US9758814B2 - Assays for single molecule detection and use thereof - Google Patents
Assays for single molecule detection and use thereof Download PDFInfo
- Publication number
- US9758814B2 US9758814B2 US14/949,097 US201514949097A US9758814B2 US 9758814 B2 US9758814 B2 US 9758814B2 US 201514949097 A US201514949097 A US 201514949097A US 9758814 B2 US9758814 B2 US 9758814B2
- Authority
- US
- United States
- Prior art keywords
- probe
- labels
- allele
- labeling
- amplified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003556 assay Methods 0.000 title description 58
- 238000004557 single molecule detection Methods 0.000 title 1
- 239000000523 sample Substances 0.000 claims abstract description 1760
- 238000000034 method Methods 0.000 claims abstract description 280
- 230000002068 genetic effect Effects 0.000 claims abstract description 111
- 108700028369 Alleles Proteins 0.000 claims description 318
- 125000003729 nucleotide group Chemical group 0.000 claims description 307
- 239000002773 nucleotide Substances 0.000 claims description 304
- 238000002372 labelling Methods 0.000 claims description 184
- 239000000758 substrate Substances 0.000 claims description 164
- 150000007523 nucleic acids Chemical class 0.000 claims description 134
- 102000039446 nucleic acids Human genes 0.000 claims description 126
- 108020004707 nucleic acids Proteins 0.000 claims description 126
- 108020004414 DNA Proteins 0.000 claims description 79
- 230000008774 maternal effect Effects 0.000 claims description 66
- 206010028980 Neoplasm Diseases 0.000 claims description 64
- 230000002441 reversible effect Effects 0.000 claims description 62
- 230000003100 immobilizing effect Effects 0.000 claims description 61
- 230000027455 binding Effects 0.000 claims description 56
- 230000001605 fetal effect Effects 0.000 claims description 55
- 230000003287 optical effect Effects 0.000 claims description 49
- 230000008775 paternal effect Effects 0.000 claims description 41
- 108091034117 Oligonucleotide Proteins 0.000 claims description 35
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 30
- 210000003754 fetus Anatomy 0.000 claims description 26
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 22
- 108060002716 Exonuclease Proteins 0.000 claims description 21
- 102000013165 exonuclease Human genes 0.000 claims description 21
- 210000004369 blood Anatomy 0.000 claims description 19
- 239000008280 blood Substances 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 15
- 208000036878 aneuploidy Diseases 0.000 claims description 15
- 231100001075 aneuploidy Toxicity 0.000 claims description 15
- 201000011510 cancer Diseases 0.000 claims description 15
- 230000005945 translocation Effects 0.000 claims description 12
- 230000029087 digestion Effects 0.000 claims description 11
- 230000035772 mutation Effects 0.000 claims description 11
- 201000010374 Down Syndrome Diseases 0.000 claims description 10
- 206010044688 Trisomy 21 Diseases 0.000 claims description 10
- 238000012163 sequencing technique Methods 0.000 claims description 9
- 238000005304 joining Methods 0.000 claims description 8
- 238000012217 deletion Methods 0.000 claims description 7
- 230000037430 deletion Effects 0.000 claims description 7
- 239000007850 fluorescent dye Substances 0.000 claims description 5
- 201000006360 Edwards syndrome Diseases 0.000 claims description 4
- 201000009928 Patau syndrome Diseases 0.000 claims description 4
- 206010044686 Trisomy 13 Diseases 0.000 claims description 4
- 208000006284 Trisomy 13 Syndrome Diseases 0.000 claims description 4
- 208000007159 Trisomy 18 Syndrome Diseases 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 210000002381 plasma Anatomy 0.000 claims description 4
- 210000002966 serum Anatomy 0.000 claims description 4
- 238000006467 substitution reaction Methods 0.000 claims description 4
- 206010053884 trisomy 18 Diseases 0.000 claims description 4
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 claims description 3
- 206010070863 Toxicity to various agents Diseases 0.000 claims description 3
- 206010052779 Transplant rejections Diseases 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 210000003296 saliva Anatomy 0.000 claims description 3
- 210000003608 fece Anatomy 0.000 claims description 2
- 210000004243 sweat Anatomy 0.000 claims description 2
- 210000001138 tear Anatomy 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 claims 6
- 239000002751 oligonucleotide probe Substances 0.000 claims 6
- 208000037819 metastatic cancer Diseases 0.000 claims 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 claims 1
- 238000010791 quenching Methods 0.000 claims 1
- 230000000171 quenching effect Effects 0.000 claims 1
- 230000007614 genetic variation Effects 0.000 abstract description 83
- 239000000047 product Substances 0.000 description 296
- 238000009396 hybridization Methods 0.000 description 124
- 239000013615 primer Substances 0.000 description 70
- 210000000349 chromosome Anatomy 0.000 description 49
- 238000002493 microarray Methods 0.000 description 44
- 238000012986 modification Methods 0.000 description 42
- 230000004048 modification Effects 0.000 description 42
- 239000000203 mixture Substances 0.000 description 39
- 210000004027 cell Anatomy 0.000 description 36
- 238000003384 imaging method Methods 0.000 description 35
- 230000003321 amplification Effects 0.000 description 32
- 238000003199 nucleic acid amplification method Methods 0.000 description 32
- 108090000623 proteins and genes Proteins 0.000 description 32
- 230000000295 complement effect Effects 0.000 description 31
- 238000012360 testing method Methods 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000002955 isolation Methods 0.000 description 29
- 239000011324 bead Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 25
- 230000037452 priming Effects 0.000 description 24
- 108091006146 Channels Proteins 0.000 description 23
- 102000004190 Enzymes Human genes 0.000 description 23
- 108090000790 Enzymes Proteins 0.000 description 23
- 102000040430 polynucleotide Human genes 0.000 description 23
- 108091033319 polynucleotide Proteins 0.000 description 23
- 239000002157 polynucleotide Substances 0.000 description 23
- 238000001514 detection method Methods 0.000 description 22
- 210000000056 organ Anatomy 0.000 description 22
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 21
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 21
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 239000000975 dye Substances 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 19
- 238000013461 design Methods 0.000 description 18
- 102000003960 Ligases Human genes 0.000 description 17
- 108090000364 Ligases Proteins 0.000 description 17
- 239000002585 base Substances 0.000 description 17
- 230000003595 spectral effect Effects 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- 239000011534 wash buffer Substances 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 230000005284 excitation Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 101100495925 Schizosaccharomyces pombe (strain 972 / ATCC 24843) chr3 gene Proteins 0.000 description 11
- 238000007834 ligase chain reaction Methods 0.000 description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 9
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000004061 bleaching Methods 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 238000012408 PCR amplification Methods 0.000 description 8
- 238000003908 quality control method Methods 0.000 description 8
- 238000011002 quantification Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000004397 blinking Effects 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 7
- 239000000356 contaminant Substances 0.000 description 7
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 7
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- -1 surface matter Substances 0.000 description 7
- 206010006187 Breast cancer Diseases 0.000 description 6
- 208000026310 Breast neoplasm Diseases 0.000 description 6
- 206010056740 Genital discharge Diseases 0.000 description 6
- 239000012148 binding buffer Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 102100029239 Histone-lysine N-methyltransferase, H3 lysine-36 specific Human genes 0.000 description 5
- 101000634050 Homo sapiens Histone-lysine N-methyltransferase, H3 lysine-36 specific Proteins 0.000 description 5
- 206010027476 Metastases Diseases 0.000 description 5
- 208000037280 Trisomy Diseases 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 235000020958 biotin Nutrition 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 230000001268 conjugating effect Effects 0.000 description 5
- 230000001351 cycling effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 230000009401 metastasis Effects 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 101150054472 HER2 gene Proteins 0.000 description 4
- 101000779418 Homo sapiens RAC-alpha serine/threonine-protein kinase Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 4
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 4
- 108700020302 erbB-2 Genes Proteins 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 3
- 102100034580 AT-rich interactive domain-containing protein 1A Human genes 0.000 description 3
- 239000012114 Alexa Fluor 647 Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 3
- 108700020463 BRCA1 Proteins 0.000 description 3
- 101150072950 BRCA1 gene Proteins 0.000 description 3
- 102100025401 Breast cancer type 1 susceptibility protein Human genes 0.000 description 3
- 108010058546 Cyclin D1 Proteins 0.000 description 3
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 3
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 3
- 102000000577 Cyclin-Dependent Kinase Inhibitor p27 Human genes 0.000 description 3
- 108010016777 Cyclin-Dependent Kinase Inhibitor p27 Proteins 0.000 description 3
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 3
- 238000000018 DNA microarray Methods 0.000 description 3
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 description 3
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 description 3
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 3
- 206010071602 Genetic polymorphism Diseases 0.000 description 3
- 102100032804 Histone-lysine N-methyltransferase SMYD3 Human genes 0.000 description 3
- 101000924266 Homo sapiens AT-rich interactive domain-containing protein 1A Proteins 0.000 description 3
- 101000708574 Homo sapiens Histone-lysine N-methyltransferase SMYD3 Proteins 0.000 description 3
- 101000692946 Homo sapiens PHD finger protein 3 Proteins 0.000 description 3
- 101000824318 Homo sapiens Protocadherin Fat 1 Proteins 0.000 description 3
- 101000628562 Homo sapiens Serine/threonine-protein kinase STK11 Proteins 0.000 description 3
- 101000782132 Homo sapiens Zinc finger protein 217 Proteins 0.000 description 3
- 102100025725 Mothers against decapentaplegic homolog 4 Human genes 0.000 description 3
- 101710143112 Mothers against decapentaplegic homolog 4 Proteins 0.000 description 3
- 102100026391 PHD finger protein 3 Human genes 0.000 description 3
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 3
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 3
- 102100022095 Protocadherin Fat 1 Human genes 0.000 description 3
- 102100026715 Serine/threonine-protein kinase STK11 Human genes 0.000 description 3
- 108091027967 Small hairpin RNA Proteins 0.000 description 3
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 3
- 108010036639 WW Domain-Containing Oxidoreductase Proteins 0.000 description 3
- 102000012163 WW Domain-Containing Oxidoreductase Human genes 0.000 description 3
- 210000002593 Y chromosome Anatomy 0.000 description 3
- 102100036595 Zinc finger protein 217 Human genes 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000005546 dideoxynucleotide Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000007515 enzymatic degradation Effects 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000003709 image segmentation Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000013610 patient sample Substances 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102100028323 ADP-ribose glycohydrolase MACROD2 Human genes 0.000 description 2
- 102100027153 Ankyrin repeat and sterile alpha motif domain-containing protein 1B Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 2
- 101150008012 Bcl2l1 gene Proteins 0.000 description 2
- 102100037674 Bis(5'-adenosyl)-triphosphatase Human genes 0.000 description 2
- 102100040750 CUB and sushi domain-containing protein 1 Human genes 0.000 description 2
- 102100026681 Chromobox protein homolog 8 Human genes 0.000 description 2
- 102100038165 Chromodomain-helicase-DNA-binding protein 8 Human genes 0.000 description 2
- 102100024340 Contactin-4 Human genes 0.000 description 2
- 108010025468 Cyclin-Dependent Kinase 6 Proteins 0.000 description 2
- 102100026804 Cyclin-dependent kinase 6 Human genes 0.000 description 2
- 102100027475 Cytochrome c oxidase assembly protein COX18, mitochondrial Human genes 0.000 description 2
- 102100032406 Cytosolic carboxypeptidase 6 Human genes 0.000 description 2
- 102100022768 D-beta-hydroxybutyrate dehydrogenase, mitochondrial Human genes 0.000 description 2
- 102100033934 DNA repair protein RAD51 homolog 2 Human genes 0.000 description 2
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 2
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 2
- 102100021579 Enhancer of filamentation 1 Human genes 0.000 description 2
- 102100035129 Forkhead box protein K2 Human genes 0.000 description 2
- 102100037858 G1/S-specific cyclin-E1 Human genes 0.000 description 2
- 102100033070 Histone acetyltransferase KAT6B Human genes 0.000 description 2
- 102100027755 Histone-lysine N-methyltransferase 2C Human genes 0.000 description 2
- 102100029235 Histone-lysine N-methyltransferase NSD3 Human genes 0.000 description 2
- 102100027893 Homeobox protein Nkx-2.1 Human genes 0.000 description 2
- 101000578915 Homo sapiens ADP-ribose glycohydrolase MACROD2 Proteins 0.000 description 2
- 101000694607 Homo sapiens Ankyrin repeat and sterile alpha motif domain-containing protein 1B Proteins 0.000 description 2
- 101000892017 Homo sapiens CUB and sushi domain-containing protein 1 Proteins 0.000 description 2
- 101000910841 Homo sapiens Chromobox protein homolog 8 Proteins 0.000 description 2
- 101000883545 Homo sapiens Chromodomain-helicase-DNA-binding protein 8 Proteins 0.000 description 2
- 101000909504 Homo sapiens Contactin-4 Proteins 0.000 description 2
- 101000725462 Homo sapiens Cytochrome c oxidase assembly protein COX18, mitochondrial Proteins 0.000 description 2
- 101000868785 Homo sapiens Cytosolic carboxypeptidase 6 Proteins 0.000 description 2
- 101000903373 Homo sapiens D-beta-hydroxybutyrate dehydrogenase, mitochondrial Proteins 0.000 description 2
- 101000898310 Homo sapiens Enhancer of filamentation 1 Proteins 0.000 description 2
- 101001023393 Homo sapiens Forkhead box protein K2 Proteins 0.000 description 2
- 101000738568 Homo sapiens G1/S-specific cyclin-E1 Proteins 0.000 description 2
- 101000944174 Homo sapiens Histone acetyltransferase KAT6B Proteins 0.000 description 2
- 101001008892 Homo sapiens Histone-lysine N-methyltransferase 2C Proteins 0.000 description 2
- 101000634046 Homo sapiens Histone-lysine N-methyltransferase NSD3 Proteins 0.000 description 2
- 101000632178 Homo sapiens Homeobox protein Nkx-2.1 Proteins 0.000 description 2
- 101001056180 Homo sapiens Induced myeloid leukemia cell differentiation protein Mcl-1 Proteins 0.000 description 2
- 101001034652 Homo sapiens Insulin-like growth factor 1 receptor Proteins 0.000 description 2
- 101001033770 Homo sapiens Integrator complex subunit 4 Proteins 0.000 description 2
- 101000984620 Homo sapiens Low-density lipoprotein receptor-related protein 1B Proteins 0.000 description 2
- 101000613958 Homo sapiens Lysine-specific demethylase 2A Proteins 0.000 description 2
- 101001088892 Homo sapiens Lysine-specific demethylase 5A Proteins 0.000 description 2
- 101001115417 Homo sapiens M-phase phosphoprotein 8 Proteins 0.000 description 2
- 101000960626 Homo sapiens Mitochondrial inner membrane protease subunit 2 Proteins 0.000 description 2
- 101000973623 Homo sapiens Neuronal growth regulator 1 Proteins 0.000 description 2
- 101000934489 Homo sapiens Nucleosome-remodeling factor subunit BPTF Proteins 0.000 description 2
- 101001071242 Homo sapiens PHD finger protein 12 Proteins 0.000 description 2
- 101000601664 Homo sapiens Paired box protein Pax-8 Proteins 0.000 description 2
- 101000738776 Homo sapiens Pituitary tumor-transforming gene 1 protein-interacting protein Proteins 0.000 description 2
- 101001126417 Homo sapiens Platelet-derived growth factor receptor alpha Proteins 0.000 description 2
- 101000585703 Homo sapiens Protein L-Myc Proteins 0.000 description 2
- 101000665449 Homo sapiens RNA binding protein fox-1 homolog 1 Proteins 0.000 description 2
- 101000606537 Homo sapiens Receptor-type tyrosine-protein phosphatase delta Proteins 0.000 description 2
- 101000868088 Homo sapiens Serine-rich coiled-coil domain-containing protein 1 Proteins 0.000 description 2
- 101000802948 Homo sapiens Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform Proteins 0.000 description 2
- 101000904150 Homo sapiens Transcription factor E2F3 Proteins 0.000 description 2
- 101000652324 Homo sapiens Transcription factor SOX-17 Proteins 0.000 description 2
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 2
- 101000625825 Homo sapiens Tubulin delta chain Proteins 0.000 description 2
- 101000915470 Homo sapiens Zinc finger MYND domain-containing protein 11 Proteins 0.000 description 2
- 101000976579 Homo sapiens Zinc finger protein 132 Proteins 0.000 description 2
- 101000599037 Homo sapiens Zinc finger protein Helios Proteins 0.000 description 2
- 101000988419 Homo sapiens cAMP-specific 3',5'-cyclic phosphodiesterase 4D Proteins 0.000 description 2
- 101001046426 Homo sapiens cGMP-dependent protein kinase 1 Proteins 0.000 description 2
- 102100026539 Induced myeloid leukemia cell differentiation protein Mcl-1 Human genes 0.000 description 2
- 108090000191 Inhibitor of growth protein 1 Proteins 0.000 description 2
- 102000003781 Inhibitor of growth protein 1 Human genes 0.000 description 2
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 2
- 102100039134 Integrator complex subunit 4 Human genes 0.000 description 2
- 102100027121 Low-density lipoprotein receptor-related protein 1B Human genes 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 102100040598 Lysine-specific demethylase 2A Human genes 0.000 description 2
- 102100033246 Lysine-specific demethylase 5A Human genes 0.000 description 2
- 102100023268 M-phase phosphoprotein 8 Human genes 0.000 description 2
- 102000017274 MDM4 Human genes 0.000 description 2
- 108050005300 MDM4 Proteins 0.000 description 2
- 108700012912 MYCN Proteins 0.000 description 2
- 101150022024 MYCN gene Proteins 0.000 description 2
- 102100039840 Mitochondrial inner membrane protease subunit 2 Human genes 0.000 description 2
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 2
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 2
- 108010071382 NF-E2-Related Factor 2 Proteins 0.000 description 2
- 102100022223 Neuronal growth regulator 1 Human genes 0.000 description 2
- 102100031701 Nuclear factor erythroid 2-related factor 2 Human genes 0.000 description 2
- 102100025062 Nucleosome-remodeling factor subunit BPTF Human genes 0.000 description 2
- 102100036868 PHD finger protein 12 Human genes 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102100024894 PR domain zinc finger protein 1 Human genes 0.000 description 2
- 102100037502 Paired box protein Pax-8 Human genes 0.000 description 2
- 102100037419 Pituitary tumor-transforming gene 1 protein-interacting protein Human genes 0.000 description 2
- 102100030485 Platelet-derived growth factor receptor alpha Human genes 0.000 description 2
- 108010009975 Positive Regulatory Domain I-Binding Factor 1 Proteins 0.000 description 2
- 102100030128 Protein L-Myc Human genes 0.000 description 2
- 101710018890 RAD51B Proteins 0.000 description 2
- 102100038188 RNA binding protein fox-1 homolog 1 Human genes 0.000 description 2
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 2
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 2
- 102100039666 Receptor-type tyrosine-protein phosphatase delta Human genes 0.000 description 2
- 102100032880 Serine-rich coiled-coil domain-containing protein 1 Human genes 0.000 description 2
- 102100035728 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform Human genes 0.000 description 2
- 108091027568 Single-stranded nucleotide Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102100024027 Transcription factor E2F3 Human genes 0.000 description 2
- 102100030243 Transcription factor SOX-17 Human genes 0.000 description 2
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 2
- 102100022012 Transcription intermediary factor 1-beta Human genes 0.000 description 2
- 101710177718 Transcription intermediary factor 1-beta Proteins 0.000 description 2
- 102100024764 Tubulin delta chain Human genes 0.000 description 2
- 102100028551 Zinc finger MYND domain-containing protein 11 Human genes 0.000 description 2
- 102100023572 Zinc finger protein 132 Human genes 0.000 description 2
- 102100037796 Zinc finger protein Helios Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 108700000711 bcl-X Proteins 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 108010005713 bis(5'-adenosyl)triphosphatase Proteins 0.000 description 2
- 102100029170 cAMP-specific 3',5'-cyclic phosphodiesterase 4D Human genes 0.000 description 2
- 102100022422 cGMP-dependent protein kinase 1 Human genes 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000002284 excitation--emission spectrum Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229940022353 herceptin Drugs 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 238000004651 near-field scanning optical microscopy Methods 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 238000001668 nucleic acid synthesis Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 239000011535 reaction buffer Substances 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- HBROZNQEVUILML-UHFFFAOYSA-N salicylhydroxamic acid Chemical compound ONC(=O)C1=CC=CC=C1O HBROZNQEVUILML-UHFFFAOYSA-N 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 238000004621 scanning probe microscopy Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 108010057210 telomerase RNA Proteins 0.000 description 2
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- BCOSEZGCLGPUSL-UHFFFAOYSA-N 2,3,3-trichloroprop-2-enoyl chloride Chemical compound ClC(Cl)=C(Cl)C(Cl)=O BCOSEZGCLGPUSL-UHFFFAOYSA-N 0.000 description 1
- 102100024385 28S ribosomal protein S35, mitochondrial Human genes 0.000 description 1
- 102100039776 39S ribosomal protein L4, mitochondrial Human genes 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-ULQXZJNLSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-tritiopyrimidin-2-one Chemical compound O=C1N=C(N)C([3H])=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-ULQXZJNLSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical class BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- 102100036450 ATP-dependent RNA helicase TDRD9 Human genes 0.000 description 1
- PWZJEXGKUHVUFP-UHFFFAOYSA-N ATTO 590 meta-isomer Chemical compound [O-]Cl(=O)(=O)=O.C1=2C=C3C(C)=CC(C)(C)N(CC)C3=CC=2OC2=CC3=[N+](CC)C(C)(C)C=C(C)C3=CC2=C1C1=CC=C(C(O)=O)C=C1C(O)=O PWZJEXGKUHVUFP-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 102100032746 Actin-histidine N-methyltransferase Human genes 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108091005625 BRD4 Proteins 0.000 description 1
- 102100033640 Bromodomain-containing protein 1 Human genes 0.000 description 1
- 102100033642 Bromodomain-containing protein 3 Human genes 0.000 description 1
- 102100029895 Bromodomain-containing protein 4 Human genes 0.000 description 1
- 102100024646 Cell adhesion molecule 2 Human genes 0.000 description 1
- 102100031235 Chromodomain-helicase-DNA-binding protein 1 Human genes 0.000 description 1
- 102100031457 Collagen alpha-1(V) chain Human genes 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010009540 DNA (Cytosine-5-)-Methyltransferase 1 Proteins 0.000 description 1
- 102100036279 DNA (cytosine-5)-methyltransferase 1 Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102100036966 Dipeptidyl aminopeptidase-like protein 6 Human genes 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 102100029505 E3 ubiquitin-protein ligase TRIM33 Human genes 0.000 description 1
- 102100024748 E3 ubiquitin-protein ligase UHRF2 Human genes 0.000 description 1
- 102100022207 E3 ubiquitin-protein ligase parkin Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101150039808 Egfr gene Proteins 0.000 description 1
- 102100029095 Exportin-1 Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 102000017701 GABRB2 Human genes 0.000 description 1
- 102100021599 GTPase Era, mitochondrial Human genes 0.000 description 1
- 102100029974 GTPase HRas Human genes 0.000 description 1
- 102100039788 GTPase NRas Human genes 0.000 description 1
- 102100036530 General transcription factor 3C polypeptide 4 Human genes 0.000 description 1
- 102100030948 Glutathione S-transferase omega-2 Human genes 0.000 description 1
- 102100033071 Histone acetyltransferase KAT6A Human genes 0.000 description 1
- 102100039999 Histone deacetylase 2 Human genes 0.000 description 1
- 102100027788 Histone-lysine N-methyltransferase KMT5C Human genes 0.000 description 1
- 101000727483 Homo sapiens 28S ribosomal protein S28, mitochondrial Proteins 0.000 description 1
- 101000689823 Homo sapiens 28S ribosomal protein S35, mitochondrial Proteins 0.000 description 1
- 101000667416 Homo sapiens 39S ribosomal protein L4, mitochondrial Proteins 0.000 description 1
- 101000713950 Homo sapiens ATP-dependent RNA helicase TDRD9 Proteins 0.000 description 1
- 101000654703 Homo sapiens Actin-histidine N-methyltransferase Proteins 0.000 description 1
- 101000871846 Homo sapiens Bromodomain-containing protein 1 Proteins 0.000 description 1
- 101000871851 Homo sapiens Bromodomain-containing protein 3 Proteins 0.000 description 1
- 101000760622 Homo sapiens Cell adhesion molecule 2 Proteins 0.000 description 1
- 101000777047 Homo sapiens Chromodomain-helicase-DNA-binding protein 1 Proteins 0.000 description 1
- 101000941708 Homo sapiens Collagen alpha-1(V) chain Proteins 0.000 description 1
- 101000804935 Homo sapiens Dipeptidyl aminopeptidase-like protein 6 Proteins 0.000 description 1
- 101000634991 Homo sapiens E3 ubiquitin-protein ligase TRIM33 Proteins 0.000 description 1
- 101000760434 Homo sapiens E3 ubiquitin-protein ligase UHRF2 Proteins 0.000 description 1
- 101000619542 Homo sapiens E3 ubiquitin-protein ligase parkin Proteins 0.000 description 1
- 101000866286 Homo sapiens Excitatory amino acid transporter 1 Proteins 0.000 description 1
- 101000898754 Homo sapiens GTPase Era, mitochondrial Proteins 0.000 description 1
- 101000584633 Homo sapiens GTPase HRas Proteins 0.000 description 1
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 1
- 101001001378 Homo sapiens Gamma-aminobutyric acid receptor subunit beta-2 Proteins 0.000 description 1
- 101000714252 Homo sapiens General transcription factor 3C polypeptide 4 Proteins 0.000 description 1
- 101001010149 Homo sapiens Glutathione S-transferase omega-2 Proteins 0.000 description 1
- 101000944179 Homo sapiens Histone acetyltransferase KAT6A Proteins 0.000 description 1
- 101001035011 Homo sapiens Histone deacetylase 2 Proteins 0.000 description 1
- 101001008824 Homo sapiens Histone-lysine N-methyltransferase KMT5C Proteins 0.000 description 1
- 101001047811 Homo sapiens Inactive heparanase-2 Proteins 0.000 description 1
- 101001001416 Homo sapiens Inhibitor of growth protein 5 Proteins 0.000 description 1
- 101001002469 Homo sapiens Interferon lambda-2 Proteins 0.000 description 1
- 101001043809 Homo sapiens Interleukin-7 receptor subunit alpha Proteins 0.000 description 1
- 101000608555 Homo sapiens LETM1 domain-containing protein LETM2, mitochondrial Proteins 0.000 description 1
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 description 1
- 101001088893 Homo sapiens Lysine-specific demethylase 4C Proteins 0.000 description 1
- 101000636209 Homo sapiens Matrix-remodeling-associated protein 5 Proteins 0.000 description 1
- 101000608551 Homo sapiens Mitochondrial proton/calcium exchanger protein Proteins 0.000 description 1
- 101000961071 Homo sapiens NF-kappa-B inhibitor alpha Proteins 0.000 description 1
- 101001109719 Homo sapiens Nucleophosmin Proteins 0.000 description 1
- 101000613800 Homo sapiens OTU domain-containing protein 7A Proteins 0.000 description 1
- 101001129712 Homo sapiens PHD and RING finger domain-containing protein 1 Proteins 0.000 description 1
- 101001123300 Homo sapiens PR domain zinc finger protein 13 Proteins 0.000 description 1
- 101000687425 Homo sapiens PRELI domain-containing protein 1, mitochondrial Proteins 0.000 description 1
- 101001035694 Homo sapiens Polyamine deacetylase HDAC10 Proteins 0.000 description 1
- 101000702559 Homo sapiens Probable global transcription activator SNF2L2 Proteins 0.000 description 1
- 101000613614 Homo sapiens Protein mono-ADP-ribosyltransferase PARP10 Proteins 0.000 description 1
- 101000585534 Homo sapiens RNA polymerase II-associated factor 1 homolog Proteins 0.000 description 1
- 101000848478 Homo sapiens RNA polymerase II-associated protein 1 Proteins 0.000 description 1
- 101000665509 Homo sapiens Ral GTPase-activating protein subunit alpha-1 Proteins 0.000 description 1
- 101001130509 Homo sapiens Ras GTPase-activating protein 1 Proteins 0.000 description 1
- 101000738765 Homo sapiens Receptor-type tyrosine-protein phosphatase N2 Proteins 0.000 description 1
- 101001093899 Homo sapiens Retinoic acid receptor RXR-alpha Proteins 0.000 description 1
- 101000650694 Homo sapiens Roundabout homolog 1 Proteins 0.000 description 1
- 101001099058 Homo sapiens Serine/threonine-protein phosphatase PGAM5, mitochondrial Proteins 0.000 description 1
- 101000824928 Homo sapiens Sorting nexin-31 Proteins 0.000 description 1
- 101000708766 Homo sapiens Structural maintenance of chromosomes protein 3 Proteins 0.000 description 1
- 101000642333 Homo sapiens Survival of motor neuron-related-splicing factor 30 Proteins 0.000 description 1
- 101000800633 Homo sapiens Teneurin-2 Proteins 0.000 description 1
- 101000702364 Homo sapiens Transcription elongation factor SPT5 Proteins 0.000 description 1
- 101000608633 Homo sapiens Ubiquitin-like domain-containing CTD phosphatase 1 Proteins 0.000 description 1
- 101000782470 Homo sapiens Zinc finger protein 454 Proteins 0.000 description 1
- 101000915640 Homo sapiens Zinc finger protein 471 Proteins 0.000 description 1
- 101000723661 Homo sapiens Zinc finger protein 703 Proteins 0.000 description 1
- 101000802094 Homo sapiens mRNA decay activator protein ZFP36L1 Proteins 0.000 description 1
- 108060006678 I-kappa-B kinase Proteins 0.000 description 1
- 102000001284 I-kappa-B kinase Human genes 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100024022 Inactive heparanase-2 Human genes 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102100035676 Inhibitor of growth protein 5 Human genes 0.000 description 1
- 102100020989 Interferon lambda-2 Human genes 0.000 description 1
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 1
- 101710042703 KIAA2026 Proteins 0.000 description 1
- 102100039183 LETM1 domain-containing protein LETM2, mitochondrial Human genes 0.000 description 1
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 description 1
- 102100033230 Lysine-specific demethylase 4C Human genes 0.000 description 1
- 102100030776 Matrix-remodeling-associated protein 5 Human genes 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 102100039186 Mitochondrial proton/calcium exchanger protein Human genes 0.000 description 1
- 208000034702 Multiple pregnancies Diseases 0.000 description 1
- 101100310648 Mus musculus Sox17 gene Proteins 0.000 description 1
- 102100030710 NAD-dependent protein deacetylase sirtuin-3, mitochondrial Human genes 0.000 description 1
- 102100039337 NF-kappa-B inhibitor alpha Human genes 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 102100022678 Nucleophosmin Human genes 0.000 description 1
- 102100040560 OTU domain-containing protein 7A Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102100031567 PHD and RING finger domain-containing protein 1 Human genes 0.000 description 1
- 108060006456 POU2AF1 Proteins 0.000 description 1
- 102000036938 POU2AF1 Human genes 0.000 description 1
- 102100028973 PR domain zinc finger protein 13 Human genes 0.000 description 1
- 102100024818 PRELI domain-containing protein 1, mitochondrial Human genes 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 108010079855 Peptide Aptamers Proteins 0.000 description 1
- 102100025516 Peroxisome biogenesis factor 2 Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 102100039388 Polyamine deacetylase HDAC10 Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102100031021 Probable global transcription activator SNF2L2 Human genes 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102100034607 Protein arginine N-methyltransferase 5 Human genes 0.000 description 1
- 101710084427 Protein arginine N-methyltransferase 5 Proteins 0.000 description 1
- 102100040847 Protein mono-ADP-ribosyltransferase PARP10 Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 102100034620 RNA polymerase II-associated protein 1 Human genes 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 102100038202 Ral GTPase-activating protein subunit alpha-1 Human genes 0.000 description 1
- 102100031426 Ras GTPase-activating protein 1 Human genes 0.000 description 1
- 102100037404 Receptor-type tyrosine-protein phosphatase N2 Human genes 0.000 description 1
- 102100035178 Retinoic acid receptor RXR-alpha Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 102100027702 Roundabout homolog 1 Human genes 0.000 description 1
- 108091005770 SIRT3 Proteins 0.000 description 1
- 102000012977 SLC1A3 Human genes 0.000 description 1
- 101100485284 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CRM1 gene Proteins 0.000 description 1
- 102100038901 Serine/threonine-protein phosphatase PGAM5, mitochondrial Human genes 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 102100022384 Sorting nexin-31 Human genes 0.000 description 1
- 102100032723 Structural maintenance of chromosomes protein 3 Human genes 0.000 description 1
- 102100036412 Survival of motor neuron-related-splicing factor 30 Human genes 0.000 description 1
- 102000004399 TNF receptor-associated factor 3 Human genes 0.000 description 1
- 108090000922 TNF receptor-associated factor 3 Proteins 0.000 description 1
- 102100033227 Teneurin-2 Human genes 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102100030402 Transcription elongation factor SPT5 Human genes 0.000 description 1
- 102100039286 Ubiquitin-like domain-containing CTD phosphatase 1 Human genes 0.000 description 1
- 102100022853 Uncharacterized protein KIAA2026 Human genes 0.000 description 1
- 108010022109 Voltage-Dependent Anion Channel 2 Proteins 0.000 description 1
- 102100037803 Voltage-dependent anion-selective channel protein 2 Human genes 0.000 description 1
- 101150094313 XPO1 gene Proteins 0.000 description 1
- 102100035862 Zinc finger protein 454 Human genes 0.000 description 1
- 102100029037 Zinc finger protein 471 Human genes 0.000 description 1
- 102100028376 Zinc finger protein 703 Human genes 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000003172 aldehyde group Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000005447 environmental material Substances 0.000 description 1
- 108700021358 erbB-1 Genes Proteins 0.000 description 1
- 108700002148 exportin 1 Proteins 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000012632 fluorescent imaging Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 238000013412 genome amplification Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 102100034702 mRNA decay activator protein ZFP36L1 Human genes 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 208000030454 monosomy Diseases 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 238000007837 multiplex assay Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 108010087904 neutravidin Proteins 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- VYNDHICBIRRPFP-UHFFFAOYSA-N pacific blue Chemical compound FC1=C(O)C(F)=C2OC(=O)C(C(=O)O)=CC2=C1 VYNDHICBIRRPFP-UHFFFAOYSA-N 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004574 scanning tunneling microscopy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000003765 sex chromosome Anatomy 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000009576 somatic growth Effects 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/10—Nucleotidyl transfering
- C12Q2521/101—DNA polymerase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/155—Modifications characterised by incorporating/generating a new priming site
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/161—Modifications characterised by incorporating target specific and non-target specific sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/185—Modifications characterised by incorporating bases where the precise position of the bases in the nucleic acid string is important
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2531/00—Reactions of nucleic acids characterised by
- C12Q2531/10—Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
- C12Q2531/137—Ligase Chain Reaction [LCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2533/00—Reactions characterised by the enzymatic reaction principle used
- C12Q2533/10—Reactions characterised by the enzymatic reaction principle used the purpose being to increase the length of an oligonucleotide strand
- C12Q2533/107—Probe or oligonucleotide ligation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2535/00—Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
- C12Q2535/125—Allele specific primer extension
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2535/00—Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
- C12Q2535/131—Allele specific probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2537/00—Reactions characterised by the reaction format or use of a specific feature
- C12Q2537/10—Reactions characterised by the reaction format or use of a specific feature the purpose or use of
- C12Q2537/143—Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2545/00—Reactions characterised by their quantitative nature
- C12Q2545/10—Reactions characterised by their quantitative nature the purpose being quantitative analysis
- C12Q2545/101—Reactions characterised by their quantitative nature the purpose being quantitative analysis with an internal standard/control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/107—Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2565/00—Nucleic acid analysis characterised by mode or means of detection
- C12Q2565/10—Detection mode being characterised by the assay principle
- C12Q2565/102—Multiple non-interacting labels
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2565/00—Nucleic acid analysis characterised by mode or means of detection
- C12Q2565/50—Detection characterised by immobilisation to a surface
- C12Q2565/519—Detection characterised by immobilisation to a surface characterised by the capture moiety being a single stranded oligonucleotide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2565/00—Nucleic acid analysis characterised by mode or means of detection
- C12Q2565/60—Detection means characterised by use of a special device
- C12Q2565/601—Detection means characterised by use of a special device being a microscope, e.g. atomic force microscopy [AFM]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
Definitions
- the invention relates to methods of detecting a genetic variation in a genetic sample from a subject. Detecting a genetic variation is important in many aspects of human biology.
- the invention relates to methods of detecting a genetic variation in a genetic sample from a subject.
- the invention further relates to methods of detecting a genetic variation in a genetic sample from a subject using labeled probes and counting the number of labels in the probes.
- FIG. 1 depicts exemplary array members comprising binding partners, tags, affinity tags, tagging probes, probe sets, and/or litigated probe sets described herein on a substrate.
- FIG. 2 depicts a normalized histogram of signal intensity measured from both single label samples and multi-label antibodies.
- FIG. 3 depicts average bleaching profiles from various labels.
- FIGS. 4-13 show the integrated label intensity graphs over time for various Alexa 488 labels.
- FIG. 14 depicts excitation spectrum and emission spectrum through a standard operation when excitation of a fluorophore is achieved by illuminating with a narrow spectral band aligned with the absorption maxima of that species.
- FIG. 15 depicts excitation spectrum and emission spectrum through interrogation with various excitation colors and collected emission bands different from (or in addition to) the case for the standard operation.
- FIG. 16 shows results when the light from these various imaging configurations, e.g., various emission filters, is collected and compared to calibration values for the fluorophores of interest.
- FIG. 17 shows results collected with various references, including those with a flat emission profile (Contaminant 1; triangles), or a blue-weighted profile (Contaminant 2; stars).
- FIG. 18 depicts significantly-different excitation bands of two fluorophores.
- FIG. 19 depicts an exemplary system flow chart.
- FIG. 20 depicts an exemplary system flow chart including various methods for analyzing data.
- FIGS. 21-46 depict exemplary probe sets described herein.
- FIGS. 47 and 48 show the resulting fluorescence patterns when products contain unique affinity tag sequences and the underlying substrate contains complements to each of the unique affinity tags within the same location (e.g., as the same member) on a substrate.
- FIGS. 49 and 51 show the resulting fluorescence patterns when different products contain identical affinity tag sequences and the underlying substrate contains the complement to the affinity tag.
- FIGS. 50 and 52 show zoomed-in locations of FIGS. 49 and 51 , respectively.
- FIGS. 53 and 54 show the resulting fluorescence patterns when products contain unique affinity tag sequences and the underlying substrate has one location (e.g., as one member) containing the complement to one affinity tag complement, and another separate location (e.g., as another member) containing the complement to the other affinity tag.
- FIG. 55 depicts two probe sets; one probe set for Locus 1 and one probe set for Locus 2—although as aforementioned, multiple probes sets may be designed for each genomic locus.
- FIG. 56 depicts the procedural workflow that would be applied to the collection of probe sets.
- FIG. 57 depicts a modified version of the procedural workflow illustrated in FIG. 56 .
- FIGS. 58A, 58B, and 58C provide an example of how probe products for Locus 1 and Locus 2 may be labeled with different label molecules.
- FIG. 59 provides evidence that probe products representing a multitude of genomic locations for one locus may be generated in a ligase enzyme specific manner using the hybridization-ligation process.
- FIGS. 60A and 60B provide data indicating that probe sets may be used to detect relative changes in copy number state.
- FIGS. 61A, 61B, and 61C provide evidence that mixtures of probe products may be used to generate quantitative microarray data.
- FIGS. 62-64 illustrate modifications of the general procedure described in FIGS. 55, 56, 57, 58A, 58B, and 58C .
- FIGS. 65A and 65B depict further embodiments of the modified procedure described in FIG. 62 .
- FIGS. 66A, 66B, and 66C depict yet other embodiments of the procedure depicted in FIGS. 65A and 65B .
- FIGS. 67A, 67B, and 67C depict exemplary probe sets used in methods described herein.
- FIGS. 68A, 68B, and 68C depict exemplary probe sets used in methods described herein when translocations that have known breakpoints are assayed.
- FIGS. 69A and 69B depict exemplary probe sets used in methods described herein when mutations at SNPs are targeted.
- the methods described herein may employ, unless otherwise indicated, conventional techniques and descriptions of molecular biology (including recombinant techniques), cell biology, biochemistry, and microarray and sequencing technology, which are within the skill of those who practice in the art.
- conventional techniques include polymer array synthesis, hybridization and ligation of oligonucleotides, sequencing of oligonucleotides, and detection of hybridization using a label.
- Specific illustrations of suitable techniques can be had by reference to the examples herein. However, equivalent conventional procedures can, of course, also be used.
- the invention relates to methods of detecting a genetic variation in a genetic sample from a subject.
- the genetic variation herein may include, but is not limited to, one or more substitution, inversion, insertion, deletion, or mutation in nucleotide sequences (e.g., DNA and RNA) and proteins (e.g., peptide and protein), one or more rare allele, polymorphism, single nucleotide polymorphism (SNP), large-scale genetic polymorphism, such as inversions and translocations, differences in the abundance and/or copy number (e.g., copy number variants, CNVs) of one or more nucleotide molecules (e.g., DNA), trisomy, monosomy, and genomic rearrangements.
- nucleotide sequences e.g., DNA and RNA
- proteins e.g., peptide and protein
- SNP single nucleotide polymorphism
- large-scale genetic polymorphism such as inversions and translocations
- the genetic variation may be related to metastasis, presence, absence, and/or risk of a disease, such as cancer, pharmacokinetic variability, drug toxicity, adverse events, recurrence, and/or presence, absence, or risk of organ transplant rejection in the subject.
- a disease such as cancer
- pharmacokinetic variability drug toxicity
- adverse events adverse events
- recurrence and/or presence, absence, or risk of organ transplant rejection in the subject.
- copy number changes in the HER2 gene affect whether a breast cancer patient will respond to Herceptin treatment or not.
- detecting an increase in copy number of chromosome 21 (or 18, or 13, or sex chromosomes) in blood from a pregnant woman may be used to as a non-invasive diagnostic for Down's Syndrome in an unborn child.
- An additional example is the detection of alleles from a transplanted organ that are not present in the recipient genome—monitoring the frequency, or copy number, of these alleles may identify signs of potential organ rejection.
- Various methods may be used to detect such changes (e.g., rtPCR, sequencing and microarrays).
- One of the methods is to count individual, labeled molecules to either detect the presence of a mutation (e.g., EGFR mutation in cancer) or an excess of a specific genomic sequence or region (e.g., Chromosome 21 in Down's Syndrome). Counting single molecules may be done in a number of ways, with a common readout being to deposit the molecules on a surface and image.
- the genetic variation may be de novo genetic mutations, such as single- or multi-base mutations, translocations, subchromosomal amplifications and deletions, and aneuploidy.
- the genetic variation may mean an alternative nucleotide sequence at a genetic locus that may be present in a population of individuals and that includes nucleotide substitutions, insertions, and deletions with respect to other members of the population.
- the genetic variation may be aneuploidy.
- the genetic variation may be trisomy 13, trisomy 18, trisomy 21, aneuploidy of X (e.g., trisomy XXX and trisomy XXY), or aneuploidy of Y (e.g., trisomy XYY).
- the genetic variation may be in region 22q11.2, 1q21.1, 9q34, 1p36, 4p, 5p, 7q11.23, 11q24.1, 17p, 11p15, 18q, or 22813.
- the genetic variation may be a microdeletion or microamplification.
- detecting, discovering, determining, measuring, evaluating, counting, and assessing the genetic variation are used interchangeably and include quantitative and/or qualitative determinations, including, for example, identifying the genetic variation, determining presence and/or absence of the genetic variation, and quantifying the genetic variation.
- the methods of the present disclosure may detect multiple genetic variations.
- the term “and/or” used herein is defined to indicate any combination of the components.
- the singular forms “a,” “an,” and “the” may further include plural referents unless the context clearly dictates otherwise.
- reference to “a nucleotide region” refers to one, more than one, or mixtures of such regions
- reference to “an assay” may include reference to equivalent steps and methods known to those skilled in the art, and so forth.
- sample means a quantity of material from a biological, environmental, medical, or patient source in which detection, measurement, or labeling of target nucleic acids, peptides, and/or proteins is sought.
- a specimen or culture e.g., microbiological cultures
- a sample may include a specimen of synthetic origin.
- Environmental samples include environmental material, such as surface matter, soil, water and industrial samples, as well as samples obtained from food and dairy processing instruments, apparatus, equipment, utensils, disposable and non-disposable items.
- Genetic sample may be any liquid or solid sample with heritable and/or non-heritable biological information coded in the nucleotide sequences of nucleic acids.
- the sample may be obtained from a source, including, but not limited to, whole blood, serum, plasma, urine, saliva, sweat, fecal matter, tears, intestinal fluid, mucous membrane samples, lung tissue, tumors, transplanted organs, fetus, and/or other sources.
- Genetic samples may be from an animal, including human, fluid, solid (e.g., stool) or tissue. Genetic samples may include materials taken from a patient including, but not limited to cultures, blood, saliva, cerebral spinal fluid, pleural fluid, milk, lymph, sputum, semen, needle aspirates, and the like.
- the genetic sample may be a fetal genetic material from a maternal blood sample.
- the fetal genetic material may be isolated and separated from the maternal blood sample.
- the genetic sample may be a mixture of fetal and maternal genetic material.
- the genetic sample may include aberrant genetic sequences arising from tumor formation or metastasis, and/or donor DNA signatures present in a transplant recipient.
- the method when the genetic sample is plasma, the method may comprise isolating the plasma from a blood sample of the subject.
- genetic sample when genetic sample is serum, the method may comprise isolating the serum from a blood sample of the subject.
- the method further comprises isolating the cell free DNA sample from a sample obtained from the source described herein.
- the cell free DNA sample herein means a population of DNA molecules circulating freely in the bloodstream, outside of any cell or organelle. In the case of a pregnancy, cell free DNA from the mother carries a mixture of both maternal DNA as well as fetal DNA.
- the method of the present disclosure may comprise selecting and/or isolating genetic locus or loci of interest, and quantifying the amount of each locus present (for example for determining copy number) and/or the relative amounts of different locus variants (for example two alleles of a given DNA sequence).
- Region, region of interest, locus, or locus of interest in reference to a genome or target polynucleotide used herein means a contiguous sub-region or segment of the genome or target polynucleotide.
- region, regions or interest, locus, locus, or locus of interest in a nucleotide molecule may refer to the position of a nucleotide, a gene or a portion of a gene in a genome, including mitochondrial DNA or other non-chromosomal DNA, or it may refer to any contiguous portion of genomic sequence whether or not it is within, or associated with, a gene.
- a region, region of interest, locus, locus, or locus of interest in a nucleotide molecule may be from a single nucleotide to a segment of a few hundred or a few thousand nucleotides in length or more.
- a region or locus of interest may have a reference sequence associated with it.
- Reference sequence used herein denotes a sequence to which a locus of interest in a nucleic acid is being compared. In certain embodiments, a reference sequence is considered a “wild type” sequence for a locus of interest.
- a nucleic acid that contains a locus of interest having a sequence that varies from a reference sequence for the locus of interest is sometimes referred to as “polymorphic” or “mutant” or “genetic variation.”
- a nucleic acid that contains a locus of interest having a sequence that does not vary from a reference sequence for the locus of interest is sometimes referred to as “non-polymorphic” or “wild type” or “non-genetic variation.”
- a locus of interest may have more than one distinct reference sequence associated with it (e.g., where a locus of interest is known to have a polymorphism that is to be considered a normal or wild type).
- the method of the present disclosure may also comprise electing and/or isolating
- the region of interest described herein may include “consensus genetic variant sequence” which refers to the nucleic acid or protein sequence, the nucleic or amino acids of which are known to occur with high frequency in a population of individuals who carry the gene which codes for a protein not functioning normally, or in which the nucleic acid itself does not function normally.
- the region of interest described herein may include “consensus normal gene sequence” which refers to a nucleic acid sequence, the nucleic acid of which are known to occur at their respective positions with high frequency in a population of individuals who carry the gene which codes for a protein not functioning normally, or which itself does not function normally.
- control region that is not the region of interest or the reference sequence described herein may include “consensus normal sequence” which refers to the nucleic; acid or protein sequence, the nucleic or amino acids of which are known to occur with high frequency in a population of individuals who carry the gene which codes for a normally functioning protein, or in which the nucleic acid itself has normal function.
- the methods described herein may produce highly accurate measurements of genetic variation.
- One type of variation described herein includes the relative abundance of two or more distinct genomic loci.
- the loci may be small (e.g., as small as about 300, 250, 200, 150, 100, or 50 nucleotides or less), moderate in size (e.g., from 1,000, 10,000, 100,000 or one million nucleotides), and as large as a portion of a chromosome arm or the entire chromosome or sets of chromosomes.
- the results of this method may determine the abundance of one locus to another.
- the precision and accuracy of the methods of the present disclosure may enable the detection of very small changes in copy number (as low as about 25, 10, 5, 4, 3, 2, 1, 0.5, 0.1, 0.05, 0.02 or 0.01% or less), which enables identification of a very dilute signature of genetic variation.
- a signature of fetal aneuploidy may be found in a maternal blood sample where the fetal genetic aberration is diluted by the maternal blood, and an observable copy number of change of about 2% is indicative of fetal trisomy.
- the term “about” means modifying, for example, lengths of nucleotide sequences, degrees of errors, dimensions, the quantity of an ingredient in a composition, concentrations, volumes, process temperature, process time, yields, flow rates, pressures, and like values, and ranges thereof, refers to variation in the numerical quantity that may occur, for example, through typical measuring and handling procedures used for making compounds, compositions, concentrates or use formulations; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of starting materials or ingredients used to carry out the methods; and like considerations.
- the term “about” also encompasses amounts that differ due to aging of, for example, a composition, formulation, or cell culture with a particular initial concentration or mixture, and amounts that differ due to mixing or processing a composition or formulation with a particular initial concentration or mixture. Whether modified by the term “about” the claims appended hereto include equivalents to these quantities.
- the term “about” further may refer to a range of values that are similar to the stated reference value. In certain embodiments, the term “about” refers to a range of values that fall within 50, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 percent or less of the stated reference value.
- the subject may be a pregnant subject, human, a subject with a high risk of a genetic disease (e.g., cancer), all of the various families of domestic animals, as well as feral or wild animals.
- the genetic variation may be a genetic variation in the fetus of the pregnant subject (e.g., copy number variants and aneuploidy in the fetus).
- the subject is a pregnant subject
- the genetic variation is a variation in the fetus of the pregnant subject in a region selected from the group consisting of 22q11.2, 1q21.1, 9q34, 1p36, 4p, 5p, 7q11.23, 11q24.1, 17p, 11p15, 18q, and 22q13, (e.g., a mutation and/or copy number change in any of regions 22q11.2, 1q21.1, 9 q34, 1p36, 4p, 5p, 7q11.23, 11q24.1, 17p, 11p15, 18q, and 22q13).
- Fetus described herein means an unborn offspring of a human or other animal.
- the fetus may be the offspring more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 weeks after conception.
- the fetus may be an offspring conceived by implants, in vitro fertilization, multiple pregnancies, or twinning.
- the fetus may be part of a pair of twins (identical or non-identical), or a trio of triplets (identical or non-identical)
- the inventions encompass at least two major components: an assay for the selective identification of genomic loci, and a technology for quantifying these loci with high accuracy.
- the assay may include methods of selectively labeling and/or isolating one or more nucleic acid sequences, in such a manner that the labeling step itself is sufficient to yield molecules (defined as “probe products,” “ligated probe set,” “conjugated probe set,” “ligated probes,” “conjugated probes,” or “labeled molecules” in this invention) containing all necessary information for identification of a particular sequence in the context of a particular assay.
- the assay may comprise contacting, binding, and/or hybridizing probes to a sample, ligating and/or conjugating the probes, optionally amplifying the ligated/conjugated probes, and immobilizing the probes to a substrate.
- the assays and methods described herein may be performed on a single input sample in parallel as a multiplex assay as described herein
- the probe product, ligated probe set, conjugated probe set, ligated probes, conjugated probes, and labeled molecules may be single, contiguous molecule resulting from the performance of enzymatic action on a probe set, such as an assay.
- a probe product or a labeled molecule one or more individual probes from a probe set may be covalently modified such that they form a singular distinct molecular species as compared to either probes or probe sets.
- probe products or a labeled molecule may be chemically distinct and may therefore be identified, counted, isolated, or further manipulated apart from probes or probe sets.
- probe products may contain one or more identification labels, and one or more affinity tags for isolation and/or immobilization.
- no additional modifications of probe products e.g., DNA sequence determination
- no additional interrogations of the DNA sequence are required.
- the probe products containing the labels may be directly counted, typically after an immobilization step onto a solid substrate.
- organic fluorophore labels are used to label probe products, and the probe products are directly counted by immobilizing the probe products to a glass substrate and subsequent imaging via a fluorescent microscope and a digital camera.
- the label may be selectively quenched or removed depending on whether the labeled molecule has interacted with its complementary genomic locus.
- two labels on opposite portions of the probe product may work in concert to deliver a fluorescence resonance energy transfer (FRET) signal depending on whether the labeled molecule has interacted with its complementary genomic locus.
- FRET fluorescence resonance energy transfer
- labeling probes containing the labels be designed for any sequence region within that locus.
- a set of multiple labeling probes with same or different labels may also be designed for a single genomic locus.
- a probe may selectively isolate and label a different region within a particular locus, or overlapping regions within a locus.
- the probe products containing affinity tags are immobilized onto the substrate via the affinity tags.
- affinity tags are used to immobilize probe products onto the substrate, and the probe products containing the affinity tags are directly counted.
- tagging probes containing the affinity tags be designed for any sequence region within that locus.
- a set of multiple tagging probes with same or different affinity tags may also be designed for a single genomic locus.
- a probe may selectively isolate and tag a different region within a particular locus, or overlapping regions within a locus.
- the methods of the present disclosure may comprise contacting probe sets described herein with the genetic sample described herein.
- the methods of the present disclosure may comprise contacting multiple probe sets, such as first and second probe sets, to the genetic sample.
- each of the probe sets comprises a labeling probe and a tagging probe.
- the first probe set comprises a first labeling probe and a first tagging probe
- the second probe set comprises a second labeling probe and a second tagging probe.
- Contacting the probe sets to the genetic sample may be performed simultaneously or after hybridizing, ligating, amplifying and/or immobilizing the probes. Moreover, contacting the probe sets to the genetic sample may be performed simultaneously or before hybridizing, ligating, amplifying, and/or immobilizing the probes.
- a single nucleic acid sequence within that locus, or multiple nucleic acid sequences within that locus may be interrogated and/or quantified via the creation of probe products.
- the interrogated sequences within a genomic locus may be distinct and/or overlapping, and may or may not contain genetic polymorphisms.
- a probe product is formed by the design of one or more oligonucleotides called a “probe set.” For example, the probe product may be formed by ligating the probe set by ligating the probes in the probe set.
- a probe set comprises at least one probe that hybridize, conjugate, bind, or immobilize to a target molecule, including nucleic acids (e.g., DNA and RNA), peptides, and proteins.
- a probe may comprise an isolated, purified, naturally-occurring, non-naturally occurring, and/or artificial material, for example, including oligonucleotides of any length (e.g., 5, 10, 20, 30, 40, 50, 100, or 150 nucleotides or less), in which at least a portion(s) (e.g., 50, 60, 70, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) of the oligonucleotide sequences is complementary to a sequence motif and/or hybridization domain present in one or more target molecules, such that the probe is configured to hybridize (or interact in a similar manner) in part or in total to one or more target molecules or nucleic acid region of interest.
- hybridization domain The part of the target molecule or the nucleic acid region of interest to which a probe hybridizes is called the probe's “hybridization domain,” which may be in part or in total of the target molecule or the nucleic acid region of interest as described herein.
- a probe may be single-stranded or double-stranded.
- the probe may be prepared from in a purified restriction digest or produced synthetically, recombinantly or by PCR amplification.
- the probe may comprise a material that binds to a particular peptide sequence.
- a probe set described herein may comprise a set of one or more probes designed to correspond to a single genomic location or a peptide in a protein sequence.
- Nucleotide used herein means either a deoxyribonucleotide or a ribonucleotide or any nucleotide analogue (e.g., DNA and RNA).
- Nucleotide analogues include nucleotides having modifications in the chemical structure of the base, sugar and/or phosphate, including, but not limited to, 5′-position pyrimidine modifications, 8-position purine modifications, modifications at cytosine exocyclic amines, substitution of 5-bromo-uracil, and the like; and 2′-position sugar modifications, including but not limited to, sugar-modified ribonucleotides in which the 2′-OH is replaced by a group selected from H, OR, R, halo, SH, SR, NH 2 , NHR, NR 2 , or CN.
- shRNAs also may comprise non-natural elements such as non-natural nucleotides, e.g., ionosin and xanthine, non-natural sugars, e.g., 2′′-methoxy ribose, or non-natural phosphodiester linkages, e.g., methyiphosphonates, phosphorothioates and peptides.
- the shRNA further comprises an element or a modification that renders the shRNA resistant to nuclease digestion.
- Polynucleotide or “oligonucleotide” is used interchangeably and each means a linear polymer of nucleotide monomers.
- Monomers making up polynucleotides and oligonucleotides are capable of specifically binding to a natural and/or artificial polynucleotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, base stacking, Hoogsteen or reverse Hoogsteen types of base pairing, or the like.
- Such monomers and their internucleosidic linkages may be naturally occurring or may be analogues thereof, e.g., naturally occurring or non-naturally occurring analogues.
- Non-naturally occurring analogues may include PNAs, LNAs, phosphorothioate internucleosidic linkages, nucleotides containing linking groups permitting the attachment of labels, such as fluorophores, or haptens, and the like.
- PNAs PNAs
- LNAs phosphorothioate internucleosidic linkages
- nucleotides containing linking groups permitting the attachment of labels such as fluorophores, or haptens, and the like.
- Polynucleotides typically range in size from a few monomeric units when they are referred to as “oligonucleotides” to several thousand monomeric units. Whenever a polynucleotide or oligonucleotide is represented by a sequence of letters (upper or lower case), such as “ATGCCTG,” it will be understood that the nucleotides are in 5′ ⁇ 3′ order from left to right.
- polynucleotides comprise the four natural nucleosides (e.g., deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine for DNA or their ribose counterparts for RNA) linked by phosphodiester linkages; however, they may also comprise non-natural nucleotide analogues, e.g., including modified nucleotides, sugars, or internucleosidic linkages.
- nucleosides e.g., deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine for DNA or their ribose counterparts for RNA
- non-natural nucleotide analogues e.g., including modified nucleotides, sugars, or internucleosidic linkages.
- the methods of the present disclosure may comprise hybridizing at least parts of the first and second probe sets to first and second nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively.
- the hybridization of the probes to the nucleic acid of interest may be performed simultaneously or after contacting the probes to the genetic sample, ligating, amplifying and/or immobilizing the probes.
- the hybridization of the probes to the nucleic acid of interest may be performed simultaneously or before ligating, amplifying, and/or immobilizing the probes.
- a part or full part of the probe may hybridize to a part or full part of the region of interest in single or double stranded nucleotide molecules, protein, or antibody in a sample.
- the region of interest hybridized to the probe may be from 1 to 50 nucleotides, 50 to 1000 nucleotides, 100 to 500 nucleotides, 5, 10, 50, 100, 200 nucleotides or less, or 2, 5, 10, 50, 100, 200, 500, 1000 nucleotides or more.
- Probes may be designed or configured to hybridize perfectly with a target region or molecule, or they may be designed such that a single-base mismatch (e.g., at a single nucleotide polymorphism, or SNP site), or a small number of such mismatches, fails to yield a hybrid of probe and target molecule.
- the first labeling probe and/or the first tagging probe are hybridized to the first nucleic acid region of interest
- the second labeling probe and/or the second tagging probes are hybridized to the second nucleic acid region of interest.
- multiple or all probes and/or other components (e.g., labelling probes, tagging probes, and gap probes) of a probe set that are hybridized to a nucleic acid region of interest are adjacent to each other. When two of the probes and/or components hybridized to the nucleic acid region of interest are “adjacent” or “immediately adjacent,” there is no nucleotide between the hybridization domains of the two probes in the nucleic acid region of interest.
- the different probes within a probe set may be covalently ligated together to form a larger oligonucleotide molecule.
- a probe set may be designed to hybridize to a non-contiguous, but proximal, portion of the nucleic acid region of interest, such that there is a “gap” of one or more nucleotides on the nucleic acid region of interest, in between hybridized probes from a probe set, that is not occupied by a probe.
- a DNA polymerase or another enzyme may be used to synthesize a new polynucleotide sequence, in some cases covalently joining two probes from a single probe set.
- any probe may bear one or more labels, or affinity tags used for either locus identification or isolation.
- the first and second labeling probes are hybridized to the first and second nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively; the first and second tagging probes are hybridized to the first and second nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively; the first labeling probe is hybridized to a region adjacent to where the first tagging probe is hybridized; and the second labeling probe is hybridized to a region adjacent to where the second tagging probe is hybridized.
- the hybridization occurs in such a manner that the probes within a probe set may be modified to form a new, larger molecular entity (e.g., a probe product).
- the probes herein may hybridize to the nucleic acid regions of interest under stringent conditions.
- stringent is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. “Stringency” typically occurs in a range from about T m ° C. to about 20° C. to 25° C. below T m .
- a stringent hybridization may be used to isolate and detect identical polynucleotide sequences or to isolate and detect similar or related polynucleotide sequences.
- Low stringency conditions comprise conditions equivalent to binding or hybridization at 68° C. in a solution consisting of 5 ⁇ SSPE (43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 .H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5 ⁇ Denhardt's reagent (50 ⁇ Denhardt's contains per 500 ml: 5 g Ficoll (Type 400), 5 g BSA) and 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 2.0+SSPE, 0.1% SDS at room temperature when a probe of about 100 to about 1000 nucleotides in length is employed.
- low stringency conditions factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol), as well as components of the hybridization solution may be varied to generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions.
- conditions which promote hybridization under conditions of high stringency e.g., increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc. are well known in the art.
- High stringency conditions when used in reference to nucleic acid hybridization, comprise conditions equivalent to binding or hybridization at 68° C. in a solution consisting of 5+SSPE, 1% SDS, 5 ⁇ Denhardt's reagent and 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1+SSPE and 0.1% SDS at 68° C. when a probe of about 100 to about 1000 nucleotides in length is employed.
- the probe product may be formed only if the probes within a probe set are correctly hybridized. Therefore, the probe products may be formed with high stringency and high accuracy. Again, the probe products may contain sufficient information for identifying the genomic sequence for which the probe product was designed to interrogate. Therefore, generation and direct quantification of a particular probe product (in this case, by molecular counting) may reflect the abundance of a particular genetic sequence in the originating sample.
- the nucleic acid regions of interest, to which the probes are configured to hybridize to are located in different chromosomes.
- the first nucleic acid region of interest is located in chromosome 21, and the second nucleic acid region of interest is not located in chromosome 21 (e.g., located in chromosome 18).
- the methods of the present disclosure may comprise ligating the first labeling probe and the first tagging probe, and ligating the second labeling probe and the second tagging probe.
- the ligation of the probes may be performed simultaneously or after contacting the probes to the genetic sample, amplifying and/or immobilizing the probes.
- the ligation of the probes may be performed simultaneously or before contacting the probes to the genetic sample, amplifying, and/or immobilizing the probes.
- the ligation herein means the process of joining two probes (e.g., joining two nucleotide molecules) together.
- ligation herein may involve the formation of a 3′,5′-phosphodiester bond that links two nucleotides, and a joining agent that is an agent capable of causing ligation may be an enzyme or a chemical.
- the methods of the present disclosure may comprise amplifying the ligated probes and/or ligated probe sets.
- the amplification of the ligated probes may be performed simultaneously or after contacting the probes to the genetic sample, ligating, hybridizing and/or immobilizing the probes.
- the amplification of the ligated probes may be performed simultaneously or before immobilizing the probes.
- Amplification herein is defined as the production of additional copies of the probe and/or probe product and may be carried out using polymerase chain reaction technologies well known in the art.
- PCR polymerase chain reaction
- the desired amplified segments of the target sequence become the predominant sequences (in terms of concentration) in the mixture, they are said to be “PCR amplified.”
- PCR it is possible to amplify a single copy of a specific target sequence in genomic DNA to a level detectable by several different methodologies (e.g., hybridization with a labeled probe).
- any oligonucleotide sequence may be amplified with the appropriate set of primer molecules.
- the amplified segments created by the PCR process itself are, themselves, efficient templates for subsequent PCR amplifications.
- An amplification may be a “real-time” amplification if a detection chemistry is available that permits a reaction product to be measured as the amplification reaction progresses, e.g., “real-time PCR,” or “real-time NASBA” as described in Leone et al, Nucleic Acids Research, 26: 2150-2155 (1998).
- Primers are usually single-stranded for maximum efficiency in amplification, but may alternatively be double-stranded. If double-stranded, the primer is usually first treated to separate its strands before being used to prepare extension products. This denaturation step is typically influenced by heat, but may alternatively be carried out using alkali, followed by neutralization.
- a “primer” is complementary to a template, and complexes by hydrogen bonding or hybridization with the template to give a primer/template complex for initiation of synthesis by a polymerase, which is extended by the addition of covalently bonded nucleotides linked at its 3′ end complementary to the template in the process of DNA synthesis.
- a “primer pair” as used herein refers to a forward primer and a corresponding reverse primer, having nucleic acid sequences suitable for nucleic acid-based amplification of a target nucleic acid.
- Such primer pairs generally include a first primer having a sequence that is the same or similar to that of a first portion of a target nucleic acid, and a second primer having a sequence that is complementary to a second portion of a target nucleic acid to provide for amplification of the target nucleic acid or a fragment thereof.
- Reference to “first” and “second” primers herein is arbitrary, unless specifically indicated otherwise.
- the first primer may be designed as a “forward primer” (which initiates nucleic acid synthesis from a 5′-end of the target nucleic acid) or as a “reverse primer” (which initiates nucleic acid synthesis from a 5′-end of the extension product produced from synthesis initiated from the forward primer).
- the second primer may be designed as a forward primer or a reverse primer.
- the nucleic acid region of interest in the nucleotide molecule herein may be amplified by the amplification methods described herein.
- the nucleic acids in a sample may or may not be amplified prior to analysis, using a universal amplification method (e.g., whole genome amplification and whole genome PCR).
- the amplification of the nucleic acid region of interest may be performed simultaneously or after contacting the probes to the genetic sample, ligating, amplifying and/or immobilizing the probes.
- the amplification of the ligated probes may be performed simultaneously or before contacting the probes to the genetic sample, ligating the probes, immobilizing the probes, and/or counting the labels.
- the method excludes amplification of the nucleotide molecules of the genetic sample after the hybridization or the ligation. In further embodiments, the method excludes amplification of the nucleotide molecules of the genetic sample after the hybridization and the ligation.
- the methods of the present disclosure may comprise immobilizing the tagging probes to a predetermined location on a substrate.
- the immobilization of the probe to a substrate may be performed simultaneously or after contacting the probes to the genetic sample, hybridizing the probes to the nucleic acid region of interest, ligating and/or amplifying the probes.
- the immobilization of the probe to a substrate may be performed simultaneously or before contacting the probes to the genetic sample, hybridizing the probes to the nucleic acid region of interest, ligating, amplifying and/or counting the probes
- Immobilization herein means directly or indirectly binding the tagging probes to the pre-determined location on the substrate by a physical or chemical bond.
- the substrate herein may comprise a binding partner that is configured to contact and bind to a part or full tag in the tagging probe described herein and immobilize the tag and thus the tagging probe comprising the tag.
- the tag of the tagging probe may comprise a corresponding binding partner of the binding partner on the substrate as described herein.
- Immobilization may be performed by hybridizing a part or full tagging probe to a part or full binding partner on the substrate.
- the immobilizing step comprises hybridizing at least a part of the tag or tagging nucleotide sequence to a corresponding nucleotide molecule immobilized on the substrate.
- the corresponding nucleotide molecule is a binding partner of the tag or tagging nucleotide sequence that is configured to hybridize partially or fully to the tag or tagging nucleotide sequence.
- the oligonucleotide or polynucleotide binding partners may be single stranded and may be covalently attached to the substrate, for example, by 5′-end or a 3′-end.
- Immobilization may also be performed by the following exemplary binding partners and binding means: Biotin-oligonucleotide complexed with Avidin, Strepatavidin or Neutravidin; SH-oligonucleotide covalently linked via a disulphide bond to a SH-surface; Amine-oligonucleotide covalently linked to an activated carboxylate or an aldehyde group; Phenylboronic acid (PBA)-oligonucleotide complexed with salicylhydroxamic acid (SHA); Acrydite-oligonucleotide reacted with thiol or silane surface or co-polyemerized with acrylamide monomer to form polyacrylamide, or by other methods known in the art.
- PBA Phenylboronic acid
- SHA salicylhydroxamic acid
- Acrydite-oligonucleotide reacted with thiol or silane surface or co-polyemerized with acrylamide monomer
- surface layers may be composed of a polyelectrolyte multilayer (PEM) structure as shown in U.S. Patent Application Publication No. 2002/025529.
- the immobilization may be performed by well-known procedures, for example, comprising contacting the probes with the support having binding partners attached for a certain period of time, and after the probes are depleted for the extension, the support with the immobilized extension products is optionally rinsed using a suitable liquid.
- immobilizing probe products onto a substrate may allow for rigorous washing for removing components from the biological sample and the assay, thus reducing background noise and improving accuracy.
- Solid support “support,” “substrate,” and “solid phase support” are used interchangeably and refer to a material or group of materials having a rigid or semi-rigid surface or surfaces.
- at least one surface of the substrate will be substantially flat, although in some embodiments it may be desirable to physically separate synthesis regions for different compounds with, for example, wells, raised regions, pins, etched trenches, or the like.
- the substrate may comprise at least one planar solid phase support (e.g., a glass microscope slide).
- the substrate(s) will take the form of beads, resins, gels, microspheres, or other geometric configurations.
- the substrate according to some embodiments of the present disclosure excludes beads, resins, gels, and/or microspheres.
- the binding partners, the tags, the affinity tags, labels, the probes may be immobilized on a substrate ( 1 ) as an array ( 2 ).
- the array herein has multiple members ( 3 - 10 ) that may or may not have an overlap ( 6 ) between the members. Each member may have at least an area with no overlap with another member ( 3 - 5 and 7 - 10 ). In additional embodiments, each member may have different shapes (e.g., circular spots ( 3 - 8 ), triangles ( 9 ), and squares ( 10 )) and dimensions.
- a member of an array may have an area about from 1 to 10 7 micron 2 , from 100 to 10 7 micron 2 , from 10 3 to 10 8 micron 2 , from 10 4 to 10 7 micron 2 ; from 10 5 to 10 7 micron 2 ; about 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , 10 8 or more micron 2 ; and/or about 0.001, 0.01, 0.1, 1, 10, 100, 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , 10 8 or less micron 2 .
- An image of an exemplary member ( 8 ) according to some embodiments of the present invention is shown as item 12 .
- two or more members comprising the binding partners, the tags, the affinity tags, labels, the probes may have the same shape and dimension.
- the members of an array comprising the binding partners, tags, affinity tags, labels, tagging probes and/or probe sets configured or used to detect the same genetic variation or a control according to the methods described herein may have the same shapes and dimensions.
- each and every member of the arrays on the substrate may have the same shapes and dimensions.
- the members of an array comprising the binding partners, tags, affinity tags, labels, probes and/or probe sets configured or used to detect different genetic variations and/or controls according to the methods described herein may have the same shapes and dimensions.
- each member of the array may comprise different binding partners, the tags, the affinity tags, labels, the probes, and/or the probe sets.
- two members of the array may be separated by (i) a distance, in which there may be no or only very few binding partners, the tags, the affinity tags, labels, the probes (e.g., tagging probes and labeling probes), and/or the probe sets immobilized, and/or (ii) any separator distinguishing one member from the other (e.g., heightened substrate, any material preventing binding of the binding partners, the tags, the affinity tags, the probes (e.g., tagging probes), and/or the probe sets to the substrate, and any non-probe material between the members).
- the members of the array may be distinguished from each other at least by their locations alone.
- the members of the array may be separated by a distance about from 0 to 10 4 microns, from 0 to 10 3 microns, from 10 2 to 10 4 microns, or from 10 2 to 10 3 microns; about 0, 0.001, 0.1, 1, 2, 3, 4, 5, 10, 50, 100, 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , or 10 8 microns or more; and/or about 0, 0.001, 0.1, 1, 2, 3, 4, 5, 10, 50, 100, 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , or 10 8 microns or less.
- the distance by which two members of the array are separated may be determined by the shortest distance between the edges of the members. For example, in FIG.
- the distance by which two members, items 3 and 4 , of an array ( 2 ) are separated is the distance indicated by item n.
- the shortest distance by which the members of the array ( 2 ) on a substrate ( 1 ) are separated is 0, as the distance by which two members, items 10 and 11 , of the array are separated.
- two members of the array may not be separated and may be overlapped ( 6 ).
- each member may have at least an area with no overlap with another member ( 7 ).
- an array and the members of the array of the binding partners, the tags, the affinity tags, labels, the probes, and/or the probe sets described herein may be located on predetermined locations on the substrate, and the shapes and dimensions of each member of the array and the distance between the members may be predetermined prior to the immobilization.
- the predetermined location herein means a location that is determined or identified prior to the immobilization. For example, the shape and dimension of each member of an array is determined or identified prior to the immobilization.
- the substrate may comprise an array of binding partners, each member of the array comprising the binding patners, such as oligonucleotides or polynucleotides, that are immobilized (e.g., by a chemical bond that would be not broken during the hybridization of probes to the binding partners of the substrate described herein) to a spatially defined region or location; that is, the regions or locations are spatially discrete or separated by a defined region or location on the substrate.
- the substrate may comprise an array, each member of which comprises binding partners binding to a spatially defined region or location.
- Each of the spatially defined locations configured to comprise the binding partners may additionally be “addressable” in that its location and the identity of its immobilized binding partners are known or predetermined, for example, prior to its use, analysis, or attaching to their binding partners in tagging probes and/or probe sets.
- probe set immobilized to the substrate means that the nucleotide sequence or other physical and/or chemical characteristics of an end-attached part (e.g., a binding partner of the binding partner of the substrate, tag, affinity tag, and tagging probe) of a probe set described herein may be determined from its address, i.e., a one-to-one correspondence between the sequence or other property of the end-attached part of the probe set and a spatial location on, or characteristic of, the substrate to which the probe set is immobilized.
- an end-attached part e.g., a binding partner of the binding partner of the substrate, tag, affinity tag, and tagging probe
- an address of an end-attached part of a probe set is a spatial location, e.g., the planar coordinates of a particular region immobilizing copies of the end-attached part of the probe set.
- end-attached parts of probe sets may be addressed in other ways too, e.g., by color, frequency of micro-transponder, or the like, e.g., Chandler et al, PCT publication WO 97/14028, which is herein incorporated by reference in their entirety for all purposes.
- the methods described herein exclude “random microarray,” which refers to a microarray whose spatially discrete regions of binding partners (e.g., oligonucleotides or polynucleotides) of the substrate and/or the end-attached parts of probe sets are not spatially addressed. That is, the identity of the attached binding partners, tag, affinity tag, tagging probe, and/or probe sets is not discernable, at least initially, from its location.
- the methods described herein exclude random microarrays that are planar arrays of microbeads.
- An array of nucleic acid may be produced by any method well known in the art, including but not limited to those described in U.S. Patent Application Publication No. 2013/0172216, which is incorporated by reference in its entirety for all purpose; Schena, Microarrays: A Practical Approach (IRL Press, Oxford, 2000).
- a DNA capture array may be used.
- the DNA capture array is a solid substrate (e.g., a glass slide) with localized oligonucleotides covalently attached to the surface. These oligonucleotides may have one or more types on the surface, and may further be segregated geographically across the substrate. Under hybridization conditions, DNA capture arrays will preferentially bind complementary targets compared to other non-specific moieties, thereby acting to both localize targets to the surface and separate them from un-desired species.
- the first and second labeling probes and/or the amplified labeling probes thereof ligated to the immobilized tagging probes comprise first and second labels, respectively.
- the labeling probe herein means a probe that comprises or is configured to bind to a label.
- the labeling probe itself may comprise a label or may be modified to comprise or bind to a label.
- the amplified probe herein is defined to be the additional copies of an initial probe produced after amplification of the initial probe as described herein. Accordingly, the amplified probes may have a sequence that is the nucleotide sequences of the initial probes and/or complementary sequence of the nucleotide sequences of the initial probes.
- the amplified probes may contain a sequence that is partial or complete match to the nucleotide sequences of the initial probes.
- Complementary or “complementarity” are used in reference to a sequence of nucleotides related by the base-pairing rules. For example, the sequence “5′-CAGT-3′,” is complementary to the sequence “5′-ACTG-3′.” Complementarity may be “partial” or “total.” “Partial” complementarity is where one or more nucleic acid nucleotides in a probe is not matched according to the base pairing rules while others are matched. “Total” or “complete” complementarity between nucleic acids is where each and every nucleic acid base in the probe is matched with another base under the base pairing rules.
- Immobilized probe herein is defined to be a probe that is directly or indirectly binding to the substrate by a physical or chemical bond.
- a labeling probe may be immobilized to a substrate indirectly via ligation to a tagging probe immobilized to the substrate described herein.
- a label herein means an organic, naturally occurring, synthetic, artificial, or non-naturally occurring molecule, dye, or moiety having a property or characteristic that is capable of detection and, optionally, of quantitation.
- a label may be directly detectable (e.g., radioisotopes, fluorophores, chemiluminophores, enzymes, colloidal particles, fluorescent substances, Quantum dots or other nanoparticles, nanostructures, metal compounds, organometallic labels, and peptide aptamers); or a label may be indirectly detectable using specific binding partners.
- the fluorescent substances include fluorescent dyes such as fluorescein, phosphor, rhodamine, polymethine dye derivatives, and the like.
- fluorescent dyes such as BODYPY FL (trademark, produced by Molecular Probes, Inc.), FluorePrime (product name, produced by Amersham Pharmacia Biotech, Inc.), Fluoredite (product name, produced by Millipore Corporation), FAM (produced by ABI Inc.), Cy 3 and Cy 5 (produced by Amersham pharmacia), TAMRA (produced by Molecular Probes, Inc.), Pacific Blue, TAMRA, Alexa 488, Alexa 594, Alexa 647, Atto 488, Atto 590, Atto 647N and the like.
- fluorescent dyes such as BODYPY FL (trademark, produced by Molecular Probes, Inc.), FluorePrime (product name, produced by Amersham Pharmacia Biotech, Inc.), Fluoredite (product name, produced by Millipore Corporation), FAM (produced by ABI Inc.), Cy 3 and Cy 5 (produced by Amersham pharmacia), TAMRA (produced by Molecular Probes, Inc.), Pacific Blue, TAMRA, Alexa 488
- Quadratum dot means a nano-scale semiconductor crystalline structure, usually made from cadmium selenide, and absorbs light and then re-emits it a couple of nanoseconds later in a specific color.
- QDs with a variety of conjugated or reactive surfaces, e.g., amino, carboxyl, streptavidin, protein A, biotin, and immunoglobulins, are also encompassed in the present disclosure.
- first and second labels are different so that the labels may be distinguished from each other.
- first and second labels are different in their physical, optical, and/or chemical properties.
- the immobilized labels are optically resolvable.
- optically resolvable label or “optically individually resolvable label” herein means a group of labels that may be distinguished from each other by their photonic emission, or other optical properties, for example, after immobilization as described herein.
- the immobilized labels may be distinguished from each other spatially.
- the labels of the same type which is defined to be labels having the same optical properties, are immobilized on the substrate, for example as a member of an array described herein, at a density and/or spacing such that the individual probe products are resolvable as shown in item 12 of FIG. 1 .
- the “same labels” are defined to be labels having identical chemical and physical compositions.
- the “different labels” herein mean labels having different chemical and/or physical compositions, including “labels of different types” having different optical properties.
- the “different labels of the same type” herein means labels having different chemical and/or physical compositions, but the same optical properties.
- Item 12 of FIG. 1 depicts an image of an exemplary member of an array comprising immobilized labels.
- the labels are spatially addressable as the location of a molecule specifies its identity (and in spatial combinatorial synthesis, the identity is a consequence of location).
- one member of the array on the substrate may have one or multiple labeled probes immobilized to the member. When multiple labeled probes are immobilized to one member of the array, the labels of the same type in the labeled probes immobilized to the one member of an array on the substrate may be distinguished from each other spatially as shown in item 12 of FIG. 1 .
- the immobilized labels of the same type are separated by a distance about from 1 to 1000 nm, from 5 to 100 nm, or from 10 to 100 nm; about 100, 150, 200, 250, 300, 350, or 400 nm or more; and/or about 50, 100, 150, 200, 250, 300, 350, or 400 nm or less in all dimensions.
- the density of the probe products and their labels on the substrates may be up to many millions (and up to one billion or more) probe products to be counted per substrate. The ability to count large numbers of probe products containing the labels allows for accurate quantification of nucleic acid sequences.
- the immobilized first and second tagging probes and/or the amplified tagging probes thereof comprise first and second tags, respectively.
- the tagging probe herein means a probe that is configured to directly or indirectly bind to the substrate.
- the tagging probe itself may bind to the substrate or may be modified to bind to the substrate.
- a tag or affinity tag herein means a motif for specific isolation, enrichment or immobilization of probe products.
- the tag or affinity tag examples include a binding partner described herein, unique DNA sequences allowing for sequence-specific capture including natural genomic and/or artificial non-genomic sequence, biotin-streptavidin, His-tags, FLAG octapeptide, click chemistry (e.g., pairs of functional groups that rapidly and selectively react with each other under mild, aqueous conditions), and antibodies (e.g., azide-cycline).
- the immobilizing step comprises hybridizing at least a part of the tag, affinity tag, or tagging nucleotide sequence to a corresponding nucleotide molecule immobilized on the substrate.
- the tag or affinity tag is configured to bind to entities including, but not limited to a bead, a magnetic bead, a microscope slide, a coverslip, a microarray or a molecule.
- the immobilizing step is performed by immobilizing the tags to the predetermined location of the substrate.
- the numbers of different labels immobilized on the substrate and thus the numbers of different immobilized probe products comprising the labels are counted.
- the probe products from each genetic locus are grouped together, and the labels in the immobilized probe products are counted.
- multiple sequences within a genomic locus may be interrogated via the creation of multiple probe product types.
- different probe products for the same genomic locus may be combined (possibly via immobilization to a common location of a substrate, e.g., as a member of an array described herein), and the labels in these probe products may be directly counted.
- Different probe products for the same genomic locus may be also separated (possibly via immobilization to different locations of a substrate, e.g., as different members of an array described herein), and the labels in these probe products may be directly counted.
- the substrate may have one or more specific affinity tag in each location on a substrate, e.g., as a member of an array on the substrate.
- probe products for a single genomic locus this may be one probe product type, or may be a set of more than one probe product for a particular genomic locus
- a substrate e.g., as the same member of an array described herein
- the probe products from the first genomic locus will be distinguishable from the probe products from the second genomic locus, based on the presence of different labels used in generating the probe products.
- a set of probe products corresponding to chromosome 21 would be generated, for example with a red fluorophore label, and counted.
- a second set of probe products would also be generated from a reference, or control locus, for example chromosome 18, and counted. This second set of probe products may be generated, for example, with a green fluorophore label.
- these probe products may be prepared such that they are grouped together by locus (in this case chromosome 21 or chromosome 18) and counted separately on a substrate. That is, the probe products corresponding to chromosome 21 may be isolated and counted separately, and the probe products corresponding to chromosome 18 may be isolated and counted separately.
- these probe products may be also prepared in such a way that they are grouped together in the same location of a substrate (e.g., as the same member of an array described herein.
- the probe products bearing a red fluorophore will correspond to chromosome 21, and the probe products with a green fluorophore will correspond to chromosome 18.
- the probe products for chromosome 18 may serve as a control.
- the methods of the present disclosure may comprise counting the labels of the probe sets immobilized to the substrate.
- the methods may comprise counting (i) a first number of the first label immobilized to the substrate, and (ii) a second number of the second label immobilized to the substrate.
- the counting step may be performed after immobilizing the ligated probe set to a substrate, and the substrate with immobilized ligated probe sets may be stored in a condition to prevent degradation of the ligated probe sets (e.g., at room temperature or a temperature below the room temperature) before the counting step is performed.
- a large number of probe products may be counted.
- a label may be detected and counted based on measuring, for example, physicochemical, electromagnetic, electrical, optoelectronic or electrochemical properties, or characteristics of the immobilized label.
- the label may be detected by scanning probe microscopy (SPM), scanning tunneling microscopy (STM) and atomic force microscopy (AFM), electron microscopy, optical interrogation/detection techniques including, but not limited to, near-field scanning optical microscopy (NSOM), confocal microscopy and evanescent wave excitation. More specific versions of these techniques include far-field confocal microscopy, two-photon microscopy, wide-field epi-illumination, and total internal reflection (TIR) microscopy. Many of the above techniques may also be used in a spectroscopic mode. The actual detection is by charge coupled device (CCD) cameras and intensified CCDs, photodiodes and/or photomultiplier tubes.
- the counting step comprises an optical analysis, detecting an optical property of a label.
- the optical analysis comprises an image analysis as described herein.
- the counting step comprises reading the substrate in first and second imaging channels that correspond to the first and second labels, respectively, and producing one or more images of the substrate, wherein the first and second labeling probes are resolvable in the one or more images.
- the counting step comprises spatial filtering for image segmentation.
- the counting step comprises watershedding analysis, or a hybrid method for image segmentation.
- the methods described herein may also look at the frequency of different alleles at the same genetic locus (e.g., two alleles of a given single nucleotide polymorphisms).
- the accuracy of these methods may detect very small changes in frequency (e.g., as low as about 10, 5, 4, 3, 2, 1, 0.5, 0.1 or 0.01% or less).
- a blood sample will contain a very dilute genetic signature from the donated organ. This signature may be the presence of an allele that is not in the recipient of the donated organ's genome.
- the methods described herein may detect very small deviations in allele frequency (e.g., as low as about 10, 5, 4, 3, 2, 1, 0.5, 0.1 or 0.01% or less) and may identify the presence of donor DNA in a host sample (e.g., blood sample).
- a host sample e.g., blood sample
- An unhealthy transplanted organ may result in elevated levels of donor DNA in the host blood—a rise of only a few percent (e.g., as low as about 10, 5, 4, 3, 2, 1, 0.5, 0.1 or 0.01% or less).
- the methods described herein may be sensitive enough to identify changes in allele frequency with the necessary sensitivity, and therefore may accurately determine the presence and changing amounts of donor DNA in host blood.
- the methods of the present disclosure may comprise comparing the first and second numbers to determine the genetic variation in the genetic sample.
- the comparing step comprises obtaining an estimate of a relative number of the nucleotide molecules having the first and second nucleic acid regions of interest.
- the methods of the present disclosure may comprise labeling the first and second labeling probes with the first and second labels, respectively, prior to the contacting step (e.g., during manufacturing the probes). Labeling the probe may be performed simultaneously or after contacting the probes to the genetic sample, hybridizing, ligating, amplifying and/or immobilizing the probes. Moreover, labeling the probe may be performed simultaneously or before contacting the probes to the genetic sample, hybridizing, ligating, amplifying, and/or immobilizing the probes. Labeling a probe may comprise adding, immobilizing, or binding a label to the probe by a physical or chemical bond. Labels may be placed anywhere within the sequence of a probe, including at the 5′ or 3′-end.
- the methods of the present disclosure may comprise tagging the first and second tagging probes with first and second tags, respectively, prior to the contacting step. (e.g., during the manufacturing the probes). Tagging the probe may be performed simultaneously or after contacting the probes to the genetic sample, hybridizing, ligating, amplifying and/or labeling the probes. Moreover, tagging the probe may be performed simultaneously or before contacting the probes to the genetic sample, hybridizing, ligating, amplifying, immobilizing and/or labeling the probes. Tagging a probe may comprise adding, immobilizing, or binding a tag to the probe by a physical or chemical bond. Tags may be placed anywhere within the sequence of a probe, including at the 5′ or 3′-end.
- the probe sets herein may be designed to have tags according to the predetermined locations to which the tags are to be immobilized.
- the tags in all probe sets configured to detect a genetic variation are the same and are configured to be immobilized to same locations on the substrate directly or indirectly.
- the first and second tags are the same, and each of the rest of the tags is different from the first or second tag.
- each or a group of members of the array of multiple predetermined locations on a substrate may have a unique tag to be immobilized.
- the probe sets according to some embodiments may be amplified, and labeled probe sets may be produced during the process of amplification.
- each of the labeling probes may comprise a forward or reverse priming sequence
- each of the tagging probes may comprise a corresponding reverse or forward priming sequence and a tagging nucleotide sequence as a tag.
- the forward and reverse priming sequences are the sequences that are configured to hybridize to the corresponding forward and reverse primers, respectively.
- the amplifying step comprises amplifying (i) the ligated first labeling and tagging probes with first forward and reverse primers hybridizing to the forward and reverse priming sequences, respectively, wherein the first forward or reverse primer hybridizing to the first labeling probe comprises the first label, and (ii) the ligated second labeling and tagging probes with second forward and reverse primers hybridizing to the forward and reverse priming sequences, respectively, wherein the second forward or reverse primer hybridizing to the second labeling probe comprises the second label.
- the amplified tagging nucleotide sequences of the tagging probes are immobilized to a pre-determined location on a substrate, wherein the amplified tagging nucleotide sequences of the first and second tagging probes are the first and second tags.
- the first and second tags are the same and/or are configured to bind to the same location on the substrate.
- the first and second tags are different and/or are configured to bind to different locations on the substrate.
- the method comprises counting numbers of the labels in the amplified probes and/or probe sets immobilized on the substrate. For example, the first number is the number of the first label in the amplified first probe set immobilized to the substrate, and the second number is the number of the second label in the amplified second probe set immobilized to the substrate.
- the probe sets according to some embodiments may be amplified, and labeled probe sets may be produced using labeled reverse primers without using a forward primer.
- each of the labeling probes may comprise a reverse priming sequence
- each of the tagging probes may comprise a tagging nucleotide sequence as a tag.
- the amplifying step may comprise amplifying (i) the ligated first labeling and tagging probes with a first reverse primer hybridizing to a first reverse priming sequence of the first labeling probe, wherein the first reverse primer comprises the first label, and (ii) the ligated second labeling and tagging probes with a second reverse primer hybridizing to a second reverse priming sequence of the second labeling probe, wherein the second reverse primer comprises the second label.
- the amplified tagging nucleotide sequences of the tagging probes are immobilized to a pre-determined location on a substrate, wherein the amplified tagging nucleotide sequences of the first and second tagging probes are the first and second tags.
- the first number is the number of the first label in the amplified first probe set immobilized to the substrate
- the second number is the number of the second label in the amplified second probe set immobilized to the substrate.
- the ligated probe sets may be produced using a ligase chain reaction.
- the method described herein comprises contacting third and fourth probe sets to the genetic sample, wherein the third probe set comprises a third labeling probe and a third tagging probe, and the fourth probe set comprises a fourth labeling probe and a fourth tagging probe.
- the method may further comprise hybridizing the first and second probe sets to first and second sense nucleic acid strands of interest in single stranded nucleotide molecules from the double stranded nucleotide molecules of the genetic sample, respectively; and hybridizing the third and fourth probe sets to anti-sense nucleic acid strands of the first and second sense nucleic acid strands of interest, respectively.
- the method may further comprise producing ligated first, second, third, and fourth probe sets at least by ligating (i) the first labeling probe and the first tagging probe, (ii) the second labeling probe and the second tagging probe, (iii) the third labeling probe and the third tagging probe, and (iv) the fourth labeling probe and the fourth tagging probe.
- the method may further comprise performing a ligase chain reaction known in the art to amplify the ligated probe and/or ligated probe sets.
- the ligase chain reaction may comprise hybridizing non-ligated first, second, third and fourth probe sets to the ligated third, fourth, first, and second probe sets, respectively, and ligating at least (i) the first labeling probe and the first tagging probe, (ii) the second labeling probe and the second tagging probe, (iii) the third labeling probe and the third tagging probe, and (iv) the fourth labeling probe and the fourth tagging probe of the non-ligated probe sets.
- the method may further comprise immobilizing the tagging probes to the pre-determined location on a substrate, wherein the first, second, third and fourth labeling probes ligated to the immobilized first, second, third and fourth tagging probes, respectively, comprise first, second, third and fourth labels, respectively; the immobilized labels are optically resolvable; the immobilized first, second, third and fourth tagging probes comprise first, second, third and fourth tags, respectively, and the immobilizing step is performed by immobilizing the tags to the predetermined location.
- the method may further comprise counting (i) the first sum of the first and third labels immobilized to the substrate, and (ii) the second sum of the second and fourth labels immobilized to the substrate, and comparing the first and second sums to determine the genetic variation in the genetic sample.
- the method further comprises labeling the first, second, third and fourth labeling probes with the first, second, third and fourth labels, respectively, prior to the contacting step.
- the first and third labels are the same, and the second and fourth labels are the same.
- the method described herein comprises contacting third and fourth probe sets to the genetic sample, wherein the third probe set comprises a third labeling probe and a third tagging probe, and the fourth probe set comprises a fourth labeling probe and a fourth tagging probe, the first and third labeling probes comprises a first reverse priming sequence, the second and fourth labeling probes comprises a second reverse priming sequence, and each of the tagging probes comprises a tagging nucleotide sequence as a tag.
- the method may further comprise hybridizing the first and second probe sets to first and second sense nucleic acid strands of interest, respectively, in single stranded nucleotide molecules from double stranded nucleotide molecules of the genetic sample; and hybridizing at least parts of the third and fourth probe sets to anti-sense nucleic acid strands of the first and second sense nucleic acid strands of interest, respectively; producing ligated first, second, third, and fourth probe sets by ligating (i) the first labeling probe and the first tagging probe, (ii) the second labeling probe and the second tagging probe, (iii) the third labeling probe and the third tagging probe, and (iv) the fourth labeling probe and the fourth tagging probe.
- the method may further comprise performing a ligase chain reaction.
- the ligase chain reaction comprises hybridizing at least parts of the non-ligated first, second, third and fourth probe sets to the ligated third, fourth, first, and second probe sets, respectively, and ligating (i) the first labeling probe and the first tagging probe, (ii) the second labeling probe and the second tagging probe, (iii) the third labeling probe and the third tagging probe, and (iv) the fourth labeling probe and the fourth tagging probe of the non-ligated probe set.
- the method may further comprise amplifying (i) the ligated first and third probe sets with a first reverse primer hybridizing to the first reverse priming sequence, wherein the first reverse primer comprises the first label, and (ii) the ligated second and fourth probe sets with a second reverse primer hybridizing to the second reverse priming sequence, wherein the second reverse primer comprises the second label, the amplified tagging nucleotide sequences of the tagging probes are immobilized to a pre-determined location on a substrate, wherein the amplified tagging nucleotide sequences of the first, second, third and fourth tagging probes are first, second, third and fourth tags, the first number is the number of the first label in the amplified first and third probe sets immobilized to the substrate, and the second number is the number of the second label in the amplified second and fourth probe sets immobilized to the substrate.
- the ligated first and second labeling probes are at the 3′-end of the first and second ligated probe set and comprise first and second reverse priming sequences hybridizing to the first and second reverse primers, respectively.
- the first and second reverse primers comprise the first and second labels.
- the ligated first and second tagging probes are at the 5′-end of the first and second ligated probe set.
- the ligated first and second tagging probes are at the 5′-end of the first and second ligated probe set and comprise first and second corresponding forward priming sequences hybridizing to the first and second forward primers, respectively.
- the method herein comprises digesting double stranded molecules in the sample to produce single stranded molecules.
- the amplifying step comprises contacting an exonuclease to the amplified probe and/or probe set, and digesting the amplified probe and/or probe set from the 5′-end of one strand of the double stranded amplified probe and/or probe set.
- the amplifying step comprises contacting an exonuclease to the amplified probe in a probe set, and digesting the amplified probe set from the 5′-end of one strand of the double stranded amplified probe set.
- the one strand of the amplified probe and probe set contacting the exonuclease does not have any label at the 5′-end.
- the contacting of the exonuclease to the unlabeled double stranded probes may digest the unlabeled strand from the 5′-end producing single stranded probes.
- the 5′-end of the amplified probe set comprising the label at the 5′-end may be protected from exonuclease digestion.
- the method may detect from 1 to 100, from 1 to 50, from 2 to 40, or from 5 to 10 genetic variations; 2, 3, 4, 5, 6, 7, 8, 9, 10 or more genetic variations; and 100, 50, 30, 20, 10 or less genetic variations.
- the method described herein may detect x number of genetic variations using at least (x+1) number of different probe sets. In these embodiments, a number of labels from one type of probe sets may be compared with one or more numbers of labels from the rest of the different types of probe sets.
- the method described herein may detect genetic variation in a continuous manner across the entire genome at various resolutions, for example, at 300,000 base resolution such that 100 distributed variations across all chromosomes are separately interrogated and quantified. In additional embodiments, the base resolution is in the range of one or ten to 100 thousand nucleotides up to one million, ten million, or 100 million or more nucleotides.
- the method according to some embodiments may detect at least two genetic variations.
- the method described herein may further comprise contacting a fifth probe set to the genetic sample, wherein the fifth probe set comprises a fifth labeling probe and a fifth tagging probe.
- the method may further comprise hybridizing at least a part of the fifth probe set to the third nucleic acid region of interest in nucleotide molecules of the genetic sample, wherein the third nucleic acid region of interest is different from the first and second nucleic acid regions of interest.
- the method may further comprise ligating the fifth probe set at least by ligating the fifth labeling probe and the fifth tagging probe.
- the method may further comprise amplifying the ligated probe sets.
- the method may further comprise immobilizing each of the tagging probe to a pre-determined location on a substrate, wherein the fifth labeling probe and/or the amplified labeling probe thereof ligated to the immobilized tagging probe comprise a fifth label, the fifth label is different from the first and second labels, the immobilized labels are optically resolvable, the immobilized fifth tagging probe and/or the amplified tagging probe thereof comprise a fifth tag, and the immobilizing step is performed by immobilizing the tags to the predetermined location.
- the method may comprise counting a third number of the fifth label immobilized to the substrate, and comparing the third number to the first and/or second number(s) to determine the second genetic variation in the genetic sample.
- the subject may be a pregnant subject
- the first genetic variation is trisomy 21 in the fetus of the pregnant subject
- the second genetic variation is selected from the group consisting of trisomy 13, trisomy 18, aneuploidy of X, and aneuploidy of Y in the fetus of the pregnant subject.
- the method according to some embodiments may detect at least three genetic variations.
- the method described herein further comprises contacting a sixth probe set to the genetic sample, wherein the sixth probe set comprises a sixth labeling probe and a sixth tagging probe.
- the method may further comprise hybridizing at least a part of the sixth probe set to the fourth nucleic acid region of interest in nucleotide molecules of the genetic sample, wherein the fourth nucleic acid region of interest is different from the first, second, and third nucleic acid regions of interest.
- the method may further comprise ligating the sixth probe set at least by ligating the sixth labeling probe and the sixth tagging probe.
- the method may further comprise amplifying the ligated probe sets.
- the method may further comprise immobilizing each of the tagging probes to a pre-determined location on a substrate, wherein the sixth labeling probe and/or the amplified labeling probe thereof ligated to the immobilized tagging probe comprise a sixth label, the sixth label is different from the first and second labels, the immobilized labels are optically resolvable, the immobilized sixth tagging probe and/or the amplified tagging probe thereof comprise a sixth tag, and the immobilizing step is performed by immobilizing the tags to the predetermined location.
- the method may further comprise counting a fourth number of the sixth label immobilized to the substrate, and comparing the fourth number to the first, second and/or third number to determine the third genetic variation in the genetic sample.
- the method may according to some embodiments detect at least four genetic variations.
- the method described herein further comprises contacting a seventh probe set to the genetic sample, wherein the seventh probe set comprises a seventh labeling probe and a seventh tagging probe.
- the method may further comprise hybridizing at least a part of the seventh probe set to the fifth nucleic acid region of interest in nucleotide molecules of the genetic sample, wherein the fifth nucleic acid region of interest is different from the first, second, third and fourth nucleic acid regions of interest.
- the method may further comprise ligating the seventh probe set at least by ligating the seventh labeling probe and the seventh tagging probe.
- the method may further comprise optionally amplifying the ligated probe sets.
- the method may further comprise immobilizing each of the tagging probes to a pre-determined location on a substrate, wherein the seventh labeling probe and/or the amplified labeling probe thereof ligated to the immobilized tagging probe comprise a seventh label, the seventh label is different from the first and second labels, the immobilized labels are optically resolvable, the immobilized seventh tagging probe and/or the amplified tagging probe thereof comprise a seventh tag, and the immobilizing step is performed by immobilizing the tags to the predetermined location.
- the method may further comprise counting a fifth number of the seventh label immobilized to the substrate, and comparing the fifth number to the first, second, third and/or fourth number(s) to determine the fourth genetic variation in the genetic sample.
- the method according to some embodiments may detect at least five genetic variations.
- the method described herein further comprises contacting an eighth probe set to the genetic sample, wherein the eighth probe set comprises a eighth labeling probe and a eighth tagging probe.
- the method may further comprise hybridizing at least a part of the eighth probe set to the sixth nucleic acid region of interest in nucleotide molecules of the genetic sample, wherein the sixth nucleic acid region of interest is different from the first, second, third, fourth, and fifth nucleic acid regions of interest.
- the method may further comprise ligating the eighth probe set at least by ligating the eighth labeling probe and the eighth tagging probe.
- the method may further comprise amplifying the ligated probe sets.
- the method may further comprise immobilizing each of the tagging probes to a pre-determined location on a substrate, wherein the eighth labeling probe and/or the amplified labeling probe thereof ligated to the immobilized tagging probe comprise a eighth label, the eighth label is different from the first and second labels, the immobilized labels are optically resolvable, the immobilized eighth tagging probe and/or the amplified tagging probe thereof comprise a eighth tag, and the immobilizing step is performed by immobilizing the tags to the predetermined location.
- the method may further comprise counting a sixth number of the eighth label immobilized to the substrate, and comparing the sixth number to the first, second, third, fourth and/or fifth number(s) to determine the fifth genetic variation in the genetic sample.
- the subject is a pregnant subject
- the first, second, third, fourth, and fifth genetic variations are trisomy 13, trisomy 18, trisomy 21, aneuploidy X, and aneuploidy Y in the fetus of the pregnant subject.
- the subject is a pregnant subject
- the genetic variation is trisomy 21 in the fetus of the pregnant subject
- the first nucleic acid region of interest is located in chromosome 21
- the second nucleic acid region of interest is not located in the chromosome 21.
- the subject is a pregnant subject
- the genetic variation is trisomy 21 in the fetus of the pregnant subject
- the first nucleic acid region of interest is located in chromosome 21
- the second nucleic acid region of interest is located in chromosome 18.
- the probe set herein may comprise two, three, four, five or more labeling probes, and/or two, three, four, five or more labels.
- the method described herein may further comprise the first and second probe sets further comprise third and fourth labeling probes, respectively; the immobilized first probe set and/or amplified first probe set further comprise a ninth label in the third labeling probe and/or amplified product thereof; and the immobilized second probe set and/or amplified second probe set further comprise a tenth label in the fourth labeling probe and/or amplified product thereof.
- this method may be used to confirm the number counted for the first and second labels.
- this method may be used to improve the accuracy of detection labels immobilized to each of the nucleic acid regions of interest. For example, using multiple labels would be brighter than using one label, and therefore multiple labels may be more easily detected than one label.
- the immobilized first probe set and/or amplified first probe set further comprise an eleventh label in the labeling probe
- the immobilized second probe set and/or amplified second probe set further comprises a twelfth label that is different from the eleventh label in the labeling probe.
- the counting step further comprises counting numbers of the eleventh and twelfth labels immobilized on the substrate.
- the method described herein may be performed with a control sample.
- the method may further comprise repeating the steps with a control sample different from the genetic sample from the subject.
- the method may further comprise counting control numbers of the labels immobilized to the substrate, and comparing the control numbers to the first, second, third, fourth, fifth and/or sixth number to confirm the genetic variation in the genetic sample.
- the subject may be a pregnant subject, and the genetic variation is a genetic variation in the fetus of the pregnant subject.
- the method may use a Single Nucleotide Polymorphism (SNP) site to determine whether the proportion (e.g., concentration, and number percentage based on the number of nucleotide molecules in the sample) of fetal material (e.g., the fetal fraction) is sufficient so that the genetic variation of the fetus may be detected from a sample from the pregnant subject with a reasonable statistical significance.
- SNP Single Nucleotide Polymorphism
- the method may further comprise contacting maternal and paternal probe sets to the genetic sample, wherein the maternal probe set comprises a maternal labeling probe and a maternal tagging probe, and the paternal probe set comprises a paternal labeling probe and a paternal tagging probe.
- the method may further comprise hybridizing at least a part of each of the maternal and paternal probe sets to a nucleic acid region of interest in nucleotide molecules of the genetic sample, the nucleic acid region of interest comprising a predetermined SNP site, wherein the at least a part of the maternal probe set hybridizes to a first allele at the SNP site, the at least a part of the paternal probe set hybridizes to a second allele at the SNP site, and the first and second alleles are different from each other.
- the method may further comprise ligating the material and paternal probe sets at least by ligating (i) the maternal labeling and tagging probes, and (ii) the paternal labeling and tagging probes.
- the method may further comprise amplifying the ligated probes.
- the method may further comprise immobilizing the tagging probes to a pre-determined location on a substrate, wherein the maternal and paternal labeling probes and/or the amplified labeling probes thereof ligated to the immobilized tagging probes comprise maternal and paternal labels, respectively; the maternal and paternal labels are different, and the immobilized labels are optically resolvable.
- the method may further comprise counting the numbers of the maternal and paternal labels, and determining whether a proportion of a fetal material in the genetic sample is sufficient to detect the genetic variation in the fetus based on the numbers of the maternal and paternal labels.
- the method may further comprise determining the proportion of the fetal material in the genetic sample.
- the method may further comprise contacting allele A and allele B probe sets that are allele-specific to the genetic sample, wherein the allele A probe set comprises an allele A labeling probe and an allele A tagging probe, and the allele B probe set comprises an allele B labeling probe and an allele B tagging probe.
- the method may further comprise hybridizing at least a part of each of the allele A and allele B probe sets to a nucleic acid region of interest in nucleotide molecules of the genetic sample, the nucleic acid region of interest comprising a predetermined single nucleotide polymorphism (SNP) site for which a maternal allelic profile (i.e., genotype) differs from a fetal allelic profile at the SNP site (For example, maternal allelic composition may be AA and fetal allelic composition may be AB, or BB.
- SNP single nucleotide polymorphism
- maternal allelic composition may be AB and fetal allelic composition may be AA, or BB), wherein the at least a part of the allele A probe set hybridizes to a first allele at the SNP site, the at least a part of the allele B probe set hybridizes to a second allele at the SNP site, and the first and second alleles are different from each other.
- the method may further comprise ligating the allele A and allele B probe sets at least by ligating (i) the allele A labeling and tagging probes, and (ii) the allele B labeling and tagging probes.
- the method may further comprise amplifying the ligated probe sets.
- the method may further comprise immobilizing the tagging probes to a pre-determined location on a substrate, wherein the allele A and allele B labeling probes and/or the amplified labeling probes thereof ligated to the immobilized tagging probes comprise allele A and allele B labels, respectively, the allele A and allele B labels are different, and the immobilized labels are optically resolvable.
- the method may further comprise counting the numbers of the allele A and allele B labels, and determining whether a proportion of a fetal material in the genetic sample is sufficient to detect the genetic variation in the fetus based on the numbers of the allele A and allele B labels.
- the method may further comprise determining the proportion of the fetal material in the genetic sample.
- the method may further comprise contacting maternal and paternal probe sets to the genetic sample, wherein the maternal probe set comprises a maternal labeling probe and a maternal tagging probe, and the paternal probe set comprises a paternal labeling probe and a paternal tagging probe.
- the method may further comprise hybridizing at least parts of the maternal and paternal probe sets to maternal and paternal nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively, wherein the paternal nucleic acid region of interest is located in the Y chromosome, and the maternal nucleic acid region of interest is not located in the Y chromosome.
- the method may further comprise ligating the maternal and paternal probe sets at least by ligating (i) the maternal labeling and tagging probes, and (ii) the paternal labeling and tagging probes.
- the method may further comprise amplifying the ligated probes.
- the method may further comprise nucleic acid region of interest comprising a predetermined single nucleotide polymorphism (SNP) site containing more than one SNP, for example two or three SNPs.
- SNP site may contain SNPs with high linkage disequilibrium such that labeling and tagging probes are configured to take advantage of the improved energetics of multiple SNP matches or mismatches versus only one.
- the method may further comprise immobilizing the tagging probes to a pre-determined location on a substrate, wherein the maternal and paternal labeling probes and/or the amplified labeling probes thereof ligated to the immobilized tagging probes comprise maternal and paternal labels, respectively, the maternal and paternal labels are different, and the immobilized labels are optically resolvable.
- the method may further comprise counting the numbers of the maternal and paternal labels, and determining whether a proportion of a fetal material in the genetic sample is sufficient to detect the genetic variation in the fetus based on the numbers of the maternal and paternal labels.
- the method may further comprise determining the proportion of the fetal material in the genetic sample.
- genetic variations e.g., single base deletion, microsatellite, and small insertions
- SNP site e.g., single base deletion, microsatellite, and small insertions
- the probe set described herein may comprise three or more probes, including at least one probe between the labeling and tagging probes.
- the first and second probe sets further comprises first and second gap probes, respectively; the first gap probe hybridizes to a region between the regions where the first labeling probe and the first tagging probe hybridize; the second gap probe hybridizes to a region between the regions where the second labeling probe and the second tagging probe hybridize.
- the method may further comprise the ligating step comprises ligating at least (i) the first labeling probe, the first tagging probe, and the first gap probe, and (ii) the second labeling probe, the second tagging probe, and the second gap probe.
- the gap probe may comprise a label.
- the first and second gap probes and/or amplified products thereof are labeled with labels (e.g., thirteenth and fourteenth labels, respectively), and each of the labels may be different from the rest of the labels (e.g., the first and second labels).
- the labels in the gap probes e.g., thirteenth and fourteenth labels
- first and second labeling probes are hybridized to the first and second nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively; the first and second tagging probes are hybridized to the first and second nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively; the first and second gap probes are hybridized to the first and second nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively.
- the gap probe between a labeling probe and a tagging probe may have a length from 0 to 100 nucleotides, 1 to 100 nucleotides, 2 to 50 nucleotides; 3 to 30 nucleotides, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 150, or 200 or more; or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 35, 45, 55, 110, 160, or 300 or less.
- the probe set described herein may comprise a spacer ligated and/or conjugated to the labeling probe and the tagging probe.
- the spacer may or may not comprise oligonucleotides.
- the spacer may comprise an isolated, purified, naturally-occurring, or non-naturally occurring material, including oligonucleotide of any length (e.g., 5, 10, 20, 30, 40, 50, 100, or 150 nucleotides or less).
- the probe may be in a purified restriction digest or produced synthetically, recombinantly or by PCR amplification.
- the first labeling and tagging probes are conjugated by a first spacer
- the second labeling and tagging probes are conjugated by a second spacer
- the first and second spacers are not hybridized to the nucleotide molecules of the genetic sample.
- the method further comprises digesting the hybridized genetic sample with an enzyme, and breaking a bond in the first and second spacers after the digestion.
- the method described herein excludes identifying a sequence in the nucleotide molecules of the genetic sample, and/or sequencing of the nucleic acid region(s) of interest and/or the probes.
- the method excluding sequencing of the probes includes excluding sequencing a barcode and/or affinity tag in a tagging probe.
- the immobilized probe sets to detect different genetic variations, nucleotide regions of interest, and/or peptides of interest need not be detected or scanned separately because sequencing is not required in the methods described herein.
- the numbers of different labels immobilized to the substrate were counted simultaneously (e.g., by a single scanning and/or imaging), and thus the numbers of different labels were not separately counted.
- the method described herein excludes bulk array readout or analog quantification.
- the bulk array readout herein means a single measurement that measures the cumulative, combined signal from multiple labels of a single type, optionally combined with a second measurement of the cumulative, combined signal from numerous labels of a second type, without resolving a signal from each label. A result is drawn from the combination of the one or more such measurements in which the individual labels are not resolved.
- the method described herein may include a single measurement that measures the same labels, different labels of the same type, and/or labels of the same type in which the individual labels are resolved.
- the method described herein may exclude analog quantification and may employ digital quantification, in which only the number of labels is determined (ascertained through measurements of individual label intensity and shape), and not the cumulative or combined optical intensity of the labels.
- the probe set described herein may comprise a binder.
- a binder is the same material as the tag or affinity tag describe herein.
- the method further comprises immobilizing the binder to a solid phase after the ligating steps.
- the method may further comprise isolating the ligated probe sets from non-ligated probes.
- the binder comprises biotin, and the solid phase comprises a magnetic bead.
- the counting step described herein may further comprise calibrating, verifying, and/or confirming the counted numbers.
- Calibrating means checking and/or adjusting the accuracy of the counted number.
- Verifying and confirming mean determining whether the counted number is accurate or not, and/or how much the error is, if exists.
- intensity and/or single-to-noise is used as a method of identifying single labels.
- dye molecules or other optical labels are in close proximity, they are often impossible to discriminate with fluorescence-based imaging due to the intrinsic limit of the diffraction of light. That is, two labels that are close together will be indistinguishable with no visible gap between them.
- One exemplary method for determining the number of labels at a given location is to examine the relative signal and/or signal-to-noise compared to locations known to have a single fluor. Two or more labels will usually emit a brighter signal (and one that can more clearly be differentiated from the background) than will a single fluor.
- FIG. 2 shows the normalized histogram of signal intensity measured from both single label samples and multi-label antibodies (both Alexa 546; verified through bleach profiles). The two populations were clearly separable, and multiple labels may be clearly distinguished from single labels.
- the counting step may comprise measuring optical signals from the immobilized labels, and calibrating the counted numbers by distinguishing an optical signal from a single label from the rest of the optical signals from background and/or multiple labels.
- the distinguishing comprises calculating a relative signal and/or single-to-noise intensity of the optical signal compared to an intensity of an optical signal from a single label.
- the distinguishing may further comprise determining whether the optical signal is from a single label.
- the optical signal is from a single label if the relative signal and/or single-to-noise intensity of an optical signal differs from an intensity of an optical signal from a single label by a predetermined amount or less.
- the predetermined amount is from 0% to 100%, from 0% to 150%, 10% to 200%, 0, 1, 2, 3, 4, 5, 10, 20, 30, or 40% or more, and/or 300, 200, 100, 50, 30, 10, or 5% or less of the intensity of the optical signal from a single label.
- different labels may have different blinking and bleaching properties. They may also have different excitation properties.
- the counting step and/or calibrating step may comprise optimizing (i) powers of light sources to excite the labels, (ii) types of the light sources, (ii) exposure times for the labels, and/or (iv) filter sets for the labels to match the optical signals from the labels, and measuring optical signals from the labels.
- the metric being optimized may vary. For example, it may be overall intensity, signal-to-noise, least background, lowest variance in intensity or any other characteristic.
- FIG. 3 shows average bleaching profiles from various labels. The plot shows the normalized counts per label type as a function of successive images that were collected over a 60 second interval. Item c1 is Cy3 fluor, item c2 is Atto647 fluor, and item c3 is Alexa488 fluor.
- blinking behavior may be used as a method of identifying single labels.
- Many dye molecules are known to temporarily go into a dark state (e.g., Burnette et al., Proc. Natl. Acad. Sci. USA (2011) 108: 21081-21086). This produces a blinking effect, where a label will go through one or more steps of bright-dark-bright. The length and number of these dark periods may vary.
- the current invention uses this blinking behavior to discriminate one label from two or more labels that may appear similar in diffraction limited imaging. If there are multiple labels present, it is unlikely the signal will completely disappear during the blinking. More likely is that the intensity will fall as one of the labels goes dark, but the others do not.
- the probability of all the labels blinking simultaneously may be calculated based on the specific blinking characteristics of a dye.
- the optical signals from the labels are measured for at least two time points, and an optical signal is from a single label if the intensity of the optical signal is reduced by a single step function.
- the two time points may be separated by from 0.1 to 30 minutes, from 1 second to 20 minutes, from 10 seconds to 10 minutes; 0.01, 0.1, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60 seconds or more; and/or 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60 seconds or less.
- an intensity of the optical signal from a single label has a single step decrease over time, and an intensity of the optical signal from two or more labels has multiple step decreases over time.
- the optical signals from the labels are measured for at least two time points and are normalized to bleaching profiles of the labels.
- the method described herein and/or the counting step may further comprises measuring an optical signal from a control label for at least two time points, and comparing the optical signal from the control label with the optical signals from the labels to determine an increase or decrease of the optical signal from the labels.
- the counting step further comprises confirming the counting by using a control molecule.
- a control molecule may be used to determine the change in frequency of a molecule type.
- the experimental goal is to determine the abundance of two or more types of molecules either in the absolute or in relation to one another.
- the null hypothesis is that they are at equal frequency, they may be enumerated on a single-molecule array and the ratio of the counts compared to the null hypothesis.
- the “single-molecule array” herein is defined as an array configured to detect a single molecule, including, for example, the arrays described in U.S. Patent Application Publication No. 2013/0172216.
- the ratio varies from 1:1, this implies they two molecules are at different frequencies. However, it may not be clear a priori whether one has increased abundance or the other has decreased abundance. If a third dye is used as a control molecule that should also be at equal frequency, this should have a 1:1 ratio with both the other dyes.
- a third dye is used as a control molecule that should also be at equal frequency, this should have a 1:1 ratio with both the other dyes.
- the ratio of the molecules labeled A and C is 1:1 and the ratio of molecules labeled B and C is 1:2, then it is likely that the molecule labeled with dye B has increased with frequency with respect to the molecule labeled with dye A.
- An example of this would be in determining DNA copy number changes in a diploid genome. It is important to know if one sequence is amplified or the other deleted and using a control molecule allows for this determination. Note the control may be another region of the genome or an artificial control sequence.
- the results of the method described herein may be confirmed by using different labels but the same tags used in the initial method. Such confirming may be performed simultaneously with the initial method or after performing the initial method.
- the confirming described herein comprises contacting first and second control probe sets to the genetic sample, wherein the first control probe set comprises a first control labeling probe and the first tagging probe, which is the same tag of the first probe set described herein, and the second control probe set comprises a second control labeling probe and the second tagging probe, which is the same tag of the second probe set described herein.
- the confirmation may further comprise hybridizing at least a part of the first and second control probe sets to the first and second nucleic acid regions of interest in nucleotide molecules of the genetic sample, respectively.
- the confirmation may further comprise ligating the first control probe set at least by ligating the first control labeling probe and the first tagging probe.
- the confirmation may further comprise ligating the second control probe set at least by ligating the second control labeling probe and the second tagging probe.
- the confirmation may further comprise amplifying the ligated probe sets.
- the confirmation may further comprise immobilizing each of the tagging probes to a pre-determined location on a substrate, wherein the first and second control labeling probes and/or the amplified labeling probes thereof ligated to the immobilized tagging probes comprise first and second control labels, respectively, the first and second control labels are different, and the immobilized labels are optically resolvable.
- the confirmation may further comprise measuring the optical signals from the control labels immobilized to the substrate.
- the confirmation may further comprise comparing the optical signals from the immobilized first and second control labels to the optical signals from the immobilized first and second labels to determine whether an error based on the labels exists.
- error based on a label means any error caused by the label that may not have occurred if a different label is used in the method.
- the first label and the second control label are the same, and the second label and the first control label are the same.
- Bleaching may be used as a method of identifying single labels.
- a key element of the readout is that individual labels be “resolvable,” i.e., distinct. This is trivial at low densities on a surface when the likelihood of labels in close proximity is very low. For higher densities, assuming the labels are at random locations (i.e., Poissonian), the chances of close neighbors increases to the point where significant numbers of labels have neighbors whose fluorescent emission partially (or fully) overlaps with their own emission. At this point, the labels are no longer “resolvable,” and in a transition regime exists between single-label detection (i.e., digital detection) and classic multi-label array-type detection (e.g., analogue detection) where the average signal from many molecules is measured. Put differently, a digital counting regime of individual molecules is switched to an analog regime of average-fluorescent-intensity from many molecules.
- One solution to increase the loading range while maintaining individual resolvability is to take advantage of fluorophore bleaching.
- Extended exposure to light may cause labels to bleach, that is, lose their property of fluorescence. That is, over time, a label may be extinguished. This usually occurs as a step function, with the label appearing to “switch off”
- the current invention may use this bleaching behavior to discriminate one label from two or more labels that may appear similar in diffraction limited imaging.
- extinction would be expected to occur via a series of step-wise decreases in the signal intensity.
- FIGS. 4-13 show the integrated label intensity vs. time (showing bleaching events as changes in intensity) graphs that were obtained for various Alexa 488 labels.
- Single versus multiple label species may be easily differentiated (e.g. depending on whether the intensity of the optical signal is reduced by single versus multiple step(s) as shown in the graphs).
- the method herein may comprise calibrating and/or confirming the counted numbers by label swapping or dye swapping.
- various modes of error may mimic the differential frequency of the probe products. For example, if a ratio of 1:2 is observed between label 1 and label 2, this may be due to genuine differences in frequency (probe product 2 is twice as common as probe product 1), differences in hybridization efficiency (the probe products are at equal abundance, but probe product 2 hybridizes more efficiently than probe product 1) or differences in the properties of the labels (for example, if the labels are fluorescent dyes, label 1 may bleach faster, blink more frequently, give lower signal or lower signal-to-noise than label 2).
- the ratio should be reversed, if it is a genuine observation of different frequencies of the molecules, with label 1 now twice as common as label 2. However, if it is due to differential hybridization efficiency the ratio will be ⁇ 2:1. If the 1:2 ratio was due to the properties of the labels, the ratio will switch to 2:1 of label 1 to label 2 if they are actually at equal frequency. This approach can be extended to any number of labeled probe sets.
- the first nucleic acid region of interest is located in a first chromosome
- the second nucleic acid region of interest is located in a second chromosome, different from the first chromosome.
- the counting step may further comprise confirming the counting, wherein the confirming step comprises contacting first and second control probe sets to the genetic sample, wherein the first control probe set comprises a first control labeling probe and a first control tagging probe, and the second control probe set comprises a second control labeling probe and the second control tagging probe.
- the confirming step may further comprise hybridizing at least a part of the first and second control probe sets to first and second control regions located in the first and second chromosomes, respectively, wherein the first and second control regions are different from the first and second nucleic acid regions of interest.
- the confirming step may further comprise ligating the first and second control probe sets at least by ligating (i) the first control labeling and tagging probes, and (ii) the second control labeling and tagging probes.
- the confirming step may further comprise amplifying the ligated probe sets.
- the confirming step may further comprise immobilizing (i) the first probe set and the second control probe set to a first pre-determined location, and (ii) the second probe set and the first control probe set to a second pre-determined location.
- the first and second control labeling probes and/or the amplified labeling probes thereof ligated to the immobilized tagging probes comprise a first and second control labels, respectively, the first label and the second control label are different, the second label and the first control labels are different, the immobilized labels are optically resolvable, the immobilized first and second control tagging probes and/or the amplified tagging probes thereof comprise first and second control tags, respectively, and the immobilizing step is performed by immobilizing the tags to the predetermined locations.
- the confirming step may further comprise measuring the optical signals from the control labels immobilized to the substrate.
- the confirming step may further comprise comparing the optical signals from the immobilized control labels to the optical signals from the immobilized first and second labels to determine whether an error based on the nucleic acid region of interest exists.
- the first tag and the second control tag are the same, and the second tag and the first control tag are the same.
- the counting step of the method described herein may further comprise calibrating and/or confirming the counted numbers by (i) repeating some or all the steps of the methods (e.g., steps including the contacting, binding, hybridizing, ligating, amplifying, and/or immobilizing) described herein with a different probe set(s) configured to bind and/or hybridize to the same nucleotide and/or peptide region(s) of interest or a different region(s) in the same chromosome of interest, and (ii) averaging the counted numbers of labels in the probe sets bound and/or hybridized to the same a nucleotide and/or peptide region of interest or to the same chromosome of interest.
- steps of the methods e.g., steps including the contacting, binding, hybridizing, ligating, amplifying, and/or immobilizing
- a different probe set(s) configured to bind and/or hybridize to the same nucleotide and/or peptide
- the averaging step may be performed before the comparing step so that the averaged counted numbers of labels in a group of different probe sets that bind and/or hybridize to the same nucleotide and/or peptide region of interest are compared, instead of the counted numbers of the labels in the individual probe sets.
- the method described herein may further comprise calibrating and/or confirming the detection of the genetic variation by (i) repeating some or all the steps of the methods (e.g., steps including the contacting, binding, hybridizing, ligating, amplifying, immobilizing, and/or counting) described herein with different probe sets configured to bind and/or hybridize to control regions that does not have any known genetic variation, and (ii) averaging the counted numbers of labels in the probe sets bound and/or hybridized to the control regions.
- steps of the methods e.g., steps including the contacting, binding, hybridizing, ligating, amplifying, immobilizing, and/or counting
- the averaged numbers of the labels in the probe sets that bind and/or hybridize to control regions are compared to the numbers of the labels in the probe sets that bind and/or hybridized to the regions of interest described herein to confirm the genetic variation in the genetic sample.
- the steps of the calibrating and/or confirming may be repeated simultaneously with the initial steps, or after performing the initial steps.
- labels e.g., fluorescent dyes
- labels from one or more populations may be measured and/or identified based on their underlying spectral characteristics.
- Most fluorescent imaging systems include the option of collecting images in multiple spectral channels, controlled by the combination of light source and spectral excitation/emission/dichroic filters. This enables the same fluorescent species on a given sample to be interrogated with multiple different input light color bands as well as capturing desired output light color bands.
- excitation of a fluorophore is achieved by illuminating with a narrow spectral band aligned with the absorption maxima of that species (e.g., with a broadband LED or arclamp and excitation filter to spectrally shape the output, or a spectrally homogenous laser), and the majority of the emission from the fluorophore is collected with a matched emission filter and a long-pass dichroic to differentiate excitation and emission ( FIG. 14 ).
- the unique identity of a fluorescent moiety may be confirmed through interrogation with various excitation colors and collected emission bands different from (or in addition to) the case for standard operation ( FIG. 15 ).
- the light from these various imaging configurations is collected and compared to calibration values for the fluorophores of interest ( FIG. 16 ).
- the experimental measurement matches the expected calibration/reference data for that fluorophore (triangles) but does not agree well with an alternate hypothesis (squares).
- a goodness-of-fit or chi-squared may be calculated for each hypothesis calibration spectrum, and the best fit selected, in an automated and robust fashion.
- references may be of interest, including fluorophores used in the system, as well as common fluorescent contaminants, e.g., those with a flat emission profile (Contaminant 1; triangle), or a blue-weighted profile (Contaminant 2; stars) ( FIG. 17 ).
- the design constraints for filter selection may be different from standard designs for which the goal is simply to maximize collected light in a single channel while avoiding significant contributions from other channels.
- the goal is spectral selectivity rather than solely light collection. For example, consider two fluorophores with significantly-different excitation bands, shown in FIG. 18 (note, only the excitation regions are shown and no excitation spectra).
- a standard design would maximize the capture of Fluor 1 emission (with Em1 filter, solid line) and minimize catching the leading edge from Fluor 2, and Fluor 2 would be optimally captured by Em2 (which is slightly red-shifted to avoid significant collection of Fluor 1 light).
- Em1+ fine dashed line
- Em2 may be widened or shifted towards Fluor 1 to capture more of that fluor's light (Em2+, fine dashed line).
- This increase in spectral information must also be balanced with the total available light from a given fluorophore to maintain detectability.
- the contribution from a given fluorophore in a given channel is only significant if the corresponding signal is above the background noise, and therefore informative, unless a negative control is intended.
- the spectral signature of a fluorescent entity may be used for robust identification and capturing more light may be a second priority if species-unique features may be more effectively quantitated.
- probe products may be labeled with more than one type of fluorophore such that the spectral signature is more complex.
- probe products may always carry a universal fluor, e.g., Alexa647, and a locus-specific fluorophore, e.g., Alexa 555 for locus 1 and Alexa 594 for locus 2. Since contaminants will rarely carry yield the signature of two fluors, this may further increase the confidence of contamination rejection. Implementation would involve imaging in three or more channels in this example such that the presence or absence of each fluor may be ascertained, by the aforementioned goodness-of-fit method comparing test to reference, yielding calls of locus 1, locus 2 or not a locus product.
- spectral modifiers may also be used to increase spectral information and uniqueness, including FRET pairs that shift the color when in close proximity or other moieties.
- the method of the present disclosure may be used to detect a genetic variation in peptide or proteins.
- the methods may comprise contacting first and second probe sets to the genetic sample, wherein the first probe set comprises a first labeling probe and a first tagging probe, and the second probe set comprises a second labeling probe and a second tagging probe.
- the methods may further comprise binding the probe sets to peptide regions of interest by a physical or chemical bond, in place of the hybridizing step described herein in the case of detecting the genetic variation in nucleic acid molecules.
- the methods may further comprise binding at least parts of the first and second probe sets to first and second peptide regions of interest in a peptide of protein of the genetic sample, respectively.
- the binding may be performed by having a binder in at least one probe in the probe set that specifically binds to the peptide region of interest.
- the methods to detect a genetic variation in peptide or proteins may further comprise conjugating the first probe set by a chemical bond at least by conjugating the first labeling probe and the first tagging probe, and conjugating the second probe set at least by conjugating the second labeling probe and the second tagging probe, in place of the ligating step described herein in the case of detecting the genetic variation in nucleic acid molecules.
- the method may further comprise immobilizing the tagging probes to a pre-determined location on a substrate as described herein.
- the first and second labeling probes conjugated to the immobilized tagging probes comprise first and second labels, respectively; the first and second labels are different; the immobilized labels are optically resolvable; the immobilized first and second tagging probes and/or the amplified tagging probes thereof comprise first and second tags, respectively; and the immobilizing step is performed by immobilizing the tags to the predetermined location.
- the methods may further comprise, as described herein, counting (i) a first number of the first label immobilized to the substrate, and (ii) a second number of the second label immobilized to the substrate; and comparing the first and second numbers to determine the genetic variation in the genetic sample.
- a system to detect a genetic variation includes various elements. Some elements include transforming a raw biological sample into a useful analyte. This analyte is then detected, generating data that are then processed into a report. Various modules that may be included in the system are shown in FIG. 19 . More details of various methods for analyzing data, including e.g., image processing, are shown in FIG. 20 . Analysis may be performed on a computer, and involve both a network connected to the device generating the data and a data server for storage of data and report. Optionally, additional information beyond the analyte data may be incorporated into the final report, e.g., maternal age or prior known risks.
- the test system includes a series of modules, some of which are optional or may be repeated depending on the results of earlier modules.
- the test may comprise: (1) receiving a requisition, e.g., from an ordering clinician or physician, (2) receiving a patient sample, (3) performing an assay including quality controls on that sample resulting in a assay-product on an appropriate imaging substrate (e.g., contacting, binding, and/or hybridizing probes to a sample, ligating the probes, optionally amplifying the ligated probes, and immobilizing the probes to a substrate as described herein), (4) imaging the substrate in one or more spectral channels, (5) analyzing image data, (6) performing statistical calculations (e.g., comparing the first and second numbers to determine the genetic variation in the genetic sample), (7) creating and approving the clinical report, and (8) returning the report to the ordering clinician or physician.
- an imaging substrate e.g., contacting, binding, and/or hybridizing probes to a sample, ligating the probes
- the test system may comprise a module configured to receive a requisition, e.g., from an ordering clinician or physician, a module configured to receive a patient sample, (3) a module configured to perform an assay including quality controls on that sample resulting in a assay-product on an appropriate imaging substrate, (4) a module configured to image the substrate in one or more spectral channels, (5) a module configured to analyze the image data, (6) a module configured to perform statistical calculations, (7) a module configured to create and confirm the clinical report, and and/or (8) a module configured to return the report to the ordering clinician or physician.
- a requisition e.g., from an ordering clinician or physician
- a module configured to receive a patient sample
- a module configured to perform an assay including quality controls on that sample resulting in a assay-product on an appropriate imaging substrate
- (4) a module configured to image the substrate in one or more spectral channels (5) a module configured to analyze the image data, (6) a module configured to
- the assays and methods described herein may be performed on a single input sample simultaneously.
- the method may comprise verifying the presence of fetal genomic molecules at or above a minimum threshold as described herein, followed by a step of estimating the target copy number state if and only if that minimum threshold is met. Therefore, one may separately run an allele-specific assay on the input sample for performing fetal fraction calculation, and a genomic target assay for computing the copy number state.
- both assays and methods described herein may be carried out in parallel on the same sample at the same time in the same fluidic volume. Further quality control assays may also be carried out in parallel with the same universal assay processing steps.
- tags, affinity tags, and/or tagging probes in the probe products, ligated probe set, or labeled molecule to be immobilized to the substrate may be uniquely designed for every assay and every assay product, all of the parallel assay products may be localized, imaged and quantitated at different physical locations on the imaging substrate.
- the same assay or method (or some of their steps) described herein using the same probes and/or detecting the same genetic variation or control may be performed on multiple samples simultaneously either in the same or different modules (e.g., testing tube) described herein.
- assays and methods (or some of their steps) described herein using different probes and/or detecting different genetic variations or controls may be performed on single or multiple sample(s) simultaneously either in the same or different modules (e.g., testing tube).
- image analysis may include image preprocessing, image segmentation to identify the labels, characterization of the label quality, filtering the population of detected labels based on quality, and performing statistical calculations depending on the nature of the image data.
- image preprocessing image segmentation to identify the labels
- characterization of the label quality filtering the population of detected labels based on quality
- performing statistical calculations depending on the nature of the image data.
- the fetal fraction may be computed.
- the genomic target assay and imaging the relative copy number state between two target genomic regions is computed.
- Analysis of the image data may occur in real-time on the same computer that is controlling the image acquisition, or on a networked computer, such that results from the analysis may be incorporated into the test workflow decision tree in near real-time.
- steps (4) and (5) of the test above may be repeated multiple times for different portions of the imaging substrate such that the results dictate next steps.
- the tests and methods described herein comprise confirming the presence and precise level of a fetal sample in a genetic sample obtained from a subject before testing for the relative copy number state of genomic targets.
- an allele sensitive assay may be used to quantify the levels of fetal DNA relative to maternal DNA.
- the resulting probe products may be pulled down to a fetal fraction region 1 on the substrate, and imaged.
- the test may proceed and yield a valid result.
- testing of samples that fail to confirm at least the minimum input fetal fraction may be terminated before additional imaging and analysis takes place. Conversely, if the fetal fraction is above the minimum threshold, further imaging (step 4 of the test) of the genomic targets (e.g., chromosome 21, 18 or 13) may proceed followed by additional analysis (step 5 of the test). Other criteria may also be used and tested.
- the genomic targets e.g., chromosome 21, 18 or 13
- the maternal genomic material may have heterozygous alleles for a given SNP (e.g., allele pair AB), and the fetal material may also be heterozygous at that site (e.g., AB), hence the fetal material is indistinguishable and calculation of the fetal fraction fails.
- Another SNP site for the same input sample may again show the maternal material to be heterozygous (e.g., AB) while the fetal material is homozygous (e.g., AA).
- the allele-specific assay may yield slightly more A counts than B counts due to the presence of the fetal DNA, from which the fetal fraction may be calculated.
- the SNP profile i.e., genotype
- multiple or numerous SNP sites should be designed such that nearly every possible sample will yield an informative SNP site.
- Each SNP site may be localized to a different physical location on the imaging substrate, for example by using a different tag for each SNP.
- the fetal fraction may only be calculated successfully once.
- a single or multiple locations on the substrate used to interrogate SNPs may be imaged and analyzed (e.g., in groups of one, two, three, four, five, ten, twenty, fifty or less and/or one, two, three, four, five, ten, twenty, fifty or more) until an informative SNP is detected.
- imaged and analyzed e.g., in groups of one, two, three, four, five, ten, twenty, fifty or less and/or one, two, three, four, five, ten, twenty, fifty or more.
- determining the fetal fraction of a sample may aide other aspects of the system beyond terminating tests for which the portion of fetal fraction in a sample is inadequate. For example, if the fetal fraction is high (e.g., 20%) then for a given statistical power, the number of counts required per genetic target (e.g., chr21) will be lower; if the fetal fraction is low (e.g., 1%) then for the same statistical power, a very high number of counts is required per genomic target to reach the same statistical significance.
- the fetal fraction is high (e.g. 20%) then for a given statistical power, the number of counts required per genetic target (e.g., chr21) will be lower; if the fetal fraction is low (e.g., 1%) then for the same statistical power, a very high number of counts is required per genomic target to reach the same statistical significance.
- steps (4) and (5) of the test above may be repeated further for quality control purposes, including assessment of background levels of fluors on the imaging substrate, contaminating moieties, positive controls, or other causes of copy number variation beyond the immediate test (e.g., cancer in the mother or fetus, fetal chimeraism, twinning).
- image analysis may be real-time, and does not require completion of the entire imaging run before generating results (unlike DNA sequencing methods), intermediate results may dictate next steps from a decision tree, and tailor the test for ideal performance on an individual sample.
- Quality control may also encompass verification that the sample is of acceptable quality and present, the imaging substrate is properly configured, that the assay product is present and/or at the correct concentration or density, that there is acceptable levels of contamination, that the imaging instrument is functional and that analysis is yielding proper results, all feeding in to a final test report for review by the clinical team.
- the test above comprises one or more of the following steps: (1) receiving a requisition (from, for example, an ordering clinician or physician), (2) receiving a patient sample, (3) performing an assay (including a allele-specific portion, genomic target portion and quality controls) on that sample resulting in a assay-product-containing imaging substrate, (4-1) imaging the allele-specific region of the substrate in one or more spectral channels, (5-1) analyzing allele-specific image data to compute the fetal fraction, (pending sufficient fetal fraction) (4-2) imaging the genomic target region of the substrate in one or more spectral channels, (5-2) analyzing genomic target region image data to compute the copy number state of the genomic targets, (4-3) imaging the quality control region of the substrate in one or more spectral channels, (5-3) analyzing quality control image data to compute validate and verify the test, (6) performing statistical calculations, (7) creating and approving the clinical report, and (8) sending the report back to the ordering clinician or physician.
- an assay including a allele-specific portion, genomic target portion
- FIG. 21 is an implementation of an assay for quantifying genomic copy number at two genomic loci.
- 105 and 106 are target molecules.
- 105 contains sequence corresponding to the first genomic locus “Locus 1” interrogated for copy number (example, chromosome 21)
- 106 contains sequence corresponding the second genomic locus “Locus 2” interrogated for copy number (example, chromosome 18).
- FIG. 21 contains an example of one probe set per genomic locus, but in some embodiments of this assay, multiple probe sets will be designed to interrogate multiple regions within a genomic locus. For example, more than 10, or more than 100, or more than 500 probe sets may be designed that correspond to chromosome 21.
- FIG. 21 contains an example of one probe set per genomic locus, but in some embodiments of this assay, multiple probe sets will be designed to interrogate multiple regions within a genomic locus. For example, more than 10, or more than 100, or more than 500 probe sets may be designed that correspond to chro
- FIG. 21 illustrates only a single probe set for each genomic locus, but importantly the scope of this invention allows for multiple probe sets for each genomic locus.
- FIG. 21 also illustrates a single hybridization event between a target molecule and a probe set.
- target molecules there will be multiple target molecules present in an assay sample. Many target molecules will contain the necessary sequences for hybridization to a probe set, and formation of a probe product. Different target molecules may hybridize to probe sets, as certain target molecules will bear genetic polymorphisms.
- target molecules that arise from genomic DNA may have a random assortment of molecule sizes, as well various beginning and ending sequences. In essence, there are multiple target molecules that may hybridize to a given probe set. In a single assay, multiple copies of a given probe set are added. Therefore, in a single assay up to thousands, or hundreds of thousands, or millions of specific probe products may be formed.
- FIG. 21 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- a first probe sets contains member probes 101 , 102 , 103 .
- Item 101 contains label ( 100 ) type “A.”
- Item 103 contains an affinity tag ( 104 ) which may be used for isolation and identification of the probe product.
- 102 may contain no modifications, such as a label or barcode.
- a second probe set with member probes 108 , 109 , 110 carries respective features as in the first probe set.
- 108 contains a label ( 107 ) of type “B,” distinguishable from type “A.”
- Item 110 contains an affinity tag ( 111 ) which may be identical to or unique from 104 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- One or more probe sets are added to target molecules in a single vessel and exposed to sequence-specific hybridization conditions.
- the three probes (e.g., 101 , 102 , 103 ) are hybridized (or attached via a similar probe-target interaction) to the target molecule ( 105 ) such there are no gaps in between the probes on the target molecule. That is, the probes from the probe set are adjacent to one another and ligation competent.
- Ligase is added to the hybridized probes and exposed to standard ligase conditions.
- the ligated probes form a probe product. All (or a majority of) probe products from Locus 1 have label type “A.” All probe products from Locus 2 have label type “B.” Quantification of the probe products corresponding to the genomic loci 1 & 2 occurs using labels “A” and “B.”
- the probe products are immobilized onto a substrate using their affinity tags.
- the affinity tag is a DNA sequence
- the probe products may be hybridized to regions of a DNA capture array at appropriate density for subsequent imaging.
- affinity tags 104 and 111 contain unique and orthogonal sequences that allow surface-based positioning to one or more locations, which may be shared between hybridization products or not.
- FIGS. 47 and 48 show the resulting fluorescence patterns when products contain unique affinity tag sequences and the underlying substrate contains complements to each of the unique affinity tags within the same region (e.g., as the same member of an array) on a substrate. The images are of the same region of a substrate, but FIG. 47 shows Cy3 labels (covalently bound to chromosome 18 product), and FIG. 48 shows Alexa Fluor 647 labels (covalently bound to chromosome 21 product). Similar patterns may be generated for other assay embodiments that follow.
- affinity tags 104 and 111 contain identical sequences that allow surface-based positioning to the same region (e.g., as the same member of an array) on a substrate. That is, different products compete for the same binding sites.
- FIGS. 49 and 51 show the resulting fluorescence patterns when different products contain identical affinity tag sequences and the underlying substrate contains the complement to the affinity tag. The images are of the same location on a substrate, but FIG. 49 shows Cy3 labels (covalently bound to chromosome 18 product) and FIG. 51 shows Alexa Fluor 647 labels (covalently bound to chromosome 21 product).
- FIGS. 50 and 52 show zoomed-in regions of FIGS. 49 and 51 , respectively, clearly demonstrating single-molecule resolution and individually-distinguishable labels. Similar patterns may be generated for other assay embodiments that follow.
- affinity tags 104 and 111 contain unique and orthogonal sequences that allow surface-based positioning to more than one location on a substrate.
- FIGS. 53 and 54 show the resulting fluorescence patterns when products contain unique affinity tag sequences and the underlying substrate has one region containing the complement to one affinity tag complement, and another separate region containing the complement to the other affinity tag. The images are of two separate regions of a substrate, with each region containing a single affinity tag complement as previously described.
- FIG. 53 shows Cy3 labels (covalently bound to chromosome 21 product), and
- FIG. 54 shows Alexa Fluor 647 labels (covalently bound to chromosome 18 product). Similar patterns may be generated for other assay embodiments that follow.
- One feature of this invention is that specificity is achieved through the combination of multiple adjacent probes that must be successfully ligated together in order for the probe product to be successfully formed, captured and detected. If a probe product is not successfully formed for any reason, then it cannot be isolated, or enriched for using an affinity tag and detected. For example, if probe 101 is not successfully ligated to probe 102 , then the resulting product cannot be detected. Similarly, if probe 103 is not successfully ligated to probe 102 , then the resulting product cannot be isolated or enriched using an affinity tag.
- probe products In this assay, specificity is achieved through sequence-specific hybridization and ligation.
- the specificity of forming probe products occurs in the reaction vessel, prior to isolating or enriching for probe products, for example immobilization onto a surface or other solid substrate.
- This side-steps the challenge of standard surface based hybridization (e.g., genomic microarray) in which specificity must be entirely achieved through hybridization only with long (>40 bp) oligonucleotide sequences (e.g., Agilent and Affymetrix arrays).
- affinity tags allows the probe products to be immobilized on a substrate and therefore excess unbound probes to be washed away using standard methods or removed using standard methods. Therefore all or most of the labels on the surface are a part of a specifically formed probe product that is immobilized to the surface.
- One feature of this invention is that the surface capture does not affect the accuracy. That is, it does not introduce any bias.
- the same affinity tag is used for probe sets from different genomic loci, with probe sets targeting each locus having a different label. Probe products from both genomic loci may be immobilized to the same location on the substrate using the same affinity tag. That is probe products from Locus 1 and Locus 2 will be captured with the same efficiency, so not introducing any locus specific bias.
- some or all of the unbound probes and/or target molecules are removed prior to surface capture using standard methods. This decreases interference between unbound probes and/or target molecules and the probe products during surface capture.
- FIGS. 22-46 describe additional exemplary embodiments of this invention. These Figures do not represent all possible embodiments, and all other variations of this assay are included as a part of this invention. Additionally, all features of the embodiment described in FIG. 21 are applicable to all additional other embodiments of the assay described in this application.
- FIG. 22 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 22 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 207 and 214 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probes 202 , 204 , 206 .
- 202 contains a label ( 201 ) of type “A.”
- 206 contains an affinity tag ( 205 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 209 , 211 , 231 carries respective features as in the first probe set.
- 209 contains a label ( 208 ) of type “B,” distinguishable from type “A.”
- 213 contains an affinity tag ( 212 ) which may be identical to or unique from 205 .
- Many probe sets may be designed such that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique or a mixture of identical and unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique or a mixture of identical and unique.
- the probes 204 and 211 may contain one or more labels ( 203 , 210 ) of type “C.” Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 23 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 23 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 307 and 314 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe set contains member probes 302 , 303 , 305 .
- 302 contains a label ( 301 ) of type “A.”
- 305 contains an affinity tag ( 306 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 309 , 310 , 312 carries respective features as in the first probe set.
- 309 contains a label ( 308 ) of type “B,” distinguishable from type “A.”
- 312 contains an affinity tag ( 313 ) which may be identical to or unique from 306 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 305 and 312 contain one or more labels ( 304 , 311 ) of type “C.” Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 24 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 24 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 407 and 414 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probes 402 , 405 .
- 402 contains a label ( 401 ) of type “A.”
- 405 contains an affinity tag ( 406 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 409 , 412 carries respective features as in the first probe set.
- 409 contains a label ( 408 ) of type “B,” distinguishable from type “A.”
- 412 contains an affinity tag ( 413 ) which may be identical to or unique from 406 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 402 and 405 hybridize to sequences corresponding to Locus 1, but there is a “gap” on the target molecule consisting of one or more nucleotides between hybridized probes 402 and 405 .
- a DNA polymerase or other enzyme may be used to synthesize a new polynucleotide species ( 404 ) that covalently joins 402 and 405 . That is, the probe product formed in this example is a single contiguous nucleic acid molecule with a sequence corresponding to Locus 1, and bearing the labels and/or affinity tags above.
- probe 404 may contain one or more labels of type “C,” possibly as a result of incorporation of a one of more nucleotides bearing a label of type “C.”
- This example also conveys to the probe product formed for Locus 2, containing probes 409 and 412 . Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 25 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 25 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 505 and 510 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probes 502 , 503 .
- 502 contains a label ( 501 ) of type “A.”
- 503 contains an affinity tag ( 504 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 507 , 508 carries respective features as in the first probe set.
- 507 contains a label ( 506 ) of type “B,” distinguishable from type “A.”
- 508 contains an affinity tag ( 509 ) which may be identical to or unique from 504 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- FIG. 26 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 26 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 606 and 612 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probes 602 , 603 .
- 602 contains a label ( 601 ) of type “A.”
- 603 contains an affinity tag ( 605 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 608 , 609 carries respective features as in the first probe set.
- 608 contains a label ( 607 ) of type “B,” distinguishable from type “A.”
- 609 contains an affinity tag ( 611 ) which may be identical to or unique from 605 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- the probes 603 and 609 contain one or more labels ( 604 , 610 ) of type “C.” Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 27 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 27 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 27 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 706 and 707 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe set contains member probes 702 , 703 , 704 .
- 702 contains a label ( 701 ) of type “A.”
- 704 contains an affinity tag ( 705 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 709 , 703 , 704 carries respective features as in the first probe set. In this embodiment, 703 and 704 are identical for both probe sets. However, 709 contains a label ( 708 ) of type “B,” distinguishable from type “A.”
- 702 and 709 contain sequences that are nearly identical, and differ by only one nucleotide in the sequence. Therefore, hybridization sequences of these two probes, which are configured to hybridize to the regions for Allele 1 and Allele 2, contains complementary regions for Allele 1 ( 702 ), and Allele 2 ( 709 ).
- each hybridization domain on 702 and 709 as well as experimental hybridization conditions are designed such that probe 702 will only hybridize to Allele 1 and probe 709 will only hybridize to Allele 2.
- the purpose of this assay type is to accurately quantify the frequency of Allele 1 and Allele 2 in a sample.
- FIG. 28 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 28 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 28 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 807 and 810 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe set contains member probes 802 , 804 , 805 .
- 802 contains a label ( 801 ) of type “A.”
- 805 contains an affinity tag ( 806 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 809 , 804 , 805 carries respective features as in the first probe set. In this embodiment, 804 and 805 are identical for both probe sets. However, 809 contains a label ( 808 ) of type “B,” distinguishable from type “A.”
- 802 and 809 contain sequences that are nearly identical, and differ by only one nucleotide in the sequence. Therefore, hybridization sequences of these two probes contain complementary regions for Allele 1 ( 802 ), and Allele 2 ( 809 ).
- each hybridization domain on 802 and 809 as well as experimental hybridization conditions are designed such that probe 802 will only hybridize to Allele 1 and probe 809 will only hybridize to Allele 2.
- the purpose of this assay type is to be able to accurately quantify the frequency of Allele 1 and Allele 2 in a sample.
- the probe 804 contains one or more labels ( 803 ) of type “C.” Therefore, probe products will contain a combination of labels. For Allele 1, probe products will contain labels of type “A” and type “C,” whereas probe products from Allele 2 will contain labels of type “B” and type “C.”
- FIG. 29 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 29 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 29 depicts two probe sets, one probe set for Allele 1 and one probe set for Allele 2.
- a first probe set contains member probes 902 , 905 .
- 902 contains a label ( 901 ) of type “A.”
- Item 905 contains an affinity tag ( 906 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 909 , 905 carries respective features as in the first probe set. In this embodiment, 905 is identical for both probe sets. However, 909 contains a label ( 908 ) of type “B,” distinguishable from type “A.” In this embodiment, 902 and 909 contain sequences that are nearly identical, and differ by only one nucleotide in the sequence.
- hybridization sequences of these two probes contain complementary regions for Allele 1 ( 902 ), and Allele 2 ( 909 ). Further, the length of each hybridization domain on 902 and 909 , as well as experimental hybridization conditions are designed such that probe 902 will only hybridize to Allele 1 and probe 909 will only hybridize to Allele 2. The purpose of this assay type is to be able to accurately quantify the frequency of Allele 1 and Allele 2 in a sample.
- probes 902 and 905 hybridize to sequences corresponding to Allele 1, such that there is a “gap” on the target molecule consisting of one or more nucleotides between hybridized probes 902 and 905 .
- a DNA polymerase or other enzyme may be used to synthesize a new polynucleotide species ( 904 ) that covalently joins 902 and 905 . That is, the probe product formed in this example is a single contiguous nucleic acid molecule with a sequence corresponding to Allele 1, and bearing the labels and/or affinity tags above.
- 904 may contain one or more labels of type “C,” possibly as a result of incorporation of a nucleotide bearing a label of type “C.” This example also conveys to the probe product formed for Allele 2, containing probes 909 and 905 .
- FIG. 30 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 30 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 30 depicts two probe sets, one probe set for Allele 1 and one probe set for Allele 2.
- 1006 and 1007 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe set contains member probes 1001 , 1003 , 1004 .
- 1003 contains a label ( 1002 ) of type “A.”
- 1004 contains an affinity tag ( 1005 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 1001 , 1009 , 1004 carries respective features as in the first probe set.
- 1001 is identical for both probe sets and 1004 is identical for both probe sets.
- 1009 contains a label ( 1008 ) of type “B,” distinguishable from type “A.”
- 1003 and 1009 contain sequences that are nearly identical, and differ by only one nucleotide in the sequence. Therefore, hybridization sequences of these two probes contains complementary regions for Allele 1 ( 1003 ), and Allele 2 ( 1009 ), respectively. Further, the length of each hybridization domain on 1003 and 1009 , as well as experimental hybridization conditions are designed such that probe 1003 will only hybridize to Allele 1 and probe 1009 will only hybridize to Allele 2. The purpose of this assay type is to be able to accurately quantify the frequency of Allele 1 and Allele 2 in a sample.
- the probe 1001 contains one or more labels ( 1000 ) of type “C.” Therefore, probe products will contain a combination of labels. For Allele 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Allele 2 will contain labels of type “B” and type “C.”
- FIG. 31 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 31 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 31 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 1104 and 1105 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe set contains member probes 1101 , 1102 .
- 1101 contains a label ( 1100 ) of type “A.”
- 1102 contains an affinity tag ( 1103 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 1107 , 1102 carries respective features as in the first probe set. In this embodiment, 1102 is identical for both probe sets.
- 1107 contains a label ( 1106 ) of type “B,” distinguishable from type “A.”
- 1101 and 1107 contain sequences that are nearly identical, and differ by only one nucleotide in the sequence. Therefore, hybridization sequences of these two probes contains complementary regions for Allele 1 ( 1101 ), and Allele 2 ( 1107 ).
- each hybridization domain on 1101 and 1107 as well as experimental hybridization conditions are designed such that probe 1101 will only hybridize to Allele 1 and probe 1107 will only hybridize to Allele 2.
- the purpose of this assay type is to be able to accurately quantify the frequency of Allele 1 and Allele 2 in a sample.
- FIG. 32 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 32 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 32 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 1206 and 1207 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe set contains member probes 1202 , 1203 .
- 1202 contains a label ( 1201 ) of type “A.”
- 1203 contains an affinity tag ( 1205 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 1209 , 1203 carries respective features as in the first probe set. In this embodiment, 1203 is identical for both probe sets. However, 1209 contains a label ( 1208 ) of type “B,” distinguishable from type “A.”
- 1202 and 1209 contain sequences that are nearly identical, and differ by only one nucleotide in the sequence. Therefore, hybridization sequences of these two probes contains complementary regions for Allele 1 ( 1202 ), and Allele 2 ( 1209 ).
- each hybridization domain on 1202 and 1209 as well as experimental hybridization conditions are designed such that probe 1202 will only hybridize to Allele 1 and probe 1209 will only hybridize to Allele 2.
- the purpose of this assay type is to be able to accurately quantify the frequency of Allele 1 and Allele 2 in a sample.
- the probe 1203 contains one or more labels ( 1204 ) of type “C.” Therefore, probe product will contain a combination of labels. For Allele 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Allele 2 will contain labels of type “B” and type “C.”
- FIG. 33 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 33 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 1304 and 1305 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probes 1301 , 1302 .
- 1301 contains a label ( 1300 ) of type “A.”
- 1301 contains an affinity tag ( 1303 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 1307 , 1308 carries respective features as in the first probe set.
- 1307 contains a label ( 1306 ) of type “B,” distinguishable from type “A.”
- 1307 contains an affinity tag ( 1309 ) which may be identical to or unique from 1303 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- the probes 1301 and 1307 have similar structures.
- probe 1301 there are two distinct hybridization domains, such that probe 1302 may be ligated to each end of 1301 , forming a probe product consisting of a contiguous, topologically closed molecule of DNA (e.g., a circular molecule).
- the non-hybridizing sequence on probe 1301 may contain additional features, possibly restriction enzyme sites, or primer binding sites for universal amplification.
- probe products are contiguous circular molecules.
- probe products may be isolated from all other nucleic acids via enzymatic degradation of all linear nucleic acid molecules, for example, using an exonuclease.
- FIG. 34 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 34 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 1405 and 1406 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probes 1401 , 1403 .
- 1401 contains a label ( 1400 ) of type “A.”
- 1401 contains an affinity tag ( 1404 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probes 1408 , 1410 carries respective features as in the first probe set.
- 1408 contains a label ( 1407 ) of type “B,” distinguishable from type “A.”
- 1408 contains an affinity tag ( 1411 ) which may be identical to or unique from 1404 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- the probes 1401 and 1408 have similar structures.
- probe 1401 there are two distinct hybridization domains, such that probe 1403 may be ligated to each end of 1401 , forming a probe product consisting of a contiguous, topologically closed molecule of DNA (e.g., a circular molecule).
- the non-hybridizing sequence on probe 1401 may contain additional features, possibly restriction enzyme sites, or primer binding sites for universal amplification.
- probe products are contiguous circular molecules.
- probe products may be isolated from all other nucleic acids via enzymatic degradation of all linear nucleic acid molecules, for example, using an exonuclease.
- the probes 1403 and 1410 contain one or more labels ( 1402 , 1409 ) of type “C.” Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 35 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 35 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 1505 and 1506 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probe 1501 .
- 1501 contains a label ( 1500 ) of type “A.”
- 1501 contains an affinity tag ( 1504 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 1508 carries respective features as in the first probe set.
- 1508 contains a label ( 1507 ) of type “B,” distinguishable from type “A.”
- 1508 contains an affinity tag ( 1511 ) which may be identical to or unique from 1504 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.”
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.”
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- the probes 1501 and 1508 have similar structures.
- probe 1501 there are two distinct hybridization domains, such that when hybridized against a target molecule, there is a gap between the two hybridization domains.
- a DNA polymerase or other enzyme may be used to synthesize a new polynucleotide species ( 1503 ) that covalently fills the gap between the hybridization domains of 1501 .
- the probe product formed in this example is a single, contiguous, topologically closed molecule of DNA (e.g., a circular molecule) with a sequence corresponding to Locus 1, and bearing the labels and/or affinity tags above.
- 1503 may contain one or more labels of type “C,” possibly as a result of incorporation of a nucleotide bearing a label of type “C.”
- This example also conveys to the probe product formed for Locus 2, containing probe 1508 .
- the non-hybridizing sequence on probe 1501 and probe 1508 may contain additional features, possibly restriction enzyme sites.
- One feature of this embodiment is that all probe products are contiguous circular molecules. In this manner, probe products may be isolated from all other nucleic acids via enzymatic degradation of all linear nucleic acid molecules, for example, using an exonuclease. Probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 36 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 36 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 1605 and 1606 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probe 1602 .
- 1602 contains a label ( 1600 ) of type “A.”
- 1602 contains an affinity tag ( 1601 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 1609 carries respective features as in the first probe set. However, 1609 contains a label ( 1608 ) of type “B,” distinguishable from type “A.” 1609 contains an affinity tag ( 1607 ) which may be identical to or unique from 1601 . Many probe sets may designed that target “Locus 1,” containing unique probe sequences but the same label type “A.” Similarly, many probe sets may be designed that target “Locus 2,” containing unique probe sequences but the same label type “B.” In this embodiment, the affinity tags for the many probe sets for Locus 1 may be identical or unique, and the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 1602 and 1609 hybridize to sequences corresponding to Locus 1 or Locus 2 respectively, and a DNA polymerase or other enzyme may be used to synthesize a new polynucleotide sequence, for example 1603 in the case of Locus 1 or 1611 in the case of Locus 2.
- 1603 and 1611 may contain one or more labels ( 1604 ) of type “C,” possibly as a result of incorporation of one of more nucleotides bearing a label of type “C.” This example also conveys to the probe product formed for Locus 2. Therefore, probe products will contain a combination of labels.
- probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.” This embodiment results in probe products with high specificity for sequences in Locus 1 or Locus 2 respectively.
- FIG. 37 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 37 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 1704 and 1705 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probe 1702 .
- 1702 contains an affinity tag ( 1700 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 1708 carries respective features as in the first probe set.
- 1708 contains an affinity tag ( 1706 ) which may be identical to or unique from 1700 .
- Many probe sets may designed that target “Locus 1,” containing unique probe sequences.
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences.
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 1702 and 1708 hybridize to sequences corresponding to Locus 1 and Locus 2 respectively.
- the designs of each probe for Locus 1 and Locus 2 are such that the first adjacent nucleotide next to the hybridization domains contains a different nucleotide for Locus 1 than for Locus 2.
- the first adjacent nucleotide next to the hybridization domain of 1702 is an “A”
- the first adjacent nucleotide next to the hybridization domain of 1708 is a “T”
- all probes for Locus 1 shall be designed such that the first nucleotide immediately adjacent to the hybridization domain shall consist of different nucleotide(s) than the first nucleotide immediately adjacent to the hybridization domain of the probes for Locus 2. That is, by design, probe sets from Locus 1 and Locus 2 may be distinguished from one another based on the identity of the first nucleotide immediately adjacent to the hybridization domain.
- a DNA polymerase or other enzyme will be used to add at least one additional nucleotide to each of the probe sequences.
- the nucleotide substrates for the DNA polymerase are competent for a single addition, for example, the nucleotides may be dideoxy chain terminators. That is, only one new nucleotide shall be added to each probe sequence.
- the nucleotide added to probe 1702 will contain one or more labels ( 1703 ) of type “A.”
- the nucleotide added to probe 1708 will contain one or more labels ( 1709 ) of type “B,” such that the probe products for Locus 1 may be distinguished from the probe products from Locus 2.
- FIG. 38 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 38 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 1804 and 1805 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probe 1802 .
- 1802 contains an affinity tag ( 1800 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 1808 carries respective features as in the first probe set.
- 1808 contains an affinity tag ( 1806 ) which may be identical to or unique from 1800 .
- Many probe sets may be designed that target “Locus 1,” containing unique probe sequences.
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences.
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 1802 and 1808 hybridize to sequences corresponding to Locus 1 and Locus 2 respectively.
- the designs of each probe for Locus 1 and Locus 2 are such that the first adjacent nucleotide next to the hybridization domains contains a different nucleotide for Locus 1 than for Locus 2.
- the first adjacent nucleotide next to the hybridization domain of 1802 is an “A”
- the first adjacent nucleotide next to the hybridization domain of 1808 is a “T”
- all probes for Locus 1 shall be designed such that the first nucleotide immediately adjacent to the hybridization domain shall consist of different nucleotide(s) than the first nucleotide immediately adjacent to the hybridization domain of the probes for Locus 2. That is, by design, probe sets from Locus 1 and Locus 2 may be distinguished from one another based on the identity of the first nucleotide immediately adjacent to the hybridization domain.
- a DNA polymerase or other enzyme will be used to add at least one additional nucleotide to each of the probe sequences.
- the nucleotide substrates for the DNA polymerase are competent for a single addition, perhaps because the nucleotides added to the reaction mixture are dideoxy nucleotides. That is, only one new nucleotide shall be added to each probe sequence.
- the nucleotide added to probe 1802 will contain one or more labels ( 1803 ) of type “A.”
- the nucleotide added to probe 1808 will contain one or more labels ( 1809 ) of type “B,” such that the probe products for Locus 1 may be distinguished from the probe products from Locus 2.
- probes 1802 and 1808 contain one or more labels ( 1801 , 1806 ) of type “C.” Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 39 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 39 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 1906 and 1907 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe set contains member probe 1902 .
- 1902 contains an affinity tag ( 1901 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 1910 carries respective features as in the first probe set.
- 1910 contains an affinity tag ( 1908 ) which may be identical to or unique from 1901 .
- Many probe sets may be designed that target “Locus 1,” containing unique probe sequences.
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences.
- the affinity tags for the many probe sets for Locus 1 may be identical or unique, and the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 1902 and 1910 hybridize to sequences corresponding to Locus 1 and Locus 2 respectively.
- the designs of each probe for Locus 1 and Locus 2 are such that the first adjacent nucleotide next to the hybridization domains contains a different nucleotide for Locus 1 than Locus 2.
- the first adjacent nucleotide next to the hybridization domain of 1902 is an “A”
- the first adjacent nucleotide next to the hybridization domain of 1910 is a “T”
- all probes for Locus 1 shall be designed such that the first nucleotide immediately adjacent to the hybridization domain shall consist of different nucleotide(s) than the first nucleotide immediately adjacent to the hybridization domain of the probes for Locus 2. That is, by design, probe sets from Locus 1 and Locus 2 may be distinguished from one another nucleotide on the identity of the first nucleotide immediately adjacent to the hybridization domain.
- a different nucleotide, not one used to distinguish probes from Locus 1 or Locus 2 shall serve as a chain terminator.
- an “A” nucleotide on a target molecule is used do distinguish probes for Locus 1 and a “T” nucleotide is used to distinguish probes for Locus 2.
- a “C” nucleotide may serve as a chain terminator.
- a “C” nucleotide will be added to the assay not is not capable of chain elongation (for example, a dideoxy C).
- probe sequences are designed such that there are no instances of an identifying nucleotide for Locus 2 present on 1906 in between the distinguishing nucleotide for Locus 1 and the chain terminating nucleotide. In this example, there will be no “T” nucleotides present on 1906 after the hybridization domain of 1902 and before the G, which will pair with the chain terminator C.
- DNA polymerase or a similar enzyme will be used to synthesize new nucleotide sequences, and the nucleotide added at the distinguishing nucleotide location for Locus 1 will contain one or more labels ( 1903 ) of type “A.”
- the nucleotide added at the distinguishing nucleotide location for Locus 2 will contain 1 or more labels ( 1911 ) of type “B,” such that the probe products for Locus 1 may be distinguished from the probe products from Locus 2.
- the nucleotide added at the chain terminating position will contain one or more labels ( 1912 ) of type “C.” Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- the chain terminator may contain no label.
- a fourth nucleotide may be added to the assay that contains one or more labels of type “C.” This fourth nucleotide does not pair with the identifying nucleotide for Allele 1 (in this example, A), does not pair with the identifying nucleotide for Allele 2 (in this example, T), does not pair with the chain terminating nucleotide (in this example G).
- the fourth nucleotide that would bear one or more labels of type “C” is G, and will pair with C locations on 1906 and 1907 . Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 40 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 40 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 2005 and 2006 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probe 2001 .
- 2001 contains an affinity tag ( 2000 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 2008 carries respective features as in the first probe set.
- 2008 contains an affinity tag ( 2007 ) which may be identical to or unique from 2000 .
- Many probe sets may be designed that target “Locus 1,” containing unique probe sequences.
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences.
- the affinity tags for the many probe sets for Locus 1 may be identical or unique, and the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 2001 and 2008 hybridize to sequences corresponding to Locus 1 and Locus 2 respectively.
- the designs of each probe for Locus 1 and Locus 2 are such that there are one or more instances of a distinguishing nucleotide (in this example, “A” is a distinguishing nucleotide for Locus 1 and “T” is a distinguishing nucleotide for Locus 2) followed by a chain terminating nucleotide (in this example “G”) adjacent to the hybridization domain of the probes.
- a distinguishing nucleotide for Locus 2 in this example, “T” present in between the hybridization domain of 2001 on 2005 and the chain terminating nucleotide on 2005 .
- the distinguishing nucleotide for Locus 1 in this example, “A” present in between the hybridization domain of 2008 on 2006 and the chain terminating nucleotide on 2006 .
- DNA polymerase or a similar enzyme will be used to synthesize new nucleotide sequences ( 2004 , 2011 ) until the addition of a chain terminating nucleotide, one possible example would be a dideoxy C.
- the nucleotides added at the distinguishing nucleotide locations for Locus 1 will contain one or more labels ( 2003 ) of type “A.”
- the nucleotides added at the distinguishing nucleotide locations for Locus 2 will contain 1 or more labels ( 2010 ) of type “B,” such that the probe products for Locus 1 may be clearly distinguished from the probe products from Locus 2.
- FIG. 41 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 41 depicts two probe sets, one probe set for Locus 1 and one probe set for Locus 2, although as aforementioned, multiple probes sets may be designed for each genomic locus.
- 2105 and 2106 are target molecules corresponding to Locus 1 and Locus 2, respectively.
- a first probe sets contains member probe 2102 .
- 2102 contains an affinity tag ( 2100 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 2109 carries respective features as in the first probe set.
- 2109 contains an affinity tag ( 2107 ) which may be identical to or unique from 2100 .
- Many probe sets may be designed that target “Locus 1,” containing unique probe sequences.
- many probe sets may be designed that target “Locus 2,” containing unique probe sequences.
- the affinity tags for the many probe sets for Locus 1 may be identical or unique
- the affinity tags for the many probe sets for Locus 2 may be identical or unique.
- probes 2102 and 2109 hybridize to sequences corresponding to Locus 1 and Locus 2 respectively.
- the designs of each probe for Locus 1 and Locus 2 are such that there are one or more instances of a distinguishing nucleotide (in this example, “A” is a distinguishing nucleotide for Locus 1 and “T” is a distinguishing nucleotide for Locus 2) followed by a chain terminating nucleotide (in this example “G”) adjacent to the hybridization domain of the probes.
- DNA polymerase or a similar enzyme will be used to synthesize new nucleotide sequences ( 2104 , 2110 ) until the addition of a chain terminating nucleotide, one possible example would be a dideoxy C.
- the nucleotides added at the distinguishing nucleotide locations for Locus 1 will contain one or more labels ( 2103 ) of type “A.”
- the nucleotides added at the distinguishing nucleotide locations for Locus 2 will contain 1 or more labels ( 2110 ) of type “B,” such that the probe products for Locus 1 may be clearly distinguished from the probe products from Locus 2.
- probes 2102 and 2109 contain one or more labels ( 2101 , 2108 ) of type “C.” Therefore, probe products will contain a combination of labels. For Locus 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Locus 2 will contain labels of type “B” and type “C.”
- FIG. 42 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 42 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 42 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 2203 and 2204 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe sets contains member probe 2201 .
- 2201 contains an affinity tag ( 2200 ) which may be used for isolation and identification of the probe product.
- the probe sets used for identification of the two different alleles are the same. That is, the probe set for Allele 2 consists of member probe 2201 .
- probe 2201 hybridizes to a sequence corresponding to Allele 1 and Allele 2 respectively in FIG. 42 .
- the design of probe 2201 is such that the first adjacent nucleotide next to the hybridization domain contains a different nucleotide for Allele 1 than Allele 2.
- the first nucleotide adjacent to the hybridization domain may be a single nucleotide polymorphism, or SNP.
- the first adjacent nucleotide on 2203 next to the hybridization domain of 2201 is an “A”
- the first adjacent nucleotide on 2204 next to the hybridization domain of 2201 is a “T.” That is, probe products from Allele 1 and Allele 2 may be distinguished from one another based on the identity of the first nucleotide immediately adjacent to the hybridization domain.
- a DNA polymerase or other enzyme will be used to add at least one additional nucleotide to each of the probe sequences.
- the nucleotide substrates for the DNA polymerase are competent for a single addition, perhaps because the nucleotides added to the reaction mixture are dideoxy nucleotides. That is, only one new nucleotide shall be added to each probe sequence.
- the nucleotide added to probe 2201 for Allele 1 will contain one or more labels ( 2202 ) of type “A.”
- the nucleotide added to probe 2201 for Allele 2 will contain one or more labels ( 2205 ) of type “B,” such that the probe products for Allele 1 may be clearly distinguished from the probe products from Allele 2.
- the probe product for Allele 1 consists of probe 2201 plus one additional nucleotide bearing one or more labels of type “A”
- the probe products for Allele 2 consists of probe 2201 plus one additional nucleotide bearing one or more labels of type “B.”
- FIG. 43 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 43 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 43 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 2304 and 2305 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe sets contains member probe 2302 .
- 2302 contains an affinity tag ( 2300 ) which may be used for isolation and identification of the probe product.
- the probe sets used for identification of the two different alleles are the same. That is, the probe set for Allele 2 consists of member probe 2302 .
- probe 2302 hybridizes to a sequence corresponding to Allele 1 and Allele 2 respectively in FIG. 43 .
- the design of probe 2302 is such that the first adjacent nucleotide next to the hybridization domains contains a different nucleotide for Allele 1 than Allele 2.
- the first nucleotide adjacent to the hybridization domain may be a single nucleotide polymorphism, or SNP.
- the first adjacent nucleotide on 2304 next to the hybridization domain of 2302 is an “A”
- the first adjacent nucleotide on 2305 next to the hybridization domain of 2302 is a “T.” That is, probe products from Allele 1 and Allele 2 may be distinguished from one another based on the identity of the first nucleotide immediately adjacent to the hybridization domain.
- a DNA polymerase or other enzyme will be used to add at least one additional nucleotide to each of the probe sequences.
- the nucleotide substrates for the DNA polymerase are competent for a single addition, perhaps because the nucleotides added to the reaction mixture are dideoxy nucleotides. That is, only one new nucleotide shall be added to each probe sequence.
- the nucleotide added to probe 2302 for Allele 1 will contain one or more labels ( 2303 ) of type “A.”
- the nucleotide added to probe 2302 for Allele 2 will contain one or more labels ( 2306 ) of type “B,” such that the probe products for Allele 1 may be clearly distinguished from the probe products from Allele 2.
- the probe product for Allele 1 consists of probe 2302 plus one additional nucleotide bearing one or more labels of type “A”
- the probe products for Allele 2 consists of probe 2302 plus one additional nucleotide bearing one or more labels of type “B.”
- the probes 2302 contain one or more labels ( 2301 ) of type “C.” Therefore, probe products will contain a combination of labels. For Allele 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Allele 2 will contain labels of type “B” and type “C.”
- FIG. 44 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 44 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 44 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 2405 and 2406 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe sets contains member probe 2401 .
- 2401 contains an affinity tag ( 2400 ) which may be used for isolation and identification of the probe product.
- the probe sets used for identification of two different alleles are the same. That is, the probe set for Allele 2 consists of member probe 2401 .
- probe 2401 hybridizes to a sequence corresponding to Allele 1 and Allele 2 respectively in FIG. 44 .
- the design of probe for 2401 is such that the first adjacent nucleotide next to the hybridization domains contains a different nucleotide for Allele 1 than Allele 2.
- the first nucleotide adjacent to the hybridization domain may be a single nucleotide polymorphism, or SNP.
- the first adjacent nucleotide on 2405 next to the hybridization domain of 2401 is an “A”
- the first adjacent nucleotide on 2406 next to the hybridization domain of 2401 is a “T.” That is, probe products from Allele 1 and Allele 2 may be distinguished from one another based on the identity of the first nucleotide immediately adjacent to the hybridization domain.
- a DNA polymerase or other enzyme will be used to add at least one additional nucleotide to each of the probe sequences.
- the nucleotide added to probe 2401 for Allele 1 will contain one or more labels ( 2402 ) of type “A.”
- the nucleotide added to probe 2401 for Allele 2 will contain one or more labels ( 2407 ) of type “B,” such that the probe products for Locus 1 may be clearly distinguished from the probe products from Locus 2.
- the probe product for Allele 1 contains probe 2401 plus an additional nucleotide bearing one or more labels of type “A”
- the probe product for Allele 2 contains probe 2401 plus an additional nucleotide bearing one or more labels of type “B.”
- a different nucleotide, not one used to distinguish Allele 1 from Allele 2 shall serve as a chain terminator.
- an “A” nucleotide on a target molecule is used to identify Allele 1 and a “T” nucleotide is used to identify Allele 2.
- a “C” nucleotide may serve as a chain terminator.
- a “C” nucleotide will be added to the assay that is not is not capable of chain elongation (for example, a dideoxy C).
- the probe sequences are designed such that there are no instances of an identifying nucleotide for Allele 2 is present on 2405 in between the distinguishing nucleotide for Allele 1 an the chain terminating nucleotide.
- DNA polymerase or a similar enzyme will be used to synthesize new nucleotide sequences, and the nucleotide added at the distinguishing nucleotide location for Allele 1 will contain one or more labels ( 2402 ) of type “A.”
- the nucleotide added at the distinguishing nucleotide location for Allele 2 will contain 1 or more labels ( 2407 ) of type “B,” such that the probe products for Allele 1 may be clearly distinguished from the probe products from Allele 2.
- the nucleotide added at the chain terminating position will contain one or more labels ( 2403 ) of type “C.” Therefore, probe products will contain a combination of labels. For Allele 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Allele 2 will contain labels of type “B” and type “C.”
- FIG. 45 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 45 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 45 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 2505 and 2506 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe sets contains member probe 2501 .
- 2501 contains an affinity tag ( 2500 ) which may be used for isolation and identification of the probe product.
- the probe sets used for identification of two different alleles are the same. That is, the probe set for Allele 2 consists of member probe 2501 .
- probe 2501 hybridizes to a sequence corresponding to Allele 1 and Allele 2 respectively in FIG. 45 .
- the design of probe for 2501 is such that the first adjacent nucleotide next to the hybridization domains contains a different nucleotide for Allele 1 than Allele 2.
- the first nucleotide adjacent to the hybridization domain may be a single nucleotide polymorphism, or SNP.
- the first adjacent nucleotide on 2505 next to the hybridization domain of 2501 is an “A”
- the first adjacent nucleotide on 2506 next to the hybridization domain of 2501 is a “T.” That is, probe products from Allele 1 and Allele 2 may be distinguished from one another based on the identity of the first base immediately adjacent to the hybridization domain.
- a DNA polymerase or other enzyme will be used to add at least one additional nucleotide to each of the probe sequences.
- the nucleotide added to probe 2501 for Allele 1 will contain one or more labels ( 2502 ) of type “A.”
- the nucleotide added to probe 2501 for Allele 2 will contain one or more labels ( 2507 ) of type “B,” such that the probe products for Locus 1 may be clearly distinguished from the probe products from Locus 2.
- the probe product for Allele 1 contains probe 2501 plus an additional nucleotide bearing one or more labels of type “A”
- the probe product for Allele 2 contains probe 2501 plus an additional nucleotide bearing one or more labels of type “B.”
- a different nucleotide, not one used to distinguish Allele 1 from Allele 2 shall serve as a chain terminator.
- an “A” nucleotide on a target molecule is used to identify Allele 1 and a “T” nucleotide is used to identify Allele 2.
- a “C” nucleotide may serve as a chain terminator.
- a “C” nucleotide will be added to the assay that is not is not capable of chain elongation (for example, a dideoxy C).
- the probe sequences are designed such that no instances of an identifying nucleotide for Allele 2 are present on 2505 in between the distinguishing nucleotide for Allele 1 and the chain terminating nucleotide.
- DNA polymerase or a similar enzyme will be used to synthesize new nucleotide sequences, and the nucleotide added at the distinguishing nucleotide location for Allele 1 will contain one or more labels ( 2502 ) of type “A.”
- the nucleotide added at the distinguishing nucleotide location for Allele 2 will contain 1 or more labels ( 2507 ) of type “B,” such that the probe products for Allele 1 may be clearly distinguished from the probe products from Allele 2.
- a fourth nucleotide may be added to the assay that contains one or more labels ( 2508 , 2503 ) of type “C.”
- This fourth nucleotide does not pair with the identifying nucleotide for Allele 1 (in this example, A), does not pair with the identifying nucleotide for Allele 2 (in this example, T), does not pair with the chain terminating nucleotide (in this example G).
- the fourth nucleotide that would bear one or more labels of type “C” is G, and will pair with C locations on 2505 and 2506 . Therefore, probe products will contain a combination of labels. For Allele 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Allele 2 will contain labels of type “B” and type “C.”
- FIG. 46 depicts a modification of the general procedure described in FIG. 21 .
- FIG. 46 depicts two probe sets for identifying various alleles of the same genomic locus. For example, for distinguishing maternal and fetal alleles, in the case of cell free DNA isolated from a pregnant woman, or for distinguishing host and donor alleles, in the case of cell free DNA from a recipient of an organ transplant.
- FIG. 46 depicts two probe sets—one probe set for Allele 1 and one probe set for Allele 2.
- 2605 and 2606 are target molecules corresponding to Allele 1 and Allele 2, respectively.
- a first probe set contains member probe 2602 .
- 2602 contains a label ( 2601 ) of type “A.”
- 2602 contains an affinity tag ( 2600 ) which may be used for isolation and identification of the probe product.
- a second probe set with member probe 2609 carries respective features as in the first probe set. However, 2609 contains a label ( 2608 ) of type “B,” distinguishable from type “A.” 2609 contains an affinity tag ( 2607 ) which may be identical to or unique from 2600 .
- 2602 and 2609 contain sequences that are nearly identical, and differ by only one nucleotide in the sequence. Therefore, hybridization sequences of these two probes are complementary to Allele 1 ( 2605 ), or Allele 2 ( 2606 ). Further, the length of each hybridization domain on 2602 and 2609 , as well as experimental hybridization conditions are designed such that probe 2602 will only hybridize to Allele 1 and probe 2609 will only hybridize to Allele 2. The purpose of this assay type is to be able to accurately quantify the frequency of Allele 1 and Allele 2 in a sample.
- DNA polymerase or other enzyme may be used to synthesize a new polynucleotide sequence, for example 2604 in the case of Allele 1 or 2611 in the case of Allele 2.
- 2604 and 2611 may contain one or more labels ( 2603 , 2610 ) of type “C,” possibly as a result of incorporation of a one of more nucleotides bearing a label of type “C.” Therefore, probe products will contain a combination of labels. For Allele 1, probe products will contains labels of type “A” and type “C,” whereas probe products from Allele 2 will contain labels of type “B” and type “C.” This embodiment results in probe products with high specificity for sequences in Allele 1 or Allele 2 respectively.
- FIGS. 55, 56, 57, 58A, 58B, and 58C illustrate a modification of the general procedure described with respect to FIGS. 21-46 .
- FIG. 55 depicts two probe sets; one probe set for Locus 1 and one probe set for Locus 2—although as aforementioned, multiple probes sets may be designed for each genomic locus.
- the left arm of the Locus 1 probe set consists of a forward priming sequence, an affinity tag sequence and a homolog to Locus 1 sequence.
- the right arm of the Locus 1 probe set consists of a homolog to Locus 1 sequence and a reverse priming sequence for labeling the Locus 1 probe set with label A.
- the left arm of the Locus 2 probe set consists of a forward priming sequence, an affinity tag sequence and a homolog to Locus 2 sequence.
- the right arm of the Locus 2 probe set consists of a homolog to Locus 2 sequence and a reverse priming sequence for labeling the Locus 2 probe set with label B.
- the forward priming sequence and the affinity tag sequence are identical for the probe sets for both Locus 1 and Locus 2.
- the homologous sequences are specific to a single genomic locus. Locus homologous sequences for each probe set are immediately adjacent to one another such that when they hybridize to their target loci, they immediately abut one another and thus may be ligated to form one continuous molecule.
- the reverse priming sequence is specific to the label (e.g., label A or label B) to be used in labeling probe products for a particular locus for a particular affinity tag sequence.
- FIG. 56 depicts the procedural workflow that would be applied to the collection of probe sets, such as those probe sets illustrated in FIG. 55 .
- This depiction is based on one probe set for one genomic locus (e.g., the probe set for Locus 1 shown in FIG. 55 ).
- the collection of probe sets is mixed with purified cell-free DNA.
- the locus specific sequences in each probe set hybridize to their corresponding homologous sequences in the cell-free DNA sample.
- Step 3 a ligase enzyme is added to catalyze the formation of a phosphodiester bond between the 3′ base on the left arm homolog and the 5′ arm of the right homolog, closing the nick between the two arms and thus forming one continuous molecule which is the probe product.
- Step 4 modified primers and PCR reaction components (Taq polymerase, dNTPs, and reaction buffer) are added to amplify the ligated probe product.
- the Forward Primer is modified in that it has a 5′ phosphate group that makes it a preferred template for the Lambda exonuclease used in Step 6 and the Reverse Primer is modified in that it contains the label (blue circle) that is specific to probe products for a particular locus for a (Equation 2) particular affinity tag.
- the probe product is PCR amplified to yield a double-stranded PCR product in which the forward strand contains a 5′ phosphate group and the reverse strand contains a 5′ label.
- Step 6 Lambda exonuclease is added to digest the forward strand in a 5′ to 3′ direction—the 5′ phosphate group on the forward strand makes it a preferred template for Lambda exonuclease digestion.
- the resulting material is single-stranded (reverse strand only) with a 5′ label. This represents the labeled target material for hybridization to a microarray or monolayer.
- FIG. 57 depicts a modified version of the procedural workflow illustrated in FIG. 56 .
- the left arm of each probe set contains a terminal biotin molecule as indicated by a “B” in Steps 1 to 6 of the Figure.
- This biotinylation enables the purification of the collection of probe products after completion of the hybridization-ligation reaction and prior to the PCR amplification.
- the workflow for this embodiment is identical to that described in FIG. 57 for Steps 1 to 3 .
- Step 4 streptavidin-coated magnetic beads are added to the hybridization-ligation reaction.
- the biotin molecule contained in the probe products will bind the products to the streptavidin.
- Step 5 the magnetic beads are washed to remove the non-biotinylated DNA (cell-free genomic DNA and right arm oligonucleotides), resulting in a purified probe product.
- Steps 6 to 9 are performed in the same manner as described for Steps 4 to 7 in FIG. 56 .
- FIGS. 58A, 58B, and 58C provide an example of how probe products for Locus 1 and Locus 2 may be labeled with different label molecules.
- Locus 1 probe products are labeled with label A (green) and Locus 2 probe products are labeled with label B (red) in one PCR amplification reaction.
- Probe products for both loci contain affinity tag sequence A.
- FIG. 58B the mixture of differentially labeled probe products is hybridized to a microarray location in which the capture probe sequence is complementary to the affinity tag A sequence.
- FIG. 58C the microarray location is imaged and the number of molecules of label A and label B counted to provide a relative measure of the levels of Locus 1 and Locus 2 present in the sample.
- FIG. 59 provides evidence that probe products representing a multitude of genomic locations for one locus may be generated in a ligase enzyme specific manner using the hybridization-ligation process.
- Eight probe sets, each consisting of a left arm and right arm component as described in FIG. 55 and, containing homologs to eight chromosome 18 locations were hybridized to synthetic oligonucleotide templates (about 48 nucleotides) and ligated using a ligase enzyme to join the left and right arms for each. Reaction products were analyzed using denaturing polyacrylamide gel electrophoresis. Gel lane 1 contains a molecular weight ladder to indicate DNA band sizes. Lanes 2 to 9 contain hybridization-ligation reaction products for the eight chromosome 18 probe sets.
- FIGS. 60A and 60B provide provides data indicating that probe sets may be used to detect relative changes in copy number state.
- a mixture of eight probe sets containing homologs to eight distinct chromosome X locations was used to assay the cell lines containing different numbers of chromosome X indicated in Table 1.
- Quantitative PCR was used to determine the amount of probe product present for each cell line following the hybridization-ligation and purification processes described in FIG. 57 (Steps 1 to 5 ).
- the copy number state measured for the various cell lines followed the expected trend indicated in Table 1.
- qPCR indicated a copy number state of less than two for NA12138, which has one copy of chromosome X.
- the measured copy number state for NA00254 (three copies of X) was greater than two, for NA01416 (four copies of X) was greater than three, and for NA06061 (five copies of X) was greater than four.
- FIG. 60B The responsiveness of the process in detecting differences in copy number state is further illustrated by FIG. 60B in which the measured copy number state is plotted against the theoretical copy number state.
- FIGS. 61A, 61B, and 61C provide evidence that mixtures of probe products may be used to generate quantitative microarray data as described in FIGS. 56 and 57 .
- FIG. 61A depicts representative fluorescence images of two array spots in two orthogonal imaging channels (Alexa 488: green, Alexa 594; red).
- a region of interest (ROI) is automatically selected (large circle), with any undesired bright contaminants being masked from the image (smaller outlined regions within the ROI).
- Single fluorophores on single hybridized assay products are visualized as small punctate features within the array spot.
- a “Balanced” spot (representing genomic targets input at a 1:1 concentration ratio to the assay) imaged in the green channel and (ii) the same spot imaged in the red channel.
- An “Increased” spot (representing genomic targets input at a >1:1 concentration ratio to the assay) imaged in the green channel and (iv) the same spot imaged in the red channel.
- FIG. 61B presents raw counts of the detected fluorophores in two channels for five spots each of the “Balanced” and “Increased” conditions. Despite some variation in the absolute number of fluors, the numbers in the two channels track closely for the “Balanced” case, but demonstrate clear separation in the “Increased” case.
- FIG. 61C presents calculated ratio values for number of fluors in the green channel divided by the number of fluors in the red channel, for the five spots from each of the “Balanced” and “Increased” conditions.
- the “Balanced” case centers about a ratio of 1.0 and the “Increased” case is at an elevated ratio.
- FIG. 62 illustrates a modification of the general procedure described in FIGS. 55, 56, 57, 58A, 58B, and 58C .
- a second probe set, Probe Set B is designed for each genomic location such that the genome homolog sequences in Probe Set B are a reverse complement of the genome homolog sequences in Probe Set A.
- Probe Set A will hybridize to the reverse strand of the genomic DNA and Probe Set B will hybridize to the forward strand of the genomic DNA.
- This embodiment will provide increased sensitivity relative to the embodiment described in FIGS. 55, 56, 57, 58A, 58B, and 58C as it will yield approximately double the number of probe products per locus.
- FIG. 63 illustrates a modification to the general procedure described in FIG. 57 .
- the Reverse Primer used in Step 6 is additionally modified in that the four bonds linking the first five nucleotides in the oligonucleotide sequence are phosphorothioate bonds.
- This modification will result in all PCR products generated during PCR amplification (Step 7 ) having a phosphorothioate modification on the 5′ end.
- This modification will protect the reverse strand from any digestion that might occur during the treatment with Lambda exonuclease in Step 8 .
- the reverse strand may still have some vulnerability to digestion. Phosphorothioate modification of the 5′ end of the reverse strand will reduce its vulnerability to Lambda exonuclease digestion.
- FIG. 64 illustrates a modification of the general procedure described in FIGS. 55, 56, 57, 58A, 58B, and 58C .
- PCR amplification of the probe product is replaced with linear amplification by adding the Reverse Primer but no Forward Primer to the amplification reaction in Step 6 .
- the amplification product will be single stranded—the reverse strand with a label of the 5′ end.
- the amplification product is already single-stranded, it does not require further processing before hybridization to a microarray, i.e., Lambda exonuclease digestion may be omitted.
- a forward primer is not used in this embodiment, it is unnecessary for the left arm of the probe set to contain a forward priming sequence. The left arm would consist of an affinity tag sequence and a locus homolog sequence only as illustrated in FIG. 64 .
- a further embodiment of the general procedure described in FIGS. 55, 56, 57, 58A, 58B , and 58 C is one in which the single ligation reaction process in Step 3 is replaced with a cycled ligation reaction process. This is accomplished by replacing the thermolabile ligase enzyme (e.g., T4 ligase) used to catalyze the ligation reaction with a thermostable ligase (e.g., Taq ligase).
- a thermostable ligase e.g., Taq ligase
- the hybridization-ligation reaction may be heated to a temperature that will melt all DNA duplexes (e.g., 95° C.) after the initial cycle of hybridization and ligation has occurred.
- thermocycling of the hybridization and ligation reaction between a temperature that will melt DNA duplexes and one that will allow hybridization and ligation to occur will linearly increase the amount of probe product yielded from the reaction. If the reaction is exposed to 30 such cycles, up to 30 times the amount of probe product will be yielded than from a process in which a single ligation reaction is used.
- FIGS. 65A and 65B depict further embodiments of the modified procedure described in FIG. 62 .
- This embodiment takes advantage of the ligase chain reaction (LCR) in combining the presence of the reverse complement for each probe set with the use of a thermostable ligase to enable a cycled ligation reaction in which the product is exponentially amplified.
- FIGS. 65A and 65B depict two probe sets, Probe Set A and Probe Set B for one locus; where the genome homolog sequences in Probe Set B are the reverse complement of the genome homolog sequences in Probe Set A.
- the 5′ arm of each Probe Set consists of an affinity tag sequence and a homolog while the 3′ arm of each Probe Set consists of a homolog sequence with a label attached.
- genomic DNA will be the only template available to enable hybridization and ligation to occur to generate a probe product as illustrated in FIG. 65A .
- Probe Product B generated in the first cycle will act as an additional template for Probe Set A and likewise Probe Product A generated in the first cycle will act as an additional template for Probe Set B as illustrated in FIG. 65B .
- the probe products from each successive cycle will act as template for probe set hybridization and ligation in the next cycle. This process would eliminate the need for PCR amplification of the probe product which may be directly used as microarray target.
- FIGS. 65A and 65B Another embodiment of the procedure depicted in FIGS. 65A and 65B is one which employs LCR but uses probe sets that have the structure described in FIG. 55 , i.e., both left and right arms are flanked by priming sequences, the left arm contains a biotin molecule and the right arm does not contain a label.
- the probe products are purified using magnetic beads (optional) and then PCR amplified and microarray target prepared as illustrated in FIGS. 56 and 57 .
- FIGS. 66A, 66B, and 66C depict yet other embodiments of the procedure depicted in FIGS. 65A and 65B .
- the 5′ arm of each Probe Set consists of an affinity tag sequence and a homolog while the 3′ arm of each Probe Set consists of a homolog sequence and a priming sequence without a label attached as illustrated in FIG. 66A .
- the probe product may be purified.
- the LCR product would then be amplified in a linear manner by the addition of a single primer that has a label attached, along with reaction components (Taq polymerase, dNTPs, and reaction buffer) as illustrated in FIG. 66B .
- the product of this amplification would be single-stranded (reverse strand only) with a 5′ label as illustrated in FIG. 66C . Consequently it would not be necessary to treat it with Lambda exonuclease but rather it could instead be directly used as microarray target.
- the genetic variation determined by the methods described herein indicates presence or absence of cancer, phamacokinetic variability, drug toxicity, transplant rejection, or aneuploidy in the subject. In another aspect, the determined genetic variation indicates presence or absence of cancer. Accordingly, the methods described herein may be performed to diagnose cancer.
- a significant challenge in oncology is the early detection of cancer. This is particularly true in cancers that are hard to image or biopsy (e.g., pancreatic cancer, lung cancer).
- Cell free tumor DNA (tumor cfDNA) in a patient's blood offers a method to non-invasively detect a tumor. These may be solid tumors, benign tumors, micro tumors, liquid tumors, metastasis or other somatic growths. Detection may be at any stage in the tumor development, though ideally early (Stage I or Stage II). Early detection allows intervention (e.g., surgery, chemotherapy, pharmaceutical treatment) that may extend life or lead to remission.
- the probe sets of the present disclosure may be configured to target known genetic variations associated with tumors. These may include mutations, SNPs, copy number variants (e.g., amplifications, deletions), copy neutral variants (e.g., inversions, translocations), and/or complex combinations of these variants.
- the known genetic variations associated with tumors include those listed in cancer.sanger.ac.uk/cancergenome/projects/cosmic; nature.com/journal/v45/n10/full/ng.2760.html#supplementary-information; and Tables 2 and 3 below:
- B GENE p-value from corrected to FDR within peak; K Known frequently amplified oncogene or deleted TSG; P Putative cancer gene; E Epigenetic regulator; M Mitochondria-associated gene; **Immediately adjacent to peak region; T Adjacent to telomere or centromere of acrocentric chromosome.
- inversions that occur at known locations may easily be targeted by designing probes that at least partially overlap the breakpoint in one probe arm.
- a first probe that binds the “normal” sequence targets non-inverted genomic material ( FIG. 67B ) and carries a first label type.
- a second probe that binds the “inverted” target carries a second label type ( FIG. 67C ).
- a common right probe arm binds native sequence that is not susceptible to inversion, immediately adjacent the first two probes. This right probe arm further carries a common pull-down tag that localizes the probe products to the same region of an imaging substrate. In this way, the probe pairs may hybridize to the genomic targets, ligate, and be imaged to yield relative counts of the two underlying species.
- FIG. 68A shows two genetic elements that are either in their native order or translocated. Probe arms that at least partially overlap these translocation breakpoints allow differentiation between normal and transposed orders of genetic material. As shown in FIGS. 68B and 68C , by choosing unique labels on the two left arms, the resulting ligated probe products may be distinguished and counted during imaging.
- copy neutral changes e.g., inversions, translocation
- methods for detecting copy neutral changes may also be used to detect germline variants in cancer or in other disease or conditions.
- left probe arms are designed to take advantage of an energetic imbalance caused by one or more mismatched SNPs. This causes one probe arm ( 1101 , carrying one label) to bind more favorably than a second probe arm ( 1107 , carrying a second type of label). Both designs ligate to the same right probe arm ( 1102 ) that carries the universal pull-down tag.
- a given patient's blood may be probed by one method, or a hybrid of more than one method. Further, in some cases, customizing specific probes for a patient may be valuable. This would involve characterizing tumor features (SNPs, translocations, inversions, etc.) in a sample from the primary tumor (e.g., a biopsy) and creating one or more custom probe sets that is optimized to detect those patient-specific genetic variations in the patient's blood, providing a low-cost, non-invasive method for monitoring. This could have significant value in the case of relapse, where detecting low-level recurrence of a tumor type (identical or related to the original tumor) as early as possible is ideal.
- SNPs tumor features
- translocations e.g., translocations, inversions, etc.
- probes may be designed to monitor current status and progression “checkpoints,” and guide therapy options.
- the ALK translocation has been associated with lung cancer.
- a probe designed to interrogate the ALK translocation may be used to detect tumors of this type via a blood sample. This would be highly advantageous, as the standard method for detecting lung tumors is via a chest x-ray an expensive procedure that may be deleterious to the patient's health and so is not standardly performed.
- Detection of recurrence of the primary tumor type For example, a HER2+ breast tumor is removed by surgery and the patient is in remission. A probe targeting the HER2 gene may be used to monitor for amplifications of the HER2 gene at one or more time points. If these are detected, the patient may have a second HER2+ tumor either at the primary site or elsewhere.
- Detection of non-primary tumor types For example, a HER2+ breast tumor is removed by surgery and the patient is in remission. A probe targeting the EGFR gene may be used to monitor for EGFR+ tumors. If these are detected, the patient may have a second EGFR+ tumor either at the primary site or elsewhere.
- Detection of metastasis For example, the patient has a HER2+ breast tumor.
- a probe designed to interrogate the ALK translocation may be used to detect tumors of this type via a blood sample. This tumor may not be in the breast and is more likely to be in the lung. If these are detected, the patient may have a metastatic tumor distal to the primary organ.
- tumor heterogeneity Many tumors have multiple clonal populations characterized by different genetic variants. For example, a breast tumor may have one population of cells that are HER2+ and another population of cells that are EGFR+. Using probes designed to target both these variants would allow the identification of this underlying genetic heterogeneity.
- the quantity of tumor cfDNA may be measured and may be used to determine the size, growth rate, aggressiveness, stage, prognosis, diagnosis and other attributes of the tumor and the patient. Ideally, measurements are made at more than one time point to show changes in the quantity of tumor cfDNA.
- a HER2+ breast tumor is treated with Herceptin.
- a probe targeting the HER2 gene may be used to monitor for quantity of tumor cfDNA, which may be a proxy for the size of the tumor. This may be used to determine if the tumor is changing in size and treatment may be modified to optimize the patient's outcome. This may include changing the dose, stopping treatment, changing to another therapy, combing multiple therapies.
- the present invention offers a way to detect tumors at some or all locations in the body.
- a panel of probes is developed at a spacing of 100 kb across the genome. This panel may be used as a way to detect genetic variation across the genome.
- the panel detects copy number changes of a certain size across the genome. Such copy number changes are associated with tumor cells and so the test detects the presence of tumor cells.
- Different tumor types may produce different quantities of tumor cfDNA or may have variation in different parts of the genome. As such, the test may be able to identify which organ is affected. Further the quantity of tumor cfDNA measured may indicate the stage or size of the tumor or the location of the tumor. In this way, the test is a whole-genome screen for many or all tumor types.
- a threshold may be used to determine the presence or certainty of a tumor. Further, the test may be repeat on multiple sample or at multiple time points to increase the certainty of the results. The results may also be combined with other information or symptoms to provide more information or more certain information on the tumor.
- Exemplary probe sets and primers that may be used in the method described herein to measure copy number of nucleic acid regions of interest are listed in Table 4 below.
- Each of the exemplary probe sets in Table 4 comprises two probes.
- the first (tagging) probe has a structure including a forward priming site, tag, and homology 1.
- the second (labeling) probe has structure, including homology 2 and reverse primer site, which is used in labeling.
- the component sequences of the probes (tag, homology sequence etc.) are also shown.
- Exemplary probe sets and primers that may be used in the method described herein to detect a polymorphism at a SNP site are listed in Table 5 below.
- Each of the exemplary probe sets in Table 5 comprises three probes, two allele specific probes (that are used for labeling) and a tagging probe.
- the two allele specific probes have homology sequences that are different at one or more nucleotides.
- the structure of the first allelic probe includes a Forward Primer Site Allele 1 and Homology Allele 1; and the structure of the second allelic probe includes a Forward Primer Site Allele 2 and Homology Allele 2.
- labeled primers may be used with different labels on the two primers (so the labels are allele specific).
- there also is a universal 3′ probe which includes a homology region (without any SNP), the tagging sequence and a reverse primer site. The component sequences of the probes (tag, homology sequence etc.) are also shown.
- the following protocol describes the processing of up to 24 cell-free DNA samples through hybridization-ligation, purification, amplification, microarray target preparation, microarray hybridization and microarray washing.
- Cell-free DNA in a volume of 20 ⁇ L water
- Probe Mix mixture of all Tagging and Labeling probe oligonucleotides at a concentration of 2 nM each
- Taq Ligase 40 U/ ⁇ L
- Magnetic Beads MyOne Streptavidin C1 Dynabeads
- Bead Binding and Washing Buffer 1 ⁇ and 2 ⁇ concentrations
- Forward amplification primer 5′ phosphate modified
- Reverse amplification primer labeled
- AmpliTaq Gold Enzyme (5 U/ ⁇ L)
- dNTP Mix Lambda Exonuclease (5 U/ ⁇ L)
- Hybridization Buffer 1.25 ⁇
- Hybridization control oligonucleotides Microarray Wash Buffer A; Microarray Wash Buffer B; Microarray Wash Buffer C
- the cfDNA samples (20 ⁇ L) were added to wells A3-H3 of a 96-well reaction plate.
- the following reagents were added to each cfDNA sample for a total reaction volume of 50 ⁇ L, and mixed by pipetting up and down 5-8 times.
- Wash Dynabeads a vial of Dynabeads was vortexted at highest setting for 30 seconds. 260 ⁇ L beads were transferred to a 1.5 mL tube. 900 ⁇ L of 2 ⁇ Bead Binding and Washing Buffer and mix beads were mixed by pipetting up and down 5-8 times. The tube was placed on a magnetic stand for 1 min, and the supernatant was discarded. The tube from the magnetic stand was removed and resuspended the washed magnetic beads in 900 ⁇ L of 2 ⁇ Bead Binding and Washing Buffer by pipetting up and down 5-8 times. The tube was placed on the magnetic stand for 1 min and discard the supernatant. The tube was removed from the magnetic stand and add 1,230 ⁇ L of 2 ⁇ Bead Binding and Washing Buffer. The beads were resuspended by pipetting up and down 5-8 times.
- Immobilize HL Products 50 ⁇ L of washed beads was transferred to each hybridization-ligation reaction product in the 96-well reaction plate and mix by pipetting up and down 8 times, was incubated for 15 min at room temperature, mixed on a plate magnet twice during the incubation time. The beads were separated with on a plate magnet for 3 min and then remove and discard the supernatant. The plate was removed from the plate magnet, 200 ⁇ L 1 ⁇ Bead Binding and Washing Buffer were added, and the beads were resuspended by pipetting up and down 5-8 times. The plate was placed on the plate magnet for 1 min, and the supernatant was discarded. The plate was removed from the plate magnet, 180 ⁇ L 1 ⁇ SSC was added, and the beads were resuspended by pipetting up and down 5-8 times. The plate was placed on the plate magnet for 1 min, and the supernatant was discarded.
- the plate was removed from the plate magnet, and 180 ⁇ L 0.1 M NaOH was added, and the beads were resuspended by pipetting up and down 5-8 times. The plate was placed on the plate magnet for 1 min, and the supernatant was discarded. The plate was removed from the plate magnet, 200 ⁇ L of 1 ⁇ Binding and Wash Buffer were added, and the beads were resuspended by pipetting up and down 5-8 times. Place the plate on the plate magnet for 1 min and discard the supernatant. Remove the plate from the plate magnet, add 180 ⁇ L TE, and the beads were resuspended by pipetting up and down 5-8 times. The plate was placed on the plate magnet for 1 min, and the supernatant was discarded. 20 ⁇ L water was added to each well and the beads were resuspended by pipetting up and down 5-8 times. The plate was sealed and store at 4° C. until used in subsequent steps.
- Hybridization-ligation Product Purification the reagents were mixed by pipetting up and down 5-8 times. The plate was placed in a thermal cycler, and the probes were amplified using the following cycling profile: (i) 95° C. for 5 minutes; (ii) 95° C. for 30 seconds; (iii) 54° C. for 30 seconds; (iv) 72° C. for 60 seconds, (v) Repeat steps b to d 29 times; (vi) 72° C. for 5 minutes; (vii) Repeat steps b to c 4 times; and (v) 4° C. hold.
- the reagents were mixed by pipetting up and down 5-8 times.
- the plate was placed in a thermal cycler, and the probes were digested using the following cycling profile: (i) 37° C. for 60 minutes; (ii) 80° C. for 30 minutes; (iii) 4° C. hold.
- the plate was placed in Speed-vac and dry down samples using medium heat setting for about 60 minutes or until all liquid has evaporated. Samples were stored at 4° C. in the dark until used in subsequent steps.
- the reagents were mixed by pipetting up and down 10-20 times to be resuspended and were spun briefly to bring contents to the bottoms of the plate wells.
- the plate was placed in a thermal cycler, and the probes were denatured using the following cycling profile: (i) 70° C. for 3 minutes; (ii) 42° C. hold.
- the barcode of the microarray to be used was recorded for each sample in the Tracking Sheet.
- a hybridization chamber containing a Lifter Slip for each microarray to be processed is prepared.
- Microarray Target For each sample, 15 ⁇ L of Microarray Target was added to the center of a Lifter Slip in a hybridization chamber, and the appropriate microarray was immediately placed onto the target fluid by placing the top edge down onto the lifter slip and slowly letting it fall down flat.
- the hybridization chambers were closed and incubated them at 42° C. for 60 minutes.
- the hybridization chambers were opened, and each microarray was removed from the Lifter Slips and placed into a rack immersed in Microarray Wash Buffer A. Once all the microarrays were in the rack, the rack was stirred at 650 rpm for 5 minutes.
- the rack of microarrays was removed from Microarray Wash Buffer A, excess liquid on a clean room wipe was tapped off, and the rack were quickly placed into Microarray Wash Buffer B. The rack was stirred at 650 rpm for 5 minutes. The rack of microarrays was removed from Microarray Wash Buffer B, excess liquid was tapped off on a clean room wipe, and the rack was quickly placed into Microarray Wash Buffer C. The rack was stirred at 650 rpm for 5 minutes Immediately upon completion of the 5 minute wash in Microarray Wash Buffer C, the rack of microarrays was slowly removed from the buffer. This took 5-10 seconds to maximize the sheeting of the wash buffer from the cover slip surface. Excess liquid was tapped off on a clean room wipe. A vacuum aspirator was used to remove any remaining buffer droplets present on either surface of each microarray. The microarrays were stored in a slide rack under nitrogen and in the dark until the microarrays were analyzed.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
TABLE 1 |
Cell lines containing different copy numbers of chromosome X |
Coriell Cell Line ID | Number of copies of | ||
NA12138 | |||
1 | |||
|
2 | ||
|
3 | ||
|
4 | ||
|
5 | ||
TABLE 2 |
Exemplary genetic variations associated with tumors (Amplification of the gene) |
Peak | Genomic | Gene | Frequently | ||||
Name | Rank | location | Peak region | GISTIC q-value | count | Target(s) | mutated genesB |
CCND1 | 1 | 11q13.3 | chr11: 69464719-69502928 | 2.05E−278 | 2 | CCND1K | CCND1 = 6.6e−08 |
EGFR | 2 | 7p11.2 | chr7: 55075808-55093954 | 2.30E−240 | 1 | EGFRK | EGFR = 2.2e−15 |
MYC | 3 | 8q24.21 | chr8: 128739772-128762863 | 6.50E−180 | 1 | MYCK | |
TERC | 4 | 3q26.2 | chr3: 169389459-169490555 | 5.40E−117 | 2 | TERCP | |
ERBB2 | 5 | 17q12 | chr17: 37848534-37877201 | 1.59E−107 | 1 | ERBB2K | ERBB2 = 1.3e−06 |
CCNE1 | 6 | 19q12 | chr19: 30306758-30316875 | 4.77E−90 | 1 | CCNE1K | |
MCL1 | 7 | 1q21.3 | chr1: 150496857-150678056 | 1.25E−80 | 6 | MCL1K | |
MDM2 | 8 | 12q15 | chr12: 69183279-69260755 | 2.59E−62 | 2 | MDM2K | |
INTS4 | 9 | 11q14.1 | chr11: 77610143-77641464 | 1.01E−54 | 1 | INTS4 | |
WHSC1L1 | 10 | 8p11.23 | chr8: 38191804-38260814 | 3.43E−46 | 2 | WHSC1L1E, | |
LETM2M | |||||||
CDK4 | 11 | 12q14.1 | chr12: 58135797-58156509 | 5.14E−41 | 5 | CDK4K | CDK4 = 0.0048 |
KAT6A | 12 | 8p11.21 | chr8: 41751300-41897859 | 2.97E−39 | 2 | KAT6AP, E, | |
IKBKB** | |||||||
SOX2 | 13 | 3q26.33 | chr3: 181151312-181928394 | 1.21E−38 | 2 | SOX2K | |
PDGFRA | 14 | 4q12 | chr4: 54924794-55218386 | 1.08E−37 | 3 | PDGFRAK | |
BDH1 | 15 | 3q29 | chr3: 197212101-197335320 | 1.21E−31 | 1 | BDH1M | |
1q44 | 16 | 1q44T | chr1: 242979907-249250621 | 4.48E−31 | 83 | SMYD3E | |
MDM4 | 17 | 1q32.1 | chr1: 204367383-204548517 | 1.98E−29 | 3 | MDM4K | |
TERT | 18 | 5p15.33 | chr5: 1287704-1300024 | 9.34E−27 | 1 | TERTK | |
KDM5A | 19 | 12p13.33T | chr12: 1-980639 | 1.59E−25 | 11 | KDM5AE | |
MYCL1 | 20 | 1p34.2 | chr1: 40317971-40417342 | 3.99E−25 | 2 | MYCL1K | |
IGF1R | 21 | 15q26.3 | chr15: 98667475-100292401 | 8.62E−25 | 9 | IGF1RK | |
PARP10 | 22 | 8q24.3 | chr8: 144925436-145219779 | 5.44E−20 | 15 | PARPl0P, E, | |
CYC1M | |||||||
G6PD | 23 | Xq28 | chrX: 153760870-153767853 | 3.66E−19 | 1 | G6PD | |
PHF12 | 24 | 17q11.2 | chr17: 27032828-27327946 | 1.75E−16 | 21 | PHF12E, | |
ERAL1M | |||||||
20q13.33 | 25 | 20q13.33 | chr20: 62187847-62214354 | 2.96E−16 | 2 | ||
PAF1 | 26 | 19q13.2 | chr19: 39699366-39945515 | 1.66E−15 | 13 | PAF1P, E | IL28A = 0.021, |
SUPT5H = 0.084 | |||||||
BCL2L1 | 27 | 20q11.21 | chr20: 30179028-30320705 | 2.85E−15 | 4 | BCL2L1K | |
TUBD1 | 28 | 17q23.1 | chr17: 57922443-57946458 | 7.19E−15 | 1 | TUBD1 | TUBD1 = 0.009 |
[ZNF703] | 29 | 8p11.23 | chr8: 37492669-37527108 | 2.44E−14 | 0 | ||
1q23.3 | 30 | 1q23.3 | chr1: 160949115-161115281 | 7.73E−13 | 9 | ||
8q22.2 | 31 | 8q22.2 | chr8: 101324079-101652657 | 4.22E−11 | 3 | SNX31 = 0.015 | |
BRD4 | 32 | 19p13.12 | chr19: 15310246-15428182 | 5.04E−10 | 3 | NOTCH3P, | |
BRD4P, E | |||||||
KRAS | 33 | 12p12.1 | chr12: 24880663-25722878 | 9.47E−10 | 7 | KRASK | KRAS = 1.5e−l4 |
NKX2-1 | 34 | 14q13.2 | chr14: 35587755-37523513 | 1.33E−09 | 14 | NKX2-1K | NFKBIA = 0 .0098, |
RALGAPA1 = 0.027 | |||||||
NFE2L2 | 35 | 2q31.2 | chr2: 178072322-178171101 | 5.48E−09 | 5 | NFE2L2 | NFE2L2 = 3.9e−14 |
ZNF217 | 36 | 20q13.2 | chr20: 52148496-52442225 | 5.83E−08 | 1 | ZNF217K | ZNF217 = 0.0082 |
13q34 | 37 | 13q34T | chr13: 108818892-115169878 | 6.28E−08 | 45 | ING1E | ING1 = 0.00026 |
KAT6B | 38 | 10q22.2 | chr10: 76497097-77194071 | 1.41E−07 | 9 | KAT6BE, | |
VDAC2M | |||||||
NSD1 | 39 | 5q35.3 | chr5: 176337344-177040112 | 1.75E−06 | 22 | NSD1E, | NSD1 = 4.9e−10 |
PRELID1M | |||||||
FGFR3 | 40 | 4p16.3 | chr4: 1778797-1817427 | 2.14E−06 | 2 | FGFR3P, | FGFR3 = 0.00018 |
LETM1M | |||||||
9p13.3 | 41 | 9p13.3 | chr9: 35652385-35739486 | 2.55E−06 | 8 | ||
COX18 | 42 | 4q13.3 | chr4: 73530210-74658151 | 2.68E−06 | 7 | COX18M | |
7q36.3 | 43 | 7q36.3T | chr7: 153768037-159138663 | 3.19E−06 | 30 | PTPRN2L, | |
DPP6L | |||||||
18q11.2 | 44 | 18q11.2 | chr18: 23857484-24119078 | 3.83E−06 | 2 | ||
SOX17 | 45 | 8q11.23 | chr8: 55069781-55384342 | 2.02E−05 | 1 | SOX 17 | SOX17 = 0.00092 |
11q22.2 | 46 | 11q22.2 | chr11: 102295593-102512085 | 0.00015337 | 3 | ||
CBX8 | 47 | 17q25.3 | chr17: 77770110-77795534 | 0.00023029 | 1 | CBX8E | |
AKT1 | 48 | 14q32.33 | chr14: 105182581-105333748 | 0.00028451 | 7 | AKT1K | AKT1 = 1.1e−14 |
CDK6 | 49 | 7q21.2 | chr7: 92196092-92530348 | 0.00069831 | 3 | CDK6K | |
6p21.1 | 50 | 6p21.1 | chr6: 41519930-44297771 | 0.0010459 | 70 | ||
EHF | 51 | 11p13 | chr11: 34574296-34857324 | 0.0011002 | 1 | EHF | |
6q21 | 52 | 6q21 | chr6: 107098934-107359899 | 0.0011806 | 4 | ||
19q13.42 | 53 | 19q13.42T | chr19: 55524376-59128983 | 0.0013319 | 138 | TRIM28E, | ZNF471 = 5.4e−05 |
SUV420H2E | |||||||
17q21.33 | 54 | 17q21.33 | chr17: 47346425-47509605 | 0.0025775 | 2 | ||
BPTF | 55 | 17q24.2 | chr17: 65678858-66288612 | 0.0028375 | 11 | BPTFE | |
E2F3 | 56 | 6p22.3 | chr6: 19610794-22191922 | 0.0033658 | 7 | E2F3K | |
19p113.2 | 57 | 19p13.2 | chr19: 10260457-10467501 | 0.0038041 | 12 | MRPL4M | DNMT1 = 0.099 |
17q25.1 | 58 | 17q25.1 | chr17: 73568926-73594884 | 0.012337 | 2 | ||
KDM2A | 59 | 11q13.2 | chr11: 67025375-67059633 | 0.012445 | 3 | KDM2AE | |
8q21.13 | 60 | 8q21.13 | chr8: 80432552-81861219 | 0.020548 | 6 | MRPS28M | |
2p15 | 61 | 2p15 | chr2: 59143237-63355557 | 0.021056 | 25 | XPO1 = 1.1e−05 | |
14q11.2 | 62 | 14q11.2T | chr14: 1-21645085 | 0.027803 | 57 | ||
NEDD9 | 63 | 6p24.2 | chr6: 11180426-11620845 | 0.082606 | 2 | NEDD9K | |
5p13.1 | 64 | 5p13.1 | chr5: 35459650-50133375 | 0.094657 | 61 | SLC1A3 = 0.0021, | |
IL7R = 0.0021 | |||||||
LINC00536 | 65 | 8q23.3 | chr8: 116891361-117360815 | 0.095294 | 1 | LINC00536 | |
10p15.1 | 66 | 10p15.0 | chr10: 4190059-6130004 | 0.10391 | 21 | ||
22q11.21 | 67 | 22q11.21 | chr22: 18613558-23816427 | 0.13213 | 105 | ||
PHF3 | 68 | 6q12 | chr6: 63883156-64483307 | 0.17851 | 4 | PHF3E, | PHF3 = 0.051 |
EYSL | |||||||
PAX8 | 69 | 2q13 | chr2: 113990138-114122826 | 0.19717 | 2 | PAX8K | |
9p24.2 | 70 | 9p24.2T | chr9: 1-7379570 | 0.20405 | 45 | SMARCA2E, | |
KDM4CE, | |||||||
UHRF2E, | |||||||
KIAA2026E | |||||||
TABLE 3 |
Exemplary genetic variations associated with tumors (Deletion of the gene) |
Peak | Genomic | Gene | Frequently | ||||
Name | Rank | location | Peak region | GISTIC q-value | count | Target(s) | mutated genesB |
CDKN2A | 1 | 9p21.3 | chr9: 21865498-22448737 | 0 | 4 | CDKN2AK | CDKN2A = 4.4e−15 |
STK11 | 2 | 19p13.3 | chr19: 1103715-1272039 | 1.46E−238 | 7 | STK11K | STK11 = 2.5e−13 |
PDE4D | 3 | 5q11.2 | chr5: 58260298-59787985 | 2.02E−143 | 3 | PDE4DL | |
PARK2 | 4 | 6q26 | chr6: 161693099-163153207 | 5.85E−137 | 1 | PARK2L, K | |
LRP1B | 5 | 2q22.1 | chr2: 139655617-143637838 | 4.25E−107 | 1 | LRP1BL | |
CSMD1 | 6 | 8p23.2 | chr8: 2079140-6262191 | 2.39E−96 | 1 | CSMD1L | |
1p36.23 | 7 | 1p36.23 | chr1: 7829287-8925111 | 1.23E−93 | 8 | ||
ARID1A | 8 | 1p36.11 | chr1: 26900639-27155421 | 5.74E−87 | 2 | ARID1AK | ARID1A = 1.5e−14 |
PTEN | 9 | 10q23.31 | chr10: 89615138-90034038 | 1.12E−79 | 2 | PTENK | PTEN = 2.2e−15 |
WWOX | 10 | 16q23.1 | chr16: 78129058-79627770 | 8.14E−76 | 1 | WWOXL | WWOX = 0.092 |
RB1 | 11 | 13q14.2 | chr13: 48833767-49064807 | 3.88E−75 | 2 | RB1K | RB1 = 1.7e−13 |
FAM190A | 12 | 4q22.1 | chr4: 90844993-93240505 | 9.26E−75 | 1 | FAM190AL | |
2q37.3 | 13 | 2q37.3T | chr2: 241544527-243199373 | 1.77E−70 | 29 | ING5E | |
22q13.32 | 14 | 22q13.32T | chr22: 48026910-51304566 | 8.20E−65 | 45 | BRD1E, | |
HDAC10E | |||||||
11p15.5 | 15 | 11p15.5T | chr11: 1-709860 | 1.02E−62 | 34 | SIRT3E, | HRAS = 7.8e−13 |
PHRF1E | |||||||
LINC00290 | 16 | 4q34.3 | chr4: 178911874-183060693 | 1.21E−55 | 1 | LINC00290 | |
FHIT | 17 | 3p14.2 | chr3: 59034763-61547330 | 3.01E−55 | 1 | FHITL | |
RBFOX1 | 18 | 16p13.3 | chr16: 5144019-7771745 | 1.00E−45 | 1 | RBFOX1L | |
PTPRD | 19 | 9p24.1 | chr9: 8310705-12693402 | 3.24E−38 | 1 | PTPRDL | |
18q23 | 20 | 18q23T | chr18: 74979706-78077248 | 1.69E−37 | 12 | ||
FAT1 | 21 | 4q35.2 | chr4: 187475875-188227950 | 6.81E−36 | 1 | FAT1K | FAT1 =2.4e−15 |
MPHOSPH8 | 22 | 13q12.11T | chr13: 1-20535070 | 2.57E−31 | 10 | MPHOSPH8E | |
15q15.1 | 23 | 15q15.1 | chr15: 41795901-42068054 | 2.71E−29 | 4 | MGA = 0.0083, | |
RPAP1 =0.035 | |||||||
11q25 | 24 | 11q25T | chr11: 133400280-135006516 | 4.93E−26 | 14 | ||
1p13.2 | 25 | 1p13.2 | chr1: 110048528-117687124 | 1.69E−25 | 100 | TRIM33E | NRAS = 1.8e−13, |
CD58 = 0.079 | |||||||
NF1 | 26 | 17q11.2 | chr17: 29326736-29722618 | 6.59E−23 | 5 | NF1K | NF1 = 3.3e−13 |
MACROD2 | 27 | 20p12.1 | chr20: 14302876-16036135 | 9.00E−19 | 3 | MACROD2L | |
7p22.3 | 28 | 7p22.3T | chr7: 1-1496620 | 1.04E−17 | 18 | ||
6p25.3 | 29 | 6p25.3 | chr6: 1608837-2252425 | 3.01E−17 | 2 | ||
21q11.2 | 30 | 21q11.2T | chr21: 1-15482604 | 2.34E−14 | 14 | ||
9p13.1 | 31 | 9p13.1 | chr9: 38619152-71152237 | 9.75E−14 | 48 | ||
ZNF132 | 32 | 19q13.43T | chr19: 58661582-59128983 | 3.77E−13 | 24 | TRIM28E, | |
ZNF132 | |||||||
5q15 | 33 | 5q15 | chr5: 73236070-114508587 | 8.15E−13 | 156 | APCK, | APC = 2.6e−13, |
CHD1E | RASA1 = 0.0029 | ||||||
MLL3 | 34 | 7q36.1 | chr7: 151817415-152136074 | 9.26E−13 | 1 | MLL3K, E | MLL3 = 1.1e−05 |
19q13.32 | 35 | 19q13.32 | chr19: 47332686-47763284 | 2.38E−12 | 10 | ||
15q12 | 36 | 15q12T | chr15: 1-32929863 | 3.40E−11 | 155 | OTUD7A = 0.027 | |
12q24.33 | 37 | 12q24.33T | chr12: 131692956-133851895 | 1.24E−10 | 27 | POLE = 3.9e−05, | |
PGAM5 = 0.038 | |||||||
10q26.3 | 38 | 10q26.3T | chr10: 135190263-135534747 | 2.09E−10 | 14 | ||
6q21 | 39 | 6q21 | chr6: 86319089-117076132 | 4.56E−10 | 141 | PRDM1E, | PRDM1 = 0.00054 |
HDAC2E, | |||||||
PRDM13E | |||||||
PPP2R2A | 40 | 8p21.2 | chr8: 25896447-26250295 | 1.78E−09 | 1 | PPP2R2A | |
IKZF2 | 41 | 2q34 | chr2: 211542637-214143899 | 3.24E−09 | 4 | IKZF2K, | ERBB4 = 0.00058 |
ERBB4L | |||||||
CNTN4 | 42 | 3p26.3T | chr3: 1-3100786 | 6.44E−09 | 3 | CNTN4L | |
3p12.2 | 43 | 3p12.2 | chr3: 75363575-86988125 | 1.22E−07 | 12 | ROBO1L, | |
CADM2L | |||||||
RAD51B | 44 | 14q24.1 | chr14: 68275375-69288431 | 1.38E−07 | 2 | RAD51BL | ZFP36L1 = 0.0016 |
11q23.1 | 45 | 11q23.1 | chr11: 105849158-117024891 | 5.31E−07 | 84 | ATMK | ATM =1.4e−06, |
POU2AF1 = 0.082 | |||||||
IMMP2L | 46 | 7q31.1 | chr7: 109599468-111366370 | 5.74E−07 | 2 | IMMP2LL | |
NEGR1 | 47 | 1p31.1 | chr1: 71699756-74522473 | 7.25E−07 | 2 | NEGR1L | |
BRCA1 | 48 | 17q21.31 | chr17: 41178765-41336147 | 7.25E−07 | 2 | BRCA1K | BRCA1 = 3.5e-08 |
9q34.3 | 49 | 9q34.3 | chr9: 135441810-139646221 | 8.73E−06 | 94 | NOTCH1K, | NOTCH1 = 1e−08, |
BRD3E, | RXRA = 2.1e−05, | ||||||
GTF3C4E | COL5A1 = 0.0022, | ||||||
TSC1 = 0.012 | |||||||
ANKS1B | 50 | 12q23.1 | chr12: 99124001-100431272 | 8.73E−06 | 2 | ANKS1BL | |
DMD | 51 | Xp21.2 | chrX: 30865118-34644819 | 5.15E−05 | 4 | DMDL | |
ZMYND11 | 52 | 10p15.3T | chr10: 1-857150 | 7.12E−05 | 4 | ZMYND11E | |
PRKG1 | 53 | 10q11.23 | chr10: 52644085-54061437 | 9.79E−05 | 3 | PRKG1L | |
FOXK2 | 54 | 17q25.3 | chr17: 80443432-80574531 | 0.00019271 | 1 | FOXK2 | |
AGBL4 | 55 | 1p33 | chr1: 48935280-50514967 | 0.000219 | 2 | AGBL4L | |
CDKN1B | 56 | 12p13.1 | chr12: 12710990-12966966 | 0.00035777 | 5 | CDKN1BK | CDKN1B = 2.2e−06 |
14q32.33 | 57 | 14q32.33T | chr14: 94381429-107349540 | 0.00074358 | 227 | SETD3E, | AKT1 = 2.1e−13, |
TDRD9E | TRAF3 = 9.7e−05 | ||||||
14q11.2 | 58 | 14q11.2T | chr14: 1-30047530 | 0.0010181 | 162 | PRMT5E, | CHD8 = 0.034 |
CHD8E | |||||||
2p25.3 | 59 | 2p25.3T | chr2: 1-20072169 | 0.0011137 | 86 | MYCNK | MYCN = 0.068 |
5q35.3 | 60 | 5q35.3T | chr5: 153840473-180915260 | 0.0028515 | 212 | NSD1E, | NPM1 = 3.5e−13, |
ODZ2L | NSD1 = 1.9e−09, | ||||||
ZNF454 = 0.0019, | |||||||
UBLCP1 = 0.03, | |||||||
GABRB2 = 0.07 | |||||||
PTTG1IP | 61 | 21q22.3 | chr21: 46230687-46306160 | 0.012227 | 1 | PTTG1IP | |
22q11.1 | 62 | 22q11.1T | chr22: 1-17960585 | 0.020332 | 15 | ||
SMAD4 | 63 | 18q21.2 | chr18: 48472083-48920689 | 0.036866 | 3 | SMAD4K | SMAD4 = 6.6e−15 |
17p13.3 | 64 | 17p13.3T | chr17: 1-1180022 | 0.040814 | 16 | ||
4p16.3 | 65 | 4p16.3T | chr4: 1-1243876 | 0.056345 | 27 | ||
9p21.2 | 66 | 9p21.2 | chr9: 27572512-28982153 | 0.091742 | 3 | ||
10q25.1 | 67 | 10q25.1 | chr10: 99340084-113910615 | 0.11879 | 137 | HPSE2L, | SMC3 = 0.00031, |
SMNDC1E | GSTO2 = 0.086 | ||||||
SMYD3 | 68 | 1q44 | chr1: 245282267-247110824 | 0.15417 | 8 | SMYD3E | |
8p11.21 | 69 | 8p11.21 | chr8: 42883855-47753079 | 0.17382 | 4 | ||
Xp22.33 | 70 | Xp22.33T | chrX: 1-11137490 | 0.21462 | 52 | MXRA5 = 0.031 | |
TABLE 4 |
Exemplary probes and primers. |
Tagging Probe | Labeling | |||||||
(Forward | Probe (3′- | |||||||
Chromo- | Locus | Primer + | Hop + Reverse | Forward | Reverse | |||
some | ID | Tag + 5pHom) | Primer) | primer | Tag | Hom 5p | Hom 3p | primer |
18 | 18-1 | GCCCTCATCTTC | CGTGCTAATAGTCTC | GCCCTCAT | GTTCTCA | GGAAGAA | CGTGCTA | TTCCTCCA |
TTCCCTGCGTTC | AGGGCTTCCTCCACC | CTTCTTCC | CCACCCT | GTGAGGG | ATAGTCT | CCGAACGT | ||
TCACCACCCTCA | GAACGTGTCT | CTGC | CACCAA | CTTCTC | CAGGGC | GTCT | ||
CCAAGGAAGAAG | (SEQ ID NO: 17) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
TGAGGGCTTCTC | NO: 33) | NO: 34) | NO: 35) | NO: 51) | NO: 67) | |||
(SEQ ID | ||||||||
NO: 1) | ||||||||
18 | 18-2 | GCCCTCATCTTC | CGACGCTTCATTGCT | GCCCTCAT | GTTCTCA | AAATCAA | CGACGCT | TTCCTCCA |
TTCCCTGCGTTC | TCATTTTCCTCCACC | CTTCTTCC | CCACCCT | GGTGACC | TCATTGC | CCGAACGT | ||
TCACCACCCTCA | GAACGTGTCT | CTGC | CACCAA | AGCTCC | TTCATT | GTCT | ||
CCAAAAATCAAG | (SEQ ID NO: 18) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
GTGACCAGCTCC | NO: 33) | NO: 34) | NO: 36) | NO: 52) | NO: 67) | |||
(SEQ ID | ||||||||
NO: 2) | ||||||||
18 | 18-3 | GCCCTCATCTTC | CTTGCGCCAAACAAT | GCCCTCAT | GTTCTCA | TCATCTG | CTTGCGC | TTCCTCCA |
TTCCCTGCGTTC | TGTCCTTCCTCCACC | CTTCTTCC | CCACCCT | CCAAGAC | CAAACAA | CCGAACGT | ||
TCACCACCCTCA | GAACGTGTCT | CTGC | CACCAA | AGAAGTT | TTGTCC | GTCT | ||
CCAATCATCTGC | (SEQ ID NO: 19) | (SEQ ID | (SEQ ID | C | (SEQ ID | (SEQ ID | ||
CAAGACAGAAG | NO: 33) | NO: 34) | (SEQ ID | NO: 53) | NO: 67) | |||
TTC | NO: 37) | |||||||
(SEQ ID | ||||||||
NO: 3) | ||||||||
18 | 18-4 | GCCCTCATCTTC | GCTGCAGAGTTTGCA | GCCCTCAT | GTTCTCA | GCAGGAG | GCTGCAG | TTCCTCCA |
TTCCCTGCGTTC | TTCATTTCCTCCACC | CTTCTTCC | CCACCCT | AGTCAAA | AGTTTGC | CCGAACGT | ||
TCACCACCCTCA | GAACGTGTCT | CTGC | CACCAA | GGTCTG | ATTCAT | GTCT | ||
CCAAGCAGGAGA | (SEQ ID NO: 20) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
GTCAAAGGTCTG | NO: 33) | NO: 34) | NO: 38) | NO: 54) | NO: 67) | |||
(SEQ ID | ||||||||
NO: 4) | ||||||||
18 | 18-5 | GCCCTCATCTTC | CATACACACAGACCG | GCCCTCAT | GTTCTCA | GTTGCCA | CATACAC | TTCCTCCA |
TTCCCTGCGTTC | AGAGTCTTCCTCCAC | CTTCTTCC | CCACCCT | TGGAGAT | ACAGACC | CCGAACGT | ||
TCACCACCCTCA | CGAACGTGTCT | CTGC | CACCAA | TGTTGC | GAGAGTC | GTCT | ||
CCAAGTTGCCAT | (SEQ ID NO: 21) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
GGAGATTGTTGC | NO: 33) | NO: 34) | NO: 39) | NO: 55) | NO: 67) | |||
(SEQ ID | ||||||||
NO: 5) | ||||||||
18 | 18-6 | GCCCTCATCTTC | GGATGTCAGCCAGCA | GCCCTCAT | GTTCTCA | CAGCTCA | GGATGTC | TTCCTCCA |
TTCCCTGCGTTC | TAAGTTTCCTCCACC | CTTCTTCC | CCACCCT | GTGATGT | AGCCAGC | CCGAACGT | ||
TCACCACCCTCA | GAACGTGTCT | CTGC | CACCAA | CATTGC | ATAAGT | GTCT | ||
CCAACAGCTCAG | (SEQ ID NO: 22) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
TGATGTCATTGC | NO: 33) | NO: 34) | NO: 40) | NO: 56) | NO: 67) | |||
(SEQ ID | ||||||||
NO: 6) | ||||||||
18 | 18-7 | GCCCTCATCTTC | GCAAGTGCCAAACAG | GCCCTCAT | GTTCTCA | CCTTGAC | GCAAGTG | TTCCTCCA |
TTCCCTGCGTTC | TTCTCTTCCTCCACC | CTTCTTCC | CCACCCT | CTCTGCT | CCAAACA | CCGAACGT | ||
TCACCACCCTCA | GAACGTGTCT | CTGC | CACCAA | AATGTGG | GTTCTC | GTCT | ||
CCAACCTTGACC | (SEQ ID NO: 23) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
TCTGCTAATGTG | NO: 33) | NO: 34) | NO: 41) | NO: 57) | NO: 67) | |||
G | ||||||||
(SEQ ID | ||||||||
NO: 7) | ||||||||
18 | 18-8 | GCCCTCATCTTC | GATTCCAGCACACTT | GCCCTCAT | GTTCTCA | CACCTGT | GATTCCA | TTCCTCCA |
TTCCCTGCGTTC | GAGTCTTTCCTCCAC | CTTCTTCC | CCACCCT | CCAACAG | GCACACT | CCGAACGT | ||
TCACCACCCTCA | CGAACGTGTCT | CTGC | CACCAA | CTACAG | TGAGTCT | GTCT | ||
CCAACACCTGTC | (SEQ ID NO: 24) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
CAACAGCTACAG | NO: 33) | NO: 34) | NO: 42) | NO: 58) | NO: 67) | |||
(SEQ ID | ||||||||
NO: 8) | ||||||||
X | X-1 | GCCCTCATCTTC | CCGTTGCAGGTTTAA | GCCCTCAT | GTTCTCA | AGAATGT | CCGTTGC | GCCCTATT |
TTCCCTGCGTTC | ATGGCGCCCTATTGC | CTTCTTCC | CCACCCT | ATCTTCA | AGGTTTA | GCAAGCCC | ||
TCACCACCCTCA | AAGCCCTCTT | CTGC | CACCAA | GGCCTGC | AATGGC | TCTT | ||
CCAAAGAATGTA | (SEQ ID NO: 25) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
TCTTCAGGCCTG | NO: 33) | NO: 34) | NO: 43) | NO: 59) | NO: 68) | |||
C | ||||||||
(SEQ ID | ||||||||
NO: 9) | ||||||||
X | X-2 | GCCCTCATCTTC | CAAGAGTGCTTTATG | GCCCTCAT | GTTCTCA | AAGTAAT | CAAGAGT | GCCCTATT |
TTCCCTGCGTTC | GGCCTGCCCTATTGC | CTTCTTCC | CCACCCT | CACTCTG | GCTTTAT | GCAAGCCC | ||
TCACCACCCTCA | AAGCCCTCT | CTGC | CACCAA | GGTGGC | GGGCCT | TCTT | ||
CCAAAAGTAATC | (SEQ ID NO: 26) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
ACTCTGGGTGGC | NO: 33) | NO: 34) | NO: 44) | NO: 60) | NO: 68) | |||
(SEQ ID | ||||||||
NO: 10) | ||||||||
X | X-3 | GCCCTCATCTTC | GCACTCAAGGAGATC | GCCCTCAT | GTTCTCA | AGCTCAC | GCACTCA | GCCCTATT |
TTCCCTGCGTTC | AGACTGGCCCTATTG | CTTCTTCC | CCACCCT | AGACAAC | AGGAGAT | GCAAGCCC | ||
TCACCACCCTCA | CAAGCCCTCTT | CTGC | CACCAA | CTTGTG | CAGACTG | TCTT | ||
CCAAAGCTCACA | (SEQ ID NO: 27) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
GACAACCTTGTG | NO: 33) | NO: 34) | NO: 45) | NO: 61) | NO: 68) | |||
(SEQ ID | ||||||||
NO: 11) | ||||||||
X | X-4 | GCCCTCATCTTC | GGCTATCGAACTACA | GCCCTCAT | GTTCTCA | GCAATAG | GGCTATC | GCCCTATT |
TTCCCTGCGTTC | ACCACAGCCCTATTG | CTTCTTCC | CCACCCT | ACACCTA | GAACTAC | GCAAGCCC | ||
TCACCACCCTCA | CAAGCCCTCTT | CTGC | CACCAA | CAGGCG | AACCACA | TCTT | ||
CCAAGCAATAGA | (SEQ ID NO: 28) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
CACCTACAGGCG | NO: 33) | NO: 34) | NO: 46) | NO: 62) | NO: 68) | |||
(SEQ ID | ||||||||
NO: 12) | ||||||||
X | X-5 | GCCCTCATCTTC | GTAGCTGTCTGTGGT | GCCCTCAT | GTTCTCA | GCACATT | GTAGCTG | GCCCTATT |
TTCCCTGCGTTC | GTGATCGCCCTATTG | CTTCTTCC | CCACCCT | ATCAAAG | TCTGTGG | GCAAGCCC | ||
TCACCACCCTCA | CAAGCCCTCTT | CTGC | CACCAA | GCCACG | TGTGATC | TCTT | ||
CCAAGCACATTA | (SEQ ID NO: 29) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
TCAAAGGCCACG | NO: 33) | NO: 34) | NO: 47) | NO: 63) | NO: 68) | |||
(SEQ ID | ||||||||
NO: 13) | ||||||||
X | X-6 | GCCCTCATCTTC | CAAGAAACTTCGAGC | GCCCTCAT | GTTCTCA | CAACGAC | CAAGAAA | GCCCTATT |
TTCCCTGCGTTC | CTTAGCAGCCCTATT | CTTCTTCC | CCACCCT | CTAAAGC | CTTCGAG | GCAAGCCC | ||
TCACCACCCTCA | GCAAGCCCTCTT | CTGC | CACCAA | ATGTGC | CCTTAGC | TCTT | ||
CCAACAACGACC | (SEQ ID NO: 30) | (SEQ ID | (SEQ ID | (SEQ ID | A | (SEQ ID | ||
TAAAGCATGTGC | NO: 33) | NO: 34) | NO: 48) | (SEQ ID | NO: 68) | |||
(SEQ ID | NO: 64) | |||||||
NO: 14) | ||||||||
X | X-7 | GCCCTCATCTTC | GTGAACCAGTCCGAG | GCCCTCAT | GTTCTCA | GACATAC | GTGAACC | GCCCTATT |
TTCCCTGCGTTC | TGAAAGCCCTATTGC | CTTCTTCC | CCACCCT | ATGGCTT | AGTCCGA | GCAAGCCC | ||
TCACCACCCTCA | AAGCCCTCT | CTGC | CACCAA | TGGCAG | GTGAAA | TCTT | ||
CCAAGACATACA | (SEQ ID NO: 31) | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | ||
TGGCTTTGGCAG | NO: 33) | NO: 34) | NO: 49) | NO: 65) | NO: 68) | |||
(SEQ ID | ||||||||
NO: 15) | ||||||||
X | X-8 | GCCCTCATCTTC | GCAAATGATGTTCAG | GCCCTCAT | GTTCTCA | GAGATAC | GCAAAT | GCCCTATT |
TTCCCTGCGTTC | CACCACGCCCTATTG | CTTCTTCC | CCACCCT | TGCCACT | GATGTTC | GCAAGCCC | ||
TCACCACCCTCA | CAAGCCCTCTT | CTGC | CACCAA | TATGCAC | AGCACC | TCTT | ||
CCAAGAGATACT | (SEQ ID NO: 32) | (SEQ ID | (SEQ ID | G | AC | (SEQ ID | ||
GCCACTTATGCA | NO: 33) | NO: 34) | (SEQ ID | (SEQ ID | NO: 68) | |||
CG | NO: 50) | NO: 66) | ||||||
(SEQ ID | ||||||||
NO: 16) | ||||||||
TABLE 5 |
Exemplary probes and primers. |
Labeling | Labeling | |||||||||
Probe- | Probe- | Tagging | ||||||||
Allele 1 | Allele 2 | Probe | ||||||||
(Forward | (Forward | (Hom | ||||||||
Primer | Primer | 3p + | ||||||||
Allele 1 + | Allele 2 + | Tag + | Forward | Forward | ||||||
Chromo- | Hom 5p | Hom 5p | Reverse | Primer- | Primer- | Hom 5p- | Hom 5p- | Reverse | ||
some | Allele 1) | Allele 2) | Primer) | Allele 1 | Allele 2 | Allele 1 | Allele 2 | Hom 3p | Tag | Primer |
chr21 | TTCCTCCACC | GCCCTATTGC | CACTTGA | TTCCTC | GCCCTAT | AGACCAG | AGACCAG | CACTTG | GCCGAAG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | CAAAGTT | CACCGA | TGCAAGC | CACAACT | CACAACT | ACAAAG | TTCTCCG | TCTTCTT | |
AGACCAGCAC | AGACCAGCAC | CTCACGC | ACGTGT | CCTCTT | TACTcg | TACTta | TTCTCA | AAGGAT | CCCTGC | |
AACTTACTcg | AACTTACTta | GCCGAAG | CT | (SEQ ID | (SEQ ID | (SEQ ID | CGC | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TTCTCCG | (SEQ ID | NO: 68) | NO: 198) | NO: 241) | (SEQ ID | NO: 327) | NO: 33) | |
NO: 69) | NO: 112) | AAGGATG | NO: 67) | NO: 284) | ||||||
CCCTCAT | ||||||||||
CTTCTTC | ||||||||||
CCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 155) | ||||||||||
chr3 | TTCCTCCACC | GCCCTATTGC | CATTAGG | TTCCTC | GCCCTAT | CCAAATg | CCAAATt | CATTAGG | GACAGAC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GATTAAC | CACCGA | TGCAAGC | CACCTGC | CACCTGC | GATTAAC | TGACGGA | TCTTCTT | |
CCAAATgCAC | CCAAATtCAC | GGCTTGG | ACGTGT | CCTCTT | Ctg | Cca | GGCTTGG | GCTTCA | CCCTGC | |
CTGCCtg | CTGCCca | GACAGAC | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TGACGGA | (SEQ ID | NO: 68) | NO: 199) | NO: 242) | NO: 285) | NO: 328) | NO: 33) | |
NO: 70) | NO: 113) | GCTTCAG | NO: 67) | |||||||
CCCTCAT | ||||||||||
CTTCTTC | ||||||||||
CCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 156) | ||||||||||
chr13 | TTCCTCCACC | GCCCTATTGC | CACACGT | TTCCTC | GCCCTAT | AGTTTGG | AGTTTGG | CACACGT | TGACTCT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TAAGAAG | CACCGA | TGCAAGC | ACAAAGG | ACAAAGG | TAAGAAG | GCCGCAC | TCTTCTT | |
AGTTTGGACA | AGTTTGGACA | ACTTTCT | ACGTGT | CCTCTT | CaATTcg | CgATTta | ACTTTCT | ATGATC | CCCTGC | |
AAGGCaATTc | AAGGCgATTt | GCTGACT | CT | (SEQ ID | (SEQ ID | (SEQ ID | GC | (SEQ ID | (SEQ ID | |
g | a | CTGCCGC | (SEQ ID | NO: 68) | NO: 200) | NO: 243) | (SEQ ID | NO: 329) | NO: 33) | |
(SEQ ID | (SEQ ID | ACATGAT | NO: 67) | NO: 286) | ||||||
NO: 71) | NO: 114) | CGCCCTC | ||||||||
ATCTTCT | ||||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 157) | ||||||||||
chr3 | TTCCTCCACC | GCCCTATTGC | CTAAGTG | TTCCTC | GCCCTAT | TGAGCTT | TGAGCTT | CTAAGTG | GATCCGA | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | CCCTCCA | CACCGA | TGCAAGC | AGCCAAT | AGCCAAT | CCCTCCA | TAGCCCT | TCTTCTT | |
TGAGCTTAGC | TGAGCTTAGC | TGAGAAA | ACGTGT | CCTCTT | ATCAAgA | ATCAAcA | TGAGAAA | CTGCAG | CCCTGC | |
CAATATCAAg | CAATATCAAc | GGATCCG | CT | (SEQ ID | AGg | AGa | G | (SEQ ID | (SEQ ID | |
AAGg | AAGa | ATAGCCC | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | (SEQ ID | NO: 330) | NO: 33) | |
(SEQ ID | (SEQ ID | TCTGCAG | NO: 67) | NO: 201) | NO: 244) | NO: 287) | ||||
NO: 72) | NO: 115) | GCCCTCA | ||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 158) | ||||||||||
chr9 | TTCCTCCACC | GCCCTATTGC | GCACAGA | TTCCTC | GCCCTAT | ACGTGAA | ACGTGAA | GCACAGA | CAACAGG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TTTCCCA | CACCGA | TGCAAGC | CTTTCCT | CTTTCCT | TTTCCCA | CCTGCTA | TCTTCTT | |
ACGTGAACTT | ACGTGAACTT | CACTCTC | ACGTGT | CCTCTT | TGGTAcA | TGGTAaA | CACTCT | AACACC | CCCTGC | |
TCCTTGGTAc | TCCTTGGTAa | AACAGGC | CT | (SEQ ID | c | t | (SEQ ID | (SEQ ID | (SEQ ID | |
Ac | At | CTGCTAA | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 288) | NO: 331) | NO: 33) | |
(SEQ ID | (SEQ ID | ACACCGC | NO: 67) | NO: 202) | NO: 245) | |||||
NO: 73) | NO: 116) | CCTCATC | ||||||||
TTCTTCC | ||||||||||
CTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 159) | ||||||||||
chr3 | TTCCTCCACC | GCCCTATTGC | CTTACAG | TTCCTC | GCCCTAT | TGAAGAT | TGAAGAT | CTTACAG | GGTCAAC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GAGGTCT | CACCGA | TGCAAGC | GTTCTAA | GTTCTAA | GAGGTCT | AACCGAG | TCTTCTT | |
TGAAGATGTT | TGAAGATGTT | GGCATCA | ACGTGT | CCTCTT | TACCTTG | TACCTTG | GGCATCA | GGACTC | CCCTGC | |
CTAATACCTT | CTAATACCTT | GGTCAAC | CT | (SEQ ID | Ccg | Cta | (SEQ ID | (SEQ ID | (SEQ ID | |
GCcg | GCta | AACCGAG | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 289) | NO: 332) | NO: 33) | |
(SEQ ID | (SEQ ID | GGACTCG | NO: 67) | NO: 203) | NO: 246) | |||||
NO: 74) | NO: 117) | CCCTCAT | ||||||||
CTTCTTC | ||||||||||
CCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 160) | ||||||||||
chr17 | TTCCTCCACC | GCCCTATTGC | CCACAAT | TTCCTC | GCCCTAT | CAGTGTG | CAGTGTG | CCACAAT | TTGTCAT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GAGAAGG | CACCGA | TGCAAGC | GAGACtG | GAGACcG | GAGAAGG | TAATGCT | TCTTCTT | |
CAGTGTGGAG | CAGTGTGGAG | CAGAGTT | ACGTGT | CCTCTT | AACg | AACa | CAGAG | GGCGGC | CCCTGC | |
ACtGAACg | ACcGAACa | GTCATTA | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | ATGCTGG | (SEQ ID | NO: 68) | NO: 204) | NO: 247) | NO: 290) | NO: 333) | NO: 33) | |
NO: 75) | NO: 118) | CGGCGCC | NO: 67) | |||||||
CTCATCT | ||||||||||
TCTTCCC | ||||||||||
TGC | ||||||||||
(SEQ ID | ||||||||||
NO: 161) | ||||||||||
chr16 | TTCCTCCACC | GCCCTATTGC | GCTGTGG | TTCCTC | GCCCTAT | AGGCAGG | AGGCAGG | GCTGTGG | CGGTGAC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | CATAGCT | CACCGA | TGCAAGC | GTAATGT | GTAATGT | CATAGCT | GGTTTGC | TCTTCTT | |
AGGCAGGGTA | AGGCAGGGTA | ACACTCC | ACGTGT | CCTCTT | CATGAAa | CATGAAg | ACACTC | AACTTT | CCCTGC | |
ATGTCATGAA | ATGTCATGAA | GGTGACG | CT | (SEQ ID | Tg | Tt | (SEQ ID | (SEQ ID | (SEQ ID | |
aTg | gTt | GTTTGCA | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 291) | NO: 334) | NO: 33) | |
(SEQ ID | (SEQ ID | ACTTTGC | NO: 67) | NO: 205) | NO: 248) | |||||
NO: 76) | NO: 119) | CCTCATC | ||||||||
TTCTTCC | ||||||||||
CTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 162) | ||||||||||
chr21 | TTCCTCCACC | GCCCTATTGC | CAGGGTA | TTCCTC | GCCCTAT | GATTGTC | GATTGTC | CAGGGTA | GTCCGGC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | ATTTGTG | CACCGA | TGCAAGC | TGGAGcG | TGGAGgG | ATTTGTG | AGTTAAG | TCTTCTT | |
GATTGTCTGG | GATTGTCTGG | GGTCTGG | ACGTGT | CCTCTT | CTg | CTc | GGTCTG | GGTCTC | CCCTGC | |
AGcGCTg | AGgGCTc | TCCGGCA | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | GTTAAGG | (SEQ ID | NO: 68) | NO: 206) | NO: 249) | NO: 292) | NO: 335) | NO: 33) | |
NO: 77) | NO: 120) | GTCTCGC | NO: 67) | |||||||
CCTCATC | ||||||||||
TTCTTCC | ||||||||||
CTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 163) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | GGGCTAT | TTCCTC | GCCCTAT | AGGGAGC | AGGGAGC | GGGCTAT | TACTCAC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | CCAGAAA | CACCGA | TGCAAGC | AATAGGC | AATAGGC | CCAGAAA | AAACGAC | TCTTCTT | |
AGGGAGCAAT | AGGGAGCAAT | GATAAGA | ACGTGT | CCTCTT | cg | ta | GATAAGA | TGCGCA | CCCTGC | |
AGGCcg | AGGCta | ATACTCA | CT | (SEQ ID | (SEQ ID | (SEQ ID | A | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | CAAACGA | (SEQ ID | NO: 68) | NO: 207) | NO: 250) | (SEQ ID | NO: 336) | NO: 33) | |
NO: 78) | NO: 121) | CTGCGCA | NO: 67) | NO: 293) | ||||||
GCCCTCA | ||||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 164) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | CATAACT | TTCCTC | GCCCTAT | CTGCAGG | CTGCAGG | CATAACT | CGTATAT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GGTGGAG | CACCGA | TGCAAGC | GTACAAc | GTACAAg | GGTGGAG | GGCCGAC | TCTTCTT | |
CTGCAGGGTA | CTGCAGGGTA | TATTTCA | ACGTGT | CCTCTT | ACg | ACa | TATTTCA | TGGAGG | CCCTGC | |
CAAcACg | CAAgACa | CTCGTAT | CT | (SEQ ID | (SEQ ID | (SEQ ID | CT | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | ATGGCCG | (SEQ ID | NO: 68) | NO: 208) | NO: 251) | (SEQ ID | NO: 337) | NO: 33) | |
NO: 79) | NO: 122) | ACTGGAG | NO: 67) | NO: 294) | ||||||
GGCCCTC | ||||||||||
ATCTTCT | ||||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 165) | ||||||||||
chr19 | TTCCTCCACC | GCCCTATTGC | CTTCAAG | TTCCTC | GCCCTAT | CGTATCT | CGTATCT | CTTCAAG | TAGGGTT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GAAGAAA | CACCGA | TGCAAGC | GGGAAGA | GGGAAG | GAAGAAA | TGCGGCG | TCTTCTT | |
CGTATCTGGG | CGTATCTGGG | TTCAACA | ACGTGT | CCTCTT | cGGc | AtGGg | TTCAACA | ATAAGG | CCCTGC | |
AAGAcGGC | AAGAtGGg | GGGTAGG | CT | (SEQ ID | (SEQ ID | (SEQ ID | GGG | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | GTTTGCG | (SEQ ID | NO: 68) | NO: 209) | NO: 252) | (SEQ ID | NO: 338) | NO: 33) | |
NO: 80) | NO: 123) | GCGATAA | NO: 67) | NO: 295) | ||||||
GGGCCCT | ||||||||||
CATCTTC | ||||||||||
TTCCCTG | ||||||||||
C | ||||||||||
(SEQ ID | ||||||||||
NO: 166) | ||||||||||
chr9 | TTCCTCCACC | GCCCTATTGC | CATGGAT | TTCCTC | GCCCTAT | CCTGTAA | CCTGTAA | CATGGAT | CCAAGTC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TCAACAC | CACCGA | TGCAAGC | TCCCTTG | TCCCTTG | TCAACAC | AACCACC | TCTTCTT | |
CCTGTAATCC | CCTGTAATCC | AGCAAAC | ACGTGT | CCTCTT | CAATgc | CAATaa | AGCAAAC | CGAGAC | CCCTGC | |
CTTGCAATgc | CTTGCAATaa | ACCAAGT | CT | (SEQ ID | (SEQ ID | (SEQ ID | A | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | CAACCAC | (SEQ ID | NO: 68) | NO: 210) | NO: 253) | (SEQ ID | NO: 339) | NO: 33) | |
NO: 81) | NO: 124) | CCGAGAC | NO: 67) | NO: 296) | ||||||
GCCCTCA | ||||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 167) | ||||||||||
chr16 | TTCCTCCACC | GCCCTATTGC | CTCTGAC | TTCCTC | GCCCTAT | GGTCTCA | GGTCTCA | CTCTGAC | ACTTCCC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | CTCCTTC | CACCGA | TGCAAGC | GCACGGT | GCACGGT | CTCCTTC | TGGCCTT | TCTTCTT | |
GGTCTCAGCA | GGTCTCAGCA | ACTCTTA | ACGTGT | CCTCTT | tCTg | cCTt | ACTCTTA | CCTTCT | CCCTGC | |
CGGTtCTg | CGGTcCTt | CACTTCC | CT | (SEQ ID | (SEQ ID | (SEQ ID | C | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | CTGGCCT | (SEQ ID | NO: 68) | NO: 211) | NO: 254) | (SEQ ID | NO: 340) | NO: 33) | |
NO: 82) | NO: 125) | TCCTTCT | NO: 67) | NO: 297) | ||||||
GCCCTCA | ||||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 168) | ||||||||||
chr9 | TTCCTCCACC | GCCCTATTGC | GCTTTCA | TTCCTC | GCCCTAT | GCACCTC | GCACCTC | GCTTTCA | GCTTGGG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TTTGTGC | CACCGA | TGCAAGC | CCTAcCA | CCTAtCA | TTTGTGC | TCCTCTC | TCTTCTT | |
GCACCTCCCT | GCACCTCCCT | TAAACCT | ACGTGT | CCTCTT | CAc | CAt | TAAACCT | CTGAAC | CCCTGC | |
AcCACAc | AtCACAt | CGCTTGG | CT | (SEQ ID | (SEQ ID | (SEQ ID | C | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | GTCCTCT | (SEQ ID | NO: 68) | NO: 212) | NO: 255) | (SEQ ID | NO: 341) | NO: 33) | |
NO: 83) | NO: 126) | CCTGAAC | NO: 67) | NO: 298) | ||||||
GCCCTCA | ||||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 169) | ||||||||||
chr3 | TTCCTCCACC | GCCCTATTGC | CATCCCA | TTCCTC | GCCCTAT | GCCTCTA | GCCTCTA | CATCCCA | AACGTCC | GCCCTCA |
GAACGTGTCT | AAGCCTCTTG | GATGCCC | CACCGA | TGCAAGC | GCTAGAG | GCTAGAG | GATGCCC | GAACCAC | TCTTCTT | |
GCCTCTAGCT | CCTCTAGCTA | TCATAAC | ACGTGT | CCTCTT | AGAAGtc | AGAAGcg | TCAT | AATGCT | CCCTGC | |
AGAGAGAAGt | GAGAGAAGcg | GTCCGAA | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
c | (SEQ ID | CCACAAT | (SEQ ID | NO: 68) | NO: 213) | NO: 256) | NO: 299) | NO: 342) | NO: 33) | |
(SEQ ID | NO: 127) | GCTGCCC | NO: 67) | |||||||
NO: 84) | TCATCTT | |||||||||
CTTCCCT | ||||||||||
GC | ||||||||||
(SEQ ID | ||||||||||
NO: 170) | ||||||||||
chr20 | TTCCTCCACC | GCCCTATTGC | GTAGAAA | TTCCTC | GCCCTAT | CTGGCAG | CTGGCAG | GTAGAAA | CTCCTCG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TCCCAAG | CACCGA | TGCAAGC | TCTAGCC | TCTAGCC | TCCCAAG | CATCCAA | TCTTCTT | |
CTGGCAGTCT | CTGGCAGTCT | GCAATCA | ACGTGT | CCTCTT | gTTAc | aTTAt | GCAATCA | CAGTCG | CCCTGC | |
AGCCgTTAc | AGCCaTTAt | GCTCCTC | CT | (SEQ ID | (SEQ ID | (SEQ ID | G | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | GCATCCA | (SEQ ID | NO: 68) | NO: 214) | NO: 257) | (SEQ ID | NO: 343) | NO: 33) | |
NO: 85) | NO: 128) | ACAGTCG | NO: 67) | NO: 300) | ||||||
GCCCTCA | ||||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 171) | ||||||||||
chrX | TTCCTCCACC | GCCCTATTGC | GAACAAC | TTCCTC | GCCCTAT | TGTCTTA | TGTCTTA | GAACAAC | CCACCGT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TAACTCC | CACCGA | TGCAAGC | GAATTTG | GAATTTG | TAACTCC | AGCACTC | TCTTCTT | |
TGTCTTAGAA | TGTCTTAGAA | ACAGAAC | ACGTGT | CCTCTT | GCAACTg | GCAACTa | ACAGAAC | CTTCTT | CCCTGC | |
TTTGGCAACT | TTTGGCAACT | CCCCACC | CT | (SEQ ID | Gc | Gt | CC | (SEQ ID | (SEQ ID | |
gGc | aGt | GTAGCAC | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | (SEQ ID | NO: 344) | NO: 33) | |
(SEQ ID | (SEQ ID | TCCTTCT | NO: 67) | NO: 215) | NO: 258) | NO: 301) | ||||
NO: 86) | NO: 129) | TGCCCTC | ||||||||
ATCTTCT | ||||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 172) | ||||||||||
chr7 | TTCCTCCACC | GCCCTATTGC | GTGCAGA | TTCCTC | GCCCTAT | GCAGGAA | GCAGGAA | GTGCAGA | CGGAGC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GGACAGG | CACCGA | TGCAAGC | AGCCTAc | AGCCTAt | GGACAGG | GTCGGT | TCTTCTT | |
GCAGGAAAGC | GCAGGAAAGC | AAGAACG | ACGTGT | CCTCTT | TGAAc | TGAAt | AAGAA | AGTGTA | CCCTGC | |
CTAcTGAAc | CTAtTGAAt | GAGCGTC | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | AA | (SEQ ID | |
(SEQ ID | (SEQ ID | GGTAGTG | (SEQ ID | NO: 68) | NO: 216) | NO: 259) | NO: 302) | (SEQ ID | NO: 33) | |
NO: 87) | NO: 130) | TAAAGCC | NO: 67) | NO: 345) | ||||||
CTCATCT | ||||||||||
TCTTCCC | ||||||||||
TGC | ||||||||||
(SEQ ID | ||||||||||
NO: 173) | ||||||||||
chr3 | TTCCTCCACC | GCCCTATTGC | GGTGCTT | TTCCTC | GCCCTAT | GGGAGCC | GGGAGCC | GGTGCTT | ACAACTC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | CAAGACA | CACCGA | TGCAAGC | AGAGAAA | AGAGAAA | CAAGACA | GACGAAC | TCTTCTT | |
GGGAGCCAGA | GGGAGCCAGA | TACACCT | ACGTGT | CCTCTT | TgTCc | TtTCt | TACACCT | CTACCG | CCCTGC | |
GAAATgTCc | GAAATtTCt | TAACAAC | CT | (SEQ ID | (SEQ ID | (SEQ ID | TA | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TCGACGA | (SEQ ID | NO: 68) | NO: 217) | NO: 260) | (SEQ ID | NO: 346) | NO: 33) | |
NO: 88) | NO: 131) | ACCTACC | NO: 67) | NO: 303) | ||||||
GGCCCTC | ||||||||||
ATCTTCT | ||||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 174) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | GGAACCT | TTCCTC | GCCCTAT | TGTCTCC | TGTCTCC | GGAACCT | TGGCCCA | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | CTGTGAC | CACCGA | TGCAAGC | AGTTCCA | AGTTCCA | CTGTGAC | TCCTTAT | TCTTCTT | |
TGTCTCCAGT | TGTCTCCAGT | CTTGGAT | ACGTGT | CCTCTT | CTTCATt | CTTCATg | CTTGGA | GTGCTG | CCCTGC | |
TCCACTTCAT | TCCACTTCAT | GGCCCAT | CT | (SEQ ID | TAg | TAa | (SEQ ID | (SEQ ID | (SEQ ID | |
tTAg | gTAa | CCTTATG | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 304) | NO: 347) | NO: 33) | |
(SEQ ID | (SEQ ID | TGCTGGC | NO: 67) | NO: 218) | NO: 261) | |||||
NO: 89) | NO: 132) | CCTCATC | ||||||||
TTCTTCC | ||||||||||
CTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 175) | ||||||||||
chr15 | TTCCTCCACC | GCCCTATTGC | CCCAGTG | TTCCTC | GCCCTAT | CCCGTTA | CCCGTTA | CCCAGTG | GGTCGTT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GTACCTT | CACCGA | TGCAAGC | ATTGCCT | ATTGCCT | GTACCTT | ATTGCTC | TCTTCTT | |
CCCGTTAATT | CCCGTTAATT | CTGAAGG | ACGTGT | CCTCTT | AcTcg | AtTta | CTGAA | AAGCCC | CCCTGC | |
GCCTAcTcg | GCCTAtTta | TCGTTAT | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TGCTCAA | (SEQ ID | NO: 68) | NO: 219) | NO: 262) | NO: 305) | NO: 348) | NO: 33) | |
NO: 90) | NO: 133) | GCCCGCC | NO: 67) | |||||||
CTCATCT | ||||||||||
TCTTCCC | ||||||||||
GC | ||||||||||
(SEQ ID | ||||||||||
NO: 176) | ||||||||||
chr15 | TTCCTCCACC | GCCCTATTGC | CTTCTGT | TTCCTC | GCCCTAT | CTCGGTC | CTCGGTC | CTTCTGT | TTGATTC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TGCTTAT | CACCGA | TGCAAGC | CCACTGG | CCACTGG | TGCTTAT | TGGCCCT | TCTTCTT | |
CTCGGTCCCA | CTCGGTCCCA | TTGGGTA | ACGTGT | CCTCTT | aAAg | gAAa | TTGGGTA | CCCATC | CCCTGC | |
CTGGaAAg | CTGGgAAa | ACTTGAT | CT | (SEQ ID | (SEQ ID | (SEQ ID | AC | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TCTGGCC | (SEQ ID | NO: 68) | NO: 220) | NO: 263) | (SEQ ID | NO: 349) | NO: 33) | |
NO: 91) | NO: 134) | CTCCCAT | NO: 67) | NO: 306) | ||||||
CGCCCTC | ||||||||||
ATCTTCT | ||||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 177) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | CCCACTG | TTCCTC | GCCCTAT | ACACCCA | ACACCCA | CCCACTG | CTCACGC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GATGCCT | CACCGA | TGCAAGC | TGATTCA | TGATTCA | GATGCCT | CGGCTAT | TCTTCTT | |
ACACCCATGA | ACACCCATGA | CCCTCAC | ACGTGT | CCTCTT | GTTACtg | GTTACca | CC | TTAGGT | CCCTGC | |
TTCAGTTACt | TTCAGTTACc | GCCGGCT | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
g | a | ATTTAGG | (SEQ ID | NO: 68) | NO: 221) | NO: 264) | NO: 307) | NO: 350) | NO: 33) | |
(SEQ ID | (SEQ ID | TGCCCTC | NO: 67) | |||||||
NO: 92) | NO: 135) | ATCTTCT | ||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 178) | ||||||||||
chr9 | TTCCTCCACC | GCCCTATTGC | CGGAGAG | TTCCTC | GCCCTAT | GCTAGTA | GCTAGTA | CGGAGAG | AGTCTGG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | ACGCATC | CACCGA | TGCAAGC | TGAACAT | TGAACAT | ACGCATC | GTAGGTG | TCTTCTT | |
GCTAGTATGA | GCTAGTATGA | TGAAAGT | ACGTGT | CCTCTT | CACAgGc | CACAaGt | TGAA | GAGGAC | CCCTGC | |
ACATCACAgG | ACATCACAaG | CTGGGTA | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
c | t | GGTGGAG | (SEQ ID | NO: 68) | NO: 222) | NO: 265) | NO: 308) | NO: 351) | NO: 33) | |
(SEQ ID | (SEQ ID | GACGCCC | NO: 67) | |||||||
NO: 93) | NO: 136) | TCATCTT | ||||||||
CTTCCCT | ||||||||||
GC | ||||||||||
(SEQ ID | ||||||||||
NO: 179) | ||||||||||
chr7 | TTCCTCCACC | GCCCTATTGC | CAGGATT | TTCCTC | GCCCTAT | ACAAATG | ACAAATG | CAGGATT | CGACTGA | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TCCAGCT | CACCGA | TGCAAGC | AGTAAGA | AGTAAGA | TCCAGCT | GCCACAT | TCTTCTT | |
ACAAATGAGT | ACAAATGAGT | TACAGGG | ACGTGT | CCTCTT | AGCGAGT | AGCGAGT | TACAGGG | CCAACT | CCCTGC | |
AAGAAGCGAG | AAGAAGCGAG | CGACTGA | CT | (SEQ ID | cg | ta | (SEQ ID | (SEQ ID | (SEQ ID | |
Tcg | Tta | GCCACAT | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 309) | NO: 352) | NO: 33) | |
(SEQ ID | (SEQ ID | CCAACTG | NO: 67) | NO: 223) | NO: 266) | |||||
NO: 94) | NO: 137) | CCCTCAT | ||||||||
CTTCTTC | ||||||||||
CCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 180) | ||||||||||
chr20 | TTCCTCCACC | GCCCTATTGC | CTTGCAA | TTCCTC | GCCCTAT | GATAAGG | GATAAGG | CTTGCAA | GAGCCTC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GATGTGC | CACCGA | TGCAAGC | GTTGCTC | GTTGCTC | GATGTGC | AGCCGGA | TCTTCTT | |
GATAAGGGTT | GATAAGGGTT | CTCTTAG | ACGTGT | CCTCTT | TgCg | TaCa | CTCTTA | ATTGAA | CCCTGC | |
GCTCTgCg | GCTCTaCa | AGCCTCA | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | GCCGGAA | (SEQ ID | NO: 68) | NO: 224) | NO: 267) | NO: 310) | NO: 353) | NO: 33) | |
NO: 95) | NO: 138) | TTGAAGC | NO: 67) | |||||||
CCTCATC | ||||||||||
TTCTTCC | ||||||||||
CTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 181) | ||||||||||
chr20 | TTCCTCCACC | GCCCTATTGC | GGGTGGT | TTCCTC | GCCCTAT | CCATGCA | CCATGCA | GGGTGGT | TTGCCAT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TTCTCTA | CACCGA | TGCAAGC | CCAGCTA | CCAGCTA | TTCTCTA | TCTGCAC | TCTTCTT | |
CCATGCACCA | CCATGCACCA | AACACAA | ACGTGT | CCTCTT | Ccc | Cta | AACACAA | CAATGC | CCCTGC | |
GCTACcc | GCTACta | ATTGCCA | CT | (SEQ ID | (SEQ ID | (SEQ ID | A | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TTCTGCA | (SEQ ID | NO: 68) | NO: 225) | NO: 268) | (SEQ ID | NO: 354) | NO: 33) | |
NO: 96 | NO: 139) | CCAATGC | NO: 67) | NO: 311) | ||||||
GCCCTCA | ||||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 182) | ||||||||||
chr1 | TTCCTCCACC | GCCCTATTGC | GCAGGGT | TTCCTC | GCCCTAT | AACTGTA | AACTGTA | GCAGGGT | TATTGGT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | ATTGAGA | CACCGA | TGCAAGC | CCCTACT | CCCTACT | ATGAGAG | GTTCGCG | TCTTCTT | |
AACTGTACCC | AACTGTACCC | GAAGGAT | ACGTGT | CCTCTT | CCCAgc | CCCAat | AAGGATC | GCTGAT | CCCTGC | |
TACTCCCAgc | TACTCCCAat | CTATTGG | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TGTTCGC | (SEQ ID | NO: 68) | NO: 226) | NO: 269) | NO: 312) | NO: 355) | NO: 33) | |
NO: 97) | NO: 140) | GGCTGAT | NO: 67) | |||||||
GCCCTCA | ||||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 183) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | GTGCACA | TTCCTC | GCCCTAT | AGGACCA | AGGACCA | GTGCACA | ATGGGCG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TTTCTTG | CACCGA | TGCAAGC | AGGGACC | AGGGACC | TTTCTTG | TAACAGG | TCTTCTT | |
AGGACCAAGG | AGGACCAAGG | ATGAAGG | ACGTGT | CCTCTT | AGTTtAg | AGTTcAc | ATGAAGG | AGGACT | CCCTGC | |
GACCAGTTtA | GACCAGTTcA | GATGGGC | CT | (SEQ ID | (SEQ ID | (SEQ ID | G | (SEQ ID | (SEQ ID | |
G | c | GTAACAG | (SEQ ID | NO: 68) | NO: 227) | NO: 270) | (SEQ ID | NO: 356) | NO: 33) | |
(SEQ ID | (SEQ ID | GAGGACT | NO: 67) | NO: 313) | ||||||
NO: 98) | NO: 141) | GCCCTCA | ||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 184) | ||||||||||
chr7 | TTCCTCCACC | GCCCTATTGC | GAGCAAT | TTCCTC | GCCCTAT | AGAGTTC | AGAGTTC | GAGCAAT | GGAATGG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GCCTGTT | CACCGA | TGCAAGC | CTCCAAG | CTCCAAG | GCCTGTT | CCTACCT | TCTTCTT | |
AGAGTTCCTC | AGAGTTCCTC | TCATGAG | ACGTGT | CCTCTT | AAATTGc | AAATTGt | TCATGAG | GCATCA | CCCTGC | |
CAAGAAATTG | CAAGAAATTG | AGGAATG | CT | (SEQ ID | g | a | A | (SEQ ID | (SEQ ID | |
cg | (SEQ ID | GCCTACC | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | (SEQ ID | NO: 357) | NO: 33) | |
(SEQ ID | NO: 142) | TGCATCA | NO: 67) | NO: 228) | NO: 271) | NO: 314) | ||||
NO: 99) | GCCCTCA | |||||||||
TCTTCTT | ||||||||||
CCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 185) | ||||||||||
chr5 | TTCCTCCACC | GCCCTATTGC | GTTAACA | TTCCTC | GCCCTAT | ACATTAT | ACATTAT | GTTAACA | CCCGTTG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TTATACA | CACCGA | TGCAAGC | ACAGCAT | ACAGCAT | TTATACA | TTGTCAT | TCTTCTT | |
ACATTATACA | ACATTATACA | GCATGGT | ACGTGT | CCTCTT | GCTGGcT | GCTGGtT | GCATGGT | CGCATC | CCCTGC | |
GCATGCTGGc | GCATGCTGGt | GGCCCCG | CT | (SEQ ID | Atc | Aga | GGC | (SEQ ID | (SEQ ID | |
TAtc | TAga | TTGTTGT | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | (SEQ ID | NO: 358) | NO: 33) | |
(SEQ ID | (SEQ ID | CATCGCA | NO: 67) | NO: 229) | NO: 272) | NO: 315) | ||||
NO: 100) | NO: 143) | TCGCCTC | ||||||||
ATCTTCT | ||||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 186) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | GCAGAAC | TTCCTC | GCCCTAT | GAGGAAG | GAGGAAG | GCAGAAC | GTTCGAT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | ATGTCCT | CACCGA | TGCAAGC | AAAGTGA | AAAGTGA | ATGTCCT | GCGTCCC | TCTTCTT | |
GAGGAAGAAA | GAGGAAGAAA | GAAGCGT | ACGTGT | CCTCTT | GgTTTGc | GaTTTGt | GAAGC | ATGAGT | CCCTGC | |
GTGAGgTTTG | GTGAGaTTTG | TCGATGC | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
c | t | GTCCCAT | (SEQ ID | NO: 68) | NO: 230) | NO: 273) | NO: 316) | NO: 359) | NO: 33) | |
(SEQ ID | (SEQ ID | GAGTGCC | NO: 67) | |||||||
NO: 101) | NO: 144) | CTCATCT | ||||||||
TCTTCCC | ||||||||||
TGC | ||||||||||
(SEQ ID | ||||||||||
NO: 187) | ||||||||||
chr15 | TTCCTCCACC | GCCCTATTGC | CAGCTTG | TTCCTC | GCCCTAT | CTGAATT | CTGAATT | CAGCTTG | CAACCCG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TTCCCAA | CACCGA | TGCAAGC | ATGTGCT | ATGTGCT | TTCCCAA | CGTAGAT | TCTTCTT | |
CTGAATTATG | CTGAATTATG | ACCCATC | ACGTGT | CCTCTT | TACCAaG | TACCAgG | ACCCAT | GTTCCT | CCCTGC | |
TGCTTACCAa | TGCTTACCAg | AACCCGC | CT | (SEQ ID | AGc | AGt | (SEQ ID | (SEQ ID | (SEQ ID | |
GAGc | GAGt | GTAGATG | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 317) | NO: 360) | NO: 33) | |
(SEQ ID | (SEQ ID | TTCCTGC | NO: 67) | NO: 231) | NO: 274) | |||||
NO: 102) | NO: 145) | CCTCATC | ||||||||
TTCTTCC | ||||||||||
CTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 188) | ||||||||||
chr9 | TTCCTCCACC | GCCCTATTGC | CAAAGTG | TTCCTC | GCCCTAT | TGGGTTC | TGGGTTC | CAAAGTG | GCCAGCT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TGGAAGT | CACCGA | TGCAAGC | TGATAAC | TGATAAC | TGGAAGT | CAAGAGT | TCTTCTT | |
TGGGTTCTGA | TGGGTTCTGA | TGCTTCC | ACGTGT | CCTCTT | CTTATCA | CTTATCA | TGCTTCC | GTAGCC | CCCTGC | |
TAACCTTATC | TAACCTTATC | GCCAGCT | CT | (SEQ ID | Agc | Act | (SEQ ID | (SEQ ID | (SEQ ID | |
AAgc | AAct | CAAGAGT | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 318) | NO: 361) | NO: 33) | |
(SEQ ID | (SEQ ID | GTAGCCG | NO: 67) | NO: 232) | NO: 275) | |||||
NO: 103) | NO: 146) | CCCTCAT | ||||||||
CTTCTTC | ||||||||||
CCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 189) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | GGTCGAC | TTCCTC | GCCCTAT | GGTTAGT | GGTTAGT | GGTCGAC | TTCTTGA | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | TTTGTCC | CACCGA | TGCAAGC | CAAACAT | CAAACAT | TTTGTCC | TCCTGCG | TCTTCTT | |
GGTTAGTCAA | GGTTAGTCAA | ATCCTTC | ACGTGT | CCTCTT | GcTGc | GtTGt | ATCC | CGATGT | CCCTGC | |
ACATGcTGc | ACATGtTGt | TTGATCC | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TGCGCGA | (SEQ ID | NO: 68) | NO: 233) | NO: 276) | NO: 319) | NO: 362) | NO: 33) | |
NO: 104) | NO: 147) | TGTGCCC | NO: 67) | |||||||
TCATCTT | ||||||||||
CTTCCCT | ||||||||||
GC | ||||||||||
(SEQ ID | ||||||||||
NO: 190) | ||||||||||
chr17 | TTCCTCCACC | GCCCTATTGC | CTCTGTT | TTCCTC | GCCCTAT | GACACTG | GACACTG | CTCTGTT | ATCGCAG | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GCCTGTG | CACCGA | TGCAAGC | GCAGAAT | GCAGAAT | GCCTGTG | GCGTTCC | TCTTCTT | |
GACACTGGCA | GACACTGGCA | GACTCAT | ACGTGT | CCTCTT | CAAAtCA | CAAAcCA | GACTC | CTATAC | CCCTGC | |
GAATCAAAtC | GAATCAAAcC | CGCAGGC | CT | (SEQ ID | c | a | (SEQ ID | (SEQ ID | (SEQ ID | |
Ac | Aa | GTTCCCT | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 320) | NO: 363) | NO: 33) | |
(SEQ ID | (SEQ ID | ATACGCC | NO: 67) | NO: 234) | NO: 277) | |||||
NO: 105) | NO: 148) | CTCATCT | ||||||||
TCTTCCC | ||||||||||
TGC | ||||||||||
(SEQ ID | ||||||||||
NO: 191) | ||||||||||
chr6 | TTCCTCCACC | GCCCTATTGC | CTAACTA | TTCCTC | GCCCTAT | AGAGTTA | AGAGTTA | CTAACTA | TATTGGA | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GAATTAG | CACCGA | TGCAAGC | CACCTTT | CACCTTT | GAATTAG | CCTCCGA | TCTTCTT | |
AGAGTTACAC | AGAGTTACAC | TCTGCCT | ACGTGT | CCTCTT | AGCTAAC | AGCTAAC | TCTGCCT | CCACGA | CCCTGC | |
CTTTAGCTAA | CTTTAGCTAA | GCCTATT | CT | (SEQ ID | cAc | tAg | GCC | (SEQ ID | (SEQ ID | |
CcAc | CtAg | GGACCTC | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | (SEQ ID | NO: 364) | NO: 33) | |
(SEQ ID | (SEQ ID | CGACCAC | NO: 67) | NO: 235) | NO: 278) | NO: 321) | ||||
NO: 106) | NO: 149) | GAGCCCT | ||||||||
CATCTTC | ||||||||||
TTCCCTG | ||||||||||
C | ||||||||||
(SEQ ID | ||||||||||
NO: 192) | ||||||||||
chr7 | TTCCTCCACC | GCCCTATTGC | GTGAGCC | TTCCTC | GCCCTAT | CCAGGAG | CCAGGAG | GTGAGCC | AGCCACC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | ATAATCG | CACCGA | TGCAAGC | TTCAAGa | TTCAAGg | ATAATCG | ATTTAGA | TCTTCTT | |
CCAGGAGTTC | CCAGGAGTTC | TGTCAAG | ACGTGT | CCTCTT | AGCg | AGCa | TGTCA | TCCGCG | CCCTGC | |
AAGaAGCg | AAGgAGCa | CCACCAT | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TTAGATC | (SEQ ID | NO: 68) | NO: 236) | NO: 279) | NO: 322) | NO: 365) | NO: 33) | |
NO: 107) | NO: 150) | CGCGGCC | NO: 67) | |||||||
CTCATCT | ||||||||||
TCTTCCC | ||||||||||
TGC | ||||||||||
(SEQ ID | ||||||||||
NO: 193) | ||||||||||
chr4 | TTCCTCCACC | GCCCTATTGC | GAGAATT | TTCCTC | GCCCTAT | ACCACTC | ACCACTC | GAGAATT | GACCAGT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | AATGCTC | CACCGA | TGCAAGC | CTTTCTC | CTTTCTC | AATGCTC | AGAAGTC | TCTTCTT | |
ACCACTCCTT | ACCACTCCTT | CCTCTCC | ACGTGT | CCTCTT | CCaTCTc | CCgTCTt | CCTCTCC | TGCCCG | CCCTGC | |
TCTCCCaTCT | TCTCCCgTCT | TGGACCA | CT | (SEQ ID | (SEQ ID | (SEQ ID | TG | (SEQ ID | (SEQ ID | |
c | t | GTAGAAG | (SEQ ID | NO: 68) | NO: 237) | NO: 280) | (SEQ ID | NO: 366) | NO: 33) | |
(SEQ ID | (SEQ ID | TCTGCCC | NO: 67) | NO: 323) | ||||||
NO: 108) | NO: 151) | GGCCCTC | ||||||||
ATCTTCT | ||||||||||
TCCCTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 194) | ||||||||||
chr2 | TTCCTCCACC | GCCCTATTGC | GTGGTCT | TTCCTC | GCCCTAT | GTCTTAT | GTCTTAT | GTGGTCT | TTTCAGA | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | GCTGTTG | CACCGA | TGCAAGC | GGGACAA | GGGACAA | GCTGTTG | ATGGCCG | TCTTCTT | |
GTCTTATGGG | GTCTTATGGG | ACCAATT | ACGTGT | CCTCTT | TGGTtGA | TGGTcGA | ACCAA | AGCTGT | CCCTGC | |
ACAATGGTtG | ACAATGGTcG | TCAGAAT | CT | (SEQ ID | TAg | TAt | (SEQ ID | (SEQ ID | (SEQ ID | |
ATAg | ATAt | GGCCGAG | (SEQ ID | NO: 68) | (SEQ ID | (SEQ ID | NO: 324) | NO: 367) | NO: 33) | |
(SEQ ID | (SEQ ID | CTGTGCC | NO: 67) | NO: 238) | NO: 281) | |||||
NO: 109) | NO: 152) | CTCATCT | ||||||||
TCTTCCC | ||||||||||
TGC | ||||||||||
(SEQ ID | ||||||||||
NO: 195) | ||||||||||
chr17 | TTCCTCCACC | GCCCTATTGC | GGTTGCA | TTCCTC | GCCCTAT | CTACCCT | CTACCTC | GGTTGCA | AGGTGAC | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | ACTGCTG | CACCGA | TGCAAGC | CAACCCT | CAACCCT | ACTGCTG | CTTCTTG | TCTTCTT | |
CTACCCTCAA | CTACCCTCAA | ATCTATA | ACGTGT | CCTCTT | CgTc | CaTt | ATCTAT | TACGCC | CCCTGC | |
CCCTCgTc | CCCTCaTt | GGTGACC | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TTCTTGT | (SEQ ID | NO: 68) | NO: 239) | NO: 282) | NO: 325) | NO: 368) | NO: 33) | |
NO: 110) | NO: 153) | ACGCCGC | NO: 67) | |||||||
CCTCATC | ||||||||||
TTCTTCC | ||||||||||
CTGC | ||||||||||
(SEQ ID | ||||||||||
NO: 196) | ||||||||||
chr7 | TTCCTCCACC | GCCCTATTGC | CTTTCCC | TTCCTC | GCCCTAT | CCAAGAC | CCAAGAC | CTTTCCC | GGCGCGT | GCCCTCA |
GAACGTGTCT | AAGCCCTCTT | AGTCAAG | CACCGA | TGCAAGC | TGATCAT | TGATCAT | AGTCAAG | CCTTATT | TCTTCTT | |
CCAAGACTGA | CCAAGACTGA | GCAGGGC | ACGTGT | CCTCTT | GCcg | GCta | GCAG | TCCATC | CCCTGC | |
TCATGCcg | TCATGCta | GCGTCCT | CT | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | (SEQ ID | |
(SEQ ID | (SEQ ID | TATTTCC | (SEQ ID | NO: 68) | NO: 240) | NO: 283) | NO: 326) | NO: 369) | NO: 33) | |
NO: 111) | NO: 154) | ATCGCCC | NO: 67) | |||||||
TCATCTT | ||||||||||
CTTCCCT | ||||||||||
GC | ||||||||||
(SEQ ID | ||||||||||
NO: 197) | ||||||||||
Component | Volume | ||
H2O | 19.33 | μL | ||
Probe | 5 | μL | ||
10X Taq Ligase | 5 | μL | ||
Taq Ligase | 0.67 | μL | ||
The plate was placed in a thermal cycler and ligate using the following cycling profile: (i) 95° C. for 5 minutes; (ii) 95° C. for 30 seconds; (iii) 45° C. for 25 minutes; (iv) Repeat steps b to
Component | Volume | ||
H2O | 17.25 | μL | ||
Forward Primer, 10 μM | 2.5 | μL | ||
Reverse Primer, 10 μM | 2.5 | | ||
4 mM dNTP Mix (L/N 052114) | 2.5 | μL | ||
10X AmpliTaq Gold Buffer | 5 | μL | ||
AmpliTaq Gold Enzyme | 0.25 | μL | ||
The plate was placed in a thermal cycler, and the probes were ligated using the following cycling profile: (i) 95° C. for 5 minutes; (ii) 95° C. for 30 seconds; (iii) 45° C. for 25 minutes; (iv) Repeat steps b to
Component | Volume | ||
H2O | 3 μL | ||
10X Lambda Exonuclease |
6 μL | ||
Lambda Exonuclease Enzyme | 1 μL | ||
Component | Volume | ||
H2O | 3 μL | ||
1.25 |
16 μL | ||
|
1 μL | ||
Claims (35)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/949,097 US9758814B2 (en) | 2013-08-19 | 2015-11-23 | Assays for single molecule detection and use thereof |
US15/675,234 US10626450B2 (en) | 2013-08-19 | 2017-08-11 | Assays for single molecule detection and use thereof |
US16/842,089 US11326204B2 (en) | 2013-08-19 | 2020-04-07 | Assays for single molecule detection and use thereof |
US17/739,978 US20220340958A1 (en) | 2013-08-19 | 2022-05-09 | Assays for single molecule detection and use thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361867559P | 2013-08-19 | 2013-08-19 | |
US201361867554P | 2013-08-19 | 2013-08-19 | |
PCT/US2014/051763 WO2015026873A1 (en) | 2013-08-19 | 2014-08-19 | Assays for single molecule detection and use thereof |
US14/603,323 US9212394B2 (en) | 2013-08-19 | 2015-01-22 | Assays for single molecule detection and use thereof |
US14/949,097 US9758814B2 (en) | 2013-08-19 | 2015-11-23 | Assays for single molecule detection and use thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/603,323 Continuation US9212394B2 (en) | 2013-08-19 | 2015-01-22 | Assays for single molecule detection and use thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/675,234 Continuation US10626450B2 (en) | 2013-08-19 | 2017-08-11 | Assays for single molecule detection and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160076087A1 US20160076087A1 (en) | 2016-03-17 |
US9758814B2 true US9758814B2 (en) | 2017-09-12 |
Family
ID=52484110
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/603,323 Active US9212394B2 (en) | 2013-08-19 | 2015-01-22 | Assays for single molecule detection and use thereof |
US14/949,097 Active US9758814B2 (en) | 2013-08-19 | 2015-11-23 | Assays for single molecule detection and use thereof |
US15/675,234 Active 2035-01-05 US10626450B2 (en) | 2013-08-19 | 2017-08-11 | Assays for single molecule detection and use thereof |
US16/842,089 Active 2035-02-18 US11326204B2 (en) | 2013-08-19 | 2020-04-07 | Assays for single molecule detection and use thereof |
US17/739,978 Pending US20220340958A1 (en) | 2013-08-19 | 2022-05-09 | Assays for single molecule detection and use thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/603,323 Active US9212394B2 (en) | 2013-08-19 | 2015-01-22 | Assays for single molecule detection and use thereof |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/675,234 Active 2035-01-05 US10626450B2 (en) | 2013-08-19 | 2017-08-11 | Assays for single molecule detection and use thereof |
US16/842,089 Active 2035-02-18 US11326204B2 (en) | 2013-08-19 | 2020-04-07 | Assays for single molecule detection and use thereof |
US17/739,978 Pending US20220340958A1 (en) | 2013-08-19 | 2022-05-09 | Assays for single molecule detection and use thereof |
Country Status (14)
Country | Link |
---|---|
US (5) | US9212394B2 (en) |
EP (3) | EP3036545B1 (en) |
JP (2) | JP6088710B2 (en) |
CN (2) | CN105659091A (en) |
AU (2) | AU2014308980C1 (en) |
BR (1) | BR112016003480B1 (en) |
CA (1) | CA2921628A1 (en) |
ES (1) | ES2739430T3 (en) |
HK (1) | HK1222449A1 (en) |
IL (3) | IL285521B2 (en) |
MX (2) | MX371428B (en) |
SG (1) | SG11201601201VA (en) |
WO (1) | WO2015026873A1 (en) |
ZA (1) | ZA201601029B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10364467B2 (en) | 2015-01-13 | 2019-07-30 | The Chinese University Of Hong Kong | Using size and number aberrations in plasma DNA for detecting cancer |
US10741270B2 (en) | 2012-03-08 | 2020-08-11 | The Chinese University Of Hong Kong | Size-based analysis of cell-free tumor DNA for classifying level of cancer |
US11062789B2 (en) | 2014-07-18 | 2021-07-13 | The Chinese University Of Hong Kong | Methylation pattern analysis of tissues in a DNA mixture |
US11211144B2 (en) | 2020-02-18 | 2021-12-28 | Tempus Labs, Inc. | Methods and systems for refining copy number variation in a liquid biopsy assay |
US11211147B2 (en) | 2020-02-18 | 2021-12-28 | Tempus Labs, Inc. | Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing |
US11326204B2 (en) * | 2013-08-19 | 2022-05-10 | Invitae Corporation | Assays for single molecule detection and use thereof |
US11435339B2 (en) | 2016-11-30 | 2022-09-06 | The Chinese University Of Hong Kong | Analysis of cell-free DNA in urine |
US11475981B2 (en) | 2020-02-18 | 2022-10-18 | Tempus Labs, Inc. | Methods and systems for dynamic variant thresholding in a liquid biopsy assay |
US11639928B2 (en) | 2018-02-22 | 2023-05-02 | 10X Genomics, Inc. | Methods and systems for characterizing analytes from individual cells or cell populations |
US11739371B2 (en) | 2015-02-18 | 2023-08-29 | Invitae Corporation | Arrays for single molecule detection and use thereof |
US11952626B2 (en) | 2021-02-23 | 2024-04-09 | 10X Genomics, Inc. | Probe-based analysis of nucleic acids and proteins |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11939634B2 (en) | 2010-05-18 | 2024-03-26 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190010543A1 (en) | 2010-05-18 | 2019-01-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
BR112013020220B1 (en) | 2011-02-09 | 2020-03-17 | Natera, Inc. | METHOD FOR DETERMINING THE PLOIDIA STATUS OF A CHROMOSOME IN A PREGNANT FETUS |
WO2013106807A1 (en) | 2012-01-13 | 2013-07-18 | Curry John D | Scalable characterization of nucleic acids by parallel sequencing |
US20140100126A1 (en) | 2012-08-17 | 2014-04-10 | Natera, Inc. | Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data |
JP6588560B2 (en) | 2015-03-06 | 2019-10-09 | ピラー バイオサイエンシズ インコーポレイティド | Selective amplification of overlapping amplicons |
US10221448B2 (en) | 2015-03-06 | 2019-03-05 | Pillar Biosciences Inc. | Selective amplification of overlapping amplicons |
EP3294906B1 (en) | 2015-05-11 | 2024-07-10 | Natera, Inc. | Methods for determining ploidy |
KR102625365B1 (en) | 2015-07-07 | 2024-01-15 | 필러 바이오사이언시스 인코포레이티드 | Method for reducing primer-dimer amplification |
US11118216B2 (en) * | 2015-09-08 | 2021-09-14 | Affymetrix, Inc. | Nucleic acid analysis by joining barcoded polynucleotide probes |
CN106053405B (en) * | 2016-05-10 | 2018-10-02 | 东南大学 | A kind of super-resolution optical imaging method based on unimolecule positioning mode |
CN109477095A (en) * | 2016-05-26 | 2019-03-15 | 卓异生物公司 | Array and its application for Single Molecule Detection |
EP3507769B1 (en) | 2016-09-02 | 2023-11-01 | Invitae Corporation | Systems and methods for single molecule quantification |
US11093307B2 (en) * | 2016-12-08 | 2021-08-17 | Accenture Global Solutions Limited | Platform for supporting multiple virtual agent applications |
CA3056765C (en) * | 2017-03-17 | 2024-04-02 | Apton Biosystems, Inc. | Sequencing and high resolution imaging |
WO2018237075A1 (en) | 2017-06-20 | 2018-12-27 | The Medical College Of Wisconsin, Inc. | Assessing transplant complication risk with total cell-free dna |
WO2019118926A1 (en) | 2017-12-14 | 2019-06-20 | Tai Diagnostics, Inc. | Assessing graft suitability for transplantation |
WO2019200326A1 (en) | 2018-04-13 | 2019-10-17 | Rarecyte, Inc. | Kits for labeling of biomarkers and methods of using the same |
CA3090426A1 (en) | 2018-04-14 | 2019-10-17 | Natera, Inc. | Methods for cancer detection and monitoring by means of personalized detection of circulating tumor dna |
EP3591401A1 (en) * | 2018-07-06 | 2020-01-08 | Euroimmun Medizinische Labordiagnostika AG | Method for the automated detection of antibodies in a liquid biological sample using an antigen chip |
US11931674B2 (en) | 2019-04-04 | 2024-03-19 | Natera, Inc. | Materials and methods for processing blood samples |
JPWO2021117667A1 (en) * | 2019-12-09 | 2021-06-17 | ||
CN112419235B (en) * | 2020-10-22 | 2024-07-23 | 南京大学 | Sperm activity detection system and method |
CN112345766B (en) * | 2020-10-22 | 2024-02-02 | 中国工程物理研究院核物理与化学研究所 | Fluorescence-radioactivity combined in-vitro targeting screening method |
EP4092136B8 (en) * | 2021-05-20 | 2024-03-13 | Sophia Genetics S.A. | Capture probes and uses thereof |
CA3238472A1 (en) * | 2021-12-01 | 2023-06-08 | Norman Leigh Anderson | Enriched peptide detection by single molecule sequencing |
WO2024050553A1 (en) * | 2022-09-01 | 2024-03-07 | The Johns Hopkins University | Methods for measuring telomere length |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010977A1 (en) | 1988-05-03 | 1989-11-16 | Isis Innovation Limited | Analysing polynucleotide sequences |
WO1992010092A1 (en) | 1990-12-06 | 1992-06-25 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis |
US5256536A (en) | 1990-11-09 | 1993-10-26 | Syntex (U.S.A.) Inc. | Nucleotide probe for Neisseria gonrrhoeae |
US5547839A (en) | 1989-06-07 | 1996-08-20 | Affymax Technologies N.V. | Sequencing of surface immobilized polymers utilizing microflourescence detection |
WO1996027025A1 (en) | 1995-02-27 | 1996-09-06 | Ely Michael Rabani | Device, compounds, algorithms, and methods of molecular characterization and manipulation with molecular parallelism |
WO2000006770A1 (en) | 1998-07-30 | 2000-02-10 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
WO2000036152A1 (en) | 1998-12-14 | 2000-06-22 | Li-Cor, Inc. | A system and methods for nucleic acid sequencing of single molecules by polymerase synthesis |
WO2000079008A2 (en) | 1999-06-21 | 2000-12-28 | Kris Richard M | High throughput assay system |
WO2001023610A2 (en) | 1999-09-29 | 2001-04-05 | Solexa Ltd. | Polynucleotide sequencing |
US6268146B1 (en) | 1998-03-13 | 2001-07-31 | Promega Corporation | Analytical methods and materials for nucleic acid detection |
WO2001057248A2 (en) | 2000-02-01 | 2001-08-09 | Solexa Ltd. | Polynucleotide arrays and their use in sequencing |
WO2001057249A1 (en) | 2000-02-02 | 2001-08-09 | Solexa Ltd. | Synthesis of spatially addressed molecular arrays |
US20020006617A1 (en) | 2000-02-07 | 2002-01-17 | Jian-Bing Fan | Nucleic acid detection methods using universal priming |
US6706473B1 (en) | 1996-12-06 | 2004-03-16 | Nanogen, Inc. | Systems and devices for photoelectrophoretic transport and hybridization of oligonucleotides |
WO2005026329A2 (en) | 2003-09-12 | 2005-03-24 | Cornell Research Foundation, Inc. | Methods for identifying target nucleic acid molecules |
US6913884B2 (en) | 2001-08-16 | 2005-07-05 | Illumina, Inc. | Compositions and methods for repetitive use of genomic DNA |
US20050244863A1 (en) | 2002-09-19 | 2005-11-03 | The Chancellor, Master And Scholars Of The University Of Oxford | Molecular arrays and single molecule detection |
US20060019304A1 (en) | 2004-07-26 | 2006-01-26 | Paul Hardenbol | Simultaneous analysis of multiple genomes |
US20070037152A1 (en) * | 2003-02-26 | 2007-02-15 | Drmanac Radoje T | Random array dna analysis by hybridization |
US20080138809A1 (en) | 2006-06-14 | 2008-06-12 | Ravi Kapur | Methods for the Diagnosis of Fetal Abnormalities |
US7582420B2 (en) | 2001-07-12 | 2009-09-01 | Illumina, Inc. | Multiplex nucleic acid reactions |
JP2009232778A (en) | 2008-03-27 | 2009-10-15 | Ngk Insulators Ltd | Method for detecting variation in target nucleic acid, and array |
US7955794B2 (en) | 2000-09-21 | 2011-06-07 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20120021919A1 (en) * | 2010-07-23 | 2012-01-26 | Thomas Scholl | Identification of Differentially Represented Fetal or Maternal Genomic Regions and Uses Thereof |
US20120034603A1 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Ligation-based detection of genetic variants |
WO2012021749A1 (en) | 2010-08-11 | 2012-02-16 | Celula, Inc. | Genotyping dna |
US20120077185A1 (en) | 2010-08-06 | 2012-03-29 | Tandem Diagnostics, Inc. | Detection of genetic abnormalities and infectious disease |
US20120164646A1 (en) | 2010-08-06 | 2012-06-28 | Ken Song | Detection of genetic abnormalities |
US20120190020A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Detection of genetic abnormalities |
US20120190557A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US20120219950A1 (en) | 2011-02-28 | 2012-08-30 | Arnold Oliphant | Assay systems for detection of aneuploidy and sex determination |
US20130040375A1 (en) | 2011-08-08 | 2013-02-14 | Tandem Diagnotics, Inc. | Assay systems for genetic analysis |
US20130072390A1 (en) | 2011-03-21 | 2013-03-21 | Affymetrix, Inc. | Methods for Synthesizing Pools of Probes |
US20130089863A1 (en) | 2011-01-25 | 2013-04-11 | Ariosa Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US20130178371A1 (en) | 2011-01-25 | 2013-07-11 | Ariosa Diagnostics, Inc. | Noninvasive detection of fetal aneuploidy in egg donor pregnancies |
US20130261003A1 (en) | 2010-08-06 | 2013-10-03 | Ariosa Diagnostics, In. | Ligation-based detection of genetic variants |
US20130275103A1 (en) | 2011-01-25 | 2013-10-17 | Ariosa Diagnostics, Inc. | Statistical analysis for non-invasive sex chromosome aneuploidy determination |
US20130310262A1 (en) | 2012-05-21 | 2013-11-21 | Ariosa Diagnostics, Inc. | Noninvasive detection of robertsonian translocations |
US20140024538A1 (en) | 2012-07-19 | 2014-01-23 | Ariosa Diagnostics, Inc. | Multiplexed sequential ligation-based detection of genetic variants |
US20140186827A1 (en) | 2010-05-14 | 2014-07-03 | Fluidigm, Inc. | Assays for the detection of genotype, mutations, and/or aneuploidy |
US20140242582A1 (en) | 2013-02-28 | 2014-08-28 | Ariosa Diagnostics, Inc. | Detection of genetic abnormalities using ligation-based detection and digital pcr |
US20140256572A1 (en) | 2013-03-08 | 2014-09-11 | Ariosa Diagnostics, Inc. | Non-invasive fetal sex determination |
US20140342940A1 (en) | 2011-01-25 | 2014-11-20 | Ariosa Diagnostics, Inc. | Detection of Target Nucleic Acids using Hybridization |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6582908B2 (en) | 1990-12-06 | 2003-06-24 | Affymetrix, Inc. | Oligonucleotides |
EP0566670A4 (en) | 1990-12-17 | 1993-12-08 | Idexx Laboratories, Inc. | Nucleic acid sequence detection by triple helix formation |
WO1993017126A1 (en) | 1992-02-19 | 1993-09-02 | The Public Health Research Institute Of The City Of New York, Inc. | Novel oligonucleotide arrays and their use for sorting, isolating, sequencing, and manipulating nucleic acids |
US5670330A (en) | 1992-09-29 | 1997-09-23 | Mcgill University | Anti-tumor agent assay using PKR |
US5681943A (en) | 1993-04-12 | 1997-10-28 | Northwestern University | Method for covalently linking adjacent oligonucleotides |
DE69638321D1 (en) | 1995-10-11 | 2011-03-03 | Luminex Corp | SIMULTANEOUS MULTI-ANALYSIS OF CLINICAL SAMPLES |
EP2574617B1 (en) * | 1996-02-09 | 2016-04-20 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
WO1997045559A1 (en) * | 1996-05-29 | 1997-12-04 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions |
US6028189A (en) | 1997-03-20 | 2000-02-22 | University Of Washington | Solvent for oligonucleotide synthesis and methods of use |
JP2001517948A (en) | 1997-04-01 | 2001-10-09 | グラクソ、グループ、リミテッド | Nucleic acid sequencing |
CA2243985C (en) | 1997-09-11 | 2004-08-10 | F. Hoffmann-La Roche Ag | Thermostable dna polymerases incorporating nucleoside triphosphates labeled with fluorescein family dyes |
US6465178B2 (en) | 1997-09-30 | 2002-10-15 | Surmodics, Inc. | Target molecule attachment to surfaces |
US6284497B1 (en) | 1998-04-09 | 2001-09-04 | Trustees Of Boston University | Nucleic acid arrays and methods of synthesis |
US6432642B1 (en) | 1999-01-15 | 2002-08-13 | Pe Corporation (Ny) | Binary probe and clamp composition and methods for a target hybridization detection |
US6506594B1 (en) * | 1999-03-19 | 2003-01-14 | Cornell Res Foundation Inc | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
US6238868B1 (en) | 1999-04-12 | 2001-05-29 | Nanogen/Becton Dickinson Partnership | Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification and bioelectronic chip technology |
US20060275782A1 (en) | 1999-04-20 | 2006-12-07 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
US20020086289A1 (en) | 1999-06-15 | 2002-07-04 | Don Straus | Genomic profiling: a rapid method for testing a complex biological sample for the presence of many types of organisms |
US6818395B1 (en) | 1999-06-28 | 2004-11-16 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
US6495320B1 (en) | 1999-07-21 | 2002-12-17 | Affymetrix, Inc. | Even length proportional amplification of nucleic acids |
JP5508654B2 (en) | 2000-04-14 | 2014-06-04 | コーネル・リサーチ・ファンデーション・インコーポレイテッド | Method for designing positionable arrays for detection of nucleic acid sequence differences using ligase detection reactions |
AU2001265121A1 (en) * | 2000-05-30 | 2001-12-11 | Applera Corporation | Methods for detecting target nucleic acids using coupled ligation and amplification |
US6635425B2 (en) | 2001-01-05 | 2003-10-21 | Molecular Staging, Inc. | 5′-thio phosphate directed ligation of oligonucleotides and use in detection of single nucleotide polymorphisms |
WO2002074988A2 (en) | 2001-03-16 | 2002-09-26 | The Chancellor, Master And Scholars Of The University Of Oxford | Arrays and methods of use |
US20020197630A1 (en) | 2001-04-12 | 2002-12-26 | Knapp Michael R. | Systems and methods for high throughput genetic analysis |
JP2006510348A (en) | 2002-07-18 | 2006-03-30 | ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ | Detection of chemical ligation using fluorescence quenching leaving groups |
US7153658B2 (en) | 2002-09-19 | 2006-12-26 | Applera Corporation | Methods and compositions for detecting targets |
US7105024B2 (en) | 2003-05-06 | 2006-09-12 | Aesculap Ii, Inc. | Artificial intervertebral disc |
EP1602733A1 (en) | 2004-06-02 | 2005-12-07 | Keygene N.V. | Detection of target nucleotide sequences using an asymmetric oligonucleotide ligation assay |
DE60328193D1 (en) | 2003-10-16 | 2009-08-13 | Sequenom Inc | Non-invasive detection of fetal genetic traits |
US8192937B2 (en) | 2004-04-07 | 2012-06-05 | Exiqon A/S | Methods for quantification of microRNAs and small interfering RNAs |
CA2601735C (en) * | 2005-03-18 | 2015-10-06 | The Chinese University Of Hong Kong | Markers for prenatal diagnosis and monitoring of trisomy 21 |
CN1824786A (en) * | 2005-12-23 | 2006-08-30 | 上海生物芯片有限公司 | Selective amplification process based on joining |
WO2007112418A2 (en) | 2006-03-28 | 2007-10-04 | Baylor College Of Medicine | Screening for down syndrome |
JP5165933B2 (en) * | 2007-06-12 | 2013-03-21 | 日本碍子株式会社 | Method and array for detecting specific partial sequence in target nucleic acid |
EP2176281A4 (en) | 2007-07-11 | 2010-09-15 | Univ Laval | Nucleic acid sequences and combination thereof for sensitive amplification and detection of bacterial and fungal sepsis pathogens |
US20100297585A1 (en) | 2008-01-29 | 2010-11-25 | Uriel Yarovesky | Process for making a dental restoration and resultant apparatus |
US20120252015A1 (en) | 2011-02-18 | 2012-10-04 | Bio-Rad Laboratories | Methods and compositions for detecting genetic material |
EP2356253A1 (en) | 2008-11-05 | 2011-08-17 | Stichting Sanquin Bloedvoorziening | Means and methods for investigating nucleic acid sequences |
US20100273164A1 (en) | 2009-03-24 | 2010-10-28 | President And Fellows Of Harvard College | Targeted and Whole-Genome Technologies to Profile DNA Cytosine Methylation |
EP2443457A4 (en) | 2009-06-18 | 2012-10-31 | Penn State Res Found | Methods, systems and kits for detecting protein-nucleic acid interactions |
WO2011004896A1 (en) * | 2009-07-09 | 2011-01-13 | 日本碍子株式会社 | Method for detection or analysis of target sequence in genomic dna |
CN101864482A (en) * | 2010-02-10 | 2010-10-20 | 深圳出入境检验检疫局动植物检验检疫技术中心 | MLCR probe, two-step reaction mode and suspension chip detection capture probe |
EP2576827A2 (en) * | 2010-06-07 | 2013-04-10 | Esoterix Genetic Laboratories, LLC | Enumeration of nucleic acids |
WO2012135658A2 (en) | 2011-03-30 | 2012-10-04 | Noblegen Biosciences, Inc. | Sequence preserved dna conversion for optical nanopore sequencing |
CA2840929C (en) | 2011-07-08 | 2020-03-24 | Keygene N.V. | Sequence based genotyping based on oligonucleotide ligation assays |
WO2013052907A2 (en) | 2011-10-06 | 2013-04-11 | Sequenom, Inc. | Methods and processes for non-invasive assessment of genetic variations |
AU2013221480B2 (en) | 2012-02-14 | 2018-08-23 | Cornell University | Method for relative quantification of nucleic acid sequence, expression, or copy changes, using combined nuclease, ligation, and polymerase reactions |
CN102936755B (en) * | 2012-10-19 | 2015-01-21 | 上海交通大学 | Preparation method of monomolecular nucleic acid chip |
WO2014089536A1 (en) | 2012-12-07 | 2014-06-12 | Invitae Corporation | Multiplex nucleic acid detection methods |
EP2976435B1 (en) | 2013-03-19 | 2017-10-25 | Directed Genomics, LLC | Enrichment of target sequences |
EA034459B1 (en) | 2013-08-05 | 2020-02-11 | Твист Байосайенс Корпорейшн | De novo synthesized gene libraries |
CN105659091A (en) | 2013-08-19 | 2016-06-08 | 卓异生物公司 | Biomarkers for cognitive dysfunction diseases and method for detecting cognitive dysfunction disease using biomarkers |
EP3175236B1 (en) | 2014-08-01 | 2019-08-21 | Ariosa Diagnostics, Inc. | Detection of target nucleic acids using hybridization |
US20180023138A1 (en) | 2014-11-01 | 2018-01-25 | Singular Bio, Inc. | Assays for Single Molecule Detection and Use Thereof |
CN113528623A (en) | 2015-02-18 | 2021-10-22 | 卓异生物公司 | Assays for single molecule detection and uses thereof |
-
2014
- 2014-08-19 CN CN201480057266.8A patent/CN105659091A/en active Pending
- 2014-08-19 MX MX2016002218A patent/MX371428B/en active IP Right Grant
- 2014-08-19 BR BR112016003480-5A patent/BR112016003480B1/en not_active IP Right Cessation
- 2014-08-19 ES ES14838189T patent/ES2739430T3/en active Active
- 2014-08-19 EP EP14838189.0A patent/EP3036545B1/en active Active
- 2014-08-19 IL IL285521A patent/IL285521B2/en unknown
- 2014-08-19 EP EP21190612.8A patent/EP3968023A1/en active Pending
- 2014-08-19 JP JP2016536393A patent/JP6088710B2/en active Active
- 2014-08-19 CA CA2921628A patent/CA2921628A1/en active Pending
- 2014-08-19 EP EP19178861.1A patent/EP3726213A1/en active Pending
- 2014-08-19 AU AU2014308980A patent/AU2014308980C1/en active Active
- 2014-08-19 CN CN201910535414.7A patent/CN110283888B/en active Active
- 2014-08-19 SG SG11201601201VA patent/SG11201601201VA/en unknown
- 2014-08-19 WO PCT/US2014/051763 patent/WO2015026873A1/en active Application Filing
-
2015
- 2015-01-22 US US14/603,323 patent/US9212394B2/en active Active
- 2015-11-23 US US14/949,097 patent/US9758814B2/en active Active
-
2016
- 2016-02-15 ZA ZA2016/01029A patent/ZA201601029B/en unknown
- 2016-02-18 IL IL24419016A patent/IL244190B/en active IP Right Grant
- 2016-02-19 MX MX2019015016A patent/MX2019015016A/en unknown
- 2016-09-02 HK HK16110457.7A patent/HK1222449A1/en not_active IP Right Cessation
-
2017
- 2017-02-03 JP JP2017018800A patent/JP6397065B2/en active Active
- 2017-08-11 US US15/675,234 patent/US10626450B2/en active Active
-
2019
- 2019-11-14 IL IL270651A patent/IL270651B/en unknown
-
2020
- 2020-04-07 US US16/842,089 patent/US11326204B2/en active Active
-
2021
- 2021-02-12 AU AU2021200925A patent/AU2021200925B2/en active Active
-
2022
- 2022-05-09 US US17/739,978 patent/US20220340958A1/en active Pending
Patent Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010977A1 (en) | 1988-05-03 | 1989-11-16 | Isis Innovation Limited | Analysing polynucleotide sequences |
US5547839A (en) | 1989-06-07 | 1996-08-20 | Affymax Technologies N.V. | Sequencing of surface immobilized polymers utilizing microflourescence detection |
US5256536A (en) | 1990-11-09 | 1993-10-26 | Syntex (U.S.A.) Inc. | Nucleotide probe for Neisseria gonrrhoeae |
WO1992010092A1 (en) | 1990-12-06 | 1992-06-25 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis |
WO1996027025A1 (en) | 1995-02-27 | 1996-09-06 | Ely Michael Rabani | Device, compounds, algorithms, and methods of molecular characterization and manipulation with molecular parallelism |
US6706473B1 (en) | 1996-12-06 | 2004-03-16 | Nanogen, Inc. | Systems and devices for photoelectrophoretic transport and hybridization of oligonucleotides |
US6268146B1 (en) | 1998-03-13 | 2001-07-31 | Promega Corporation | Analytical methods and materials for nucleic acid detection |
WO2000006770A1 (en) | 1998-07-30 | 2000-02-10 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
WO2000036152A1 (en) | 1998-12-14 | 2000-06-22 | Li-Cor, Inc. | A system and methods for nucleic acid sequencing of single molecules by polymerase synthesis |
WO2000079008A2 (en) | 1999-06-21 | 2000-12-28 | Kris Richard M | High throughput assay system |
WO2001023610A2 (en) | 1999-09-29 | 2001-04-05 | Solexa Ltd. | Polynucleotide sequencing |
WO2001057248A2 (en) | 2000-02-01 | 2001-08-09 | Solexa Ltd. | Polynucleotide arrays and their use in sequencing |
WO2001057249A1 (en) | 2000-02-02 | 2001-08-09 | Solexa Ltd. | Synthesis of spatially addressed molecular arrays |
US20020006617A1 (en) | 2000-02-07 | 2002-01-17 | Jian-Bing Fan | Nucleic acid detection methods using universal priming |
US8288103B2 (en) | 2000-02-07 | 2012-10-16 | Illumina, Inc. | Multiplex nucleic acid reactions |
US6890741B2 (en) | 2000-02-07 | 2005-05-10 | Illumina, Inc. | Multiplexed detection of analytes |
US8906626B2 (en) | 2000-02-07 | 2014-12-09 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20100015626A1 (en) | 2000-02-07 | 2010-01-21 | Illumina, Inc. | Multiplex nucleic acid reactions |
US7955794B2 (en) | 2000-09-21 | 2011-06-07 | Illumina, Inc. | Multiplex nucleic acid reactions |
US7582420B2 (en) | 2001-07-12 | 2009-09-01 | Illumina, Inc. | Multiplex nucleic acid reactions |
US6913884B2 (en) | 2001-08-16 | 2005-07-05 | Illumina, Inc. | Compositions and methods for repetitive use of genomic DNA |
US20050244863A1 (en) | 2002-09-19 | 2005-11-03 | The Chancellor, Master And Scholars Of The University Of Oxford | Molecular arrays and single molecule detection |
US20070037152A1 (en) * | 2003-02-26 | 2007-02-15 | Drmanac Radoje T | Random array dna analysis by hybridization |
WO2005026329A2 (en) | 2003-09-12 | 2005-03-24 | Cornell Research Foundation, Inc. | Methods for identifying target nucleic acid molecules |
US20060019304A1 (en) | 2004-07-26 | 2006-01-26 | Paul Hardenbol | Simultaneous analysis of multiple genomes |
US20080138809A1 (en) | 2006-06-14 | 2008-06-12 | Ravi Kapur | Methods for the Diagnosis of Fetal Abnormalities |
JP2009232778A (en) | 2008-03-27 | 2009-10-15 | Ngk Insulators Ltd | Method for detecting variation in target nucleic acid, and array |
US20140186827A1 (en) | 2010-05-14 | 2014-07-03 | Fluidigm, Inc. | Assays for the detection of genotype, mutations, and/or aneuploidy |
US20120021919A1 (en) * | 2010-07-23 | 2012-01-26 | Thomas Scholl | Identification of Differentially Represented Fetal or Maternal Genomic Regions and Uses Thereof |
US20120164646A1 (en) | 2010-08-06 | 2012-06-28 | Ken Song | Detection of genetic abnormalities |
US20130172212A1 (en) | 2010-08-06 | 2013-07-04 | Ariosa Diagnostics, Inc. | Ligation-based detection of genetic variants |
US20120034603A1 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Ligation-based detection of genetic variants |
US20140349859A1 (en) | 2010-08-06 | 2014-11-27 | Ariosa Diagnostics, Inc. | Detection of target nucleic acids using hybridization |
US20120034685A1 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Assay systems for determination of source contribution in a sample |
US20130288252A1 (en) | 2010-08-06 | 2013-10-31 | Ariosa Diagnostics, Inc. | Assay systems for genetic analysis |
US20130261003A1 (en) | 2010-08-06 | 2013-10-03 | Ariosa Diagnostics, In. | Ligation-based detection of genetic variants |
US20120040859A1 (en) | 2010-08-06 | 2012-02-16 | Tandem Diagnostics, Inc. | Assay systems for genetic analysis |
US20130004950A1 (en) | 2010-08-06 | 2013-01-03 | Tandem Diagnostics, Inc. | Assay systems for genetic analysis |
US20130210640A1 (en) | 2010-08-06 | 2013-08-15 | Ariosa Diagnostics, Inc. | Assay systems for genetic analysis |
US20130172213A1 (en) | 2010-08-06 | 2013-07-04 | Ariosa Diagnostics, Inc. | Ligation-based detection of genetic variants |
US20130172211A1 (en) | 2010-08-06 | 2013-07-04 | Ariosa Diagnostics, Inc. | Ligation-based detection of genetic variants |
US20130090250A1 (en) | 2010-08-06 | 2013-04-11 | Aria Diagnostics, Inc. | Assay systems for genetic analysis |
US20130122500A1 (en) | 2010-08-06 | 2013-05-16 | Ariosa Diagnostics, Inc. | Assay systems for genetic analysis |
US20120077185A1 (en) | 2010-08-06 | 2012-03-29 | Tandem Diagnostics, Inc. | Detection of genetic abnormalities and infectious disease |
WO2012021749A1 (en) | 2010-08-11 | 2012-02-16 | Celula, Inc. | Genotyping dna |
US20130178371A1 (en) | 2011-01-25 | 2013-07-11 | Ariosa Diagnostics, Inc. | Noninvasive detection of fetal aneuploidy in egg donor pregnancies |
US20140342940A1 (en) | 2011-01-25 | 2014-11-20 | Ariosa Diagnostics, Inc. | Detection of Target Nucleic Acids using Hybridization |
US20130275103A1 (en) | 2011-01-25 | 2013-10-17 | Ariosa Diagnostics, Inc. | Statistical analysis for non-invasive sex chromosome aneuploidy determination |
US20120190021A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Detection of genetic abnormalities |
US20130143213A1 (en) | 2011-01-25 | 2013-06-06 | Ariosa Diagnostics, Inc. | Detection of genetic abnormalities |
US20130089863A1 (en) | 2011-01-25 | 2013-04-11 | Ariosa Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US8700338B2 (en) | 2011-01-25 | 2014-04-15 | Ariosa Diagnosis, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US20120190557A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US20120190020A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Detection of genetic abnormalities |
US20120219950A1 (en) | 2011-02-28 | 2012-08-30 | Arnold Oliphant | Assay systems for detection of aneuploidy and sex determination |
US20130072390A1 (en) | 2011-03-21 | 2013-03-21 | Affymetrix, Inc. | Methods for Synthesizing Pools of Probes |
US20130040375A1 (en) | 2011-08-08 | 2013-02-14 | Tandem Diagnotics, Inc. | Assay systems for genetic analysis |
US20130310262A1 (en) | 2012-05-21 | 2013-11-21 | Ariosa Diagnostics, Inc. | Noninvasive detection of robertsonian translocations |
US20140024538A1 (en) | 2012-07-19 | 2014-01-23 | Ariosa Diagnostics, Inc. | Multiplexed sequential ligation-based detection of genetic variants |
US20140242582A1 (en) | 2013-02-28 | 2014-08-28 | Ariosa Diagnostics, Inc. | Detection of genetic abnormalities using ligation-based detection and digital pcr |
US20140256572A1 (en) | 2013-03-08 | 2014-09-11 | Ariosa Diagnostics, Inc. | Non-invasive fetal sex determination |
Non-Patent Citations (32)
Title |
---|
Ampligase® Thermostable DNA Ligase, downloaded from internet (http://www.epibio.com/docs/default-source/protocols/ampligase-thermostable-dna-ligase.pdf?sfvrsn=4) in Jun. 2015. |
Batool et al., Ligase Chain Reaction, http://www.slideshare.net/SHBZaidi/ligase-chain-reactionlcr# (Dec. 2102). |
Battistella et al., "Genotyping beta-globin gene mutations on copolymer-coated glass slides with the ligation detection reaction," Clinical Chemistry, 54: 1657-1663 (2008). |
Cheng et al., "Multiplexed profiling of candidate genes for CpG island methylation status using a flexible PCR/LDR/Universal Array assay," Genome Research, 16: 282-289 (2006). |
Davis et al., "A comparison of ligase chain reaction to polymerase chain reaction in the detection of Chlamydia trachomatis endocervical infections," Infections Diseases in Obstetrics and Gynecology 6: 57-60 (1998). |
Deng et al., "Oligonucleotide ligation assay-based DNA chip for multiplex detection of single nucleotide polymorphism," Biosensors and Bioelectronics, 19: 1277-1283 (2004). |
Dille et al., "Amplification of Chlamydia trachomatis DNA by ligase chain reaction," Journal of Clinical Microbiology, 31: 729-731 (1993). |
Eggerding, "A one-step coupled amplification and oligonucleotide ligation procedure for multiplex genetic typing," Genome Research, 4:337-345 (1995). |
Extended European Search Report issued in related European Patent Application No. 14172340.3 dated Oct. 14, 2014. |
Fu et al., "Counting individual DNA molecules by the stochastic attachment of diverse labels," PNAS, 108: 9026-9031 (2011). |
Goodwin et al., "Single-Molecule Detection in Liquids by Laser-Induced Fluorescence," Accounts of Chemical Research, 29: 607-613 (1996). |
Grossman et al., "High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation," Nucleic Acids Research, 22: 4527-4534 (1994). |
Hesse et al., "RNA expression profiling at the single molecule level," Genome Research, 16: 1041-1045 (2006). |
International Preliminary Examination Report issued in related International Patent Application No. PCT/GB02/01245 dated Oct. 24, 2003. |
International Search Report and the Written Opinion issued in related International Patent Application No. PCT/US2014/051763 dated Dec. 11, 2014. |
Kuhn et al., "Template-independent ligation of single-stranded DNA by T4 DNA ligase," FEBS Journal, 272: 5991-6000 (2005). |
Landergren, "A ligase mediated gene detection technique," Science, 241: 1077-1080 (1988). |
Liu et al, "Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions," Analytical Biochemistry, 283: 56-63 (2000). |
MacDonald, "Genotyping by Oligonucleotide Ligation Assay (OLA)," Cold Spring Harbor Protocols (2007). |
Muresan et al., "Microarray analysis at single molecule resolution," IEEE Trans Nanobioscience, 9: 51-58 (2010). |
Osborne et al., "Single-Molecule Analysis of DNA Immobilized on Microspheres," Analytical Chemistry, 72: 3678-3681 (2000). |
Romppanen, "Oligonucleotide ligation assays for the diagnosis of inherited diseases," Chapter 4, Molecular Diagnostics, 31-40 (2005). |
Sample Protocol for Oligonucleotide Ligation Assay (OLA) and Hybridization to Magplex-Tag Microspheres-Washed Protocol, Luminex Corporation (Aug. 2010). |
Sample Protocol for Oligonucleotide Ligation Assay (OLA) and Hybridization to Magplex-Tag Microspheres—Washed Protocol, Luminex Corporation (Aug. 2010). |
Shalon et al., "A DNA Microarray System for Analyzing Complex DNA Samples Using Two-color Fluorescent Probe Hybridization," Genome Research, 6: 639-645 (1996). |
Stone et al., "Combined PCR-oligonucleotide ligation assay for rapid detection of Salmonella serovars," Journal of Clinical Microbiology, 33: 2888-2893 (1995). |
Sullivan, Chapter 7: Nucleic Acid Amplification Techniques, downloaded from internet (http://www.austincc.edu/mlt/mdfund/mdfund-unit9Chapter7NucleicAcidAmplificationTechniques.ppt) in Jun. 2015. |
Sullivan, Chapter 7: Nucleic Acid Amplification Techniques, downloaded from internet (http://www.austincc.edu/mlt/mdfund/mdfund—unit9Chapter7NucleicAcidAmplificationTechniques.ppt) in Jun. 2015. |
Supplementary European Search Report issued in corresponding European Patent Application No. 14838189 dated Feb. 27, 2017. |
Tobler et al., "Universal Detector Assay for Measuring DNA Copy Number Changes," American Society of Human Genetics (ASHG) Annual Meeting (2006). |
Wiedmann et al., "Ligase chain reaction (LCR)-overview and applications," Genome Research, 3: S51-S64 (1994). |
Wiedmann et al., "Ligase chain reaction (LCR)—overview and applications," Genome Research, 3: S51-S64 (1994). |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10741270B2 (en) | 2012-03-08 | 2020-08-11 | The Chinese University Of Hong Kong | Size-based analysis of cell-free tumor DNA for classifying level of cancer |
US11031100B2 (en) | 2012-03-08 | 2021-06-08 | The Chinese University Of Hong Kong | Size-based sequencing analysis of cell-free tumor DNA for classifying level of cancer |
US11326204B2 (en) * | 2013-08-19 | 2022-05-10 | Invitae Corporation | Assays for single molecule detection and use thereof |
US11062789B2 (en) | 2014-07-18 | 2021-07-13 | The Chinese University Of Hong Kong | Methylation pattern analysis of tissues in a DNA mixture |
US11984195B2 (en) | 2014-07-18 | 2024-05-14 | The Chinese University Of Hong Kong | Methylation pattern analysis of tissues in a DNA mixture |
US10364467B2 (en) | 2015-01-13 | 2019-07-30 | The Chinese University Of Hong Kong | Using size and number aberrations in plasma DNA for detecting cancer |
US11739371B2 (en) | 2015-02-18 | 2023-08-29 | Invitae Corporation | Arrays for single molecule detection and use thereof |
US11435339B2 (en) | 2016-11-30 | 2022-09-06 | The Chinese University Of Hong Kong | Analysis of cell-free DNA in urine |
US11639928B2 (en) | 2018-02-22 | 2023-05-02 | 10X Genomics, Inc. | Methods and systems for characterizing analytes from individual cells or cell populations |
US11852628B2 (en) | 2018-02-22 | 2023-12-26 | 10X Genomics, Inc. | Methods and systems for characterizing analytes from individual cells or cell populations |
US12092635B2 (en) | 2018-02-22 | 2024-09-17 | 10X Genomics, Inc. | Methods and systems for characterizing analytes from individual cells or cell populations |
US11211144B2 (en) | 2020-02-18 | 2021-12-28 | Tempus Labs, Inc. | Methods and systems for refining copy number variation in a liquid biopsy assay |
US11211147B2 (en) | 2020-02-18 | 2021-12-28 | Tempus Labs, Inc. | Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing |
US11475981B2 (en) | 2020-02-18 | 2022-10-18 | Tempus Labs, Inc. | Methods and systems for dynamic variant thresholding in a liquid biopsy assay |
US11952626B2 (en) | 2021-02-23 | 2024-04-09 | 10X Genomics, Inc. | Probe-based analysis of nucleic acids and proteins |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9758814B2 (en) | Assays for single molecule detection and use thereof | |
US11739371B2 (en) | Arrays for single molecule detection and use thereof | |
US20190284552A1 (en) | Arrays for Single Molecule Detection and Uses Thereof | |
EP2619329B1 (en) | Direct capture, amplification and sequencing of target dna using immobilized primers | |
US7252946B2 (en) | Nucleic acid detection | |
WO2012148477A1 (en) | Digital counting of individual molecules by stochastic attachment of diverse label-tags | |
JP2022531421A (en) | A kit for detecting one or more target nucleic acid analytes in a sample and methods for making and using it. | |
US20180023138A1 (en) | Assays for Single Molecule Detection and Use Thereof | |
KR20080073321A (en) | Mitigation of cot-1 dna distortion in nucleic acid hybridization | |
JP2001054400A (en) | Genotype determining two allele marker | |
EP3455376B1 (en) | Method for producing a plurality of dna probes and method for analyzing genomic dna using the dna probes | |
US20140349879A1 (en) | Method for detecting nucleotide mutation, and detection kit | |
TWI412593B (en) | Method and tool for detecting genetic mutation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SINGULAR BIO INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FEHR, ADRIAN NIELSEN;COLLINS, PATRICK JAMES;HERSCHLEB, JILL LYNDON;AND OTHERS;SIGNING DATES FROM 20150123 TO 20150126;REEL/FRAME:037665/0265 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: INN SA LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:SINGULAR BIO, INC.;REEL/FRAME:049865/0719 Effective date: 20190725 |
|
AS | Assignment |
Owner name: SINGULAR BIO, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:INN SA LLC;REEL/FRAME:050347/0702 Effective date: 20190910 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: PERCEPTIVE CREDIT HOLDINGS III, LP, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:INVITAE CORPORATION;GOOD START GENETICS, INC.;SINGULAR BIO, INC.;AND OTHERS;REEL/FRAME:054234/0872 Effective date: 20201002 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: INVITAE CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SINGULAR BIO, INC.;REEL/FRAME:058076/0071 Effective date: 20210614 |
|
AS | Assignment |
Owner name: YOUSCRIPT, LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PERCEPTIVE CREDIT HOLDINGS III, LP;REEL/FRAME:063282/0538 Effective date: 20230228 Owner name: SINGULAR BIO, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PERCEPTIVE CREDIT HOLDINGS III, LP;REEL/FRAME:063282/0538 Effective date: 20230228 Owner name: GOOD START GENETICS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PERCEPTIVE CREDIT HOLDINGS III, LP;REEL/FRAME:063282/0538 Effective date: 20230228 Owner name: INVITAE CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PERCEPTIVE CREDIT HOLDINGS III, LP;REEL/FRAME:063282/0538 Effective date: 20230228 |
|
AS | Assignment |
Owner name: U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:INVITAE CORPORATION;REEL/FRAME:063787/0148 Effective date: 20230307 |
|
AS | Assignment |
Owner name: LABORATORY CORPORATION OF AMERICA HOLDINGS, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INVITAE CORPORATION;REEL/FRAME:068822/0025 Effective date: 20240805 |