US7916957B2 - Line noise eliminating apparatus, line noise eliminating method, and line noise eliminating program - Google Patents
Line noise eliminating apparatus, line noise eliminating method, and line noise eliminating program Download PDFInfo
- Publication number
- US7916957B2 US7916957B2 US11/833,165 US83316507A US7916957B2 US 7916957 B2 US7916957 B2 US 7916957B2 US 83316507 A US83316507 A US 83316507A US 7916957 B2 US7916957 B2 US 7916957B2
- Authority
- US
- United States
- Prior art keywords
- image
- line noise
- density
- area
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims description 72
- 238000012545 processing Methods 0.000 claims description 89
- 230000002708 enhancing effect Effects 0.000 claims description 47
- 230000002194 synthesizing effect Effects 0.000 claims description 42
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 238000004364 calculation method Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 230000008030 elimination Effects 0.000 description 18
- 238000003379 elimination reaction Methods 0.000 description 18
- 230000003044 adaptive effect Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 235000006679 Mentha X verticillata Nutrition 0.000 description 2
- 235000002899 Mentha suaveolens Nutrition 0.000 description 2
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011840 criminal investigation Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000020281 long black Nutrition 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
- G06V40/1359—Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/273—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion removing elements interfering with the pattern to be recognised
Definitions
- the present invention relates to an apparatus and the like used for processing a digital image with many background noises, such as an image of a latent fingerprint, by using a computer. More specifically, the present invention relates to a line noise eliminating apparatus and the like, which can effectively eliminate the noise of straight-line form.
- a fingerprint including a great number of ridgelines in streaked patterns has two outstanding features; one is that it is immutable throughout one's life, and the other is that nobody has the same fingerprint. Therefore, fingerprints have been used in criminal investigations from old times. In particular, collation using the latent fingerprints left behind in criminal scenes is effective as a way to help the investigations. Recently, many police forces have employed a fingerprint matching system that uses a computer, and conduct matching of the latent fingerprints.
- FIG. 6 illustrates an example of a latent fingerprint left on a check.
- fingerprint ridgelines are left on the ruled lines of the check or on the background noise of a line pattern.
- line noises are likely to be misjudged and extracted as the fingerprint ridgelines, so that it is difficult to enhance or extract only the fingerprint ridgelines.
- Non-patent Document 1 Background Pattern Removal by Power Spectral Filtering
- FIG. 16B illustrates the state where the line noises are eliminated from the fingerprint image of FIG. 14A by the related technique. In the case where the periodicity of the line noises is insignificant as in the case of this fingerprint image, the eliminating performance is not sufficient.
- FIG. 16A illustrates the state where the line noises are eliminated from the fingerprint image of FIG. 6 by the related technique. It can be seen from this example of fingerprint image that the density of the fingerprint ridgelines is also deteriorated.
- Patent Document 2 proposes a method for eliminating the ruled lines in particular.
- the method for detecting the ruled lines proposed therein calculates a black run towards a designated direction, and detects a peak of the histogram to recognize it as the ruled line.
- the fingerprint ridgelines may be mistakenly judged as the ruled lines. Thus, such method is not effective. The reason for this is that the straight-form fingerprint ridgelines and wide-width fingerprint ridgelines have long black runs.
- Patent Document 3 proposes a method as a related technique for detecting line segments in a drawing. However, this method detects the peak of an image histogram towards a designated direction to recognize the line segment.
- the fingerprint ridgelines may be mistakenly judged as the line segments. Thus, such method is not effective.
- the reason for this is that the straight-form fingerprint ridgelines and wide-width fingerprint ridgelines have a large image histogram.
- Patent Document 4 proposes a method as another related technique for detecting the line segment, in which edges are detected from an input image, and Hough transformation is applied to a binary image (the edges are binarized) so as to extract the line segment.
- a local contrast stretch method Adaptive Contrast Stretch
- a local histogram equalization method Adaptive Histogram Equalization
- Patent Document 5 JP Patent Publication No. 3465226 discloses an image density converting method capable of reducing the elimination of effective information through dividing an input image based on texture analysis, and determining the degree of smoothening the density histogram in accordance with the dimension of the dynamic range for each divided area.
- the reference area covers over the background noise area as well as the non-background noise area in the vicinity of the border of the background noise.
- the reference area cannot be limited only to the background noise area, so that it is not possible to obtain the result of density conversion as it is expected.
- the density converting method proposed in Patent Document 5 depends largely on the accuracy of area dividing method executed based on the texture analysis of the input image. Thus, the result of enhancement is deteriorated if the line noise area cannot be extracted properly.
- An exemplary object of the present invention therefore is to provide a line noise eliminating apparatus and the like, with which the picture quality is not deteriorated in the area with no line noise, and the line noises that have no periodicity can be eliminated as well.
- a first line noise eliminating apparatus includes: an image binarizing device which generates a binary image by binarizing an input image that includes a line noise; a line noise reliability calculating device which rotates the binary image by a plurality of rotation angles to generate respective rotated images, calculates an edge feature quantity for each of black-pixel consecutive areas in the rotated images, and calculates line noise reliability based on the edge feature quantities; a line noise area determining device which selects, based on the line noise reliability, a rotation angle candidate with which a direction of the line noise becomes consistent with a prescribed direction from the rotation angles, and determines a line noise area of the respective rotated images that correspond to each of the rotation angle candidates based on the line noise reliability; a density converting device which generates a density-converted image by applying local image enhancement on an area that corresponds to the line noise area of the input image so as to convert the density into density of pixels that correspond to the input image; and an image synthesizing device which generates a synthesized image
- the first line noise eliminating apparatus not only the number of consecutive black pixels in a given direction, but also the white pixel ratio of the lines adjacent to the line of the consecutive black pixels in the orthogonal direction is also detected as the edge feature quantity from the binary image. Then, the line noise is detected based on a combination of the number of consecutive black pixels and the edge feature quantity. Thus, the straight-form wide area with consecutive black pixels such as a fingerprint ridgeline is not mistakenly detected as a line noise.
- the first line noise eliminating device calculates the line noise reliability with each rotation angle to determine the rotation angle candidate with which the line noise becomes consistent with a prescribed direction such as the X-axis direction, and determines the line noise area of the image that is rotated by the rotation angle candidate. Therefore, it is possible to eliminate the line noises in a plurality of directions. At that time, the line noise area is determined without depending on the periodicity of the line noise Thus, it is possible to eliminate the line noise that has no periodicity (such as a case with only a single line noise) or the line noise that has a periodicity similar to that of a part of the original image (for example, the line noise that has a periodicity similar to the fingerprint ridgeline).
- the line noise area includes a determined area that is judged as being a part of the line noise, and the area that is in the vicinity of the determined area.
- a second line noise eliminating apparatus includes: an image enhancing device which generates a density-enhanced image by applying local image enhancement on an input image that includes a line noise; an image binarizing device which generates a binary image by binarizing the input image; a line noise reliability calculating device which rotates the binary image by a plurality of rotation angles to generate respective rotated images, calculates an edge feature quantity for each of black-pixel consecutive areas in the rotated images, and calculates line noise reliability based on the edge feature quantities; a line noise area determining device which selects, based on the line noise reliability, a rotation angle candidate with which a direction of the line noise becomes consistent with a prescribed direction from the rotation angles, and determines a line noise area of the respective rotated images that correspond to each of the rotation angle candidates based on the line noise reliability; a density converting device which generates a density-converted image by applying local image enhancement, by a similar method as that of the image enhancing device, on an area that corresponds to
- the second line noise eliminating apparatus does not mistakenly detect the straight-form wide area with consecutive black pixels such as a fingerprint ridgeline as a line noise. Further, it is possible to eliminate the line noises in a plurality of directions. It is also possible to eliminate the line noise that has no periodicity (such as a case with only a single line noise) or the line noise that has a periodicity similar to that of a part of the original image (for example, the line noise that has a periodicity similar to the fingerprint ridgeline).
- the image enhancing device can generate a noise-eliminated image in which the density levels inside and outside the line noise area are equalized. Moreover, even when there is a conspicuous background noise, the background density after performing elimination processing on the noise area can be converted into the density of the same level as the background density of the image area that has no noise. Therefore, it is possible to eliminate the line noise effectively even from a latent fingerprint image that is left on a check, for example.
- a first line noise eliminating method includes the steps of: an image binarizing step which generates a binary image by binarizing an input image that includes a line noise; a line noise reliability calculating step which rotates the binary image by a plurality of rotation angles to generate respective rotated images, calculates an edge feature quantity for each of black-pixel consecutive areas in the rotated images, and calculates line noise reliability based on the edge feature quantities; a line noise area determining step which selects, based on the line noise reliability, a rotation angle candidate with which a direction of the line noise becomes consistent with a prescribed direction from the rotation angles, and determines a line noise area of the respective rotated images that correspond to each of the rotation angle candidates based on the line noise reliability; a density conversion step which generates a density-converted image by applying local image enhancement on an area that corresponds to the line noise area of the input image so as to convert the density to density of pixels that correspond to the input image; and an image synthesizing step which generates a synthe
- the straight-form wide area with consecutive black pixels such as a fingerprint ridgeline is not mistakenly detected as a line noise with the first line noise eliminating method.
- a second line noise eliminating method includes the steps of: an image enhancing step which generates a density-enhanced image by applying local image enhancement on an input image that includes a line noise; an image binarizing step which generates a binary image by binarizing the input image; a line noise reliability calculating step which rotates the binary image by a plurality of rotation angles to generate respective rotated images, calculates an edge feature quantity for each of black-pixel consecutive areas in the rotated images, and calculates line noise reliability based on the edge feature quantities; a line noise area determining step which selects, based on the line noise reliability, a rotation angle candidate with which a direction of the line noise becomes consistent with a prescribed direction from the rotation angles, and determines a line noise area of the respective rotated images that correspond to each of the rotation angle candidates based on the line noise reliability; a density conversion step which generates a density-converted image by applying local image enhancement, by a similar method as that of the image enhancing step, on an area that correspond
- the straight-form wide area with consecutive black pixels such as a fingerprint ridgeline is not mistakenly detected as a line noise with the second line noise eliminating method. Further, it is possible to eliminate the line noises in a plurality of directions. It is also possible to eliminate the line noise that has no periodicity (such as a case with only a single line noise) or the line noise that has a periodicity similar to that of a part of the original image (for example, the line noise that has a periodicity similar to the fingerprint ridgeline).
- the image enhancing step it is possible with the image enhancing step to generate a line noise-eliminated image in which the density levels inside and outside the noise area are equalized. Moreover, even when there is a conspicuous background noise, the background density after performing elimination processing on the noise area can be converted into the density of the same level as the background density of the image area that has no noise. Therefore, it is possible to eliminate the line noise effectively even from a latent fingerprint image that is left on a check, for example.
- a line noise eliminating program allows a computer to execute: image enhancement processing to generate a density-enhanced image by applying local image enhancement on an input image that includes a line noise; image binarization processing to generate a binary image by binarizing the input image; line noise reliability calculation processing to rotate the binary image by a plurality of rotation angles so as to generate respective rotated images, calculate an edge feature quantity for each of black-pixel consecutive areas in the rotated images, and calculate line noise reliability based on the edge feature quantities; line noise area determining processing to select, based on the line noise reliability, a rotation angle candidate with which a direction of the line noise becomes consistent with a prescribed direction from the rotation angles, and determine a line noise area of the respective rotated images that correspond to each of the rotation angle candidates based on the line noise reliability; density conversion processing to generate a density-converted image by applying local image enhancement, by a similar method as that of the image enhancement processing, on an area that corresponds to the line noise area of the input image so as to convert the density
- the line noise eliminating program does not mistakenly detect the straight-form wide area with consecutive black pixels such as a finger print ridgeline as a line noise. Further, it is possible to eliminate the line noises in a plurality of directions. It is also possible to eliminate the line noise that has no periodicity (such as a case with only a single line noise) or the line noise that has a periodicity similar to that of a part of the original image (for example, the line noise that has a periodicity similar to the fingerprint ridgeline).
- the image enhancement processing it is possible with the image enhancement processing to generate a noise-eliminated image in which the density levels inside and outside the line noise area are equalized. Moreover, even when there is a conspicuous background noise, the background density after performing elimination processing on the noise area can be converted into the density of the same level as the background density of the image area that has no noise. Therefore, it is possible to eliminate the line noise effectively even from a latent fingerprint image that is left on a check, for example.
- the white pixel ratio of the lines adjacent to the line of the consecutive black pixels in the orthogonal direction is also detected as the edge feature quantity from the binary image. Then, the line noise is detected based on a combination of the number of consecutive black pixels and the edge feature quantity. Thus, the straight-form wide area with consecutive black pixels such as a fingerprint ridgeline is not mistakenly detected as a line noise.
- the line noise reliability is calculated with each rotation angle to determine the rotation angle candidate with which the line noise becomes consistent with a prescribed direction such as the X-axis direction, and the line noise areas is determined in the image that is rotated by the rotation angle candidate. Therefore, it is possible to eliminate the line noises in a plurality of directions. At that time, the line noise area is determined without depending on the periodicity of the line noise. Thus, it is possible to eliminate the line noise that has no periodicity (such as a case with only a single line noise) or the line noise that has a periodicity similar to that of a part of the original image (for example, the line noise that has a periodicity similar to the fingerprint ridgeline).
- FIG. 1 is an overall structural block diagram of a fingerprint image enhancing apparatus as an exemplary embodiment of the present invention
- FIG. 2 is a functional block diagram of a line noise eliminating device shown in FIG. 1 ;
- FIG. 3 is a flowchart for showing the operation of the fingerprint image enhancing apparatus
- FIG. 4 is a flowchart for showing the operation of the fingerprint image enhancing apparatus
- FIG. 5 is a flowchart for showing the details of a line noise reliability calculating operation executed by the fingerprint image enhancing apparatus
- FIG. 6 is an illustration for showing an example of an input image
- FIG. 7 is an illustration for showing an example of an enhanced image that is obtained by applying enhancement processing on the input image of FIG. 6 ;
- FIG. 8 is an illustration for showing an example of a binary image that is obtained by binarizing the enhanced image of FIG. 7 ;
- FIG. 9A is an illustration for showing a part of rotated image of the binary image shown in FIG. 8 ;
- FIG. 9B is an illustration for showing a part of rotated image of the enhanced image shown in FIG. 7 ;
- FIG. 10 is an illustration for showing an example of a line noise plane
- FIG. 11 is an illustration for describing a line noise determined area and a line noise adjacent area
- FIG. 12 is an illustration for showing an image that is obtained by applying density conversion on the image shown in FIG. 9B ;
- FIG. 13 is an illustration for showing an example of the image obtained as a result
- FIG. 14A is an illustration for showing a second example of an input image
- FIG. 14B is an illustration of an image that is obtained by enhancing the image of FIG. 14A ;
- FIGS. 14C and 14D are illustrations of images that are obtained by eliminating the line noises from the image shown in FIG. 14B ;
- FIG. 14E is an illustration of an image that is obtained by synthesizing the image of FIG. 14C and the image of FIG. 14D ;
- FIG. 15A is an illustration for showing an example of an ink fingerprint image
- FIG. 15B is an illustration for showing an image that is obtained by eliminating the line noise from the image of FIG. 15A ;
- FIG. 16A is an example of an image that is obtained by eliminating the noises from the image of FIG. 6 by a conventional technique.
- FIG. 16B is an example of an image that is obtained by eliminating the noises from the image of FIG. 14A by a conventional technique.
- FIG. 1 is a functional block diagram for showing the structure of the fingerprint image enhancing apparatus 10 .
- the fingerprint image enhancing apparatus 10 is a personal computer, for example, and provided with a fingerprint image input device 11 , a line noise eliminating device 12 , and a fingerprint image output device 13 .
- the fingerprint image input device 11 digitizes and inputs fingerprint images that are read out by a sensor or a scanner, for example. Further, the fingerprint image input device 11 may input already-digitized images in a form of file.
- the line noise eliminating device 12 has a function of eliminating the straight-form line noise from the fingerprint image (input image) inputted through the fingerprint image input device 11 and enhancing the ridgeline density.
- the fingerprint image output device 13 outputs the fingerprint image that is processed by the line noise eliminating device 12 to a monitor, a printer, or the like.
- FIG. 2 is a functional block diagram for showing the structure of the line noise eliminating device 12 .
- the line noise eliminating device 12 includes: a data processing controller 21 ; a data storage device (memory device) 22 ; an image enhancing device 23 ; an image binarizing device 24 ; an image rotating device 25 ; a line noise reliability calculating device 26 ; a line noise area determining device 27 ; a density converting device 28 ; and an image synthesizing device 29 .
- the data processing controller 21 controls transmission and reception of data and messages exchanged between each of the devices that compose the line noise eliminating device 12
- the data storage device 22 includes a RAM (Random Access Memory), for example, and each of the aforementioned devices that compose the line noise eliminating device 12 uses it as the work area. Further, it is also used for temporarily storing the information calculated by each device. Furthermore, the data storage device 22 is also used as the work area of each devices such as the image enhancing device 23 , the image binarizing device 24 , the image rotating device 25 , the line noise reliability calculating device 26 , the line noise area determining device 27 , the density converting device 28 , and the image synthesizing device 29 .
- the image enhancing device 23 the image binarizing device 24 , the image rotating device 25 , the line noise reliability calculating device 26 , the line noise area determining device 27 , the density converting device 28 , and the image synthesizing device 29 .
- the image enhancing device 23 includes a function of generating an enhanced image by enhancing the density of the input image using a local image enhancing method.
- the image binarizing device 24 includes a function of generating a binary image by converting the input image into two values of white or black.
- the image rotating device 25 includes a function of generating a rotated image that is obtained through rotating the binary image by a designated rotation angle.
- the line noise reliability calculating device 26 includes functions of: extracting and analyzing horizontal lines from the binary image; calculating the continuous length of the black pixels in the horizontal direction and the edge ratio; calculating the line noise reliability by combining the obtained values; and registering it to the line noise plane.
- the line noise area determining device 27 includes functions of: analyzing the binary image and the line noise plane to which the line noise reliability is registered so as to determine the line noise area; and registering it to the line noise plane.
- the density converting device 28 includes functions of: specifying the line noise area from the line noise plane to which the line noise area is registered; enhancing the input image by using the local image enhancing method (that considers only the group of pixels in the horizontal direction as the reference area) for each pixel within the line noise area of the image that is enhanced by the density enhancing device; and replacing it with the density value of the corresponding pixels of the enhanced image.
- the image synthesizing device 29 includes a function of synthesizing a plurality of images (from which the line noise is eliminated) into a single image from which the lines noises in a plurality of directions are eliminated by selecting the minimum density values of each pixel.
- Each of the above-described devices can be achieved by having a CPU (Central Processing Unit) of the fingerprint image enhancing apparatus 10 execute a computer program and control the hardware of the fingerprint image enhancing apparatus 10 .
- a CPU Central Processing Unit
- FIG. 3 and FIG. 4 are flowcharts for showing the operations of the entire line noise eliminating device 12 , the fingerprint image input device 11 , and the fingerprint image output device 13 .
- step S 1 of FIG. 3 the fingerprint image input device 11 shown in FIG. 2 inputs a fingerprint image.
- an image read out by a scanner for example, is digitized and inputted.
- an already-digitized fingerprint image file as another way of example. This fingerprint image is expressed as GI.
- the examples of the finger print images such as the one shown in FIG. 6 are the images obtained by digitizing the fingerprint images that are read out by a sensor or a scanner. Those fingerprint image examples are digitized with the resolution of 500 dpi according to “ANSI/NIST-ITL-1-2000 Data Format for the Interchange of Fingerprint, Facial, & Scar Mark & Tattoo (SMT) Information” that is standardized by National Institute of Standards and Technology (US). This standardization document can be downloaded from the following URL (as of June, 2006). ftp://sequoyah.nist.gov/pub/nist_internal_reports/sp500-245-a16.pdf
- the image is digitized to have the density values of two-hundred and fifty-six gradations from 0 to 255.
- the density values are defined with the luminance standards where the numerical values increase as the luminance becomes higher (brighter).
- explanations regarding the density values are provided on the basis of the density standards where the numerical values increase as the density becomes higher. Therefore, the ridgeline with high density has the value close to 255 as the maximum value, and the paper surface or the ridgeline grooves with low density has the density value close to 0.
- the image enhancing device 23 shown in FIG. 2 enhances the density of the input image and expands the dynamic range of the fingerprint ridgelines.
- the adaptive histogram equalization or the adaptive contrast stretch is suitable, for example. Even in an area where the dynamic range of the fingerprint ridgelines is narrow, it is possible to obtain an image that has a uniform contrast change over the whole area through performing enhancement by using the adaptive histogram equalization. Size setting of the reference area is important with the adaptive histogram equalization. It is set in this case as a circle with a radius of about sixteen pixels.
- the average pitch between the ridgelines of the fingerprint is about ten pixels (the actual distance is 0.5 mm), so that it is appropriate to set the circle with the radius of about 1.6 times the average ridgeline pitch as the minimum area that includes the contract change of the ridgeline.
- FIG. 7 shows an image that is obtained by applying the above-described processing to enhance the input image of FIG. 6 .
- This fingerprint image is expressed as GE. It can be seen from FIG. 6 that both the area with high background density and the area with low background area density are enhanced uniformly.
- step S 3 of FIG. 3 the image binarizing device 24 shown in FIG. 2 converts the contrast image that is enhanced by the image enhancing device 23 into a binary image of white and black.
- this example employed a simple binary processing that takes the intermediate value ( 127 ) as a threshold value, because the image is already being enhanced.
- FIG. 8 shows a binary image that is obtained by applying the aforementioned processing on the enhanced image GE of FIG. 7 . This fingerprint image is expressed as B.
- the line noise is detected and eliminated after rotating the image in such a manner that the line noise becomes horizontal. It is also possible to rotate a mask used for detecting the line noise without rotating the image. However, this example rotates the image so as to improve the detection/elimination performance while simplifying detection and elimination processing of the line noise.
- the first-half processing is the processing from step S 4 to step S 9 of FIG. 3 , in which the rotation angle of the image in accordance with the direction of the line noise is detected.
- a latent fingerprint includes a plurality of line noises in different directions. Therefore, a plurality of rotation angle candidates are set to deal with such case.
- the latter-half processing is the processing of S 10 and thereafter shown in FIG. 4 , in which elimination processing of the line noise is performed after rotating the image by all the rotation angle candidates, and each of the noise-eliminated images is synthesized to generate the final noise-eliminated image.
- step S 5 of FIG. 3 the image rotating device 25 shown in FIG. 2 rotates the above-described binary image by the designated rotation angle d.
- Typical affine transformation may be employed as the technique for rotating the image.
- FIG. 9A shows a fragmentary enlarged view of the image that is obtained by rotating the binary image of FIG. 8 by 45 degrees in a counterclockwise direction.
- This fingerprint image is expressed as B(d).
- An enhanced image of the same area as the one shown in FIG. 9A is shown in FIG. 9B as a reference
- This fingerprint image is expressed as GE (d).
- the lines noise of this fingerprint image example can be detected most conspicuously when the image is rotated by 45 degrees, so that d is 45 degrees.
- step S 6 of FIG. 3 the line noise reliability calculating device 26 analyzes each horizontal line of the binary image, calculates the number of consecutive black pixels and the edge feature quantity, and combines those to calculate the line noise reliability.
- the number of consecutive black pixels is referred to as a black run herein.
- This processing is the core of the present invention, so that it will be described in detail.
- the line noise is generated due to the ruled line of a check or the like, and there are black pixels appeared continuously. Therefore, the base of detection may be considered as a black run.
- the fingerprint ridge lines in the vicinity of the trifles in the bottom part of the fingerprint may become straight form and the ridgeline width therein is wide. Thus, the black run therein may become long.
- the straight-form edges appear clearly for the line noise, while the straight-form edges do not clearly appear for the fingerprint ridgeline since the edges thereof form a gentle curve even through it seems to be in a straight form at a glance.
- the edge feature quantity is employed to discriminate the fingerprint ridgelines from the line noise.
- This example employs a ratio of the total number of white pixels (that are adjacent to the black run pixel group) to the black run as the edge feature quantity. This ratio is referred to as an edge ratio. Normally, the edge ratio of a straight-form noise is larger than the edge ratio of a fingerprint ridgeline.
- the line noise plane is initialized.
- the line noise plane is an image plane for temporarily registering the line noise reliability of each pixel of the input image.
- the coordinate system defined herein is the Cartesian coordinate system where the upper-left vertex is the origin, the horizontal direction facing towards the right direction is the X-coordinate positive direction, and the vertical direction facing downwards is the Y-coordinate positive direction.
- the black run including those pixels is calculated, and it is temporarily registered to the line noise plane in step S 62 of FIG. 5 .
- An extremely short black run with about less than sixteen pixels is eliminated, since it has low possibility to be a candidate for the line noise.
- the edge ratio of the black pixel group on the horizontal line is calculated.
- the upper-side edge ratio is obtained by finding the number of white pixels that are adjacent to the upper side of the black run pixel group and calculating the ratio thereof. That is, when all the pixels on the upper side of the black run pixel group are white pixels, the edge ration becomes 100%.
- the lower-side edge ratio is obtained by finding the number of white pixels that are adjacent to the lower side of the black run pixel group and calculating the ratio thereof.
- the edge ratio either the upper-side edge ratio or the lower-side edge ratio having the larger value is employed.
- step S 64 of FIG. 5 the line noise reliability is calculated.
- the line noise reliability is calculated by combining the black run and the edge ratio. Here, it is simply obtained as a product. That is, even when the black run is long, the reliability becomes small if the edge ratio is low.
- step S 65 of FIG. 5 the line noise reliability calculated in this way is registered to the line noise plane.
- FIG. 10 shows the line noise reliability of the binary image of FIG. 9A , which is obtained in this way.
- This line noise reliability plane is expressed as LC(d).
- the image is displayed in such a setting that the density becomes higher as the line noise reliability becomes larger.
- the black run of the line shown with a reference numeral 91 is separated into two. This is because the line in the vicinity of the point shown with a reference numeral 92 is disconnected, and a white pixel group appears thereby.
- the line of the black run shown with a reference numeral 101 corresponds to the binary image of the line 91 in FIG. 9A .
- the reason for the line noise reliability on the left side of the reference numeral 101 in FIG. 10 is large and that of the right side is small is because the black pixel group on the left side of the reference numeral 101 in FIG. 10 is connected to a black pixel group in the area on the left side thereof (not shown in this image).
- step S 66 of FIG. 5 it is judged whether or not the line noise reliability calculation processing is completed for all the lines.
- the next line is set and the procedure is returned to the step S 62 .
- the procedure is advanced to the step S 7 of FIG. 3 .
- the line noise reliability is checked for all the lines, and the maximum value is registered to the memory as the line noise reliability maximum value that corresponds to the current rotation angle d.
- step S 8 of FIG. 3 it is judged whether or not the entire rotation range is covered. When judged that it is not all covered, an angle incremented by one degree is set as a next rotation angle, for example, and the procedure is returned to the step S 5 . When judged that it is completed, the procedure is advanced to step S 9 of FIG. 3 . Normally, 180 degrees may be sufficient to be set as the rotation range. If the range of the directions of all the line noises is known beforehand, the rotation angles corresponding to the range of those directions may be set as the initial value and the final value.
- step S 9 of FIG. 3 the candidates for the rotation angle are selected through searching the rotated angles and corresponding line noise reliabilities that were registered to the memory in the step S 7 . This can be performed in the following manner.
- step S 10 of FIG. 4 the initial values of the rotation angle candidates are set.
- step S 11 of FIG. 4 the image rotating device 25 shown in FIG. 2 rotates the above-described binary image by the designated rotation angle d.
- This processing is the same as the processing of the step S 5 in FIG. 3 , so that the explanation thereof is omitted.
- step S 12 of FIG. 4 the line noise reliability calculating device 26 shown in FIG. 2 calculates the line noise reliability.
- This processing is the same as the processing of the step S 6 in FIG. 3 , so that the explanation thereof is omitted.
- step S 13 of FIG. 4 the noise area determining device 27 shown in FIG. 2 analyzes the line noise plane LC(d) and the binary image B(d), and determines the line noise area in the following manner.
- the line noise plane of about eight pixels on the upper and lower side is searched to determine the line noise reliability maximum values of the upper and lower sides, respectively.
- the determined maximum values are expressed as LNC_U and LNC_D, respectively. It is noted, however, that when it reaches a white pixel in searching the pixels on the upper and lower sides, the search is ended. Either LNC_U or LNC_D that has the smaller value is compared to the line noise reliability of the own pixels. When the former is larger than the reliability of the own pixels, the reliability of the own pixels is replaced with the former.
- This processing is effective for dealing with the line noise with the width of three pixels or more.
- the line on the inner side of the wide line noise has the small edge ratio, so that the line noise reliability also becomes small.
- the line noise reliability of the line on the inner side is corrected to a proper value through this processing.
- the area with the line noise reliability of more than the threshold value on the line noise plane is determined as the line noise determined area. If the threshold value is too large, the line noise eliminating performance is deteriorated. Meanwhile, the fingerprint ridgelines are eliminated if it is too small. Therefore, it is desirable to set a relatively small value within the range with which the fingerprint ridgelines are not eliminated.
- the dark lines in FIG. 11 indicate the determined area that is determined based on the line noise reliability shown in FIG. 10 .
- the area surrounded by two line noise determined areas within a range of about eight pixels on the upper and lower sides is also determined as a line noise adjacent area. It also often happens that such area surrounded by a plurality of line noises is in high density due to the influence of the line noises. Thus, such area is also set as the target of the density conversion.
- the areas displayed with low density in FIG. 11 indicate the line noise adjacent areas that are determined based on the line noise reliability of FIG. 10 .
- the areas other than the white background in FIG. 11 are the line noise areas corresponding to the line noise reliability of FIG. 10 .
- This line noise area plane is expressed as LA(d).
- the density converting device 28 shown in FIG. 2 uses the input image GI and converts the density of the pixels in the line noise area by a local image enhancing method (adaptive histogram equalization or adaptive contrast stretch).
- the local image enhancing method used for this contrast conversion employs a method that is equivalent to the one used in the step S 2 .
- the reference range of the local image enhancing method is set as the pixel group of about sixteen pixels on the right and left sides in the horizontal direction.
- the reason for restricting the reference range to the pixel group of one horizontal line is to restrict it to the area that has about the same line noise density. By restricting it to the area having about the same noise density, it is expected to eliminate the line noise component from the density-converted image.
- the reference area is set as the entire adjacent line noise areas, it is not possible to enhance only the fingerprint ridgelines accurately even if the local enhancement is performed because fluctuation in the background density is large.
- the reference area is restricted to one line of the line noise direction, a uniform background density can be expected. As a result, it is possible to enhance only the ridgelines in a proper manner.
- FIG. 12 shows the result of performing the density conversion on the area of FIG. 9B .
- This fingerprint image is expressed as GR(d). Comparing FIG. 9B to FIG. 12 , it can be fond that the line noise components are almost eliminated, and the fingerprint ridgelines are enhanced.
- step S 15 of FIG. 4 the image rotating device 25 shown in FIG. 2 rotates the image inversely.
- This processing can be achieved by designating the angle ⁇ d that is the angle to which a negative code is applied to the rotation angle designated in the step S 11 of FIG. 4 .
- This image is expressed as GR′ (d).
- step S 16 of FIG. 4 the image synthesizing device 29 shown in FIG. 2 produces a single image by synthesizing the two images; one is the image GR′ (d) that is obtained by eliminating the line noise for the current rotation angle candidate d, and the other is the image GC that is obtained as a result of the processing performed therebefore for the previous rotation angle candidates.
- the synthesizing method in this example the lower density among the densities in the two images is employed for each pixel. This is because the density value of the image from which the line noise is eliminated normally becomes small.
- the image GC′ (d obtained as a result of the above-described processing is registered to the memory as the latest synthesized image GC.
- FIG. 14A shows an input image GI
- FIG. 14B shows an enhanced image GE of the image GI.
- FIG. 14A shows an image GR′ ( 15 ) that is obtained as a result of the processing performed with the first rotation angle candidate of 15 degrees
- FIG. 14D shows an image GR′ ( 106 ) that is obtained as a result of the processing performed with the next rotation angle candidate of 106 degrees. It can be seen from those two fingerprint images that the line noises in each direction are eliminated.
- the image GR′ ( 15 ) that is obtained as a result of the processing performed with the first rotation angle candidate of 15 degrees is registered to the memory as GC.
- the image GR′ ( 106 ) that is the result of the current processing is generated.
- the image synthesizing device 29 shown in FIG. 2 synthesizes the two images by the above-described method to generate the synthesized image GC′ ( 106 ).
- This synthesized image GC′ ( 106 ) is replaced with the image already-registered to the memory, and registered to the memory as a new GC.
- the image synthesizing method in this example is equivalent to the followings. That is, when there are a plurality of line noise directions, the processing is executed individually for each direction, and a plurality of images from which the line noises are eliminated are synthesized. As another example, it is also possible to consider the image from which a line noise of a given direction is eliminated as the input image, and eliminate the line noise of a next direction therefrom. With this example, however, one of the line noises of another direction is already being eliminated in a region where the line noises intersect with each other. Thus, it tends to become difficult to detect the other line noise even if there is the line noise in the concerned direction.
- step S 17 of FIG. 4 it is judged whether or not the processing for all the rotation angle candidates is completed.
- the angle registered as the next rotation angle candidate is set, and the procedure is returned to the step S 11 .
- the procedure is advanced to step S 18 of FIG. 4 .
- the image in which the line noises are eliminated and the ridgelines are enhanced is outputted.
- a matching device and a feature extracting device are also considered as the output destinations.
- FIG. 13 shows an image that is obtained as a result of the processing performed on the input image of FIG. 6 through the above-described steps.
- This fingerprint image is expressed as GO. It can be seen from FIG. 13 that the line noises are eliminated therefrom and only the fingerprint ridgelines are enhanced.
- the density-enhanced image obtained by enhancing the density of the input image is set as the target image of the line noise elimination processing.
- still another example of the present invention can also set the input image in which the density is not enhanced as the target image of the processing.
- the background density obtained as a result of the noise area elimination processing is converted into the density of the same level as the background density of the non-noise image area so as to eliminate the noise by making it inconspicuous. Unless the background density of the non-noise area is uniform, the effect of the noise elimination processing cannot be expected.
- the background density of the input image is not uniform. This is the reason for setting the density enhanced image, which is obtained by making the background density over the entire area uniform with the local image enhancement processing, as the target image of the noise elimination processing.
- FIG. 15A is an example of such fingerprint image. In this case, it appears as a line noise of almost a vertical direction in the vicinity of the right edge of the image.
- the step S 2 of FIG. 3 may be omitted and the density conversion processing executed in the step S 14 of FIG. 4 may be performed in the following manner.
- the density converting device 28 shown in FIG. 2 converts the density by performing the adaptive contrast stretch on the pixels in the area that corresponds to the line noise area of the input image.
- a second reference range is defined for determining the target minimum value and the target maximum value of the density conversion.
- the second reference range is in the vicinity of the concerned pixel, and it is defined as a pixel group in the non-line noise area that is adjacent to the line noise area.
- the density is converted in the following manner.
- a pixel group of about thirty-three pixels in total from the concerned pixel in the line noise direction is extracted, and the minimum density value and the maximum density value among those are defined as minP and maxP, respectively.
- a pixel group of about thirty-three pixels in total from each of the adjacent pixels in the line noise direction is extracted, respectively, and the maximum density values and the minimum density values among those are determined.
- a weighted average of the two minimum density values in the two directions is calculated, and it is defined as mint.
- the added weight is defined as the reciprocal of the distance from the concerned pixel to the adjacent pixel.
- a weighted average of the two maximum density values is calculated, and it is defined as maxT.
- g ′ ( g - min ⁇ ⁇ P ) ⁇ ( max ⁇ ⁇ T - min ⁇ ⁇ T ) max ⁇ ⁇ P - min ⁇ ⁇ P + min ⁇ ⁇ T [ Expression ⁇ ⁇ 1 ]
- g′ density value after conversion
- minP local minimum value
- maxP local maximum value
- minT target minimum density value
- maxT target maximum density value
- FIG. 15B shows an image GO that is obtained by eliminating the line noises from the image of FIG. 15A in the manner described above. It can be seen by comparing FIG. 15B to FIG. 15A that the line noise components are almost eliminated, and the density is converted into the same level as the background density of the input image.
- the fingerprint image enhancing device 10 detects a straight-form line noise, and uses a local image enhancing method (adaptive histogram equalization or adaptive contrast stretch) restrictively on the noise area to enhance the ridgelines so as to eliminate the line noise.
- a local image enhancing method adaptive histogram equalization or adaptive contrast stretch
- enhancement and extraction of the fingerprint ridgelines can be achieved easily.
- it is applied to the latent fingerprint that is left behind, it is possible to display the enhanced fingerprint ridgelines with the line noise being eliminated.
- feature extraction can be performed by using the image from which the line noise is eliminated, so that more accurate feature quantity can be extracted. As a result, the accuracy of fingerprint matching is improved as well.
- the part outside the noise area of the image is enhanced (the step S 2 of FIG. 3 ) by the method equivalent to he local image enhancing method (the step s 14 of FIG. 4 ) which is used for converting the density inside the noise area.
- the step S 2 of FIG. 3 The part outside the noise area of the image is enhanced (the step S 2 of FIG. 3 ) by the method equivalent to he local image enhancing method (the step s 14 of FIG. 4 ) which is used for converting the density inside the noise area.
- the line noise can be eliminated effectively by setting the reference area as a straight-form pixel group of about thirty-three pixels in the line noise direction.
- the fingerprint ridgelines have the average ridgeline pitch of ten pixels (0.5 mm in actual distance). Thus, pixels in the number of about three times as the pixels in the pitch are considered rational as the minimum area that includes the fluctuation of the crossing fingerprint ridgelines that are tilted to some extent.
- the reference area When it is applied to the palm print image, the reference area may be set as a pixel group of about forty pixels, since the average ridgeline pitch of the palm print is wider by 25% than that of the fingerprint.
- the uniform background density can be taken the reference density.
- the ridgelines can be enhanced in a proper manner.
- the line noise When detecting the line noise from the fingerprint image, not only the number of consecutive black pixels in a given direction, but also the white pixel ratio of the lines adjacent to the line of the consecutive black pixels in the orthogonal direction is also detected as the edge feature quantity from the binary image. Then, the line noise is detected based on a combination of the number of consecutive black pixels and the edge feature quantity. Thus, the straight-form wide fingerprint ridgeline is not mistakenly detected as a line noise.
- the maximum value and the minimum value among the density values of the non-line noise area in the vicinity of the concerned pixel are used as the target values for converting the density. With this, it is possible to eliminate the line noise from the image that is not being enhanced.
- the input image is a fingerprint image or a palm print image
- the density converting device therein may: set a straight-form area (constituted with pixels of about three times the number of pixels that correspond to the average ridgeline pitch along the line noise direction with respect to the concerned pixel) as a first reference area; extract two areas constituted with almost the same number of pixels as that of the reference area as a second reference area from the non-line noise areas that are adjacent to the upper and lower sides of the line noise area that contains the concerned pixel and determine the density conversion target minimum value and the density conversion target maximum value based on the minimum density value and the maximum density value of the pixels contained in the second reference area.
- the “ridgeline pitch” is a distance (pitch) between each of the centers of the neighboring ridgelines.
- the maximum value and the minimum value among the density values of the non-line noise area in the vicinity of the concerned pixel are used as the density conversion target values when enhancing the pixels in the detected line noise area of the image.
- the line noise can be eliminated even when the input image is taken as the target of the noise elimination processing.
- the straight-form area along the line noise direction is set as the reference area, a uniform background density can be taken as the reference density. As a result, it is possible to enhance only the ridgelines in a proper manner.
- the number of pixels in the reference area is set as about three times the average ridgeline pitch, so that it is possible to set, as the reference area, the area that includes the fluctuation of the fingerprint ridgelines that intersect with a specific direction in a tilted manner to some extent. Therefore, the line noise can be eliminated effectively.
- the number of pixels in the reference area is about thirty-one pixels in the case of a fingerprint image (the average ridgeline pitch is about 0.5 mm) of 500 dpi, and it is about forty pixels (25% as many) in the case of a palm print image.
- the input image is a fingerprint image or a palm print image
- the density converting device therein may set a straight-form area constituted with pixels of about three times the number of pixels that correspond to the average ridgeline pitch along the line noise direction with respect to the concerned pixel) as the reference area to perform the local image enhancement thereon.
- the number of pixels in the reference area is set as about three times the actual dimension of the ridgeline, so that it is possible to set, as the reference area, the area that includes the fluctuation of the fingerprint ridgelines that intersect with a specific direction in a tilted manner to some extent. Therefore, the line noise can be eliminated effectively.
- the image synthesizing device may synthesize the images by taking the minimum density value (among the densities of the pixels that correspond to each density converted image) as the density of each pixel in the synthesized image.
- the input image is a fingerprint image or a palm print image to which the enhancement processing is not performed and, in a density conversion step, a straight-form area (constituted with pixels of about three times the number of pixels that correspond to the average ridgeline pitch along the line noise direction with respect to the concerned pixel) is set as a first reference area; two areas constituted with almost the same number of pixels as that of the reference area are extracted as a second reference area from the non-line noise areas that are adjacent to the upper and lower sides of the line noise area that contains the concerned pixel; and the density conversion target minimum value and the density conversion target maximum value are determined based on the minimum density value and the maximum density value of the pixels contained in the second reference area.
- a uniform background density can be taken as the reference density. As a result, it is possible to enhance only the ridgelines in a proper manner.
- the reference area the area that includes the fluctuation of the fingerprint ridgelines that intersect with a specific direction in a tilted manner to some extent. Therefore, the line noise can be eliminated effectively.
- the input image is a fingerprint image or a palm print image and, in a density conversion step, a straight-form area (constituted with pixels of about three times the number of pixels that correspond to the average ridgeline pitch along the line noise direction with respect to the concerned pixel) is set as the reference area to perform the local image enhancement thereon.
- the number of pixels in the reference area is set as about three times the actual dimension of the ridgeline, so that it is possible to set, as the reference area, the area that includes the fluctuation of the fingerprint ridgelines that intersect with a specific direction in a tilted manner to some extent. Therefore, the line noise can be eliminated effectively.
- the images may be synthesized by setting the minimum density value (among the density of the pixels that correspond to each density converted image) as the density of each pixel in the synthesized image.
- the input image is a fingerprint image or a palm print image to which the enhancement processing is not performed and, in a density conversion processing, a straight-form area (constituted with pixels of about three times the number of pixels that correspond to the average ridgeline pitch along the line noise direction with respect to the concerned pixel) is set as a first reference area; two areas constituted with almost the same number of pixels as that of the reference area are extracted as a second reference area from the non-line noise areas that are adjacent to the upper and lower sides of the line noise area that contains the concerned pixel; and the density conversion target minimum value and the density conversion target maximum value are determined based on the minimum density value and the maximum density value of the pixels contained in the second reference area.
- a uniform background density can be taken as the reference density. As a result, it is possible to enhance only the ridgelines in a proper manner.
- the reference area the area that includes the fluctuation of the fingerprint ridgelines that intersect with a specific direction in a tilted manner to some extent. Therefore, the line noise can be eliminated effectively.
- the input image is a fingerprint image or a palm print image and, in a density conversion processing, a straight-form area (constituted with pixels of about three times the number of pixels that correspond to the average ridgeline pitch along the line noise direction with respect to the concerned pixel) is set as the reference area to perform the local image enhancement thereon.
- the number of pixels in the reference area is set as about three times the actual dimension of the ridgeline, so that it is possible to set, as the reference area, the area that includes the fluctuation of the fingerprint ridgelines that intersect with a specific direction in a tilted manner to some extent. Therefore, the line noise can be eliminated effectively.
- the images may be synthesized with the image synthesizing processing by setting the minimum density value (among the density of the pixels that correspond to each density converted image) as the density of each pixel in the synthesized image.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Image Processing (AREA)
- Collating Specific Patterns (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Input (AREA)
Abstract
Description
where,
g′: density value after conversion
g: density value of input image
minP: local minimum value
maxP: local maximum value
minT: target minimum density value
maxT: target maximum density value
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-212660 | 2006-08-03 | ||
JP2006212660A JP4232800B2 (en) | 2006-08-03 | 2006-08-03 | Line noise elimination device, line noise elimination method, line noise elimination program |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080031531A1 US20080031531A1 (en) | 2008-02-07 |
US7916957B2 true US7916957B2 (en) | 2011-03-29 |
Family
ID=38961962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/833,165 Active 2030-01-26 US7916957B2 (en) | 2006-08-03 | 2007-08-02 | Line noise eliminating apparatus, line noise eliminating method, and line noise eliminating program |
Country Status (4)
Country | Link |
---|---|
US (1) | US7916957B2 (en) |
JP (1) | JP4232800B2 (en) |
DE (1) | DE102007035884B4 (en) |
FR (1) | FR2904716B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080226143A1 (en) * | 2007-03-12 | 2008-09-18 | Nec Corporation | Character noise eliminating apparatus, character noise eliminating method, and character noise eliminating program |
US20140185936A1 (en) * | 2011-06-09 | 2014-07-03 | Mdba France | Method and device for automatically determining the ridge lines of a variable-height area |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4232804B2 (en) * | 2006-08-25 | 2009-03-04 | 日本電気株式会社 | Image density conversion method, image enhancement processing apparatus, and program thereof |
JP2008206968A (en) * | 2007-01-31 | 2008-09-11 | Fujita Gakuen | Image processing apparatus |
JP5007953B2 (en) * | 2008-03-14 | 2012-08-22 | 日本電気株式会社 | Image processing apparatus, image processing method, and program |
US8582838B1 (en) * | 2008-12-01 | 2013-11-12 | Wells Fargo Bank N.A. | Fingerprint check to reduce check fraud |
US20100244206A1 (en) * | 2009-03-31 | 2010-09-30 | International Business Machines Corporation | Method and structure for threshold voltage control and drive current improvement for high-k metal gate transistors |
CN102129678A (en) * | 2010-01-12 | 2011-07-20 | 鸿富锦精密工业(深圳)有限公司 | Image characteristic model establishment system, method and image processing system using system and method |
JP5664659B2 (en) | 2010-11-08 | 2015-02-04 | 日本電気株式会社 | Image verification device |
EP4134914A1 (en) | 2011-04-20 | 2023-02-15 | NEC Corporation | Tenprint card input device, tenprint card input method and storage medium |
KR101281511B1 (en) | 2012-02-14 | 2013-07-03 | 전남대학교산학협력단 | Method of automatic analysis for dna fingerprint image and system thereof |
KR102668332B1 (en) | 2017-02-24 | 2024-05-23 | 삼성디스플레이 주식회사 | Method and apparatus for recognizing finger print |
KR20200000568A (en) * | 2018-06-25 | 2020-01-03 | 주식회사 바이오로그디바이스 | System for Removing Noise from Fingerprint Images |
CN109118453B (en) * | 2018-08-28 | 2022-03-04 | 西北核技术研究所 | Image processing method for background suppression |
JP7248039B2 (en) | 2018-12-26 | 2023-03-29 | 日本電気株式会社 | Information processing device, information processing method and program |
US11314961B2 (en) * | 2019-06-12 | 2022-04-26 | Beijing Boe Display Technology Co., Ltd. | Texture image acquisition method, texture image acquisition circuit and display panel |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6443349A (en) | 1987-08-07 | 1989-02-15 | Toyota Motor Corp | Production of metallic carrier |
JPH08272956A (en) | 1995-03-31 | 1996-10-18 | Nippon Digital Kenkyusho:Kk | Method and device for noise removal |
JPH08315135A (en) | 1995-05-19 | 1996-11-29 | Meidensha Corp | Segment detecting method for drawing input device |
JP2000082110A (en) | 1998-07-02 | 2000-03-21 | Ricoh Co Ltd | Ruled line deletion device, character picture extraction device, ruled line deletion method, character picture extraction method and storage medium |
JP2000261680A (en) | 1999-03-09 | 2000-09-22 | Riso Kagaku Corp | Image processing method and its device |
JP2001101399A (en) | 1999-09-28 | 2001-04-13 | Toshiba Corp | Method for detecting image inclination, method for detecting margin, method for correcting image inclination and document image processor |
US6360021B1 (en) * | 1998-07-30 | 2002-03-19 | The Regents Of The University Of California | Apparatus and methods of image and signal processing |
JP2002099912A (en) | 2000-09-21 | 2002-04-05 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for processing image, and image processing program storage medium |
JP3465226B2 (en) | 1999-10-18 | 2003-11-10 | 学校法人慶應義塾 | Image density conversion processing method |
JP2004234333A (en) | 2003-01-30 | 2004-08-19 | Nippon Hoso Kyokai <Nhk> | Image modification information generation method, device and program |
JP2005010842A (en) | 2003-06-16 | 2005-01-13 | Mitsubishi Electric Corp | Banded pattern extraction system and line pattern extraction method |
US6990252B2 (en) * | 2000-05-23 | 2006-01-24 | Adobe Systems, Inc. | System for manipulating noise in digital images |
US6990249B2 (en) * | 2001-02-27 | 2006-01-24 | Konica Corporation | Image processing methods and image processing apparatus |
US7415145B2 (en) * | 2003-12-30 | 2008-08-19 | General Electric Company | Methods and apparatus for artifact reduction |
US7756312B2 (en) * | 2006-10-19 | 2010-07-13 | General Electric Company | Methods and apparatus for noise estimation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006212660A (en) | 2005-02-02 | 2006-08-17 | Nihon Superior Co Ltd | Solder alloy having excellent low temperature resistance and method for producing the same |
-
2006
- 2006-08-03 JP JP2006212660A patent/JP4232800B2/en active Active
-
2007
- 2007-07-30 FR FR0756787A patent/FR2904716B1/en not_active Expired - Fee Related
- 2007-07-31 DE DE102007035884.0A patent/DE102007035884B4/en not_active Expired - Fee Related
- 2007-08-02 US US11/833,165 patent/US7916957B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6443349A (en) | 1987-08-07 | 1989-02-15 | Toyota Motor Corp | Production of metallic carrier |
JPH08272956A (en) | 1995-03-31 | 1996-10-18 | Nippon Digital Kenkyusho:Kk | Method and device for noise removal |
JPH08315135A (en) | 1995-05-19 | 1996-11-29 | Meidensha Corp | Segment detecting method for drawing input device |
JP2000082110A (en) | 1998-07-02 | 2000-03-21 | Ricoh Co Ltd | Ruled line deletion device, character picture extraction device, ruled line deletion method, character picture extraction method and storage medium |
US6360021B1 (en) * | 1998-07-30 | 2002-03-19 | The Regents Of The University Of California | Apparatus and methods of image and signal processing |
JP2000261680A (en) | 1999-03-09 | 2000-09-22 | Riso Kagaku Corp | Image processing method and its device |
JP2001101399A (en) | 1999-09-28 | 2001-04-13 | Toshiba Corp | Method for detecting image inclination, method for detecting margin, method for correcting image inclination and document image processor |
JP3465226B2 (en) | 1999-10-18 | 2003-11-10 | 学校法人慶應義塾 | Image density conversion processing method |
US6990252B2 (en) * | 2000-05-23 | 2006-01-24 | Adobe Systems, Inc. | System for manipulating noise in digital images |
JP2002099912A (en) | 2000-09-21 | 2002-04-05 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for processing image, and image processing program storage medium |
US6990249B2 (en) * | 2001-02-27 | 2006-01-24 | Konica Corporation | Image processing methods and image processing apparatus |
JP2004234333A (en) | 2003-01-30 | 2004-08-19 | Nippon Hoso Kyokai <Nhk> | Image modification information generation method, device and program |
JP2005010842A (en) | 2003-06-16 | 2005-01-13 | Mitsubishi Electric Corp | Banded pattern extraction system and line pattern extraction method |
US7415145B2 (en) * | 2003-12-30 | 2008-08-19 | General Electric Company | Methods and apparatus for artifact reduction |
US7756312B2 (en) * | 2006-10-19 | 2010-07-13 | General Electric Company | Methods and apparatus for noise estimation |
Non-Patent Citations (3)
Title |
---|
ANSI/NIST-ITL-1-2000 Data Format for the Interchange of Fingerprint, Facial, & Scar mark & Tattoo (SMT) Information that is standardized by National Institute of Standards and Technology, 2000. |
Cannon, M., et al., "Background Pattern Removal by Power Spectral Filtering", Applied Optics, Mar. 15, 1983. pp. 777-779, vol. 22, No. 6, Optical Society of America. |
Hong, et al., "Finger Image Enhancement: Algorithm and Performance Evaluation (1998)", IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, pp. 1-30. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080226143A1 (en) * | 2007-03-12 | 2008-09-18 | Nec Corporation | Character noise eliminating apparatus, character noise eliminating method, and character noise eliminating program |
US8194941B2 (en) * | 2007-03-12 | 2012-06-05 | Nec Corporation | Character noise eliminating apparatus, character noise eliminating method, and character noise eliminating program |
US20140185936A1 (en) * | 2011-06-09 | 2014-07-03 | Mdba France | Method and device for automatically determining the ridge lines of a variable-height area |
US9064141B2 (en) * | 2011-06-09 | 2015-06-23 | Mbda France | Method and device for automatically determining the ridge lines of a variable-height area |
Also Published As
Publication number | Publication date |
---|---|
FR2904716A1 (en) | 2008-02-08 |
DE102007035884B4 (en) | 2017-08-24 |
JP4232800B2 (en) | 2009-03-04 |
JP2008040693A (en) | 2008-02-21 |
US20080031531A1 (en) | 2008-02-07 |
DE102007035884A1 (en) | 2008-07-17 |
FR2904716B1 (en) | 2012-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7916957B2 (en) | Line noise eliminating apparatus, line noise eliminating method, and line noise eliminating program | |
EP2104059B1 (en) | Apparatus and method for processing image | |
US8818099B2 (en) | Document image binarization and segmentation using image phase congruency | |
US8457403B2 (en) | Method of detecting and correcting digital images of books in the book spine area | |
EP0543590B1 (en) | Method for comparing word shapes | |
JP4877374B2 (en) | Image processing apparatus and program | |
US20070253040A1 (en) | Color scanning to enhance bitonal image | |
US20030152272A1 (en) | Detecting overlapping images in an automatic image segmentation device with the presence of severe bleeding | |
US8014574B2 (en) | Character noise eliminating apparatus, character noise eliminating method, and character noise eliminating program | |
US8331670B2 (en) | Method of detection document alteration by comparing characters using shape features of characters | |
US8194941B2 (en) | Character noise eliminating apparatus, character noise eliminating method, and character noise eliminating program | |
US7961968B2 (en) | Image density conversion method, image enhancement processor, and program thereof | |
US8995730B2 (en) | Image processing apparatus for analyzing and enhancing fingerprint images | |
JP2007048000A (en) | Fingerprint image identification system, fingerprint image identification method, and program | |
US20220392240A1 (en) | Computer vision method for detecting document regions that will be excluded from an embedding process and computer programs thereof | |
CN111027637A (en) | Character detection method and computer readable storage medium | |
CN112926695A (en) | Image recognition method and system based on template matching | |
CN113537216B (en) | Dot matrix font text line inclination correction method and device | |
CN116469090A (en) | Method and device for detecting code spraying pattern, electronic equipment and storage medium | |
CN114140620A (en) | Object straight line contour detection method | |
JP2009259190A (en) | Character recognition program and character recognition device | |
CN109271986B (en) | Digital identification method based on Second-Confirm | |
CN111670458A (en) | Reading system | |
JP6797763B2 (en) | Character recognition device | |
JP2005071243A (en) | Image processing apparatus, method and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARA, MASANORI;REEL/FRAME:019737/0906 Effective date: 20070702 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |