US9270929B2 - Formatting audio-video information compliant with first transmission format to second transmission format in integrated circuit for offloading physical layer logic for first transmission format to separate integrated circuit - Google Patents
Formatting audio-video information compliant with first transmission format to second transmission format in integrated circuit for offloading physical layer logic for first transmission format to separate integrated circuit Download PDFInfo
- Publication number
- US9270929B2 US9270929B2 US14/135,470 US201314135470A US9270929B2 US 9270929 B2 US9270929 B2 US 9270929B2 US 201314135470 A US201314135470 A US 201314135470A US 9270929 B2 US9270929 B2 US 9270929B2
- Authority
- US
- United States
- Prior art keywords
- bytes
- digital information
- logical channels
- bits
- logic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000005540 biological transmission Effects 0.000 title claims description 28
- 238000000034 method Methods 0.000 claims abstract description 53
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 238000004891 communication Methods 0.000 claims description 51
- 230000011664 signaling Effects 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 abstract description 38
- 230000007246 mechanism Effects 0.000 abstract description 7
- 230000010365 information processing Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 10
- 239000000872 buffer Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/003—Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
- G09G5/006—Details of the interface to the display terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/436—Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
- H04N21/4363—Adapting the video stream to a specific local network, e.g. a Bluetooth® network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/015—High-definition television systems
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
- G09G2310/061—Details of flat display driving waveforms for resetting or blanking
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2370/00—Aspects of data communication
- G09G2370/10—Use of a protocol of communication by packets in interfaces along the display data pipeline
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2370/00—Aspects of data communication
- G09G2370/12—Use of DVI or HDMI protocol in interfaces along the display data pipeline
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/003—Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
- G09G5/005—Adapting incoming signals to the display format of the display terminal
Definitions
- the present invention relates generally to the field of data communications, and more particularly, to communication of audio-video information.
- FIG. 1 show one example of a conventional application processor 100 for transmitting data.
- Application processor 100 includes a link layer 140 for performing digital processing of data according to a communication standard, and a physical (PHY) layer logic 130 for application processor 100 to transmit analog signals representing such data.
- Such analog signals can represent, for example, data other than audio data and video data.
- application processor 100 includes audio-video (AV) link layer logic 110 for digital processing of other AV information according to another standard, such as an HDMI standard, for AV communications.
- Application processor 100 further comprises AV physical (PHY) layer logic 120 for application processor 100 to transmit analog signals representing AV information processed by AV link layer logic 110 .
- AV audio-video
- FIG. 1 is a block diagram illustrating elements of a conventional application processor for audio-video communication.
- FIG. 2 is a block diagram illustrating elements of circuit logic for performing audio-video communication according to an embodiment.
- FIG. 3A is a block diagram illustrating elements of a system for exchanging audio-video information according to an embodiment.
- FIG. 3B is a block diagram illustrating elements of a system for exchanging audio-video information according to an embodiment.
- FIG. 4A is a flow diagram illustrating elements of a method for transmitting audio-video information according to an embodiment.
- FIG. 4B is a flow diagram illustrating elements of a method for converting audio-video information according to an embodiment.
- FIG. 5 is a hybrid timing and data diagram illustrating elements of audio-video data formatting performed according to an embodiment.
- FIG. 6 is a data diagram illustrating elements of audio-video information formatted according to an embodiment.
- FIG. 7 is a timing diagram illustrating elements of audio-video information formatted according to an embodiment.
- FIG. 8 is a block diagram illustrating elements of a system for transmitting audio-video information according to an embodiment.
- FIG. 9 is a block diagram illustrating elements of a system for converting audio-video information according to an embodiment.
- Embodiments discussed herein variously provide for physical layer logic to receive digital AV information which has been processed according to a first interface specification, and to generate, according to a second interface specification, analog signals which represent that digital AV information.
- conversion logic may receive such analog signals and convert them into second analog signals for transmission which is according to, or otherwise compatible with, the first interface specification.
- Such techniques and mechanisms variously facilitate the inclusion of functionality for multiple interface specifications in individual IC dies, die stacks and/or packages, while freeing such dies, die stacks and/or packages from having to have respective physical layer logic for each such interface specification.
- FIG. 2 illustrates elements of circuit logic 200 for transmitting audio-video information according to an embodiment.
- Circuit logic 200 may provide functionality to interface link layer mechanisms and/or processes, which are compatible in one or more respects with a first interface specification, with physical layer mechanisms and/or processes which are compatible in one or more respects with a second interface specification.
- a format for providing data in accordance with the first interface specification may not be directly compatible, according to conventional techniques, with a format for receiving data in accordance with the second interface specification.
- Circuit logic 200 may include an application processor or any of various other integrated circuit hardware—e.g. residing on a single die, die stack or package—for operation as at least part of a source (and/or sink) of audio-video communications.
- source refers to the characteristic of a device providing communications to some other device.
- sink refers to the characteristic of a device receiving communications from some other (source) device.
- circuit logic 200 includes or otherwise supports functionality of one or more conventional source devices.
- circuit logic 200 may support functionality including, but not limited to, that of a television, projector, cable or satellite set-top box, video player, including a DVD (Digital Versatile Disk) or Blu-Ray player, audio player, digital video recorder, smartphone, MID (Mobile Internet Device), PID (Personal Internet Device), a personal computer (e.g. tablet, notebook, laptop, desktop and/or the like), video game console, monitor, display, home theater transmitter/receiver and/or the like. Circuit logic 200 may further support of sink functionality according to techniques discussed herein and/or according to techniques of one or more conventional receiver devices.
- video player including a DVD (Digital Versatile Disk) or Blu-Ray player, audio player, digital video recorder, smartphone, MID (Mobile Internet Device), PID (Personal Internet Device), a personal computer (e.g. tablet, notebook, laptop, desktop and/or the like), video game console, monitor, display, home theater transmitter/receiver and/or the like.
- Circuit logic 200 may further support of sink functionality according
- circuit logic 200 includes audio-video (AV) link layer logic 210 and interface logic 220 to receive from AV link layer logic 210 digital information including audio-video data.
- AV audio-video
- the term “audio-video” refers to the characteristic of pertaining to either or both of audio information and video information.
- AV link layer logic 210 may generate, relay or otherwise provide to interface logic 220 digital information which includes an audio data portion and/or a video data portion.
- AV link layer logic 210 may include or couple to link layer circuitry which operates according to an interface specification—e.g. including, but not limited to, HDMI, MHL or any of a variety of other specifications suitable for communicating audio-video information.
- the interface specification may specify or otherwise reference a standard format for a unit of audio-video information, commonly referred to as a frame, for communicating video data and any audio data and/or auxiliary data associated with that video data.
- Some or all auxiliary data of a frame e.g. which may include control data, clock signal and/or the like—may be metadata corresponding to the audio data and/or video data of that frame.
- the interface specification may define a plurality of channels which are for communication of audio-video information according to the frame format. Such a plurality of channels may include, for example, transition-minimized differential signaling (TMDS) encoded channels.
- TMDS transition-minimized differential signaling
- AV link layer logic 210 may generate, relay or otherwise provide one or more video frames each variously including respective video data, audio data and/or auxiliary data, where such data is variously associated—e.g. by state machine logic, control signaling, timing information metadata and/or the like—with respective portions of the frame format of the first interface specification.
- AV link layer logic 210 may perform conventional link layer processing—e.g. according to an HDMI, MHL or any of various other interface specifications —in aid of providing the digital information to interface logic 220 .
- Such conventional link layer processing may include, but is not limited to, packet building, link management operations such as of a link training and status state machine (LTSSM), channel allocation, encoding such as TMDS error reduction coding (TERC) encoding, TMDS encoding and/or the like.
- LTSSM link training and status state machine
- encoding such as TMDS error reduction coding (TERC) encoding, TMDS encoding and/or the like.
- AV link layer logic 210 may perform other link layer processing in addition to such conventional link layer processing.
- AV link layer logic 210 may provide an interface to receive digital information from other circuitry (not shown) included in or coupled to circuit logic 200 , where such other circuitry provides some or all functionality of a conventional link layer.
- AV link layer logic 210 performs decoding and/or other operations to undo some—e.g. but not all—of such conventional link layer processing.
- AV link layer logic 210 may directly or indirectly indicate to interface logic 220 one or more respective characteristics for various portions of the digital information.
- AV link layer logic 210 may identify or otherwise indicate that portions of such digital information each correspond to respective portions of a frame format.
- the frame format set forth in the first interface specification may define one or more of an active portion (hereinafter also referred to as “active period” and “active data portion”) for the communication of video data and a blanking portion thereinafter also referred to as “blanking period” and “blanking data portion”) for the communication of audio data and auxiliary data associated with the video data.
- Such a frame format may define one or more additional or alternative portions each for a respective type of signal—e.g. including, but not limited to, a data island, a preamble, a guard band, a packet header, a control period, an encoding type and/or the like.
- interface logic 220 may detect that different portions of digital information from AV link layer logic 210 each correspond to such a respective constituent portion (or portions) of the frame format.
- interface logic 220 may detect that certain digital information from AV link layer logic 210 is associated with a particular channel—e.g. a TMDS channel—of a plurality of channels. It is noted that the digital information in question may not necessarily be in a TMDS channel—e.g. not be TMDS encoded—when provided to interface logic 220 .
- interface logic 220 may detect that certain digital information is allocated to, or otherwise associated with, part of a blanking period or of an active data period.
- Interface logic 220 may format (e.g. reformat to change from a current format) some or all digital information received from AV link layer logic 210 .
- interface logic 220 may perform such formatting/reformatting based on the digital information being compatible with or otherwise corresponding to the frame format of the first interface specification.
- interface logic 220 performs a conversion of digital information received from AV link layer logic 210 to a resulting format for receipt by physical (PHY) layer logic 230 of circuit logic 200 .
- PHY physical
- Reformatting digital information may include interface logic 220 converting frames of digital information from AV link layer logic 210 each to a respective set of bytes to be provided to PHY layer logic 230 .
- Such converting may include, for a given frame of audio-video data, allocating bits from different channels for that frame each to respective bits of a corresponding set of bytes.
- such converting may further comprise allocating bits from one or more other control signal each to a respective bit of the same corresponding set of bytes.
- Such control signals may include one or more of a guard band signal, an end-of-blanking signal, a data invalid (or data enable) signal and/or the like.
- such one or more control signals includes a skip control signal to indicate the presence of one or more placeholder bytes among the sets of bytes.
- PHY layer logic 230 may provide functionality to generate an analog communication according to a second interface specification which, for example, is different from the first interface specification which includes the frame format of digital information provided by AV link layer logic 210 .
- PHY layer logic 230 may operate in accordance with MIPI PHY standards (such as those set forth in a MIPI D-PHY specification), whereas AV link layer logic 210 may provide digital information which is compatible with a HDMI frame format or a MHL frame format.
- PHY layer logic 230 is compatible in one or more respects with an interface specification which, for example, defines hardware, control, power mode, timing, performance and/or other requirements for providing digital-to-analog (and/or analog-to-digital) signal conversion.
- FIG. 3A illustrates elements of a system 300 for exchanging an audio-video communication according to an embodiment.
- Certain embodiments may, for example, be implemented within system 300 as a whole.
- Other embodiments may be implemented by a computer, communication and/or other electronics device of system 300 , such as the illustrative device 310 , for transmitting AV data.
- Still other embodiments may be implemented by another electronics device of system 300 , such as the illustrative device 330 , for receiving and processing such AV data.
- Certain embodiments may be implemented by circuitry—such as that of circuit logic 200 —to operate as a component of an electronic device for transmitting and/or receiving such AV data.
- device 310 includes some or all of the features of circuit logic 200 —e.g. where device 300 includes an IC die, die stack or package comprising circuit logic 200 .
- device 310 may include AV link layer logic 312 , interface logic 314 and PHY layer logic 316 which correspond functionally to AV link layer logic 210 , interface logic 220 and PHY layer logic 230 , respectively.
- AV link layer logic 312 may generate or otherwise provide digital data which, in one or more respects, is compatible with a first interface specification for the communication of AV data.
- the first interface specification may, for example, be one set forth in a HDMI standard, a MHL standard, a DisplayPort (DP) standard, a Mobility DisplayPort (MyDP) standard, or the like.
- Interface logic 314 may (re)format some or all digital information received from AV link layer logic 312 —e.g. wherein interface logic 314 converts such digital information to a format for accommodating processing by PHY layer logic 316 .
- such additional processing includes analog signal processing according to a second interface specification.
- the second interface specification may include, for example, that of a MIPI D-PHY standard or any of a variety of other standards which, for example, are not for, specific to, or limited to, the communication of AV data.
- the second interface specification may specify a burst mode for transmitting data, and a low power mode which is distinguished from the burst mode.
- the standard may specify a total number of physical layer contacts (e.g. pins, pads or the like) which is different than a corresponding total number of physical layer contacts associated with the first interface specification for AV link layer logic 312 .
- Formatting of digital information from AV link layer logic 312 may include, for example, interface logic 314 variously mapping or otherwise allocating bits to respective sets of bytes to be provided to PHY layer logic 316 . Such allocating may be based on interface logic 314 identifying various digital information each as being compatible with or otherwise corresponding to a respective portion of the frame format of the first interface specification. Based on the formatted digital data from interface logic 314 , PHY layer logic 316 may generate analog signals for transmission via an interconnect 320 to device 330 .
- device 330 includes circuit logic to perform signal processing which, in one or more respects, is an inverse processing with respect to that performed by device 310 .
- device 330 may include PHY layer logic 332 to receive the analog signals from device 310 .
- PHY layer logic 332 may perform receive signal processing to generate digital data based on the received analog signals—e.g. where such generating is according to the second interface specification.
- interface logic 334 of device 330 may receive such digital data from PHY layer logic 332 and perform a formatting (reformatting) of the digital data to accommodate subsequent processing by AV link layer logic 336 of device 330 .
- AV link layer logic 336 may, for example, perform receive link layer processing which is according to the first interface specification (i.e. the same interface specification according to which AV link layer logic 312 operates).
- the formatting performed by interface logic 334 is an inverse to that performed by interface logic 314 —e.g. where interface logic 334 receives sets of bytes from PHY layer logic 332 and variously orders, separates or otherwise allocates bits of such sets of bytes. Such allocation may, for example, be based on an identified association of such bits each to a respective portion of a frame format of the first interface specification.
- System 300 is one example of embodiments which variously allow AV information, which has previously been and/or is subsequently to be processed according to a first interface specification, to be communicated via PHY layer logic which operates according to a second interface specification.
- PHY layer logic which operates according to a second interface specification.
- One advantage of such embodiments is that they may variously allow other PHY layer logic to be eliminated or at least offloaded to another die, die stack, package or other IC hardware, where the other PHY layer logic operates according to the first interface specification.
- Another advantage is that they may allow the physical layer hardware which operates according to a second interface specification additionally or alternatively be used for otherwise conventional communications according to the second interface specification.
- PHY layer logic 316 may be further coupled to other link layer logic—e.g. represented by the illustrative link layer 318 —which performs conventional link layer processing according to the second interface specification.
- link layer logic e.g. represented by the illustrative link layer 318
- a portion of PHY layer logic 316 generates analog signals based on digital data from interface logic 314
- another portion of PHY layer logic 316 exchanges other analog signals according to conventional techniques based on operation with link layer 318 .
- some or all of PHY layer logic 316 may be multiplexed at different times between generating analog signals based on digital data from interface logic 314 , and generating other analog signals based on digital data from link layer 318 .
- PHY layer logic 316 is not coupled for operation with any such link layer 318 .
- FIG. 3B illustrates elements of a system 350 for exchanging an audio-video communication according to an embodiment.
- System 350 includes devices 360 , 380 coupled to one another via an interconnect 370 , and another device 390 coupled to device 380 via an interconnect 375 .
- Embodiments may be variously implemented, for example, by system 350 as a whole or by an electronics device such as any of devices 360 , 380 , 390 .
- Certain may be implemented by circuitry—such as that of circuit logic 200 —to operate as a component of an electronic device for transmitting and/or receiving such AV data.
- device 360 includes some or all of the features of device 310 —e.g. where device 360 includes an IC die, die stack or package comprising circuit logic 200 .
- device 360 may include AV link layer logic 362 , interface logic 364 and PHY layer logic 366 which correspond functionally to AV link layer logic 312 , interface logic 314 and PHY layer logic 316 , respectively.
- AV link layer logic 362 may provide digital data which, in one or more respects, is according to or otherwise compatible with a first interface specification, where interface logic 364 reformats such digital data to accommodate the fact that subsequent signal processing by PHY layer logic 366 is according to or otherwise compatible with a second interface specification. Based on the formatted digital data from interface logic 364 , PHY layer logic 366 may generate analog signals for transmission via an interconnect 370 to device 380 .
- Devices 360 , 380 may be or include different respective IC die—e.g. where devices 360 , 380 are (or are components of) different respective IC packages.
- devices 360 , 380 may be different components of the same electronics device (not shown) of system 300 , where that electronics device is distinct from and coupled to device 390 .
- interconnect 370 may have a total length of less than three (3) inches.
- interconnect 370 may have a total length of less than one (1) inch.
- interconnect 375 may include a connector cable for a user to manually connect to (and/or disconnect from) one or both of devices 380 , 390 .
- Device 380 may include physical layer logic 382 to couple device 380 to interconnect 370 —e.g. where physical layer logic 382 is according to or otherwise compatible with hardware requirements of the second interface specification (associated with PHY layer logic 366 ). Device 380 may further include physical layer logic 386 to couple device 380 to interconnect 375 —e.g. where physical layer logic 386 is compatible with hardware requirements of the first interface specification (associated with AV link layer logic 362 ).
- physical layer logic 382 may be MIPI D-PHY interface
- physical layer logic 386 may be a HDMI PHY, MHL PHY, DP PHY, MyDP PHY or other such PHY interface logic for AV communications.
- physical layer logic 382 performs signal processing according to the second interface specification to generate digital data based on analog signals received from device 360 via interconnect 370 .
- Conversion logic 384 of device 380 may reformat the digital data generated by physical layer logic 382 in preparation for processing by physical layer logic 386 .
- Such processing may be for physical layer logic 386 to generate, according to physical layer techniques set forth in the first interface specification, analog signaling representing the reformatted digital data.
- the reformatting by conversion logic 384 may, in one or more respects, be an inverse processing with respect to that performed by interface logic 364 —e.g. where conversion logic 384 receives sets of bytes from PHY layer logic 382 and variously orders, separates or otherwise allocates bits of such sets of bytes. Such allocation may, for example, be based on an identified association of such bits each to a respective portion of a frame format of the first interface specification.
- the digital data reformatting by conversion logic 384 may be less than all—e.g. none—of link layer processing which a conventional receiver device might otherwise perform according to the second interface specification.
- PHY layer logic 386 may generate analog signals for transmission to device 390 via interconnect 375 .
- Device 390 may include an AV PHY layer 392 to receive and process such analog signals, according to physical layer techniques set forth in, or otherwise compatible with, the first interface specification. Based on such processing, AV PHY layer 392 may generate digital data to provide to AV link layer 394 of device 390 .
- AV link layer 394 may include circuitry to perform link layer processing which, for example, is compatible with conventional techniques of the first interface specification.
- System 350 is one example of embodiments which, as compared to conventional architectures, variously offload physical layer hardware from silicon which includes associated link layer hardware—e.g. to allow improved utilization of die space, access to contacts (e.g. pins, pads, balls, etc.) and/or the like.
- link layer hardware e.g. to allow improved utilization of die space, access to contacts (e.g. pins, pads, balls, etc.) and/or the like.
- certain components of physical layer logic such as some serializer-deserializer circuitry—may not significantly decrease in size in upcoming generations of applications processors, system-on-chip solutions or other such architectures. Offloading such physical layer logic may allow remaining architectural components to scale in size, while allowing operation with new, offloaded versions of such physical layer logic in a form factor which, overall, is smaller or otherwise more efficient.
- FIG. 4A illustrates elements of a method 400 for transmitting AV data according to an embodiment. Some or all of method 400 may be performed with integrated circuitry including some or all of the features of circuit logic 200 . For example, method 400 may be performed by either of devices 310 , 360 .
- Method 400 may include, at 410 , reformatting first digital information based on a correspondence of the first digital information to a first frame format of a first interface specification.
- the reformatting at 410 may be performed, for example, by logic such as that of interface logic 220 —e.g. where the first digital information is generated or otherwise provided by AV link layer logic 210 .
- Method 400 may include one or more other operations (not shown) to generate the first digital information for reformatting at 410 .
- such one or more operations may include performing a TMDS decode operation and/or a TERC decode operation.
- the first frame format includes an active portion for communication of video data, and a blanking portion for communication of audio data and auxiliary data associated with the video data. Additionally or alternatively, the first interface specification may define a plurality of logical channels for communication based on the first frame format.
- Method 400 may further include, at 420 , receiving the reformatted first digital information with first physical layer circuitry, including the first physical layer circuitry receiving sets of bytes each for a different respective cycle of a first clock signal.
- the sets of bytes may comprise a first set of bytes corresponding to the blanking portion of the frame format.
- such a first set of bytes includes, for each of the plurality of logical channels, respective bits to represent data of the logical channel, wherein a total number of bits of the first set of bytes which represent data of the plurality of logical channels is less than a total bit capacity of the plurality of logical channels.
- the first set of bytes further comprise bits each for a respective control signal of a plurality of control signals.
- the plurality of control signals may include a skip signal to indicate whether the first physical layer is to skip transmission of a transmission period.
- the sets of bytes may further comprise a second set of bytes corresponding to the blanking portion.
- a second set of bytes may include, for each of the plurality of logical channels, respective bits to represent data of the logical channel.
- a total number of bits of the second set of bytes which represent data of the plurality of logical channels may be greater than the total number of bits of the first set of bytes which represent data of the plurality of logical channels.
- the sets of bytes may further comprise a third set of bytes corresponding to the active portion of the frame format.
- Such a third set of bytes may include, for each of the plurality of logical channels, respective bits to represent data of the logical channel.
- a total number of bits of the third set of bytes which represent data of the plurality of logical channels may be equal to the total bit capacity of the plurality of logical channels.
- Method 400 may further comprise, at 430 , generating a first analog transmission with the first physical layer circuitry, where the generating is based on the reformatted first digital information and is according to a second interface specification.
- Method 400 may further comprise other operations (not shown) performed by circuitry which is coupled to the circuitry performing operations 410 , 420 , 430 .
- Such circuitry may, for example, include that of device 380 , although certain embodiments are not limited in this regard.
- additional operations may include receiving with second physical layer circuitry (e.g. PHY layer logic 382 ) the first analog transmission generated at 430 .
- the second physical layer circuitry may generate second digital information including sets of bytes each for a different respective cycle of the first clock signal.
- the second digital information may then be reformatted according to the first frame format, and the reformatted first digital information encoded to generate third digital information.
- Such reformatting and encoding may be performed, for example, by circuitry providing functionality of conversion logic 384 .
- second physical layer circuitry such as PHY layer logic 386 may generate, based on the third digital information, a second analog communication according to the first interface specification.
- FIG. 4B illustrates elements of a method 440 for converting an AV communication according to an embodiment.
- Method 440 may be performed to convert an AV communication received from a device having some or all of the features of circuit logic 200 .
- method 440 may be performed with circuitry providing some or all of the functionality of device 380 .
- Method 440 may include, at 450 , receiving with first physical layer circuitry a first analog communication according to a second interface specification.
- the first physical layer circuitry may, for example, include some or all circuitry of PHY layer logic 382 .
- the second interface specification may be set forth in a MIPI-DPHY standard, although certain embodiments are not limited in this regard.
- Method 440 may further comprise, at 460 , generating, based on the first analog communication received at 450 , second digital information which includes sets of bytes each for a different respective cycle of a first clock signal.
- second digital information may, for example, be output from PHY layer logic 382 and provided to conversion logic 384 .
- method 440 further comprises, at 470 , reformatting the second digital information according to a first frame format of a first interface specification, wherein the first frame format includes an active portion for communication of video data, and a blanking portion for communication of audio data and auxiliary data associated with the video data.
- the first interface specification may define a plurality of logical channels for communication based on the first frame format, wherein the sets of bytes includes a first set of bytes corresponding to the blanking portion.
- the reformatting at 470 may include, for each logical channel of the plurality of logical channels, allocating respective bits of the first set of bytes to the logical channel, wherein a total number of bits of the first set of bytes which are allocated to the plurality of logical channels is less than a total bit capacity of the plurality of logical channels.
- method 440 may include encoding the reformatted second digital information to generate first digital information. Such encoding may include, for example, performing a TMDS encode operation and/or a TERC encode operation. In an embodiment, method 440 further comprises, at 490 , generating, based on the first digital information, a second analog communication according to the first interface specification. The generating at 490 may be performed, for example, with circuitry providing some or all functionality of physical layer logic 386 .
- FIG. 5 shows a diagram 500 illustrating a reformatting of digital AV information according to an embodiment.
- the reformatting represented by diagram 500 may be performed, for example, by interface logic 220 , interface logic 314 , interface logic 364 or other such logic. Additionally or alternatively, an inverse (reciprocal) version of such reformatting may be performed, for example, by conversion logic 384 , interface logic 334 or the like.
- Diagram 500 shows a frame format 520 for AV information according to a first interface specification—in this case, a frame format set forth in an HDMI standard.
- Digital information to be reformatted may, in one or more respects, be received in a format according to or otherwise compatible with frame format 520 .
- Logic to perform such reformatting may include or otherwise have access to resources—e.g. state machine logic, control signaling, timing information, metadata and/or the like—to identify various digital information each as being associated with a respective portion of frame format 520 .
- interface logic 220 may include or otherwise have access to mechanisms for detecting that received digital information is for a blanking period or an active data period of frame format 520 .
- Such mechanisms may more particularly identify various digital information each as being associated with respective one of a control period, a data island period, a guard band period, and/or the like. Additionally or alternatively, such mechanisms may identify digital information as belonging to a particular logical channel of frame format 520 —e.g. one of TMDS channels 0 through 2 .
- portions of a frame format are distinguished from one another with respect to cycles of a clock—e.g. the TMDS clock cycles illustrated for frame format 520 .
- a clock e.g. the TMDS clock cycles illustrated for frame format 520 .
- sets of data of the channel e.g. bytes which each comprise respective bits [D 0 ]-[D 7 ]—may correspond to different respective cycles of an associated TMDS clock.
- the TMDS (or other) clock in question may, for example, be a signal which regulates a subsequent transmission based on the reformatted digital information.
- control signals 530 which, for example, indicate how the digital information variously corresponds to respective portions of frame format 520 .
- control signals 530 may include, for example, a signal GB indicating whether digital information is associated with a guard band portion of frame format 520 .
- control signals 530 may include a signal DiDe indicating whether digital information is associated with a data island portion of frame format 520 .
- control signals 530 may include a signal EoB indicating whether an end-of-blank point for the digital information.
- some or all of control signals 530 are reformatted with other digital information which is according to frame format 520 .
- formatter logic e.g. hardware and/or executing software such as that of interface logic 220 —variously allocates bits of the digital information each to a respective set of bytes.
- the formatter logic may thus generate multiple sets of bytes which—for example—are each for, or otherwise correspond to, a different respective cycle of a TMDS (or other) clock associated with frame format 520 .
- the sets of bytes may comprise a first set of bytes—represented by the illustrative bytes 510 —corresponding to a clock cycle for the blanking portion of the frame format.
- some or all of the bits 0 through 11 of bytes 510 are variously allocated from the respective bits [D 0 ]-[D 3 ] of TMDS channel 0 for a blanking period clock cycle, from the respective bits [D 0 ]-[D 3 ] of TMDS channel 1 for that same clock cycle, and from the respective bits [D 0 ]-[D 3 ] of TMDS channel 2 for that same clock cycle.
- Bits 12 through 14 of bytes 510 may be allocated, respectively, from GB, DiDe and EoB for that clock cycle.
- a bit 15 of bytes 510 may be allocated a bit from a skip signal, which is discussed herein with respect to FIG. 7 .
- the allocating of bits to generate bytes 510 is merely illustrative, and is not limiting on certain embodiments.
- FIG. 6 shows a table 600 illustrating various sets of bits generated by reformatting of digital AV information according to an embodiment.
- Rows of table 600 variously represent bytes BL 610 , BH 620 for respective columns CTL, GB, Di of table 600 corresponding to respective blanking period cycles of a TMDS (or other) clock. More particularly, columns CTL, GB, Di represent a control (CTL) period clock cycle, a guard band period clock cycle and a data island period clock cycle, respectively.
- Table 600 further represents bytes C 0 630 , C 1 640 , C 2 650 for a column Vid corresponding to an active data period cycle of the clock.
- the allocation of digital information to generate sets of bits may vary between data for different types of clock cycles—e.g. between data for blanking period clock cycles and data for active period clock cycles.
- the allocation of bits to bytes BL 610 , BH 620 for a control period clock cycle, for a guard band clock cycle and/or for a data island clock cycle may be according to the allocation scheme shown in diagram 500 .
- the allocation of bits to bytes C 0 630 , C 1 640 , C 2 650 for an active data period may include mapping all bits [D 0 ]-[D 7 ] for each of TMDS channels 0 through 2 —as represented by bits T 0 _D 0 through T 0 _D 7 , bits T 1 _D 0 through T 1 _D 7 and bits T 2 _D 0 through T 2 _D 7 .
- the data from one of the bytes—e.g. C 2 650 may be buffered for inclusion in a sequentially earlier (or later) cycle in a resulting data sequence.
- a total number of bits of the set of bytes which represent data of the logical channels may be greater than a bit capacity of the logical channels.
- the total number of bits may be less than a corresponding total number of bits of another of the sets of bytes.
- the bytes represented by column CTL in table 600 may include a total of six bits allocated from TMDS channels 0 through 2
- the bytes represented by column GB in table 600 may include a total of four bits allocated from TMDS channels 0 through 2
- the bytes represented by column Di in table 600 include a total of eight bits allocated from TMDS channels 0 through 2
- TMDS channels 0 through 2 have a total bit capacity of 24 bits.
- FIG. 7 shows a timing diagram 700 illustrating elements of a timing for AV data which has been reformatted according to an embodiment.
- Timing diagram 700 includes a sequence 710 of sets of bytes which each correspond to a respective cycle of a clock—e.g. a TMDS clock for frame format 520 .
- the sets of bytes of sequence 710 may be generated based on bit allocation techniques such as those illustrated in table 600 , although certain embodiments are not limited in this regard.
- sequence 710 includes respective bytes for each of a plurality of channels—e.g. logical TMDS channels—including channel 0 720 , channel 1 730 and channel 2 740 .
- the channels 720 , 730 , 740 may be merely logical channels, for example, insofar as the data of sequence 710 may not currently be in actual channels of a particular type (e.g. TMDS channels).
- data of sequence 710 may be organized according to an identified correspondence of such data to a future expected TMDS transmit channel, a previous TMDS receive channel, or the like.
- Sequence 710 may include sets of bytes each corresponding to a respective clock cycle for a blanking data portion of a video frame. Alternatively or in addition, sequence 710 may include other sets of bytes each corresponding to respective clock cycles for an active data portion of the video frame.
- the formatting of digital data may include, for example, interface logic 220 or other such logic variously redistributing data of sequence 710 from a first grouping—e.g. a plurality of channels—according to a first interface specification to a second grouping—e.g. a plurality of lanes—according to a second interface specification.
- a total number of groups for the first grouping is different from that of the second grouping.
- the sets of bytes in sequence 710 may be variously redistributed from respective ones of channels 720 , 730 , 740 to lanes represented in timing diagram 700 by an illustrative lane 0 760 and lane 1 770 .
- a sequence 750 may result from such a distribution.
- sequence 750 may be output at a clock rate which is quicker than that associated with sequence 710 .
- respective clocks for sequence 710 and 750 have a frequency ratio of 2:3.
- any of various other frequency ratios may be provided, according to different embodiments.
- skipped bytes may serve as placeholder (padding) portions in lanes 760 , 770 . Such skipped bytes may be included while interface logic 220 (or other such formatting logic) awaits incoming digital data to be variously allocated to bits of sequence 710 .
- skipped bytes will be indicated to downstream logic—e.g. interface logic 334 , conversion logic 384 or the like—with a corresponding bit in a set of bytes.
- downstream logic e.g. interface logic 334 , conversion logic 384 or the like.
- bit 15 in bytes 510 may be the illustrative bit 15 in bytes 510 , although certain embodiments are not limited in this regard.
- FIG. 8 illustrates elements of a system 800 for transmitting an AV communication according to an embodiment.
- System 800 may include one or more integrated circuits to provide some or all of the functionality of circuit logic 200 , device 310 and/or device 360 , for example.
- system 800 includes interface logic 810 to receive digital AV information which is compatible with a first interface specification, and process that digital data in preparation for subsequent physical layer processing compatible with a second interface specification. Such subsequent physical layer processing may be performed, for example, by DPHY logic 860 of system 800 .
- Interface logic 810 may provide some or all of the functionality of interface logic 220 , interface logic 314 and/or interface logic 364 , for example.
- interface logic 810 receives digital data 820 which, in one or more respects, is according to or otherwise compatible with a frame format of an interface specification—e.g. frame format 520 .
- interface logic 810 may include one or both of a TMDS decoder 822 to perform TMDS decoding for digital data 820 and a TERC decoder 824 to perform TERC decoding for digital data 820 .
- interface logic 810 may not include any such decoder logic—e.g.
- digital data 820 is not TMDS encoded and/or is not TERC encoded.
- TMDS decoder 822 and TERC decoder 824 may alternatively reside in link layer circuitry (not shown) coupled to provide digital AV data to interface logic 810 .
- link layer circuitry may provide functionality of AV link layer logic 312 , for example.
- Interface logic 810 may comprise control logic, represented by the illustrative state machine 832 , to receive control signals 830 —e.g. including some or all of the control signals 830 which directly or indirectly indicate how portions of digital data 820 correspond to particular portions of the frame format. Based at least in part on control signals 830 , such control logic may manage how digital data 820 (or, for example, decoded digital data output from TERC decoder 824 ) is to be reformatted for subsequent processing by DPHY logic 860 . In an embodiment, management of the reformatting may be further based on current state of DPHY logic 860 —e.g. as communicated to state machine 832 with one or more transmit ready signals 850 a , 850 b , 850 c , 850 d.
- control logic represented by the illustrative state machine 832 , to receive control signals 830 —e.g. including some or all of the control signals 830 which directly or indirectly indicate how portions of digital data 820 correspond to particular portions
- digital AV data may be variously sent to one or more buffers, represented by the illustrative FIFO buffers 834 a , 834 b , 834 c , which may also receive various control inputs from state machine 832 .
- mapper and lane pack logic 840 may selectively retrieve digital data and/or other associated auxiliary information from FIFO buffers 834 a , 834 b , 834 c .
- Mapper and lane pack logic 840 may generate sets of bytes having, for example, some or all of the features of sequence 710 and redistribute such sets of bytes to generate an output such as that of sequence 750 .
- the allocation and redistribution by mapper and lane pack logic 840 results in one or more transmit data lanes 852 a , 852 b , 852 c , 852 d variously outputting respective data to DPHY logic 860 .
- DPHY logic 860 may provide some or all of the functionality of PHY layer logic 230 , PHY layer logic 316 or PHY layer logic 366 , for example. DPHY logic 860 may perform operations including conventional physical layer processing according to a second interface specification such as one set forth in a MIPI D-PHY standard.
- DPHY logic 860 may include lane digital logic 862 a , 862 b , 862 c , 862 d and lane analog logic 864 a , 864 b , 864 c , 864 d to perform various serialization-deserialization, digital-to-analog conversion and or other operations to process data from transmit data lanes 852 a , 852 b , 852 c , 852 d . Based on such operations, DPHY logic 860 may output analog communications 870 a , 870 b , 870 c , 870 d according to the second interface specification.
- the exchange of analog communications 870 a , 870 b , 870 c , 870 d may be regulated by a clock signal 875 exchanged via clock lane logic 866 .
- Clock lane logic 866 may generate clock signal 875 , for example, based on a transmit byte clock 854 provided by phase lock loop circuitry PLL 845 of interface logic 810 .
- DPHY logic 860 may perform additional operations as receiver circuitry—e.g. in support of transmitting some or all of analog communications 870 a , 870 b , 870 c , 870 d . The details of such additional operations are not limiting, and are not discussed herein to avoid obscuring features of certain embodiments.
- FIG. 9 illustrates elements of a system 900 for converting AV information according to an embodiment.
- System 900 may include one or more integrated circuits to provide some or all of the functionality of device 380 , for example.
- system 900 includes DHY logic 910 to receive analog signals which are compatible with a second interface specification, and process the analog signals in preparation for subsequent digital processing compatible with a first interface specification. Such subsequent digital processing may be performed, for example, by PHY conversion logic 930 of system 900 .
- DPHY logic 910 may provide some or all of the functionality of PHY layer logic 382 , for example. DPHY logic 910 may perform operations including conventional physical layer processing according to an interface specification such as one set forth in a MIPI D-PHY standard. By way of illustration and not limitation, DPHY logic 910 may include lane analog logic 912 a , 912 b , 912 c , 912 d and lane digital logic 914 a , 914 b , 914 c , 914 d to perform various serialization-deserialization, analog-to-digital conversion and/or other operations to process analog communications 902 a , 902 b , 902 c , 902 d 902 a , 902 b , 902 c , 902 d .
- the exchange of analog communications 902 a , 902 b , 902 c , 902 d may be regulated by a clock signal 904 exchanged via clock lane logic 916 .
- DPHY logic 910 may output to PHY conversion logic 930 digital data via one or more receive data lanes 922 a , 922 b , 922 c , 922 d and one or more receive active signals 920 a , 920 b , 920 c , 920 d according to the second interface specification.
- PHY conversion logic 930 may provide some or all of the functionality of conversion logic 384 , for example.
- PHY conversion logic 930 comprises control logic, represented by the illustrative state machine 952 , to receive signaling such as receive active signals 920 a , 920 b , 920 c , 920 d and, in an embodiment, one or more control signals 950 from PHY logic (not shown) coupled to PHY conversion logic 930 .
- one or more control signals 950 may indicate a transmit ready state for PHY circuitry such as that of PHY layer logic 386 . Based at least in part on such signaling, the control logic may manage how digital data 970 is to be formatted for subsequent processing by other PHY logic (not shown) to process.
- digital data from receive data lanes 922 a , 922 b , 922 c , 922 d may be provided to lane unpack and mapper logic 940 of PHY conversion logic 930 .
- lane unpack and mapper logic 940 may selectively generate digital data and/or other associated auxiliary information to provide to one or more buffers, represented by the illustrative FIFOs 954 a , 954 b , 954 c.
- Buffered data of FIFOs 954 a , 954 b , 954 c may variously offloaded—e.g. under control of state machine 952 —to a TERC encoder 960 for TERC encoding.
- an output of such TERC encoding may be then provided to a TMDS encoder 962 of PHY conversion logic 962 for TMDS encoding.
- the result of processing by lane unpack and mapper logic 940 , TERC encoder 960 and TMDS encoder 962 may result in digital AV data 970 which is similar to that which may otherwise be output by conventional link layer logic according to an interface specification such one set forth in an HDMI standard, an MHL standard, a DP standard or the like.
- digital AV data 970 may be then provided to PHY layer logic (not shown) which is included in or coupled to system 900 .
- PHY layer logic may process digital AV data 970 , for example, to generate analog signals according to conventional techniques of that interface specification.
- This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer.
- a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs) such as dynamic RAM (DRAM), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and coupled to a computer system bus.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Communication Control (AREA)
- Time-Division Multiplex Systems (AREA)
Abstract
Description
Claims (28)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/135,470 US9270929B2 (en) | 2013-12-19 | 2013-12-19 | Formatting audio-video information compliant with first transmission format to second transmission format in integrated circuit for offloading physical layer logic for first transmission format to separate integrated circuit |
JP2016538644A JP6431915B2 (en) | 2013-12-19 | 2014-09-11 | Audio / video information formatting apparatus, system, and method |
DE112014005930.7T DE112014005930T5 (en) | 2013-12-19 | 2014-09-11 | Apparatus, system and method for formatting audio-video information |
KR1020167015510A KR20160100952A (en) | 2013-12-19 | 2014-09-11 | Apparatus, system and method for formatting audio-video information background |
CN201480067012.4A CN105849711B (en) | 2013-12-19 | 2014-09-11 | For formatting the devices, systems, and methods of Audio-Video information |
PCT/US2014/055214 WO2015094434A1 (en) | 2013-12-19 | 2014-09-11 | Apparatus, system and method for formatting audio-video information |
TW103131632A TWI626845B (en) | 2013-12-19 | 2014-09-12 | Apparatus, system and method for formatting audio-video information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/135,470 US9270929B2 (en) | 2013-12-19 | 2013-12-19 | Formatting audio-video information compliant with first transmission format to second transmission format in integrated circuit for offloading physical layer logic for first transmission format to separate integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150181157A1 US20150181157A1 (en) | 2015-06-25 |
US9270929B2 true US9270929B2 (en) | 2016-02-23 |
Family
ID=53401529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/135,470 Active 2034-03-25 US9270929B2 (en) | 2013-12-19 | 2013-12-19 | Formatting audio-video information compliant with first transmission format to second transmission format in integrated circuit for offloading physical layer logic for first transmission format to separate integrated circuit |
Country Status (7)
Country | Link |
---|---|
US (1) | US9270929B2 (en) |
JP (1) | JP6431915B2 (en) |
KR (1) | KR20160100952A (en) |
CN (1) | CN105849711B (en) |
DE (1) | DE112014005930T5 (en) |
TW (1) | TWI626845B (en) |
WO (1) | WO2015094434A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190326917A1 (en) * | 2016-10-03 | 2019-10-24 | Frank R. Dropps | Analog system and associated methods thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10440424B2 (en) * | 2014-10-17 | 2019-10-08 | Sony Corporation | Transmission apparatus, transmission method, reception apparatus, and reception method |
US20160329312A1 (en) * | 2015-05-05 | 2016-11-10 | Sean M. O'Mullan | Semiconductor chip with offloaded logic |
CN105635748B (en) * | 2015-12-30 | 2019-02-01 | 上海芃矽半导体技术有限公司 | Sending method, the Transmission system of method of reseptance and audio-visual data of audio-visual data |
US10510721B2 (en) | 2017-08-11 | 2019-12-17 | Advanced Micro Devices, Inc. | Molded chip combination |
US10593628B2 (en) | 2018-04-24 | 2020-03-17 | Advanced Micro Devices, Inc. | Molded die last chip combination |
US10923430B2 (en) | 2019-06-30 | 2021-02-16 | Advanced Micro Devices, Inc. | High density cross link die with polymer routing layer |
US11995025B2 (en) | 2021-12-22 | 2024-05-28 | Everpro Technologies Company Ltd | Active cable supporting high-speed signal link training |
CN113965713B (en) * | 2021-12-22 | 2022-04-12 | 长芯盛(武汉)科技有限公司 | HDMI active cable supporting high-speed signal link training |
CN116939134B (en) * | 2023-06-16 | 2024-08-06 | 深圳市驰晶科技有限公司 | HDMI system based on MIPIDPHY output |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1331571A1 (en) | 2002-01-29 | 2003-07-30 | Xerox Corporation | System and method for enabling arbitrary components to transfer data between each other |
US20040158873A1 (en) * | 2002-12-17 | 2004-08-12 | Pasqualino Christopher R. | Method and system for generating high definition multimedia interface (HDMI) codewords using a TMDS encoder/decoder |
US20060047533A1 (en) | 2004-09-02 | 2006-03-02 | Smolen Christopher M | Multi-drop bus to personal computer interface |
US20060209884A1 (en) | 2005-03-15 | 2006-09-21 | Macmullan Samuel J | System, method and apparatus for automatic detection and automatic connection between a generalized content source and a generalized content sink |
US20070050807A1 (en) * | 2005-08-26 | 2007-03-01 | Lg Electronics Inc. | Method and apparatus for transmitting/receiving multimedia data |
US20070200859A1 (en) * | 2006-02-24 | 2007-08-30 | Banks John D | Parallel interface bus to communicate video data encoded for serial data links |
US20080101467A1 (en) * | 2006-10-27 | 2008-05-01 | Radiospire Networks, Inc. | Method and system for secure and efficient wireless transmission of HDCP-encrypted HDMI/DVI signals |
US20090022176A1 (en) * | 2007-07-21 | 2009-01-22 | Nguyen James T | System and method for converting communication interfaces and protocols |
US20090109332A1 (en) * | 2007-10-29 | 2009-04-30 | Yen-Liang Lin | System and method for converting digital image signals |
US20090213275A1 (en) * | 2008-02-27 | 2009-08-27 | David Trager | Digital interface for tuner-demodulator communications |
US20090278894A1 (en) * | 2002-12-02 | 2009-11-12 | Silverbrook Research Pty Ltd | Inkjet Printhead Employing Active And Static Ink Ejection Structures |
US20090304069A1 (en) | 2006-04-21 | 2009-12-10 | Hoffert Bradley W | Inline audio/visual conversion |
US20100073574A1 (en) * | 2008-02-04 | 2010-03-25 | Sony Corporation | Video signal transmitting device, video signal transmitting method, video signal receiving device, and video signal receiving method |
US20120249871A1 (en) * | 2011-04-04 | 2012-10-04 | Cisco Technology, Inc. | Hdmi-sfp+ adapter/extender |
US8340529B2 (en) * | 2009-06-13 | 2012-12-25 | Kalpendu Shastri | HDMI TMDS optical signal transmission using PAM technique |
US8879608B2 (en) * | 2008-09-02 | 2014-11-04 | Entropic Communications, Inc. | Systems and methods for digital interface translation |
US8917194B2 (en) * | 2013-03-15 | 2014-12-23 | Apple, Inc. | Methods and apparatus for context based line coding |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2459941C (en) * | 2001-09-06 | 2013-09-17 | Qiuzhen Zou | Generating and implementing a communication protocol and interface for high data rate signal transfer |
US20040073950A1 (en) * | 2002-10-15 | 2004-04-15 | Koninklijke Philips Electronics N.V. | Method and apparatus for user-selective execution and recording of interactive audio/video components |
JP4487675B2 (en) * | 2003-08-27 | 2010-06-23 | 日本ビクター株式会社 | Transmission system |
RU2372741C2 (en) * | 2006-05-16 | 2009-11-10 | Сони Корпорейшн | System of data transmission, transmission device, receiving device, method of data transmission and program |
US8345681B2 (en) * | 2009-09-23 | 2013-01-01 | Samsung Electronics Co., Ltd. | Method and system for wireless communication of audio in wireless networks |
US9412330B2 (en) * | 2011-03-15 | 2016-08-09 | Lattice Semiconductor Corporation | Conversion of multimedia data streams for use by connected devices |
-
2013
- 2013-12-19 US US14/135,470 patent/US9270929B2/en active Active
-
2014
- 2014-09-11 JP JP2016538644A patent/JP6431915B2/en active Active
- 2014-09-11 WO PCT/US2014/055214 patent/WO2015094434A1/en active Application Filing
- 2014-09-11 KR KR1020167015510A patent/KR20160100952A/en not_active Application Discontinuation
- 2014-09-11 CN CN201480067012.4A patent/CN105849711B/en active Active
- 2014-09-11 DE DE112014005930.7T patent/DE112014005930T5/en active Pending
- 2014-09-12 TW TW103131632A patent/TWI626845B/en active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1331571A1 (en) | 2002-01-29 | 2003-07-30 | Xerox Corporation | System and method for enabling arbitrary components to transfer data between each other |
US20090278894A1 (en) * | 2002-12-02 | 2009-11-12 | Silverbrook Research Pty Ltd | Inkjet Printhead Employing Active And Static Ink Ejection Structures |
US20040158873A1 (en) * | 2002-12-17 | 2004-08-12 | Pasqualino Christopher R. | Method and system for generating high definition multimedia interface (HDMI) codewords using a TMDS encoder/decoder |
US20060047533A1 (en) | 2004-09-02 | 2006-03-02 | Smolen Christopher M | Multi-drop bus to personal computer interface |
US20060209884A1 (en) | 2005-03-15 | 2006-09-21 | Macmullan Samuel J | System, method and apparatus for automatic detection and automatic connection between a generalized content source and a generalized content sink |
US20070050807A1 (en) * | 2005-08-26 | 2007-03-01 | Lg Electronics Inc. | Method and apparatus for transmitting/receiving multimedia data |
US20070200859A1 (en) * | 2006-02-24 | 2007-08-30 | Banks John D | Parallel interface bus to communicate video data encoded for serial data links |
US20090304069A1 (en) | 2006-04-21 | 2009-12-10 | Hoffert Bradley W | Inline audio/visual conversion |
US20080101467A1 (en) * | 2006-10-27 | 2008-05-01 | Radiospire Networks, Inc. | Method and system for secure and efficient wireless transmission of HDCP-encrypted HDMI/DVI signals |
US20090022176A1 (en) * | 2007-07-21 | 2009-01-22 | Nguyen James T | System and method for converting communication interfaces and protocols |
US20090109332A1 (en) * | 2007-10-29 | 2009-04-30 | Yen-Liang Lin | System and method for converting digital image signals |
US20100073574A1 (en) * | 2008-02-04 | 2010-03-25 | Sony Corporation | Video signal transmitting device, video signal transmitting method, video signal receiving device, and video signal receiving method |
US20090213275A1 (en) * | 2008-02-27 | 2009-08-27 | David Trager | Digital interface for tuner-demodulator communications |
US8879608B2 (en) * | 2008-09-02 | 2014-11-04 | Entropic Communications, Inc. | Systems and methods for digital interface translation |
US8340529B2 (en) * | 2009-06-13 | 2012-12-25 | Kalpendu Shastri | HDMI TMDS optical signal transmission using PAM technique |
US20120249871A1 (en) * | 2011-04-04 | 2012-10-04 | Cisco Technology, Inc. | Hdmi-sfp+ adapter/extender |
US8917194B2 (en) * | 2013-03-15 | 2014-12-23 | Apple, Inc. | Methods and apparatus for context based line coding |
Non-Patent Citations (1)
Title |
---|
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2014/055214, Dec. 29, 2014, 10 pages. |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190326917A1 (en) * | 2016-10-03 | 2019-10-24 | Frank R. Dropps | Analog system and associated methods thereof |
US10601432B2 (en) * | 2016-10-03 | 2020-03-24 | Frank R. Dropps | Analog system and associated methods thereof |
US20200212920A1 (en) * | 2016-10-03 | 2020-07-02 | Frank R. Dropps | Analog system and associated methods thereof |
US10855298B2 (en) * | 2016-10-03 | 2020-12-01 | Frank R. Dropps | Analog system and associated methods thereof |
US11196432B2 (en) | 2016-10-03 | 2021-12-07 | Frank R. Dropps | Analog system and associated methods thereof |
US11716088B2 (en) | 2016-10-03 | 2023-08-01 | Frank R. Dropps | Analog system and associated methods thereof |
US12057850B2 (en) | 2016-10-03 | 2024-08-06 | Frank R. Dropps | Analog system and associated methods thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105849711A (en) | 2016-08-10 |
KR20160100952A (en) | 2016-08-24 |
TWI626845B (en) | 2018-06-11 |
US20150181157A1 (en) | 2015-06-25 |
JP2017506016A (en) | 2017-02-23 |
TW201526621A (en) | 2015-07-01 |
CN105849711B (en) | 2019-05-10 |
WO2015094434A1 (en) | 2015-06-25 |
JP6431915B2 (en) | 2018-11-28 |
DE112014005930T5 (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9270929B2 (en) | Formatting audio-video information compliant with first transmission format to second transmission format in integrated circuit for offloading physical layer logic for first transmission format to separate integrated circuit | |
US8397272B2 (en) | Multi-stream digital display interface | |
US7949004B2 (en) | Method and system for data exchange with a multimedia and ethernet enabled LAN subsystem | |
US8386663B2 (en) | HDMI controller circuit for transmitting digital data to compatible audio device using address decoder where values are written to registers of sub-circuits | |
TWI352902B (en) | System, chip, apparatus and repeater for communica | |
JP5736389B2 (en) | Multi-channel signal transmission and detection in reduced channel format | |
US9247157B2 (en) | Audio and video data multiplexing for multimedia stream switch | |
US20180063218A1 (en) | Apparatus, system on chip, and method for transmitting video image | |
US8918569B2 (en) | Streaming audio visual content simultaneously to different topologies on a wireless adapter | |
JP5156655B2 (en) | Image processing device | |
US9558718B2 (en) | Streaming video data in the graphics domain | |
JP5981847B2 (en) | Decapsulating a data stream into multiple links | |
US10375140B2 (en) | Wireless receiving apparatus, data processing module, and data processing method, for receiving video image | |
US11962795B2 (en) | Video frame codec architectures | |
US9686536B2 (en) | Method and apparatus for aggregation and streaming of monitoring data | |
US10623805B2 (en) | Sending device, method of sending high dynamic range image data, receiving device, and method of receiving high dynamic range image data | |
CN113259613B (en) | Method for improving compression, intercommunication and interconnection of HDMI display data streams | |
WO2024017125A1 (en) | Signal transmission method and apparatus | |
CN113840102B (en) | Multimedia video and audio system | |
KR101695007B1 (en) | Apparatus for parallel processing of large-scale video data and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SILICON IMAGE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUO, DAVID;WONG, JASON;YI, JU HWAN;AND OTHERS;REEL/FRAME:032598/0956 Effective date: 20140401 |
|
AS | Assignment |
Owner name: JEFFERIES FINANCE LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:LATTICE SEMICONDUCTOR CORPORATION;SIBEAM, INC.;SILICON IMAGE, INC.;AND OTHERS;REEL/FRAME:035223/0387 Effective date: 20150310 |
|
AS | Assignment |
Owner name: LATTICE SEMICONDUCTOR CORPORATION, OREGON Free format text: MERGER;ASSIGNOR:SILICON IMAGE, INC.;REEL/FRAME:036419/0792 Effective date: 20150513 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SILICON IMAGE, INC., OREGON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC;REEL/FRAME:049827/0326 Effective date: 20190517 Owner name: SIBEAM, INC., OREGON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC;REEL/FRAME:049827/0326 Effective date: 20190517 Owner name: LATTICE SEMICONDUCTOR CORPORATION, OREGON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC;REEL/FRAME:049827/0326 Effective date: 20190517 Owner name: DVDO, INC., OREGON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JEFFERIES FINANCE LLC;REEL/FRAME:049827/0326 Effective date: 20190517 Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINIS Free format text: SECURITY INTEREST;ASSIGNOR:LATTICE SEMICONDUCTOR CORPORATION;REEL/FRAME:049980/0786 Effective date: 20190517 Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT, COLORADO Free format text: SECURITY INTEREST;ASSIGNOR:LATTICE SEMICONDUCTOR CORPORATION;REEL/FRAME:049980/0786 Effective date: 20190517 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |