US9647180B2 - Glass-phosphor composite containing rare-earth ion and light-emitting diode including same - Google Patents
Glass-phosphor composite containing rare-earth ion and light-emitting diode including same Download PDFInfo
- Publication number
- US9647180B2 US9647180B2 US14/836,876 US201514836876A US9647180B2 US 9647180 B2 US9647180 B2 US 9647180B2 US 201514836876 A US201514836876 A US 201514836876A US 9647180 B2 US9647180 B2 US 9647180B2
- Authority
- US
- United States
- Prior art keywords
- glass
- rare earth
- phosphor
- earth ion
- containing parent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 107
- 239000002131 composite material Substances 0.000 title claims abstract description 71
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 72
- 239000011521 glass Substances 0.000 claims abstract description 63
- 239000000843 powder Substances 0.000 claims abstract description 60
- 239000006132 parent glass Substances 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000002156 mixing Methods 0.000 claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 238000005245 sintering Methods 0.000 claims abstract description 12
- 230000009477 glass transition Effects 0.000 claims abstract description 5
- -1 rare earth ion Chemical class 0.000 claims description 104
- 239000000463 material Substances 0.000 claims description 26
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 11
- 229910052771 Terbium Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- 239000003513 alkali Substances 0.000 claims description 7
- 229910052788 barium Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052691 Erbium Inorganic materials 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 6
- 229910052689 Holmium Inorganic materials 0.000 claims description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 6
- 229910052772 Samarium Inorganic materials 0.000 claims description 6
- 229910052775 Thulium Inorganic materials 0.000 claims description 6
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 150000004820 halides Chemical class 0.000 claims description 6
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 5
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- 238000007496 glass forming Methods 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 4
- 238000000748 compression moulding Methods 0.000 claims description 4
- 229910052909 inorganic silicate Inorganic materials 0.000 claims description 4
- 150000002602 lanthanoids Chemical class 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 14
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 7
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 238000007578 melt-quenching technique Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- FNCIDSNKNZQJTJ-UHFFFAOYSA-N alumane;terbium Chemical compound [AlH3].[Tb] FNCIDSNKNZQJTJ-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
- C03B19/063—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction by hot-pressing powders
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/006—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/008—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in molecular form
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7706—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/77062—Silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/16—Microcrystallites, e.g. of optically or electrically active material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/17—Nature of the non-vitreous component in molecular form (for molecular composites)
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/30—Methods of making the composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
Definitions
- the technology disclosed in this patent document relates to a technique for manufacturing a light emitting diode.
- Some implementations of the disclosed technology relate to a rare earth ion-containing glass-phosphor composite and a technique for manufacturing the glass-phosphor composite.
- White light emitting diodes developed as devices for illumination are realized by combination of the three primary colors of light, and generally employ combination of a blue LED chip and yellow phosphors.
- the yellow phosphors representatively include Ce-containing yttrium aluminum garnet (YAG)-based phosphors, and various phosphors such as terbium aluminum garnet (TAG)-based, silicate-based, and nitride-based phosphors are being developed and used as the yellow phosphors.
- YAG yttrium aluminum garnet
- TAG terbium aluminum garnet
- silicate-based silicate-based
- nitride-based phosphors are being developed and used as the yellow phosphors.
- a method for combining red and green phosphors is also being developed.
- the YAG-based phosphors used from the earliest stage among phosphor materials for white LEDs have various merits such as material stability, high photo-conversion efficiency and the like, the YAG-based phosphors are used for most of white LED products which are currently commercially available.
- Such phosphors are used in a powder form and are mixed with an epoxy or silicone binder and then coated onto an upper side of a blue LED.
- the white LEDs are used for LCD backlights, auxiliary illumination, various pilot lamps and the like, and white LEDs for main illumination are also developed and commercially available.
- the YAG phosphors used for white LEDs for illumination have a merit of long lifespan due to high fluorescence efficiency and stable bonding structure thereof, a spectrum of yellow light converted and emitted by the YAG phosphors absorbing blue light exhibits color imbalance in which a red light band is weaker than a green light band.
- bluish white light that is, cold white light having a high color temperature is realized.
- the white LEDs Due to overall color ratio imbalance, when the white LEDs are used as an illumination device, the white LEDs exhibit deterioration in color reproducibility, thereby deteriorating reliability of the illumination device.
- this phenomenon occurs due to inherent properties of the phosphors regardless of the kinds of phosphor supporting materials, it is easy to adjust optical properties of the white LEDs by modifying a composition of a glass material when the glass material is used as a phosphor binder.
- Various implementations of the disclosed technology provide a rare earth ion-containing glass-phosphor composite and a technique for manufacturing the glass-phosphor composite.
- a method for manufacturing a glass-phosphor composite includes: preparing rare earth ion-containing parent glass; mixing the rare earth ion-containing parent glass in a powder state with a phosphor in a powder state; and providing a glass-phosphor composite using the powder mixture of the rare earth ion-containing parent glass and the phosphor, wherein the mixing includes mixing the rare earth ion-containing parent glass in the powder state with the phosphor in the powder state so that the phosphor in the glass-phosphor composite is in an amount of 5 wt % to 30 wt %, and wherein the preparing includes using a glass frit having a glass transition point of 300° C. to 800° C. and a sintering temperature of 200° C. to 600° C.
- the preparing the rare earth ion-containing parent glass includes mixing the glass frit in a powder state with a rare earth ion compound in a powder state, followed by melt-quenching.
- the preparing of the rare earth ion-containing parent glass includes mixing the glass frit in a powder state with a rare earth ion compound in a powder state, followed by sintering.
- the phosphor includes a phosphor material represented by a molecular formula of (YA) 3 (AlB) 5 O 12 :(RE) 3+ , wherein A includes lanthanides and at least one metal element of Tb, Sr, Ca, Ba, Mg or Zn, B includes at least one element of Si, B, P or Ga, and RE represents a lanthanide rare earth metal.
- the phosphor includes a phosphor material represented by a molecular formula of C 2 SiO 4 :(RE) 2 or C 3 SiO 5 :(RE) 3+ , wherein C includes at least one metal element of Mg, Ca, Sr or Ba, and RE represents a lanthanide rare earth metal.
- the preparing of the rare earth ion-containing parent glass comprises using the glass frit comprising at least one of: a metal oxide including at least one of Pb, Bi, Ti or Ga; a glass forming element oxide including at least one of B, P, Si or Ge, or an alkali or alkali earth metal oxide.
- the preparing of the rare earth ion-containing parent glass comprises adding a rare earth compound comprising a rare earth oxide, fluoride, sulfide, or halide including at least one of Ce, Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm or Yb.
- the preparing of the rare earth ion-containing parent glass includes mixing the glass frit in a powder state with the rare earth ion compound in a powder state, the rare earth ion compound having an mole percent of 0.05 mol % to 15 mol %.
- the preparing of the rare earth ion-containing parent glass comprises using the glass frit having an index of refraction equal to or greater than that of the phosphor.
- the providing of the glass-phosphor composite includes performing compression molding of a powder mixture formed from the mixing of the rare earth ion-containing parent glass and the phosphor, followed by heat treatment.
- a glass-phosphor composite in another aspect, comprises: a rare earth ion-containing parent glass including a rare earth ion compound and glass frit; and a phosphor in an amount of 5 wt % to 30 wt % in the glass-phosphor composite, wherein the glass frit has an index of refraction equal to or greater than that of the phosphor.
- the rare earth ion compound comprises a rare earth oxide, fluoride, sulfide, or halide comprising at least one of Ce, Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm or Yb; and the glass frit comprises at least one of: a metal oxide comprising at least one of Pb, Bi, Ti, or Ga, a glass forming element oxide comprising at least one of B, P, Si or Ge, or an alkali or alkali earth metal oxide.
- a light emitting device in another aspect, includes: a substrate; an LED chip mounted over the substrate; and a glass-phosphor composite disposed at a position through which light emitted from the LED chip passes, wherein the glass-phosphor composite comprises a rare earth ion-containing parent glass including a rare earth ion compound and glass frit; and a phosphor in an amount of 5 wt % to 30 wt % in the glass-phosphor composite, wherein the glass frit has an index of refraction equal to or greater than that of the phosphor.
- the rare earth ion compound in the rare earth ion-containing parent glass is configured to adjust color properties of the LED chip.
- the glass-phosphor composite has a hemispherical shape and is disposed over the substrate so as to surround the LED chip.
- the glass-phosphor composite is directly attached to an upper surface of the LED chip.
- the glass-phosphor composite has a sintering temperature of 200° C. to 600° C.
- parent glass in which rare earth ions are added to glass frit, is used as a glass carrier of a glass-phosphor composite, whereby fluorescence properties can be imparted to the glass carrier, and the same optical properties can be realized regardless of kinds and chemical properties of external base materials.
- the glass-phosphor composite using the glass carrier has a merit of securing mechanical, thermal and photochemical stability, as compared with existing composites using an organic carrier.
- the glass carrier can impart fluorescence properties to the carrier itself. Further, since the glass-phosphor composite exhibits less optical loss due to the phosphor, it is possible to achieve higher efficiency than existing composites in which two or more phosphors are mixed in an organic carrier.
- FIG. 1 is a sectional view of a white light emitting diode according to one embodiment of the disclosed technology.
- FIG. 2 is a flowchart of a method of manufacturing a rare earth ion-containing glass-phosphor composite.
- FIG. 3 shows a picture of rare earth ion-containing parent glass and a graph for explaining a fluorescence spectrum of rare earth ion-containing parent glass.
- FIG. 4 is a picture of a compression specimen formed using a powder mixture of a phosphor and rare earth ion-containing glass and a picture of the specimen after heat treatment.
- FIGS. 5 a and 5 b are graphs depicting color properties of white light that is obtained by use of a phosphor-containing glass specimen and a blue LED chip when the phosphor-containing glass specimen is formed using a rare earth ion-containing glass frit parent material.
- Preparation of a phosphor-containing glass structures for LED devices can be performed in various ways, including, e.g., precipitation, deposition, sintering or other suitable processes.
- Sintering is a method in which phosphor powder and glass frit powder are mixed and sintered. After fabrication of a sintered body including the phosphor powder and the glass frit powder, the thickness of the sintered body can be adjusted by polishing.
- This sintering-polishing process can be used to manufacture a glass-phosphor composite applicable to light emitting diodes, for example, white light emitting diodes.
- Such a glass-phosphor composite can be cut to a specific size and can be attached to an LED chip, for example, a blue LED chip.
- the above process can be complicated in part because the polishing process may cause loss of a material and thus should be carefully managed to reduce the material loss and the attachment process onto an LED chip is a separately performed process.
- the disclosed technology in this patent document can be implemented in ways that address one or more technical issues in fabricating glass-phosphor composite structures.
- some implementations of the disclosed technology provide a glass-phosphor composite for light emitting diodes to reduce the optical loss and increase the light output efficiency by imparting fluorescence properties to a glass carrier itself using rare earth ion-containing glass frits, and a light emitting diode including the glass-phosphor composite.
- Such implementations of the disclosed technology can benefit the fabrication of glass-phosphor composite structures missing two or more phosphors an organic carrier with reduced optical loss and improved efficiency.
- FIG. 1 is a sectional view of a white light emitting diode according to one embodiment of the disclosed technology.
- a white light emitting diode 1 according to one embodiment of the disclosed technology includes a substrate 2 , an LED chip 4 mounted on the substrate 2 , and a glass-phosphor composite 6 disposed to transmit light of the LED chip 4 .
- the glass-phosphor composite 6 has a hemispherical shape and is attached to the substrate 2 to surround the LED chip 4 .
- the glass-phosphor composite 6 may be directly attached to an upper surface of the LED chip 4 .
- the substrate 2 may have a flat plate shape, or alternatively, may have a shape of a reflector in which a cavity receiving an LED chip is formed. Conductive patterns or lead terminals are formed on the substrate 2 .
- the glass-phosphor composite 6 includes a phosphor material 61 such as YAG:Ce 3+ , and the phosphor material is uniformly dispersed in a glass carrier 62 .
- the glass carrier has fluorescence properties by addition of a rare earth ion thereto.
- the LED chip may be or include a blue LED chip or a UV LED chip depending upon the kind of phosphor.
- the glass-phosphor composite 6 includes a phosphor converting a portion of blue light into yellow light.
- the glass-phosphor composite 6 includes a phosphor converting UV light into red, blue and green visible light.
- the glass-phosphor composite 6 may be attached to or separated from the LED chip 4 .
- the glass-phosphor composite 6 is disposed at a position through which light emitted from the LED chip 4 passes.
- FIG. 2 is a flowchart of a method of manufacturing a rare earth ion-containing glass-phosphor composite.
- a method for manufacturing a glass-phosphor composite includes: preparing rare earth ion-containing parent glass (S 1 and S 2 ); pulverizing the rare earth ion-containing parent glass and mixing the pulverized rare earth ion-containing parent glass with a phosphor in a powder state (S 3 and S 4 ); and manufacturing a glass-phosphor composite using the powder mixture (S 5 and S 6 ).
- a rare earth ion compound for example, a parent material of the rare earth ion compound is mixed with glass frit powder (S 1 ).
- a material which has a glass transition point of 300° C. to 800° C. and can be sintered at 200° C. to 600° C. is selected as a material for the glass frit powder.
- the material for the glass frit powder may be made of or include: an oxide of a metal element such as Pb, Bi, Ti, or Ga and the like; an oxide of a glass forming element such as B, P, Si, or Ge and the like; and an oxide of an alkali or alkali earth metal element such as Na, K, or Ca and the like.
- the rare earth ion compound may be composed of or include oxides, fluorides, sulfides or halides of rare earths such as Ce, Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm, or Yb and the like.
- the rare earth ion compound may be added in an amount of 0.05 mol % to 15 mol %.
- 1 mol % to 13 mol % of the rare earth ion compound, for example, RE 2 O 3 is added to and mixed with the glass frit powder.
- rare earth ion-containing parent glass is prepared through melt-quenching in which rare earth ion-containing oxide or fluoride-containing glass frit is melted and then quenched (S 2 ).
- the rare earth ion-containing parent glass may also be prepared through sintering after the rare earth ion powder and the glass frit powder are mixed.
- FIG. 3 shows a picture of rare earth ion-containing parent glass and a graph for explaining a fluorescence spectrum of rare earth ion-containing parent glass.
- red light can be observed by the naked eye and fluorescence peaks appear at about 590 nm, about 640 nm and 710 nm in a red light band.
- the glass frit may be melted at a temperature of about 1200° C. for 1 hour.
- the rare earth ion-containing parent glass manufactured as described above is pulverized and thus formed into powder (S 3 ).
- the rare earth ion-containing parent glass powder is mixed with phosphor powder, thereby providing a powder mixture of the phosphor and the rare earth ion-containing parent glass (S 4 ).
- ball milling may be used in the preparation of the powder mixture.
- a phosphor material having a molecular formula of (YA) 3 (AlB) 5 O 12 :(RE) 3+ may be used.
- A includes lanthanides and metal elements such as Tb, Sr, Ca, Ba, Mg, or Zn and the like
- B includes elements such as Si, B, P, or Ga and the like
- RE represents a lanthanide rare earth metal.
- a phosphor material having a molecular formula of C 2 SiO 4 :(RE) 2+ or C 3 SiO 5 :(RE) 3+ may be used.
- C includes metal elements such as Mg, Ca, Sr, or Ba and the like
- RE represents a lanthanide rare earth metal.
- the phosphor material may have an index of refraction similar to or greater than that of the glass frit as set forth above.
- the powder mixture is subjected to compression molding, thereby manufacturing a compression powder molded specimen (hereinafter, referred to as a ‘compression powder molded article’) (S 5 ).
- the compression powder molded article is heat-treated, thereby manufacturing a rare earth ion-containing glass-phosphor composite specimen (S 6 ).
- the phosphor is present in an amount of 5% to 30% in the glass-phosphor composite based on the total volume of the glass-phosphor composite, and when the glass frit having a molar weight similar to that of the phosphor is used, the glass-phosphor composite contains 5 wt % to 30 wt % of the phosphor.
- FIG. 4 shows a picture of a compression specimen formed using the powder mixture of a phosphor and rare earth ion-containing parent glass and a picture of the specimen after heat treatment.
- the thickness and size of the specimen after heat treatment are reduced as compared with the compression powder specimen, and the specimen after heat treatment is polished and then driven in combination with a blue LED, thereby realizing white light.
- a light emitting diode package and the phosphor-containing glass may be bonded using a method such as use of an organic resin, local heating, use of ceramic cement, and the like.
- the glass-phosphor composite may be formed into a flat plate shape as shown in FIG. 4 .
- the glass-phosphor composite be formed into a hemispherical shape surrounding the LED chip.
- FIGS. 5 a and 5 b are graphs depicting color properties of white light realized by use of a phosphor-containing glass specimen, for example, a glass-phosphor composite, which is manufactured using a rare earth ion-containing glass frit parent material, and a blue LED chip. Color coordinates of white light are shifted to a red band by increasing the amount of the phosphor in the glass frit. Based on this result, various rare earth ions may be added to the glass frit to adjust color properties of white light.
- a phosphor-containing glass specimen for example, a glass-phosphor composite, which is manufactured using a rare earth ion-containing glass frit parent material, and a blue LED chip.
- Color coordinates of white light are shifted to a red band by increasing the amount of the phosphor in the glass frit. Based on this result, various rare earth ions may be added to the glass frit to adjust color properties of white light.
- Some implementations of the disclosed technology provide a technique for adding rare earth ions to a parent glass material of a glass-phosphor composite that requires improvement in fluorescence and color properties. Higher product yield can be anticipated due to use of a simple process similar to a general process of preparing phosphor-containing glass, and an application range of a light emitting diode-based white light source can be expanded through improvement of color reproducibility from a light emitting diode and phosphors since the glass-phosphor composite allows accurate color adjustment as compared with single phosphor-containing glass.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
Claims (21)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0020754 | 2013-02-26 | ||
KR1020130020754A KR102108210B1 (en) | 2013-02-26 | 2013-02-26 | Rare earth ion added glass-phosphor composite and light emitting diode comprising the same |
KR1020130020754 | 2013-02-26 | ||
PCT/KR2014/001501 WO2014133294A1 (en) | 2013-02-26 | 2014-02-25 | Glass-phosphor composite containing rare-earth ion and light-emitting diode including same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/001501 Continuation-In-Part WO2014133294A1 (en) | 2013-02-26 | 2014-02-25 | Glass-phosphor composite containing rare-earth ion and light-emitting diode including same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150364658A1 US20150364658A1 (en) | 2015-12-17 |
US9647180B2 true US9647180B2 (en) | 2017-05-09 |
Family
ID=51428504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/836,876 Active US9647180B2 (en) | 2013-02-26 | 2015-08-26 | Glass-phosphor composite containing rare-earth ion and light-emitting diode including same |
Country Status (3)
Country | Link |
---|---|
US (1) | US9647180B2 (en) |
KR (1) | KR102108210B1 (en) |
WO (1) | WO2014133294A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014101804A1 (en) * | 2013-12-18 | 2015-06-18 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for producing an optoelectronic component |
WO2018022456A1 (en) | 2016-07-26 | 2018-02-01 | Cree, Inc. | Light emitting diodes, components and related methods |
JP6631553B2 (en) * | 2017-02-09 | 2020-01-15 | 日亜化学工業株式会社 | Light emitting device manufacturing method |
US11121298B2 (en) | 2018-05-25 | 2021-09-14 | Creeled, Inc. | Light-emitting diode packages with individually controllable light-emitting diode chips |
US11233183B2 (en) | 2018-08-31 | 2022-01-25 | Creeled, Inc. | Light-emitting diodes, light-emitting diode arrays and related devices |
US11335833B2 (en) | 2018-08-31 | 2022-05-17 | Creeled, Inc. | Light-emitting diodes, light-emitting diode arrays and related devices |
US11101411B2 (en) | 2019-06-26 | 2021-08-24 | Creeled, Inc. | Solid-state light emitting devices including light emitting diodes in package structures |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550256A (en) | 1983-10-17 | 1985-10-29 | At&T Bell Laboratories | Visual display system utilizing high luminosity single crystal garnet material |
JPH01208361A (en) * | 1987-10-02 | 1989-08-22 | Ube Ind Ltd | Production of high-temperature superconducting fine ceramics particle |
US20040212302A1 (en) | 2003-03-13 | 2004-10-28 | Martin Letz | Rare earth doped luminescent glass and cold light source device |
US20070164308A1 (en) * | 2002-11-29 | 2007-07-19 | Toyoda Gosei Co., Ltd. | Light emitting apparatus and light emitting method |
US7872410B2 (en) * | 2007-04-16 | 2011-01-18 | Toyoda Gosei Co., Ltd. | Light emitting device and light emitter |
US7989236B2 (en) | 2007-12-27 | 2011-08-02 | Toyoda Gosei Co., Ltd. | Method of making phosphor containing glass plate, method of making light emitting device |
US20120107622A1 (en) | 2010-10-28 | 2012-05-03 | Nicholas Francis Borrelli | Phosphor containing glass frit materials for led lighting applications |
US9062853B2 (en) * | 2010-07-12 | 2015-06-23 | National University Corporation Nagoya University | Broadband infrared light emitting device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004048041B4 (en) * | 2004-09-29 | 2013-03-07 | Schott Ag | Use of a glass or a glass ceramic for light wave conversion |
-
2013
- 2013-02-26 KR KR1020130020754A patent/KR102108210B1/en active IP Right Grant
-
2014
- 2014-02-25 WO PCT/KR2014/001501 patent/WO2014133294A1/en active Application Filing
-
2015
- 2015-08-26 US US14/836,876 patent/US9647180B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550256A (en) | 1983-10-17 | 1985-10-29 | At&T Bell Laboratories | Visual display system utilizing high luminosity single crystal garnet material |
JPH01208361A (en) * | 1987-10-02 | 1989-08-22 | Ube Ind Ltd | Production of high-temperature superconducting fine ceramics particle |
US20070164308A1 (en) * | 2002-11-29 | 2007-07-19 | Toyoda Gosei Co., Ltd. | Light emitting apparatus and light emitting method |
US20040212302A1 (en) | 2003-03-13 | 2004-10-28 | Martin Letz | Rare earth doped luminescent glass and cold light source device |
US7872410B2 (en) * | 2007-04-16 | 2011-01-18 | Toyoda Gosei Co., Ltd. | Light emitting device and light emitter |
US7989236B2 (en) | 2007-12-27 | 2011-08-02 | Toyoda Gosei Co., Ltd. | Method of making phosphor containing glass plate, method of making light emitting device |
US9062853B2 (en) * | 2010-07-12 | 2015-06-23 | National University Corporation Nagoya University | Broadband infrared light emitting device |
US20120107622A1 (en) | 2010-10-28 | 2012-05-03 | Nicholas Francis Borrelli | Phosphor containing glass frit materials for led lighting applications |
Non-Patent Citations (4)
Title |
---|
Heo, Jong et al., "Glass matrices containing rare-earth ions for white light-emitting diodes with high color rendering indices", The Electrochemical Society, 2012, abstract. |
Korean Intellectual Property Office, International Search Report, International Application No. PCT/KR2014/001501, Jun. 9, 2014, 4 pages. |
Lee, Yi Kwon et al., "Phosphor in glass with Pb-free silicate glass powders as robust color-converting materials for white LED applications", Optics Letters, 2012, vol. 37, No. 15, pp. 3276-3278. |
Yi, Seung Ryeol et al., "Stable and color-tailorable white light from blue LEDs using color-converting phosphor glass composites", Journal of the American Ceramic Society, Dec. 23, 2013, vol. 97, No. 2, pp. 342-345. |
Also Published As
Publication number | Publication date |
---|---|
WO2014133294A1 (en) | 2014-09-04 |
KR102108210B1 (en) | 2020-05-08 |
KR20140106332A (en) | 2014-09-03 |
US20150364658A1 (en) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9647180B2 (en) | Glass-phosphor composite containing rare-earth ion and light-emitting diode including same | |
EP3070145B1 (en) | Blue-green phosphor, and light-emitting device package | |
KR101731741B1 (en) | Red line emitting phosphors for use in led applications | |
JP4895541B2 (en) | Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member | |
US10199547B2 (en) | Red phosphor and light emitting device including the same | |
JP2008227523A (en) | Nitride phosphor and method for manufacturing the same, and light emitting device using nitride phosphor | |
US9657222B2 (en) | Silicate phosphors | |
KR20150005767A (en) | Wavelength-converted element, manufacturing method of the same and semiconductor light emitting apparatus having the same | |
JP2010261048A (en) | Light-emitting device and its manufacturing method | |
KR101717241B1 (en) | Red light-emitting nitride material, and light-emitting part and light-emitting device comprising same | |
KR102357584B1 (en) | Nitride phosphor, light emitting device, display apparatus and illumination apparatus | |
Islam et al. | White light-emitting diodes: Past, present, and future | |
JP6231787B2 (en) | Phosphor and light emitting device | |
EP3164464B1 (en) | Oxyfluoride phosphor compositions and lighting apparatus thereof | |
WO2016209871A1 (en) | Glass composite wavelength converter and light source having same | |
KR101176212B1 (en) | Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same | |
KR101085045B1 (en) | Europium oxynitride phosphor material | |
KR20140110368A (en) | White light emitting device using uv led chip | |
KR102004054B1 (en) | Phosphor in glass composite, LED device and LCD display using the same | |
JP2010248530A (en) | Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member | |
JP2013249466A (en) | Oxynitride-based phosphor and light-emitting device using the same | |
JP2013185011A (en) | Method for manufacturing phosphor, and phosphor obtained by the method | |
KR101990919B1 (en) | Phosphor and lighting device | |
KR101633421B1 (en) | Garnet-based phosphor cerium doped, manufacturing method thereof and light-emitting diode using the same | |
JP2013214718A (en) | Oxynitride-based fluorescent material, and light-emitting device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEOUL VIOSYS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEO, JONG;SO, BYOUNG JIN;LEE, SEUNG RYEOL;REEL/FRAME:037893/0428 Effective date: 20160229 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |