US7321396B2 - Deinterlacing apparatus and method - Google Patents
Deinterlacing apparatus and method Download PDFInfo
- Publication number
- US7321396B2 US7321396B2 US10/703,568 US70356803A US7321396B2 US 7321396 B2 US7321396 B2 US 7321396B2 US 70356803 A US70356803 A US 70356803A US 7321396 B2 US7321396 B2 US 7321396B2
- Authority
- US
- United States
- Prior art keywords
- value
- values
- interpolation
- sad
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0117—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
- H04N7/012—Conversion between an interlaced and a progressive signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/144—Movement detection
- H04N5/145—Movement estimation
Definitions
- the present invention relates to a deinterlacing apparatus and a method, and more particularly, to a deinterlacing apparatus and a method easily implemented and having a fast process speed, which calculate interpolation values and mixed values for estimated motion vectors, and use selected values as a final interpolation value and mixed value.
- An interlace scan mode and a progressive scan mode are provided as scan modes of an image display apparatus.
- the interlace scan mode is employed for general TVs and the like.
- the interlace scan mode is a mode that, when one image is displayed, divides one image frame into two fields and sequentially and alternately displays the fields on a screen to form an image. At this time, the two fields are referred to as a top field and a bottom field, an upper field and a lower field, an odd field and an even field, or the like.
- the progressive scan or a non-interlace scan mode is used for computer monitors, digital TVs, and so on.
- the non-interlace scan mode is a mode that treats one frame image as a frame unit and displays full frame images at a time like a projecting film on the screen.
- a deinterlacing apparatus refers to a device that converts a video signal of the interlace scan mode into a video signal of the progressive scan mode.
- Video display devices using the progressive scan mode increase in number, and, at the same time, a necessity to exchange data between different scan modes is also increasing, so that the deinterlacing apparatus is required to convert the interlace scan mode to the progressive scan mode.
- a spatial interpolation method has been developed to implement new fields through a process of inserting an average data of two line data between two lines of a present field, and a temporal interpolation method having no motion compensation but implementing frames by using field lines before and after a present field, between present field lines.
- Such methods may be implemented in simple hardware, but the methods can generate errors in case of interpolating the images in motion or degrade an image quality due to deteriorations of the interpolated images.
- the motion-compensated interpolation method has been developed which divides the image into blocks over a continuous field data with reference to a present field data, obtains motions over the respective blocks, and interpolates a present frame image with reference to motion vectors.
- Such a motion-compensated method is disclosed in U.S. Pat. No. 5,777,682 issued Jul. 7, 1998.
- the motion-adaptive interpolation method estimates an extent of motion and interpolates frames depending upon motions.
- Such a motion-adaptive interpolation method is disclosed in U.S. Pat. No. 5,027,201 issued Jun. 25, 1991, and U.S. Pat. No. 5,159,451 issued Oct. 27, 1992, and so on.
- the motion-adaptive interpolation method is relatively simple in a hardware structure so that the motion-adaptive interpolation method can be easily implemented at less cost, but has a problem of deteriorating the performance for image quality improvements.
- the motion-compensated interpolation method requires a large number of pixel data from a current to-be-interpolated field and reference fields for motion estimations, so the motion-compensated interpolation method needs to access massive amounts of data from a field or frame memory or to store data in a buffer of large capacity, which makes implementations complicated and the implementation cost high.
- the motion-compensated interpolation method generally uses unit block motion vectors for the motion estimations and compensations, so that, because error corrections are carried out for every block unit, a block artifact occurs on interpolated images from time to time. Accordingly, a subsequent process to prevent the artifact is needed, which brings out a problem of making an overall hardware structure considerably complicated.
- the present invention has been devised to solve the above and/or problems, so according to an aspect of the present invention, there is provided a deinterlacing apparatus and method efficiently performing motion compensations, easily implemented, and having a fast processing speed.
- a deinterlacing apparatus includes a motion compensation unit implementing motion-compensated temporal interpolation for each estimated motion vector with reference to a previous field and a next field, which are respectively ahead of and behind a current field to be interpolated, producing interpolation values of a pixel to be interpolated, and outputting a selected value from the interpolation values as a first interpolation value; a spatial interpolation unit producing a second interpolation value of the pixel to be interpolated using values of pixels around the pixel to be interpolated; and an output unit mixing the first and second interpolation values with a weighted value and outputting a value indicative thereof.
- the motion compensation device calculates a mixed value based on motion information with respect to the pixel to be interpolated for each of the estimated motion vectors, and outputs as the weighted value a selected value of mixed values. Further, the motion compensation device further calculates a summed absolute difference (SAD) value by unit of a search area in which a position is set with reference to the estimated motion vectors based on the next and previous fields, and selects the first interpolation value and the weighted value based on SAD values.
- SAD summed absolute difference
- the motion compensation device may include motion compensation assistant units each producing an interpolation value, the SAD value, and the mixed value for each of the estimated motion vectors; and a selection unit outputting as the first interpolation value and the weighted value the selected value from the interpolation values and the selected value from the mixed values based on the SAD values.
- the motion compensation assistant parts each include an SAD calculation unit calculating the SAD value; a motion information unit producing the mixed value; and a temporal interpolation unit calculating the interpolation value.
- the SAD calculation unit may include a segment SAD calculator calculating a segment SAD value with respect to a line having a size; an SAD buffer storing line by line segment SAD values calculated from the segment SAD calculator; and a block SAD calculator adding the segment SAD values stored in the SAD buffer and calculating the SAD value.
- the motion information unit may include a motion information calculator calculating a motion information value indicating an extent of motion between the previous field and the next field with reference to the pixel to be interpolated; a motion information buffer storing the mixed value corresponding to the motion information; and a weight value calculator calculating the mixed value with reference to the motion information buffer.
- the selection device includes a first multiplexer outputting any one of the interpolation values as the first interpolation value; a second multiplexer outputting any one of the mixed values as the weight value; and a motion selection unit controlling outputs of the first and second multiplexers based on the SAD values.
- the motion selection part may control selecting the interpolation value and the mixed value corresponding to the estimated motion vector producing the least SAD value of the SAD values.
- a deinterlacing method includes implementing motion-compensated temporal interpolation for each of estimated motion vectors with reference to a previous field and a next field, which are respectively ahead of and behind a current field to be interpolated, producing interpolation values for a pixel to be interpolated, and outputting a selected value of the interpolation values as a first interpolation value; producing a second interpolation value of the pixel using values of pixels around the pixel to be interpolated; and mixing the first and second interpolation values with a weighted value and outputting a value indicative thereof.
- the implementation further includes calculating a mixed value based on motion information with respect to the pixel to be interpolated of each of the estimated motion vectors, and outputting as a weighted value a selected value of mixed values. Further, implementation further includes calculating a summed absolute difference (SAD) value by unit of a search area in which a position is set with reference to the estimated motion vectors based on the next and previous fields, and selecting the first interpolation value and the weighted value based on SAD values.
- SAD summed absolute difference
- the implementing motion-compensated temporal interpolation includes: producing the interpolation values, SAD values, and mixed values for the estimated motion vectors; and outputting a value selected from the interpolation values and a value selected from the mixed values based on the SAD values.
- the producing of the interpolation values, SAD values, and mixed values includes: calculating the SAD values; producing the mixed values; and calculating the interpolation values.
- the calculation of the SAD values includes: calculating a segment SAD value with respect to each line having a size; storing line by line segment SAD values; and adding the stored segment SAD values and calculating the SAD value.
- the producing of the mixed values includes calculating a motion information value indicating an extent of a motion between the previous field and the next field with reference to the pixel to be interpolated; and referring to the stored mixed values corresponding to the motion information value, and calculating the mixed values.
- the outputting of the values selected from the interpolation values and the mixed values may control selecting an interpolation value and a mixed value corresponding to an estimated motion vector producing a least SAD value of the SAD values.
- FIG. 1 is a block diagram showing a deinterlacing apparatus, according to an aspect of the present invention
- FIG. 2 is a block diagram showing in detail a motion compensation assistant part of FIG. 1 ;
- FIG. 3 is a block diagram showing in detail an SAD calculation part of FIG. 2 ;
- FIG. 4 is a block diagram showing a motion information part of FIG. 2 ;
- FIG. 5 is a flow chart explaining operations of the deinterlacing apparatus, according to an aspect of the present invention.
- FIG. 1 is a block diagram showing a deinterlacing apparatus, according to an aspect of the present invention.
- the deinterlacing apparatus has motion compensation assistant parts 100 a to 100 n , a motion selection part 150 , a first multiplexer 200 , a second multiplexer 250 , a spatial interpolation part 300 , and an output part 350 .
- the motion compensation assistant parts 100 a to 100 n each have the same structure, sequentially input time-continuous fields of interlace scan mode, and input estimated motion vectors V 1 to Vn, respectively.
- a field to be currently interpolated is referred to as a current field
- fields ahead of or behind the current field in time are referred to as a previous field and a next field, respectively.
- the estimated motion vectors V 1 to Vn input to the motion compensation assistant parts 100 a to 100 n are not motion vectors calculated through motion detections, but estimated motion vectors.
- the motion vector is two-dimensional information, which indicates the movement of the block in the reference field and the current field in a movement amount on the X-Y coordinates of two-dimension. Accordingly, the motion vector includes a movement magnitude in a horizontal direction and a movement magnitude in a vertical direction, and it is usual to take in a corresponding block at a position to which such a motion vector points for interpolation.
- the deinterlacing apparatus uses estimated motion vectors V 1 to Vn, calculates interpolation values at positions to which corresponding estimated motion vectors point, and selects one of the calculated interpolation values.
- the motion compensation assistant parts 100 a to 100 n refer to corresponding areas to which the input estimated motion vectors V 1 to Vn point with reference to a previous field and a next field, and calculate summed absolute difference SAD values A 1 to An, mixed values B 1 to Bn for a mixture of a temporal interpolation value and a spatial interpolation value, and interpolation values C 1 to Cn for motion-compensated temporal interpolations.
- the motion selection part 150 selects any one output of the respective motion compensation assistant parts 100 a to 100 n based on the respective SAD values A 1 to An output from the respective motion compensation assistant parts 100 a to 100 n , and; accordingly, controls a selection of output values the first and second multiplexers 200 and 250 . With such controls, the first and second multiplexers 200 and 250 output to the output part 350 , as a first interpolation value and a weighted value ⁇ , any value selected out of the mixed values B 1 to Bn and the interpolation values C 1 to Cn, respectively, that are output from the motion compensation assistant parts 100 a to 100 n.
- the spatial interpolation part 300 implements spatial interpolations using values of pixels around a pixel to be interpolated in a current field so as to calculate a second interpolation value for the pixel to be interpolated.
- the output part 350 mixes a first interpolation value output from the first multiplexer 200 , a second interpolation value output from the spatial interpolation part 300 , and the weighted value a output from the second multiplexer 250 .
- a value output from the output part 350 becomes a final interpolation value.
- FIG. 2 is a block diagram showing in detail a first motion compensation assistant part 100 a of the motion compensation assistant parts 100 a to 100 n of FIG. 1 . All the motion compensation assistant parts 100 a to 100 n have the same structure.
- the motion compensation assistant part 100 a has an SAD calculation unit 110 , a motion information unit 120 , a temporal interpolation unit 130 , and a memory access unit 140 .
- the SAD calculation unit 110 compares the image corresponding to a macro block of a predetermined size at a position to which the estimated motion vector V 1 points with reference to the previous field and the next field, and calculates a value.
- the SAD calculation unit 110 has a segment SAD calculator 111 , an SAD buffer 113 , and a block SAD calculator 115 .
- the segment SAD calculator 111 compares the image corresponding to a line segment of certain size at a position set with reference to an estimated motion vector in the previous field and the next field, and calculates a line SAD value.
- the calculated line SAD value is sent to the SAD buffer 113 .
- the SAD buffer 113 stores line SAD values of line segments matching positions of each line of the macro block.
- the block SAD calculator 115 adds all the values stored in the SAD buffer 113 so that a value corresponding to the SAD value of a macro block can be calculated.
- the motion information unit 120 calculates motion information pixel by pixel between the previous field and the next field with reference to a current field pixel to be interpolated.
- an area to be referred to in the previous field and the next field becomes one to which the input estimated motion vector V 1 points.
- the motion compensation assistant part 100 calculates a mixed value for mixture based on the calculated motion information.
- the motion information unit 120 may have a motion information calculator 121 , a motion information buffer 123 , a weighted value calculator 125 .
- the motion information calculator 121 detects motion information values indicating whether there are motions of individual pixels of the current field to be interpolated with reference to the estimated motion vector V 1 .
- the detected motion information values are sent to and stored in the motion information buffer 123 .
- the motion information buffer 123 stores in a table format mixed values corresponding to respective motion information values, and the weighted value calculator 125 refers to the table, and selects and outputs one of the mixed values stored in the search table based on the motion information output from the motion information calculator 121 . At this time, the output mixed values become either a 0 or a 1.
- the temporal interpolation unit 130 refers to areas of the previous and next fields which point to the input estimated motion vector V 1 , implements motion-compensated temporal interpolations, and calculates interpolation values for the pixels to be interpolated.
- the memory access unit 140 stores lines around current field pixels to be interpolated, and corresponding areas to which the estimated motion vector V 1 in the previous and next fields points, and provides the stored lines and areas to the SAD calculation unit 110 , the motion information unit 120 , and temporal interpolation unit 130 , respectively.
- the above operation process is implemented in the same manner in all the motion compensation assistant parts 100 a to 100 n , but areas of the previous and next fields to be referred to vary when the SAD values, the motion information values, and the interpolation values are calculated depending upon input estimated motion vectors V 1 to Vn.
- FIG. 5 is a flow chart explaining operations of the deinterlacing apparatus, according to an aspect of the present invention.
- the respective motion compensation assistant parts 100 a to 100 n input time-continuous fields, and input different estimated motion vectors V 1 to Vn, and output the interpolation values and the mixed values or the weighted values ⁇ .
- the motion compensation assistant parts 100 a to 100 n simultaneously calculate the SAD values, referring to the estimated motion vectors.
- the motion selection part 150 selects a motion compensation assistant part calculating the least SAD value, referring to the SAD values calculated from the respective motion compensation assistant parts 100 a to 100 n . Accordingly, at operation S 305 , the motion selection part 150 controls the selection of the output values of the first and second multiplexers 200 and 250 to transfer to the output part 350 the interpolation value and the weighted value, which are calculated from the motion compensation assistant part calculating a least SAD value, to thereby select either the temporal interpolation values or the mixed values (or weighted values), both calculated by the motion compensation assistant parts 100 a to 100 n .
- the temporal interpolation values or the mixed values are selected because an estimated motion vector for the least SAD value calculated is a genuine motion vector indicating best the motion of the pixel to be currently interpolated.
- the spatial interpolation part 300 uses the values of the pixels around the current field pixel to be interpolated and calculates the spatial interpolation value as to the pixel to be interpolated.
- the output part 350 mixes a temporal interpolation value output from the second multiplexer 200 and the spatial interpolation value output from the spatial interpolation part 300 with a weighted value output from the second multiplexer 250 for an output indicative thereof. That is, a final interpolation value output from the output part 350 is any one of the temporal interpolation value, the spatial interpolation value, and the mixed value obtained from mixing the temporal interpolation value and the spatial interpolation value with a weighted value, the value of which becoming the final interpolation value.
- the method simultaneously calculates interpolation values, weighted values, and so on for respective estimated motion vectors, and selects any one of the values for interpolations, differing from a conventional method.
- the method according to an aspect of the present invention calculates motion vectors through motion detection, calculates interpolation values and so on with reference to the calculated motion vectors, and implements interpolations.
- the method according to an aspect of the present invention, has an advantage in view of a memory size necessary for motion detections, a memory access speed, and so on, to thereby be easily implemented and enhance a processing speed.
- a deinterlacing apparatus and method that simultaneously calculate an interpolation value and a weighted value using an estimated motion vector and selecting one of the values, being easily implemented and having a fast processing speed.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Graphics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Television Systems (AREA)
Abstract
Description
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2002-78434 | 2002-12-10 | ||
KR1020020078434A KR20040050577A (en) | 2002-12-10 | 2002-12-10 | Apparatus and method for deinterlacing |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040109085A1 US20040109085A1 (en) | 2004-06-10 |
US7321396B2 true US7321396B2 (en) | 2008-01-22 |
Family
ID=32322370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/703,568 Expired - Fee Related US7321396B2 (en) | 2002-12-10 | 2003-11-10 | Deinterlacing apparatus and method |
Country Status (5)
Country | Link |
---|---|
US (1) | US7321396B2 (en) |
EP (1) | EP1429547A3 (en) |
JP (1) | JP2004194317A (en) |
KR (1) | KR20040050577A (en) |
CN (1) | CN100442820C (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050179814A1 (en) * | 2000-05-05 | 2005-08-18 | Stmicroelectronics S.R.I. | Method and system for de-interlacing digital images, and computer program product therefor |
US20050201626A1 (en) * | 2004-01-20 | 2005-09-15 | Samsung Electronics Co., Ltd. | Global motion-compensated sequential-scanning method considering horizontal and vertical patterns |
US20060077289A1 (en) * | 2004-10-09 | 2006-04-13 | Young-Ho Lee | Image conversion device and method |
US20060274196A1 (en) * | 2005-06-06 | 2006-12-07 | Alexander Maclnnis | System and method for vertical gradient detection in video processing |
US20070052843A1 (en) * | 2003-09-04 | 2007-03-08 | Koninklijke Philips Electronics N.V. | Robust de-interlacing of video signals |
US20070229534A1 (en) * | 2004-08-26 | 2007-10-04 | Samsung Electronics Co., Ltd. | Apparatus and method for converting interlaced image into progressive image |
US20080152259A1 (en) * | 2006-12-06 | 2008-06-26 | Sony United Kingdom Limited | Motion adaptive image processing |
US20080175440A1 (en) * | 2006-12-06 | 2008-07-24 | Sony United Kingdom Limited | Apparatus and method of motion adaptive image processing |
US20090046202A1 (en) * | 2007-08-17 | 2009-02-19 | Himax Technologies Limited | De-interlace method and apparatus |
US20090244367A1 (en) * | 2008-03-28 | 2009-10-01 | Microsoft Corporation | Choosing video deinterlacing interpolant based on cost |
US20100054622A1 (en) * | 2008-09-04 | 2010-03-04 | Anchor Bay Technologies, Inc. | System, method, and apparatus for smoothing of edges in images to remove irregularities |
US20110249179A1 (en) * | 2005-09-08 | 2011-10-13 | Silicon Image, Inc. | Edge detection |
US8351510B1 (en) | 2008-02-01 | 2013-01-08 | Zenverge, Inc. | Motion compensated noise reduction using shared motion estimation engine |
US10264212B1 (en) | 2018-06-27 | 2019-04-16 | The United States Of America As Represented By Secretary Of The Navy | Low-complexity deinterlacing with motion detection and overlay compensation |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100692597B1 (en) | 2004-10-06 | 2007-03-13 | 삼성전자주식회사 | Image processing apparatus capable of selecting field and method the same |
JP4774736B2 (en) * | 2004-12-27 | 2011-09-14 | カシオ計算機株式会社 | Image enlargement apparatus and imaging apparatus |
KR100579890B1 (en) * | 2004-12-30 | 2006-05-15 | 삼성전자주식회사 | Motion adaptive image pocessing apparatus and method thereof |
KR100732683B1 (en) * | 2005-05-06 | 2007-06-27 | 삼성전자주식회사 | Image conversion apparatus to compensate motion and method thereof |
TWI347130B (en) | 2006-08-29 | 2011-08-11 | Realtek Semiconductor Corp | Method and apparatus for de-interlacing video data through utilizing horizontal motion estimation and horizontal motion compensation |
KR101107255B1 (en) * | 2007-02-16 | 2012-01-19 | 삼성전자주식회사 | Method for Interpolating image using motion compensated pixel and apparatus therefor |
CN101848318B (en) * | 2009-03-26 | 2012-10-31 | 晨星软件研发(深圳)有限公司 | Image processing method and circuit |
GB2484071B (en) * | 2010-09-23 | 2013-06-12 | Imagination Tech Ltd | De-interlacing of video data |
CN102158635B (en) * | 2011-05-04 | 2012-10-31 | 凌阳科技股份有限公司 | Motion vector improving device |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5027201A (en) * | 1989-12-21 | 1991-06-25 | Rca Licensing Corporation | Motion detection apparatus as for an interlace to non-interlace scan converter |
US5159451A (en) * | 1991-03-19 | 1992-10-27 | Faroudja Y C | Field memory expansible line doubler for television receiver |
US5398071A (en) * | 1993-11-02 | 1995-03-14 | Texas Instruments Incorporated | Film-to-video format detection for digital television |
US5602654A (en) * | 1995-01-06 | 1997-02-11 | National Science Council | Contour-sensitive, single-field deinterlacing method |
US5661525A (en) * | 1995-03-27 | 1997-08-26 | Lucent Technologies Inc. | Method and apparatus for converting an interlaced video frame sequence into a progressively-scanned sequence |
US5777682A (en) * | 1995-03-14 | 1998-07-07 | U.S. Philips Corporation | Motion-compensated interpolation |
US6340990B1 (en) * | 1998-03-31 | 2002-01-22 | Applied Intelligent Systems Inc. | System for deinterlacing television signals from camera video or film |
US6380978B1 (en) * | 1997-10-06 | 2002-04-30 | Dvdo, Inc. | Digital video system and methods for providing same |
US6606126B1 (en) * | 1999-09-03 | 2003-08-12 | Lg Electronics, Inc. | Deinterlacing method for video signals based on motion-compensated interpolation |
US6625333B1 (en) * | 1999-08-06 | 2003-09-23 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through Communications Research Centre | Method for temporal interpolation of an image sequence using object-based image analysis |
US20040119887A1 (en) * | 2001-01-09 | 2004-06-24 | Franzen Ortwin Ludger | Method and device for converting video signals |
US7039109B2 (en) * | 2001-01-16 | 2006-05-02 | Koninklijke Philips Electronics N.V. | Reducing halo-like effects in motion-compensated interpolation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69318216T2 (en) * | 1992-06-22 | 1998-08-27 | Thomson Multimedia Sa | Method and device for adaptive interpolation |
CN1096185C (en) * | 1996-01-27 | 2002-12-11 | 三星电子株式会社 | Interlaced-to-progressive conversion apparatus and method using motion and spatial correlation |
KR100708091B1 (en) * | 2000-06-13 | 2007-04-16 | 삼성전자주식회사 | Frame rate converter using bidirectional motion vector and method thereof |
US7116372B2 (en) * | 2000-10-20 | 2006-10-03 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for deinterlacing |
-
2002
- 2002-12-10 KR KR1020020078434A patent/KR20040050577A/en not_active Application Discontinuation
-
2003
- 2003-11-10 US US10/703,568 patent/US7321396B2/en not_active Expired - Fee Related
- 2003-11-13 EP EP03026149A patent/EP1429547A3/en not_active Withdrawn
- 2003-11-15 CN CNB2003101203753A patent/CN100442820C/en not_active Expired - Fee Related
- 2003-12-05 JP JP2003407901A patent/JP2004194317A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5027201A (en) * | 1989-12-21 | 1991-06-25 | Rca Licensing Corporation | Motion detection apparatus as for an interlace to non-interlace scan converter |
US5159451A (en) * | 1991-03-19 | 1992-10-27 | Faroudja Y C | Field memory expansible line doubler for television receiver |
US5398071A (en) * | 1993-11-02 | 1995-03-14 | Texas Instruments Incorporated | Film-to-video format detection for digital television |
US5602654A (en) * | 1995-01-06 | 1997-02-11 | National Science Council | Contour-sensitive, single-field deinterlacing method |
US5777682A (en) * | 1995-03-14 | 1998-07-07 | U.S. Philips Corporation | Motion-compensated interpolation |
US5661525A (en) * | 1995-03-27 | 1997-08-26 | Lucent Technologies Inc. | Method and apparatus for converting an interlaced video frame sequence into a progressively-scanned sequence |
US6380978B1 (en) * | 1997-10-06 | 2002-04-30 | Dvdo, Inc. | Digital video system and methods for providing same |
US6340990B1 (en) * | 1998-03-31 | 2002-01-22 | Applied Intelligent Systems Inc. | System for deinterlacing television signals from camera video or film |
US6625333B1 (en) * | 1999-08-06 | 2003-09-23 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through Communications Research Centre | Method for temporal interpolation of an image sequence using object-based image analysis |
US6606126B1 (en) * | 1999-09-03 | 2003-08-12 | Lg Electronics, Inc. | Deinterlacing method for video signals based on motion-compensated interpolation |
US20040119887A1 (en) * | 2001-01-09 | 2004-06-24 | Franzen Ortwin Ludger | Method and device for converting video signals |
US7039109B2 (en) * | 2001-01-16 | 2006-05-02 | Koninklijke Philips Electronics N.V. | Reducing halo-like effects in motion-compensated interpolation |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663695B2 (en) * | 2000-05-05 | 2010-02-16 | Stmicroelectronics S.R.L. | Method and system for de-interlacing digital images, and computer program product therefor |
US20050179814A1 (en) * | 2000-05-05 | 2005-08-18 | Stmicroelectronics S.R.I. | Method and system for de-interlacing digital images, and computer program product therefor |
US20070052843A1 (en) * | 2003-09-04 | 2007-03-08 | Koninklijke Philips Electronics N.V. | Robust de-interlacing of video signals |
US20050201626A1 (en) * | 2004-01-20 | 2005-09-15 | Samsung Electronics Co., Ltd. | Global motion-compensated sequential-scanning method considering horizontal and vertical patterns |
US7613364B2 (en) * | 2004-01-20 | 2009-11-03 | Samsung Electronics Co., Ltd. | Global motion-compensated sequential-scanning method considering horizontal and vertical patterns |
US7808553B2 (en) * | 2004-08-26 | 2010-10-05 | Samsung Electronics Co., Ltd. | Apparatus and method for converting interlaced image into progressive image |
US20070229534A1 (en) * | 2004-08-26 | 2007-10-04 | Samsung Electronics Co., Ltd. | Apparatus and method for converting interlaced image into progressive image |
US7593059B2 (en) * | 2004-10-09 | 2009-09-22 | Samsung Electronics Co., Ltd | Image conversion device and method |
US20060077289A1 (en) * | 2004-10-09 | 2006-04-13 | Young-Ho Lee | Image conversion device and method |
US8325273B2 (en) * | 2005-06-06 | 2012-12-04 | Broadcom Corporation | System and method for vertical gradient detection in video processing |
US20060274196A1 (en) * | 2005-06-06 | 2006-12-07 | Alexander Maclnnis | System and method for vertical gradient detection in video processing |
US8446525B2 (en) * | 2005-09-08 | 2013-05-21 | Silicon Image, Inc. | Edge detection |
US20110249179A1 (en) * | 2005-09-08 | 2011-10-13 | Silicon Image, Inc. | Edge detection |
US20080152259A1 (en) * | 2006-12-06 | 2008-06-26 | Sony United Kingdom Limited | Motion adaptive image processing |
US20080175440A1 (en) * | 2006-12-06 | 2008-07-24 | Sony United Kingdom Limited | Apparatus and method of motion adaptive image processing |
US8055094B2 (en) * | 2006-12-06 | 2011-11-08 | Sony United Kingdom Limited | Apparatus and method of motion adaptive image processing |
US8086075B2 (en) * | 2006-12-06 | 2011-12-27 | Sony United Kingdom Limited | Motion adaptive image processing |
US20090046202A1 (en) * | 2007-08-17 | 2009-02-19 | Himax Technologies Limited | De-interlace method and apparatus |
US8351510B1 (en) | 2008-02-01 | 2013-01-08 | Zenverge, Inc. | Motion compensated noise reduction using shared motion estimation engine |
US8503533B1 (en) * | 2008-02-01 | 2013-08-06 | Zenverge, Inc. | Motion estimation engine for performing multiple types of operations |
US8508661B1 (en) | 2008-02-01 | 2013-08-13 | Zenverge, Inc. | Enhanced deinterlacing using predictors from motion estimation engine |
US8274603B2 (en) | 2008-03-28 | 2012-09-25 | Microsoft Corporation | Choosing video deinterlacing interpolant based on cost |
US20090244367A1 (en) * | 2008-03-28 | 2009-10-01 | Microsoft Corporation | Choosing video deinterlacing interpolant based on cost |
US20100054622A1 (en) * | 2008-09-04 | 2010-03-04 | Anchor Bay Technologies, Inc. | System, method, and apparatus for smoothing of edges in images to remove irregularities |
US8559746B2 (en) | 2008-09-04 | 2013-10-15 | Silicon Image, Inc. | System, method, and apparatus for smoothing of edges in images to remove irregularities |
US9305337B2 (en) | 2008-09-04 | 2016-04-05 | Lattice Semiconductor Corporation | System, method, and apparatus for smoothing of edges in images to remove irregularities |
US10264212B1 (en) | 2018-06-27 | 2019-04-16 | The United States Of America As Represented By Secretary Of The Navy | Low-complexity deinterlacing with motion detection and overlay compensation |
Also Published As
Publication number | Publication date |
---|---|
KR20040050577A (en) | 2004-06-16 |
EP1429547A2 (en) | 2004-06-16 |
US20040109085A1 (en) | 2004-06-10 |
CN1507265A (en) | 2004-06-23 |
JP2004194317A (en) | 2004-07-08 |
CN100442820C (en) | 2008-12-10 |
EP1429547A3 (en) | 2007-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7321396B2 (en) | Deinterlacing apparatus and method | |
US7057665B2 (en) | Deinterlacing apparatus and method | |
US7667773B2 (en) | Apparatus and method of motion-compensation adaptive deinterlacing | |
CN102055947A (en) | Frame rate convertor using motion estimation and pixel interpolation | |
US8355442B2 (en) | Method and system for automatically turning off motion compensation when motion vectors are inaccurate | |
KR20060047630A (en) | Block mode adaptive motion compensation | |
JPS60229594A (en) | Method and device for motion interpolation of motion picture signal | |
JP5424926B2 (en) | Video processing apparatus and video processing method | |
JP3293561B2 (en) | Image display device and image display method | |
US20070121725A1 (en) | Motion compensated frame interpolation apparatus and method | |
KR20040049214A (en) | Apparatus and Method for searching motion vector with high speed | |
EP1460847B1 (en) | Image signal processing apparatus and processing method | |
CN100401763C (en) | Motion correction device and method | |
JP4322114B2 (en) | Image processor and image display apparatus comprising such an image processor | |
KR100930758B1 (en) | Image signal processing device and processing method | |
US8861605B2 (en) | Image processing method with motion estimation and image processing arrangement | |
JP2011019037A (en) | Image processing circuit and image processing method | |
JP5448983B2 (en) | Resolution conversion apparatus and method, scanning line interpolation apparatus and method, and video display apparatus and method | |
JP3898546B2 (en) | Image scanning conversion method and apparatus | |
JP4736456B2 (en) | Scanning line interpolation device, video display device, video signal processing device | |
JP4140091B2 (en) | Image information conversion apparatus and image information conversion method | |
KR100594780B1 (en) | Apparatus for converting image and method the same | |
JP3345980B2 (en) | Frame image generation device | |
JPH03101390A (en) | Image converter | |
JPH08186802A (en) | Interpolation picture element generating method for interlace scanning image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, YOU-YOUNG;LEE, YOUNG-HO;YANG, SEUNG-JOON;REEL/FRAME:014694/0880 Effective date: 20031105 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200122 |