US7936771B2 - Method and system for routing fibre channel frames - Google Patents
Method and system for routing fibre channel frames Download PDFInfo
- Publication number
- US7936771B2 US7936771B2 US12/189,502 US18950208A US7936771B2 US 7936771 B2 US7936771 B2 US 7936771B2 US 18950208 A US18950208 A US 18950208A US 7936771 B2 US7936771 B2 US 7936771B2
- Authority
- US
- United States
- Prior art keywords
- port
- frames
- frame
- segment
- switch element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/90—Buffering arrangements
Definitions
- the present invention relates to fibre channel systems, and more particularly, to improving fibre channel switch efficiency.
- Fibre channel is a set of American National Standard Institute (ANSI) standards, which provide a serial transmission protocol for storage and network protocols such as HIPPI, SCSI, IP, ATM and others. Fibre channel provides an input/output interface to meet the requirements of both channel and network users.
- ANSI American National Standard Institute
- Fibre channel supports three different topologies: point-to-point, arbitrated loop and fibre channel fabric.
- the point-to-point topology attaches two devices directly.
- the arbitrated loop topology attaches devices in a loop.
- the fibre channel fabric topology attaches host systems directly to a fabric, which are then connected to multiple devices.
- the fibre channel fabric topology allows several media types to be interconnected.
- Fibre channel is a closed system that relies on multiple ports to exchange information on attributes and characteristics to determine if the ports can operate together. If the ports can work together, they define the criteria under which they communicate.
- fibre channel In fibre channel, a path is established between two nodes where the path's primary task is to transport data from one point to another at high speed with low latency, performing only simple error detection in hardware.
- Fibre channel fabric devices include a node port or “N_Port” that manages fabric connections.
- the N_port establishes a connection to a fabric element (e.g., a switch) having a fabric port or F_port.
- Fabric elements include the intelligence to handle routing, error detection, recovery, and similar management functions.
- a fibre channel switch is a multi-port device where each port manages a simple point-to-point connection between itself and its attached system. Each port can be attached to a server, peripheral, I/O subsystem, bridge, hub, router, or even another switch.
- a switch receives messages from one port and automatically routes it to another port. Multiple calls or data transfers happen concurrently through the multi-port fibre channel switch.
- Fibre channel switches use memory buffers to hold frames received (at receive buffers) and sent across (via transmit buffers) a network. Associated with these buffers are credits, which are the number of frames that a buffer can hold per fabric port.
- a link may be reset (for various reasons), and before the link goes up, it must free up receive buffers so that it has full credit.
- frame flow is halted in other links that are not affected by the reset.
- other unaffected links stay idle. This is inefficient and affects overall performance.
- a method for transmitting frames using a fibre channel switch element includes, determining if a fibre channel switch element port link has been reset; determining if a flush state has been enabled for the port; and removing frames from a receive buffer, if the flush state has been enabled for the port.
- Fibre channel switch element firmware sets a control bit to enable flush state operation.
- the port operates as a typical fibre channel port.
- frames are removed from a receive buffer of the fibre channel port as if it is a typical fibre channel frame transfer. The removed frames are sent to a processor for analysis.
- a method for removing frames from a transmit buffer of a fibre channel switch element includes, setting a control bit for activating frame removal from the transmit buffer; and diverting frames that are waiting in the transmit buffer and have not been able to move from the transmit buffer.
- the diverted frames are or Class 2 or 3
- the frames are tossed and a Class 2 frame may be truncated before being diverted.
- a fibre channel switch element including a port having a receive segment and a transmit segment, wherein the fibre channel switch element determines if a port link has been reset; determines if a flush state has been enabled for the port; and removes frames from a buffer, if the flush state has been enabled for the port.
- a fibre channel switch element for removing frames.
- the switch element includes a port having a receive segment and a transmit segment with a receive and transmit buffer, wherein the fibre channel switch element firmware sets a control bit for activating frame removal from the transmit buffer; and diverts frames that are waiting in the transmit buffer and have not been able to move from the transmit buffer.
- FIG. 1A shows an example of a Fibre Channel network system
- FIG. 1B shows an example of a Fibre Channel switch element, according to one aspect of the present invention
- FIG. 1C shows a block diagram of a 20-channel switch chassis, according to one aspect of the present invention
- FIG. 1D shows a block diagram of a Fibre Channel switch element with sixteen GL_Ports and four 10 G ports, according to one aspect of the present invention
- FIGS. 1 E- 1 / 1 E- 2 (jointly referred to as Figure BE) show another block diagram of a Fibre Channel switch element with sixteen GL_Ports and four 10 G ports, according to one aspect of the present invention
- FIG. 2 shows a process flow diagram for flushing frames, according to one aspect of the present invention
- FIGS. 3 A/ 3 B (jointly referred to as FIG. 3 ) show a block diagram of a GL_Port, according to one aspect of the present invention.
- FIGS. 4 A/ 4 B (jointly referred to as FIG. 3 ) show a block diagram of XG_Port (10 G) port, according to one aspect of the present invention.
- E-Port A fabric expansion port that attaches to another Interconnect port to create an Inter-Switch Link.
- F_Port A port to which non-loop N_Ports are attached to a fabric and does not include FL_ports.
- Fibre channel ANSI Standard The standard (incorporated herein by reference in its entirety) describes the physical interface, transmission and signaling protocol of a high performance serial link for support of other high level protocols associated with IPI, SCSI, IP, ATM and others.
- FC-1 Fibre channel transmission protocol, which includes serial encoding, decoding and error control.
- FC-2 Fibre channel signaling protocol that includes frame structure and byte sequences.
- FC-3 Defines a set of fibre channel services that are common across plural ports of a node.
- FC-4 Provides mapping between lower levels of fibre channel, IPI and SCSI command sets, HIPPI data framing, IP and other upper level protocols.
- Fabric The structure or organization of a group of switches, target and host devices (NL_Port, N_ports etc.).
- Fabric Topology This is a topology where a device is directly attached to a fibre channel fabric that uses destination identifiers embedded in frame headers to route frames through a fibre channel fabric to a desired destination.
- FL_Port A L_Port that is able to perform the function of a F_Port, attached via a link to one or more NL_Ports in an Arbitrated Loop topology.
- Inter-Switch Link A Link directly connecting the E_port of one switch to the E_port of another switch.
- Port A general reference to N. Sub.—Port or F.Sub.—Port.
- L_Port A port that contains Arbitrated Loop functions associated with the Arbitrated Loop topology.
- N-Port A Direct Fabric Attached Port.
- NL_Port A L_Port that can perform the function of a N_Port.
- Switch A fabric element conforming to the Fibre Channel Switch standards.
- FIG. 1A is a block diagram of a fibre channel system 100 implementing the methods and systems in accordance with the adaptive aspects of the present invention.
- System 100 includes plural devices that are interconnected. Each device includes one or more ports, classified as node ports (N_Ports), fabric ports (F_Ports), and expansion ports (E Ports).
- Node ports may be located in a node device, e.g. server 103 , disk array 105 and storage device 104 .
- Fabric ports are located in fabric devices such as switch 101 and 102 .
- Arbitrated loop 106 may be operationally coupled to switch 101 using arbitrated loop ports (FL_Ports).
- a path may be established between two N_ports, e.g. between server 103 and storage 104 .
- a packet-switched path may be established using multiple links, e.g. an N-Port in server 103 may establish a path with disk array 105 through switch 102 .
- FIG. 1B is a block diagram of a 20-port ASIC fabric element according to one aspect of the present invention.
- FIG. 1B provides the general architecture of a 20-channel switch chassis using the 20-port fabric element.
- Fabric element includes ASIC 20 with non-blocking fibre channel class 2 (connectionless, acknowledged) and class 3 (connectionless, unacknowledged) service between any ports. It is noteworthy that ASIC 20 may also be designed for class 1 (connection-oriented) service, within the scope and operation of the present invention as described herein.
- the fabric element of the present invention is presently implemented as a single CMOS ASIC, and for this reason the term “fabric element” and ASIC are used interchangeably to refer to the preferred embodiments in this specification.
- FIG. 1B shows 20 ports, the present invention is not limited to any particular number of ports.
- ASIC 20 has 20 ports numbered in FIG. 1B as GL 0 through GL 19 . These ports are generic to common Fibre Channel port types, for example, F_Port, FL_Port and E-Port. In other words, depending upon what it is attached to, each GL port can function as any type of port. Also, the GL port may function as a special port useful in fabric element linking, as described below.
- GL ports are drawn on the same side of ASIC 20 in FIG. 1B .
- the ports may be located on both sides of ASIC 20 as shown in other figures. This does not imply any difference in port or ASIC design Actual physical layout of the ports will depend on the physical layout of the ASIC.
- Each port GL 0 -GL 19 has transmit and receive connections to switch crossbar 50 .
- One connection is through receive buffer 52 , which functions to receive and temporarily hold a frame during a routing operation.
- the other connection is through a transmit buffer 54 .
- Switch crossbar 50 includes a number of switch crossbars for handling specific types of data and data flow control information. For illustration purposes only, switch crossbar 50 is shown as a single crossbar. Switch crossbar 50 is a connectionless crossbar (packet switch) of known conventional design, sized to connect 21 ⁇ 21 paths. This is to accommodate 20 GL ports plus a port for connection to a fabric controller, which may be external to ASIC 20 .
- connectionless crossbar packet switch
- the fabric controller is a firmware-programmed microprocessor, also referred to as the input/out processor (“IOP”).
- IOP input/out processor
- TOP 66 is shown in FIG. 1C as a part of a switch chassis utilizing one or more of ASIC 20 .
- IOP input/out processor
- FIG. 1B bi-directional connection to IOP 66 is routed through port 67 , which connects internally to a control bus 60 .
- Transmit buffer 56 , receive buffer 58 , control register 62 and Status register 64 connect to bus 60 .
- Transmit buffer 56 and receive buffer 58 connect the internal connectionless switch crossbar 50 to IOP 66 so that it can source or sink frames.
- Control register 62 receives and holds control information from TOP 66 , so that IOP 66 can change characteristics or operating configuration of ASIC 20 by placing certain control words in register 62 .
- Top 66 can read status of ASIC 20 by monitoring various codes that are placed in status register 64 by monitoring circuits (not shown).
- FIG. 1C shows a 20-channel switch chassis S 2 using ASIC 20 and 10 P 66 .
- S 2 will also include other elements, for example, a power supply (not shown).
- the 20 GL ports correspond to channel C 0 -C 19 .
- Each CL port has a serial/deserializer (SERDES) designated as S 0 -S 19 .
- SERDES serial/deserializer
- the SERDES functions are implemented on ASIC 20 for efficiency, but may alternatively be external to each GL port.
- Each GL port has an optical-electric converter, designated as OE 0 -OE 19 connected with its SERDES through serial lines, for providing fibre optic input/output connections, as is well known in the high performance switch design.
- the converters connect to switch channels C 0 -C 19 . It is noteworthy that the ports can connect through copper paths or other means instead of optical-electric converters.
- FIG. 1D shows a block diagram of ASIC 20 with sixteen GL ports and four 10 G (Gigabyte) port control modules designated as XG 0 -XG 3 for four 10 G ports designated as XGP 0 -XGP 3 .
- ASIC 20 include a control port 62 A that is coupled to IOP 66 through a PCI connection 66 A.
- FIG. 1 E- 1 / 1 E- 2 (jointly referred to as FIG. 1E ) show yet another block diagram of ASIC 20 with sixteen GL and four XG port control modules.
- Each GL port control module has a Receive port (RPORT) 69 with a receive buffer (RBUF) 69 A and a transmit port 70 with a transmit buffer (TBUF) 70 A, as described below in detail.
- GL and XG port control modules are coupled to physical media devices (“PMD”) 76 and 75 respectively.
- PMD physical media devices
- Control port module 62 A includes control buffers 62 B and 62 D for transmit and receive sides, respectively.
- Module 62 A also includes a PCI interface module 62 C that allows interface with IOP 66 via a PCI bus 66 A.
- XG_Port (for example 74 B) includes RPORT 72 with RBUF 71 similar to RPORT 69 and RBUF 69 A and a TBUF and TPORT similar to TBUF 70 A and TPORT 70 .
- Protocol module 73 interfaces with SERDES to handle protocol based functionality.
- FIGS. 3A-3B show a detailed block diagram of a GL port as used in ASIC 20 .
- GL port 300 is shown in three segments, namely, receive segment (RPORT) 310 , transmit segment (TPORT) 312 and common segment 311 .
- Rpipe 303 A includes, parity module 305 and decoder 304 . Decoder 304 decodes 10 B data to 8 B and parity module 305 adds a parity bit.
- Rpipe 303 A also performs various Fibre Channel standard functions such as detecting a start of frame (SOF), end-of frame (EOF), Idles, R_RDYs (fibre channel standard primitive) and the like, which are not described since they are standard functions.
- Rpipe 303 A connects to smoothing FIFO (SMF) module 306 that performs smoothing functions to accommodate clock frequency variations between remote transmitting and local receiving devices.
- SMS smoothing FIFO
- RPORT 310 Frames received by RPORT 310 are stored in receive buffer (RBUF) 69 A, (except for certain Fibre Channel Arbitrated Loop (AL) frames).
- Path 309 shows the frame entry path, and all frames entering path 309 are written to RBUF 69 A as opposed to the AL path 308 .
- Cyclic redundancy code (CRC) module 313 further processes frames that enter CL port 300 by checking CRC and processing errors according to FC_PH rules. The frames are subsequently passed to RBUF 69 A where they are steered to an appropriate output link.
- RBUF 69 A is a link receive buffer and can hold multiple frames.
- Reading from and writing to RBUF 69 A are controlled by RBUF read control logic (“RRD”) 319 and RBUF write control logic (“RWT”) 307 , respectively.
- WT 307 specifies which empty RBUF 69 A slot will be written into when a frame arrives through the data link via multiplexer (“Mux”) 313 B, CRC generate module 313 A and EF (external proprietary format) module 314 .
- EF module 314 encodes proprietary (i.e. non-standard) format frames to standard Fibre Channel 8 B codes.
- Mux 313 B receives input from Rx Spoof module 314 A, which encodes frames to a proprietary format (if enabled)
- RWT 307 controls RBUF 69 A write addresses and provide the slot number to tag writer (“TWT”) 317 .
- RRD 319 processes frame transfer requests from RBUF 69 A. Frames may be read out in any order and multiple destinations may get copies of the frames.
- SSM 316 receives frames and determines the destination for forwarding the frame. SSM 316 produces a destination mask, where there is one bit for each destination. Any bit set to a certain value, for example, 1, specifies a legal destination, and there can be multiple bits set, if there are multiple destinations for the same frame (multicast or broadcast).
- SSM 316 makes this determination using information from alias cache 315 , steering registers 316 A, control register 326 values and frame contents.
- IOP 66 writes all tables so that correct exit path is selected for the intended destination port addresses.
- the destination mask from SSM 316 is sent to TWT 317 and a RBUF tag register (TAG) 318 .
- TWT 317 writes tags to all destinations specified in the destination mask from SSM 316 .
- Each tag identifies its corresponding frame by containing an RBUF 69 A slot number where the frame resides, and an indication that the tag is valid.
- Each slot in RBUF 69 A has an associated set of tags, which are used to control the availability of the slot.
- the primary tags are a copy of the destination mask generated by SSM 316 .
- the destination mask in RTAG 318 is cleared. When all the mask bits are cleared, it indicates that all destinations have received a copy of the frame and that the corresponding frame slot in RBUF 69 A is empty and available for a new frame.
- RTAG 318 also has frame content information that is passed to a requesting destination to pre-condition the destination for the frame transfer. These tags are transferred to the destination via a read multiplexer (RMUX) (not shown).
- RMUX read multiplexer
- Transmit segment (“TPORT”) 312 performs various transmit functions.
- Transmit tag register (TTAG) 330 provides a list of all frames that are to be transmitted.
- Tag Writer 317 or common segment 311 write TTAG 330 information.
- the frames are provided to arbitration module (“transmit arbiter” (“TARB”)) 331 , which is then free to choose which source to process and which frame from that source to be processed next.
- TARB transmit arbiter
- TTAG 330 includes a collection of buffers (for example, buffers based on a first-in first out (“FIFO”) scheme) for each frame source.
- TTAG 330 writes a tag for a source and TARE 331 then reads the tag. For any given source, there are as many entries in TTAG 33 Q as there are credits in RBUF 69 A.
- FIFO first-in first out
- TARB 331 is activated anytime there are one or more valid frame tags in TTAG 330 .
- TARB 331 preconditions its controls for a frame and then waits for the frame to be written into TEUF 70 A. After the transfer is complete, TARE 331 may request another frame from the same source or choose to service another source.
- TBUF 70 A is the path to the link transmitter. Typically, frames don't land in TBUF 70 A in their entirety. Usually, frames simply pass through TBUF 70 A to reach output pins, if there is a clear path.
- Switch Mux 332 is also provided to receive output from crossbar 50 .
- Switch Mux 332 receives input from plural RBUFs (shown as RBUF 00 to RBUF 19 ), and input from CPORT 62 A shown as CBUF 1 frame/status.
- TARB 331 determines the frame source that is selected and the selected source provides the appropriate slot number.
- the output from Switch Mux 332 is sent to ALUT 323 for S_ID spoofing and the result is fed into TBUF Tags 333 .
- TMUX (“TxMUX”) 339 chooses which data path to connect to the transmitter.
- the sources are: primitive sequences specified by IOP 66 via control registers 326 (shown as primitive 339 A), and signals as specified by Transmit state machine (“TSM”) 346 , frames following the loop path, or steered frames exiting the fabric via TBUF 70 A.
- TSM Transmit state machine
- TSM 346 chooses the data to be sent to the link transmitter, and enforces all fibre Channel rules for transmission.
- TSM 346 receives requests to transmit from loop state machine 320 , TBUF 70 A (shown as TARB request 346 A) and from various other IOP 66 functions via control registers 326 (shown as IBUF Request 345 A).
- TSM 346 also handles all credit management functions, so that Fibre Channel connectionless frames are transmitted only when there is link credit to do so.
- Loop state machine (“LPSM”) 320 controls transmit and receive functions when GL_Port is in a loop mode. LPSM 320 operates to support loop functions as specified by FC-AL-2.
- IOP buffer (“IBUF”) 345 provides IOP 66 the means for transmitting frames for special purposes.
- Frame multiplexer (“Frame Mux” or “Mux”) 336 chooses the frame source, while logic (TX spoof 334 ) converts D_ID and S_ID from public to private addresses.
- Mux 336 receives input from Tx Spoof module 334 , TBUF tags 333 , and Mux 335 to select a frame source for transmission.
- EF (external proprietary format) module 338 encodes proprietary (i.e. non-standard) format frames to standard Fibre Channel 8 B codes and CRC module 337 generates CRC data for the outgoing frames.
- Modules 340 - 343 put a selected transmission source into proper format for transmission on an output link 344 .
- Parity 340 checks for parity errors, when frames are encoded from 8 B to 10 B by encoder 341 , marking frames “invalid”, according to Fibre Channel rules, if there was a parity error.
- Phase FIFO 342 A receives frames from encode module 341 and the frame is selected by Mux 342 and passed to SERDES 343 .
- SERDES 343 converts parallel transmission data to serial before passing the data to the link media.
- SERDES 343 may be internal or external to ASIC 20 .
- ASIC 20 include common segment 311 comprising of various modules.
- LPSM 320 has been described above and controls the general behavior of TPORT 312 and RPORT 310 .
- a loop look up table “LLUT”) 322 and an address look up table (“ALUT”) 323 is used for private loop proxy addressing and hard zoning managed by firmware.
- Common segment 311 also includes control register 326 that controls bits associated with a GL_Port, status register 324 that contains status bits that can be used to trigger interrupts, and interrupt mask register 325 that contains masks to determine the status bits that will generate an interrupt to IOP 66 .
- Common segment 311 also includes AL control and status register 328 and statistics register 327 that provide accounting information for FC management information base (“MIB”).
- MIB FC management information base
- Output from status register 324 may be used to generate a Fp Peek function. This allows a status register 324 bit to be viewed and sent to the CPORT.
- Control register 326 Statistics register 327 and register 328 (as well as 328 A for an X_Port, shown in FIG. 4 ) is sent to Mux 329 that generates an output signal (FP Port Reg Out).
- Interrupt register 325 and status register 324 are sent to logic 335 to generate a port interrupt signal (FP Port Interrupt).
- BIST module 321 is used for conducting embedded memory testing.
- FIGS. 4A-4B show a block diagram of a 10 G Fibre Channel port control module (XG FPORT) 400 used in ASIC 20 .
- XG FPORT 400 Various components of XG FPORT 400 are similar to CL port control module 300 that are described above.
- RPORT 310 and 310 A, Common Port 311 and 311 A, and TPORT 312 and 312 A have common modules as shown in FIGS. 3 and 4 with similar functionality.
- RPORT 310 A can receive frames from links (or lanes) 301 A- 301 D and transmit frames to lanes 344 A- 344 D.
- Each link has a SERDES ( 302 A- 302 D), a de-skew module, a decode module ( 303 B- 303 E) and parity module ( 304 A- 304 D).
- Each lane also has a smoothing FIFO (SMF) module 305 A- 305 D that performs smoothing functions to accommodate clock frequency variations. Parity errors are checked by module 403 , while CRC errors are checked by module 404 .
- SMF smoothing FIFO
- RPORT 310 A uses a virtual lane (“VL”) cache 402 that stores plural vector values that are used for virtual lane assignment.
- VL Cache 402 may have 32 entries and two vectors per entry.
- IOP 66 is able to read or write VL cache 402 entries during frame traffic.
- State machine 401 controls credit that is received.
- credit state machine 347 controls frame transmission based on credit availability.
- State machine 347 interfaces with credit counters 328 A.
- modules 340 - 343 are used for each lane 344 A- 344 D, i.e., each lane can have its own module 340 - 343 .
- Parity module 340 checks for parity errors and encode module 341 encodes 8-bit data to 10 bit data.
- Mux 342 B sends the 10-bit data to a smoothing FIFO (“TxSMF”) module 342 that handles clock variation on the transmit side.
- SERDES 343 then sends the data out to the link.
- any transmit port can be set up to remove all frames from a specified source port.
- Firmware can set control bits (in control register 326 ) that govern the policy as to how the frames are disposed.
- a “flush” state is set for all transmitters, controlled by firmware. The flush state allows transmitters to dispose frames from a source port. If no frames are associated with a selected source port, then normal processing occurs.
- Transmit port (XG and/or GE, ports, See FIGS. 3 and 4 ) include flush state flip-flops (in this example, twenty flip-flops). Each flip-flop when set, indicates that one of nineteen Receive Ports or CBUF 62 A should have all of its frames removed. Firmware determines when to set or clear each individual state flip-flop. If firmware clears the active state flip-flop(s) before all of the source frames are removed, then the transmit port will stop removing frames. Any remaining frames in RBUF 69 A would be transmitted. Once RBUF 69 A is emptied of all frames, the transmit port will resume normal transmission of frames from other source ports.
- Frames are removed from RBUF 69 A as if it were a normal transfer.
- the source RBUF 69 A being emptied does not know that the special “flush” state is active.
- the transfer process does not take very long because the internal crossbar 50 will transfer these frames at the 10 G rate, and TARB 331 gives top priority to any source port being flushed.
- the frames removed from RBUF 69 A increment the count of R_RDYs to be transmitted as normal. If the frames are being removed because the receive port is being reset with a “Link Reset” primitive (defined by fibre channel standards), the R_RDYs are not sent yet because the transmitter should be sending the reset primitive. In this case, the transmit R_RDY count is cleared by firmware before the transmitter sends Idles again.
- Link Reset defined by fibre channel standards
- the transferred frames land in TBUF 70 A and are disposed of as instructed by firmware control bits.
- TBUF 70 A can dispose of transferred frames. For example, TBUF 70 A can transfer the frame in its entirety to CBUF 62 D. From there the frames will pass out of ASIC 20 to IOP 66 .
- Class 2 or class 3 frames Another option for Class 2 or class 3 frames would be to toss them or throw them away. Any class 3 frame that is tossed will increment a class 3 toss counter. Firmware can read the value of this counter to see how many class 3 frames have been tossed.
- TBUF 70 A has another option in dealing with class 2 frames. Since fibre channel class 2 frames require an acknowledgment upon delivery, it is undesirable to toss them. It is also undesirable to send entire frames to control port 62 A. These frames would then transfer out of ASIC 20 to IOP 66 .
- the PCI bus cannot match the internal transfer rate of frames, and cause a bottleneck.
- the solution to this problem is to truncate class 2 frames to minimum frame length to reduce the number of clock cycles needed to get the class 2 frames out of ASIC 20 .
- Firmware can extract the source information from a truncated frame and generate the required response.
- TARB 331 gives top priority to any source port being flushed. This can be done as follows:
- Top priority is also given to frames that are flushed over controls that prevent frame transfers when active. These controls that prevent frame transfers are a “busy” signal that stops all receive buffer transfers, absence of credit, absence of virtual lane credit/credit and/or bandwidth limiting logic. Everything possible is done to get these frames removed from the source port receive buffers as soon as possible.
- FIG. 2 shows a flow diagram of executable process steps that summarizes the foregoing “flush” state operations, according to one aspect of the present invention.
- step S 200 the process determines if a port link is being reset. If not, then the process waits for a reset.
- step S 201 the process determines if the flush state for a port is set.
- firmware for ASIC 20 can set the state using flip-flops or any other type of logic.
- the flush state denotes that frames must be removed from RBUF 69 A of a particular port.
- step S 203 the port operates normally, without disruption.
- step S 202 frames are removed from RBUF 69 A.
- the removal itself is similar to normal frame transfer.
- step S 204 the frames are discarded by TBUF 70 A. As discussed above, frames are discarded based on a policy, which is controlled by firmware.
- activating a “flush TBUF” control bit in control register 326 diverts any frame in TBUF 70 A that is waiting to be transferred.
- Firmware can set this bit and activation of this control bit causes a one time event in the transmit port, which causes the frame to be diverted.
- the frame is diverted. If the activation of the one time event occurs while a frame is being transferred, then the event is ignored. Also, if the activation of the one time event occurs before a frame is waiting then it will be ignored.
- the flush TBUF bit allows ASIC 20 to move a frame that is unable to move out of TBUF 70 A for whatever reason. Getting the frame out creates a path for a source flush state function to proceed. The diverted frame follows the controls set up for a “flush state” function, described above.
- TBUF 70 A can dispose the “diverted” frame(s). For example, TBUF 70 A can transfer the frame in its entirety to CBUF 62 D. From there the frames will pass out of ASIC 20 to IOP 66 .
- Class 2 or class 3 frames Another option for Class 2 or class 3 frames would be to toss them or throw them away. Any class 3 frame that is tossed will increment a class 3 toss counter. Firmware can read the value of this counter to see how many class 3 frames are being tossed.
- TBUF 70 A has another option in dealing with class 2 frames. Since fibre channel class 2 frames require an acknowledgment upon delivery, it is undesirable to toss them. It is also undesirable to send entire frames to control port 62 A. These frames would then transfer out of ASIC 20 to IOP 66 .
- the PCT bus cannot match the internal transfer rate of frames, and causes a bottleneck.
- the solution to this problem is to truncate class 2 frames to minimum frame length to reduce the number of PCI bus cycles needed to get the class 2 frames out of the ASIC.
- Firmware can extract the source information from a truncated frame, to generate the required response.
- a frame that is waiting to be transferred from TBUF 70 A can be diverted by activating a “Force TBUF Revector” control bit in control register 326 .
- Firmware can activate this control bit. Activation of this control bit causes a one time event in the transmit port, which in turn causes the frame to be diverted to IOP 66 .
- the frame is diverted if the one time event occurs while the frame is waiting. If the activation occurs while a frame is being transferred, then the event is ignored. Also, the activation is ignored if it occurs before a frame is waiting.
- Firmware for ASIC 20 can read a status register 325 bit to determine when to activate the “Force TBUF Revector” bit.
- the status bit is set when a frame has been waiting for more than X milliseconds (for example, 10 milliseconds).
- This function moves a frame that is unable to move for whatever reason. This creates a path for a source “flush state” function to proceed, as described above.
- TBUF 70 A and TARB 331 help maintain the proper frame order.
- TBUF 70 A activates a holding register (not shown) called “Tx_Busy — 1”.
- Tx_Busy — 1 When “Tx_Busy — 1” is active, TARB 331 only accepts frames from control port input buffer 62 B, or frames that are being flushed with the source flush state function.
- Any frames flushed using the source flush state function are not transmitted. Flushed frames are either diverted to control port output buffer 62 D or are discarded. Any frame from the control port input buffer 62 D is the diverted frame that set the “Tx_Busy — 1” holding register. This is the first frame transmitted from that port after “Force TBUF Revector” is asserted. If this is the only frame that firmware wants to send out of this transmit port, it can set the “CB” data bit in the last word of the frame. Setting this data bit clears the “Tx_Busy — 1” holding register, as the frame exits TBUF 70 A. Thus allowing frame transfers from RBUF 69 A to start flowing again.
- firmware decides that the frame diverted using the “Force TBUF Revector” control bit should be discarded, then the “Tx_Busy — 1” holding register is cleared without writing a frame into control port 62 A.
- Firmware can write a control register 326 bit, which will clear the “Tx_Busy — 1” holding register. This allows frame transfers from RBUF 69 A to start flowing again.
- the overall efficiency of ASIC 20 is improved because frames that have been waiting to be transferred can be diverted using various options, as described above.
- TBUF 70 A “repeat frame” state is a mode of operation during which a frame received from CBUFI 62 B is transmitted continuously.
- Firmware sets a control bit called “TBUF repeat frame” in control register 326 to activate this state.
- TBUF 70 A transfers a frame to a transmitter and the frame is sourced in CBUFI 62 D, which is also controlled by firmware.
- repeat frame functionality is useful in arbitrated loop initialization (“LISM” frame, as defined by FC-AL-2 standard), as well as for diagnostics.
- a frame transferred to a transmitter that was sourced in a receive port does not enter the repeat state. Any exception frames transmitted to the control port output buffer 62 B, or are discarded, do not enter the repeat state.
- TARB 331 does not select any more frames to transfer.
- the only frame that is to be transmitted is held in TBUF 70 A.
- the first word of the frame is written into address zero of TBUF 70 A; therefore, the starting address of each repeated read will be address zero.
- the read address counter (not shown) starts to increment just like all reads.
- the read address counter will continue to increment until the end of frame is sent to the transmitter. At this point the read address is cleared, and is ready to start another repeated read. After each repeated read a TBUF 70 A ready signal is deactivated and then activated again to let the transmitter know that the buffer has another frame to transmit.
- firmware clears the control register 326 bit that enables the state. Any transfer in progress when the control bit is cleared will continue to the end. The absence of the control bit prevents the next repeated transfer from starting.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/189,502 US7936771B2 (en) | 2003-07-21 | 2008-08-11 | Method and system for routing fibre channel frames |
Applications Claiming Priority (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48875703P | 2003-07-21 | 2003-07-21 | |
US49521203P | 2003-08-14 | 2003-08-14 | |
US49516503P | 2003-08-14 | 2003-08-14 | |
US50495003P | 2003-09-19 | 2003-09-19 | |
US50403803P | 2003-09-19 | 2003-09-19 | |
US50381203P | 2003-09-19 | 2003-09-19 | |
US50380903P | 2003-09-19 | 2003-09-19 | |
US50538103P | 2003-09-23 | 2003-09-23 | |
US50519503P | 2003-09-23 | 2003-09-23 | |
US50507503P | 2003-09-23 | 2003-09-23 | |
US53296703P | 2003-12-29 | 2003-12-29 | |
US53296503P | 2003-12-29 | 2003-12-29 | |
US53296303P | 2003-12-29 | 2003-12-29 | |
US53296603P | 2003-12-29 | 2003-12-29 | |
US53793304P | 2004-01-21 | 2004-01-21 | |
US55025004P | 2004-03-04 | 2004-03-04 | |
US55761304P | 2004-03-30 | 2004-03-30 | |
US56943604P | 2004-05-07 | 2004-05-07 | |
US57219704P | 2004-05-18 | 2004-05-18 | |
US10/894,629 US7447224B2 (en) | 2003-07-21 | 2004-07-20 | Method and system for routing fibre channel frames |
US12/189,502 US7936771B2 (en) | 2003-07-21 | 2008-08-11 | Method and system for routing fibre channel frames |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/894,629 Continuation US7447224B2 (en) | 2003-07-21 | 2004-07-20 | Method and system for routing fibre channel frames |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090034550A1 US20090034550A1 (en) | 2009-02-05 |
US7936771B2 true US7936771B2 (en) | 2011-05-03 |
Family
ID=34084973
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/894,629 Expired - Fee Related US7447224B2 (en) | 2003-07-21 | 2004-07-20 | Method and system for routing fibre channel frames |
US12/189,502 Active 2028-10-29 US7936771B2 (en) | 2003-07-21 | 2008-08-11 | Method and system for routing fibre channel frames |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/894,629 Expired - Fee Related US7447224B2 (en) | 2003-07-21 | 2004-07-20 | Method and system for routing fibre channel frames |
Country Status (1)
Country | Link |
---|---|
US (2) | US7447224B2 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7599360B2 (en) * | 2001-12-26 | 2009-10-06 | Cisco Technology, Inc. | Methods and apparatus for encapsulating a frame for transmission in a storage area network |
US7499410B2 (en) | 2001-12-26 | 2009-03-03 | Cisco Technology, Inc. | Fibre channel switch that enables end devices in different fabrics to communicate with one another while retaining their unique fibre channel domain—IDs |
US7406034B1 (en) | 2002-04-01 | 2008-07-29 | Cisco Technology, Inc. | Methods and apparatus for fibre channel frame delivery |
US7616637B1 (en) | 2002-04-01 | 2009-11-10 | Cisco Technology, Inc. | Label switching in fibre channel networks |
US7206288B2 (en) | 2002-06-12 | 2007-04-17 | Cisco Technology, Inc. | Methods and apparatus for characterizing a route in fibre channel fabric |
US7433326B2 (en) * | 2002-11-27 | 2008-10-07 | Cisco Technology, Inc. | Methods and devices for exchanging peer parameters between network devices |
US7580354B2 (en) * | 2003-07-21 | 2009-08-25 | Qlogic, Corporation | Multi-speed cut through operation in fibre channel switches |
US7525983B2 (en) * | 2003-07-21 | 2009-04-28 | Qlogic, Corporation | Method and system for selecting virtual lanes in fibre channel switches |
US7447224B2 (en) * | 2003-07-21 | 2008-11-04 | Qlogic, Corporation | Method and system for routing fibre channel frames |
US7558281B2 (en) | 2003-07-21 | 2009-07-07 | Qlogic, Corporation | Method and system for configuring fibre channel ports |
US7894348B2 (en) | 2003-07-21 | 2011-02-22 | Qlogic, Corporation | Method and system for congestion control in a fibre channel switch |
US7684401B2 (en) | 2003-07-21 | 2010-03-23 | Qlogic, Corporation | Method and system for using extended fabric features with fibre channel switch elements |
US7630384B2 (en) * | 2003-07-21 | 2009-12-08 | Qlogic, Corporation | Method and system for distributing credit in fibre channel systems |
US8295299B2 (en) | 2004-10-01 | 2012-10-23 | Qlogic, Corporation | High speed fibre channel switch element |
US7593324B2 (en) | 2004-10-25 | 2009-09-22 | Cisco Technology, Inc. | Graceful port shutdown protocol for fibre channel interfaces |
US7916628B2 (en) * | 2004-11-01 | 2011-03-29 | Cisco Technology, Inc. | Trunking for fabric ports in fibre channel switches and attached devices |
US7649844B2 (en) * | 2004-12-29 | 2010-01-19 | Cisco Technology, Inc. | In-order fibre channel packet delivery |
JP4465417B2 (en) * | 2006-12-14 | 2010-05-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Customer segment estimation device |
GB2458952B (en) * | 2008-04-04 | 2012-06-13 | Micron Technology Inc | Queue processing method |
US9214068B2 (en) * | 2010-03-17 | 2015-12-15 | Igt | Gaming system and method providing a multi-player bonus game |
WO2013026154A1 (en) * | 2011-08-19 | 2013-02-28 | Avp Mfg & Supply Inc. | Fibre adapter for a small form-factor pluggable unit |
US9467389B2 (en) | 2014-04-28 | 2016-10-11 | International Business Machines Corporation | Handling large frames in a virtualized fibre channel over ethernet (FCoE) data forwarder |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4964119A (en) | 1988-04-06 | 1990-10-16 | Hitachi, Ltd. | Method and system for packet exchange |
US5258751A (en) | 1991-11-04 | 1993-11-02 | Motorola, Inc. | Method of presenting messages for a selective call receiver |
US5280483A (en) | 1990-08-09 | 1994-01-18 | Fujitsu Limited | Traffic control system for asynchronous transfer mode exchange |
US5291481A (en) | 1991-10-04 | 1994-03-01 | At&T Bell Laboratories | Congestion control for high speed packet networks |
US5425022A (en) | 1989-06-16 | 1995-06-13 | British Telecommunications Public Limited Company | Data switching nodes |
US5568167A (en) | 1994-09-23 | 1996-10-22 | C-Cube Microsystems, Inc. | System for providing antialiased video overlays |
US5579443A (en) | 1993-04-29 | 1996-11-26 | Nippondenso Co., Ltd. | Emergency vehicular communication device capable of contacting a plurality of services |
US5638518A (en) | 1994-10-24 | 1997-06-10 | Lsi Logic Corporation | Node loop core for implementing transmission protocol in fibre channel |
US5687387A (en) | 1994-08-26 | 1997-11-11 | Packard Bell Nec | Enhanced active port replicator having expansion and upgrade capabilities |
US5751710A (en) | 1996-06-11 | 1998-05-12 | Cisco Technology, Inc. | Technique for connecting cards of a distributed network switch |
US5757771A (en) | 1995-11-14 | 1998-05-26 | Yurie Systems, Inc. | Queue management to serve variable and constant bit rate traffic at multiple quality of service levels in a ATM switch |
US5835748A (en) | 1995-12-19 | 1998-11-10 | Intel Corporation | Method for executing different sets of instructions that cause a processor to perform different data type operations on different physical registers files that logically appear to software as a single aliased register file |
US5892604A (en) | 1996-05-09 | 1999-04-06 | Nippon Telegraph And Telephone Corporation | ATM switch |
US5925119A (en) | 1997-03-28 | 1999-07-20 | Quantum Corporation | Computer architecture for automated storage library |
US6009226A (en) | 1996-05-08 | 1999-12-28 | Victor Company Of Japan, Ltd. | Recording and reproducing apparatus for packet data |
US6118791A (en) | 1995-12-20 | 2000-09-12 | Cisco Technology, Inc. | Adaptive bandwidth allocation method for non-reserved traffic in a high-speed data transmission network, and system for implementing said method |
US6131123A (en) | 1998-05-14 | 2000-10-10 | Sun Microsystems Inc. | Efficient message distribution to subsets of large computer networks using multicast for near nodes and unicast for far nodes |
US6148421A (en) | 1997-05-30 | 2000-11-14 | Crossroads Systems, Inc. | Error detection and recovery for sequential access devices in a fibre channel protocol |
US6147976A (en) | 1996-06-24 | 2000-11-14 | Cabletron Systems, Inc. | Fast network layer packet filter |
US6158014A (en) | 1998-12-02 | 2000-12-05 | Emulex Corporation | Automatic detection of 8B/10B data rates |
US6278708B1 (en) | 1998-04-10 | 2001-08-21 | Cisco Technology, Inc. | Frame relay access device with user-configurable virtual circuit bundling |
US6286011B1 (en) | 1997-04-30 | 2001-09-04 | Bellsouth Corporation | System and method for recording transactions using a chronological list superimposed on an indexed list |
US6307857B1 (en) | 1997-06-26 | 2001-10-23 | Hitachi, Ltd. | Asynchronous transfer mode controller and ATM control method thereof and ATM communication control apparatus |
US6311204B1 (en) | 1996-10-11 | 2001-10-30 | C-Cube Semiconductor Ii Inc. | Processing system with register-based process sharing |
US6339813B1 (en) | 2000-01-07 | 2002-01-15 | International Business Machines Corporation | Memory system for permitting simultaneous processor access to a cache line and sub-cache line sectors fill and writeback to a system memory |
US6397360B1 (en) | 1999-07-28 | 2002-05-28 | Lsi Logic Corporation | Method and apparatus for generating a fibre channel compliant frame |
US20020067726A1 (en) | 1998-10-05 | 2002-06-06 | Engines Incorporated Pursuant | Content-based forwarding/filtering in a network switching device |
US6404749B1 (en) | 1999-03-08 | 2002-06-11 | Trw Inc. | Method for providing connectionless data services over a connection-oriented satellite network |
US6438628B1 (en) | 1999-05-28 | 2002-08-20 | 3Com Corporation | System and method for data pacing |
US20020118692A1 (en) | 2001-01-04 | 2002-08-29 | Oberman Stuart F. | Ensuring proper packet ordering in a cut-through and early-forwarding network switch |
US20020124102A1 (en) | 2001-03-01 | 2002-09-05 | International Business Machines Corporation | Non-zero credit management to avoid message loss |
US6480500B1 (en) | 2001-06-18 | 2002-11-12 | Advanced Micro Devices, Inc. | Arrangement for creating multiple virtual queue pairs from a compressed queue pair based on shared attributes |
US20030002516A1 (en) | 2001-06-29 | 2003-01-02 | Michael Boock | Method and apparatus for adapting to a clock rate transition in a communications network using idles |
US6509988B1 (en) | 1997-09-16 | 2003-01-21 | Nec Corporation | IEEE serial bus physical layer interface having a speed setting circuit |
US20030033487A1 (en) | 2001-08-09 | 2003-02-13 | International Business Machines Corporation | Method and apparatus for managing data in a distributed buffer system |
US20030037159A1 (en) | 2001-08-06 | 2003-02-20 | Yongdong Zhao | Timer rollover handling mechanism for traffic policing |
US20030063567A1 (en) | 2001-10-02 | 2003-04-03 | Stmicroelectronics, Inc. | Ethernet device and method for extending ethernet FIFO buffer |
US6553036B1 (en) | 1998-02-24 | 2003-04-22 | Jpmorgan Chase Bank | Method and apparatus for preserving loop fairness with dynamic half-duplex |
US6563796B1 (en) | 1998-03-18 | 2003-05-13 | Nippon Telegraph And Telephone Corporation | Apparatus for quality of service evaluation and traffic measurement |
US20030091062A1 (en) | 2001-11-13 | 2003-05-15 | Lay Samuel C. | Method and apparatus for providing optimized high speed link utilization |
US20030095549A1 (en) | 1997-08-07 | 2003-05-22 | Vixel Corporation | Methods and apparatus for fibre channel interconnection of private loop devices |
US20030112819A1 (en) | 2001-12-18 | 2003-06-19 | Nortel Networks Limited | Communications interface for providing a plurality of communication channels to a single port on a processor |
US20030120791A1 (en) | 2001-12-20 | 2003-06-26 | Weber David M. | Multi-thread, multi-speed, multi-mode interconnect protocol controller |
US20030152076A1 (en) | 2001-09-19 | 2003-08-14 | Barry Lee | Vertical instruction and data processing in a network processor architecture |
US6625157B2 (en) * | 1999-05-20 | 2003-09-23 | Advanced Micro Devices, Inc. | Apparatus and method in a network switch port for transferring data between buffer memory and transmit and receive state machines according to a prescribed interface protocol |
US20030179748A1 (en) | 2000-06-05 | 2003-09-25 | George William R. | Hardware-enforced loop-level hard zoning for fibre channel switch fabric |
US6629161B2 (en) | 2000-04-28 | 2003-09-30 | Sharp Kabushiki Kaisha | Data processing system and data processing method |
US20030191883A1 (en) | 2002-04-05 | 2003-10-09 | Sycamore Networks, Inc. | Interface for upgrading serial backplane application from ethernet to gigabit ethernet |
US6643298B1 (en) | 1999-11-23 | 2003-11-04 | International Business Machines Corporation | Method and apparatus for MPEG-2 program ID re-mapping for multiplexing several programs into a single transport stream |
US20040027989A1 (en) | 2002-07-29 | 2004-02-12 | Brocade Communications Systems, Inc. | Cascade credit sharing for fibre channel links |
US6697914B1 (en) | 2000-09-11 | 2004-02-24 | Western Digital Ventures, Inc. | Switched node comprising a disk controller with integrated multi-port switching circuitry |
US6700877B1 (en) | 1997-08-05 | 2004-03-02 | Siemens Aktiengesellschaft | Method and bus system for automatic address allocation |
US20040064664A1 (en) | 2002-09-30 | 2004-04-01 | Gil Mercedes E. | Buffer management architecture and method for an infiniband subnetwork |
US20040085974A1 (en) | 2002-07-02 | 2004-05-06 | Vixel Corporation | Methods and apparatus for device zoning in fibre channel arbitrated loop systems |
US20040120340A1 (en) | 2002-12-24 | 2004-06-24 | Scott Furey | Method and apparatus for implementing a data frame processing model |
US20040125799A1 (en) | 2002-12-31 | 2004-07-01 | Buer Mark L. | Data processing hash algorithm and policy management |
US6765871B1 (en) | 2000-11-29 | 2004-07-20 | Akara Corporation | Fiber channel flow control method and apparatus for interface to metro area transport link |
US20040141518A1 (en) | 2003-01-22 | 2004-07-22 | Alison Milligan | Flexible multimode chip design for storage and networking |
US20040153863A1 (en) | 2002-09-16 | 2004-08-05 | Finisar Corporation | Network analysis omniscent loop state machine |
US20040153566A1 (en) | 2003-01-31 | 2004-08-05 | Brocade Communications Systems, Inc. | Dynamic link distance configuration for extended fabric |
US20040202189A1 (en) | 2003-04-10 | 2004-10-14 | International Business Machines Corporation | Apparatus, system and method for providing multiple logical channel adapters within a single physical channel adapter in a systen area network |
US20040218531A1 (en) | 2003-04-30 | 2004-11-04 | Cherian Babu Kalampukattussery | Flow control between fiber channel and wide area networks |
US20050036485A1 (en) | 2003-08-11 | 2005-02-17 | Eilers Fritz R. | Network having switchover with no data loss |
US6865155B1 (en) | 2000-05-08 | 2005-03-08 | Nortel Networks Ltd. | Method and apparatus for transmitting data through a switch fabric according to detected congestion |
US6888831B1 (en) | 2000-09-28 | 2005-05-03 | Western Digital Ventures, Inc. | Distributed resource reservation system for establishing a path through a multi-dimensional computer network to support isochronous data |
US20050099970A1 (en) | 2003-11-06 | 2005-05-12 | Halliday David J. | Method and apparatus for mapping TDM payload data |
US20050111845A1 (en) | 2002-06-25 | 2005-05-26 | Stephen Nelson | Apparatus, system and methods for modifying operating characteristics of optoelectronic devices |
US6922408B2 (en) | 2000-01-10 | 2005-07-26 | Mellanox Technologies Ltd. | Packet communication buffering with dynamic flow control |
US6928470B1 (en) | 2000-07-31 | 2005-08-09 | Western Digital Ventures, Inc. | Transferring scheduling data from a plurality of disk storage devices to a network switch before transferring data associated with scheduled requests between the network switch and a plurality of host initiators |
US20050188245A1 (en) | 2004-02-09 | 2005-08-25 | Intel Corporation | Frame validation |
US6975627B1 (en) | 1998-11-11 | 2005-12-13 | 3Com Technologies | Modification of tag fields in Ethernet data packets |
US6983342B2 (en) | 2002-10-08 | 2006-01-03 | Lsi Logic Corporation | High speed OC-768 configurable link layer chip |
US7031615B2 (en) | 2001-10-04 | 2006-04-18 | Finisar Corporation | Optical channel selection and evaluation system |
US7076569B1 (en) | 2002-10-18 | 2006-07-11 | Advanced Micro Devices, Inc. | Embedded channel adapter having transport layer configured for prioritizing selection of work descriptors based on respective virtual lane priorities |
US7082126B2 (en) | 1999-08-04 | 2006-07-25 | International Business Machines Corporation | Fiber channel address blocking |
US7150021B1 (en) | 2001-10-12 | 2006-12-12 | Palau Acquisition Corporation (Delaware) | Method and system to allocate resources within an interconnect device according to a resource allocation table |
US7187688B2 (en) | 2002-06-28 | 2007-03-06 | International Business Machines Corporation | Priority arbitration mechanism |
US7209478B2 (en) | 2002-05-31 | 2007-04-24 | Palau Acquisition Corporation (Delaware) | Apparatus and methods for dynamic reallocation of virtual lane buffer space in an infiniband switch |
US7233570B2 (en) | 2002-07-19 | 2007-06-19 | International Business Machines Corporation | Long distance repeater for digital information |
US7239641B1 (en) | 2001-04-24 | 2007-07-03 | Brocade Communications Systems, Inc. | Quality of service using virtual channel translation |
US7245627B2 (en) | 2002-04-23 | 2007-07-17 | Mellanox Technologies Ltd. | Sharing a network interface card among multiple hosts |
US7275103B1 (en) * | 2002-12-18 | 2007-09-25 | Veritas Operating Corporation | Storage path optimization for SANs |
US7310389B2 (en) | 2002-03-14 | 2007-12-18 | Syntle Sys Research, Inc | Method and apparatus for determining the errors of a multi-valued data signal that are outside the limits of an eye mask |
US7319669B1 (en) | 2002-11-22 | 2008-01-15 | Qlogic, Corporation | Method and system for controlling packet flow in networks |
US7334046B1 (en) | 2002-08-05 | 2008-02-19 | Qlogic, Corporation | System and method for optimizing frame routing in a network |
US7346707B1 (en) | 2002-01-16 | 2008-03-18 | Advanced Micro Devices, Inc. | Arrangement in an infiniband channel adapter for sharing memory space for work queue entries using multiply-linked lists |
US7352701B1 (en) | 2003-09-19 | 2008-04-01 | Qlogic, Corporation | Buffer to buffer credit recovery for in-line fibre channel credit extension devices |
US7362702B2 (en) * | 2001-10-18 | 2008-04-22 | Qlogic, Corporation | Router with routing processors and methods for virtualization |
US7406092B2 (en) | 2003-07-21 | 2008-07-29 | Qlogic, Corporation | Programmable pseudo virtual lanes for fibre channel systems |
US7406034B1 (en) | 2002-04-01 | 2008-07-29 | Cisco Technology, Inc. | Methods and apparatus for fibre channel frame delivery |
US7424533B1 (en) | 2003-05-23 | 2008-09-09 | Cisco Technology, Inc. | Method and apparatus for role-based access control |
US7443794B2 (en) | 1999-12-10 | 2008-10-28 | Qlogic Switch Products, Inc. | Fibre channel credit extender and repeater |
US7447224B2 (en) * | 2003-07-21 | 2008-11-04 | Qlogic, Corporation | Method and system for routing fibre channel frames |
US7460534B1 (en) | 1998-06-03 | 2008-12-02 | 3Com Corporation | Method for statistical switching |
US7466700B2 (en) | 2003-07-21 | 2008-12-16 | Qlogic, Corporation | LUN based hard zoning in fibre channel switches |
US7471691B2 (en) | 1997-01-23 | 2008-12-30 | Broadcom Corporation | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
US7492780B1 (en) | 2005-02-25 | 2009-02-17 | Xilinx, Inc. | Method and apparatus for detecting timeout for packets transmitted in a packet-switched point-to-point communication architecture |
Family Cites Families (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4162375A (en) | 1972-03-23 | 1979-07-24 | Siemens Aktiengesellschaft | Time-divison multiplex switching network with spatial switching stages |
US4081612A (en) | 1975-07-31 | 1978-03-28 | Hasler Ag | Method for building-up of routing addresses in a digital telecommunication network |
US4200929A (en) | 1978-01-23 | 1980-04-29 | Davidjuk Alexandr D | Input device for delivery of data from digital transmitters |
US4258418A (en) | 1978-12-28 | 1981-03-24 | International Business Machines Corporation | Variable capacity data buffer system |
US4344132A (en) | 1979-12-14 | 1982-08-10 | International Business Machines Corporation | Serial storage interface apparatus for coupling a serial storage mechanism to a data processor input/output bus |
GB2074815B (en) | 1980-04-24 | 1984-06-27 | Plessey Co Ltd | Telecommunications switching network using digital switching modules |
US4382159A (en) | 1981-05-29 | 1983-05-03 | Bowditch Robert S | Blow actuated microphone |
US4546468A (en) | 1982-09-13 | 1985-10-08 | At&T Bell Laboratories | Switching network control circuit |
US4569043A (en) | 1983-06-22 | 1986-02-04 | Gte Automatic Electric Inc. | Arrangement for interfacing the space stage to the time stages of a T-S-T digital switching system |
US4691296A (en) | 1984-11-16 | 1987-09-01 | Allen-Bradley Company, Inc. | Method and apparatus for exchanging multiple data bytes with an I/O module in a single scan. |
JPH0640643B2 (en) | 1984-12-03 | 1994-05-25 | ザ・ユニバ−シティ・オブ・ウェスタン・オ−ストラリア | Data packet waiting method, communication network system, and packet communication access device |
US4716561A (en) | 1985-08-26 | 1987-12-29 | American Telephone And Telegraph Company, At&T Bell Laboratories | Digital transmission including add/drop module |
US4725835A (en) | 1985-09-13 | 1988-02-16 | T-Bar Incorporated | Time multiplexed bus matrix switching system |
US4860193A (en) | 1986-05-22 | 1989-08-22 | International Business Machines Corporation | System for efficiently transferring data between a high speed channel and a low speed I/O device |
US5025370A (en) | 1986-09-02 | 1991-06-18 | Koegel Robert J | Circuit for preventing lock-out of high priority requests to a system controller |
US4821034A (en) | 1987-02-06 | 1989-04-11 | Ancor Communications, Inc. | Digital exchange switch element and network |
US4805107A (en) | 1987-04-15 | 1989-02-14 | Allied-Signal Inc. | Task scheduler for a fault tolerant multiple node processing system |
US5144622A (en) | 1988-02-15 | 1992-09-01 | Hitachi, Ltd. | Network system |
JP2753294B2 (en) | 1988-12-23 | 1998-05-18 | 株式会社日立製作所 | Packet congestion control method and packet switching device |
US5115430A (en) | 1990-09-24 | 1992-05-19 | At&T Bell Laboratories | Fair access of multi-priority traffic to distributed-queue dual-bus networks |
US5260935A (en) | 1991-03-01 | 1993-11-09 | Washington University | Data packet resequencer for a high speed data switch |
US5260933A (en) | 1992-05-15 | 1993-11-09 | International Business Machines Corporation | Acknowledgement protocol for serial data network with out-of-order delivery |
US5390173A (en) | 1992-10-22 | 1995-02-14 | Digital Equipment Corporation | Packet format in hub for packet data communications system |
US5367520A (en) | 1992-11-25 | 1994-11-22 | Bell Communcations Research, Inc. | Method and system for routing cells in an ATM switch |
US5528583A (en) | 1993-05-26 | 1996-06-18 | The Trustees Of Columbia University In The City Of New York | Method and apparatus for supporting mobile communications in mobile communications networks |
US5568165A (en) | 1993-10-22 | 1996-10-22 | Auravision Corporation | Video processing technique using multi-buffer video memory |
GB9401092D0 (en) | 1994-01-21 | 1994-03-16 | Newbridge Networks Corp | A network management system |
US5784358A (en) | 1994-03-09 | 1998-07-21 | Oxford Brookes University | Broadband switching network with automatic bandwidth allocation in response to data cell detection |
US5537400A (en) | 1994-04-15 | 1996-07-16 | Dsc Communications Corporation | Buffered crosspoint matrix for an asynchronous transfer mode switch and method of operation |
GB9408574D0 (en) | 1994-04-29 | 1994-06-22 | Newbridge Networks Corp | Atm switching system |
US5677909A (en) | 1994-05-11 | 1997-10-14 | Spectrix Corporation | Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel |
US6134127A (en) | 1994-05-18 | 2000-10-17 | Hamilton Sunstrand Corporation | PWM harmonic control |
US5594672A (en) | 1994-05-20 | 1997-01-14 | Micro Energetics Corporation | Peripheral power saver |
EP0700229B1 (en) | 1994-08-22 | 2006-06-28 | Fujitsu Limited | Connectionless communications system, test method, and intra-station control system |
US5521913A (en) * | 1994-09-12 | 1996-05-28 | Amber Wave Systems, Inc. | Distributed processing ethernet switch with adaptive cut-through switching |
US5598541A (en) | 1994-10-24 | 1997-01-28 | Lsi Logic Corporation | Node loop port communication interface super core for fibre channel |
KR0132944B1 (en) | 1994-12-23 | 1998-04-21 | 양승택 | Data exchanging apparatus |
US5687172A (en) | 1994-12-30 | 1997-11-11 | Lucent Technologies Inc. | Terabit per second distribution network |
DE69614291T2 (en) | 1995-03-17 | 2001-12-06 | Lsi Logic Corp., Fort Collins | (n + i) input / output channel control, with (n) data managers, in a homogeneous software programming operating environment |
US5706279A (en) | 1995-03-24 | 1998-01-06 | U S West Technologies, Inc. | Methods and systems for managing packet flow into a fast packet switching network |
US5623492A (en) | 1995-03-24 | 1997-04-22 | U S West Technologies, Inc. | Methods and systems for managing bandwidth resources in a fast packet switching network |
US5701416A (en) | 1995-04-13 | 1997-12-23 | Cray Research, Inc. | Adaptive routing mechanism for torus interconnection network |
US5822540A (en) | 1995-07-19 | 1998-10-13 | Fujitsu Network Communications, Inc. | Method and apparatus for discarding frames in a communications device |
US5748612A (en) | 1995-08-10 | 1998-05-05 | Mcdata Corporation | Method and apparatus for implementing virtual circuits in a fibre channel system |
US5768533A (en) | 1995-09-01 | 1998-06-16 | National Semiconductor Corporation | Video coding using segmented frames and retransmission to overcome channel errors |
US5666483A (en) | 1995-09-22 | 1997-09-09 | Honeywell Inc. | Redundant processing system architecture |
US5764927A (en) | 1995-09-29 | 1998-06-09 | Allen Bradley Company, Inc. | Backplane data transfer technique for industrial automation controllers |
US6047323A (en) | 1995-10-19 | 2000-04-04 | Hewlett-Packard Company | Creation and migration of distributed streams in clusters of networked computers |
US5828475A (en) | 1995-10-25 | 1998-10-27 | Mcdata Corporation | Bypass switching and messaging mechanism for providing intermix data transfer for a fiber optic switch using a bypass bus and buffer |
US5610745A (en) | 1995-10-26 | 1997-03-11 | Hewlett-Packard Co. | Method and apparatus for tracking buffer availability |
US6055618A (en) | 1995-10-31 | 2000-04-25 | Cray Research, Inc. | Virtual maintenance network in multiprocessing system having a non-flow controlled virtual maintenance channel |
JPH09247176A (en) | 1996-03-11 | 1997-09-19 | Hitachi Ltd | Asynchronous transfer mode exchange system |
US5790545A (en) | 1996-03-14 | 1998-08-04 | Motorola Inc. | Efficient output-request packet switch and method |
US5822300A (en) | 1996-04-02 | 1998-10-13 | Compaq Computer Corporation | Congestion management scheme |
US5768271A (en) | 1996-04-12 | 1998-06-16 | Alcatel Data Networks Inc. | Virtual private network |
US5732206A (en) | 1996-07-23 | 1998-03-24 | International Business Machines Corporation | Method, apparatus and program product for disruptive recovery in a data processing system |
US5894481A (en) | 1996-09-11 | 1999-04-13 | Mcdata Corporation | Fiber channel switch employing distributed queuing |
US6031842A (en) | 1996-09-11 | 2000-02-29 | Mcdata Corporation | Low latency shared memory switch architecture |
US5835752A (en) | 1996-10-18 | 1998-11-10 | Samsung Electronics Co. Ltd. | PCI interface synchronization |
US6229822B1 (en) * | 1996-10-24 | 2001-05-08 | Newbridge Networks Corporation | Communications system for receiving and transmitting data cells |
US5850386A (en) | 1996-11-01 | 1998-12-15 | Wandel & Goltermann Technologies, Inc. | Protocol analyzer for monitoring digital transmission networks |
KR100194813B1 (en) | 1996-12-05 | 1999-06-15 | 정선종 | Packet Switching Device with Multichannel / Multicast Switching Function and Packet Switching System Using the Same |
US6011779A (en) | 1996-12-30 | 2000-01-04 | Hyundai Electronics America | ATM switch queuing system |
US6026092A (en) | 1996-12-31 | 2000-02-15 | Northern Telecom Limited | High performance fault tolerant switching system for multimedia satellite and terrestrial communications networks |
US5954796A (en) | 1997-02-11 | 1999-09-21 | Compaq Computer Corporation | System and method for automatically and dynamically changing an address associated with a device disposed in a fire channel environment |
US6014383A (en) | 1997-02-10 | 2000-01-11 | Compaq Computer Corporation | System and method for controlling multiple initiators in a fibre channel environment |
US6185203B1 (en) | 1997-02-18 | 2001-02-06 | Vixel Corporation | Fibre channel switching fabric |
US6160813A (en) | 1997-03-21 | 2000-12-12 | Brocade Communications Systems, Inc. | Fibre channel switching system and method |
US5825748A (en) | 1997-04-08 | 1998-10-20 | International Business Machines Corporation | Credit-based flow control checking and correction system |
US5987028A (en) | 1997-05-12 | 1999-11-16 | Industrial Technology Research Insitute | Multiple channel ATM switch |
US6108738A (en) | 1997-06-10 | 2000-08-22 | Vlsi Technology, Inc. | Multi-master PCI bus system within a single integrated circuit |
US6081512A (en) | 1997-06-30 | 2000-06-27 | Sun Microsystems, Inc. | Spanning tree support in a high performance network device |
KR100259841B1 (en) | 1997-07-31 | 2000-06-15 | 윤종용 | A hot plug of pci bus using single chip |
US5790840A (en) | 1997-08-15 | 1998-08-04 | International Business Machines Corporation | Timestamp systems, methods and computer program products for data processing system |
US6389479B1 (en) | 1997-10-14 | 2002-05-14 | Alacritech, Inc. | Intelligent network interface device and system for accelerated communication |
US5937169A (en) | 1997-10-29 | 1999-08-10 | 3Com Corporation | Offload of TCP segmentation to a smart adapter |
US6144668A (en) | 1997-11-26 | 2000-11-07 | International Business Machines Corporation | Simultaneous cut through and store-and-forward frame support in a network device |
US5974547A (en) | 1998-03-20 | 1999-10-26 | 3Com Corporation | Technique for reliable network booting of an operating system to a client computer |
US6108778A (en) | 1998-04-07 | 2000-08-22 | Micron Technology, Inc. | Device for blocking bus transactions during reset |
US6252891B1 (en) | 1998-04-09 | 2001-06-26 | Spirent Communications, Inc. | System and method to insert timestamp information in a protocol neutral manner |
US6324181B1 (en) | 1998-04-16 | 2001-11-27 | 3Com Corporation | Fibre channel switched arbitrated loop |
US6151644A (en) | 1998-04-17 | 2000-11-21 | I-Cube, Inc. | Dynamically configurable buffer for a computer network |
US6570850B1 (en) * | 1998-04-23 | 2003-05-27 | Giganet, Inc. | System and method for regulating message flow in a digital data network |
US5936442A (en) | 1998-05-01 | 1999-08-10 | Kye Systems Corp. | Power shut-off and recovery circuit for data communication devices |
US6101166A (en) | 1998-05-01 | 2000-08-08 | Emulex Corporation | Automatic loop segment failure isolation |
US6188668B1 (en) | 1998-05-01 | 2001-02-13 | Emulex Corporation | Automatic isolation in loops |
US6046979A (en) | 1998-05-04 | 2000-04-04 | Cabletron Systems, Inc. | Method and apparatus for controlling the flow of variable-length packets through a multiport switch |
US6330236B1 (en) | 1998-06-11 | 2001-12-11 | Synchrodyne Networks, Inc. | Packet switching method with time-based routing |
US6353612B1 (en) | 1998-06-19 | 2002-03-05 | Brocade Communications Systems, Inc. | Probing device |
US6421711B1 (en) * | 1998-06-29 | 2002-07-16 | Emc Corporation | Virtual ports for data transferring of a data storage system |
WO2000003517A1 (en) | 1998-07-08 | 2000-01-20 | Broadcom Corporation | High performance self balancing low cost network switching architecture based on distributed hierarchical shared memory |
US6401128B1 (en) | 1998-08-07 | 2002-06-04 | Brocade Communiations Systems, Inc. | System and method for sending and receiving frames between a public device and a private device |
US6301612B1 (en) | 1998-08-12 | 2001-10-09 | Microsoft Corporation | Establishing one computer as a replacement for another computer |
US6209089B1 (en) | 1998-08-12 | 2001-03-27 | Microsoft Corporation | Correcting for changed client machine hardware using a server-based operating system |
US7430171B2 (en) * | 1998-11-19 | 2008-09-30 | Broadcom Corporation | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
US6308220B1 (en) | 1999-01-29 | 2001-10-23 | Neomagic Corp. | Circulating parallel-search engine with random inputs for network routing table stored in a wide embedded DRAM |
US6230276B1 (en) | 1999-02-01 | 2001-05-08 | Douglas T Hayden | Energy conserving measurement system under software control and method for battery powered products |
US6370605B1 (en) | 1999-03-04 | 2002-04-09 | Sun Microsystems, Inc. | Switch based scalable performance storage architecture |
KR100784652B1 (en) * | 1999-05-06 | 2007-12-12 | 소니 가부시끼 가이샤 | Data processing method/apparatus, and data reproducing method/apparatus, capable of random-accessing multiplexed program data, and recording medium |
JP3403971B2 (en) * | 1999-06-02 | 2003-05-06 | 富士通株式会社 | Packet transfer device |
US6697359B1 (en) * | 1999-07-02 | 2004-02-24 | Ancor Communications, Inc. | High performance switch fabric element and switch systems |
US6906998B1 (en) * | 1999-08-13 | 2005-06-14 | Nortel Networks Limited | Switching device interfaces |
US6343324B1 (en) | 1999-09-13 | 2002-01-29 | International Business Machines Corporation | Method and system for controlling access share storage devices in a network environment by configuring host-to-volume mapping data structures in the controller memory for granting and denying access to the devices |
US7010607B1 (en) * | 1999-09-15 | 2006-03-07 | Hewlett-Packard Development Company, L.P. | Method for training a communication link between ports to correct for errors |
US6859435B1 (en) * | 1999-10-13 | 2005-02-22 | Lucent Technologies Inc. | Prevention of deadlocks and livelocks in lossless, backpressured packet networks |
US6925562B2 (en) * | 1999-12-17 | 2005-08-02 | International Business Machines Corporation | Scheme for blocking the use of lost or stolen network-connectable computer systems |
US6684209B1 (en) * | 2000-01-14 | 2004-01-27 | Hitachi, Ltd. | Security method and system for storage subsystem |
US20030046396A1 (en) * | 2000-03-03 | 2003-03-06 | Richter Roger K. | Systems and methods for managing resource utilization in information management environments |
US6718497B1 (en) * | 2000-04-21 | 2004-04-06 | Apple Computer, Inc. | Method and apparatus for generating jitter test patterns on a high performance serial bus |
US6865157B1 (en) * | 2000-05-26 | 2005-03-08 | Emc Corporation | Fault tolerant shared system resource with communications passthrough providing high availability communications |
AU2001266671A1 (en) * | 2000-06-02 | 2001-12-17 | Inrange Technologies Corporation | Address conversion method and device in a fibre channel switch |
US6697368B2 (en) * | 2000-11-17 | 2004-02-24 | Foundry Networks, Inc. | High-performance network switch |
US7002926B1 (en) * | 2000-11-30 | 2006-02-21 | Western Digital Ventures, Inc. | Isochronous switched fabric network |
WO2002062021A1 (en) * | 2001-01-31 | 2002-08-08 | International Business Machines Corporation | Providing control information to a management processor of a communications switch |
US7190667B2 (en) * | 2001-04-26 | 2007-03-13 | Intel Corporation | Link level packet flow control mechanism |
US7000025B1 (en) * | 2001-05-07 | 2006-02-14 | Adaptec, Inc. | Methods for congestion mitigation in infiniband |
US7042842B2 (en) * | 2001-06-13 | 2006-05-09 | Computer Network Technology Corporation | Fiber channel switch |
US7260104B2 (en) * | 2001-12-19 | 2007-08-21 | Computer Network Technology Corporation | Deferred queuing in a buffered switch |
US6876656B2 (en) * | 2001-06-15 | 2005-04-05 | Broadcom Corporation | Switch assisted frame aliasing for storage virtualization |
US7200108B2 (en) * | 2001-06-29 | 2007-04-03 | International Business Machines Corporation | Method and apparatus for recovery from faults in a loop network |
US20030056000A1 (en) * | 2001-07-26 | 2003-03-20 | Nishan Systems, Inc. | Transfer ready frame reordering |
US7215680B2 (en) * | 2001-07-26 | 2007-05-08 | Nishan Systems, Inc. | Method and apparatus for scheduling packet flow on a fibre channel arbitrated loop |
US20030026267A1 (en) * | 2001-07-31 | 2003-02-06 | Oberman Stuart F. | Virtual channels in a network switch |
US7283556B2 (en) * | 2001-07-31 | 2007-10-16 | Nishan Systems, Inc. | Method and system for managing time division multiplexing (TDM) timeslots in a network switch |
US7095750B2 (en) * | 2001-08-16 | 2006-08-22 | International Business Machines Corporation | Apparatus and method for virtualizing a queue pair space to minimize time-wait impacts |
US6532212B1 (en) * | 2001-09-25 | 2003-03-11 | Mcdata Corporation | Trunking inter-switch links |
US7185062B2 (en) * | 2001-09-28 | 2007-02-27 | Emc Corporation | Switch-based storage services |
US7421509B2 (en) * | 2001-09-28 | 2008-09-02 | Emc Corporation | Enforcing quality of service in a storage network |
US6965559B2 (en) * | 2001-10-19 | 2005-11-15 | Sun Microsystems, Inc. | Method, system, and program for discovering devices communicating through a switch |
JP3825674B2 (en) * | 2001-10-24 | 2006-09-27 | 富士通株式会社 | Transmission device, SONET / SDH transmission device and transmission system |
US7188364B2 (en) * | 2001-12-20 | 2007-03-06 | Cranite Systems, Inc. | Personal virtual bridged local area networks |
US7499410B2 (en) * | 2001-12-26 | 2009-03-03 | Cisco Technology, Inc. | Fibre channel switch that enables end devices in different fabrics to communicate with one another while retaining their unique fibre channel domain—IDs |
US6988149B2 (en) * | 2002-02-26 | 2006-01-17 | Lsi Logic Corporation | Integrated target masking |
KR100449102B1 (en) * | 2002-03-19 | 2004-09-18 | 삼성전자주식회사 | System on chip processor for multimedia |
US7200610B1 (en) * | 2002-04-22 | 2007-04-03 | Cisco Technology, Inc. | System and method for configuring fibre-channel devices |
US7194538B1 (en) * | 2002-06-04 | 2007-03-20 | Veritas Operating Corporation | Storage area network (SAN) management system for discovering SAN components using a SAN management server |
TWI231424B (en) * | 2002-06-28 | 2005-04-21 | Quanta Comp Inc | Management and preparation system of blade server |
US7664018B2 (en) * | 2002-07-02 | 2010-02-16 | Emulex Design & Manufacturing Corporation | Methods and apparatus for switching fibre channel arbitrated loop devices |
US7039018B2 (en) * | 2002-07-17 | 2006-05-02 | Intel Corporation | Technique to improve network routing using best-match and exact-match techniques |
US20040015638A1 (en) * | 2002-07-22 | 2004-01-22 | Forbes Bryn B. | Scalable modular server system |
AU2003255254A1 (en) * | 2002-08-08 | 2004-02-25 | Glenn J. Leedy | Vertical system integration |
US7352706B2 (en) * | 2002-09-16 | 2008-04-01 | Finisar Corporation | Network analysis scalable analysis tool for multiple protocols |
US20040054776A1 (en) * | 2002-09-16 | 2004-03-18 | Finisar Corporation | Network expert analysis process |
US6886141B1 (en) * | 2002-10-07 | 2005-04-26 | Qlogic Corporation | Method and system for reducing congestion in computer networks |
US20040081196A1 (en) * | 2002-10-29 | 2004-04-29 | Elliott Stephen J. | Protocol independent hub |
US7327680B1 (en) * | 2002-11-05 | 2008-02-05 | Cisco Technology, Inc. | Methods and apparatus for network congestion control |
US7352740B2 (en) * | 2003-04-29 | 2008-04-01 | Brocade Communciations Systems, Inc. | Extent-based fibre channel zoning in hardware |
US7539143B2 (en) * | 2003-08-11 | 2009-05-26 | Netapp, Inc. | Network switching device ingress memory system |
US20050076113A1 (en) * | 2003-09-12 | 2005-04-07 | Finisar Corporation | Network analysis sample management process |
US7930377B2 (en) * | 2004-04-23 | 2011-04-19 | Qlogic, Corporation | Method and system for using boot servers in networks |
US8018936B2 (en) * | 2004-07-19 | 2011-09-13 | Brocade Communications Systems, Inc. | Inter-fabric routing |
US7796627B2 (en) * | 2004-08-12 | 2010-09-14 | Broadcom Corporation | Apparatus and system for coupling and decoupling initiator devices to a network using an arbitrated loop without disrupting the network |
US7716315B2 (en) * | 2004-09-24 | 2010-05-11 | Emc Corporation | Enclosure configurable to perform in-band or out-of-band enclosure management |
-
2004
- 2004-07-20 US US10/894,629 patent/US7447224B2/en not_active Expired - Fee Related
-
2008
- 2008-08-11 US US12/189,502 patent/US7936771B2/en active Active
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4964119A (en) | 1988-04-06 | 1990-10-16 | Hitachi, Ltd. | Method and system for packet exchange |
US5425022A (en) | 1989-06-16 | 1995-06-13 | British Telecommunications Public Limited Company | Data switching nodes |
US5280483A (en) | 1990-08-09 | 1994-01-18 | Fujitsu Limited | Traffic control system for asynchronous transfer mode exchange |
US5291481A (en) | 1991-10-04 | 1994-03-01 | At&T Bell Laboratories | Congestion control for high speed packet networks |
US5258751A (en) | 1991-11-04 | 1993-11-02 | Motorola, Inc. | Method of presenting messages for a selective call receiver |
US5579443A (en) | 1993-04-29 | 1996-11-26 | Nippondenso Co., Ltd. | Emergency vehicular communication device capable of contacting a plurality of services |
US5687387A (en) | 1994-08-26 | 1997-11-11 | Packard Bell Nec | Enhanced active port replicator having expansion and upgrade capabilities |
US5568167A (en) | 1994-09-23 | 1996-10-22 | C-Cube Microsystems, Inc. | System for providing antialiased video overlays |
US5638518A (en) | 1994-10-24 | 1997-06-10 | Lsi Logic Corporation | Node loop core for implementing transmission protocol in fibre channel |
US5757771A (en) | 1995-11-14 | 1998-05-26 | Yurie Systems, Inc. | Queue management to serve variable and constant bit rate traffic at multiple quality of service levels in a ATM switch |
US5835748A (en) | 1995-12-19 | 1998-11-10 | Intel Corporation | Method for executing different sets of instructions that cause a processor to perform different data type operations on different physical registers files that logically appear to software as a single aliased register file |
US6118791A (en) | 1995-12-20 | 2000-09-12 | Cisco Technology, Inc. | Adaptive bandwidth allocation method for non-reserved traffic in a high-speed data transmission network, and system for implementing said method |
US6009226A (en) | 1996-05-08 | 1999-12-28 | Victor Company Of Japan, Ltd. | Recording and reproducing apparatus for packet data |
US5892604A (en) | 1996-05-09 | 1999-04-06 | Nippon Telegraph And Telephone Corporation | ATM switch |
US5751710A (en) | 1996-06-11 | 1998-05-12 | Cisco Technology, Inc. | Technique for connecting cards of a distributed network switch |
US6147976A (en) | 1996-06-24 | 2000-11-14 | Cabletron Systems, Inc. | Fast network layer packet filter |
US6311204B1 (en) | 1996-10-11 | 2001-10-30 | C-Cube Semiconductor Ii Inc. | Processing system with register-based process sharing |
US7471691B2 (en) | 1997-01-23 | 2008-12-30 | Broadcom Corporation | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
US5925119A (en) | 1997-03-28 | 1999-07-20 | Quantum Corporation | Computer architecture for automated storage library |
US6286011B1 (en) | 1997-04-30 | 2001-09-04 | Bellsouth Corporation | System and method for recording transactions using a chronological list superimposed on an indexed list |
US6148421A (en) | 1997-05-30 | 2000-11-14 | Crossroads Systems, Inc. | Error detection and recovery for sequential access devices in a fibre channel protocol |
US6307857B1 (en) | 1997-06-26 | 2001-10-23 | Hitachi, Ltd. | Asynchronous transfer mode controller and ATM control method thereof and ATM communication control apparatus |
US6700877B1 (en) | 1997-08-05 | 2004-03-02 | Siemens Aktiengesellschaft | Method and bus system for automatic address allocation |
US20030095549A1 (en) | 1997-08-07 | 2003-05-22 | Vixel Corporation | Methods and apparatus for fibre channel interconnection of private loop devices |
US6509988B1 (en) | 1997-09-16 | 2003-01-21 | Nec Corporation | IEEE serial bus physical layer interface having a speed setting circuit |
US6553036B1 (en) | 1998-02-24 | 2003-04-22 | Jpmorgan Chase Bank | Method and apparatus for preserving loop fairness with dynamic half-duplex |
US6563796B1 (en) | 1998-03-18 | 2003-05-13 | Nippon Telegraph And Telephone Corporation | Apparatus for quality of service evaluation and traffic measurement |
US6278708B1 (en) | 1998-04-10 | 2001-08-21 | Cisco Technology, Inc. | Frame relay access device with user-configurable virtual circuit bundling |
US6131123A (en) | 1998-05-14 | 2000-10-10 | Sun Microsystems Inc. | Efficient message distribution to subsets of large computer networks using multicast for near nodes and unicast for far nodes |
US7460534B1 (en) | 1998-06-03 | 2008-12-02 | 3Com Corporation | Method for statistical switching |
US20020067726A1 (en) | 1998-10-05 | 2002-06-06 | Engines Incorporated Pursuant | Content-based forwarding/filtering in a network switching device |
US6975627B1 (en) | 1998-11-11 | 2005-12-13 | 3Com Technologies | Modification of tag fields in Ethernet data packets |
US6158014A (en) | 1998-12-02 | 2000-12-05 | Emulex Corporation | Automatic detection of 8B/10B data rates |
US6404749B1 (en) | 1999-03-08 | 2002-06-11 | Trw Inc. | Method for providing connectionless data services over a connection-oriented satellite network |
US6625157B2 (en) * | 1999-05-20 | 2003-09-23 | Advanced Micro Devices, Inc. | Apparatus and method in a network switch port for transferring data between buffer memory and transmit and receive state machines according to a prescribed interface protocol |
US6438628B1 (en) | 1999-05-28 | 2002-08-20 | 3Com Corporation | System and method for data pacing |
US6397360B1 (en) | 1999-07-28 | 2002-05-28 | Lsi Logic Corporation | Method and apparatus for generating a fibre channel compliant frame |
US7082126B2 (en) | 1999-08-04 | 2006-07-25 | International Business Machines Corporation | Fiber channel address blocking |
US6643298B1 (en) | 1999-11-23 | 2003-11-04 | International Business Machines Corporation | Method and apparatus for MPEG-2 program ID re-mapping for multiplexing several programs into a single transport stream |
US7443794B2 (en) | 1999-12-10 | 2008-10-28 | Qlogic Switch Products, Inc. | Fibre channel credit extender and repeater |
US6339813B1 (en) | 2000-01-07 | 2002-01-15 | International Business Machines Corporation | Memory system for permitting simultaneous processor access to a cache line and sub-cache line sectors fill and writeback to a system memory |
US6922408B2 (en) | 2000-01-10 | 2005-07-26 | Mellanox Technologies Ltd. | Packet communication buffering with dynamic flow control |
US6629161B2 (en) | 2000-04-28 | 2003-09-30 | Sharp Kabushiki Kaisha | Data processing system and data processing method |
US6865155B1 (en) | 2000-05-08 | 2005-03-08 | Nortel Networks Ltd. | Method and apparatus for transmitting data through a switch fabric according to detected congestion |
US20030179748A1 (en) | 2000-06-05 | 2003-09-25 | George William R. | Hardware-enforced loop-level hard zoning for fibre channel switch fabric |
US6928470B1 (en) | 2000-07-31 | 2005-08-09 | Western Digital Ventures, Inc. | Transferring scheduling data from a plurality of disk storage devices to a network switch before transferring data associated with scheduled requests between the network switch and a plurality of host initiators |
US6697914B1 (en) | 2000-09-11 | 2004-02-24 | Western Digital Ventures, Inc. | Switched node comprising a disk controller with integrated multi-port switching circuitry |
US6888831B1 (en) | 2000-09-28 | 2005-05-03 | Western Digital Ventures, Inc. | Distributed resource reservation system for establishing a path through a multi-dimensional computer network to support isochronous data |
US6765871B1 (en) | 2000-11-29 | 2004-07-20 | Akara Corporation | Fiber channel flow control method and apparatus for interface to metro area transport link |
US20020118692A1 (en) | 2001-01-04 | 2002-08-29 | Oberman Stuart F. | Ensuring proper packet ordering in a cut-through and early-forwarding network switch |
US20020124102A1 (en) | 2001-03-01 | 2002-09-05 | International Business Machines Corporation | Non-zero credit management to avoid message loss |
US7239641B1 (en) | 2001-04-24 | 2007-07-03 | Brocade Communications Systems, Inc. | Quality of service using virtual channel translation |
US6480500B1 (en) | 2001-06-18 | 2002-11-12 | Advanced Micro Devices, Inc. | Arrangement for creating multiple virtual queue pairs from a compressed queue pair based on shared attributes |
US20030002516A1 (en) | 2001-06-29 | 2003-01-02 | Michael Boock | Method and apparatus for adapting to a clock rate transition in a communications network using idles |
US20030037159A1 (en) | 2001-08-06 | 2003-02-20 | Yongdong Zhao | Timer rollover handling mechanism for traffic policing |
US20030033487A1 (en) | 2001-08-09 | 2003-02-13 | International Business Machines Corporation | Method and apparatus for managing data in a distributed buffer system |
US20030152076A1 (en) | 2001-09-19 | 2003-08-14 | Barry Lee | Vertical instruction and data processing in a network processor architecture |
US20030063567A1 (en) | 2001-10-02 | 2003-04-03 | Stmicroelectronics, Inc. | Ethernet device and method for extending ethernet FIFO buffer |
US7031615B2 (en) | 2001-10-04 | 2006-04-18 | Finisar Corporation | Optical channel selection and evaluation system |
US7150021B1 (en) | 2001-10-12 | 2006-12-12 | Palau Acquisition Corporation (Delaware) | Method and system to allocate resources within an interconnect device according to a resource allocation table |
US7362702B2 (en) * | 2001-10-18 | 2008-04-22 | Qlogic, Corporation | Router with routing processors and methods for virtualization |
US20030091062A1 (en) | 2001-11-13 | 2003-05-15 | Lay Samuel C. | Method and apparatus for providing optimized high speed link utilization |
US20030112819A1 (en) | 2001-12-18 | 2003-06-19 | Nortel Networks Limited | Communications interface for providing a plurality of communication channels to a single port on a processor |
US20030120791A1 (en) | 2001-12-20 | 2003-06-26 | Weber David M. | Multi-thread, multi-speed, multi-mode interconnect protocol controller |
US7346707B1 (en) | 2002-01-16 | 2008-03-18 | Advanced Micro Devices, Inc. | Arrangement in an infiniband channel adapter for sharing memory space for work queue entries using multiply-linked lists |
US7310389B2 (en) | 2002-03-14 | 2007-12-18 | Syntle Sys Research, Inc | Method and apparatus for determining the errors of a multi-valued data signal that are outside the limits of an eye mask |
US7406034B1 (en) | 2002-04-01 | 2008-07-29 | Cisco Technology, Inc. | Methods and apparatus for fibre channel frame delivery |
US20030191883A1 (en) | 2002-04-05 | 2003-10-09 | Sycamore Networks, Inc. | Interface for upgrading serial backplane application from ethernet to gigabit ethernet |
US7245627B2 (en) | 2002-04-23 | 2007-07-17 | Mellanox Technologies Ltd. | Sharing a network interface card among multiple hosts |
US7209478B2 (en) | 2002-05-31 | 2007-04-24 | Palau Acquisition Corporation (Delaware) | Apparatus and methods for dynamic reallocation of virtual lane buffer space in an infiniband switch |
US20050111845A1 (en) | 2002-06-25 | 2005-05-26 | Stephen Nelson | Apparatus, system and methods for modifying operating characteristics of optoelectronic devices |
US7187688B2 (en) | 2002-06-28 | 2007-03-06 | International Business Machines Corporation | Priority arbitration mechanism |
US7397788B2 (en) | 2002-07-02 | 2008-07-08 | Emulex Design & Manufacturing Corporation | Methods and apparatus for device zoning in fibre channel arbitrated loop systems |
US20040085974A1 (en) | 2002-07-02 | 2004-05-06 | Vixel Corporation | Methods and apparatus for device zoning in fibre channel arbitrated loop systems |
US7233570B2 (en) | 2002-07-19 | 2007-06-19 | International Business Machines Corporation | Long distance repeater for digital information |
US20040027989A1 (en) | 2002-07-29 | 2004-02-12 | Brocade Communications Systems, Inc. | Cascade credit sharing for fibre channel links |
US7334046B1 (en) | 2002-08-05 | 2008-02-19 | Qlogic, Corporation | System and method for optimizing frame routing in a network |
US20040153863A1 (en) | 2002-09-16 | 2004-08-05 | Finisar Corporation | Network analysis omniscent loop state machine |
US20040064664A1 (en) | 2002-09-30 | 2004-04-01 | Gil Mercedes E. | Buffer management architecture and method for an infiniband subnetwork |
US6904507B2 (en) | 2002-09-30 | 2005-06-07 | Agilent Technologies, Inc. | Buffer management architecture and method for an infiniband subnetwork |
US6983342B2 (en) | 2002-10-08 | 2006-01-03 | Lsi Logic Corporation | High speed OC-768 configurable link layer chip |
US7076569B1 (en) | 2002-10-18 | 2006-07-11 | Advanced Micro Devices, Inc. | Embedded channel adapter having transport layer configured for prioritizing selection of work descriptors based on respective virtual lane priorities |
US7319669B1 (en) | 2002-11-22 | 2008-01-15 | Qlogic, Corporation | Method and system for controlling packet flow in networks |
US7275103B1 (en) * | 2002-12-18 | 2007-09-25 | Veritas Operating Corporation | Storage path optimization for SANs |
US20040120340A1 (en) | 2002-12-24 | 2004-06-24 | Scott Furey | Method and apparatus for implementing a data frame processing model |
US20040125799A1 (en) | 2002-12-31 | 2004-07-01 | Buer Mark L. | Data processing hash algorithm and policy management |
US20040141518A1 (en) | 2003-01-22 | 2004-07-22 | Alison Milligan | Flexible multimode chip design for storage and networking |
US20040153566A1 (en) | 2003-01-31 | 2004-08-05 | Brocade Communications Systems, Inc. | Dynamic link distance configuration for extended fabric |
US20040202189A1 (en) | 2003-04-10 | 2004-10-14 | International Business Machines Corporation | Apparatus, system and method for providing multiple logical channel adapters within a single physical channel adapter in a systen area network |
US20040218531A1 (en) | 2003-04-30 | 2004-11-04 | Cherian Babu Kalampukattussery | Flow control between fiber channel and wide area networks |
US7424533B1 (en) | 2003-05-23 | 2008-09-09 | Cisco Technology, Inc. | Method and apparatus for role-based access control |
US7466700B2 (en) | 2003-07-21 | 2008-12-16 | Qlogic, Corporation | LUN based hard zoning in fibre channel switches |
US7406092B2 (en) | 2003-07-21 | 2008-07-29 | Qlogic, Corporation | Programmable pseudo virtual lanes for fibre channel systems |
US7447224B2 (en) * | 2003-07-21 | 2008-11-04 | Qlogic, Corporation | Method and system for routing fibre channel frames |
US20050036485A1 (en) | 2003-08-11 | 2005-02-17 | Eilers Fritz R. | Network having switchover with no data loss |
US7352701B1 (en) | 2003-09-19 | 2008-04-01 | Qlogic, Corporation | Buffer to buffer credit recovery for in-line fibre channel credit extension devices |
US20050099970A1 (en) | 2003-11-06 | 2005-05-12 | Halliday David J. | Method and apparatus for mapping TDM payload data |
US20050188245A1 (en) | 2004-02-09 | 2005-08-25 | Intel Corporation | Frame validation |
US7492780B1 (en) | 2005-02-25 | 2009-02-17 | Xilinx, Inc. | Method and apparatus for detecting timeout for packets transmitted in a packet-switched point-to-point communication architecture |
Non-Patent Citations (82)
Also Published As
Publication number | Publication date |
---|---|
US20090034550A1 (en) | 2009-02-05 |
US20050018701A1 (en) | 2005-01-27 |
US7447224B2 (en) | 2008-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7936771B2 (en) | Method and system for routing fibre channel frames | |
US7477655B2 (en) | Method and system for power control of fibre channel switches | |
US7894348B2 (en) | Method and system for congestion control in a fibre channel switch | |
US7512067B2 (en) | Method and system for congestion control based on optimum bandwidth allocation in a fibre channel switch | |
US7646767B2 (en) | Method and system for programmable data dependant network routing | |
US7649903B2 (en) | Method and system for managing traffic in fibre channel systems | |
US8005105B2 (en) | Method and system for configuring fibre channel ports | |
US9118586B2 (en) | Multi-speed cut through operation in fibre channel switches | |
US7406092B2 (en) | Programmable pseudo virtual lanes for fibre channel systems | |
US7466700B2 (en) | LUN based hard zoning in fibre channel switches | |
US8072988B2 (en) | Method and system for buffer-to-buffer credit recovery in fibre channel systems using virtual and/or pseudo virtual lanes | |
US20090316592A1 (en) | Method and system for selecting virtual lanes in fibre channel switches | |
US7522529B2 (en) | Method and system for detecting congestion and over subscription in a fibre channel network | |
US20090296715A1 (en) | Method and system for programmable data dependant network routing | |
US7583597B2 (en) | Method and system for improving bandwidth and reducing idles in fibre channel switches | |
US7822057B2 (en) | Method and system for keeping a fibre channel arbitrated loop open during frame gaps | |
US7792115B2 (en) | Method and system for routing and filtering network data packets in fibre channel systems | |
US7522522B2 (en) | Method and system for reducing latency and congestion in fibre channel switches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: QLOGIC, CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DROPPS, FRANK R.;PAPENFUSS, GARY M.;SIGNING DATES FROM 20040708 TO 20040709;REEL/FRAME:025901/0966 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: SECURITY AGREEMENT;ASSIGNOR:QLOGIC CORPORATION;REEL/FRAME:041854/0119 Effective date: 20170228 |
|
AS | Assignment |
Owner name: CAVIUM, INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:QLOGIC CORPORATION;REEL/FRAME:044812/0504 Effective date: 20160615 |
|
AS | Assignment |
Owner name: CAVIUM NETWORKS LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:046496/0001 Effective date: 20180706 Owner name: QLOGIC CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:046496/0001 Effective date: 20180706 Owner name: CAVIUM, INC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:046496/0001 Effective date: 20180706 |
|
AS | Assignment |
Owner name: CAVIUM, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:CAVIUM, INC.;REEL/FRAME:047205/0953 Effective date: 20180921 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CAVIUM INTERNATIONAL, CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAVIUM, LLC;REEL/FRAME:051948/0807 Effective date: 20191231 |
|
AS | Assignment |
Owner name: MARVELL ASIA PTE, LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAVIUM INTERNATIONAL;REEL/FRAME:053179/0320 Effective date: 20191231 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |