respective segments as the field is defined longitudinally through the extended passage goes through a twisting locus from the proximal end towards and to the distal end. The net effect of the arrangement is the production of a helically varying or twisting magnetic field through the array of holes 11 and the array can be termed a "twister". Along with this transverse magnetic field denoted by the arrow, 12, there exists a longitudinal component of magnetic field which results from the twisting, thereby weakening the transverse magnetic field.
FIG. 2 displays a preferred embodiment of the invention wherein a multiplicity of octagonal HCFS structures 10, each having a generally centrally disclosed hole 11 arranged in longitudinal array with the respective holes 11 concentrically in registration, and with each respective structure 10 displaced radially a preselected amount from its adjacent segment, are separated by superconducting sheets 13. The sheets 13 as shown in the figure are at least peripherally coextensive with the HCFS structures and can extend beyond the flux source structures, 10, in one or more directions. It is necessary that they be not less in extent than the structures 10. This figure represents a close approximation of the ideal HCFS array (which is not feasible to construct).
The superconducting sheets shown in the figure are typically quite thin. In practice, the essential requirement is that the sheets be thicker than the penetration depth of the specific superconducting material used. Materials such as tin, lead, niobium, tantalum among others are known to be superconducting below a distinct critical temperature. New ceramic-type materials have been recently developed in the field of superconductivity and are capable of achieving the superconducting state at critical temperatures above 77° K., the boiling point of liquid nitrogen. One such compound RBa2 Cu3 O9-y (where R stands for a transition metal or rare earth ion and y is a number less than 9, preferable 2.1±0.05) has demonstrated superconductive properties above 90° K. Forming techniques include plasma spraying, sputtering, epitaxial film growing, etc. These materials and forming processes are merely exemplary and in no way limit the superconductivity material selected for the sheets, and the manner thereof in which the material is formed.
A bore hole is drilled through each superconducting sheet 13 along the central axis of the array thereby providing a passage in the working central cavities of the HCFS array through which an electron beam can travel. The array can be termed a "pyx twister".
In prior art twisters, the magnetic field was weakened by distortion. Distortion was caused by (1) the bending of the field lines of the end faces of open HCFS, and (2) interference with incoming flux leaking from neighboring open segments. The longitudinal component of magnetic field present due to the twisting effect, further increased with increasing frequency. By interspersing superconducting sheets between successive HCFS structures, the longitudinal magnetic field was prevented and distortion problems were overcome.
A superconducting surface prevents the penetration of a magnetic field. The addition of the superconducting sheets confines outward flux leakage from each working cavity of the array preventing flux penetration from neighboring cavities and not permitting the bending of the field lines at the end faces which would have occurred without the addition of the sheets. In this manner, the effect of interference from adjacent segments is eliminated, leaving the field within each pyx cavity unaffected by its neighbors. Each cavity thereby acts separately as one extremely long cavity, producing an intense transverse magnetic field, the longitudinal component becoming essentially nil. Consequently, the field is made substantially uniform.
Alternately, one may comprehend this effect through the concept of diamagnetic mirrors. The superconducting sheets 13 magnetically mirror the field abutting the surfaces of the sheets, thereby providing the appearance of an infinitely long cavity in both directions of each HCFS structure. Theoretically, a HCFS is infinitely long having uniform field strength. In essence, this invention magnetically creates a theoretical HCFS twister with uniform field strength through the utilization of superconducting plates.
Although octagonal HCFS structures are figuratively shown with interspersed superconducting sheets, rectangular shaped structures may also be employed in the present invention. More complex structures of HCFS design having cross sections of circles, sixteen sides, thirtytwo sides etc., may also be used in accordance with the present invention. Other components of the twister well known to those skilled in the art of design of such devices have been eliminated from the discussion. Also, greater or fewer magnetic pyxes may be desirable in any given application with no limit on the number of degrees of the angle of displacement nor the frequency of twist.
Claims (3)
1. A magnetic structure comprising a plurality of hollow substantially cylindrical flux sources, each having a generally centrally disposed hole therethrough, arranged concentrically on an elongate axis with said holes in substantial registration along said axis to define an elongate axial passage extending through said structure; each respective hollow substantially cylindrical flux source displaced radially on said elongate axis from its respective adjacent source so as to produce a helically oriented magnetic field; and superconducting sheets interspersed between adjacent flux sources and also covering the end faces of the array.
2. A magnetic structure as defined in claim 1 wherein each superconducting sheet has an axial disposed hole to permit passage of an electron beam through the entire structure.
3. A magnetic structure defined in claim 2 wherein the superconducting sheets are at least peripherally coextensive with the flux sources.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/316,374 USH693H (en) | 1989-02-24 | 1989-02-24 | PYX twister with superconducting confinement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/316,374 USH693H (en) | 1989-02-24 | 1989-02-24 | PYX twister with superconducting confinement |
Publications (1)
Publication Number | Publication Date |
---|---|
USH693H true USH693H (en) | 1989-10-03 |
Family
ID=23228783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/316,374 Abandoned USH693H (en) | 1989-02-24 | 1989-02-24 | PYX twister with superconducting confinement |
Country Status (1)
Country | Link |
---|---|
US (1) | USH693H (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280209A (en) * | 1989-11-14 | 1994-01-18 | The United States Of America As Represented By The Secretary Of The Army | Permanent magnet structure for use in electric machinery |
US5307068A (en) * | 1990-06-01 | 1994-04-26 | Thomson-Csf | Tunable high-frequency devices |
US5519373A (en) * | 1993-12-28 | 1996-05-21 | Shin-Etsu Chemical Co., Ltd. | Dipole ring magnet for use in magnetron sputtering or magnetron etching |
US20050162250A1 (en) * | 2004-01-22 | 2005-07-28 | Shin-Etsu Chemical Co., Ltd. | Permanent magnet type magnetic field generating apparatus |
US20080078184A1 (en) * | 2006-09-28 | 2008-04-03 | Kabushiki Kaisha Toshiba | Magnetic refrigerating device and magnetic refrigerating method |
US20080236171A1 (en) * | 2006-09-28 | 2008-10-02 | Kabushiki Kaisha Toshiba | Magnetic refrigerating device and magnetic refrigerating method |
US20110315867A1 (en) * | 2010-03-29 | 2011-12-29 | Glenn Lane | Spatial segregation of plasma components |
US20120092103A1 (en) * | 2010-09-27 | 2012-04-19 | Roberts Mark D | System and method for producing stacked field emission structures |
US8638016B2 (en) | 2010-09-17 | 2014-01-28 | Correlated Magnetics Research, Llc | Electromagnetic structure having a core element that extends magnetic coupling around opposing surfaces of a circular magnetic structure |
US8643454B2 (en) | 2008-04-04 | 2014-02-04 | Correlated Magnetics Research, Llc | Field emission system and method |
US8698583B2 (en) | 2008-04-04 | 2014-04-15 | Correlated Magnetics Research, Llc | Magnetic attachment system |
US8702437B2 (en) | 2011-03-24 | 2014-04-22 | Correlated Magnetics Research, Llc | Electrical adapter system |
US8704626B2 (en) | 2010-05-10 | 2014-04-22 | Correlated Magnetics Research, Llc | System and method for moving an object |
US8717131B2 (en) | 2008-04-04 | 2014-05-06 | Correlated Magnetics Research | Panel system for covering a glass or plastic surface |
US8848973B2 (en) | 2011-09-22 | 2014-09-30 | Correlated Magnetics Research LLC | System and method for authenticating an optical pattern |
US8872608B2 (en) | 2008-04-04 | 2014-10-28 | Correlated Magnetics Reserach LLC | Magnetic structures and methods for defining magnetic structures using one-dimensional codes |
US8917154B2 (en) | 2012-12-10 | 2014-12-23 | Correlated Magnetics Research, Llc. | System for concentrating magnetic flux |
US8937521B2 (en) | 2012-12-10 | 2015-01-20 | Correlated Magnetics Research, Llc. | System for concentrating magnetic flux of a multi-pole magnetic structure |
US8957751B2 (en) | 2010-12-10 | 2015-02-17 | Correlated Magnetics Research LLC | System and method for affecting flux of multi-pole magnetic structures |
US8963380B2 (en) | 2011-07-11 | 2015-02-24 | Correlated Magnetics Research LLC. | System and method for power generation system |
US9105380B2 (en) | 2008-04-04 | 2015-08-11 | Correlated Magnetics Research, Llc. | Magnetic attachment system |
US9202615B2 (en) | 2012-02-28 | 2015-12-01 | Correlated Magnetics Research, Llc | System for detaching a magnetic structure from a ferromagnetic material |
US9202616B2 (en) | 2009-06-02 | 2015-12-01 | Correlated Magnetics Research, Llc | Intelligent magnetic system |
US9219403B2 (en) | 2011-09-06 | 2015-12-22 | Correlated Magnetics Research, Llc | Magnetic shear force transfer device |
US9330825B2 (en) | 2011-04-12 | 2016-05-03 | Mohammad Sarai | Magnetic configurations |
US9401260B2 (en) | 2013-03-15 | 2016-07-26 | Glenn Lane Family Limited Liability Limited Partnership | Adjustable mass resolving aperture |
-
1989
- 1989-02-24 US US07/316,374 patent/USH693H/en not_active Abandoned
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280209A (en) * | 1989-11-14 | 1994-01-18 | The United States Of America As Represented By The Secretary Of The Army | Permanent magnet structure for use in electric machinery |
US5307068A (en) * | 1990-06-01 | 1994-04-26 | Thomson-Csf | Tunable high-frequency devices |
US5519373A (en) * | 1993-12-28 | 1996-05-21 | Shin-Etsu Chemical Co., Ltd. | Dipole ring magnet for use in magnetron sputtering or magnetron etching |
US7760059B2 (en) * | 2004-01-22 | 2010-07-20 | Shin-Etsu Chemical Co., Ltd. | Permanent magnet type magnetic field generating apparatus |
US20050162250A1 (en) * | 2004-01-22 | 2005-07-28 | Shin-Etsu Chemical Co., Ltd. | Permanent magnet type magnetic field generating apparatus |
US8099964B2 (en) * | 2006-09-28 | 2012-01-24 | Kabushiki Kaisha Toshiba | Magnetic refrigerating device and magnetic refrigerating method |
US20080236171A1 (en) * | 2006-09-28 | 2008-10-02 | Kabushiki Kaisha Toshiba | Magnetic refrigerating device and magnetic refrigerating method |
US20080078184A1 (en) * | 2006-09-28 | 2008-04-03 | Kabushiki Kaisha Toshiba | Magnetic refrigerating device and magnetic refrigerating method |
US8872608B2 (en) | 2008-04-04 | 2014-10-28 | Correlated Magnetics Reserach LLC | Magnetic structures and methods for defining magnetic structures using one-dimensional codes |
US8760252B2 (en) | 2008-04-04 | 2014-06-24 | Correlated Magnetics Research, Llc | Field emission system and method |
US8857044B2 (en) | 2008-04-04 | 2014-10-14 | Correlated Magnetics Research LLC | System for manufacturing a field emission structure |
US9105380B2 (en) | 2008-04-04 | 2015-08-11 | Correlated Magnetics Research, Llc. | Magnetic attachment system |
US8844121B2 (en) | 2008-04-04 | 2014-09-30 | Correlated Magnetics Research LLC | System and method for manufacturing a field emission structure |
US8643454B2 (en) | 2008-04-04 | 2014-02-04 | Correlated Magnetics Research, Llc | Field emission system and method |
US8698583B2 (en) | 2008-04-04 | 2014-04-15 | Correlated Magnetics Research, Llc | Magnetic attachment system |
US8779877B2 (en) | 2008-04-04 | 2014-07-15 | Correlated Magnetics Research, Llc | Magnetic attachment system |
US8717131B2 (en) | 2008-04-04 | 2014-05-06 | Correlated Magnetics Research | Panel system for covering a glass or plastic surface |
US9202616B2 (en) | 2009-06-02 | 2015-12-01 | Correlated Magnetics Research, Llc | Intelligent magnetic system |
US8754383B2 (en) * | 2010-03-29 | 2014-06-17 | Glenn Lane Family Limited Liability Limited Partnership | Spatial segregation of plasma components |
US8916834B2 (en) | 2010-03-29 | 2014-12-23 | Glenn Lane Family Limited Liability Limited Partnership | Spatial segregation of plasma components |
US20130146782A1 (en) * | 2010-03-29 | 2013-06-13 | Glenn E. Lane | Spatial Segregation of Plasma Components |
US8368033B2 (en) * | 2010-03-29 | 2013-02-05 | Glenn Lane | Spatial segregation of plasma components |
US20110315867A1 (en) * | 2010-03-29 | 2011-12-29 | Glenn Lane | Spatial segregation of plasma components |
US8704626B2 (en) | 2010-05-10 | 2014-04-22 | Correlated Magnetics Research, Llc | System and method for moving an object |
US9111673B2 (en) | 2010-05-10 | 2015-08-18 | Correlated Magnetics Research, Llc. | System and method for moving an object |
US8638016B2 (en) | 2010-09-17 | 2014-01-28 | Correlated Magnetics Research, Llc | Electromagnetic structure having a core element that extends magnetic coupling around opposing surfaces of a circular magnetic structure |
US8760251B2 (en) * | 2010-09-27 | 2014-06-24 | Correlated Magnetics Research, Llc | System and method for producing stacked field emission structures |
US20120092103A1 (en) * | 2010-09-27 | 2012-04-19 | Roberts Mark D | System and method for producing stacked field emission structures |
US8957751B2 (en) | 2010-12-10 | 2015-02-17 | Correlated Magnetics Research LLC | System and method for affecting flux of multi-pole magnetic structures |
US8702437B2 (en) | 2011-03-24 | 2014-04-22 | Correlated Magnetics Research, Llc | Electrical adapter system |
US9312634B2 (en) | 2011-03-24 | 2016-04-12 | Correlated Magnetics Research LLC | Electrical adapter system |
US9330825B2 (en) | 2011-04-12 | 2016-05-03 | Mohammad Sarai | Magnetic configurations |
US8963380B2 (en) | 2011-07-11 | 2015-02-24 | Correlated Magnetics Research LLC. | System and method for power generation system |
US9219403B2 (en) | 2011-09-06 | 2015-12-22 | Correlated Magnetics Research, Llc | Magnetic shear force transfer device |
US8848973B2 (en) | 2011-09-22 | 2014-09-30 | Correlated Magnetics Research LLC | System and method for authenticating an optical pattern |
US9202615B2 (en) | 2012-02-28 | 2015-12-01 | Correlated Magnetics Research, Llc | System for detaching a magnetic structure from a ferromagnetic material |
US8917154B2 (en) | 2012-12-10 | 2014-12-23 | Correlated Magnetics Research, Llc. | System for concentrating magnetic flux |
US8937521B2 (en) | 2012-12-10 | 2015-01-20 | Correlated Magnetics Research, Llc. | System for concentrating magnetic flux of a multi-pole magnetic structure |
US9401260B2 (en) | 2013-03-15 | 2016-07-26 | Glenn Lane Family Limited Liability Limited Partnership | Adjustable mass resolving aperture |
US9496120B2 (en) | 2013-03-15 | 2016-11-15 | Glenn Lane Family Limited Liability Limited Partnership | Adjustable mass resolving aperture |
US10083815B2 (en) | 2013-03-15 | 2018-09-25 | Glenn Lane Family Limited Liability Limited Partnership | Adjustable mass resolving aperture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USH693H (en) | PYX twister with superconducting confinement | |
US4893103A (en) | Superconducting PYX structures | |
US4654618A (en) | Confinement of kOe magnetic fields to very small areas in miniature devices | |
US5148138A (en) | Cylindrical magnet apparatus suitable for nmr imaging | |
US4837542A (en) | Hollow substantially hemispherical permanent magnet high-field flux source for producing a uniform high field | |
US4994778A (en) | Adjustable twister | |
US4658228A (en) | Confinement of longitudinal, axially symmetric, magnetic fields to annular regions with permanent magnets | |
EP1269020B1 (en) | Plasma accelerator arrangement | |
EP0111218B1 (en) | Electromagnet for nmr tomography | |
US4359706A (en) | Magnet pole pieces and pole piece extensions and shields | |
US4647887A (en) | Lightweight cladding for magnetic circuits | |
US4701737A (en) | Leakage-free, linearly varying axial permanent magnet field source | |
EP1738376B1 (en) | Supraconductive cable and method for the production thereof | |
US5034715A (en) | Permanent magnet field sources of conical orientation | |
Leupold et al. | Applications of yokeless flux confinement | |
US4859976A (en) | Periodic permanent magnet structures | |
US4829276A (en) | Optimal periodic permanent magnet structure for electron beam focusing tubes | |
US4835137A (en) | Periodic permanent magnet structures | |
US4831351A (en) | Periodic permanent magnet structures | |
US4859973A (en) | Superconducting shielded PYX PPM stacks | |
USH591H (en) | Method of manufacturing of a magic ring | |
US5099217A (en) | Constant gap cladded twister | |
EP3397032B1 (en) | Acceleration cavity and accelerator | |
US4887058A (en) | Periodic permanent magnet structures | |
US5126713A (en) | Hemispherical cladding for permanent magnet solenoids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |