Nothing Special   »   [go: up one dir, main page]

US7879741B2 - Laser thermal annealing of lightly doped silicon substrates - Google Patents

Laser thermal annealing of lightly doped silicon substrates Download PDF

Info

Publication number
US7879741B2
US7879741B2 US11/478,171 US47817106A US7879741B2 US 7879741 B2 US7879741 B2 US 7879741B2 US 47817106 A US47817106 A US 47817106A US 7879741 B2 US7879741 B2 US 7879741B2
Authority
US
United States
Prior art keywords
substrate
annealing
radiation beam
preheating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/478,171
Other versions
US20060246694A1 (en
Inventor
Somit Talwar
Michael O. Thompson
Boris Grek
David A. Markle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeco Instruments Inc
Original Assignee
Ultratech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultratech Inc filed Critical Ultratech Inc
Priority to US11/478,171 priority Critical patent/US7879741B2/en
Publication of US20060246694A1 publication Critical patent/US20060246694A1/en
Application granted granted Critical
Publication of US7879741B2 publication Critical patent/US7879741B2/en
Assigned to VEECO INSTRUMENTS INC. reassignment VEECO INSTRUMENTS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ULTRATECH, INC.
Assigned to HSBC BANK USA, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment HSBC BANK USA, NATIONAL ASSOCIATION, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: VEECO INSTRUMENTS INC.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment

Definitions

  • the present invention relates to laser thermal annealing, and in particular relates to apparatus and methods for performing laser thermal annealing of substrates that do not efficiently absorb the annealing radiation beam at ambient temperatures.
  • Laser thermal annealing or LTA is a technique used to quickly raise and lower the temperature of the surface of a substrate to produce a change in properties.
  • An example might include annealing and/or activating dopants in the source, drain or gate regions of transistors used to form integrated devices or circuits.
  • LTA can also be used to form silicide regions in integrated devices or circuits, to lower poly-silicon runner resistances, or to trigger a chemical reaction to either form or remove substances from a substrate (or wafer).
  • LTA offers the possibility of speeding up the annealing cycle by a factor of 1000 over conventional annealing techniques, thereby virtually eliminating diffusion of dopant impurities during the annealing or activation cycle used on silicon wafers. The result is a more abrupt dopant profile and, in some cases, a higher level of activation. This translates into higher-performance (e.g., faster) integrated circuits.
  • U.S. patent application Ser. No. 10/287,864 discloses performing LTA of doped silicon substrates using CO 2 laser radiation.
  • the laser radiation is focused into a narrow line, which is scanned at constant velocity in a raster pattern across the substrate.
  • this approach works well only on relatively heavily doped substrates (i.e., a dopant concentration of about 3 ⁇ 10 17 atoms/cm 3 or greater), where the absorption length of the laser radiation in the doped silicon is less than or roughly comparable to the thermal diffusion length.
  • lightly doped substrates i.e., a dopant concentration of about 1 ⁇ 10 16 atoms/cm 3 or less
  • the CO 2 laser radiation passes through the substrate without imparting appreciable energy to the substrate.
  • a first aspect of the invention is an apparatus for performing laser thermal annealing of a substrate having a surface.
  • the apparatus includes a laser capable of generating continuous annealing radiation having a wavelength that is not substantially absorbed by the substrate at room temperature.
  • the apparatus also includes an annealing optical system adapted to receive the annealing radiation and form an annealing radiation beam that forms a first image at the substrate surface, and wherein the first image is scanned across the substrate surface.
  • the apparatus further includes a heating device for heating at least a portion of the substrate to a critical temperature such that the annealing radiation beam incident upon the heated portion is substantially absorbed near the surface of the substrate during scanning.
  • heating a portion of the substrate can be done using a short-wavelength laser diode beam that immediately precedes the long-wavelength annealing beam.
  • a second aspect of the invention is a method of laser thermal annealing a substrate.
  • the method includes providing an annealing radiation beam from a laser having a wavelength that at room temperature is not substantially absorbed by the substrate, and heating at least a portion of the substrate to a critical temperature such that the annealing radiation beam is capable of being substantially absorbed near the surface of the substrate at said heated portion.
  • the method also includes initiating a self-sustaining annealing condition by heating a portion of the substrate surface immediately in advance of scanning the annealing radiation beam over the substrate.
  • FIG. 1A is a cross-sectional view of an example embodiment of the LTA apparatus of the present invention that includes an LTA optical system along with a silicon substrate being processed by the system, wherein the LTA apparatus includes a heated chuck to support and pre-heat the substrate, and an optional heat shield surrounding the chuck to reduce radiation coupling to the rest of the apparatus and to promote efficient substrate heating;
  • FIG. 1B is a cross-sectional view of an embodiment of the LTA apparatus of the present invention similar to that shown in FIG. 1A , that includes a heated enclosure surrounding the substrate for pre-heating the substrate;
  • FIG. 1C is a cross-sectional view of an embodiment of the LTA apparatus of the present invention similar to that shown in FIG. 1A , wherein the heated chuck and optional heat shield are replaced by an optical heating system adapted to preheat at least a portion of the substrate using a preheating radiation beam;
  • FIG. 2 is a plot of the absorption path length L A ( ⁇ m) in an undoped silicon substrate versus the substrate temperature T S (° C.) for a 10.6 ⁇ m wavelength annealing radiation beam, along with a plot of the diffusion length L D associated with the radiation beam having a 200 ⁇ s dwell time, versus substrate temperature T S (° C.);
  • FIG. 3 is a computer simulation of the substrate temperature profile as a function of depth ( ⁇ m) and annealing radiation beam position ( ⁇ m) illustrating the “hot spot” formed in the substrate by the annealing radiation beam associated with the self-sustaining annealing condition;
  • FIG. 4A is a schematic diagram showing an example embodiment of the relative intensities and beam profiles of the pre-heating and annealing radiation beams as a function of position on the substrate surface;
  • FIG. 4B is a close-up cross-sectional view of the substrate illustrating how heat from the preheating radiation beam imaged in front of the annealing radiation beam promotes absorption of the annealing radiation beam in the substrate to effectuate the self-sustaining annealing condition;
  • FIG. 5 is a plot of the maximum substrate temperature T MAX (° C.) created by irradiating a heavily doped silicon substrate with the annealing radiation beam having a wavelength of 10.6 ⁇ m, versus the incident power P I (W/cm) of the annealing radiation beam;
  • FIG. 6 is a plot, obtained by finite-element simulation, of the maximum substrate temperature T MAX (° C.) as a function of the initial substrate temperature T I for different incident powers P I of the annealing radiation beam for an undoped substrate;
  • FIG. 7 is a plot of the absorption length L A ( ⁇ m) of the 780 nm preheating radiation beam in silicon as a function of substrate temperature T S (° C.);
  • FIG. 8A is a cross-sectional view of an embodiment of the optical relay system of FIG. 1C , as viewed in the Y-Z plane;
  • FIG. 8B is a cross-sectional view of the embodiment of the optical relay system of FIG. 1C and FIG. 8A , as viewed in the X-Z plane;
  • FIG. 9A is a close-up cross-sectional view in the X-Z plane of the heating radiation source and the cylindrical lens array;
  • FIG. 9B is a close-up cross-sectional view in the Y-Z plane of the heating radiation source and the cylindrical lens array;
  • FIG. 10A is a close-up schematic diagram of the preheating radiation source, relay lens and preheating radiation beam at normal incidence to the substrate and further including a polarizer and quarter waveplate arranged in the preheating radiation beam to reduce the amount of preheating radiation reflected from the substrate and returning to the preheating radiation source; and
  • FIG. 10B is a close-up schematic diagram of the preheating radiation source, relay lens and preheating radiation beam at near-normal incidence to the substrate and further including a polarizer and Faraday rotator arranged in the preheating radiation beam to reduce the amount of preheating radiation scattered from the substrate and returning to the preheating radiation source.
  • the present invention relates to laser thermal annealing (LTA) of substrates and in particular relates to apparatus and methods for performing LTA of lightly doped silicon wafers (substrates).
  • LTA laser thermal annealing
  • lightly doped means herein a dopant concentration of about 10 16 atoms/cm 3 or less.
  • the dopant concentration in the substrate may be that associated with normal substrate production to achieve a desired resistivity level and substrate type (i.e., N-type or P-type).
  • FIG. 1A is a cross-sectional view of an embodiment of an LTA apparatus 8 of the present invention, along with a substrate 10 to be annealed.
  • Substrate 10 has an upper surface 12 and a body (bulk) region 16 that is “undoped,” or strictly speaking, more lightly doped than the very small junction regions or devices that typically contain very high doping levels only in an extremely shallow region.
  • the reference letter N denotes the normal to substrate upper surface 12 .
  • substrate 10 is a silicon wafer.
  • LTA apparatus 8 includes an LTA optical system 25 having an annealing radiation source 26 and an LTA lens 27 arranged along an optical axis A 1 .
  • Lens 27 receives continuous (i.e., non-pulsed) annealing radiation 18 from annealing radiation source 26 and creates a continuous annealing radiation beam 20 that forms an image 30 (e.g., a line image) at substrate surface 12 .
  • Annealing radiation beam 20 is incident upper surface 12 at an incident angle ⁇ 20 as measured relative to surface normal N and optical axis A 1 .
  • Arrow 22 indicates an example direction of motion of annealing radiation beam 20 relative to substrate surface 12 .
  • Substrate 10 is supported by a chuck 28 , which in turn is supported by a movable stage MS operatively connected to a stage driver 29 that causes the stage (and hence the substrate) to move at select speeds and directions relative to annealing radiation beam 20 or some other reference.
  • stage MS is capable of moving in at least two dimensions.
  • LTA apparatus 8 includes a reflected radiation monitor M 1 and a temperature monitor M 2 .
  • Reflected radiation monitor M 1 is arranged to receive radiation reflected from substrate surface 12 , as indicated by radiation 20 R.
  • Temperature monitor M 2 is arranged to measure the temperature of substrate surface 12 , and in an example embodiment is arranged along the surface normal N to view the substrate at normal incidence at or near where image 30 is formed by annealing radiation beam 20 .
  • Monitors M 1 and M 2 are coupled to a controller (discussed immediately below) to provide for feedback control based on measurements of the amount of reflected radiation 20 R and/or the measured temperature of substrate surface 12 , as described in greater detail below.
  • LTA apparatus 8 further includes a controller 32 operatively connected to annealing radiation source 26 , stage driver 29 , monitors M 1 and M 2 , as well as to an optional monitor M 3 contained in lens 27 that serves as an incident power monitor.
  • Controller 32 may be, for example, a microprocessor coupled to a memory, or a microcontroller, programmable logic array (PLA), field-programmable logic array (FPLA), programmed array logic (PAL) or other control device (not shown).
  • PLA programmable logic array
  • FPLA field-programmable logic array
  • PAL programmed array logic
  • the controller 32 can operate in two modes: 1) open-loop, wherein it maintains a constant power delivered to substrate 10 by annealing radiation beam 20 along with a constant scan rate via stage driver 29 ; and 2) closed-loop, wherein it maintains a constant maximum temperature on substrate surface 12 or a constant power absorbed in the substrate.
  • the maximum substrate temperature varies directly with the absorbed power and inversely as the square root of the scan velocity.
  • controller 32 receives a signal (e.g., an electrical signal), such as the maximum substrate temperature via signal S 2 from temperature monitor M 2 and controls either the incident power or the scan rate to maintain a constant maximum substrate temperature.
  • a signal e.g., an electrical signal
  • the absorbed power P a is obtained by subtracting power P 30 in reflected annealing radiation beam 20 R via signal S 1 generated by reflected radiation monitor M 1 from the incident power P I of annealing radiation beam 20 obtained from sampling a portion of the annealing radiation beam via signal S 4 .
  • controller 32 is adapted to calculate parameters based on the received signals and input parameters (e.g., desired absorbed power level and dwell time).
  • the controller 32 is also coupled to receive an external signal S 3 from an operator or from a master controller (not shown) that is part of a larger assembly or processing tool.
  • This parameter is indicative of the predetermined dose (amount) of annealing radiation 20 to be supplied to process the substrate or the maximum substrate temperature desired.
  • the parameter signal(s) can also be indicative of the intensity, scan velocity, scan speed, and/or number of scans to be used to deliver a predetermined dose of annealing radiation 20 to substrate 10 .
  • annealing radiation source 26 is a CO 2 laser so that annealing radiation beam 20 has a wavelength of 10.6 ⁇ m.
  • annealing radiation source 26 is any continuous radiation source that emits radiation having a wavelength not substantially absorbed by a substrate at room temperature, but is substantially absorbed by the same substrate when the substrate, or a sufficient portion of the top of the substrate, is at a higher temperature.
  • annealing radiation source 26 is a laser.
  • LTA apparatus 8 is adapted to take advantage of the absorption of annealing radiation beam 20 near the top of the substrate to efficiently raise the temperature of the top of the substrate while leaving the temperature of the body of the substrate substantially unchanged.
  • the present invention is directed to increasing the temperature of the wafer at or near the surface where devices (e.g., transistors) are formed, rather than to heating the wafer body.
  • lightly doped and undoped substrates are difficult to anneal because long-wavelength radiation beams pass right through the substrate without heating the top surface appreciably.
  • highly doped substrates are not difficult to anneal because the incident annealing radiation is absorbed in the first 100 microns or so of material and raises the temperature to the desired annealing temperature.
  • the body (bulk) 16 of substrate 10 which does not absorb appreciable radiation from the beam and is not heated, serves to quickly cool the top surface regions when the annealing radiation beam 20 is no longer applied to the substrate.
  • the present invention takes advantage of the fact that absorption of radiation in lightly doped silicon at certain infrared wavelengths, such as the CO 2 laser wavelength of 10.6 ⁇ m, strongly depends on the substrate temperature. Once appreciable absorption of annealing to radiation beam 20 occurs, the substrate surface temperature increases, which results in stronger absorption, which in turn results in stronger heating of the substrate surface, and so on.
  • FIG. 2 is a plot of the absorption length L A ( ⁇ m) (vertical axis) in a silicon substrate versus the substrate temperature T S (° C.) for 10.6 ⁇ m wavelength radiation. Also included in the plot are points for the diffusion length L D ( ⁇ m) for a 200 ⁇ s dwell time also as a function of substrate temperature T S .
  • the absorption length L A is the thickness it takes to attenuate the intensity of the annealing radiation beam 20 by 1/e.
  • the thermal diffusion length L D is the depth to which an instantaneous surface temperature rise will propagate into a material after a certain dwell time. Note that L A and L D have about the same value of ⁇ 60 ⁇ m at a temperature T S ⁇ 600° C.
  • absorption path length L A with substrate temperature T S creates two possible steady-state conditions, namely: (1) Annealing radiation beam 20 passes through the substrate without being substantially absorbed and thus does not produce substantial heating, or (2) annealing radiation beam 20 is substantially absorbed near substrate surface 12 , thereby producing a “hot spot” at and just below the substrate surface corresponding to image 30 that travels with annealing radiation beam 20 as the beam moves (i.e., is scanned) over the substrate surface.
  • FIG. 3 is a computer simulation of the substrate temperature (° C.) profile as a function of depth ( ⁇ m) and annealing radiation beam position ( ⁇ m).
  • the temperature profile is the hot spot (denoted by 31 ), which travels within the substrate and across substrate surface 12 . Traveling hot spot 31 serves to preheat the region of substrate 10 in front of the advancing image 30 by thermal diffusion (see FIG. 4B , discussed below).
  • the substrate preheating associated with the propagation of hot spot 31 allows the radiation in annealing radiation beam 20 to be efficiently absorbed near upper surface 12 as the beams are scanned over the substrate surface.
  • Steady-state condition (2) is the one sought to be created using apparatus 8 and the accompanying methods of the present invention, and is referred to herein as the “self-sustaining annealing condition.”
  • the general method of creating a self-sustaining annealing condition includes heating substrate 10 (or select regions or portions thereof) to a critical temperature T C (e.g., 350° C. or greater, as discussed in more detail below) so that annealing radiation beam 20 is substantially absorbed by the substrate, i.e., is absorbed to the point wherein the self-sustaining annealing condition is initiated.
  • T C critical temperature
  • T C depends on the temperature distribution within the substrate, its dopant concentration, and the annealing radiation beam intensity.
  • the critical temperature T C is determined empirically. This may include, for example, measuring the maximum temperature produced by an annealing radiation beam for a test substrate having either a variety of initial temperature conditions or a constant initial temperature condition and a variety of annealing and preheating radiation beam intensities.
  • the preheating of substrate 10 to give rise to the self-sustaining annealing condition can be accomplished in a number of ways.
  • an LTA apparatus 8 that include heating devices for heating substrate 10 to practice the method of creating the self-sustaining annealing condition in lightly doped silicon substrates 10 for the purpose of performing LTA are set forth below.
  • chuck 28 is thermally conductive and includes a heating element 50 connected to a power source 52 , which in turn is connected to, and controlled by, controller 32 .
  • a thermal insulating layer 53 surrounds the bottom and sides of the chuck 28 to limit unwanted heating of the stage and the loss of heat from the chuck.
  • controller 32 activates power supply 52 , which in turn supplies power to heating element 50 .
  • heating element 50 generates heat 56 .
  • the amount of generated heat 56 is controlled by a temperature sensor 57 in the chuck and operatively connected to power supply 52 (or alternatively to controller 32 ) so that the chuck temperature is limited to a certain, predetermined, maximum value.
  • apparatus 8 also optionally includes a heat shield 62 supported above substrate 12 so as to reflect heat 56 back to the substrate. This results in more uniform heating of the substrate and less heating of the apparatus components on the opposite side of the shield.
  • heat shield 62 is a gold-coated glass plate. Heat shield 62 includes an aperture 64 that allows annealing radiation beam 20 to reach surface 12 of substrate 10 .
  • apparatus 8 includes a heated enclosure 80 (e.g., an oven) having an interior region 82 large enough to enclose both substrate 10 and chuck 28 or the substrate, chuck and stage MS.
  • Enclosure 80 includes additional heating elements 50 (preferably in addition to the one included in chuck 28 ) connected to power source 52 .
  • Power source 52 is connected to controller 32 .
  • enclosure 80 includes a window or aperture 84 that allows annealing radiation beam 20 to reach surface 12 of substrate 10 .
  • Thermal insulating layer 53 discussed above in connection with FIG. 1A , is preferably present on the sides and bottom of the chuck to limit unwanted loss of heat from the chuck to the stage.
  • controller 32 activates power supply 52 , which in turn supplies power to heating elements 50 .
  • heating elements 50 generate heat 56 , thereby raising the temperature of the chuck, the substrate and the immediate surroundings to a maximum critical temperature T C of about 400° C.
  • Enclosure 80 is preferably thermally insulated so that heat 56 remains trapped within interior region 82 , thereby promoting efficient and uniform heating of the substrate.
  • apparatus 8 includes a preheating optical relay system 140 having a preheating radiation source 142 and a relay lens 143 arranged along an optical axis A 2 .
  • Preheating radiation source 142 is one that emits radiation 147 that is applied to relay lens 145 with preheating radiation beam 150 therefrom used to preheat the substrate just before it is heated by the annealing radiation beam.
  • Radiation 147 has a wavelength that is readily (substantially) absorbed by 100 ⁇ m or less of silicon.
  • preheating radiation source 142 is a laser diode array that emits preheating radiation 147 having a wavelength of 0.8 ⁇ m (800 nm) or 0.78 ⁇ m (780 nm).
  • An example embodiment of relay lens 143 is described below.
  • Preheating radiation source 142 and relay lens 143 are operably connected to controller 32 , along with monitors M 1 and M 2 , and stage driver 29 shown in FIG. 1A , and not shown in FIG. 1C for ease of illustration.
  • preheating radiation source 142 emits radiation 147 , which is received by relay lens 143 .
  • Relay lens 143 creates a preheating radiation beam 150 that forms an image 160 (e.g., a line image) at substrate surface 12 .
  • Preheating radiation beam 150 is incident substrate surface 12 at an incident angle ⁇ 150 as measured relative to substrate surface normal N.
  • image 30 formed by annealing radiation beam 20 and image 160 formed by preheating radiation beam 150 are situated side-by-side on substrate surface 12 , as shown in FIG. 1C .
  • preheating radiation beam 150 acts to locally preheat the portion or region of the substrate just in front of the portion being irradiated by annealing radiation beam 20 .
  • Arrow 22 ′ illustrates the movement of substrate 10 (e.g., via movable chuck 28 ; see FIG. 1 ), which in an example embodiment is moved under fixed radiation beams 20 and 150 (or equivalently, fixed images 30 and 160 ) to effectuate scanning of these beams (or images).
  • preheating radiation beam 150 and annealing radiation beam 20 partially overlap, e.g., at the 1/e 2 intensity contours of the respective beam intensity profiles, as illustrated in FIG. 4A
  • FIG. 4B is a close-up cross-sectional view of an example embodiment of the substrate being irradiated by beams 20 and 150 .
  • FIG. 4B illustrates how heat 166 from preheating radiation beam 150 imaged in front of annealing radiation beam 20 promotes absorption of the annealing radiation beam near the top surface of the substrate.
  • Heat 166 from preheating radiation beam 150 diffuses into substrate 10 in front of annealing radiation beam 20 .
  • annealing radiation beam 20 passes into the region (i.e., substrate portion) previously heated by preheating radiation beam 150 . This process is used to raise the temperature of the substrate at and near the substrate surface to above the critical temperature T C .
  • annealing radiation beam 20 This allows annealing radiation beam 20 to be efficiently absorbed in the substrate, as indicated by absorbed annealing radiation beam 20 ′ (dashed line).
  • the relatively rapid absorption of annealing radiation beam 20 ′ within substrate 10 near substrate surface 12 serves to quickly raise the temperature of the substrate surface to a maximum at the trailing edge of the annealing radiation beam, up to an annealing temperature T A (e.g., about 1600° K).
  • T A e.g., about 1600° K
  • FIG. 5 is a plot of the maximum substrate temperature T MAX (° C.) created by irradiating a heavily doped silicon substrate with 10.6 ⁇ m radiation, as a function of the incident power P I (W/cm) of the radiation.
  • T MAX ° C.
  • P I incident power
  • annealing radiation beam 20 had a Gaussian beam profile with a Full-Width Half-Maximum (FWHM) of 120 ⁇ m, and was scanned across the substrate upper surface 12 at a speed of 600 mm/s, producing a dwell time of 200 ⁇ s.
  • “dwell time” is the length of time image 30 formed by annealing radiation beam 20 resides over a particular point on substrate surface 12 .
  • the plot shows an approximately linear relationship between the incident power P I and the maximum substrate temperature T MAX . Because the two-dimensional model assumed that annealing radiation beam 20 is infinitely long, there was no additional energy loss at the ends of line image 30 . A finite beam length would result in some additional heat loss at the ends of the beam and therefore result in lower maximum temperatures for a given incident power level P I .
  • FIG. 5 shows that in an absorbing (i.e., highly doped) substrate, an incident power P I of about 500 W/cm is required to bring the maximum substrate surface temperature T MAX from ambient up to 427° C. for a specific set of conditions. This can be compared to about 1150 W/cm to take the temperature up to the melting point of silicon at 1410° C. for the same set of conditions.
  • the relationship shown in FIG. 5 is a good approximation for a preheating radiation beam 150 having the same width and dwell time as annealing radiation beam 20 .
  • Thermal diffusion is the dominant mechanism for distributing heat in the substrate in both cases.
  • a peak substrate temperature T MAX of 400° C. does not produce nearly the same absorption of annealing radiation beam 20 as a uniform substrate temperature T S of 400° C. because the former temperature distribution falls to ambient within the substrate in a distance roughly equal to the thermal diffusion length L D .
  • FIG. 6 is a plot of the maximum substrate temperature T MAX (° C.) as a function of the initial substrate temperature T I for two different incident powers P I of annealing radiation beam 20 of wavelength 10.6 ⁇ m for an undoped silicon substrate. This was also derived from a two-dimensional finite element model. For temperatures below about 327° C., the incident radiation produces almost no effect, and the maximum temperature T MAX is almost equal to the initial substrate temperature T I . In other words, annealing radiation beam 20 passes through substrate 10 and does not appreciably heat the substrate. However, at an initial substrate temperature T I somewhere between 377° C.
  • the units of power used in the plots of FIGS. 5 and 6 is Watts per centimeter (W/cm). This power refers to the power per unit length of the scanning image 30 (e.g., a line image) contained between the half power points. Thus, a power of 1150 W/cm in image 30 having a width of 120 ⁇ m corresponds to an average intensity of 95,833 W/cm 2
  • the temperature that must be generated by preheating radiation source 142 to heat the substrate to the critical temperate T C in order to create the self-sustaining annealing condition can be estimated from information in the plot of FIG. 6 .
  • the plot therein indicates that when a substrate reaches a uniform temperature T I of about 427° C. there is a sudden increase in the substrate temperature T MAX indicating initiation of the self-sustaining annealing condition. If a laser diode source is used to provide the necessary preheating, then a significantly higher temperature is to be expected since the diode source produces a non-uniform temperature distribution that falls to ambient in about one thermal diffusion length.
  • FIG. 7 is a plot of the absorption length L A ( ⁇ m) of 780 nm radiation in un-doped silicon as a function of substrate temperature T S (° C.).
  • the absorption characteristics at 800 nm are very similar to that at 780 nm.
  • the absorption length L A is about 10 ⁇ m, which is short enough to ensure effective heating of the substrate surface region and a temperature distribution determined primarily by thermal diffusion for time scales of 200 ⁇ s and above.
  • a temperature corresponding to an absorption length of about 100 ⁇ m is estimated. This is achieved with a peak substrate temperature T MAX of about 550° C. Referring again to FIG. 5 , a maximum substrate temperature T MAX of 550° C. would require preheating radiation beam 150 to have a power of about 600 W/cm (50,000 W/cm 2 ).
  • preheating radiation beam 150 In practice it is a simple matter to determine the minimum power in preheating radiation beam 150 needed to achieve efficient coupling of annealing radiation beam 20 to substrate 10 .
  • a substrate substantially nonabsorbent at the wavelength of annealing radiation beam 20 at room temperature is irradiated with preheating radiation beam 150 and with annealing radiation beam 20 .
  • the power level of the preheating radiation beam 150 is increased until annealing temperatures are detected in the substrate. This may be accomplished, for example, by measuring the substrate temperature with temperature monitor M 2 shown in FIG. 1A .
  • the transition from little or no coupling of the annealing radiation beam with the substrate to efficient coupling at the substrate surface is typically quite sudden. If the substrate temperature T S is too low there will either not be a transition to annealing temperatures or a sudden transition to the substrate melting point will occur. As the substrate temperature is raised further there will be a narrow range of annealing power levels that permit stable operation below the melting temperature. A further increase in substrate temperature increases the range of annealing power levels and the corresponding range of annealing temperatures. Thus, there is no sharply defined power level of preheating radiation beam 150 to initiate the absorption transition of annealing radiation beam 20 in the substrate, or alternatively, that leads to the annealing temperatures in the substrate.
  • preheating radiation beam 150 is set to a power level slightly above this minimum power level needed to ensure that the annealing radiation beam is efficiently absorbed by the substrate and that a large range of annealing temperatures are readily accessed.
  • the amount of power P I in preheating radiation beam 150 required to initiate the self-sustaining annealing condition is that necessary to produce a maximum substrate temperature T MAX of 550° C. Assuming a 200 ⁇ s dwell time, the graph on FIG. 5 indicates that this corresponds to an incident power of about 600 W/cm. However, obtaining an intensity of say 600 W/cm in a preheating radiation beam 150 that produces an image 160 having a width comparable to that of annealing radiation beam image 30 is not as easy as it might first appear. In an example embodiment, it is desirable that preheating radiation beam 150 have an angle of incidence ⁇ 150 at or near the Brewster's angle for silicon, which is about 75°.
  • preheating radiation beam 150 is smeared out at substrate surface 12 and covers an area increased by a factor of about 4, and the intensity is reduced proportionally.
  • the total power in preheating radiation beam 150 can be increased, for example, by making the preheating source larger, e.g., by adding additional rows of laser diodes. However, this increases the width of preheating radiation beam 150 proportionally. An increased preheating radiation beam width increases the dwell time and the thermal diffusion depth, which further increases the power required to attain a given maximum temperature.
  • relay lens 143 needs to be designed so that it can provide a preheating radiation beam 150 having sufficient intensity to heat the substrate to within the critical temperate range using available preheating radiation sources 142 . An example of such a relay according to the present invention is described immediately below.
  • FIGS. 8A and 8B are respective cross-sectional views of an example embodiment of optical relay system 140 and substrate 10 .
  • FIG. 8A is a view in the Y-Z plane
  • FIG. 8B is a view in the X-Z plane.
  • the relay has been divided into two parts in order to fit on the page and the lens element with surfaces S 13 and S 14 is shown in both parts.
  • preheating radiation source 142 includes a 2-dimensional laser diode array, such as the LightStackTM 7 ⁇ 1/L PV array available from Coherent Semiconductor Group. 5100 Patrick Henry Drive, Santa Clara, Calif. 95054.
  • the LightStackTM array contains 7 rows of water-cooled laser diodes each 10 mm long and stacked on 1.9 mm spacing. Each row of diodes is capable of emitting 80 watts of optical power.
  • Relay lens 143 includes an object plane OP (where preheating radiation source 142 is arranged), an image plane IP (where substrate 10 is arranged), and optical axis A 2 connecting the image and object planes.
  • relay lens 143 is designed to create a preheating radiation beam 150 that forms an image 160 (e.g., a line image) that is scanned over substrate 10 .
  • the scanning of image 160 can be accomplished in any number of ways, such as by moving chuck 28 (via movable stage MS) relative to relay lens 143 ( FIG. 1C ).
  • Locally irradiating substrate 10 with image 160 is preferred to irradiating the entire substrate at once because it is much easier to achieve the high beam intensity needed to heat the substrate over a relatively small image area.
  • the local preheating provided by relay lens 143 must be synchronized with irradiating the substrate with annealing radiation beam 20 .
  • relay lens 143 needs to be anamorphic in order to efficiently form image 160 at substrate 10 . Furthermore, to achieve the required intensity in image 160 at substrate 10 , a relatively high numerical aperture at image plane IP is necessary.
  • relay lens 143 includes in order from preheating radiation source 142 and along optical axis A 2 , a cylindrical lens array 200 having lenslets 201 corresponding to the number of rows of laser diodes 198 making up preheating radiation source 142 .
  • Cylindrical lens array 200 has power in the X-Z plane and acts to collimate each preheating radiation beam 147 emitted from radiation source 142 in the X-Z ( FIG. 9A ) plane, while allowing the radiation to have a 10° cone angle in the Y-Z plane ( FIG. 9B ).
  • the combination of the diode array and the cylindrical lens array serves as the input to an anamorphic relay, which reimages the cylindrical lens array onto the substrate.
  • Table 1 sets forth the lens design data for an example embodiment of relay lens 143 as illustrated in FIGS. 8A and 8B .
  • relay lens 143 consists of two imaging sub-relays R- 1 and R- 2 in series with a common intermediate image plane IM.
  • Sub-relay R 1 is an anamorphic relay employing mainly cylindrical lens elements with substantially different powers in the Y-Z and X-Z planes
  • subrelay R- 2 is a conventional relay employing spherical elements and having a demagnification ratio of 1:6.
  • the anamorphic relay R- 1 has a 1:1 magnification ratio in the Y-Z plane, and a 1:10 demagnification ratio in the X-Z plane.
  • the relay lens 143 is telecentric at the object plane OP and image focal plane OP.
  • Telecentricity at both the object plane OP and the image plane IP is achieved with a spherical field lens 202 (surfaces s 1 -s 2 ) and a cylindrical lens 204 (surfaces s 3 -s 4 ) arranged immediately adjacent preheating radiation source 142 .
  • the cylindrical lens 204 has power only in the Y-Z plane and forms a pupil image in the Y-Z plane at s 5 .
  • two cylindrical lenses, 206 and 208 surfaces s 6 -s 9 ) with power in the Y-Z plane that reimage the diode array at 1:1 at the intermediate image plane.
  • Surface s 10 identifies a pupil plane in the X-Z plane.
  • a pair of cylindrical lenses, 210 and 212 (surfaces s 11 -s 14 ) having power in the X-Z plane that also reimage the diode array at the intermediate image plane at a demagnification ratio of 10:1.
  • the intermediate image is reimaged on the final image plane by a group of spherical lenses, 214 - 222 (surfaces s 15 -s 24 ) that form a sub-relay with a demagnification ratio of 6:1.
  • the relay has an overall demagnification of 6:1 in the plane containing the rows of diodes, and 60:1 in the plane normal to each row of diodes.
  • the 6:1 demagnification ratio in the Y-Z plane reduces the 10 mm size of the uncollimated (slow-axis) of preheating radiation source 142 from 10 mm at object plane OP to 1.67 mm at image plane IP. Also, in the same plane the 10° cone angle of radiation emitted from the preheating radiation source 142 at object plane OP is increased to 60° at image plane IP.
  • the demagnification in the X-Z plane is 60:1.
  • the 11.4 mm dimension (as measured in the X-direction across 7 rows of diodes) of the laser diode array making up effective source 220 at object plane OP is reduced to 0.19 mm at image plane IP.
  • the 1° FWHM angular spread in the collimated beam at effective source 220 is increased to a 60° cone angle at image plane IP.
  • relay lens 143 of FIGS. 8A and 8B is capable of bringing 280 W into image 160 .
  • image 160 dimensions 1.6 mm by 0.19 mm, this achieves a power density of 921 W/mm 2 .
  • ⁇ 150
  • this power density will raise the temperature of a room-temperature (i.e., ⁇ 20° C.) silicon substrate 10 by about 500° C. to a temperature near 520° C. assuming a dwell time of about 0.2 ms. This is above the critical, uniform temperature T C of 400° C.
  • preheating radiation beam 150 precedes (i.e., is scanned in front of) annealing radiation beam 20 .
  • T MAX the maximum temperature created by the preheating radiation beam is achieved just prior to annealing radiation beam 20 irradiating the same preheated portion of the substrate.
  • the relative position of the preheating and annealing radiation beams are reversed each time the scan direction is reversed so that the preheating radiation beam always precedes the annealing radiation beam.
  • image 160 formed by preheating radiation beam 150 is scanned over substrate 10 .
  • image 30 formed by annealing radiation beam 20 is also scanned over the substrate so that it is incident on the substrate portion(s) preheated by the preheated radiation beam.
  • scanning is carried out by moving the substrate in a spiral, raster or boustrophedonic pattern.
  • a boustrophedonic scanning pattern the scan direction is reversed and the cross-scan position incremented after every scan.
  • this is accomplished by shifting the position of the entire relay lens 143 .
  • relay lens 143 needs to be moved by about twice the distance between the beam centers or about 393 ⁇ m in a direction parallel to the scan direction. This is accomplished, for example, via a signal from controller 32 , which is operatively connected to preheating relay lens 143 to effectuate movement of the relay lens ( FIG. 1C ). In a like manner, controller 32 controls the focus of preheating radiation beam 150 by adjusting the focus, tip, and tilt parameters of the substrate prior to scanning.
  • annealing radiation beam 20 be incident substrate 10 at an incident angle at or near the Brewster's angle, and be P-polarized. This is because the film stacks likely to be encountered on a substrate during annealing have a low reflectivity and a small variation in reflectivity under these conditions.
  • preheating radiation beam 150 is arranged so that it strikes the substrate at incident angle ⁇ 150 , at or near the Brewster's angle in a manner similar to that of annealing radiation beam 20 .
  • this angle reduces the variation in reflectivity between the different film stacks likely to be found on a substrate prior to the activation (annealing) step.
  • this beam orientation works very well at the annealing wavelength, it is not as effective at the wavelength used for preheating.
  • the rough equivalence between the preheating radiation beam wavelengths and the thickness of the films used to make semiconductor structures leads to a greater variation in substrate reflectivity at all angles of incidence.
  • FIGS. 10A and 10B are schematic diagrams illustrating example embodiments of preheating relay optical system 140 for decreasing the amounts of preheating radiation reflected or scattered back to the preheating radiation source 142 ( FIG. 1C ).
  • a normal angle of incidence results in an amount of preheating radiation beam 150 being reflected from the substrate (the reflected preheating radiation is denoted 150 R) and being transmitted back toward the preheating radiation source 142 .
  • reflected preheating radiation 150 R makes it back to preheating radiation source 142 , it may accelerate the source's time to failure.
  • emitted preheating radiation 147 is polarized (such as is the case with laser diodes)
  • the amount of reflected preheating radiation 150 R returning to the preheating radiation source is reduced by arranging a polarizer 143 P aligned with the polarization direction of the preheating radiation beam, and a quarter-wave plate 143 WP located between the polarizer and the substrate.
  • the quarter wave plate converts the radiation traveling from the polarizer to the substrate into circularly polarized radiation at the substrate. Any radiation returning from the substrate is converted back to linearly polarized radiation after passing through the quarter wave plate. However, the direction of polarization of the returning radiation is orthogonal to the original direction. Thus the returning beam is not transmitted by the polarizer and does not reach the laser diode array.
  • the amount of preheating radiation 150 S that returns to the preheating radiation source 142 is reduced by adding a polarizer 143 P and a Faraday rotator 143 F downstream of relay lens 143 .
  • the Faraday rotator 143 F is located between the polarizer 143 P and substrate 10 .
  • the Faraday rotator rotates the polarization of the preheating radiation beam 150 by 90° after two passes through the rotator, and the polarizer blocks the polarization-rotated preheating radiation 150 S from returning to preheating radiation source 142 .
  • Operating optical relay system 140 such that preheating radiation beam 150 is off of normal incidence also facilitates measuring the power in reflected preheating radiation beam 150 R, which is a useful diagnostic.
  • Measurements of the power in incident preheating radiation beam 150 and reflected preheating radiation 150 R can be used to calculate the power absorbed by the substrate 10 . This is then used to estimate the maximum temperature produced by preheating radiation beam 150 . By keeping the absorbed power in preheating radiation beam 150 above a certain minimum threshold, preheating sufficient to trigger strong absorption of the annealing radiation beam 20 by the substrate is assured.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.

Description

CROSS REFERENCE
This application is a divisional application from an application of the same title and assigned to the same entity as the application having Ser. No. 10/674,106 filed on Sep. 29, 2003 now U.S. Pat. No. 7,148,159.
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to U.S. patent application Ser. No. 10/287,864, filed on Nov. 6, 2002.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to laser thermal annealing, and in particular relates to apparatus and methods for performing laser thermal annealing of substrates that do not efficiently absorb the annealing radiation beam at ambient temperatures.
2. Description of the Prior Art
Laser thermal annealing or LTA (also referred to as “laser thermal processing”) is a technique used to quickly raise and lower the temperature of the surface of a substrate to produce a change in properties. An example might include annealing and/or activating dopants in the source, drain or gate regions of transistors used to form integrated devices or circuits. LTA can also be used to form silicide regions in integrated devices or circuits, to lower poly-silicon runner resistances, or to trigger a chemical reaction to either form or remove substances from a substrate (or wafer).
LTA offers the possibility of speeding up the annealing cycle by a factor of 1000 over conventional annealing techniques, thereby virtually eliminating diffusion of dopant impurities during the annealing or activation cycle used on silicon wafers. The result is a more abrupt dopant profile and, in some cases, a higher level of activation. This translates into higher-performance (e.g., faster) integrated circuits.
U.S. patent application Ser. No. 10/287,864 discloses performing LTA of doped silicon substrates using CO2 laser radiation. The laser radiation is focused into a narrow line, which is scanned at constant velocity in a raster pattern across the substrate. However, this approach works well only on relatively heavily doped substrates (i.e., a dopant concentration of about 3×1017 atoms/cm3 or greater), where the absorption length of the laser radiation in the doped silicon is less than or roughly comparable to the thermal diffusion length. Conversely, for lightly doped substrates (i.e., a dopant concentration of about 1×1016 atoms/cm3 or less), the CO2 laser radiation passes through the substrate without imparting appreciable energy to the substrate.
What is needed therefore is way to efficiently perform LTA of lightly doped silicon substrates using radiation that otherwise passes through the substrate without heating, such as CO2 laser radiation having a wavelength of 10.6 μm.
SUMMARY OF THE INVENTION
A first aspect of the invention is an apparatus for performing laser thermal annealing of a substrate having a surface. The apparatus includes a laser capable of generating continuous annealing radiation having a wavelength that is not substantially absorbed by the substrate at room temperature. The apparatus also includes an annealing optical system adapted to receive the annealing radiation and form an annealing radiation beam that forms a first image at the substrate surface, and wherein the first image is scanned across the substrate surface. The apparatus further includes a heating device for heating at least a portion of the substrate to a critical temperature such that the annealing radiation beam incident upon the heated portion is substantially absorbed near the surface of the substrate during scanning. In an example embodiment heating a portion of the substrate can be done using a short-wavelength laser diode beam that immediately precedes the long-wavelength annealing beam.
A second aspect of the invention is a method of laser thermal annealing a substrate. The method includes providing an annealing radiation beam from a laser having a wavelength that at room temperature is not substantially absorbed by the substrate, and heating at least a portion of the substrate to a critical temperature such that the annealing radiation beam is capable of being substantially absorbed near the surface of the substrate at said heated portion. The method also includes initiating a self-sustaining annealing condition by heating a portion of the substrate surface immediately in advance of scanning the annealing radiation beam over the substrate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a cross-sectional view of an example embodiment of the LTA apparatus of the present invention that includes an LTA optical system along with a silicon substrate being processed by the system, wherein the LTA apparatus includes a heated chuck to support and pre-heat the substrate, and an optional heat shield surrounding the chuck to reduce radiation coupling to the rest of the apparatus and to promote efficient substrate heating;
FIG. 1B is a cross-sectional view of an embodiment of the LTA apparatus of the present invention similar to that shown in FIG. 1A, that includes a heated enclosure surrounding the substrate for pre-heating the substrate;
FIG. 1C is a cross-sectional view of an embodiment of the LTA apparatus of the present invention similar to that shown in FIG. 1A, wherein the heated chuck and optional heat shield are replaced by an optical heating system adapted to preheat at least a portion of the substrate using a preheating radiation beam;
FIG. 2 is a plot of the absorption path length LA (μm) in an undoped silicon substrate versus the substrate temperature TS (° C.) for a 10.6 μm wavelength annealing radiation beam, along with a plot of the diffusion length LD associated with the radiation beam having a 200 μs dwell time, versus substrate temperature TS (° C.);
FIG. 3 is a computer simulation of the substrate temperature profile as a function of depth (μm) and annealing radiation beam position (μm) illustrating the “hot spot” formed in the substrate by the annealing radiation beam associated with the self-sustaining annealing condition;
FIG. 4A is a schematic diagram showing an example embodiment of the relative intensities and beam profiles of the pre-heating and annealing radiation beams as a function of position on the substrate surface;
FIG. 4B is a close-up cross-sectional view of the substrate illustrating how heat from the preheating radiation beam imaged in front of the annealing radiation beam promotes absorption of the annealing radiation beam in the substrate to effectuate the self-sustaining annealing condition;
FIG. 5 is a plot of the maximum substrate temperature TMAX (° C.) created by irradiating a heavily doped silicon substrate with the annealing radiation beam having a wavelength of 10.6 μm, versus the incident power PI (W/cm) of the annealing radiation beam;
FIG. 6 is a plot, obtained by finite-element simulation, of the maximum substrate temperature TMAX (° C.) as a function of the initial substrate temperature TI for different incident powers PI of the annealing radiation beam for an undoped substrate;
FIG. 7 is a plot of the absorption length LA (μm) of the 780 nm preheating radiation beam in silicon as a function of substrate temperature TS (° C.);
FIG. 8A is a cross-sectional view of an embodiment of the optical relay system of FIG. 1C, as viewed in the Y-Z plane;
FIG. 8B is a cross-sectional view of the embodiment of the optical relay system of FIG. 1C and FIG. 8A, as viewed in the X-Z plane;
FIG. 9A is a close-up cross-sectional view in the X-Z plane of the heating radiation source and the cylindrical lens array;
FIG. 9B is a close-up cross-sectional view in the Y-Z plane of the heating radiation source and the cylindrical lens array;
FIG. 10A is a close-up schematic diagram of the preheating radiation source, relay lens and preheating radiation beam at normal incidence to the substrate and further including a polarizer and quarter waveplate arranged in the preheating radiation beam to reduce the amount of preheating radiation reflected from the substrate and returning to the preheating radiation source; and
FIG. 10B is a close-up schematic diagram of the preheating radiation source, relay lens and preheating radiation beam at near-normal incidence to the substrate and further including a polarizer and Faraday rotator arranged in the preheating radiation beam to reduce the amount of preheating radiation scattered from the substrate and returning to the preheating radiation source.
The various elements depicted in the drawings are merely representational and are not necessarily drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. The drawings are intended to illustrate various implementations of the invention, which can be understood and appropriately carried out by those of ordinary skill in the art.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to laser thermal annealing (LTA) of substrates and in particular relates to apparatus and methods for performing LTA of lightly doped silicon wafers (substrates). The term “lightly doped” means herein a dopant concentration of about 1016 atoms/cm3 or less. The dopant concentration in the substrate may be that associated with normal substrate production to achieve a desired resistivity level and substrate type (i.e., N-type or P-type).
In the description below, a generalized embodiment of the LTA apparatus of the present invention is described, along with a description of the “self-sustaining annealing condition” sought to be created by the present invention. This is followed by various example embodiments of the invention. The invention is further explained in connection with a number of different substrate temperature plots that illustrate key properties of the absorption of radiation by silicon substrates. Methods of determining the appropriate power level in the preheating radiation beam are then discussed, followed by an example of a heating lens used in an example embodiment to heat the substrate with a preheating radiation beam. The preferred scanning and orientation of the preheating and annealing radiation beams are then described in detail.
I. Generalized LTA Apparatus
FIG. 1A is a cross-sectional view of an embodiment of an LTA apparatus 8 of the present invention, along with a substrate 10 to be annealed. Substrate 10 has an upper surface 12 and a body (bulk) region 16 that is “undoped,” or strictly speaking, more lightly doped than the very small junction regions or devices that typically contain very high doping levels only in an extremely shallow region. The reference letter N denotes the normal to substrate upper surface 12. In an example embodiment, substrate 10 is a silicon wafer.
LTA apparatus 8 includes an LTA optical system 25 having an annealing radiation source 26 and an LTA lens 27 arranged along an optical axis A1. Lens 27 receives continuous (i.e., non-pulsed) annealing radiation 18 from annealing radiation source 26 and creates a continuous annealing radiation beam 20 that forms an image 30 (e.g., a line image) at substrate surface 12. Annealing radiation beam 20 is incident upper surface 12 at an incident angle θ20 as measured relative to surface normal N and optical axis A1.
Arrow 22 indicates an example direction of motion of annealing radiation beam 20 relative to substrate surface 12. Substrate 10 is supported by a chuck 28, which in turn is supported by a movable stage MS operatively connected to a stage driver 29 that causes the stage (and hence the substrate) to move at select speeds and directions relative to annealing radiation beam 20 or some other reference. The scanning movement of movable stage MS is indicated by arrow 22′. In an example embodiment, stage MS is capable of moving in at least two dimensions.
In an example embodiment, LTA apparatus 8 includes a reflected radiation monitor M1 and a temperature monitor M2. Reflected radiation monitor M1 is arranged to receive radiation reflected from substrate surface 12, as indicated by radiation 20R. Temperature monitor M2 is arranged to measure the temperature of substrate surface 12, and in an example embodiment is arranged along the surface normal N to view the substrate at normal incidence at or near where image 30 is formed by annealing radiation beam 20. Monitors M1 and M2 are coupled to a controller (discussed immediately below) to provide for feedback control based on measurements of the amount of reflected radiation 20R and/or the measured temperature of substrate surface 12, as described in greater detail below.
In an example embodiment, LTA apparatus 8 further includes a controller 32 operatively connected to annealing radiation source 26, stage driver 29, monitors M1 and M2, as well as to an optional monitor M3 contained in lens 27 that serves as an incident power monitor. Controller 32 may be, for example, a microprocessor coupled to a memory, or a microcontroller, programmable logic array (PLA), field-programmable logic array (FPLA), programmed array logic (PAL) or other control device (not shown). The controller 32 can operate in two modes: 1) open-loop, wherein it maintains a constant power delivered to substrate 10 by annealing radiation beam 20 along with a constant scan rate via stage driver 29; and 2) closed-loop, wherein it maintains a constant maximum temperature on substrate surface 12 or a constant power absorbed in the substrate. The maximum substrate temperature varies directly with the absorbed power and inversely as the square root of the scan velocity.
In an example embodiment a closed loop control is used to maintain a constant ratio of absorbed power in annealing radiation beam 20 incident the substrate, to the square root of the scan velocity. i.e., if P20 is the amount of power in annealing radiation beam 20 and P30 is the reflected power then the absorbed power is Pa=P20−P30. If V is the scan velocity of substrate 10 relative to the annealing radiation beam, then the ratio Pa/V1/2 is kept constant to maintain a constant temperature indirectly.
For closed loop operation based on a direct maximum temperature measurement, controller 32 receives a signal (e.g., an electrical signal), such as the maximum substrate temperature via signal S2 from temperature monitor M2 and controls either the incident power or the scan rate to maintain a constant maximum substrate temperature. The absorbed power Pa is obtained by subtracting power P30 in reflected annealing radiation beam 20R via signal S1 generated by reflected radiation monitor M1 from the incident power PI of annealing radiation beam 20 obtained from sampling a portion of the annealing radiation beam via signal S4.
Further, controller 32 is adapted to calculate parameters based on the received signals and input parameters (e.g., desired absorbed power level and dwell time). The controller 32 is also coupled to receive an external signal S3 from an operator or from a master controller (not shown) that is part of a larger assembly or processing tool. This parameter is indicative of the predetermined dose (amount) of annealing radiation 20 to be supplied to process the substrate or the maximum substrate temperature desired. The parameter signal(s) can also be indicative of the intensity, scan velocity, scan speed, and/or number of scans to be used to deliver a predetermined dose of annealing radiation 20 to substrate 10.
In an example embodiment, annealing radiation source 26 is a CO2 laser so that annealing radiation beam 20 has a wavelength of 10.6 μm. In general, however, annealing radiation source 26 is any continuous radiation source that emits radiation having a wavelength not substantially absorbed by a substrate at room temperature, but is substantially absorbed by the same substrate when the substrate, or a sufficient portion of the top of the substrate, is at a higher temperature. In a preferred embodiment, annealing radiation source 26 is a laser.
LTA apparatus 8 is adapted to take advantage of the absorption of annealing radiation beam 20 near the top of the substrate to efficiently raise the temperature of the top of the substrate while leaving the temperature of the body of the substrate substantially unchanged. In other words, where the substrate is a semiconductor wafer, the present invention is directed to increasing the temperature of the wafer at or near the surface where devices (e.g., transistors) are formed, rather than to heating the wafer body.
At ambient temperatures, however, lightly doped and undoped substrates are difficult to anneal because long-wavelength radiation beams pass right through the substrate without heating the top surface appreciably. On the other hand, highly doped substrates are not difficult to anneal because the incident annealing radiation is absorbed in the first 100 microns or so of material and raises the temperature to the desired annealing temperature.
The body (bulk) 16 of substrate 10, which does not absorb appreciable radiation from the beam and is not heated, serves to quickly cool the top surface regions when the annealing radiation beam 20 is no longer applied to the substrate. The present invention takes advantage of the fact that absorption of radiation in lightly doped silicon at certain infrared wavelengths, such as the CO2 laser wavelength of 10.6 μm, strongly depends on the substrate temperature. Once appreciable absorption of annealing to radiation beam 20 occurs, the substrate surface temperature increases, which results in stronger absorption, which in turn results in stronger heating of the substrate surface, and so on.
II. The Self-Sustaining Annealing Condition
FIG. 2 is a plot of the absorption length LA (μm) (vertical axis) in a silicon substrate versus the substrate temperature TS (° C.) for 10.6 μm wavelength radiation. Also included in the plot are points for the diffusion length LD (μm) for a 200 μs dwell time also as a function of substrate temperature TS. The absorption length LA is the thickness it takes to attenuate the intensity of the annealing radiation beam 20 by 1/e. The thermal diffusion length LD is the depth to which an instantaneous surface temperature rise will propagate into a material after a certain dwell time. Note that LA and LD have about the same value of ˜60 μm at a temperature TS˜600° C.
The strong variation of absorption path length LA with substrate temperature TS creates two possible steady-state conditions, namely: (1) Annealing radiation beam 20 passes through the substrate without being substantially absorbed and thus does not produce substantial heating, or (2) annealing radiation beam 20 is substantially absorbed near substrate surface 12, thereby producing a “hot spot” at and just below the substrate surface corresponding to image 30 that travels with annealing radiation beam 20 as the beam moves (i.e., is scanned) over the substrate surface.
FIG. 3 is a computer simulation of the substrate temperature (° C.) profile as a function of depth (μm) and annealing radiation beam position (μm). The temperature profile is the hot spot (denoted by 31), which travels within the substrate and across substrate surface 12. Traveling hot spot 31 serves to preheat the region of substrate 10 in front of the advancing image 30 by thermal diffusion (see FIG. 4B, discussed below). The substrate preheating associated with the propagation of hot spot 31 allows the radiation in annealing radiation beam 20 to be efficiently absorbed near upper surface 12 as the beams are scanned over the substrate surface. Steady-state condition (2) is the one sought to be created using apparatus 8 and the accompanying methods of the present invention, and is referred to herein as the “self-sustaining annealing condition.”
The general method of creating a self-sustaining annealing condition according to the present invention includes heating substrate 10 (or select regions or portions thereof) to a critical temperature TC (e.g., 350° C. or greater, as discussed in more detail below) so that annealing radiation beam 20 is substantially absorbed by the substrate, i.e., is absorbed to the point wherein the self-sustaining annealing condition is initiated.
The precise value of TC depends on the temperature distribution within the substrate, its dopant concentration, and the annealing radiation beam intensity. Thus, in an example embodiment, the critical temperature TC is determined empirically. This may include, for example, measuring the maximum temperature produced by an annealing radiation beam for a test substrate having either a variety of initial temperature conditions or a constant initial temperature condition and a variety of annealing and preheating radiation beam intensities. The preheating of substrate 10 to give rise to the self-sustaining annealing condition can be accomplished in a number of ways. Several example embodiments of an LTA apparatus 8 that include heating devices for heating substrate 10 to practice the method of creating the self-sustaining annealing condition in lightly doped silicon substrates 10 for the purpose of performing LTA are set forth below.
III. Heated Chuck Embodiment with Optional Heat Shield
With reference again to FIG. 1A, in an example embodiment chuck 28 is thermally conductive and includes a heating element 50 connected to a power source 52, which in turn is connected to, and controlled by, controller 32. A thermal insulating layer 53 surrounds the bottom and sides of the chuck 28 to limit unwanted heating of the stage and the loss of heat from the chuck.
In operation, controller 32 activates power supply 52, which in turn supplies power to heating element 50. In response, heating element 50 generates heat 56. In an example embodiment, the amount of generated heat 56 is controlled by a temperature sensor 57 in the chuck and operatively connected to power supply 52 (or alternatively to controller 32) so that the chuck temperature is limited to a certain, predetermined, maximum value. Once the substrate is loaded onto the chuck its temperature quickly reaches the same temperature as the chuck. Typically, the chuck temperature TCH is about 400° C.
In another example embodiment, apparatus 8 also optionally includes a heat shield 62 supported above substrate 12 so as to reflect heat 56 back to the substrate. This results in more uniform heating of the substrate and less heating of the apparatus components on the opposite side of the shield. In an example embodiment, heat shield 62 is a gold-coated glass plate. Heat shield 62 includes an aperture 64 that allows annealing radiation beam 20 to reach surface 12 of substrate 10.
IV. Heated Enclosure Embodiment
With reference to FIG. 1B, in another example embodiment, apparatus 8 includes a heated enclosure 80 (e.g., an oven) having an interior region 82 large enough to enclose both substrate 10 and chuck 28 or the substrate, chuck and stage MS. Enclosure 80 includes additional heating elements 50 (preferably in addition to the one included in chuck 28) connected to power source 52. Power source 52 is connected to controller 32. In an example embodiment, enclosure 80 includes a window or aperture 84 that allows annealing radiation beam 20 to reach surface 12 of substrate 10. Thermal insulating layer 53, discussed above in connection with FIG. 1A, is preferably present on the sides and bottom of the chuck to limit unwanted loss of heat from the chuck to the stage.
In operation, controller 32 activates power supply 52, which in turn supplies power to heating elements 50. In response, heating elements 50 generate heat 56, thereby raising the temperature of the chuck, the substrate and the immediate surroundings to a maximum critical temperature TC of about 400° C. Enclosure 80 is preferably thermally insulated so that heat 56 remains trapped within interior region 82, thereby promoting efficient and uniform heating of the substrate.
V. Preheating Radiation Beam Embodiment
With reference now to FIG. 1C, in another example embodiment, apparatus 8 includes a preheating optical relay system 140 having a preheating radiation source 142 and a relay lens 143 arranged along an optical axis A2. Preheating radiation source 142 is one that emits radiation 147 that is applied to relay lens 145 with preheating radiation beam 150 therefrom used to preheat the substrate just before it is heated by the annealing radiation beam. Radiation 147 has a wavelength that is readily (substantially) absorbed by 100 μm or less of silicon. In an example embodiment, preheating radiation source 142 is a laser diode array that emits preheating radiation 147 having a wavelength of 0.8 μm (800 nm) or 0.78 μm (780 nm). An example embodiment of relay lens 143 is described below. Preheating radiation source 142 and relay lens 143 are operably connected to controller 32, along with monitors M1 and M2, and stage driver 29 shown in FIG. 1A, and not shown in FIG. 1C for ease of illustration.
In operation, preheating radiation source 142 emits radiation 147, which is received by relay lens 143. Relay lens 143 creates a preheating radiation beam 150 that forms an image 160 (e.g., a line image) at substrate surface 12. Preheating radiation beam 150 is incident substrate surface 12 at an incident angle θ150 as measured relative to substrate surface normal N.
In one example embodiment, image 30 formed by annealing radiation beam 20 and image 160 formed by preheating radiation beam 150 are situated side-by-side on substrate surface 12, as shown in FIG. 1C. Thus, preheating radiation beam 150 acts to locally preheat the portion or region of the substrate just in front of the portion being irradiated by annealing radiation beam 20. Arrow 22′ illustrates the movement of substrate 10 (e.g., via movable chuck 28; see FIG. 1), which in an example embodiment is moved under fixed radiation beams 20 and 150 (or equivalently, fixed images 30 and 160) to effectuate scanning of these beams (or images).
In another example embodiment, preheating radiation beam 150 and annealing radiation beam 20 partially overlap, e.g., at the 1/e2 intensity contours of the respective beam intensity profiles, as illustrated in FIG. 4A
FIG. 4B is a close-up cross-sectional view of an example embodiment of the substrate being irradiated by beams 20 and 150. FIG. 4B illustrates how heat 166 from preheating radiation beam 150 imaged in front of annealing radiation beam 20 promotes absorption of the annealing radiation beam near the top surface of the substrate. Heat 166 from preheating radiation beam 150 diffuses into substrate 10 in front of annealing radiation beam 20. As the radiation beams move relative to the substrate as indicated by arrows 22′, annealing radiation beam 20 passes into the region (i.e., substrate portion) previously heated by preheating radiation beam 150. This process is used to raise the temperature of the substrate at and near the substrate surface to above the critical temperature TC. This allows annealing radiation beam 20 to be efficiently absorbed in the substrate, as indicated by absorbed annealing radiation beam 20′ (dashed line). The relatively rapid absorption of annealing radiation beam 20′ within substrate 10 near substrate surface 12 serves to quickly raise the temperature of the substrate surface to a maximum at the trailing edge of the annealing radiation beam, up to an annealing temperature TA (e.g., about 1600° K). This leads to annealing of select regions formed in the substrate, e.g., by activating dopants implanted into the top surface of the substrate.
VI. Substrate Temperature Plots
FIG. 5 is a plot of the maximum substrate temperature TMAX (° C.) created by irradiating a heavily doped silicon substrate with 10.6 μm radiation, as a function of the incident power PI (W/cm) of the radiation. A two-dimensional, finite-element simulation program was used to derive this data. The simulation assumed an infinitely long annealing radiation beam. Thus, the beam power is measured in Watts/cm rather than watts/cm2. The simulation also assumed annealing radiation beam 20 had a Gaussian beam profile with a Full-Width Half-Maximum (FWHM) of 120 μm, and was scanned across the substrate upper surface 12 at a speed of 600 mm/s, producing a dwell time of 200 μs. Here, “dwell time” is the length of time image 30 formed by annealing radiation beam 20 resides over a particular point on substrate surface 12. In this case, the plot shows an approximately linear relationship between the incident power PI and the maximum substrate temperature TMAX. Because the two-dimensional model assumed that annealing radiation beam 20 is infinitely long, there was no additional energy loss at the ends of line image 30. A finite beam length would result in some additional heat loss at the ends of the beam and therefore result in lower maximum temperatures for a given incident power level PI.
FIG. 5 shows that in an absorbing (i.e., highly doped) substrate, an incident power PI of about 500 W/cm is required to bring the maximum substrate surface temperature TMAX from ambient up to 427° C. for a specific set of conditions. This can be compared to about 1150 W/cm to take the temperature up to the melting point of silicon at 1410° C. for the same set of conditions.
The relationship shown in FIG. 5 is a good approximation for a preheating radiation beam 150 having the same width and dwell time as annealing radiation beam 20. Thermal diffusion is the dominant mechanism for distributing heat in the substrate in both cases. A peak substrate temperature TMAX of 400° C. does not produce nearly the same absorption of annealing radiation beam 20 as a uniform substrate temperature TS of 400° C. because the former temperature distribution falls to ambient within the substrate in a distance roughly equal to the thermal diffusion length LD.
FIG. 6 is a plot of the maximum substrate temperature TMAX (° C.) as a function of the initial substrate temperature TI for two different incident powers PI of annealing radiation beam 20 of wavelength 10.6 μm for an undoped silicon substrate. This was also derived from a two-dimensional finite element model. For temperatures below about 327° C., the incident radiation produces almost no effect, and the maximum temperature TMAX is almost equal to the initial substrate temperature TI. In other words, annealing radiation beam 20 passes through substrate 10 and does not appreciably heat the substrate. However, at an initial substrate temperature TI somewhere between 377° C. and 477° C., appreciable absorption of annealing radiation beam 20 occurs, depending on the amount of incident power PI in the annealing radiation beam. The result is a sharp increase in the maximum substrate temperature TMAX. Once the high-absorption, high-temperature transition has occurred, further irradiation by annealing radiation beam 20 increases the maximum temperature TMAX linearly.
Note that the units of power used in the plots of FIGS. 5 and 6 is Watts per centimeter (W/cm). This power refers to the power per unit length of the scanning image 30 (e.g., a line image) contained between the half power points. Thus, a power of 1150 W/cm in image 30 having a width of 120 μm corresponds to an average intensity of 95,833 W/cm2
The temperature that must be generated by preheating radiation source 142 to heat the substrate to the critical temperate TC in order to create the self-sustaining annealing condition can be estimated from information in the plot of FIG. 6. The plot therein indicates that when a substrate reaches a uniform temperature TI of about 427° C. there is a sudden increase in the substrate temperature TMAX indicating initiation of the self-sustaining annealing condition. If a laser diode source is used to provide the necessary preheating, then a significantly higher temperature is to be expected since the diode source produces a non-uniform temperature distribution that falls to ambient in about one thermal diffusion length.
FIG. 7 is a plot of the absorption length LA (μm) of 780 nm radiation in un-doped silicon as a function of substrate temperature TS (° C.). The absorption characteristics at 800 nm are very similar to that at 780 nm. As can be seen from the plot, even at room temperature the absorption length LA is about 10 μm, which is short enough to ensure effective heating of the substrate surface region and a temperature distribution determined primarily by thermal diffusion for time scales of 200 μs and above.
In order to obtain efficient absorption of a CO2 laser beam (as annealing radiation beam 20) in an undoped silicon substrate having a non-uniform temperature distribution, such as that created by a laser diode source (as used to generate preheating radiation beam 150), a temperature corresponding to an absorption length of about 100 μm is estimated. This is achieved with a peak substrate temperature TMAX of about 550° C. Referring again to FIG. 5, a maximum substrate temperature TMAX of 550° C. would require preheating radiation beam 150 to have a power of about 600 W/cm (50,000 W/cm2).
VII. Determining the Preheating Radiation Beam Power
In practice it is a simple matter to determine the minimum power in preheating radiation beam 150 needed to achieve efficient coupling of annealing radiation beam 20 to substrate 10. In an example embodiment, with annealing radiation beam 20 set to a power level sufficient to anneal an absorbing substrate, a substrate substantially nonabsorbent at the wavelength of annealing radiation beam 20 at room temperature is irradiated with preheating radiation beam 150 and with annealing radiation beam 20. The power level of the preheating radiation beam 150 is increased until annealing temperatures are detected in the substrate. This may be accomplished, for example, by measuring the substrate temperature with temperature monitor M2 shown in FIG. 1A.
The transition from little or no coupling of the annealing radiation beam with the substrate to efficient coupling at the substrate surface is typically quite sudden. If the substrate temperature TS is too low there will either not be a transition to annealing temperatures or a sudden transition to the substrate melting point will occur. As the substrate temperature is raised further there will be a narrow range of annealing power levels that permit stable operation below the melting temperature. A further increase in substrate temperature increases the range of annealing power levels and the corresponding range of annealing temperatures. Thus, there is no sharply defined power level of preheating radiation beam 150 to initiate the absorption transition of annealing radiation beam 20 in the substrate, or alternatively, that leads to the annealing temperatures in the substrate. However there is a minimum practical power level below which the desired range of annealing temperatures cannot be reliably achieved. In an example embodiment, preheating radiation beam 150 is set to a power level slightly above this minimum power level needed to ensure that the annealing radiation beam is efficiently absorbed by the substrate and that a large range of annealing temperatures are readily accessed.
In an example embodiment, the amount of power PI in preheating radiation beam 150 required to initiate the self-sustaining annealing condition is that necessary to produce a maximum substrate temperature TMAX of 550° C. Assuming a 200 μs dwell time, the graph on FIG. 5 indicates that this corresponds to an incident power of about 600 W/cm. However, obtaining an intensity of say 600 W/cm in a preheating radiation beam 150 that produces an image 160 having a width comparable to that of annealing radiation beam image 30 is not as easy as it might first appear. In an example embodiment, it is desirable that preheating radiation beam 150 have an angle of incidence θ150 at or near the Brewster's angle for silicon, which is about 75°. This angle minimizes the reflected radiation and equalizes the energy absorbed in the substrate for the types of structures likely to be present on the substrate. At an incident angle θ150 of about 75°, preheating radiation beam 150 is smeared out at substrate surface 12 and covers an area increased by a factor of about 4, and the intensity is reduced proportionally.
The total power in preheating radiation beam 150 can be increased, for example, by making the preheating source larger, e.g., by adding additional rows of laser diodes. However, this increases the width of preheating radiation beam 150 proportionally. An increased preheating radiation beam width increases the dwell time and the thermal diffusion depth, which further increases the power required to attain a given maximum temperature. Thus, relay lens 143 needs to be designed so that it can provide a preheating radiation beam 150 having sufficient intensity to heat the substrate to within the critical temperate range using available preheating radiation sources 142. An example of such a relay according to the present invention is described immediately below.
VIII. Example Embodiment of Optical Relay System
FIGS. 8A and 8B are respective cross-sectional views of an example embodiment of optical relay system 140 and substrate 10. FIG. 8A is a view in the Y-Z plane, and FIG. 8B is a view in the X-Z plane. In both FIGS. 8A and 8B, the relay has been divided into two parts in order to fit on the page and the lens element with surfaces S13 and S14 is shown in both parts.
In the example embodiment, preheating radiation source 142 includes a 2-dimensional laser diode array, such as the LightStack™ 7×1/L PV array available from Coherent Semiconductor Group. 5100 Patrick Henry Drive, Santa Clara, Calif. 95054. The LightStack™ array contains 7 rows of water-cooled laser diodes each 10 mm long and stacked on 1.9 mm spacing. Each row of diodes is capable of emitting 80 watts of optical power. Relay lens 143 includes an object plane OP (where preheating radiation source 142 is arranged), an image plane IP (where substrate 10 is arranged), and optical axis A2 connecting the image and object planes.
In an example embodiment and as discussed above, relay lens 143 is designed to create a preheating radiation beam 150 that forms an image 160 (e.g., a line image) that is scanned over substrate 10. The scanning of image 160 can be accomplished in any number of ways, such as by moving chuck 28 (via movable stage MS) relative to relay lens 143 (FIG. 1C). Locally irradiating substrate 10 with image 160 is preferred to irradiating the entire substrate at once because it is much easier to achieve the high beam intensity needed to heat the substrate over a relatively small image area. Thus, the local preheating provided by relay lens 143 must be synchronized with irradiating the substrate with annealing radiation beam 20.
Since the emission characteristics of laser diodes are anisotropic and the spacing between adjacent diodes is greatly different in the X and Y planes, relay lens 143 needs to be anamorphic in order to efficiently form image 160 at substrate 10. Furthermore, to achieve the required intensity in image 160 at substrate 10, a relatively high numerical aperture at image plane IP is necessary.
Thus, with reference also to FIGS. 9A and 9B, relay lens 143 includes in order from preheating radiation source 142 and along optical axis A2, a cylindrical lens array 200 having lenslets 201 corresponding to the number of rows of laser diodes 198 making up preheating radiation source 142. Cylindrical lens array 200 has power in the X-Z plane and acts to collimate each preheating radiation beam 147 emitted from radiation source 142 in the X-Z (FIG. 9A) plane, while allowing the radiation to have a 10° cone angle in the Y-Z plane (FIG. 9B). The combination of the diode array and the cylindrical lens array serves as the input to an anamorphic relay, which reimages the cylindrical lens array onto the substrate.
Table 1 sets forth the lens design data for an example embodiment of relay lens 143 as illustrated in FIGS. 8A and 8B.
With reference again to FIGS. 8A and 8B, relay lens 143 consists of two imaging sub-relays R-1 and R-2 in series with a common intermediate image plane IM. Sub-relay R1 is an anamorphic relay employing mainly cylindrical lens elements with substantially different powers in the Y-Z and X-Z planes, while subrelay R-2 is a conventional relay employing spherical elements and having a demagnification ratio of 1:6. The anamorphic relay R-1 has a 1:1 magnification ratio in the Y-Z plane, and a 1:10 demagnification ratio in the X-Z plane. The relay lens 143 is telecentric at the object plane OP and image focal plane OP.
Telecentricity at both the object plane OP and the image plane IP is achieved with a spherical field lens 202 (surfaces s1-s2) and a cylindrical lens 204 (surfaces s3-s4) arranged immediately adjacent preheating radiation source 142. The cylindrical lens 204 has power only in the Y-Z plane and forms a pupil image in the Y-Z plane at s5. Next are two cylindrical lenses, 206 and 208 (surfaces s6-s9) with power in the Y-Z plane that reimage the diode array at 1:1 at the intermediate image plane. Surface s10 identifies a pupil plane in the X-Z plane. These are followed by a pair of cylindrical lenses, 210 and 212 (surfaces s11-s14) having power in the X-Z plane that also reimage the diode array at the intermediate image plane at a demagnification ratio of 10:1. The intermediate image is reimaged on the final image plane by a group of spherical lenses, 214-222 (surfaces s15-s24) that form a sub-relay with a demagnification ratio of 6:1. Thus the relay has an overall demagnification of 6:1 in the plane containing the rows of diodes, and 60:1 in the plane normal to each row of diodes.
The 6:1 demagnification ratio in the Y-Z plane reduces the 10 mm size of the uncollimated (slow-axis) of preheating radiation source 142 from 10 mm at object plane OP to 1.67 mm at image plane IP. Also, in the same plane the 10° cone angle of radiation emitted from the preheating radiation source 142 at object plane OP is increased to 60° at image plane IP.
The demagnification in the X-Z plane is 60:1. Thus, the 11.4 mm dimension (as measured in the X-direction across 7 rows of diodes) of the laser diode array making up effective source 220 at object plane OP is reduced to 0.19 mm at image plane IP. In addition, the 1° FWHM angular spread in the collimated beam at effective source 220 is increased to a 60° cone angle at image plane IP.
If it is assumed that the overall efficiency of transmitting preheating radiation 147 from radiation source 142 at object plane OP to substrate 10 at image plane IP is 50% (including reflection losses at substrate surface 12), then relay lens 143 of FIGS. 8A and 8B is capable of bringing 280 W into image 160. For the example image 160 dimensions of 1.6 mm by 0.19 mm, this achieves a power density of 921 W/mm2. At normal incidence (θ150=0°), this power density will raise the temperature of a room-temperature (i.e., ˜20° C.) silicon substrate 10 by about 500° C. to a temperature near 520° C. assuming a dwell time of about 0.2 ms. This is above the critical, uniform temperature TC of 400° C. required to initiate the self-sustaining annealing condition and is in the right range for a non-uniform temperature distribution such as that produced by a diode array image 160 located just in front of the annealing laser image 30. In this case, it is assumed that preheating radiation beam 150 precedes (i.e., is scanned in front of) annealing radiation beam 20. In this way, the maximum temperature TMAX created by the preheating radiation beam is achieved just prior to annealing radiation beam 20 irradiating the same preheated portion of the substrate. In an example embodiment, the relative position of the preheating and annealing radiation beams are reversed each time the scan direction is reversed so that the preheating radiation beam always precedes the annealing radiation beam.
IX. Radiation Beam Scanning and Orientation
As mentioned above, in an example embodiment, image 160 formed by preheating radiation beam 150 is scanned over substrate 10. In conjunction therewith, image 30 formed by annealing radiation beam 20 is also scanned over the substrate so that it is incident on the substrate portion(s) preheated by the preheated radiation beam.
In example embodiments, scanning is carried out by moving the substrate in a spiral, raster or boustrophedonic pattern. In a boustrophedonic scanning pattern, the scan direction is reversed and the cross-scan position incremented after every scan. In this case, as mentioned above, it is necessary to change the relative positions of preheating radiation beam 150 and annealing radiation beam 20 between each scan. In an example embodiment, this is accomplished by shifting the position of the entire relay lens 143. Where annealing radiation beam 20 is about 120 μm wide (FWHM) and preheating radiation beam 250 is about 190 μm wide (top-hat profile), then relay lens 143 needs to be moved by about twice the distance between the beam centers or about 393 μm in a direction parallel to the scan direction. This is accomplished, for example, via a signal from controller 32, which is operatively connected to preheating relay lens 143 to effectuate movement of the relay lens (FIG. 1C). In a like manner, controller 32 controls the focus of preheating radiation beam 150 by adjusting the focus, tip, and tilt parameters of the substrate prior to scanning.
As discussed in aforementioned U.S. patent application Ser. No. 10/287,864, it is desirable to have annealing radiation beam 20 be incident substrate 10 at an incident angle at or near the Brewster's angle, and be P-polarized. This is because the film stacks likely to be encountered on a substrate during annealing have a low reflectivity and a small variation in reflectivity under these conditions.
In an example embodiment, preheating radiation beam 150 is arranged so that it strikes the substrate at incident angle θ150, at or near the Brewster's angle in a manner similar to that of annealing radiation beam 20. Generally this angle reduces the variation in reflectivity between the different film stacks likely to be found on a substrate prior to the activation (annealing) step. However, while this beam orientation (angle) works very well at the annealing wavelength, it is not as effective at the wavelength used for preheating. The rough equivalence between the preheating radiation beam wavelengths and the thickness of the films used to make semiconductor structures (e.g., devices 14, such as transistors) leads to a greater variation in substrate reflectivity at all angles of incidence. Furthermore, an incident angle θ150 at or near Brewster's angle spreads image 160 over an area 3 or 4 times bigger than at normal incidence (i.e., θ150=0°) and lowers the power density a corresponding amount. If the scan rate is left unchanged, since it is usually set by the annealing radiation beam geometry, then the maximum temperature is also reduced.
One of the problems with operating at normal incidence or near normal incidence is that the reflected proportion of the radiation can be quite high and can cause serious damage if it returns to the radiation source (e.g., diode array). FIGS. 10A and 10B are schematic diagrams illustrating example embodiments of preheating relay optical system 140 for decreasing the amounts of preheating radiation reflected or scattered back to the preheating radiation source 142 (FIG. 1C). With reference to FIG. 10A, in a preferred embodiment, preheating radiation beam 150 has a normal incident angle of θ150=0°. A normal angle of incidence results in an amount of preheating radiation beam 150 being reflected from the substrate (the reflected preheating radiation is denoted 150R) and being transmitted back toward the preheating radiation source 142. If reflected preheating radiation 150R makes it back to preheating radiation source 142, it may accelerate the source's time to failure. Where emitted preheating radiation 147 is polarized (such as is the case with laser diodes), then in an example embodiment, the amount of reflected preheating radiation 150R returning to the preheating radiation source is reduced by arranging a polarizer 143P aligned with the polarization direction of the preheating radiation beam, and a quarter-wave plate 143WP located between the polarizer and the substrate. The quarter wave plate converts the radiation traveling from the polarizer to the substrate into circularly polarized radiation at the substrate. Any radiation returning from the substrate is converted back to linearly polarized radiation after passing through the quarter wave plate. However, the direction of polarization of the returning radiation is orthogonal to the original direction. Thus the returning beam is not transmitted by the polarizer and does not reach the laser diode array.
With reference now to FIG. 10B, even if the incidence angle θ150 is chosen off-normal incidence so that reflected (specular) preheating radiation 150 cannot return to the preheating radiation source, scattered (or non-specular) preheating radiation 150S returning to preheating radiation source can present a problem. Even a small amount of radiation returned to some types of preheating radiation sources (such as lasers) can cause operational instability. Also, it is desirable to employ p-polarized preheating radiation when operating off of normal incidence in order to increase the proportion of radiation that is absorbed in the substrate and to reduce the variation in absorption caused by the various structures on the substrate.
Thus, in an example embodiment, the amount of preheating radiation 150S that returns to the preheating radiation source 142 is reduced by adding a polarizer 143P and a Faraday rotator 143F downstream of relay lens 143. The Faraday rotator 143F is located between the polarizer 143P and substrate 10. In operation, the Faraday rotator rotates the polarization of the preheating radiation beam 150 by 90° after two passes through the rotator, and the polarizer blocks the polarization-rotated preheating radiation 150S from returning to preheating radiation source 142. Operating optical relay system 140 such that preheating radiation beam 150 is off of normal incidence also facilitates measuring the power in reflected preheating radiation beam 150R, which is a useful diagnostic.
Measurements of the power in incident preheating radiation beam 150 and reflected preheating radiation 150R can be used to calculate the power absorbed by the substrate 10. This is then used to estimate the maximum temperature produced by preheating radiation beam 150. By keeping the absorbed power in preheating radiation beam 150 above a certain minimum threshold, preheating sufficient to trigger strong absorption of the annealing radiation beam 20 by the substrate is assured.
In the foregoing Detailed Description, various features are grouped together in various example embodiments for ease of understanding. The many features and advantages of the present invention are apparent from the detailed specification, and, thus, it is intended by the appended claims to cover all such features and advantages of the described apparatus that follow the true spirit and scope of the invention. Furthermore, since numerous modifications and changes will readily occur to those of skill in the art, it is not desired to limit the invention to the exact construction and operation described herein. Accordingly, other embodiments are within the scope of the appended claims.
TABLE 1
Lens design data for example embodiment of relay optical system 143
as illustrated in FIGS. 8A and 8B
s# Radius (RDY, RDX) TH Glass Element
1 RDY = RDX = 8 3.100 NBK7 Lens 202
2 RDY = RDX = −142.696 0.500
3 RDY = RDX = 8 5.800 NBK7 Lens 204
4 RDY = −30.060 RDX = 8 107.027
6 RDY = 544.836 RDX = 8 7.800 B270 Lens 206
7 RDY = −47.730 RDX = 8 113.564
8 RDY = 99.955 RDX = 8 8.00 NBK7 Lens 208
9 RDY = 1309.204 RDX = 8 52.015
11 RDY = 8 RDX = 38.835 9.900 NBK7 Lens 210
12 RDY = RDX = 8 6.946
13 RDY = 8 RDX = −199277.3 9.600 NBK7 Lens 212
14 RDY = 8 RDX = −13.079 338.951
15 RDY = RDX = 50.084 6.749 NBK7 Lens 214
16 RDY = RDX = 693.301 19.454
17 RDY = RDX = 21573827 3.000 NBK7 Lens 216
18 RDY = RDX = 34.369 5.895
19 RDY = RDX = 946.3332 9.000 NBK7 Lens 218
20 RDY = RDX = −84.838 .500
21 RDY = RDX = 46.343 6.370 Fused Silica Lens 220
22 RDY = RDX = 22.240 42.168
23 RDY = RDX = 4434.483 8.000 Fused Silica Lens 222
24 RDY = RDX = 8 21.000
Image Plane

Claims (18)

1. A method of laser thermal annealing a substrate with a selected laser beam having a wavelength which passes through the substrate when the substrate is at room temperature and the substrate does not absorb radiation from the selected laser beam, the method comprising:
heating at least a portion of the substrate to a critical temperature above which the selected laser beam does not pass through the substrate and energy from the selected laser beam will be absorbed near the surface of the substrate at said heated portion; and
scanning said selected laser beam over the heated portion of the substrate where said selected laser beam is absorbed near the surface of the substrate thereby continuously annealing at the heated portion of the substrate as the selected laser beam advances.
2. The method of claim 1, wherein the substrate is an undoped or lightly doped silicon substrate.
3. The method of claim 1, wherein said heating includes providing heat to the substrate via a heated chuck that supports the substrate.
4. The method of claim 3, wherein said heating includes reflecting heat radiated from the substrate back to the substrate.
5. The method of claim 1, wherein said heating includes providing heat to the substrate via a heated enclosure that surrounds the substrate.
6. The method of claim 1, wherein said heating includes irradiating the portion of the substrate with a preheating radiation beam having a wavelength that is absorbed by the substrate at room temperature.
7. The method of claim 6, wherein the preheating radiation beam wavelength is 780 nm or 800 nm.
8. The method of claim 6, further including generating the preheating radiation beam using an array of diode lasers.
9. The method of claim 6, wherein:
the selected laser beam forms a first image at the substrate, the preheating radiation beam forms a second image at the substrate, and the method further includes:
scanning the first and second images over the substrate with the first image following or partially overlapping the second image.
10. The method of claim 9, further includes maintaining the second image in front of or partially overlapping the first image during scanning.
11. The method of claim 1, wherein the selected laser beam has a wavelength of greater than 1 μm.
12. The method of claim 11, wherein the selected laser beam has a wavelength of 10.6 μm.
13. The method of claim 6, further including:
empirically determining at least one of i) a critical temperature produced by the preheating radiation beam to enable a self-sustaining annealing condition, and ii) a minimum power required in the preheating radiation beam to enable the self-sustaining annealing condition by irradiating a set of test substrates with a corresponding set of laser beams and a set of preheating radiation beams having select intensities.
14. The method of claim 1, wherein the critical temperature is 360° C. or greater.
15. The method of claim 9, wherein scanning is performed in a pattern selected from the group of patterns comprising: raster, boustrophedonic, and spiral.
16. The method of claim 9, wherein scanning is performed by selectively moving a movable substrate stage that supports a chuck that in turn supports the substrate.
17. The method of claim 6, wherein the preheating radiation beam has a power level, and wherein the power level is set by:
a. scanning the substrate with the selected laser beam having sufficient power to anneal an absorbing substrate;
b. raising the power level of the preheating radiation beam and repeating step a. until an annealing temperature is reached on the substrate surface in step a.; and
c. setting the power level to at least that which results in the annealing temperature being reached.
18. A method of laser thermal annealing a substrate with a selected laser beam having a wavelength which passes through the substrate when the substrate is at room temperature and the substrate does not absorb radiation from the selected laser beam, the method comprising:
irradiating a portion of the surface of the substrate with a scanning preheating radiation beam that is absorbed by the substrate at room temperature to heat at least the surface portion of the substrate to a critical temperature at which the selected laser beam will be absorbed near the surface of the substrate at said heated portion; and
scanning the heated portion of the substrate with the selected laser beam behind of or partially overlapping with the preheating radiation beam thereby continuously annealing at the heated portion of the substrate as the selected laser beam advances.
US11/478,171 2003-09-29 2006-06-29 Laser thermal annealing of lightly doped silicon substrates Expired - Fee Related US7879741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/478,171 US7879741B2 (en) 2003-09-29 2006-06-29 Laser thermal annealing of lightly doped silicon substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/674,106 US7148159B2 (en) 2003-09-29 2003-09-29 Laser thermal annealing of lightly doped silicon substrates
US11/478,171 US7879741B2 (en) 2003-09-29 2006-06-29 Laser thermal annealing of lightly doped silicon substrates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/674,106 Division US7148159B2 (en) 2003-09-29 2003-09-29 Laser thermal annealing of lightly doped silicon substrates

Publications (2)

Publication Number Publication Date
US20060246694A1 US20060246694A1 (en) 2006-11-02
US7879741B2 true US7879741B2 (en) 2011-02-01

Family

ID=34376795

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/674,106 Expired - Lifetime US7148159B2 (en) 2003-09-29 2003-09-29 Laser thermal annealing of lightly doped silicon substrates
US11/478,171 Expired - Fee Related US7879741B2 (en) 2003-09-29 2006-06-29 Laser thermal annealing of lightly doped silicon substrates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/674,106 Expired - Lifetime US7148159B2 (en) 2003-09-29 2003-09-29 Laser thermal annealing of lightly doped silicon substrates

Country Status (4)

Country Link
US (2) US7148159B2 (en)
JP (2) JP5517396B2 (en)
TW (1) TWI246119B (en)
WO (1) WO2005043696A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100323532A1 (en) * 2006-03-08 2010-12-23 Paul Carey Method of thermal processing structures formed on a substrate
US20130330847A1 (en) * 2012-06-07 2013-12-12 Taiwan Semiconductor Manufacturing Company, Ltd. ("Tsmc") Method and system for semiconductor device pattern loading effect characterization
US9482518B2 (en) 2012-06-07 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for semiconductor device process determination using reflectivity measurement
US9558973B2 (en) 2012-06-11 2017-01-31 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times
US10083843B2 (en) 2014-12-17 2018-09-25 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128421A (en) * 2002-10-07 2004-04-22 Semiconductor Energy Lab Co Ltd Laser irradiation method, laser irradiation device, and method for manufacturing semiconductor device
DE602004020538D1 (en) * 2003-02-28 2009-05-28 Semiconductor Energy Lab Method and device for laser irradiation, and method for the production of semiconductors.
JP4373115B2 (en) * 2003-04-04 2009-11-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7176405B2 (en) * 2005-04-22 2007-02-13 Ultratech, Inc. Heat shield for thermal processing
US7767927B2 (en) * 2005-05-16 2010-08-03 Ultratech, Inc. Methods and apparatus for remote temperature measurement of a specular surface
US7482254B2 (en) 2005-09-26 2009-01-27 Ultratech, Inc. Apparatus and methods for thermally processing undoped and lightly doped substrates without pre-heating
FR2893873B1 (en) * 2005-11-25 2008-12-12 Air Liquide PROCESS FOR CUTTING WITH A STAINLESS STEEL FIBER LASER
DE102006018801A1 (en) * 2006-04-22 2007-10-25 Carl Zeiss Laser Optics Gmbh Device and method for heating a substrate
US7514305B1 (en) * 2006-06-28 2009-04-07 Ultratech, Inc. Apparatus and methods for improving the intensity profile of a beam image used to process a substrate
US7790636B2 (en) * 2006-06-29 2010-09-07 International Business Machines Corporation Simultaneous irradiation of a substrate by multiple radiation sources
US7635656B2 (en) 2006-06-29 2009-12-22 International Business Machines Corporation Serial irradiation of a substrate by multiple radiation sources
US7619227B2 (en) * 2007-02-23 2009-11-17 Corning Incorporated Method of reducing radiation-induced damage in fused silica and articles having such reduction
US7744274B1 (en) * 2007-06-20 2010-06-29 Ultratech, Inc. Methods and apparatus for temperature measurement and control on a remote substrate surface
US7847213B1 (en) 2007-09-11 2010-12-07 Ultratech, Inc. Method and apparatus for modifying an intensity profile of a coherent photonic beam
FR2921752B1 (en) * 2007-10-01 2009-11-13 Aplinov METHOD FOR HEATING A PLATE BY A LUMINOUS FLOW
US8674257B2 (en) * 2008-02-11 2014-03-18 Applied Materials, Inc. Automatic focus and emissivity measurements for a substrate system
US8071908B1 (en) 2008-03-26 2011-12-06 Ultratech, Inc. Edge with minimal diffraction effects
US20090278287A1 (en) 2008-05-12 2009-11-12 Yun Wang Substrate processing with reduced warpage and/or controlled strain
US20100068898A1 (en) 2008-09-17 2010-03-18 Stephen Moffatt Managing thermal budget in annealing of substrates
US8314369B2 (en) * 2008-09-17 2012-11-20 Applied Materials, Inc. Managing thermal budget in annealing of substrates
US20100084744A1 (en) * 2008-10-06 2010-04-08 Zafiropoulo Arthur W Thermal processing of substrates with pre- and post-spike temperature control
FR2938116B1 (en) * 2008-11-04 2011-03-11 Aplinov METHOD AND DEVICE FOR HEATING A LAYER OF A PLATE BY PRIMING AND LUMINOUS FLUX
US20100304527A1 (en) * 2009-03-03 2010-12-02 Peter Borden Methods of thermal processing a solar cell
JP2011003630A (en) * 2009-06-17 2011-01-06 Sumitomo Heavy Ind Ltd Laser irradiator and method for irradiating laser
US8014427B1 (en) 2010-05-11 2011-09-06 Ultratech, Inc. Line imaging systems and methods for laser annealing
KR101009296B1 (en) * 2010-05-14 2011-01-18 김진숙 Elevator compensation chain and manufacturing method thoreof for adjustible radius of curvature
JP5617421B2 (en) * 2010-08-06 2014-11-05 Jfeスチール株式会社 Electron beam irradiation device
US8026519B1 (en) 2010-10-22 2011-09-27 Ultratech, Inc. Systems and methods for forming a time-averaged line image
US8652974B2 (en) * 2011-06-22 2014-02-18 Ipg Photonics Corporation Method and system for pre-heating of semiconductor material for laser annealing and gas immersion laser doping
JP5537615B2 (en) 2011-08-10 2014-07-02 ウルトラテック インク System and method for forming a time-averaged line image
SG10201503482QA (en) 2012-06-11 2015-06-29 Ultratech Inc Laser annealing systems and methods with ultra-short dwell times
US20140158578A1 (en) * 2012-12-06 2014-06-12 Jason Varan Folding apparatus for the containment and transport of bottles and method of use
KR102090708B1 (en) * 2013-01-22 2020-04-16 삼성디스플레이 주식회사 Laser annealing apparatus
US20150111341A1 (en) * 2013-10-23 2015-04-23 Qualcomm Incorporated LASER ANNEALING METHODS FOR INTEGRATED CIRCUITS (ICs)
US9373512B2 (en) 2013-12-03 2016-06-21 GlobalFoundries, Inc. Apparatus and method for laser heating and ion implantation
US9343307B2 (en) * 2013-12-24 2016-05-17 Ultratech, Inc. Laser spike annealing using fiber lasers
US20150343560A1 (en) * 2014-06-02 2015-12-03 Fracturelab, Llc Apparatus and method for controlled laser heating
CN105793960B (en) * 2014-06-12 2018-09-11 富士电机株式会社 The manufacturing method of impurity adding set, impurity adding method and semiconductor element
US9559023B2 (en) 2014-06-23 2017-01-31 Ultratech, Inc. Systems and methods for reducing beam instability in laser annealing
JP6439297B2 (en) * 2014-07-04 2018-12-19 富士電機株式会社 Impurity introduction method, impurity introduction apparatus, and semiconductor device manufacturing method
US9613815B2 (en) 2014-11-24 2017-04-04 Ultratech, Inc. High-efficiency line-forming optical systems and methods for defect annealing and dopant activation
US9859121B2 (en) * 2015-06-29 2018-01-02 International Business Machines Corporation Multiple nanosecond laser pulse anneal processes and resultant semiconductor structure
CN108028213B (en) 2015-12-30 2021-12-21 玛特森技术公司 Preheat method for millisecond anneal system
US11045906B2 (en) * 2017-12-07 2021-06-29 Gkn Aerospace St. Louis Llc Coaxial wire feed multi-laser metal deposition device
KR102546719B1 (en) * 2018-09-04 2023-06-21 삼성전자주식회사 Monitoring device and monitoring method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356375A (en) 1980-07-10 1982-10-26 Avery International Corporation Process for producing lines of weakness in the protective backing of an adhesive laminate
US4734912A (en) 1986-06-06 1988-03-29 Lightwave Electronics Corp. Laser diode end pumped Nd:YAG single mode laser
US4761786A (en) 1986-12-23 1988-08-02 Spectra-Physics, Inc. Miniaturized Q-switched diode pumped solid state laser
US4908493A (en) 1988-05-31 1990-03-13 Midwest Research Institute Method and apparatus for optimizing the efficiency and quality of laser material processing
US5057664A (en) 1989-10-20 1991-10-15 Electro Scientific Industries, Inc. Method and apparatus for laser processing a target material to provide a uniformly smooth, continuous trim profile
US6208673B1 (en) 1999-02-23 2001-03-27 Aculight Corporation Multifunction solid state laser system
US6366308B1 (en) 2000-02-16 2002-04-02 Ultratech Stepper, Inc. Laser thermal processing apparatus and method
US20020137311A1 (en) * 2000-12-21 2002-09-26 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US6747245B2 (en) 2002-11-06 2004-06-08 Ultratech Stepper, Inc. Laser scanning apparatus and methods for thermal processing

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926456A (en) * 1972-07-11 1974-03-08
JPS5629323A (en) * 1979-08-17 1981-03-24 Nec Corp Two-wavelength laser surface treating apparatus
JPS577125A (en) * 1980-06-17 1982-01-14 Fujitsu Ltd Laser heater
JPS57104217A (en) * 1980-12-22 1982-06-29 Toshiba Corp Surface heat treatment
JPS57183024A (en) * 1981-05-02 1982-11-11 Fujitsu Ltd Laser annealing
JPS57183023A (en) * 1981-05-02 1982-11-11 Fujitsu Ltd Laser annealing
JPS57111020A (en) * 1981-11-16 1982-07-10 Hitachi Ltd Manufacture of semiconductor device
JPS6380521A (en) * 1986-09-24 1988-04-11 Furukawa Electric Co Ltd:The Manufacture of semiconductor thin film crystal layer
JPH03266424A (en) * 1990-03-16 1991-11-27 Sony Corp Annealing process of semiconductor substrate
JPH0521340A (en) * 1991-07-10 1993-01-29 Ricoh Co Ltd Thin film semiconductor device, method and apparatus for manufacturing the same
US6326248B1 (en) * 1994-06-02 2001-12-04 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
JP2000036464A (en) * 1998-07-17 2000-02-02 Sony Corp Manufacture of thin-film semiconductor device
JP2002217125A (en) * 2001-01-23 2002-08-02 Sumitomo Heavy Ind Ltd Surface treatment apparatus and its method
JP4068813B2 (en) * 2001-04-06 2008-03-26 セイコーエプソン株式会社 Method for manufacturing thin film semiconductor device
SG108878A1 (en) * 2001-10-30 2005-02-28 Semiconductor Energy Lab Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
JP3992976B2 (en) * 2001-12-21 2007-10-17 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6767799B2 (en) * 2001-12-28 2004-07-27 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiation method
US6849831B2 (en) * 2002-03-29 2005-02-01 Mattson Technology, Inc. Pulsed processing semiconductor heating methods using combinations of heating sources
JP2003347237A (en) * 2002-05-30 2003-12-05 Mitsubishi Electric Corp Method of manufacturing semiconductor device and manufacturing device thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356375A (en) 1980-07-10 1982-10-26 Avery International Corporation Process for producing lines of weakness in the protective backing of an adhesive laminate
US4734912A (en) 1986-06-06 1988-03-29 Lightwave Electronics Corp. Laser diode end pumped Nd:YAG single mode laser
US4761786A (en) 1986-12-23 1988-08-02 Spectra-Physics, Inc. Miniaturized Q-switched diode pumped solid state laser
US4908493A (en) 1988-05-31 1990-03-13 Midwest Research Institute Method and apparatus for optimizing the efficiency and quality of laser material processing
US5057664A (en) 1989-10-20 1991-10-15 Electro Scientific Industries, Inc. Method and apparatus for laser processing a target material to provide a uniformly smooth, continuous trim profile
US6208673B1 (en) 1999-02-23 2001-03-27 Aculight Corporation Multifunction solid state laser system
US6366308B1 (en) 2000-02-16 2002-04-02 Ultratech Stepper, Inc. Laser thermal processing apparatus and method
US20020137311A1 (en) * 2000-12-21 2002-09-26 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US6747245B2 (en) 2002-11-06 2004-06-08 Ultratech Stepper, Inc. Laser scanning apparatus and methods for thermal processing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Goetzlich, Tsien. Ryssel. Relaxation Behavior of Metastable AS and P Concentrations in SI After Pulsed and CW Laser Annealing, Mat. Res. Soc. Symp. Proc. vol. 23 (1984) pp. 235-240.
Lee, Stephen "CO2 processing at 9 microns" Industrial Laser Solutions Reprint Mar. 2002 ed. p. 1-3. *
Naem, Boothroyd. Calder. CW Laser Annealed Small-Geometry NMOS Transistors. Mat. Res. Soc. Symp. Proc. vol. 23 (1984) pp. 229-234.
Venkat, Sri "Perf-ect form" Laser Solutions for Manufacturing Dec. 2002 ed. p. 1-3. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100323532A1 (en) * 2006-03-08 2010-12-23 Paul Carey Method of thermal processing structures formed on a substrate
US8518838B2 (en) 2006-03-08 2013-08-27 Applied Materials, Inc. Method of thermal processing structures formed on a substrate
US10141191B2 (en) 2006-03-08 2018-11-27 Applied Materials, Inc. Method of thermal processing structures formed on a substrate
US10840100B2 (en) 2006-03-08 2020-11-17 Applied Materials, Inc. Method of thermal processing structures formed on a substrate
US20130330847A1 (en) * 2012-06-07 2013-12-12 Taiwan Semiconductor Manufacturing Company, Ltd. ("Tsmc") Method and system for semiconductor device pattern loading effect characterization
US8753904B2 (en) * 2012-06-07 2014-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for semiconductor device pattern loading effect characterization
US8883522B2 (en) 2012-06-07 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. System for semiconductor device characterization using reflectivity measurement
US9482518B2 (en) 2012-06-07 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for semiconductor device process determination using reflectivity measurement
US9558973B2 (en) 2012-06-11 2017-01-31 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times
US10083843B2 (en) 2014-12-17 2018-09-25 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times

Also Published As

Publication number Publication date
JP5517396B2 (en) 2014-06-11
US7148159B2 (en) 2006-12-12
WO2005043696A2 (en) 2005-05-12
US20060246694A1 (en) 2006-11-02
TWI246119B (en) 2005-12-21
WO2005043696A3 (en) 2005-11-24
TW200515491A (en) 2005-05-01
JP2012231158A (en) 2012-11-22
JP2007507897A (en) 2007-03-29
US20050067384A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US7879741B2 (en) Laser thermal annealing of lightly doped silicon substrates
US7098155B2 (en) Laser thermal annealing of lightly doped silicon substrates
JP5094825B2 (en) Laser thermal annealing of lightly doped silicon substrates.
US11945045B2 (en) Annealing apparatus using two wavelengths of radiation
KR100899321B1 (en) Laser thermal annealing of lightly doped silicon substrates

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.)

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

AS Assignment

Owner name: VEECO INSTRUMENTS INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ULTRATECH, INC.;REEL/FRAME:051446/0476

Effective date: 20191219

AS Assignment

Owner name: HSBC BANK USA, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:VEECO INSTRUMENTS INC.;REEL/FRAME:058533/0321

Effective date: 20211216

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230201