US7410921B2 - High thermal expansion cyclosilicate glass-ceramics - Google Patents
High thermal expansion cyclosilicate glass-ceramics Download PDFInfo
- Publication number
- US7410921B2 US7410921B2 US11/708,242 US70824207A US7410921B2 US 7410921 B2 US7410921 B2 US 7410921B2 US 70824207 A US70824207 A US 70824207A US 7410921 B2 US7410921 B2 US 7410921B2
- Authority
- US
- United States
- Prior art keywords
- glass
- ceramic
- cao
- sro
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/24—Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0009—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
- C03C10/0045—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C29/00—Joining metals with the aid of glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/04—Frit compositions, i.e. in a powdered or comminuted form containing zinc
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/22—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
- C04B37/005—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/025—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/082—Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0282—Inorganic material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2207/00—Compositions specially applicable for the manufacture of vitreous enamels
- C03C2207/02—Compositions specially applicable for the manufacture of vitreous enamels containing ingredients for securing a good bond between the vitrified enamel and the metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3436—Alkaline earth metal silicates, e.g. barium silicate
- C04B2235/3445—Magnesium silicates, e.g. forsterite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3436—Alkaline earth metal silicates, e.g. barium silicate
- C04B2235/3454—Calcium silicates, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/10—Glass interlayers, e.g. frit or flux
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention is directed to highly crystallized, frit-sintered glass-ceramics in which the primary crystal phases possess cyclosilicate crystal structures.
- the materials can be used as metal-to-metal, metal-to-ceramic and ceramic-to-ceramic sealing materials as well as high performance coatings for metals and ceramics.
- Glass-ceramics are polycrystalline materials formed by controlled crystallization of a precursor glass article.
- a glass-ceramic may be prepared by exposing a glass monolith to a thermal treatment for conversion to a crystalline state. This is referred to as “internal nucleation” or a “bulk” or “monolith glass-ceramic forming process.”
- Glass-ceramics may also be prepared by firing glass frits in what is referred to as powder processing methods.
- a glass is reduced to a powder state, formed to a desired shape, fired and crystallized to a glass-ceramic state.
- the relict surfaces of the glass grains serve as nucleating sites for the crystal phases.
- the glass composition, particle size, and processing conditions are chosen such that the glass softens prior to crystallization and undergoes viscous sintering to maximum density just before the crystallization process is completed.
- Shape forming methods may include but are not limited to extrusion, slip casting, tape casting, spray drying, and isostatic pressing.
- Sintered glass-ceramic materials have properties that may make them suitable for many uses. Examples of such uses include high strength structural composites; sealing agents to effect metal-to-metal, metal-to-ceramic and ceramic-to-ceramic seals, including hermetic glass-to-metal electrical feed-through seals; and as sealing agent in microreactors and bioassay equipment. While various materials have been used as sealing agents, for example, epoxies and cements among others, improvements in this area are needed.
- the present invention discloses glass-ceramic materials that can be used as sealing materials, and also as high temperature coating, for metals and ceramics.
- the present invention is directed to novel compositions suitable for forming glass-ceramic materials that may be used in a variety of applications.
- the glass-ceramic materials of the invention can be used as sealing agents and as high performance coating for metals, metal alloys and ceramics.
- the invention is directed to glass-ceramic materials containing silicon dioxide and one or more of the oxides of calcium, barium and strontium in a cyclosilicate crystal structure.
- the invention is directed to glass-ceramic compositions comprising, in weight percent (wt. %):
- compositions comprising, in weight percent, 30-55% SiO 2 , 5-40% CaO, 0-50% BaO, 0.1-10% Al 2 O 3 , and 0-40% SrO, and optionally or further comprise greater than zero (>0) to the indicated maximum of least one oxide selected from the group consisting of
- the invention is directed to compositions comprising, in weight percent, 30-55% SiO 2 , 5-40% CaO, 0-50% BaO, 0.1-10% Al 2 O 3 , 0-40% SrO, and >0-16% MgO, and optionally further containing >0-10 wt. % of at least one metal oxide selected from the group of transition metal and rare earth metal oxides.
- the transition metal and rare earth metal oxides that can be used in practicing the invention include, without limitation, Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Yb 2 O 3 , La 2 O 3 , and Fe 2 O 3 .
- the invention is directed to glass-ceramic compositions that can be sintered at 900°-950° C. to produce a glass-ceramic with high crystallinity (that is, less than approximately 20% residual glass and preferably less than approximately 10% residual glass), low barium content (environmentally desirable), and an expansion coefficient (range: 25-700° C.) greater than 90 ⁇ 10 ⁇ 7 /° C., said compositions comprising:
- the invention is directed to glass-ceramic compositions comprising 38-50% SiO 2 , 20-40% CaO, 0-20% BaO, 2-6% Al 2 O 3 , and 0-25% SrO; and further or optionally comprise at least one oxide selected from the group of >0-16% MgO and >0-5 wt. % ZnO, with the provision that the sum of CaO+BaO+SrO+MgO or the sum of CaO+BaO+SrO+ZnO is in the range of 35-65 wt. %. In some embodiments of these compositions the sum of CaO+BaO+SrO+MgO or the sum of CaO+BaO+SrO+ZnO is in the range of 40-65 wt. %.
- the invention is directed to glass-ceramic compositions comprising 38-55 SiO 2 , 20-40% CaO, 0-20% BaO, 2-6% Al 2 O 3 , 0-25% SrO, and >0-16% MgO, and may optionally further contain >0-10 wt. % of at least one metal oxide selected from the group of transition metal and rare earth metal oxides.
- the sum of CaO+BaO+SrO+MgO is in the range of 35-65 wt. %. In some embodiments of these compositions the sum of CaO+BaO+SrO+MgO is in the range of 40-65 wt. %.
- transition metal and rare earth metal oxides examples include, without limitation, Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Yb 2 O 3 , La 2 O 3 , and Fe 2 O 3 .
- the invention is directed to glass-ceramic compositions comprising, in weight percent:
- the invention is directed to glass-ceramic compositions comprising in weight percent 45-55% SiO 2 , 25-40% CaO, 0-25% SrO, 3-6% Al 2 O 3 and 4-15% MgO, and may optionally further contain >0-10 wt. % of at least one metal oxide selected from the group of transition metal and rare earth metal oxides.
- the sum of CaO+MgO or CaO+MgO+SrO is in the range 38-50 wt. %.
- the transition metal and rare earth metal oxides that can be used in practicing the invention include, without limitation, Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Yb 2 O 3 , La 2 O 3 , and Fe 2 O 3 .
- the invention is directed to glass-ceramic compositions comprising in weight percent 45-55% SiO 2 , 25-40% CaO, 0-25% SrO, 3-6% Al 2 O 3 and 4-15% MgO, and may optionally further contain 4-8% ZnO.
- the sum of CaO+MgO or CaO+MgO+SrO is in the range 38-50 wt. %.
- the glass-ceramic compositions according to the invention have a coefficient of thermal expansion in the range of 85-115 ⁇ 10 ⁇ 7 /° C. Further, the glass-ceramic compositions according to the invention are stable to temperatures in the range of 1000-1450° C.
- the highly crystalline glass-ceramic compositions of the invention have less than 20% residual glass. In preferred embodiments the glass-ceramic materials according to the invention have less then 10% residual glass.
- FIG. 1 is the binary phase equilibrium for CASiO 3 —BaSiO 3 .
- FIG. 2 is the binary phase equilibrium diagram for CaSiO 3 —SrSiO 3 .
- FIG. 3 is the binary phase equilibrium for SrSiO 3 —BaSiO 3 .
- FIG. 4 illustrates the thermal expansion curves for cyclosilicate glass-ceramic compositions according to the invention shown as a plot of DL/L vs. T (° C.).
- FIG. 5 illustrates the coefficient of thermal expansion (CTE) for cyclosilicate glass-ceramic compositions according to the invention shown as a plot of CTE ⁇ 10 ⁇ 7 /° C. vs. T (° C.).
- compositional percentages are in weight percent (wt. %).
- the term “frit” as used herein means a powder, and particularly a powdered glass-ceramic precursor material/composition according to the invention.
- the glass-ceramics contain a glass phase and a crystalline phase.
- the crystalline phase contains at least one cyclosilicate component as described herein and may also contain additional crystalline components, either cyclosilicate or non-cyclosilicate (e.g., hardystonite, diopside, ⁇ kermanite), as also described herein.
- Powder-processed (frit-sintered) glass-ceramics are useful as metal-to-metal, metal-to-ceramic, and ceramic-to-ceramic sealing materials as well as high-performance coatings for metals and ceramics.
- glass-ceramics offer higher use temperatures, superior mechanical properties and corrosion resistance, and a very wide range of thermal expansion coefficients (CTEs), which allow them to be used as expansion-matched seals for many different ceramics, metals and metal alloys.
- CTEs thermal expansion coefficients
- the ability to fill re-entrant angles and complex internal shapes by viscous flow of the molten glass during crystallization makes glass-ceramics particularly suited to applications where high strength of the system, and no leakage, are important.
- Highly crystalline glass-ceramic seals with less than 20% residual glass (preferably less than 10% glass), are particularly well suited for sealing applications.
- the overall glass-ceramic seal can have a thermal expansion closely matched to that of the metal or ceramic substrate, and the glassy phase that remains in the final microstructure is confined to interstices and some grain boundaries, and does not form a continuous path through the seal.
- frit-sintered glass-ceramics based on cyclosilicate crystals in the CaSiO 3 —SrSiO 3 —BaSiO 3 phase field offer both high thermal expansion and high crystallinity.
- the crystal phases are solid solutions of (Ca, Sr, Ba)SiO 3 with complex crystal structures based on three-membered rings of SiO 4 tetrahedra.
- Each end member of the series (CaSiO 3 , SrSiO 3 , and BaSiO 3 ) exhibits several polymorphic forms, with the ⁇ -polymorph, or ring structure, being the higher-temperature form.
- FIGS. 2 , 3 and 4 are binary phase equilibrium diagrams (obtained from Phase Diagrams for Ceramists , Ed. E. M. Levin, C. R. Robbins, and H. F. McMurdie (American Ceramic Society, Columbus, Ohio, 1964)) for CASiO 3 —BaSiO 3 , CaSiO 3 —SrSiO 3 and SrSiO 3 —BaSiO 3 , respectively. No known ternary phase equilibria have been published, although it is assumed that a great deal of solid solution exists. Based on X-ray diffraction data (shown below in Table 1), three distinct but structurally-related cyclosilicate phases are obtained in these glass-ceramics. These are:
- F. MacDowell and R. L. Andrus discloses corrosion-resistant glass-ceramic coatings for titanium alloys.
- Firing temperatures range from 800° C. to 1200° C. and the CTEs (measurement range unspecified) are in the range of 80-141 ⁇ 10 ⁇ 7 /° C.
- the present invention is directed to highly crystalline frit-sintered glass-ceramics having a coefficient of thermal expansion in the range of 85-115 ⁇ 10 ⁇ 7 /° C. that are obtained by using the CaSiO 3 —SrSiO 3 —BaSiO 3 and CaSiO 3 —SrSiO 3 —BaSiO 3 —MgSiO 3 systems described herein.
- the primary crystal phases possess cyclosilicate crystal structures. Potential uses for these materials include sealing frits for numerous applications in which the glass-ceramics' high expansion, lack of alkali ions and boron, refractory properties, and minimal residual glass could provide key differential advantages.
- the advantages of the materials of the present invention can be summarized as follows:
- Glass compositions used for preparing the glass-ceramics according to the invention were prepared by melting the component materials in vessel, for example, a platinum crucible, at a temperature in the range of 1450-1650° C. for a time in the range of 2-5 hours.
- the starting materials may be the oxides, carbonates, nitrates, nitrites, hydroxides and form a of the metals described herein that are known in the art to be useful in the preparation of glasses.
- the melts were carried out at a temperature of 1600 ⁇ 50° C. for a time in the range of 2.5-4 hours. For each composition, a small, approximately 5 cm piece was formed from the molten glass composition and was annealed at a temperature of 750 ⁇ 40° C.
- the glass-ceramic compositions of the invention have a coefficient of thermal expansion in the range of 85-115 ⁇ 10 ⁇ 7 /° C. Further, the glass-ceramic compositions according to the invention are stable to temperatures >1000° C., many to temperatures in the range of 1200-1450° C.
- compositions according to the invention comprise, in weight percent (wt. %):
- compositions according to the invention comprise, in weight percent (wt. %), 30-55% SiO 2 , 5-40% CaO, 0-50% BaO, 0.1-10% Al 2 O 3 , and 0-40% SrO, and may optionally further contain greater than zero (>0) to the indicated maximum of least one oxide selected from the group consisting of:
- a preferred compositional range, for optimal sintering at 900°-950° C. with high crystallinity (that is, less than 20% residual glass and preferably less than 10% residual glass), low barium content (environmentally desirable), and expansion coefficient (range: 25-700° C.) greater than 90 ⁇ 10 ⁇ 7 /° C. comprises:
- the compositions comprise 38-50% SiO 2 , 20-40% CaO, 0-20% BaO, 2-6% Al 2 O 3 , and 0-25% SrO; and further or optionally comprises at least one oxide selected from the group of >0-16% MgO and >0-5 wt. % ZnO, with the provision that at least one of CaO+SrO+(MgO and/or ZnO) is in the range of 35-65 wt. %. In some embodiments the sum of CaO+SrO+(MgO and/or ZnO) is in the range of 40-65 wt. %.
- the composition may also contain >0-10 wt.
- transition metal and rare earth metal oxides examples include, without limitation, Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Yb 2 O 3 , La 2 O 3 , and Fe 2 O 3 .
- compositions comprise 38-55% SiO 2 , 20-40% CaO, 2-6% Al 2 O 3 , 0-25% SrO, and 4-15% MgO; and optionally the foregoing composition may also contain >0-10 wt. % of at least one metal oxide selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Yb 2 O 3 , La 2 O 3 and Fe 2 O 3 , with the provision that the sum of CaO+SrO+MgO is in the range of 35-65 wt. %. In some embodiments the sum of CaO+SrO+MgO is in the range of 40-65 wt. %,
- the glass-ceramic compositions according to the invention comprise 45-55% SiO 2 , 25-40% CaO, 3-6% Al 2 O 3 , 4-15% MgO, 0-25% SrO, with the provision that the sum of CaO+MgO or CaO+MgO+SrO is in the range of 38-50 wt. %.
- the foregoing compositions may also contain >0-10 wt. % of at least one metal oxide selected from the group consisting of transition metal and rare earth metal oxides, with the provision that the sum of CaO+SrO+MgO is in the range of 35-65 wt. %.
- transition metal and rare earth metal oxides examples include, without limitation, Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Yb 2 O 3 , La 2 O 3 , and Fe 2 O 3 .
- the sum of CaO+SrO+MgO is in the range of 40-65 wt. %.
- the foregoing composition of 45-55% SiO 2 , 25-40% CaO, 3-6% Al 2 O 3 , 4-15% MgO and 0-25% SrO may also contain 4-8 wt. % ZnO.
- compositions according to the invention that can be used as sealing materials and/or high performance coatings are shown in Table 2
- alkalis and boric oxide can be added, these are unnecessary as well as undesirable for many applications.
- the addition of up to 10% Al 2 O 3 helps stabilize the glass, delays crystallization until after some flow/sintering has taken place, and also promotes sintering at lower temperatures. However, as the amount of alumina increases, this results in more residual glass, particularly at temperatures below 1000° C. Consequently, the amount of alumina should be kept as low as possible.
- Higher-strontium compositions are the most refractory but require proportionately higher sintering temperatures. Up to 10% of other components such as transition metal oxides and/or rare earth metal oxides can also be added as sintering aids.
- transition metal and rare earth metal oxides that can be used in practicing the invention include, without limitation, Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Yb 2 O 3 , La 2 O 3 , and Fe 2 O 3 .
- the frit compositions according to the invention as shown in Table 2 remain amorphous at 800° C., and most remain primarily amorphous at 850° C. Therefore, it can be preferable to first sinter at ⁇ 850° C. and then subsequently increase the temperature to >900° C. to effect crystallization.
- the XRD patterns are identical to those of pellets given the opposite treatment (that is, first a 950° C. temperature spike for 10 minutes followed by 2 hour hold at 875° C.), but are significantly tougher when subjected to hammer blows, which is an indication of improved sintering/flow prior to crystallization.
- FIG. 5 shows representative thermal expansion curves for these cyclosilicate glass-ceramics.
- the plotted curves are the heating curves.
- the cooling curves lie on top of (or mirror) the heating curves.
- the curve for a re-run sample (a glass-ceramic bar run through the CTE measurement twice) is shown as the dotted line in the ⁇ L/L plot. There is no difference between the curve for the re-run sample and the curve resulting from the initial measurements.
- the glass-ceramic compositions of the invention have a coefficient of thermal expansion in the range of 85-115 ⁇ 10 ⁇ 7 /° C. Further, the glass-ceramic compositions according to the invention are stable to temperatures in the range of 1000-1400° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- Glass Compositions (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
-
- 30-55% SiO2,
- 5-40% CaO,
- 0-50% BaO,
- 0.1-10% Al2O3, and
- 0-40% SrO,
with the provision that the sum of CaO+BaO+SrO is in the range of 35-65 wt. %. In some embodiments the sum of CaO+BaO+SrO is in the range of 40-65 wt. %. The glass-ceramic composition has a glass phase and a crystalline phase. The crystalline phase has at least one cyclosilicate crystalline component selected from the group of walstromite, cyclo-wollastonite and μ-(Ca,Sr)SiO3, including solid solutions thereof. The glass ceramic may optionally further contain one or a plurality of additional crystalline components selected from the group of hardystonite, diopside and åkermanite.
-
- >0-16% MgO, and
- >0-10% ZnO,
with the provision that the sum of CaO+BaO+SrO+MgO is in the range of 35-65 wt. %.
-
- 38-50% SiO2,
- 20-40% CaO,
- 0-20% BaO,
- 2-6% Al2O3, and
- 0-25% SrO,
with the provision that the sum of CaO+BaO+SrO is in the range of 35-65 wt. %. The glass-ceramic compositions have a glass phase and a crystalline phase. The crystalline phase has at least one cyclosilicate crystalline component selected from the group of walstromite, cyclo-wollastonite and μ-(Ca,Sr)SiO3, including solid solutions thereof. The glass ceramic may optionally further contain one or a plurality of additional crystalline components selected from the group of hardystonite, diopside and åkermanite.
-
- 45-55% SiO2,
- 25-40% CaO,
- 0-25 wt. % SrO
- 3-6% Al2O3, and
- 4-15% MgO,
with the provision that the sum of CaO+MgO or CaO+MgO+SrO is in the range 38-50 wt. %. The glass-ceramic compositions have a glass phase and a crystalline phase. The crystalline phase has at least one cyclosilicate crystalline component selected from the group of walstromite, cyclo-wollastonite and μ-(Ca,Sr)SiO3, including solid solutions thereof. The glass ceramic may optionally further contain additional crystalline components selected from the group of hardystonite, diopside and åkermanite.
-
- (1) α-CaSiO3 (also known as pseudo-wollastorite and cyclo-wollastonite),
- (2) a phase known as “μ-(Ca,Sr)SiO3”, and
- (3) walstromite (nominally Ca2BaSi3O9 but there appears to be solid solution in this phase as well).
TABLE 1 | |||
cyclo- | |||
Phase | walstromite | wollastonite | μ-(Ca,Sr)SiO3 |
Chemical formula | (Ca0.67Ba0.33)SiO3 | α-CaSiO3 | (Ca,Sr)SiO3 |
Crystal form | Triclinic | Triclinic | “Hexagonal” |
(Pseudohexagonal) | (Pseudo- | (Pseudo- | |
hexagonal) | hexagonal?) | ||
JCPDS card | 18-162 | 31-300 | 15-314 |
Main XRD peaks | 2.99 | 3.24 | 2.94 |
6.58 | 3.22 | 3.06 | |
2.70 | 1.97 | 2.63 | |
4.40 | 3.42 | 3.18 | |
3.35 | 2.82 | 5.06 | |
5.07 | 2.45 | 2.21 | |
3.20 | 5.67 | 3.53 | |
3.06 | 5.93 | 2.99 | |
2.61 | 5.06 | 2.57 | |
4.37 | |||
-
- 1. Chemical attributes: These materials are both alkali- and boron-free (important for many high-temperature uses) and can be environmentally “green” (the boron-free compositions).
- 2. Microstructure attributes: Zero or near-zero porosity and high crystallinity. Any residual glass in the material should occupy interstices and not form a continuous path through the bulk of the material. This latter feature is particularly valuable for minimizing cation migration through the glass phase at high temperature and thereby repressing any continuing reaction between the substrate and frit. This attribute would be of particular use for seals and coatings, which must survive many hours at high temperature.
- 3. Refractory: Many of these materials are stable up to, and even well beyond 1200° C.
- 4. Thermal expansion: The coefficient of thermal expansion for the materials of the invention can be tailored to match the coefficient of many metals, metal alloys and ceramics. Further, the materials according to the invention have linear (and identical) heating and cooling expansion curves. There is no hysteresis, no bend in curve. In addition, re-run samples provide identical expansion curves; the minimal residual glass of the compositions of the invention means there is no softening or permanent dimensional changes of the glass-ceramic part during thermal cycling—another potential advantage of the materials for use at high temperatures.
-
- 30-55% SiO2,
- 5-40% CaO,
- 0-50% BaO,
- 0.1-10% Al2O3, and
- 0-40% SrO,
with the provision that the sum of CaO+BaO+SrO is in the range of 35-65 wt. %. In some embodiments the sum of CaO+BaO+SrO is in the range of 40-65 wt. %
-
- >0-16% MgO, and
- >0-10% ZnO,
with the provision the sum of CaO+BaO+SrO+(MgO and/or ZnO) is in the range of 35-65 wt. %. In some embodiments the sum of CaO+BaO+SrO+(MgO and/or ZnO) is in the range of 40-65 wt. % [the phrase “MgO and/or ZnO” signifying that one or the other or both may be present]. Optionally, the foregoing compositions may also contain >0-10 wt. % of at least metal oxide selected from the group of transition metal and rare earth metal oxides. Examples of the transition metal and rare earth metal oxides that can be used in practicing the invention include, without limitation, Nb2O5, Ta2O5, Y2O3, Yb2O3, La2O3, and Fe2O3.
-
- 38-50% SiO2,
- 20-40% CaO,
- 0-20% BaO,
- 2-6% Al2O3, and
- 0-25% SrO,
with the provision that the sum of CaO+BaO+SrO is in the range of 35-65 wt. %. In some embodiments the sum of CaO+BaO+SrO is in the range of 40-65 wt. %.
TABLE 2 | ||
Sample No. |
(1) | (2) | (3) | (4) | (5) | |||
SiO2 | 40.4 | 39.2 | 42.8 | 38.8 | 37.4 | ||
Al2O3 | 2.9 | 7.4 | |||||
CaO | 25.2 | 24.5 | 29.9 | 21.7 | 23.3 | ||
SrO | |||||||
BaO | 34.4 | 33.4 | 27.3 | 39.5 | 31.9 | ||
MgO | |||||||
ZnO | |||||||
Nb2O5 | |||||||
Ta2O5 | |||||||
Y2O3 | |||||||
Fe2O3 | |||||||
Base | (Ca.67Ba.33)—SiO3 | (Ca.67Ba.33)—SiO3 | (Ca.75Ba.25)—SiO3 | (Ca.60Ba.40)—SiO3 | (Ca.67Ba.33)—SiO3 | ||
Cyclosilicate | |||||||
XRD | Walst s.s. | Walst s.s. | Walst s.s. | Walst s.s. | Walst. s s. + m. glass | ||
CTE 25-700 | 102 | 100 | 105 | ||||
Sample No. |
(6) | (7) | (8) | (9) | (10) | |||
SiO2 | 35.2 | 47.8 | 45.5 | 44.3 | 41.0 | ||
Al2O3 | 4.8 | 4.8 | 7.4 | 4.8 | |||
CaO | 21.0 | 35.7 | 34.0 | 33.0 | 19.0 | ||
SrO | 16.5 | 15.7 | 15.3 | 35.2 | |||
BaO | 38.0 | ||||||
MgO | |||||||
ZnO | |||||||
Nb2O5 | |||||||
Ta2O5 | |||||||
Y22O3 | |||||||
Fe2O3 | |||||||
Base | (Ca.50Ba.50)—SiO3 | (Ca.80Sr.20)—SiO3 | (Ca.80Sr.20)—SiO3 | (Ca.80Sr.20)—SiO3 | (Ca.50Sr.50)—SiO3 | ||
Cyclosilicate | |||||||
XRD | Walst. s.s. | Cyclowoll | Cyclowoll | Cyclowoll + m. | μ s.s. + m. | ||
s.s. + μ s.s. | glass | glass | |||||
CTE 25-700 | 102 | 102 | 100 | ||||
Cyclowoll = Cyclo-wollastomite |
Walst = Walstromite |
Hardyston or hardy = Hardystonite |
åker = åkermanite |
μs.s. = μ-(Ca,Sr)SiO3 |
diop = diopside |
m = minor |
s.s. = solid solution |
Sample No. |
(11) | (12) | (13) | (14) | (15) | |
SiO2 | 39.8 | 34.8 | 47.8 | 42.3 | 42.4 |
Al2O3 | 74 | 4.8 | 4.8 | 7.1 | 3.8 |
CaO | 18.5 | 10.9 | 27.2 | 31.6 | 29.3 |
SrO | 34.3 | 20.0 | 12.6 | 14.6 | 7.9 |
BaO | 29.6 | 16.5 | |||
MgO | 7.6 | ||||
ZnO | 4.4 | ||||
Nb2O5 | |||||
Ta2O5 | |||||
Y2O3 | |||||
Fe2O3 | |||||
Base | (Ca.50Sr.50)—SiO3 | (Ca.33Sr.33—Ba.33)SiO3 | (Ca.64Sr.16—Mg.20)SiO3 | (Ca.80Sr.20)—SiO3 + ZnO | (Ca.73Sr.10—Ba.17)SiO3 |
Cyclosilicate | |||||
XRD | Cyclowoll + m. μs.s. + m. | Walst + μ s.s. + | Cyclowoll + diop + | Cyclowoll + | Walst + cyclowoll + |
glass | glass | m. åker | hardy + glass | m. glass | |
CTE 25-700 | 106 | 95 | 86 | 108 | |
Sample No. |
(16) | (17) | (18) | (19) | (20) | |
SiO2 | 44.5 | 36.2 | 50.7 | 47.9 | 46.5 |
Al2O3 | 3.8 | 4.8 | 4.8 | 4.8 | 4.8 |
CaO | 32.3 | 21.0 | 37.5 | 36.7 | 36.4 |
SrO | 12.7 | ||||
BaO | 6.6 | 38.1 | |||
MgO | 7.0 | 5.7 | 5.0 | ||
ZnO | 5.0 | 7.4 | |||
Nb2O5 | |||||
Ta2O5 | |||||
Ya2O3 | |||||
Fe2O3 | |||||
Base | (Ca.77Sr.16—Ba.07)SiO3 | (Ca.80Mg.20)—SiO3 | |||
Cyclosilicate | |||||
XRD | Cyclowoll + m. | Walst s.s. + glass | Diopside + m. | Cyclowoll + diop + | Hardyston. + m.diop + |
Walst + m. | cyclowoll. | hardy/åker | m. cyclwoll | ||
GTE 25-700 | 111 | 104 | 99 | 103 | 97 |
Cyclowoll = cyclo-Wollastomite |
Walst = Walstromite |
Hardyston or hardy = hardystonite |
åker = åkermanite |
μs.s. = μ-(Ca,Sr)SiO3 |
diop = diopside |
m = minor |
s.s. = solid solution |
Sample No. |
(21) | (22) | (23) | (24) | |
SiO2 | 46.7 | 45.2 | 48.3 | 50.0 |
Al2O3 | 4.7 | 4.5 | 4.8 | 4.7 |
CaO | 26.6 | 25.8 | 27.5 | 37.0 |
SrO | 12.3 | 11.9 | 12.7 | |
BaO | ||||
MgO | 7.4 | 7.2 | 7.7 | 6.9 |
ZnO | ||||
Nb2O5 | 2.3 | |||
Ta2O5 | 5.4 | 5.6 | ||
Y2O3 | 3.9 | |||
Fe2O3 | 0.5 | |||
Base | (Ca.64Sr.16—Mg.20)—SiO3 + | (Ca.64Sr.16—Mg.20)—SiO3 + | (Ca.64Sr.16—Mg.20)—SiO3 + | (Ca.64Sr.16—Mg.20)—SiO3 + |
Cyclosilicate | Nb2O5 | Ta2O5 | Y2O5 | Ta2O5 + Fe2O3 |
XRD | Cyclowoll + diop + | Cyclowoll + diop + | Cyclowoll + diop + | Cyclowoll + diop + |
m. åker | m. åker | m. åker | m. åker | |
CTE 25-700 | 104 | 103 | 104 | |
Cyclowoll = cyclo-Wollastomite |
Walst = Walstromite |
Hardyston = hardystonite |
åker = åkermanite |
μs.s. = μ-(Ca,Sr)SiO3 |
diop = diopside |
m = minor |
s.s. = solid solution |
Claims (17)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/708,242 US7410921B2 (en) | 2006-04-11 | 2007-02-20 | High thermal expansion cyclosilicate glass-ceramics |
PCT/US2007/008375 WO2007120546A2 (en) | 2006-04-11 | 2007-04-05 | High thermal expansion cyclosilicate glass-ceramics |
CN2007800128770A CN101421199B (en) | 2006-04-11 | 2007-04-05 | High thermal expansion cyclosilicate glass-ceramics |
KR1020087027598A KR101334484B1 (en) | 2006-04-11 | 2007-04-05 | High thermal expansion cyclosilicate glass-ceramics |
EP07754833.7A EP2007690B1 (en) | 2006-04-11 | 2007-04-05 | High thermal expansion cyclosilicate glass-ceramics |
JP2009505391A JP5285599B2 (en) | 2006-04-11 | 2007-04-05 | High thermal expansion cyclosilicate glass ceramic |
TW096112496A TWI360530B (en) | 2006-04-11 | 2007-04-09 | High thermal expansion cyclosilicate glass-ceramic |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/402,761 US7378361B2 (en) | 2006-04-11 | 2006-04-11 | High thermal expansion cyclosilicate glass-ceramics |
US11/546,237 US7470640B2 (en) | 2006-04-11 | 2006-10-11 | Glass-ceramic seals for use in solid oxide fuel cells |
US11/708,242 US7410921B2 (en) | 2006-04-11 | 2007-02-20 | High thermal expansion cyclosilicate glass-ceramics |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/402,761 Continuation-In-Part US7378361B2 (en) | 2006-04-11 | 2006-04-11 | High thermal expansion cyclosilicate glass-ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070238601A1 US20070238601A1 (en) | 2007-10-11 |
US7410921B2 true US7410921B2 (en) | 2008-08-12 |
Family
ID=38610078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/708,242 Active US7410921B2 (en) | 2006-04-11 | 2007-02-20 | High thermal expansion cyclosilicate glass-ceramics |
Country Status (6)
Country | Link |
---|---|
US (1) | US7410921B2 (en) |
EP (1) | EP2007690B1 (en) |
JP (1) | JP5285599B2 (en) |
KR (1) | KR101334484B1 (en) |
TW (1) | TWI360530B (en) |
WO (1) | WO2007120546A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090075802A1 (en) * | 2006-10-11 | 2009-03-19 | Michael Edward Badding | Glass-ceramic seals for use in solid oxide fuel cells |
US20090239122A1 (en) * | 2004-10-15 | 2009-09-24 | Brow Richard K | Glass and glass-ceramic sealant compositions |
US20100129726A1 (en) * | 2007-08-01 | 2010-05-27 | Asahi Glass Company, Limited | Non-lead glass |
WO2012162753A1 (en) * | 2011-06-01 | 2012-12-06 | The University Of Sydney | Biocompatible material and uses thereof |
US20130108946A1 (en) * | 2010-04-01 | 2013-05-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Vitroceramic glass compositions for gaskets of apparatuses operating at high temperatures and assembling method using said compositions |
US20180346370A1 (en) * | 2015-11-27 | 2018-12-06 | Nihon Yamamura Glass Co., Ltd. | Sealing Glass Composition |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5679657B2 (en) * | 2006-04-11 | 2015-03-04 | コーニング インコーポレイテッド | Glass ceramic seals for use in solid oxide fuel cells |
US7989374B2 (en) * | 2008-05-15 | 2011-08-02 | Corning Incorporated | Non-contaminating, electro-chemically stable glass frit sealing materials and seals and devices using such sealing materials |
EP2664589A1 (en) * | 2012-05-15 | 2013-11-20 | Ceraglass patenten B.V. | A method and a device of manufacturing an object of glass with at least one three-dimensional figurine enclosed therein |
WO2014103973A1 (en) | 2012-12-25 | 2014-07-03 | 日本山村硝子株式会社 | Glass composition for sealing |
WO2018221426A1 (en) * | 2017-05-27 | 2018-12-06 | 日本山村硝子株式会社 | Encapsulating glass composition |
EP3650415B1 (en) * | 2018-11-07 | 2024-02-07 | Schott Ag | Joint connection comprising a crystallised glass, its use, crystallisable and at least partially crystallised glass and its use |
CN115925266B (en) * | 2022-12-01 | 2023-09-08 | 哈尔滨工业大学 | Method for connecting silicon carbide ceramics by using cordierite microcrystalline glass solder |
CN116495992A (en) * | 2023-04-26 | 2023-07-28 | 华东理工大学 | Glass ceramic slurry for temperature sensor and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5298332A (en) | 1989-08-21 | 1994-03-29 | Corning Incorporated | Glass-ceramic coatings for titanium-based metal surfaces |
JP2000086288A (en) * | 1998-06-30 | 2000-03-28 | Ngk Spark Plug Co Ltd | Crystallized glass-ceramic composite, wiring substrate using the same and package arranged with the wiring substrate |
US6430966B1 (en) * | 1999-07-30 | 2002-08-13 | Battelle Memorial Institute | Glass-ceramic material and method of making |
US7214441B2 (en) * | 2005-02-03 | 2007-05-08 | Corning Incorporated | Low alkali sealing frits, and seals and devices utilizing such frits |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358541A (en) * | 1981-11-23 | 1982-11-09 | Corning Glass Works | Glass-ceramic coatings for use on metal substrates |
JPS61205637A (en) * | 1985-03-06 | 1986-09-11 | Nippon Electric Glass Co Ltd | Crystallized glass and production thereof |
US4853349A (en) * | 1988-05-26 | 1989-08-01 | Corning Glass Works | Glass-ceramics suitable for dielectric substrates |
JPH0531166A (en) * | 1991-07-26 | 1993-02-09 | Nippon Electric Glass Co Ltd | Biologically active composite implant material |
JPH0660891A (en) * | 1992-08-12 | 1994-03-04 | Tonen Corp | Sealing material for fuel cell |
RU2089527C1 (en) * | 1993-08-06 | 1997-09-10 | Товарищество с ограниченной ответственностью "АЛМАЗ" | Method of preparing woolastonite |
JPH1092450A (en) * | 1996-09-17 | 1998-04-10 | Chubu Electric Power Co Inc | Sealing member and solid electrolyte type fuel cell equipped with it |
GB9807977D0 (en) * | 1998-04-16 | 1998-06-17 | Gec Alsthom Ltd | Improvements in or relating to coating |
US6348427B1 (en) * | 1999-02-01 | 2002-02-19 | Kyocera Corporation | High-thermal-expansion glass ceramic sintered product |
JP3934811B2 (en) * | 1999-02-01 | 2007-06-20 | 京セラ株式会社 | High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof |
US6532469B1 (en) * | 1999-09-20 | 2003-03-11 | Clearforest Corp. | Determining trends using text mining |
JP5679657B2 (en) * | 2006-04-11 | 2015-03-04 | コーニング インコーポレイテッド | Glass ceramic seals for use in solid oxide fuel cells |
-
2007
- 2007-02-20 US US11/708,242 patent/US7410921B2/en active Active
- 2007-04-05 EP EP07754833.7A patent/EP2007690B1/en not_active Ceased
- 2007-04-05 KR KR1020087027598A patent/KR101334484B1/en active IP Right Grant
- 2007-04-05 JP JP2009505391A patent/JP5285599B2/en not_active Expired - Fee Related
- 2007-04-05 WO PCT/US2007/008375 patent/WO2007120546A2/en active Application Filing
- 2007-04-09 TW TW096112496A patent/TWI360530B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5298332A (en) | 1989-08-21 | 1994-03-29 | Corning Incorporated | Glass-ceramic coatings for titanium-based metal surfaces |
JP2000086288A (en) * | 1998-06-30 | 2000-03-28 | Ngk Spark Plug Co Ltd | Crystallized glass-ceramic composite, wiring substrate using the same and package arranged with the wiring substrate |
US6430966B1 (en) * | 1999-07-30 | 2002-08-13 | Battelle Memorial Institute | Glass-ceramic material and method of making |
US6532769B1 (en) * | 1999-07-30 | 2003-03-18 | Battelle Memorial Institute | Glass-ceramic joint and method of joining |
US7214441B2 (en) * | 2005-02-03 | 2007-05-08 | Corning Incorporated | Low alkali sealing frits, and seals and devices utilizing such frits |
Non-Patent Citations (10)
Title |
---|
"Crystallographic study of Ca<SUB>2</SUB>BaSi<SUB>3</SUB>O<SUB>9</SUB>", Zeitschrift Fur Kristallographie, Frankfurt Am main (1961) Bd. 116, S. 263-265. |
"Glass/Metal and Glass-Ceramic/metal Seals", Engineered Materials Handbook, vol. 4, Tomsia, et al 493-501, no date. |
"Glass-forming ability, sinterability and thermal properties in the systems RO-BaO-SiO<SUB>2 </SUB>(R=Mg, Zn"), C. Lara, J. Non-Crystalline Solids, 348, 2004 149-155. |
"On the crystal structure of pseudowollastonite (CaSiO<SUB>3</SUB>)", H. Yang. American Mineralogist, V. 84, pp. 929-932, no date. |
"Properties and Structure of Viterous Silica.I", R. Bruckner, J. of Non-Crystalline Solids 5 (1970) 123-175. |
"Structure and High-Pressure Polymorphismof Strontium Metasilicate, " K. Machinda, Acta Cryst. (1982), B38, 386-389. |
"Studies In the System CaO-A1<SUB>2</SUB>O<SUB>3</SUB>-SiO<SUB>2</SUB>-H<SUB>2</SUB>O, II: The Stystem CaSiO<SUB>3</SUB>-H<SUB>2</SUB>O", Buckner, et al American Journal of Science, New Haven Connecticut, 1960, vol. 258 pp. 132-147. |
"The Structure and Polytypes of a-CaSio<SUB>3 </SUB>(Pseudowollastonie)", T. Yamanaka, et al Acta Cryst. (1981), B37, 1010-1017. |
"Thermal Expansion", Handbood of Physical Constants, The Gological Society of American memoir 97, 1966 Section 6, 76-96. |
"Thick Film heaters made From Dielectric Tape Bonded Stainless Steel Substrates, " S.J. Stein, et al Electro Science Laboratories Inc. 1995. |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090239122A1 (en) * | 2004-10-15 | 2009-09-24 | Brow Richard K | Glass and glass-ceramic sealant compositions |
US20090075802A1 (en) * | 2006-10-11 | 2009-03-19 | Michael Edward Badding | Glass-ceramic seals for use in solid oxide fuel cells |
US7674735B2 (en) * | 2006-10-11 | 2010-03-09 | Corning Incorporated | Glass-ceramic seals for use in solid oxide fuel cells |
US20100129726A1 (en) * | 2007-08-01 | 2010-05-27 | Asahi Glass Company, Limited | Non-lead glass |
US8178453B2 (en) * | 2007-08-01 | 2012-05-15 | Asahi Glass Company, Limited | Non-lead glass |
US20130108946A1 (en) * | 2010-04-01 | 2013-05-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Vitroceramic glass compositions for gaskets of apparatuses operating at high temperatures and assembling method using said compositions |
US9522842B2 (en) * | 2010-04-01 | 2016-12-20 | Commissariat a l'énergie atomique et aux énergies alternatives | Vitroceramic glass compositions for gaskets of apparatuses operating at high temperatures and assembling method using said compositions |
WO2012162753A1 (en) * | 2011-06-01 | 2012-12-06 | The University Of Sydney | Biocompatible material and uses thereof |
US9220806B2 (en) | 2011-06-01 | 2015-12-29 | The University Of Sydney | Biocompatible material and uses thereof |
US20180346370A1 (en) * | 2015-11-27 | 2018-12-06 | Nihon Yamamura Glass Co., Ltd. | Sealing Glass Composition |
Also Published As
Publication number | Publication date |
---|---|
KR101334484B1 (en) | 2013-11-29 |
US20070238601A1 (en) | 2007-10-11 |
JP2009533311A (en) | 2009-09-17 |
WO2007120546A2 (en) | 2007-10-25 |
WO2007120546A3 (en) | 2008-07-03 |
EP2007690A2 (en) | 2008-12-31 |
JP5285599B2 (en) | 2013-09-11 |
EP2007690A4 (en) | 2009-12-23 |
KR20080111528A (en) | 2008-12-23 |
EP2007690B1 (en) | 2015-12-09 |
TWI360530B (en) | 2012-03-21 |
TW200804218A (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7378361B2 (en) | High thermal expansion cyclosilicate glass-ceramics | |
US7410921B2 (en) | High thermal expansion cyclosilicate glass-ceramics | |
EP2007689B1 (en) | Glass-ceramic seals for use in solid oxide fuel cells | |
EP0114101B1 (en) | Glass-ceramic articles containing osumilite | |
US10501367B2 (en) | Ceramics and glass ceramics exhibiting low or negative thermal expansion | |
CA1050259A (en) | Cordierite glasses and glass-ceramics | |
JP5679657B2 (en) | Glass ceramic seals for use in solid oxide fuel cells | |
JP3421284B2 (en) | Negatively heat-expandable glass ceramics and method for producing the same | |
KR20050053693A (en) | Crystallizable glass and the use thereof for producing extremely rigid and break-resistant glass ceramics having an easily polished surface | |
US5763344A (en) | Aluminum nitride sintered body and method of manufacturing the same | |
US5001086A (en) | Sintered glass-ceramic body and method | |
US4861734A (en) | Alkaline earth aluminoborate glass-ceramics | |
JPH01126239A (en) | Glass substrate for electronic equipment | |
JP5146905B2 (en) | Sealing material | |
TW202313508A (en) | Glass frit compositions for semiconductor passivation applications | |
JPH0781972A (en) | Glaze composition | |
KR19980072405A (en) | Thermal shock resistant alumina-mullite composite composition and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CORNING INCORPORATED, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PINCKNEY, LINDA RUTH;TIETJE, ALVIN;REEL/FRAME:019013/0836 Effective date: 20070208 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |